1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6 
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11 
12 #include <drm/drm_syncobj.h>
13 #include <drm/i915_drm.h>
14 
15 #include "display/intel_frontbuffer.h"
16 
17 #include "gem/i915_gem_ioctls.h"
18 #include "gt/intel_context.h"
19 #include "gt/intel_engine_pool.h"
20 #include "gt/intel_gt.h"
21 #include "gt/intel_gt_pm.h"
22 
23 #include "i915_drv.h"
24 #include "i915_gem_clflush.h"
25 #include "i915_gem_context.h"
26 #include "i915_gem_ioctls.h"
27 #include "i915_trace.h"
28 
29 enum {
30 	FORCE_CPU_RELOC = 1,
31 	FORCE_GTT_RELOC,
32 	FORCE_GPU_RELOC,
33 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
34 };
35 
36 #define __EXEC_OBJECT_HAS_REF		BIT(31)
37 #define __EXEC_OBJECT_HAS_PIN		BIT(30)
38 #define __EXEC_OBJECT_HAS_FENCE		BIT(29)
39 #define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
40 #define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
41 #define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
42 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
43 
44 #define __EXEC_HAS_RELOC	BIT(31)
45 #define __EXEC_VALIDATED	BIT(30)
46 #define __EXEC_INTERNAL_FLAGS	(~0u << 30)
47 #define UPDATE			PIN_OFFSET_FIXED
48 
49 #define BATCH_OFFSET_BIAS (256*1024)
50 
51 #define __I915_EXEC_ILLEGAL_FLAGS \
52 	(__I915_EXEC_UNKNOWN_FLAGS | \
53 	 I915_EXEC_CONSTANTS_MASK  | \
54 	 I915_EXEC_RESOURCE_STREAMER)
55 
56 /* Catch emission of unexpected errors for CI! */
57 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
58 #undef EINVAL
59 #define EINVAL ({ \
60 	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
61 	22; \
62 })
63 #endif
64 
65 /**
66  * DOC: User command execution
67  *
68  * Userspace submits commands to be executed on the GPU as an instruction
69  * stream within a GEM object we call a batchbuffer. This instructions may
70  * refer to other GEM objects containing auxiliary state such as kernels,
71  * samplers, render targets and even secondary batchbuffers. Userspace does
72  * not know where in the GPU memory these objects reside and so before the
73  * batchbuffer is passed to the GPU for execution, those addresses in the
74  * batchbuffer and auxiliary objects are updated. This is known as relocation,
75  * or patching. To try and avoid having to relocate each object on the next
76  * execution, userspace is told the location of those objects in this pass,
77  * but this remains just a hint as the kernel may choose a new location for
78  * any object in the future.
79  *
80  * At the level of talking to the hardware, submitting a batchbuffer for the
81  * GPU to execute is to add content to a buffer from which the HW
82  * command streamer is reading.
83  *
84  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
85  *    Execlists, this command is not placed on the same buffer as the
86  *    remaining items.
87  *
88  * 2. Add a command to invalidate caches to the buffer.
89  *
90  * 3. Add a batchbuffer start command to the buffer; the start command is
91  *    essentially a token together with the GPU address of the batchbuffer
92  *    to be executed.
93  *
94  * 4. Add a pipeline flush to the buffer.
95  *
96  * 5. Add a memory write command to the buffer to record when the GPU
97  *    is done executing the batchbuffer. The memory write writes the
98  *    global sequence number of the request, ``i915_request::global_seqno``;
99  *    the i915 driver uses the current value in the register to determine
100  *    if the GPU has completed the batchbuffer.
101  *
102  * 6. Add a user interrupt command to the buffer. This command instructs
103  *    the GPU to issue an interrupt when the command, pipeline flush and
104  *    memory write are completed.
105  *
106  * 7. Inform the hardware of the additional commands added to the buffer
107  *    (by updating the tail pointer).
108  *
109  * Processing an execbuf ioctl is conceptually split up into a few phases.
110  *
111  * 1. Validation - Ensure all the pointers, handles and flags are valid.
112  * 2. Reservation - Assign GPU address space for every object
113  * 3. Relocation - Update any addresses to point to the final locations
114  * 4. Serialisation - Order the request with respect to its dependencies
115  * 5. Construction - Construct a request to execute the batchbuffer
116  * 6. Submission (at some point in the future execution)
117  *
118  * Reserving resources for the execbuf is the most complicated phase. We
119  * neither want to have to migrate the object in the address space, nor do
120  * we want to have to update any relocations pointing to this object. Ideally,
121  * we want to leave the object where it is and for all the existing relocations
122  * to match. If the object is given a new address, or if userspace thinks the
123  * object is elsewhere, we have to parse all the relocation entries and update
124  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
125  * all the target addresses in all of its objects match the value in the
126  * relocation entries and that they all match the presumed offsets given by the
127  * list of execbuffer objects. Using this knowledge, we know that if we haven't
128  * moved any buffers, all the relocation entries are valid and we can skip
129  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
130  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
131  *
132  *      The addresses written in the objects must match the corresponding
133  *      reloc.presumed_offset which in turn must match the corresponding
134  *      execobject.offset.
135  *
136  *      Any render targets written to in the batch must be flagged with
137  *      EXEC_OBJECT_WRITE.
138  *
139  *      To avoid stalling, execobject.offset should match the current
140  *      address of that object within the active context.
141  *
142  * The reservation is done is multiple phases. First we try and keep any
143  * object already bound in its current location - so as long as meets the
144  * constraints imposed by the new execbuffer. Any object left unbound after the
145  * first pass is then fitted into any available idle space. If an object does
146  * not fit, all objects are removed from the reservation and the process rerun
147  * after sorting the objects into a priority order (more difficult to fit
148  * objects are tried first). Failing that, the entire VM is cleared and we try
149  * to fit the execbuf once last time before concluding that it simply will not
150  * fit.
151  *
152  * A small complication to all of this is that we allow userspace not only to
153  * specify an alignment and a size for the object in the address space, but
154  * we also allow userspace to specify the exact offset. This objects are
155  * simpler to place (the location is known a priori) all we have to do is make
156  * sure the space is available.
157  *
158  * Once all the objects are in place, patching up the buried pointers to point
159  * to the final locations is a fairly simple job of walking over the relocation
160  * entry arrays, looking up the right address and rewriting the value into
161  * the object. Simple! ... The relocation entries are stored in user memory
162  * and so to access them we have to copy them into a local buffer. That copy
163  * has to avoid taking any pagefaults as they may lead back to a GEM object
164  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
165  * the relocation into multiple passes. First we try to do everything within an
166  * atomic context (avoid the pagefaults) which requires that we never wait. If
167  * we detect that we may wait, or if we need to fault, then we have to fallback
168  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
169  * bells yet?) Dropping the mutex means that we lose all the state we have
170  * built up so far for the execbuf and we must reset any global data. However,
171  * we do leave the objects pinned in their final locations - which is a
172  * potential issue for concurrent execbufs. Once we have left the mutex, we can
173  * allocate and copy all the relocation entries into a large array at our
174  * leisure, reacquire the mutex, reclaim all the objects and other state and
175  * then proceed to update any incorrect addresses with the objects.
176  *
177  * As we process the relocation entries, we maintain a record of whether the
178  * object is being written to. Using NORELOC, we expect userspace to provide
179  * this information instead. We also check whether we can skip the relocation
180  * by comparing the expected value inside the relocation entry with the target's
181  * final address. If they differ, we have to map the current object and rewrite
182  * the 4 or 8 byte pointer within.
183  *
184  * Serialising an execbuf is quite simple according to the rules of the GEM
185  * ABI. Execution within each context is ordered by the order of submission.
186  * Writes to any GEM object are in order of submission and are exclusive. Reads
187  * from a GEM object are unordered with respect to other reads, but ordered by
188  * writes. A write submitted after a read cannot occur before the read, and
189  * similarly any read submitted after a write cannot occur before the write.
190  * Writes are ordered between engines such that only one write occurs at any
191  * time (completing any reads beforehand) - using semaphores where available
192  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
193  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
194  * reads before starting, and any read (either using set-domain or pread) must
195  * flush all GPU writes before starting. (Note we only employ a barrier before,
196  * we currently rely on userspace not concurrently starting a new execution
197  * whilst reading or writing to an object. This may be an advantage or not
198  * depending on how much you trust userspace not to shoot themselves in the
199  * foot.) Serialisation may just result in the request being inserted into
200  * a DAG awaiting its turn, but most simple is to wait on the CPU until
201  * all dependencies are resolved.
202  *
203  * After all of that, is just a matter of closing the request and handing it to
204  * the hardware (well, leaving it in a queue to be executed). However, we also
205  * offer the ability for batchbuffers to be run with elevated privileges so
206  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
207  * Before any batch is given extra privileges we first must check that it
208  * contains no nefarious instructions, we check that each instruction is from
209  * our whitelist and all registers are also from an allowed list. We first
210  * copy the user's batchbuffer to a shadow (so that the user doesn't have
211  * access to it, either by the CPU or GPU as we scan it) and then parse each
212  * instruction. If everything is ok, we set a flag telling the hardware to run
213  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
214  */
215 
216 struct i915_execbuffer {
217 	struct drm_i915_private *i915; /** i915 backpointer */
218 	struct drm_file *file; /** per-file lookup tables and limits */
219 	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
220 	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
221 	struct i915_vma **vma;
222 	unsigned int *flags;
223 
224 	struct intel_engine_cs *engine; /** engine to queue the request to */
225 	struct intel_context *context; /* logical state for the request */
226 	struct i915_gem_context *gem_context; /** caller's context */
227 
228 	struct i915_request *request; /** our request to build */
229 	struct i915_vma *batch; /** identity of the batch obj/vma */
230 
231 	/** actual size of execobj[] as we may extend it for the cmdparser */
232 	unsigned int buffer_count;
233 
234 	/** list of vma not yet bound during reservation phase */
235 	struct list_head unbound;
236 
237 	/** list of vma that have execobj.relocation_count */
238 	struct list_head relocs;
239 
240 	/**
241 	 * Track the most recently used object for relocations, as we
242 	 * frequently have to perform multiple relocations within the same
243 	 * obj/page
244 	 */
245 	struct reloc_cache {
246 		struct drm_mm_node node; /** temporary GTT binding */
247 		unsigned long vaddr; /** Current kmap address */
248 		unsigned long page; /** Currently mapped page index */
249 		unsigned int gen; /** Cached value of INTEL_GEN */
250 		bool use_64bit_reloc : 1;
251 		bool has_llc : 1;
252 		bool has_fence : 1;
253 		bool needs_unfenced : 1;
254 
255 		struct i915_request *rq;
256 		u32 *rq_cmd;
257 		unsigned int rq_size;
258 	} reloc_cache;
259 
260 	u64 invalid_flags; /** Set of execobj.flags that are invalid */
261 	u32 context_flags; /** Set of execobj.flags to insert from the ctx */
262 
263 	u32 batch_start_offset; /** Location within object of batch */
264 	u32 batch_len; /** Length of batch within object */
265 	u32 batch_flags; /** Flags composed for emit_bb_start() */
266 
267 	/**
268 	 * Indicate either the size of the hastable used to resolve
269 	 * relocation handles, or if negative that we are using a direct
270 	 * index into the execobj[].
271 	 */
272 	int lut_size;
273 	struct hlist_head *buckets; /** ht for relocation handles */
274 };
275 
276 #define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
277 
278 /*
279  * Used to convert any address to canonical form.
280  * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
281  * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
282  * addresses to be in a canonical form:
283  * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
284  * canonical form [63:48] == [47]."
285  */
286 #define GEN8_HIGH_ADDRESS_BIT 47
287 static inline u64 gen8_canonical_addr(u64 address)
288 {
289 	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
290 }
291 
292 static inline u64 gen8_noncanonical_addr(u64 address)
293 {
294 	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
295 }
296 
297 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
298 {
299 	return intel_engine_requires_cmd_parser(eb->engine) ||
300 		(intel_engine_using_cmd_parser(eb->engine) &&
301 		 eb->args->batch_len);
302 }
303 
304 static int eb_create(struct i915_execbuffer *eb)
305 {
306 	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
307 		unsigned int size = 1 + ilog2(eb->buffer_count);
308 
309 		/*
310 		 * Without a 1:1 association between relocation handles and
311 		 * the execobject[] index, we instead create a hashtable.
312 		 * We size it dynamically based on available memory, starting
313 		 * first with 1:1 assocative hash and scaling back until
314 		 * the allocation succeeds.
315 		 *
316 		 * Later on we use a positive lut_size to indicate we are
317 		 * using this hashtable, and a negative value to indicate a
318 		 * direct lookup.
319 		 */
320 		do {
321 			gfp_t flags;
322 
323 			/* While we can still reduce the allocation size, don't
324 			 * raise a warning and allow the allocation to fail.
325 			 * On the last pass though, we want to try as hard
326 			 * as possible to perform the allocation and warn
327 			 * if it fails.
328 			 */
329 			flags = GFP_KERNEL;
330 			if (size > 1)
331 				flags |= __GFP_NORETRY | __GFP_NOWARN;
332 
333 			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
334 					      flags);
335 			if (eb->buckets)
336 				break;
337 		} while (--size);
338 
339 		if (unlikely(!size))
340 			return -ENOMEM;
341 
342 		eb->lut_size = size;
343 	} else {
344 		eb->lut_size = -eb->buffer_count;
345 	}
346 
347 	return 0;
348 }
349 
350 static bool
351 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
352 		 const struct i915_vma *vma,
353 		 unsigned int flags)
354 {
355 	if (vma->node.size < entry->pad_to_size)
356 		return true;
357 
358 	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
359 		return true;
360 
361 	if (flags & EXEC_OBJECT_PINNED &&
362 	    vma->node.start != entry->offset)
363 		return true;
364 
365 	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
366 	    vma->node.start < BATCH_OFFSET_BIAS)
367 		return true;
368 
369 	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
370 	    (vma->node.start + vma->node.size - 1) >> 32)
371 		return true;
372 
373 	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
374 	    !i915_vma_is_map_and_fenceable(vma))
375 		return true;
376 
377 	return false;
378 }
379 
380 static inline bool
381 eb_pin_vma(struct i915_execbuffer *eb,
382 	   const struct drm_i915_gem_exec_object2 *entry,
383 	   struct i915_vma *vma)
384 {
385 	unsigned int exec_flags = *vma->exec_flags;
386 	u64 pin_flags;
387 
388 	if (vma->node.size)
389 		pin_flags = vma->node.start;
390 	else
391 		pin_flags = entry->offset & PIN_OFFSET_MASK;
392 
393 	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
394 	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
395 		pin_flags |= PIN_GLOBAL;
396 
397 	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
398 		return false;
399 
400 	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
401 		if (unlikely(i915_vma_pin_fence(vma))) {
402 			i915_vma_unpin(vma);
403 			return false;
404 		}
405 
406 		if (vma->fence)
407 			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
408 	}
409 
410 	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
411 	return !eb_vma_misplaced(entry, vma, exec_flags);
412 }
413 
414 static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
415 {
416 	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
417 
418 	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
419 		__i915_vma_unpin_fence(vma);
420 
421 	__i915_vma_unpin(vma);
422 }
423 
424 static inline void
425 eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
426 {
427 	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
428 		return;
429 
430 	__eb_unreserve_vma(vma, *flags);
431 	*flags &= ~__EXEC_OBJECT_RESERVED;
432 }
433 
434 static int
435 eb_validate_vma(struct i915_execbuffer *eb,
436 		struct drm_i915_gem_exec_object2 *entry,
437 		struct i915_vma *vma)
438 {
439 	if (unlikely(entry->flags & eb->invalid_flags))
440 		return -EINVAL;
441 
442 	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
443 		return -EINVAL;
444 
445 	/*
446 	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
447 	 * any non-page-aligned or non-canonical addresses.
448 	 */
449 	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
450 		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
451 		return -EINVAL;
452 
453 	/* pad_to_size was once a reserved field, so sanitize it */
454 	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
455 		if (unlikely(offset_in_page(entry->pad_to_size)))
456 			return -EINVAL;
457 	} else {
458 		entry->pad_to_size = 0;
459 	}
460 
461 	if (unlikely(vma->exec_flags)) {
462 		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
463 			  entry->handle, (int)(entry - eb->exec));
464 		return -EINVAL;
465 	}
466 
467 	/*
468 	 * From drm_mm perspective address space is continuous,
469 	 * so from this point we're always using non-canonical
470 	 * form internally.
471 	 */
472 	entry->offset = gen8_noncanonical_addr(entry->offset);
473 
474 	if (!eb->reloc_cache.has_fence) {
475 		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
476 	} else {
477 		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
478 		     eb->reloc_cache.needs_unfenced) &&
479 		    i915_gem_object_is_tiled(vma->obj))
480 			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
481 	}
482 
483 	if (!(entry->flags & EXEC_OBJECT_PINNED))
484 		entry->flags |= eb->context_flags;
485 
486 	return 0;
487 }
488 
489 static int
490 eb_add_vma(struct i915_execbuffer *eb,
491 	   unsigned int i, unsigned batch_idx,
492 	   struct i915_vma *vma)
493 {
494 	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
495 	int err;
496 
497 	GEM_BUG_ON(i915_vma_is_closed(vma));
498 
499 	if (!(eb->args->flags & __EXEC_VALIDATED)) {
500 		err = eb_validate_vma(eb, entry, vma);
501 		if (unlikely(err))
502 			return err;
503 	}
504 
505 	if (eb->lut_size > 0) {
506 		vma->exec_handle = entry->handle;
507 		hlist_add_head(&vma->exec_node,
508 			       &eb->buckets[hash_32(entry->handle,
509 						    eb->lut_size)]);
510 	}
511 
512 	if (entry->relocation_count)
513 		list_add_tail(&vma->reloc_link, &eb->relocs);
514 
515 	/*
516 	 * Stash a pointer from the vma to execobj, so we can query its flags,
517 	 * size, alignment etc as provided by the user. Also we stash a pointer
518 	 * to the vma inside the execobj so that we can use a direct lookup
519 	 * to find the right target VMA when doing relocations.
520 	 */
521 	eb->vma[i] = vma;
522 	eb->flags[i] = entry->flags;
523 	vma->exec_flags = &eb->flags[i];
524 
525 	/*
526 	 * SNA is doing fancy tricks with compressing batch buffers, which leads
527 	 * to negative relocation deltas. Usually that works out ok since the
528 	 * relocate address is still positive, except when the batch is placed
529 	 * very low in the GTT. Ensure this doesn't happen.
530 	 *
531 	 * Note that actual hangs have only been observed on gen7, but for
532 	 * paranoia do it everywhere.
533 	 */
534 	if (i == batch_idx) {
535 		if (entry->relocation_count &&
536 		    !(eb->flags[i] & EXEC_OBJECT_PINNED))
537 			eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
538 		if (eb->reloc_cache.has_fence)
539 			eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
540 
541 		eb->batch = vma;
542 	}
543 
544 	err = 0;
545 	if (eb_pin_vma(eb, entry, vma)) {
546 		if (entry->offset != vma->node.start) {
547 			entry->offset = vma->node.start | UPDATE;
548 			eb->args->flags |= __EXEC_HAS_RELOC;
549 		}
550 	} else {
551 		eb_unreserve_vma(vma, vma->exec_flags);
552 
553 		list_add_tail(&vma->exec_link, &eb->unbound);
554 		if (drm_mm_node_allocated(&vma->node))
555 			err = i915_vma_unbind(vma);
556 		if (unlikely(err))
557 			vma->exec_flags = NULL;
558 	}
559 	return err;
560 }
561 
562 static inline int use_cpu_reloc(const struct reloc_cache *cache,
563 				const struct drm_i915_gem_object *obj)
564 {
565 	if (!i915_gem_object_has_struct_page(obj))
566 		return false;
567 
568 	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
569 		return true;
570 
571 	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
572 		return false;
573 
574 	return (cache->has_llc ||
575 		obj->cache_dirty ||
576 		obj->cache_level != I915_CACHE_NONE);
577 }
578 
579 static int eb_reserve_vma(const struct i915_execbuffer *eb,
580 			  struct i915_vma *vma)
581 {
582 	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
583 	unsigned int exec_flags = *vma->exec_flags;
584 	u64 pin_flags;
585 	int err;
586 
587 	pin_flags = PIN_USER | PIN_NONBLOCK;
588 	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
589 		pin_flags |= PIN_GLOBAL;
590 
591 	/*
592 	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
593 	 * limit address to the first 4GBs for unflagged objects.
594 	 */
595 	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
596 		pin_flags |= PIN_ZONE_4G;
597 
598 	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
599 		pin_flags |= PIN_MAPPABLE;
600 
601 	if (exec_flags & EXEC_OBJECT_PINNED) {
602 		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
603 		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
604 	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
605 		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
606 	}
607 
608 	err = i915_vma_pin(vma,
609 			   entry->pad_to_size, entry->alignment,
610 			   pin_flags);
611 	if (err)
612 		return err;
613 
614 	if (entry->offset != vma->node.start) {
615 		entry->offset = vma->node.start | UPDATE;
616 		eb->args->flags |= __EXEC_HAS_RELOC;
617 	}
618 
619 	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
620 		err = i915_vma_pin_fence(vma);
621 		if (unlikely(err)) {
622 			i915_vma_unpin(vma);
623 			return err;
624 		}
625 
626 		if (vma->fence)
627 			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
628 	}
629 
630 	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
631 	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
632 
633 	return 0;
634 }
635 
636 static int eb_reserve(struct i915_execbuffer *eb)
637 {
638 	const unsigned int count = eb->buffer_count;
639 	struct list_head last;
640 	struct i915_vma *vma;
641 	unsigned int i, pass;
642 	int err;
643 
644 	/*
645 	 * Attempt to pin all of the buffers into the GTT.
646 	 * This is done in 3 phases:
647 	 *
648 	 * 1a. Unbind all objects that do not match the GTT constraints for
649 	 *     the execbuffer (fenceable, mappable, alignment etc).
650 	 * 1b. Increment pin count for already bound objects.
651 	 * 2.  Bind new objects.
652 	 * 3.  Decrement pin count.
653 	 *
654 	 * This avoid unnecessary unbinding of later objects in order to make
655 	 * room for the earlier objects *unless* we need to defragment.
656 	 */
657 
658 	pass = 0;
659 	err = 0;
660 	do {
661 		list_for_each_entry(vma, &eb->unbound, exec_link) {
662 			err = eb_reserve_vma(eb, vma);
663 			if (err)
664 				break;
665 		}
666 		if (err != -ENOSPC)
667 			return err;
668 
669 		/* Resort *all* the objects into priority order */
670 		INIT_LIST_HEAD(&eb->unbound);
671 		INIT_LIST_HEAD(&last);
672 		for (i = 0; i < count; i++) {
673 			unsigned int flags = eb->flags[i];
674 			struct i915_vma *vma = eb->vma[i];
675 
676 			if (flags & EXEC_OBJECT_PINNED &&
677 			    flags & __EXEC_OBJECT_HAS_PIN)
678 				continue;
679 
680 			eb_unreserve_vma(vma, &eb->flags[i]);
681 
682 			if (flags & EXEC_OBJECT_PINNED)
683 				/* Pinned must have their slot */
684 				list_add(&vma->exec_link, &eb->unbound);
685 			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
686 				/* Map require the lowest 256MiB (aperture) */
687 				list_add_tail(&vma->exec_link, &eb->unbound);
688 			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
689 				/* Prioritise 4GiB region for restricted bo */
690 				list_add(&vma->exec_link, &last);
691 			else
692 				list_add_tail(&vma->exec_link, &last);
693 		}
694 		list_splice_tail(&last, &eb->unbound);
695 
696 		switch (pass++) {
697 		case 0:
698 			break;
699 
700 		case 1:
701 			/* Too fragmented, unbind everything and retry */
702 			err = i915_gem_evict_vm(eb->context->vm);
703 			if (err)
704 				return err;
705 			break;
706 
707 		default:
708 			return -ENOSPC;
709 		}
710 	} while (1);
711 }
712 
713 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
714 {
715 	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
716 		return 0;
717 	else
718 		return eb->buffer_count - 1;
719 }
720 
721 static int eb_select_context(struct i915_execbuffer *eb)
722 {
723 	struct i915_gem_context *ctx;
724 
725 	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
726 	if (unlikely(!ctx))
727 		return -ENOENT;
728 
729 	eb->gem_context = ctx;
730 	if (ctx->vm)
731 		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
732 
733 	eb->context_flags = 0;
734 	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
735 		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
736 
737 	return 0;
738 }
739 
740 static int eb_lookup_vmas(struct i915_execbuffer *eb)
741 {
742 	struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
743 	struct drm_i915_gem_object *obj;
744 	unsigned int i, batch;
745 	int err;
746 
747 	if (unlikely(i915_gem_context_is_banned(eb->gem_context)))
748 		return -EIO;
749 
750 	INIT_LIST_HEAD(&eb->relocs);
751 	INIT_LIST_HEAD(&eb->unbound);
752 
753 	batch = eb_batch_index(eb);
754 
755 	mutex_lock(&eb->gem_context->mutex);
756 	if (unlikely(i915_gem_context_is_closed(eb->gem_context))) {
757 		err = -ENOENT;
758 		goto err_ctx;
759 	}
760 
761 	for (i = 0; i < eb->buffer_count; i++) {
762 		u32 handle = eb->exec[i].handle;
763 		struct i915_lut_handle *lut;
764 		struct i915_vma *vma;
765 
766 		vma = radix_tree_lookup(handles_vma, handle);
767 		if (likely(vma))
768 			goto add_vma;
769 
770 		obj = i915_gem_object_lookup(eb->file, handle);
771 		if (unlikely(!obj)) {
772 			err = -ENOENT;
773 			goto err_vma;
774 		}
775 
776 		vma = i915_vma_instance(obj, eb->context->vm, NULL);
777 		if (IS_ERR(vma)) {
778 			err = PTR_ERR(vma);
779 			goto err_obj;
780 		}
781 
782 		lut = i915_lut_handle_alloc();
783 		if (unlikely(!lut)) {
784 			err = -ENOMEM;
785 			goto err_obj;
786 		}
787 
788 		err = radix_tree_insert(handles_vma, handle, vma);
789 		if (unlikely(err)) {
790 			i915_lut_handle_free(lut);
791 			goto err_obj;
792 		}
793 
794 		/* transfer ref to lut */
795 		if (!atomic_fetch_inc(&vma->open_count))
796 			i915_vma_reopen(vma);
797 		lut->handle = handle;
798 		lut->ctx = eb->gem_context;
799 
800 		i915_gem_object_lock(obj);
801 		list_add(&lut->obj_link, &obj->lut_list);
802 		i915_gem_object_unlock(obj);
803 
804 add_vma:
805 		err = eb_add_vma(eb, i, batch, vma);
806 		if (unlikely(err))
807 			goto err_vma;
808 
809 		GEM_BUG_ON(vma != eb->vma[i]);
810 		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
811 		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
812 			   eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
813 	}
814 
815 	mutex_unlock(&eb->gem_context->mutex);
816 
817 	eb->args->flags |= __EXEC_VALIDATED;
818 	return eb_reserve(eb);
819 
820 err_obj:
821 	i915_gem_object_put(obj);
822 err_vma:
823 	eb->vma[i] = NULL;
824 err_ctx:
825 	mutex_unlock(&eb->gem_context->mutex);
826 	return err;
827 }
828 
829 static struct i915_vma *
830 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
831 {
832 	if (eb->lut_size < 0) {
833 		if (handle >= -eb->lut_size)
834 			return NULL;
835 		return eb->vma[handle];
836 	} else {
837 		struct hlist_head *head;
838 		struct i915_vma *vma;
839 
840 		head = &eb->buckets[hash_32(handle, eb->lut_size)];
841 		hlist_for_each_entry(vma, head, exec_node) {
842 			if (vma->exec_handle == handle)
843 				return vma;
844 		}
845 		return NULL;
846 	}
847 }
848 
849 static void eb_release_vmas(const struct i915_execbuffer *eb)
850 {
851 	const unsigned int count = eb->buffer_count;
852 	unsigned int i;
853 
854 	for (i = 0; i < count; i++) {
855 		struct i915_vma *vma = eb->vma[i];
856 		unsigned int flags = eb->flags[i];
857 
858 		if (!vma)
859 			break;
860 
861 		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
862 		vma->exec_flags = NULL;
863 		eb->vma[i] = NULL;
864 
865 		if (flags & __EXEC_OBJECT_HAS_PIN)
866 			__eb_unreserve_vma(vma, flags);
867 
868 		if (flags & __EXEC_OBJECT_HAS_REF)
869 			i915_vma_put(vma);
870 	}
871 }
872 
873 static void eb_reset_vmas(const struct i915_execbuffer *eb)
874 {
875 	eb_release_vmas(eb);
876 	if (eb->lut_size > 0)
877 		memset(eb->buckets, 0,
878 		       sizeof(struct hlist_head) << eb->lut_size);
879 }
880 
881 static void eb_destroy(const struct i915_execbuffer *eb)
882 {
883 	GEM_BUG_ON(eb->reloc_cache.rq);
884 
885 	if (eb->lut_size > 0)
886 		kfree(eb->buckets);
887 }
888 
889 static inline u64
890 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
891 		  const struct i915_vma *target)
892 {
893 	return gen8_canonical_addr((int)reloc->delta + target->node.start);
894 }
895 
896 static void reloc_cache_init(struct reloc_cache *cache,
897 			     struct drm_i915_private *i915)
898 {
899 	cache->page = -1;
900 	cache->vaddr = 0;
901 	/* Must be a variable in the struct to allow GCC to unroll. */
902 	cache->gen = INTEL_GEN(i915);
903 	cache->has_llc = HAS_LLC(i915);
904 	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
905 	cache->has_fence = cache->gen < 4;
906 	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
907 	cache->node.allocated = false;
908 	cache->rq = NULL;
909 	cache->rq_size = 0;
910 }
911 
912 static inline void *unmask_page(unsigned long p)
913 {
914 	return (void *)(uintptr_t)(p & PAGE_MASK);
915 }
916 
917 static inline unsigned int unmask_flags(unsigned long p)
918 {
919 	return p & ~PAGE_MASK;
920 }
921 
922 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
923 
924 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
925 {
926 	struct drm_i915_private *i915 =
927 		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
928 	return &i915->ggtt;
929 }
930 
931 static void reloc_gpu_flush(struct reloc_cache *cache)
932 {
933 	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
934 	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
935 
936 	__i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
937 	i915_gem_object_unpin_map(cache->rq->batch->obj);
938 
939 	intel_gt_chipset_flush(cache->rq->engine->gt);
940 
941 	i915_request_add(cache->rq);
942 	cache->rq = NULL;
943 }
944 
945 static void reloc_cache_reset(struct reloc_cache *cache)
946 {
947 	void *vaddr;
948 
949 	if (cache->rq)
950 		reloc_gpu_flush(cache);
951 
952 	if (!cache->vaddr)
953 		return;
954 
955 	vaddr = unmask_page(cache->vaddr);
956 	if (cache->vaddr & KMAP) {
957 		if (cache->vaddr & CLFLUSH_AFTER)
958 			mb();
959 
960 		kunmap_atomic(vaddr);
961 		i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
962 	} else {
963 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
964 
965 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
966 		io_mapping_unmap_atomic((void __iomem *)vaddr);
967 
968 		if (cache->node.allocated) {
969 			ggtt->vm.clear_range(&ggtt->vm,
970 					     cache->node.start,
971 					     cache->node.size);
972 			drm_mm_remove_node(&cache->node);
973 		} else {
974 			i915_vma_unpin((struct i915_vma *)cache->node.mm);
975 		}
976 	}
977 
978 	cache->vaddr = 0;
979 	cache->page = -1;
980 }
981 
982 static void *reloc_kmap(struct drm_i915_gem_object *obj,
983 			struct reloc_cache *cache,
984 			unsigned long page)
985 {
986 	void *vaddr;
987 
988 	if (cache->vaddr) {
989 		kunmap_atomic(unmask_page(cache->vaddr));
990 	} else {
991 		unsigned int flushes;
992 		int err;
993 
994 		err = i915_gem_object_prepare_write(obj, &flushes);
995 		if (err)
996 			return ERR_PTR(err);
997 
998 		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
999 		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1000 
1001 		cache->vaddr = flushes | KMAP;
1002 		cache->node.mm = (void *)obj;
1003 		if (flushes)
1004 			mb();
1005 	}
1006 
1007 	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
1008 	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1009 	cache->page = page;
1010 
1011 	return vaddr;
1012 }
1013 
1014 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1015 			 struct reloc_cache *cache,
1016 			 unsigned long page)
1017 {
1018 	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1019 	unsigned long offset;
1020 	void *vaddr;
1021 
1022 	if (cache->vaddr) {
1023 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1024 		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1025 	} else {
1026 		struct i915_vma *vma;
1027 		int err;
1028 
1029 		if (i915_gem_object_is_tiled(obj))
1030 			return ERR_PTR(-EINVAL);
1031 
1032 		if (use_cpu_reloc(cache, obj))
1033 			return NULL;
1034 
1035 		i915_gem_object_lock(obj);
1036 		err = i915_gem_object_set_to_gtt_domain(obj, true);
1037 		i915_gem_object_unlock(obj);
1038 		if (err)
1039 			return ERR_PTR(err);
1040 
1041 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1042 					       PIN_MAPPABLE |
1043 					       PIN_NONBLOCK /* NOWARN */ |
1044 					       PIN_NOEVICT);
1045 		if (IS_ERR(vma)) {
1046 			memset(&cache->node, 0, sizeof(cache->node));
1047 			err = drm_mm_insert_node_in_range
1048 				(&ggtt->vm.mm, &cache->node,
1049 				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1050 				 0, ggtt->mappable_end,
1051 				 DRM_MM_INSERT_LOW);
1052 			if (err) /* no inactive aperture space, use cpu reloc */
1053 				return NULL;
1054 		} else {
1055 			cache->node.start = vma->node.start;
1056 			cache->node.mm = (void *)vma;
1057 		}
1058 	}
1059 
1060 	offset = cache->node.start;
1061 	if (cache->node.allocated) {
1062 		ggtt->vm.insert_page(&ggtt->vm,
1063 				     i915_gem_object_get_dma_address(obj, page),
1064 				     offset, I915_CACHE_NONE, 0);
1065 	} else {
1066 		offset += page << PAGE_SHIFT;
1067 	}
1068 
1069 	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1070 							 offset);
1071 	cache->page = page;
1072 	cache->vaddr = (unsigned long)vaddr;
1073 
1074 	return vaddr;
1075 }
1076 
1077 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1078 			 struct reloc_cache *cache,
1079 			 unsigned long page)
1080 {
1081 	void *vaddr;
1082 
1083 	if (cache->page == page) {
1084 		vaddr = unmask_page(cache->vaddr);
1085 	} else {
1086 		vaddr = NULL;
1087 		if ((cache->vaddr & KMAP) == 0)
1088 			vaddr = reloc_iomap(obj, cache, page);
1089 		if (!vaddr)
1090 			vaddr = reloc_kmap(obj, cache, page);
1091 	}
1092 
1093 	return vaddr;
1094 }
1095 
1096 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1097 {
1098 	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1099 		if (flushes & CLFLUSH_BEFORE) {
1100 			clflushopt(addr);
1101 			mb();
1102 		}
1103 
1104 		*addr = value;
1105 
1106 		/*
1107 		 * Writes to the same cacheline are serialised by the CPU
1108 		 * (including clflush). On the write path, we only require
1109 		 * that it hits memory in an orderly fashion and place
1110 		 * mb barriers at the start and end of the relocation phase
1111 		 * to ensure ordering of clflush wrt to the system.
1112 		 */
1113 		if (flushes & CLFLUSH_AFTER)
1114 			clflushopt(addr);
1115 	} else
1116 		*addr = value;
1117 }
1118 
1119 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1120 {
1121 	struct drm_i915_gem_object *obj = vma->obj;
1122 	int err;
1123 
1124 	i915_vma_lock(vma);
1125 
1126 	if (obj->cache_dirty & ~obj->cache_coherent)
1127 		i915_gem_clflush_object(obj, 0);
1128 	obj->write_domain = 0;
1129 
1130 	err = i915_request_await_object(rq, vma->obj, true);
1131 	if (err == 0)
1132 		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1133 
1134 	i915_vma_unlock(vma);
1135 
1136 	return err;
1137 }
1138 
1139 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1140 			     struct i915_vma *vma,
1141 			     unsigned int len)
1142 {
1143 	struct reloc_cache *cache = &eb->reloc_cache;
1144 	struct intel_engine_pool_node *pool;
1145 	struct i915_request *rq;
1146 	struct i915_vma *batch;
1147 	u32 *cmd;
1148 	int err;
1149 
1150 	pool = intel_engine_pool_get(&eb->engine->pool, PAGE_SIZE);
1151 	if (IS_ERR(pool))
1152 		return PTR_ERR(pool);
1153 
1154 	cmd = i915_gem_object_pin_map(pool->obj,
1155 				      cache->has_llc ?
1156 				      I915_MAP_FORCE_WB :
1157 				      I915_MAP_FORCE_WC);
1158 	if (IS_ERR(cmd)) {
1159 		err = PTR_ERR(cmd);
1160 		goto out_pool;
1161 	}
1162 
1163 	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1164 	if (IS_ERR(batch)) {
1165 		err = PTR_ERR(batch);
1166 		goto err_unmap;
1167 	}
1168 
1169 	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1170 	if (err)
1171 		goto err_unmap;
1172 
1173 	rq = i915_request_create(eb->context);
1174 	if (IS_ERR(rq)) {
1175 		err = PTR_ERR(rq);
1176 		goto err_unpin;
1177 	}
1178 
1179 	err = intel_engine_pool_mark_active(pool, rq);
1180 	if (err)
1181 		goto err_request;
1182 
1183 	err = reloc_move_to_gpu(rq, vma);
1184 	if (err)
1185 		goto err_request;
1186 
1187 	err = eb->engine->emit_bb_start(rq,
1188 					batch->node.start, PAGE_SIZE,
1189 					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1190 	if (err)
1191 		goto skip_request;
1192 
1193 	i915_vma_lock(batch);
1194 	err = i915_request_await_object(rq, batch->obj, false);
1195 	if (err == 0)
1196 		err = i915_vma_move_to_active(batch, rq, 0);
1197 	i915_vma_unlock(batch);
1198 	if (err)
1199 		goto skip_request;
1200 
1201 	rq->batch = batch;
1202 	i915_vma_unpin(batch);
1203 
1204 	cache->rq = rq;
1205 	cache->rq_cmd = cmd;
1206 	cache->rq_size = 0;
1207 
1208 	/* Return with batch mapping (cmd) still pinned */
1209 	goto out_pool;
1210 
1211 skip_request:
1212 	i915_request_skip(rq, err);
1213 err_request:
1214 	i915_request_add(rq);
1215 err_unpin:
1216 	i915_vma_unpin(batch);
1217 err_unmap:
1218 	i915_gem_object_unpin_map(pool->obj);
1219 out_pool:
1220 	intel_engine_pool_put(pool);
1221 	return err;
1222 }
1223 
1224 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1225 		      struct i915_vma *vma,
1226 		      unsigned int len)
1227 {
1228 	struct reloc_cache *cache = &eb->reloc_cache;
1229 	u32 *cmd;
1230 
1231 	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1232 		reloc_gpu_flush(cache);
1233 
1234 	if (unlikely(!cache->rq)) {
1235 		int err;
1236 
1237 		/* If we need to copy for the cmdparser, we will stall anyway */
1238 		if (eb_use_cmdparser(eb))
1239 			return ERR_PTR(-EWOULDBLOCK);
1240 
1241 		if (!intel_engine_can_store_dword(eb->engine))
1242 			return ERR_PTR(-ENODEV);
1243 
1244 		err = __reloc_gpu_alloc(eb, vma, len);
1245 		if (unlikely(err))
1246 			return ERR_PTR(err);
1247 	}
1248 
1249 	cmd = cache->rq_cmd + cache->rq_size;
1250 	cache->rq_size += len;
1251 
1252 	return cmd;
1253 }
1254 
1255 static u64
1256 relocate_entry(struct i915_vma *vma,
1257 	       const struct drm_i915_gem_relocation_entry *reloc,
1258 	       struct i915_execbuffer *eb,
1259 	       const struct i915_vma *target)
1260 {
1261 	u64 offset = reloc->offset;
1262 	u64 target_offset = relocation_target(reloc, target);
1263 	bool wide = eb->reloc_cache.use_64bit_reloc;
1264 	void *vaddr;
1265 
1266 	if (!eb->reloc_cache.vaddr &&
1267 	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1268 	     !dma_resv_test_signaled_rcu(vma->resv, true))) {
1269 		const unsigned int gen = eb->reloc_cache.gen;
1270 		unsigned int len;
1271 		u32 *batch;
1272 		u64 addr;
1273 
1274 		if (wide)
1275 			len = offset & 7 ? 8 : 5;
1276 		else if (gen >= 4)
1277 			len = 4;
1278 		else
1279 			len = 3;
1280 
1281 		batch = reloc_gpu(eb, vma, len);
1282 		if (IS_ERR(batch))
1283 			goto repeat;
1284 
1285 		addr = gen8_canonical_addr(vma->node.start + offset);
1286 		if (wide) {
1287 			if (offset & 7) {
1288 				*batch++ = MI_STORE_DWORD_IMM_GEN4;
1289 				*batch++ = lower_32_bits(addr);
1290 				*batch++ = upper_32_bits(addr);
1291 				*batch++ = lower_32_bits(target_offset);
1292 
1293 				addr = gen8_canonical_addr(addr + 4);
1294 
1295 				*batch++ = MI_STORE_DWORD_IMM_GEN4;
1296 				*batch++ = lower_32_bits(addr);
1297 				*batch++ = upper_32_bits(addr);
1298 				*batch++ = upper_32_bits(target_offset);
1299 			} else {
1300 				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1301 				*batch++ = lower_32_bits(addr);
1302 				*batch++ = upper_32_bits(addr);
1303 				*batch++ = lower_32_bits(target_offset);
1304 				*batch++ = upper_32_bits(target_offset);
1305 			}
1306 		} else if (gen >= 6) {
1307 			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1308 			*batch++ = 0;
1309 			*batch++ = addr;
1310 			*batch++ = target_offset;
1311 		} else if (gen >= 4) {
1312 			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1313 			*batch++ = 0;
1314 			*batch++ = addr;
1315 			*batch++ = target_offset;
1316 		} else {
1317 			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1318 			*batch++ = addr;
1319 			*batch++ = target_offset;
1320 		}
1321 
1322 		goto out;
1323 	}
1324 
1325 repeat:
1326 	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1327 	if (IS_ERR(vaddr))
1328 		return PTR_ERR(vaddr);
1329 
1330 	clflush_write32(vaddr + offset_in_page(offset),
1331 			lower_32_bits(target_offset),
1332 			eb->reloc_cache.vaddr);
1333 
1334 	if (wide) {
1335 		offset += sizeof(u32);
1336 		target_offset >>= 32;
1337 		wide = false;
1338 		goto repeat;
1339 	}
1340 
1341 out:
1342 	return target->node.start | UPDATE;
1343 }
1344 
1345 static u64
1346 eb_relocate_entry(struct i915_execbuffer *eb,
1347 		  struct i915_vma *vma,
1348 		  const struct drm_i915_gem_relocation_entry *reloc)
1349 {
1350 	struct i915_vma *target;
1351 	int err;
1352 
1353 	/* we've already hold a reference to all valid objects */
1354 	target = eb_get_vma(eb, reloc->target_handle);
1355 	if (unlikely(!target))
1356 		return -ENOENT;
1357 
1358 	/* Validate that the target is in a valid r/w GPU domain */
1359 	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1360 		DRM_DEBUG("reloc with multiple write domains: "
1361 			  "target %d offset %d "
1362 			  "read %08x write %08x",
1363 			  reloc->target_handle,
1364 			  (int) reloc->offset,
1365 			  reloc->read_domains,
1366 			  reloc->write_domain);
1367 		return -EINVAL;
1368 	}
1369 	if (unlikely((reloc->write_domain | reloc->read_domains)
1370 		     & ~I915_GEM_GPU_DOMAINS)) {
1371 		DRM_DEBUG("reloc with read/write non-GPU domains: "
1372 			  "target %d offset %d "
1373 			  "read %08x write %08x",
1374 			  reloc->target_handle,
1375 			  (int) reloc->offset,
1376 			  reloc->read_domains,
1377 			  reloc->write_domain);
1378 		return -EINVAL;
1379 	}
1380 
1381 	if (reloc->write_domain) {
1382 		*target->exec_flags |= EXEC_OBJECT_WRITE;
1383 
1384 		/*
1385 		 * Sandybridge PPGTT errata: We need a global gtt mapping
1386 		 * for MI and pipe_control writes because the gpu doesn't
1387 		 * properly redirect them through the ppgtt for non_secure
1388 		 * batchbuffers.
1389 		 */
1390 		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1391 		    IS_GEN(eb->i915, 6)) {
1392 			err = i915_vma_bind(target, target->obj->cache_level,
1393 					    PIN_GLOBAL);
1394 			if (WARN_ONCE(err,
1395 				      "Unexpected failure to bind target VMA!"))
1396 				return err;
1397 		}
1398 	}
1399 
1400 	/*
1401 	 * If the relocation already has the right value in it, no
1402 	 * more work needs to be done.
1403 	 */
1404 	if (!DBG_FORCE_RELOC &&
1405 	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1406 		return 0;
1407 
1408 	/* Check that the relocation address is valid... */
1409 	if (unlikely(reloc->offset >
1410 		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1411 		DRM_DEBUG("Relocation beyond object bounds: "
1412 			  "target %d offset %d size %d.\n",
1413 			  reloc->target_handle,
1414 			  (int)reloc->offset,
1415 			  (int)vma->size);
1416 		return -EINVAL;
1417 	}
1418 	if (unlikely(reloc->offset & 3)) {
1419 		DRM_DEBUG("Relocation not 4-byte aligned: "
1420 			  "target %d offset %d.\n",
1421 			  reloc->target_handle,
1422 			  (int)reloc->offset);
1423 		return -EINVAL;
1424 	}
1425 
1426 	/*
1427 	 * If we write into the object, we need to force the synchronisation
1428 	 * barrier, either with an asynchronous clflush or if we executed the
1429 	 * patching using the GPU (though that should be serialised by the
1430 	 * timeline). To be completely sure, and since we are required to
1431 	 * do relocations we are already stalling, disable the user's opt
1432 	 * out of our synchronisation.
1433 	 */
1434 	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1435 
1436 	/* and update the user's relocation entry */
1437 	return relocate_entry(vma, reloc, eb, target);
1438 }
1439 
1440 static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1441 {
1442 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1443 	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1444 	struct drm_i915_gem_relocation_entry __user *urelocs;
1445 	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1446 	unsigned int remain;
1447 
1448 	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1449 	remain = entry->relocation_count;
1450 	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1451 		return -EINVAL;
1452 
1453 	/*
1454 	 * We must check that the entire relocation array is safe
1455 	 * to read. However, if the array is not writable the user loses
1456 	 * the updated relocation values.
1457 	 */
1458 	if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1459 		return -EFAULT;
1460 
1461 	do {
1462 		struct drm_i915_gem_relocation_entry *r = stack;
1463 		unsigned int count =
1464 			min_t(unsigned int, remain, ARRAY_SIZE(stack));
1465 		unsigned int copied;
1466 
1467 		/*
1468 		 * This is the fast path and we cannot handle a pagefault
1469 		 * whilst holding the struct mutex lest the user pass in the
1470 		 * relocations contained within a mmaped bo. For in such a case
1471 		 * we, the page fault handler would call i915_gem_fault() and
1472 		 * we would try to acquire the struct mutex again. Obviously
1473 		 * this is bad and so lockdep complains vehemently.
1474 		 */
1475 		pagefault_disable();
1476 		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1477 		pagefault_enable();
1478 		if (unlikely(copied)) {
1479 			remain = -EFAULT;
1480 			goto out;
1481 		}
1482 
1483 		remain -= count;
1484 		do {
1485 			u64 offset = eb_relocate_entry(eb, vma, r);
1486 
1487 			if (likely(offset == 0)) {
1488 			} else if ((s64)offset < 0) {
1489 				remain = (int)offset;
1490 				goto out;
1491 			} else {
1492 				/*
1493 				 * Note that reporting an error now
1494 				 * leaves everything in an inconsistent
1495 				 * state as we have *already* changed
1496 				 * the relocation value inside the
1497 				 * object. As we have not changed the
1498 				 * reloc.presumed_offset or will not
1499 				 * change the execobject.offset, on the
1500 				 * call we may not rewrite the value
1501 				 * inside the object, leaving it
1502 				 * dangling and causing a GPU hang. Unless
1503 				 * userspace dynamically rebuilds the
1504 				 * relocations on each execbuf rather than
1505 				 * presume a static tree.
1506 				 *
1507 				 * We did previously check if the relocations
1508 				 * were writable (access_ok), an error now
1509 				 * would be a strange race with mprotect,
1510 				 * having already demonstrated that we
1511 				 * can read from this userspace address.
1512 				 */
1513 				offset = gen8_canonical_addr(offset & ~UPDATE);
1514 				if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
1515 					remain = -EFAULT;
1516 					goto out;
1517 				}
1518 			}
1519 		} while (r++, --count);
1520 		urelocs += ARRAY_SIZE(stack);
1521 	} while (remain);
1522 out:
1523 	reloc_cache_reset(&eb->reloc_cache);
1524 	return remain;
1525 }
1526 
1527 static int
1528 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1529 {
1530 	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1531 	struct drm_i915_gem_relocation_entry *relocs =
1532 		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1533 	unsigned int i;
1534 	int err;
1535 
1536 	for (i = 0; i < entry->relocation_count; i++) {
1537 		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1538 
1539 		if ((s64)offset < 0) {
1540 			err = (int)offset;
1541 			goto err;
1542 		}
1543 	}
1544 	err = 0;
1545 err:
1546 	reloc_cache_reset(&eb->reloc_cache);
1547 	return err;
1548 }
1549 
1550 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1551 {
1552 	const char __user *addr, *end;
1553 	unsigned long size;
1554 	char __maybe_unused c;
1555 
1556 	size = entry->relocation_count;
1557 	if (size == 0)
1558 		return 0;
1559 
1560 	if (size > N_RELOC(ULONG_MAX))
1561 		return -EINVAL;
1562 
1563 	addr = u64_to_user_ptr(entry->relocs_ptr);
1564 	size *= sizeof(struct drm_i915_gem_relocation_entry);
1565 	if (!access_ok(addr, size))
1566 		return -EFAULT;
1567 
1568 	end = addr + size;
1569 	for (; addr < end; addr += PAGE_SIZE) {
1570 		int err = __get_user(c, addr);
1571 		if (err)
1572 			return err;
1573 	}
1574 	return __get_user(c, end - 1);
1575 }
1576 
1577 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1578 {
1579 	struct drm_i915_gem_relocation_entry *relocs;
1580 	const unsigned int count = eb->buffer_count;
1581 	unsigned int i;
1582 	int err;
1583 
1584 	for (i = 0; i < count; i++) {
1585 		const unsigned int nreloc = eb->exec[i].relocation_count;
1586 		struct drm_i915_gem_relocation_entry __user *urelocs;
1587 		unsigned long size;
1588 		unsigned long copied;
1589 
1590 		if (nreloc == 0)
1591 			continue;
1592 
1593 		err = check_relocations(&eb->exec[i]);
1594 		if (err)
1595 			goto err;
1596 
1597 		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1598 		size = nreloc * sizeof(*relocs);
1599 
1600 		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1601 		if (!relocs) {
1602 			err = -ENOMEM;
1603 			goto err;
1604 		}
1605 
1606 		/* copy_from_user is limited to < 4GiB */
1607 		copied = 0;
1608 		do {
1609 			unsigned int len =
1610 				min_t(u64, BIT_ULL(31), size - copied);
1611 
1612 			if (__copy_from_user((char *)relocs + copied,
1613 					     (char __user *)urelocs + copied,
1614 					     len))
1615 				goto end;
1616 
1617 			copied += len;
1618 		} while (copied < size);
1619 
1620 		/*
1621 		 * As we do not update the known relocation offsets after
1622 		 * relocating (due to the complexities in lock handling),
1623 		 * we need to mark them as invalid now so that we force the
1624 		 * relocation processing next time. Just in case the target
1625 		 * object is evicted and then rebound into its old
1626 		 * presumed_offset before the next execbuffer - if that
1627 		 * happened we would make the mistake of assuming that the
1628 		 * relocations were valid.
1629 		 */
1630 		if (!user_access_begin(urelocs, size))
1631 			goto end;
1632 
1633 		for (copied = 0; copied < nreloc; copied++)
1634 			unsafe_put_user(-1,
1635 					&urelocs[copied].presumed_offset,
1636 					end_user);
1637 		user_access_end();
1638 
1639 		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1640 	}
1641 
1642 	return 0;
1643 
1644 end_user:
1645 	user_access_end();
1646 end:
1647 	kvfree(relocs);
1648 	err = -EFAULT;
1649 err:
1650 	while (i--) {
1651 		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1652 		if (eb->exec[i].relocation_count)
1653 			kvfree(relocs);
1654 	}
1655 	return err;
1656 }
1657 
1658 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1659 {
1660 	const unsigned int count = eb->buffer_count;
1661 	unsigned int i;
1662 
1663 	if (unlikely(i915_modparams.prefault_disable))
1664 		return 0;
1665 
1666 	for (i = 0; i < count; i++) {
1667 		int err;
1668 
1669 		err = check_relocations(&eb->exec[i]);
1670 		if (err)
1671 			return err;
1672 	}
1673 
1674 	return 0;
1675 }
1676 
1677 static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1678 {
1679 	struct drm_device *dev = &eb->i915->drm;
1680 	bool have_copy = false;
1681 	struct i915_vma *vma;
1682 	int err = 0;
1683 
1684 repeat:
1685 	if (signal_pending(current)) {
1686 		err = -ERESTARTSYS;
1687 		goto out;
1688 	}
1689 
1690 	/* We may process another execbuffer during the unlock... */
1691 	eb_reset_vmas(eb);
1692 	mutex_unlock(&dev->struct_mutex);
1693 
1694 	/*
1695 	 * We take 3 passes through the slowpatch.
1696 	 *
1697 	 * 1 - we try to just prefault all the user relocation entries and
1698 	 * then attempt to reuse the atomic pagefault disabled fast path again.
1699 	 *
1700 	 * 2 - we copy the user entries to a local buffer here outside of the
1701 	 * local and allow ourselves to wait upon any rendering before
1702 	 * relocations
1703 	 *
1704 	 * 3 - we already have a local copy of the relocation entries, but
1705 	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1706 	 */
1707 	if (!err) {
1708 		err = eb_prefault_relocations(eb);
1709 	} else if (!have_copy) {
1710 		err = eb_copy_relocations(eb);
1711 		have_copy = err == 0;
1712 	} else {
1713 		cond_resched();
1714 		err = 0;
1715 	}
1716 	if (err) {
1717 		mutex_lock(&dev->struct_mutex);
1718 		goto out;
1719 	}
1720 
1721 	/* A frequent cause for EAGAIN are currently unavailable client pages */
1722 	flush_workqueue(eb->i915->mm.userptr_wq);
1723 
1724 	err = i915_mutex_lock_interruptible(dev);
1725 	if (err) {
1726 		mutex_lock(&dev->struct_mutex);
1727 		goto out;
1728 	}
1729 
1730 	/* reacquire the objects */
1731 	err = eb_lookup_vmas(eb);
1732 	if (err)
1733 		goto err;
1734 
1735 	GEM_BUG_ON(!eb->batch);
1736 
1737 	list_for_each_entry(vma, &eb->relocs, reloc_link) {
1738 		if (!have_copy) {
1739 			pagefault_disable();
1740 			err = eb_relocate_vma(eb, vma);
1741 			pagefault_enable();
1742 			if (err)
1743 				goto repeat;
1744 		} else {
1745 			err = eb_relocate_vma_slow(eb, vma);
1746 			if (err)
1747 				goto err;
1748 		}
1749 	}
1750 
1751 	/*
1752 	 * Leave the user relocations as are, this is the painfully slow path,
1753 	 * and we want to avoid the complication of dropping the lock whilst
1754 	 * having buffers reserved in the aperture and so causing spurious
1755 	 * ENOSPC for random operations.
1756 	 */
1757 
1758 err:
1759 	if (err == -EAGAIN)
1760 		goto repeat;
1761 
1762 out:
1763 	if (have_copy) {
1764 		const unsigned int count = eb->buffer_count;
1765 		unsigned int i;
1766 
1767 		for (i = 0; i < count; i++) {
1768 			const struct drm_i915_gem_exec_object2 *entry =
1769 				&eb->exec[i];
1770 			struct drm_i915_gem_relocation_entry *relocs;
1771 
1772 			if (!entry->relocation_count)
1773 				continue;
1774 
1775 			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1776 			kvfree(relocs);
1777 		}
1778 	}
1779 
1780 	return err;
1781 }
1782 
1783 static int eb_relocate(struct i915_execbuffer *eb)
1784 {
1785 	if (eb_lookup_vmas(eb))
1786 		goto slow;
1787 
1788 	/* The objects are in their final locations, apply the relocations. */
1789 	if (eb->args->flags & __EXEC_HAS_RELOC) {
1790 		struct i915_vma *vma;
1791 
1792 		list_for_each_entry(vma, &eb->relocs, reloc_link) {
1793 			if (eb_relocate_vma(eb, vma))
1794 				goto slow;
1795 		}
1796 	}
1797 
1798 	return 0;
1799 
1800 slow:
1801 	return eb_relocate_slow(eb);
1802 }
1803 
1804 static int eb_move_to_gpu(struct i915_execbuffer *eb)
1805 {
1806 	const unsigned int count = eb->buffer_count;
1807 	struct ww_acquire_ctx acquire;
1808 	unsigned int i;
1809 	int err = 0;
1810 
1811 	ww_acquire_init(&acquire, &reservation_ww_class);
1812 
1813 	for (i = 0; i < count; i++) {
1814 		struct i915_vma *vma = eb->vma[i];
1815 
1816 		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
1817 		if (!err)
1818 			continue;
1819 
1820 		GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */
1821 
1822 		if (err == -EDEADLK) {
1823 			GEM_BUG_ON(i == 0);
1824 			do {
1825 				int j = i - 1;
1826 
1827 				ww_mutex_unlock(&eb->vma[j]->resv->lock);
1828 
1829 				swap(eb->flags[i], eb->flags[j]);
1830 				swap(eb->vma[i],  eb->vma[j]);
1831 				eb->vma[i]->exec_flags = &eb->flags[i];
1832 			} while (--i);
1833 			GEM_BUG_ON(vma != eb->vma[0]);
1834 			vma->exec_flags = &eb->flags[0];
1835 
1836 			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
1837 							       &acquire);
1838 		}
1839 		if (err)
1840 			break;
1841 	}
1842 	ww_acquire_done(&acquire);
1843 
1844 	while (i--) {
1845 		unsigned int flags = eb->flags[i];
1846 		struct i915_vma *vma = eb->vma[i];
1847 		struct drm_i915_gem_object *obj = vma->obj;
1848 
1849 		assert_vma_held(vma);
1850 
1851 		if (flags & EXEC_OBJECT_CAPTURE) {
1852 			struct i915_capture_list *capture;
1853 
1854 			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1855 			if (capture) {
1856 				capture->next = eb->request->capture_list;
1857 				capture->vma = vma;
1858 				eb->request->capture_list = capture;
1859 			}
1860 		}
1861 
1862 		/*
1863 		 * If the GPU is not _reading_ through the CPU cache, we need
1864 		 * to make sure that any writes (both previous GPU writes from
1865 		 * before a change in snooping levels and normal CPU writes)
1866 		 * caught in that cache are flushed to main memory.
1867 		 *
1868 		 * We want to say
1869 		 *   obj->cache_dirty &&
1870 		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1871 		 * but gcc's optimiser doesn't handle that as well and emits
1872 		 * two jumps instead of one. Maybe one day...
1873 		 */
1874 		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1875 			if (i915_gem_clflush_object(obj, 0))
1876 				flags &= ~EXEC_OBJECT_ASYNC;
1877 		}
1878 
1879 		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
1880 			err = i915_request_await_object
1881 				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
1882 		}
1883 
1884 		if (err == 0)
1885 			err = i915_vma_move_to_active(vma, eb->request, flags);
1886 
1887 		i915_vma_unlock(vma);
1888 
1889 		__eb_unreserve_vma(vma, flags);
1890 		vma->exec_flags = NULL;
1891 
1892 		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1893 			i915_vma_put(vma);
1894 	}
1895 	ww_acquire_fini(&acquire);
1896 
1897 	if (unlikely(err))
1898 		goto err_skip;
1899 
1900 	eb->exec = NULL;
1901 
1902 	/* Unconditionally flush any chipset caches (for streaming writes). */
1903 	intel_gt_chipset_flush(eb->engine->gt);
1904 	return 0;
1905 
1906 err_skip:
1907 	i915_request_skip(eb->request, err);
1908 	return err;
1909 }
1910 
1911 static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1912 {
1913 	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1914 		return false;
1915 
1916 	/* Kernel clipping was a DRI1 misfeature */
1917 	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1918 		if (exec->num_cliprects || exec->cliprects_ptr)
1919 			return false;
1920 	}
1921 
1922 	if (exec->DR4 == 0xffffffff) {
1923 		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1924 		exec->DR4 = 0;
1925 	}
1926 	if (exec->DR1 || exec->DR4)
1927 		return false;
1928 
1929 	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1930 		return false;
1931 
1932 	return true;
1933 }
1934 
1935 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1936 {
1937 	u32 *cs;
1938 	int i;
1939 
1940 	if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1941 		DRM_DEBUG("sol reset is gen7/rcs only\n");
1942 		return -EINVAL;
1943 	}
1944 
1945 	cs = intel_ring_begin(rq, 4 * 2 + 2);
1946 	if (IS_ERR(cs))
1947 		return PTR_ERR(cs);
1948 
1949 	*cs++ = MI_LOAD_REGISTER_IMM(4);
1950 	for (i = 0; i < 4; i++) {
1951 		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1952 		*cs++ = 0;
1953 	}
1954 	*cs++ = MI_NOOP;
1955 	intel_ring_advance(rq, cs);
1956 
1957 	return 0;
1958 }
1959 
1960 static struct i915_vma *
1961 shadow_batch_pin(struct i915_execbuffer *eb, struct drm_i915_gem_object *obj)
1962 {
1963 	struct drm_i915_private *dev_priv = eb->i915;
1964 	struct i915_vma * const vma = *eb->vma;
1965 	struct i915_address_space *vm;
1966 	u64 flags;
1967 
1968 	/*
1969 	 * PPGTT backed shadow buffers must be mapped RO, to prevent
1970 	 * post-scan tampering
1971 	 */
1972 	if (CMDPARSER_USES_GGTT(dev_priv)) {
1973 		flags = PIN_GLOBAL;
1974 		vm = &dev_priv->ggtt.vm;
1975 	} else if (vma->vm->has_read_only) {
1976 		flags = PIN_USER;
1977 		vm = vma->vm;
1978 		i915_gem_object_set_readonly(obj);
1979 	} else {
1980 		DRM_DEBUG("Cannot prevent post-scan tampering without RO capable vm\n");
1981 		return ERR_PTR(-EINVAL);
1982 	}
1983 
1984 	return i915_gem_object_pin(obj, vm, NULL, 0, 0, flags);
1985 }
1986 
1987 static struct i915_vma *eb_parse(struct i915_execbuffer *eb)
1988 {
1989 	struct intel_engine_pool_node *pool;
1990 	struct i915_vma *vma;
1991 	u64 batch_start;
1992 	u64 shadow_batch_start;
1993 	int err;
1994 
1995 	pool = intel_engine_pool_get(&eb->engine->pool, eb->batch_len);
1996 	if (IS_ERR(pool))
1997 		return ERR_CAST(pool);
1998 
1999 	vma = shadow_batch_pin(eb, pool->obj);
2000 	if (IS_ERR(vma))
2001 		goto err;
2002 
2003 	batch_start = gen8_canonical_addr(eb->batch->node.start) +
2004 		      eb->batch_start_offset;
2005 
2006 	shadow_batch_start = gen8_canonical_addr(vma->node.start);
2007 
2008 	err = intel_engine_cmd_parser(eb->gem_context,
2009 				      eb->engine,
2010 				      eb->batch->obj,
2011 				      batch_start,
2012 				      eb->batch_start_offset,
2013 				      eb->batch_len,
2014 				      pool->obj,
2015 				      shadow_batch_start);
2016 
2017 	if (err) {
2018 		i915_vma_unpin(vma);
2019 
2020 		/*
2021 		 * Unsafe GGTT-backed buffers can still be submitted safely
2022 		 * as non-secure.
2023 		 * For PPGTT backing however, we have no choice but to forcibly
2024 		 * reject unsafe buffers
2025 		 */
2026 		if (CMDPARSER_USES_GGTT(eb->i915) && (err == -EACCES))
2027 			/* Execute original buffer non-secure */
2028 			vma = NULL;
2029 		else
2030 			vma = ERR_PTR(err);
2031 		goto err;
2032 	}
2033 
2034 	eb->vma[eb->buffer_count] = i915_vma_get(vma);
2035 	eb->flags[eb->buffer_count] =
2036 		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
2037 	vma->exec_flags = &eb->flags[eb->buffer_count];
2038 	eb->buffer_count++;
2039 
2040 	eb->batch_start_offset = 0;
2041 	eb->batch = vma;
2042 
2043 	if (CMDPARSER_USES_GGTT(eb->i915))
2044 		eb->batch_flags |= I915_DISPATCH_SECURE;
2045 
2046 	/* eb->batch_len unchanged */
2047 
2048 	vma->private = pool;
2049 	return vma;
2050 
2051 err:
2052 	intel_engine_pool_put(pool);
2053 	return vma;
2054 }
2055 
2056 static void
2057 add_to_client(struct i915_request *rq, struct drm_file *file)
2058 {
2059 	struct drm_i915_file_private *file_priv = file->driver_priv;
2060 
2061 	rq->file_priv = file_priv;
2062 
2063 	spin_lock(&file_priv->mm.lock);
2064 	list_add_tail(&rq->client_link, &file_priv->mm.request_list);
2065 	spin_unlock(&file_priv->mm.lock);
2066 }
2067 
2068 static int eb_submit(struct i915_execbuffer *eb)
2069 {
2070 	int err;
2071 
2072 	err = eb_move_to_gpu(eb);
2073 	if (err)
2074 		return err;
2075 
2076 	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2077 		err = i915_reset_gen7_sol_offsets(eb->request);
2078 		if (err)
2079 			return err;
2080 	}
2081 
2082 	/*
2083 	 * After we completed waiting for other engines (using HW semaphores)
2084 	 * then we can signal that this request/batch is ready to run. This
2085 	 * allows us to determine if the batch is still waiting on the GPU
2086 	 * or actually running by checking the breadcrumb.
2087 	 */
2088 	if (eb->engine->emit_init_breadcrumb) {
2089 		err = eb->engine->emit_init_breadcrumb(eb->request);
2090 		if (err)
2091 			return err;
2092 	}
2093 
2094 	err = eb->engine->emit_bb_start(eb->request,
2095 					eb->batch->node.start +
2096 					eb->batch_start_offset,
2097 					eb->batch_len,
2098 					eb->batch_flags);
2099 	if (err)
2100 		return err;
2101 
2102 	return 0;
2103 }
2104 
2105 static int num_vcs_engines(const struct drm_i915_private *i915)
2106 {
2107 	return hweight64(INTEL_INFO(i915)->engine_mask &
2108 			 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
2109 }
2110 
2111 /*
2112  * Find one BSD ring to dispatch the corresponding BSD command.
2113  * The engine index is returned.
2114  */
2115 static unsigned int
2116 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2117 			 struct drm_file *file)
2118 {
2119 	struct drm_i915_file_private *file_priv = file->driver_priv;
2120 
2121 	/* Check whether the file_priv has already selected one ring. */
2122 	if ((int)file_priv->bsd_engine < 0)
2123 		file_priv->bsd_engine =
2124 			get_random_int() % num_vcs_engines(dev_priv);
2125 
2126 	return file_priv->bsd_engine;
2127 }
2128 
2129 static const enum intel_engine_id user_ring_map[] = {
2130 	[I915_EXEC_DEFAULT]	= RCS0,
2131 	[I915_EXEC_RENDER]	= RCS0,
2132 	[I915_EXEC_BLT]		= BCS0,
2133 	[I915_EXEC_BSD]		= VCS0,
2134 	[I915_EXEC_VEBOX]	= VECS0
2135 };
2136 
2137 static struct i915_request *eb_throttle(struct intel_context *ce)
2138 {
2139 	struct intel_ring *ring = ce->ring;
2140 	struct intel_timeline *tl = ce->timeline;
2141 	struct i915_request *rq;
2142 
2143 	/*
2144 	 * Completely unscientific finger-in-the-air estimates for suitable
2145 	 * maximum user request size (to avoid blocking) and then backoff.
2146 	 */
2147 	if (intel_ring_update_space(ring) >= PAGE_SIZE)
2148 		return NULL;
2149 
2150 	/*
2151 	 * Find a request that after waiting upon, there will be at least half
2152 	 * the ring available. The hysteresis allows us to compete for the
2153 	 * shared ring and should mean that we sleep less often prior to
2154 	 * claiming our resources, but not so long that the ring completely
2155 	 * drains before we can submit our next request.
2156 	 */
2157 	list_for_each_entry(rq, &tl->requests, link) {
2158 		if (rq->ring != ring)
2159 			continue;
2160 
2161 		if (__intel_ring_space(rq->postfix,
2162 				       ring->emit, ring->size) > ring->size / 2)
2163 			break;
2164 	}
2165 	if (&rq->link == &tl->requests)
2166 		return NULL; /* weird, we will check again later for real */
2167 
2168 	return i915_request_get(rq);
2169 }
2170 
2171 static int
2172 __eb_pin_context(struct i915_execbuffer *eb, struct intel_context *ce)
2173 {
2174 	int err;
2175 
2176 	if (likely(atomic_inc_not_zero(&ce->pin_count)))
2177 		return 0;
2178 
2179 	err = mutex_lock_interruptible(&eb->i915->drm.struct_mutex);
2180 	if (err)
2181 		return err;
2182 
2183 	err = __intel_context_do_pin(ce);
2184 	mutex_unlock(&eb->i915->drm.struct_mutex);
2185 
2186 	return err;
2187 }
2188 
2189 static void
2190 __eb_unpin_context(struct i915_execbuffer *eb, struct intel_context *ce)
2191 {
2192 	if (likely(atomic_add_unless(&ce->pin_count, -1, 1)))
2193 		return;
2194 
2195 	mutex_lock(&eb->i915->drm.struct_mutex);
2196 	intel_context_unpin(ce);
2197 	mutex_unlock(&eb->i915->drm.struct_mutex);
2198 }
2199 
2200 static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
2201 {
2202 	struct intel_timeline *tl;
2203 	struct i915_request *rq;
2204 	int err;
2205 
2206 	/*
2207 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2208 	 * EIO if the GPU is already wedged.
2209 	 */
2210 	err = intel_gt_terminally_wedged(ce->engine->gt);
2211 	if (err)
2212 		return err;
2213 
2214 	/*
2215 	 * Pinning the contexts may generate requests in order to acquire
2216 	 * GGTT space, so do this first before we reserve a seqno for
2217 	 * ourselves.
2218 	 */
2219 	err = __eb_pin_context(eb, ce);
2220 	if (err)
2221 		return err;
2222 
2223 	/*
2224 	 * Take a local wakeref for preparing to dispatch the execbuf as
2225 	 * we expect to access the hardware fairly frequently in the
2226 	 * process, and require the engine to be kept awake between accesses.
2227 	 * Upon dispatch, we acquire another prolonged wakeref that we hold
2228 	 * until the timeline is idle, which in turn releases the wakeref
2229 	 * taken on the engine, and the parent device.
2230 	 */
2231 	tl = intel_context_timeline_lock(ce);
2232 	if (IS_ERR(tl)) {
2233 		err = PTR_ERR(tl);
2234 		goto err_unpin;
2235 	}
2236 
2237 	intel_context_enter(ce);
2238 	rq = eb_throttle(ce);
2239 
2240 	intel_context_timeline_unlock(tl);
2241 
2242 	if (rq) {
2243 		if (i915_request_wait(rq,
2244 				      I915_WAIT_INTERRUPTIBLE,
2245 				      MAX_SCHEDULE_TIMEOUT) < 0) {
2246 			i915_request_put(rq);
2247 			err = -EINTR;
2248 			goto err_exit;
2249 		}
2250 
2251 		i915_request_put(rq);
2252 	}
2253 
2254 	eb->engine = ce->engine;
2255 	eb->context = ce;
2256 	return 0;
2257 
2258 err_exit:
2259 	mutex_lock(&tl->mutex);
2260 	intel_context_exit(ce);
2261 	intel_context_timeline_unlock(tl);
2262 err_unpin:
2263 	__eb_unpin_context(eb, ce);
2264 	return err;
2265 }
2266 
2267 static void eb_unpin_engine(struct i915_execbuffer *eb)
2268 {
2269 	struct intel_context *ce = eb->context;
2270 	struct intel_timeline *tl = ce->timeline;
2271 
2272 	mutex_lock(&tl->mutex);
2273 	intel_context_exit(ce);
2274 	mutex_unlock(&tl->mutex);
2275 
2276 	__eb_unpin_context(eb, ce);
2277 }
2278 
2279 static unsigned int
2280 eb_select_legacy_ring(struct i915_execbuffer *eb,
2281 		      struct drm_file *file,
2282 		      struct drm_i915_gem_execbuffer2 *args)
2283 {
2284 	struct drm_i915_private *i915 = eb->i915;
2285 	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2286 
2287 	if (user_ring_id != I915_EXEC_BSD &&
2288 	    (args->flags & I915_EXEC_BSD_MASK)) {
2289 		DRM_DEBUG("execbuf with non bsd ring but with invalid "
2290 			  "bsd dispatch flags: %d\n", (int)(args->flags));
2291 		return -1;
2292 	}
2293 
2294 	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2295 		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2296 
2297 		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2298 			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2299 		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2300 			   bsd_idx <= I915_EXEC_BSD_RING2) {
2301 			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2302 			bsd_idx--;
2303 		} else {
2304 			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
2305 				  bsd_idx);
2306 			return -1;
2307 		}
2308 
2309 		return _VCS(bsd_idx);
2310 	}
2311 
2312 	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2313 		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2314 		return -1;
2315 	}
2316 
2317 	return user_ring_map[user_ring_id];
2318 }
2319 
2320 static int
2321 eb_pin_engine(struct i915_execbuffer *eb,
2322 	      struct drm_file *file,
2323 	      struct drm_i915_gem_execbuffer2 *args)
2324 {
2325 	struct intel_context *ce;
2326 	unsigned int idx;
2327 	int err;
2328 
2329 	if (i915_gem_context_user_engines(eb->gem_context))
2330 		idx = args->flags & I915_EXEC_RING_MASK;
2331 	else
2332 		idx = eb_select_legacy_ring(eb, file, args);
2333 
2334 	ce = i915_gem_context_get_engine(eb->gem_context, idx);
2335 	if (IS_ERR(ce))
2336 		return PTR_ERR(ce);
2337 
2338 	err = __eb_pin_engine(eb, ce);
2339 	intel_context_put(ce);
2340 
2341 	return err;
2342 }
2343 
2344 static void
2345 __free_fence_array(struct drm_syncobj **fences, unsigned int n)
2346 {
2347 	while (n--)
2348 		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2349 	kvfree(fences);
2350 }
2351 
2352 static struct drm_syncobj **
2353 get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2354 		struct drm_file *file)
2355 {
2356 	const unsigned long nfences = args->num_cliprects;
2357 	struct drm_i915_gem_exec_fence __user *user;
2358 	struct drm_syncobj **fences;
2359 	unsigned long n;
2360 	int err;
2361 
2362 	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2363 		return NULL;
2364 
2365 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2366 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2367 	if (nfences > min_t(unsigned long,
2368 			    ULONG_MAX / sizeof(*user),
2369 			    SIZE_MAX / sizeof(*fences)))
2370 		return ERR_PTR(-EINVAL);
2371 
2372 	user = u64_to_user_ptr(args->cliprects_ptr);
2373 	if (!access_ok(user, nfences * sizeof(*user)))
2374 		return ERR_PTR(-EFAULT);
2375 
2376 	fences = kvmalloc_array(nfences, sizeof(*fences),
2377 				__GFP_NOWARN | GFP_KERNEL);
2378 	if (!fences)
2379 		return ERR_PTR(-ENOMEM);
2380 
2381 	for (n = 0; n < nfences; n++) {
2382 		struct drm_i915_gem_exec_fence fence;
2383 		struct drm_syncobj *syncobj;
2384 
2385 		if (__copy_from_user(&fence, user++, sizeof(fence))) {
2386 			err = -EFAULT;
2387 			goto err;
2388 		}
2389 
2390 		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2391 			err = -EINVAL;
2392 			goto err;
2393 		}
2394 
2395 		syncobj = drm_syncobj_find(file, fence.handle);
2396 		if (!syncobj) {
2397 			DRM_DEBUG("Invalid syncobj handle provided\n");
2398 			err = -ENOENT;
2399 			goto err;
2400 		}
2401 
2402 		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2403 			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2404 
2405 		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2406 	}
2407 
2408 	return fences;
2409 
2410 err:
2411 	__free_fence_array(fences, n);
2412 	return ERR_PTR(err);
2413 }
2414 
2415 static void
2416 put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2417 		struct drm_syncobj **fences)
2418 {
2419 	if (fences)
2420 		__free_fence_array(fences, args->num_cliprects);
2421 }
2422 
2423 static int
2424 await_fence_array(struct i915_execbuffer *eb,
2425 		  struct drm_syncobj **fences)
2426 {
2427 	const unsigned int nfences = eb->args->num_cliprects;
2428 	unsigned int n;
2429 	int err;
2430 
2431 	for (n = 0; n < nfences; n++) {
2432 		struct drm_syncobj *syncobj;
2433 		struct dma_fence *fence;
2434 		unsigned int flags;
2435 
2436 		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2437 		if (!(flags & I915_EXEC_FENCE_WAIT))
2438 			continue;
2439 
2440 		fence = drm_syncobj_fence_get(syncobj);
2441 		if (!fence)
2442 			return -EINVAL;
2443 
2444 		err = i915_request_await_dma_fence(eb->request, fence);
2445 		dma_fence_put(fence);
2446 		if (err < 0)
2447 			return err;
2448 	}
2449 
2450 	return 0;
2451 }
2452 
2453 static void
2454 signal_fence_array(struct i915_execbuffer *eb,
2455 		   struct drm_syncobj **fences)
2456 {
2457 	const unsigned int nfences = eb->args->num_cliprects;
2458 	struct dma_fence * const fence = &eb->request->fence;
2459 	unsigned int n;
2460 
2461 	for (n = 0; n < nfences; n++) {
2462 		struct drm_syncobj *syncobj;
2463 		unsigned int flags;
2464 
2465 		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2466 		if (!(flags & I915_EXEC_FENCE_SIGNAL))
2467 			continue;
2468 
2469 		drm_syncobj_replace_fence(syncobj, fence);
2470 	}
2471 }
2472 
2473 static int
2474 i915_gem_do_execbuffer(struct drm_device *dev,
2475 		       struct drm_file *file,
2476 		       struct drm_i915_gem_execbuffer2 *args,
2477 		       struct drm_i915_gem_exec_object2 *exec,
2478 		       struct drm_syncobj **fences)
2479 {
2480 	struct drm_i915_private *i915 = to_i915(dev);
2481 	struct i915_execbuffer eb;
2482 	struct dma_fence *in_fence = NULL;
2483 	struct dma_fence *exec_fence = NULL;
2484 	struct sync_file *out_fence = NULL;
2485 	int out_fence_fd = -1;
2486 	int err;
2487 
2488 	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2489 	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2490 		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2491 
2492 	eb.i915 = i915;
2493 	eb.file = file;
2494 	eb.args = args;
2495 	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2496 		args->flags |= __EXEC_HAS_RELOC;
2497 
2498 	eb.exec = exec;
2499 	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
2500 	eb.vma[0] = NULL;
2501 	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);
2502 
2503 	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2504 	reloc_cache_init(&eb.reloc_cache, eb.i915);
2505 
2506 	eb.buffer_count = args->buffer_count;
2507 	eb.batch_start_offset = args->batch_start_offset;
2508 	eb.batch_len = args->batch_len;
2509 
2510 	eb.batch_flags = 0;
2511 	if (args->flags & I915_EXEC_SECURE) {
2512 		if (INTEL_GEN(i915) >= 11)
2513 			return -ENODEV;
2514 
2515 		/* Return -EPERM to trigger fallback code on old binaries. */
2516 		if (!HAS_SECURE_BATCHES(i915))
2517 			return -EPERM;
2518 
2519 		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2520 			return -EPERM;
2521 
2522 		eb.batch_flags |= I915_DISPATCH_SECURE;
2523 	}
2524 	if (args->flags & I915_EXEC_IS_PINNED)
2525 		eb.batch_flags |= I915_DISPATCH_PINNED;
2526 
2527 	if (args->flags & I915_EXEC_FENCE_IN) {
2528 		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2529 		if (!in_fence)
2530 			return -EINVAL;
2531 	}
2532 
2533 	if (args->flags & I915_EXEC_FENCE_SUBMIT) {
2534 		if (in_fence) {
2535 			err = -EINVAL;
2536 			goto err_in_fence;
2537 		}
2538 
2539 		exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2540 		if (!exec_fence) {
2541 			err = -EINVAL;
2542 			goto err_in_fence;
2543 		}
2544 	}
2545 
2546 	if (args->flags & I915_EXEC_FENCE_OUT) {
2547 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2548 		if (out_fence_fd < 0) {
2549 			err = out_fence_fd;
2550 			goto err_exec_fence;
2551 		}
2552 	}
2553 
2554 	err = eb_create(&eb);
2555 	if (err)
2556 		goto err_out_fence;
2557 
2558 	GEM_BUG_ON(!eb.lut_size);
2559 
2560 	err = eb_select_context(&eb);
2561 	if (unlikely(err))
2562 		goto err_destroy;
2563 
2564 	err = eb_pin_engine(&eb, file, args);
2565 	if (unlikely(err))
2566 		goto err_context;
2567 
2568 	err = i915_mutex_lock_interruptible(dev);
2569 	if (err)
2570 		goto err_engine;
2571 
2572 	err = eb_relocate(&eb);
2573 	if (err) {
2574 		/*
2575 		 * If the user expects the execobject.offset and
2576 		 * reloc.presumed_offset to be an exact match,
2577 		 * as for using NO_RELOC, then we cannot update
2578 		 * the execobject.offset until we have completed
2579 		 * relocation.
2580 		 */
2581 		args->flags &= ~__EXEC_HAS_RELOC;
2582 		goto err_vma;
2583 	}
2584 
2585 	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2586 		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2587 		err = -EINVAL;
2588 		goto err_vma;
2589 	}
2590 	if (eb.batch_start_offset > eb.batch->size ||
2591 	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2592 		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2593 		err = -EINVAL;
2594 		goto err_vma;
2595 	}
2596 
2597 	if (eb.batch_len == 0)
2598 		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2599 
2600 	if (eb_use_cmdparser(&eb)) {
2601 		struct i915_vma *vma;
2602 
2603 		vma = eb_parse(&eb);
2604 		if (IS_ERR(vma)) {
2605 			err = PTR_ERR(vma);
2606 			goto err_vma;
2607 		}
2608 	}
2609 
2610 	/*
2611 	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2612 	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2613 	 * hsw should have this fixed, but bdw mucks it up again. */
2614 	if (eb.batch_flags & I915_DISPATCH_SECURE) {
2615 		struct i915_vma *vma;
2616 
2617 		/*
2618 		 * So on first glance it looks freaky that we pin the batch here
2619 		 * outside of the reservation loop. But:
2620 		 * - The batch is already pinned into the relevant ppgtt, so we
2621 		 *   already have the backing storage fully allocated.
2622 		 * - No other BO uses the global gtt (well contexts, but meh),
2623 		 *   so we don't really have issues with multiple objects not
2624 		 *   fitting due to fragmentation.
2625 		 * So this is actually safe.
2626 		 */
2627 		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
2628 		if (IS_ERR(vma)) {
2629 			err = PTR_ERR(vma);
2630 			goto err_vma;
2631 		}
2632 
2633 		eb.batch = vma;
2634 	}
2635 
2636 	/* All GPU relocation batches must be submitted prior to the user rq */
2637 	GEM_BUG_ON(eb.reloc_cache.rq);
2638 
2639 	/* Allocate a request for this batch buffer nice and early. */
2640 	eb.request = i915_request_create(eb.context);
2641 	if (IS_ERR(eb.request)) {
2642 		err = PTR_ERR(eb.request);
2643 		goto err_batch_unpin;
2644 	}
2645 
2646 	if (in_fence) {
2647 		err = i915_request_await_dma_fence(eb.request, in_fence);
2648 		if (err < 0)
2649 			goto err_request;
2650 	}
2651 
2652 	if (exec_fence) {
2653 		err = i915_request_await_execution(eb.request, exec_fence,
2654 						   eb.engine->bond_execute);
2655 		if (err < 0)
2656 			goto err_request;
2657 	}
2658 
2659 	if (fences) {
2660 		err = await_fence_array(&eb, fences);
2661 		if (err)
2662 			goto err_request;
2663 	}
2664 
2665 	if (out_fence_fd != -1) {
2666 		out_fence = sync_file_create(&eb.request->fence);
2667 		if (!out_fence) {
2668 			err = -ENOMEM;
2669 			goto err_request;
2670 		}
2671 	}
2672 
2673 	/*
2674 	 * Whilst this request exists, batch_obj will be on the
2675 	 * active_list, and so will hold the active reference. Only when this
2676 	 * request is retired will the the batch_obj be moved onto the
2677 	 * inactive_list and lose its active reference. Hence we do not need
2678 	 * to explicitly hold another reference here.
2679 	 */
2680 	eb.request->batch = eb.batch;
2681 	if (eb.batch->private)
2682 		intel_engine_pool_mark_active(eb.batch->private, eb.request);
2683 
2684 	trace_i915_request_queue(eb.request, eb.batch_flags);
2685 	err = eb_submit(&eb);
2686 err_request:
2687 	add_to_client(eb.request, file);
2688 	i915_request_add(eb.request);
2689 
2690 	if (fences)
2691 		signal_fence_array(&eb, fences);
2692 
2693 	if (out_fence) {
2694 		if (err == 0) {
2695 			fd_install(out_fence_fd, out_fence->file);
2696 			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2697 			args->rsvd2 |= (u64)out_fence_fd << 32;
2698 			out_fence_fd = -1;
2699 		} else {
2700 			fput(out_fence->file);
2701 		}
2702 	}
2703 
2704 err_batch_unpin:
2705 	if (eb.batch_flags & I915_DISPATCH_SECURE)
2706 		i915_vma_unpin(eb.batch);
2707 	if (eb.batch->private)
2708 		intel_engine_pool_put(eb.batch->private);
2709 err_vma:
2710 	if (eb.exec)
2711 		eb_release_vmas(&eb);
2712 	mutex_unlock(&dev->struct_mutex);
2713 err_engine:
2714 	eb_unpin_engine(&eb);
2715 err_context:
2716 	i915_gem_context_put(eb.gem_context);
2717 err_destroy:
2718 	eb_destroy(&eb);
2719 err_out_fence:
2720 	if (out_fence_fd != -1)
2721 		put_unused_fd(out_fence_fd);
2722 err_exec_fence:
2723 	dma_fence_put(exec_fence);
2724 err_in_fence:
2725 	dma_fence_put(in_fence);
2726 	return err;
2727 }
2728 
2729 static size_t eb_element_size(void)
2730 {
2731 	return (sizeof(struct drm_i915_gem_exec_object2) +
2732 		sizeof(struct i915_vma *) +
2733 		sizeof(unsigned int));
2734 }
2735 
2736 static bool check_buffer_count(size_t count)
2737 {
2738 	const size_t sz = eb_element_size();
2739 
2740 	/*
2741 	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2742 	 * array size (see eb_create()). Otherwise, we can accept an array as
2743 	 * large as can be addressed (though use large arrays at your peril)!
2744 	 */
2745 
2746 	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
2747 }
2748 
2749 /*
2750  * Legacy execbuffer just creates an exec2 list from the original exec object
2751  * list array and passes it to the real function.
2752  */
2753 int
2754 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2755 			  struct drm_file *file)
2756 {
2757 	struct drm_i915_gem_execbuffer *args = data;
2758 	struct drm_i915_gem_execbuffer2 exec2;
2759 	struct drm_i915_gem_exec_object *exec_list = NULL;
2760 	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2761 	const size_t count = args->buffer_count;
2762 	unsigned int i;
2763 	int err;
2764 
2765 	if (!check_buffer_count(count)) {
2766 		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2767 		return -EINVAL;
2768 	}
2769 
2770 	exec2.buffers_ptr = args->buffers_ptr;
2771 	exec2.buffer_count = args->buffer_count;
2772 	exec2.batch_start_offset = args->batch_start_offset;
2773 	exec2.batch_len = args->batch_len;
2774 	exec2.DR1 = args->DR1;
2775 	exec2.DR4 = args->DR4;
2776 	exec2.num_cliprects = args->num_cliprects;
2777 	exec2.cliprects_ptr = args->cliprects_ptr;
2778 	exec2.flags = I915_EXEC_RENDER;
2779 	i915_execbuffer2_set_context_id(exec2, 0);
2780 
2781 	if (!i915_gem_check_execbuffer(&exec2))
2782 		return -EINVAL;
2783 
2784 	/* Copy in the exec list from userland */
2785 	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2786 				   __GFP_NOWARN | GFP_KERNEL);
2787 	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2788 				    __GFP_NOWARN | GFP_KERNEL);
2789 	if (exec_list == NULL || exec2_list == NULL) {
2790 		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2791 			  args->buffer_count);
2792 		kvfree(exec_list);
2793 		kvfree(exec2_list);
2794 		return -ENOMEM;
2795 	}
2796 	err = copy_from_user(exec_list,
2797 			     u64_to_user_ptr(args->buffers_ptr),
2798 			     sizeof(*exec_list) * count);
2799 	if (err) {
2800 		DRM_DEBUG("copy %d exec entries failed %d\n",
2801 			  args->buffer_count, err);
2802 		kvfree(exec_list);
2803 		kvfree(exec2_list);
2804 		return -EFAULT;
2805 	}
2806 
2807 	for (i = 0; i < args->buffer_count; i++) {
2808 		exec2_list[i].handle = exec_list[i].handle;
2809 		exec2_list[i].relocation_count = exec_list[i].relocation_count;
2810 		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2811 		exec2_list[i].alignment = exec_list[i].alignment;
2812 		exec2_list[i].offset = exec_list[i].offset;
2813 		if (INTEL_GEN(to_i915(dev)) < 4)
2814 			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2815 		else
2816 			exec2_list[i].flags = 0;
2817 	}
2818 
2819 	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2820 	if (exec2.flags & __EXEC_HAS_RELOC) {
2821 		struct drm_i915_gem_exec_object __user *user_exec_list =
2822 			u64_to_user_ptr(args->buffers_ptr);
2823 
2824 		/* Copy the new buffer offsets back to the user's exec list. */
2825 		for (i = 0; i < args->buffer_count; i++) {
2826 			if (!(exec2_list[i].offset & UPDATE))
2827 				continue;
2828 
2829 			exec2_list[i].offset =
2830 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2831 			exec2_list[i].offset &= PIN_OFFSET_MASK;
2832 			if (__copy_to_user(&user_exec_list[i].offset,
2833 					   &exec2_list[i].offset,
2834 					   sizeof(user_exec_list[i].offset)))
2835 				break;
2836 		}
2837 	}
2838 
2839 	kvfree(exec_list);
2840 	kvfree(exec2_list);
2841 	return err;
2842 }
2843 
2844 int
2845 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2846 			   struct drm_file *file)
2847 {
2848 	struct drm_i915_gem_execbuffer2 *args = data;
2849 	struct drm_i915_gem_exec_object2 *exec2_list;
2850 	struct drm_syncobj **fences = NULL;
2851 	const size_t count = args->buffer_count;
2852 	int err;
2853 
2854 	if (!check_buffer_count(count)) {
2855 		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2856 		return -EINVAL;
2857 	}
2858 
2859 	if (!i915_gem_check_execbuffer(args))
2860 		return -EINVAL;
2861 
2862 	/* Allocate an extra slot for use by the command parser */
2863 	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2864 				    __GFP_NOWARN | GFP_KERNEL);
2865 	if (exec2_list == NULL) {
2866 		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
2867 			  count);
2868 		return -ENOMEM;
2869 	}
2870 	if (copy_from_user(exec2_list,
2871 			   u64_to_user_ptr(args->buffers_ptr),
2872 			   sizeof(*exec2_list) * count)) {
2873 		DRM_DEBUG("copy %zd exec entries failed\n", count);
2874 		kvfree(exec2_list);
2875 		return -EFAULT;
2876 	}
2877 
2878 	if (args->flags & I915_EXEC_FENCE_ARRAY) {
2879 		fences = get_fence_array(args, file);
2880 		if (IS_ERR(fences)) {
2881 			kvfree(exec2_list);
2882 			return PTR_ERR(fences);
2883 		}
2884 	}
2885 
2886 	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2887 
2888 	/*
2889 	 * Now that we have begun execution of the batchbuffer, we ignore
2890 	 * any new error after this point. Also given that we have already
2891 	 * updated the associated relocations, we try to write out the current
2892 	 * object locations irrespective of any error.
2893 	 */
2894 	if (args->flags & __EXEC_HAS_RELOC) {
2895 		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2896 			u64_to_user_ptr(args->buffers_ptr);
2897 		unsigned int i;
2898 
2899 		/* Copy the new buffer offsets back to the user's exec list. */
2900 		/*
2901 		 * Note: count * sizeof(*user_exec_list) does not overflow,
2902 		 * because we checked 'count' in check_buffer_count().
2903 		 *
2904 		 * And this range already got effectively checked earlier
2905 		 * when we did the "copy_from_user()" above.
2906 		 */
2907 		if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2908 			goto end;
2909 
2910 		for (i = 0; i < args->buffer_count; i++) {
2911 			if (!(exec2_list[i].offset & UPDATE))
2912 				continue;
2913 
2914 			exec2_list[i].offset =
2915 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2916 			unsafe_put_user(exec2_list[i].offset,
2917 					&user_exec_list[i].offset,
2918 					end_user);
2919 		}
2920 end_user:
2921 		user_access_end();
2922 end:;
2923 	}
2924 
2925 	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2926 	put_fence_array(args, fences);
2927 	kvfree(exec2_list);
2928 	return err;
2929 }
2930