1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008,2010 Intel Corporation 5 */ 6 7 #include <linux/intel-iommu.h> 8 #include <linux/dma-resv.h> 9 #include <linux/sync_file.h> 10 #include <linux/uaccess.h> 11 12 #include <drm/drm_syncobj.h> 13 #include <drm/i915_drm.h> 14 15 #include "display/intel_frontbuffer.h" 16 17 #include "gem/i915_gem_ioctls.h" 18 #include "gt/intel_context.h" 19 #include "gt/intel_engine_pool.h" 20 #include "gt/intel_gt.h" 21 #include "gt/intel_gt_pm.h" 22 23 #include "i915_drv.h" 24 #include "i915_gem_clflush.h" 25 #include "i915_gem_context.h" 26 #include "i915_gem_ioctls.h" 27 #include "i915_trace.h" 28 29 enum { 30 FORCE_CPU_RELOC = 1, 31 FORCE_GTT_RELOC, 32 FORCE_GPU_RELOC, 33 #define DBG_FORCE_RELOC 0 /* choose one of the above! */ 34 }; 35 36 #define __EXEC_OBJECT_HAS_REF BIT(31) 37 #define __EXEC_OBJECT_HAS_PIN BIT(30) 38 #define __EXEC_OBJECT_HAS_FENCE BIT(29) 39 #define __EXEC_OBJECT_NEEDS_MAP BIT(28) 40 #define __EXEC_OBJECT_NEEDS_BIAS BIT(27) 41 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 27) /* all of the above */ 42 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) 43 44 #define __EXEC_HAS_RELOC BIT(31) 45 #define __EXEC_VALIDATED BIT(30) 46 #define __EXEC_INTERNAL_FLAGS (~0u << 30) 47 #define UPDATE PIN_OFFSET_FIXED 48 49 #define BATCH_OFFSET_BIAS (256*1024) 50 51 #define __I915_EXEC_ILLEGAL_FLAGS \ 52 (__I915_EXEC_UNKNOWN_FLAGS | \ 53 I915_EXEC_CONSTANTS_MASK | \ 54 I915_EXEC_RESOURCE_STREAMER) 55 56 /* Catch emission of unexpected errors for CI! */ 57 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 58 #undef EINVAL 59 #define EINVAL ({ \ 60 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 61 22; \ 62 }) 63 #endif 64 65 /** 66 * DOC: User command execution 67 * 68 * Userspace submits commands to be executed on the GPU as an instruction 69 * stream within a GEM object we call a batchbuffer. This instructions may 70 * refer to other GEM objects containing auxiliary state such as kernels, 71 * samplers, render targets and even secondary batchbuffers. Userspace does 72 * not know where in the GPU memory these objects reside and so before the 73 * batchbuffer is passed to the GPU for execution, those addresses in the 74 * batchbuffer and auxiliary objects are updated. This is known as relocation, 75 * or patching. To try and avoid having to relocate each object on the next 76 * execution, userspace is told the location of those objects in this pass, 77 * but this remains just a hint as the kernel may choose a new location for 78 * any object in the future. 79 * 80 * At the level of talking to the hardware, submitting a batchbuffer for the 81 * GPU to execute is to add content to a buffer from which the HW 82 * command streamer is reading. 83 * 84 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. 85 * Execlists, this command is not placed on the same buffer as the 86 * remaining items. 87 * 88 * 2. Add a command to invalidate caches to the buffer. 89 * 90 * 3. Add a batchbuffer start command to the buffer; the start command is 91 * essentially a token together with the GPU address of the batchbuffer 92 * to be executed. 93 * 94 * 4. Add a pipeline flush to the buffer. 95 * 96 * 5. Add a memory write command to the buffer to record when the GPU 97 * is done executing the batchbuffer. The memory write writes the 98 * global sequence number of the request, ``i915_request::global_seqno``; 99 * the i915 driver uses the current value in the register to determine 100 * if the GPU has completed the batchbuffer. 101 * 102 * 6. Add a user interrupt command to the buffer. This command instructs 103 * the GPU to issue an interrupt when the command, pipeline flush and 104 * memory write are completed. 105 * 106 * 7. Inform the hardware of the additional commands added to the buffer 107 * (by updating the tail pointer). 108 * 109 * Processing an execbuf ioctl is conceptually split up into a few phases. 110 * 111 * 1. Validation - Ensure all the pointers, handles and flags are valid. 112 * 2. Reservation - Assign GPU address space for every object 113 * 3. Relocation - Update any addresses to point to the final locations 114 * 4. Serialisation - Order the request with respect to its dependencies 115 * 5. Construction - Construct a request to execute the batchbuffer 116 * 6. Submission (at some point in the future execution) 117 * 118 * Reserving resources for the execbuf is the most complicated phase. We 119 * neither want to have to migrate the object in the address space, nor do 120 * we want to have to update any relocations pointing to this object. Ideally, 121 * we want to leave the object where it is and for all the existing relocations 122 * to match. If the object is given a new address, or if userspace thinks the 123 * object is elsewhere, we have to parse all the relocation entries and update 124 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that 125 * all the target addresses in all of its objects match the value in the 126 * relocation entries and that they all match the presumed offsets given by the 127 * list of execbuffer objects. Using this knowledge, we know that if we haven't 128 * moved any buffers, all the relocation entries are valid and we can skip 129 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 130 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 131 * 132 * The addresses written in the objects must match the corresponding 133 * reloc.presumed_offset which in turn must match the corresponding 134 * execobject.offset. 135 * 136 * Any render targets written to in the batch must be flagged with 137 * EXEC_OBJECT_WRITE. 138 * 139 * To avoid stalling, execobject.offset should match the current 140 * address of that object within the active context. 141 * 142 * The reservation is done is multiple phases. First we try and keep any 143 * object already bound in its current location - so as long as meets the 144 * constraints imposed by the new execbuffer. Any object left unbound after the 145 * first pass is then fitted into any available idle space. If an object does 146 * not fit, all objects are removed from the reservation and the process rerun 147 * after sorting the objects into a priority order (more difficult to fit 148 * objects are tried first). Failing that, the entire VM is cleared and we try 149 * to fit the execbuf once last time before concluding that it simply will not 150 * fit. 151 * 152 * A small complication to all of this is that we allow userspace not only to 153 * specify an alignment and a size for the object in the address space, but 154 * we also allow userspace to specify the exact offset. This objects are 155 * simpler to place (the location is known a priori) all we have to do is make 156 * sure the space is available. 157 * 158 * Once all the objects are in place, patching up the buried pointers to point 159 * to the final locations is a fairly simple job of walking over the relocation 160 * entry arrays, looking up the right address and rewriting the value into 161 * the object. Simple! ... The relocation entries are stored in user memory 162 * and so to access them we have to copy them into a local buffer. That copy 163 * has to avoid taking any pagefaults as they may lead back to a GEM object 164 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split 165 * the relocation into multiple passes. First we try to do everything within an 166 * atomic context (avoid the pagefaults) which requires that we never wait. If 167 * we detect that we may wait, or if we need to fault, then we have to fallback 168 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 169 * bells yet?) Dropping the mutex means that we lose all the state we have 170 * built up so far for the execbuf and we must reset any global data. However, 171 * we do leave the objects pinned in their final locations - which is a 172 * potential issue for concurrent execbufs. Once we have left the mutex, we can 173 * allocate and copy all the relocation entries into a large array at our 174 * leisure, reacquire the mutex, reclaim all the objects and other state and 175 * then proceed to update any incorrect addresses with the objects. 176 * 177 * As we process the relocation entries, we maintain a record of whether the 178 * object is being written to. Using NORELOC, we expect userspace to provide 179 * this information instead. We also check whether we can skip the relocation 180 * by comparing the expected value inside the relocation entry with the target's 181 * final address. If they differ, we have to map the current object and rewrite 182 * the 4 or 8 byte pointer within. 183 * 184 * Serialising an execbuf is quite simple according to the rules of the GEM 185 * ABI. Execution within each context is ordered by the order of submission. 186 * Writes to any GEM object are in order of submission and are exclusive. Reads 187 * from a GEM object are unordered with respect to other reads, but ordered by 188 * writes. A write submitted after a read cannot occur before the read, and 189 * similarly any read submitted after a write cannot occur before the write. 190 * Writes are ordered between engines such that only one write occurs at any 191 * time (completing any reads beforehand) - using semaphores where available 192 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 193 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 194 * reads before starting, and any read (either using set-domain or pread) must 195 * flush all GPU writes before starting. (Note we only employ a barrier before, 196 * we currently rely on userspace not concurrently starting a new execution 197 * whilst reading or writing to an object. This may be an advantage or not 198 * depending on how much you trust userspace not to shoot themselves in the 199 * foot.) Serialisation may just result in the request being inserted into 200 * a DAG awaiting its turn, but most simple is to wait on the CPU until 201 * all dependencies are resolved. 202 * 203 * After all of that, is just a matter of closing the request and handing it to 204 * the hardware (well, leaving it in a queue to be executed). However, we also 205 * offer the ability for batchbuffers to be run with elevated privileges so 206 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 207 * Before any batch is given extra privileges we first must check that it 208 * contains no nefarious instructions, we check that each instruction is from 209 * our whitelist and all registers are also from an allowed list. We first 210 * copy the user's batchbuffer to a shadow (so that the user doesn't have 211 * access to it, either by the CPU or GPU as we scan it) and then parse each 212 * instruction. If everything is ok, we set a flag telling the hardware to run 213 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 214 */ 215 216 struct i915_execbuffer { 217 struct drm_i915_private *i915; /** i915 backpointer */ 218 struct drm_file *file; /** per-file lookup tables and limits */ 219 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 220 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 221 struct i915_vma **vma; 222 unsigned int *flags; 223 224 struct intel_engine_cs *engine; /** engine to queue the request to */ 225 struct intel_context *context; /* logical state for the request */ 226 struct i915_gem_context *gem_context; /** caller's context */ 227 228 struct i915_request *request; /** our request to build */ 229 struct i915_vma *batch; /** identity of the batch obj/vma */ 230 231 /** actual size of execobj[] as we may extend it for the cmdparser */ 232 unsigned int buffer_count; 233 234 /** list of vma not yet bound during reservation phase */ 235 struct list_head unbound; 236 237 /** list of vma that have execobj.relocation_count */ 238 struct list_head relocs; 239 240 /** 241 * Track the most recently used object for relocations, as we 242 * frequently have to perform multiple relocations within the same 243 * obj/page 244 */ 245 struct reloc_cache { 246 struct drm_mm_node node; /** temporary GTT binding */ 247 unsigned long vaddr; /** Current kmap address */ 248 unsigned long page; /** Currently mapped page index */ 249 unsigned int gen; /** Cached value of INTEL_GEN */ 250 bool use_64bit_reloc : 1; 251 bool has_llc : 1; 252 bool has_fence : 1; 253 bool needs_unfenced : 1; 254 255 struct i915_request *rq; 256 u32 *rq_cmd; 257 unsigned int rq_size; 258 } reloc_cache; 259 260 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 261 u32 context_flags; /** Set of execobj.flags to insert from the ctx */ 262 263 u32 batch_start_offset; /** Location within object of batch */ 264 u32 batch_len; /** Length of batch within object */ 265 u32 batch_flags; /** Flags composed for emit_bb_start() */ 266 267 /** 268 * Indicate either the size of the hastable used to resolve 269 * relocation handles, or if negative that we are using a direct 270 * index into the execobj[]. 271 */ 272 int lut_size; 273 struct hlist_head *buckets; /** ht for relocation handles */ 274 }; 275 276 #define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags]) 277 278 /* 279 * Used to convert any address to canonical form. 280 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS, 281 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the 282 * addresses to be in a canonical form: 283 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct 284 * canonical form [63:48] == [47]." 285 */ 286 #define GEN8_HIGH_ADDRESS_BIT 47 287 static inline u64 gen8_canonical_addr(u64 address) 288 { 289 return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT); 290 } 291 292 static inline u64 gen8_noncanonical_addr(u64 address) 293 { 294 return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0); 295 } 296 297 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) 298 { 299 return intel_engine_requires_cmd_parser(eb->engine) || 300 (intel_engine_using_cmd_parser(eb->engine) && 301 eb->args->batch_len); 302 } 303 304 static int eb_create(struct i915_execbuffer *eb) 305 { 306 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 307 unsigned int size = 1 + ilog2(eb->buffer_count); 308 309 /* 310 * Without a 1:1 association between relocation handles and 311 * the execobject[] index, we instead create a hashtable. 312 * We size it dynamically based on available memory, starting 313 * first with 1:1 assocative hash and scaling back until 314 * the allocation succeeds. 315 * 316 * Later on we use a positive lut_size to indicate we are 317 * using this hashtable, and a negative value to indicate a 318 * direct lookup. 319 */ 320 do { 321 gfp_t flags; 322 323 /* While we can still reduce the allocation size, don't 324 * raise a warning and allow the allocation to fail. 325 * On the last pass though, we want to try as hard 326 * as possible to perform the allocation and warn 327 * if it fails. 328 */ 329 flags = GFP_KERNEL; 330 if (size > 1) 331 flags |= __GFP_NORETRY | __GFP_NOWARN; 332 333 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 334 flags); 335 if (eb->buckets) 336 break; 337 } while (--size); 338 339 if (unlikely(!size)) 340 return -ENOMEM; 341 342 eb->lut_size = size; 343 } else { 344 eb->lut_size = -eb->buffer_count; 345 } 346 347 return 0; 348 } 349 350 static bool 351 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 352 const struct i915_vma *vma, 353 unsigned int flags) 354 { 355 if (vma->node.size < entry->pad_to_size) 356 return true; 357 358 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) 359 return true; 360 361 if (flags & EXEC_OBJECT_PINNED && 362 vma->node.start != entry->offset) 363 return true; 364 365 if (flags & __EXEC_OBJECT_NEEDS_BIAS && 366 vma->node.start < BATCH_OFFSET_BIAS) 367 return true; 368 369 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 370 (vma->node.start + vma->node.size - 1) >> 32) 371 return true; 372 373 if (flags & __EXEC_OBJECT_NEEDS_MAP && 374 !i915_vma_is_map_and_fenceable(vma)) 375 return true; 376 377 return false; 378 } 379 380 static inline bool 381 eb_pin_vma(struct i915_execbuffer *eb, 382 const struct drm_i915_gem_exec_object2 *entry, 383 struct i915_vma *vma) 384 { 385 unsigned int exec_flags = *vma->exec_flags; 386 u64 pin_flags; 387 388 if (vma->node.size) 389 pin_flags = vma->node.start; 390 else 391 pin_flags = entry->offset & PIN_OFFSET_MASK; 392 393 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED; 394 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT)) 395 pin_flags |= PIN_GLOBAL; 396 397 if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags))) 398 return false; 399 400 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) { 401 if (unlikely(i915_vma_pin_fence(vma))) { 402 i915_vma_unpin(vma); 403 return false; 404 } 405 406 if (vma->fence) 407 exec_flags |= __EXEC_OBJECT_HAS_FENCE; 408 } 409 410 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN; 411 return !eb_vma_misplaced(entry, vma, exec_flags); 412 } 413 414 static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags) 415 { 416 GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN)); 417 418 if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE)) 419 __i915_vma_unpin_fence(vma); 420 421 __i915_vma_unpin(vma); 422 } 423 424 static inline void 425 eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags) 426 { 427 if (!(*flags & __EXEC_OBJECT_HAS_PIN)) 428 return; 429 430 __eb_unreserve_vma(vma, *flags); 431 *flags &= ~__EXEC_OBJECT_RESERVED; 432 } 433 434 static int 435 eb_validate_vma(struct i915_execbuffer *eb, 436 struct drm_i915_gem_exec_object2 *entry, 437 struct i915_vma *vma) 438 { 439 if (unlikely(entry->flags & eb->invalid_flags)) 440 return -EINVAL; 441 442 if (unlikely(entry->alignment && !is_power_of_2(entry->alignment))) 443 return -EINVAL; 444 445 /* 446 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 447 * any non-page-aligned or non-canonical addresses. 448 */ 449 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 450 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) 451 return -EINVAL; 452 453 /* pad_to_size was once a reserved field, so sanitize it */ 454 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 455 if (unlikely(offset_in_page(entry->pad_to_size))) 456 return -EINVAL; 457 } else { 458 entry->pad_to_size = 0; 459 } 460 461 if (unlikely(vma->exec_flags)) { 462 DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n", 463 entry->handle, (int)(entry - eb->exec)); 464 return -EINVAL; 465 } 466 467 /* 468 * From drm_mm perspective address space is continuous, 469 * so from this point we're always using non-canonical 470 * form internally. 471 */ 472 entry->offset = gen8_noncanonical_addr(entry->offset); 473 474 if (!eb->reloc_cache.has_fence) { 475 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 476 } else { 477 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 478 eb->reloc_cache.needs_unfenced) && 479 i915_gem_object_is_tiled(vma->obj)) 480 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 481 } 482 483 if (!(entry->flags & EXEC_OBJECT_PINNED)) 484 entry->flags |= eb->context_flags; 485 486 return 0; 487 } 488 489 static int 490 eb_add_vma(struct i915_execbuffer *eb, 491 unsigned int i, unsigned batch_idx, 492 struct i915_vma *vma) 493 { 494 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 495 int err; 496 497 GEM_BUG_ON(i915_vma_is_closed(vma)); 498 499 if (!(eb->args->flags & __EXEC_VALIDATED)) { 500 err = eb_validate_vma(eb, entry, vma); 501 if (unlikely(err)) 502 return err; 503 } 504 505 if (eb->lut_size > 0) { 506 vma->exec_handle = entry->handle; 507 hlist_add_head(&vma->exec_node, 508 &eb->buckets[hash_32(entry->handle, 509 eb->lut_size)]); 510 } 511 512 if (entry->relocation_count) 513 list_add_tail(&vma->reloc_link, &eb->relocs); 514 515 /* 516 * Stash a pointer from the vma to execobj, so we can query its flags, 517 * size, alignment etc as provided by the user. Also we stash a pointer 518 * to the vma inside the execobj so that we can use a direct lookup 519 * to find the right target VMA when doing relocations. 520 */ 521 eb->vma[i] = vma; 522 eb->flags[i] = entry->flags; 523 vma->exec_flags = &eb->flags[i]; 524 525 /* 526 * SNA is doing fancy tricks with compressing batch buffers, which leads 527 * to negative relocation deltas. Usually that works out ok since the 528 * relocate address is still positive, except when the batch is placed 529 * very low in the GTT. Ensure this doesn't happen. 530 * 531 * Note that actual hangs have only been observed on gen7, but for 532 * paranoia do it everywhere. 533 */ 534 if (i == batch_idx) { 535 if (entry->relocation_count && 536 !(eb->flags[i] & EXEC_OBJECT_PINNED)) 537 eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS; 538 if (eb->reloc_cache.has_fence) 539 eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE; 540 541 eb->batch = vma; 542 } 543 544 err = 0; 545 if (eb_pin_vma(eb, entry, vma)) { 546 if (entry->offset != vma->node.start) { 547 entry->offset = vma->node.start | UPDATE; 548 eb->args->flags |= __EXEC_HAS_RELOC; 549 } 550 } else { 551 eb_unreserve_vma(vma, vma->exec_flags); 552 553 list_add_tail(&vma->exec_link, &eb->unbound); 554 if (drm_mm_node_allocated(&vma->node)) 555 err = i915_vma_unbind(vma); 556 if (unlikely(err)) 557 vma->exec_flags = NULL; 558 } 559 return err; 560 } 561 562 static inline int use_cpu_reloc(const struct reloc_cache *cache, 563 const struct drm_i915_gem_object *obj) 564 { 565 if (!i915_gem_object_has_struct_page(obj)) 566 return false; 567 568 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 569 return true; 570 571 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 572 return false; 573 574 return (cache->has_llc || 575 obj->cache_dirty || 576 obj->cache_level != I915_CACHE_NONE); 577 } 578 579 static int eb_reserve_vma(const struct i915_execbuffer *eb, 580 struct i915_vma *vma) 581 { 582 struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma); 583 unsigned int exec_flags = *vma->exec_flags; 584 u64 pin_flags; 585 int err; 586 587 pin_flags = PIN_USER | PIN_NONBLOCK; 588 if (exec_flags & EXEC_OBJECT_NEEDS_GTT) 589 pin_flags |= PIN_GLOBAL; 590 591 /* 592 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 593 * limit address to the first 4GBs for unflagged objects. 594 */ 595 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 596 pin_flags |= PIN_ZONE_4G; 597 598 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) 599 pin_flags |= PIN_MAPPABLE; 600 601 if (exec_flags & EXEC_OBJECT_PINNED) { 602 pin_flags |= entry->offset | PIN_OFFSET_FIXED; 603 pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */ 604 } else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) { 605 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 606 } 607 608 err = i915_vma_pin(vma, 609 entry->pad_to_size, entry->alignment, 610 pin_flags); 611 if (err) 612 return err; 613 614 if (entry->offset != vma->node.start) { 615 entry->offset = vma->node.start | UPDATE; 616 eb->args->flags |= __EXEC_HAS_RELOC; 617 } 618 619 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) { 620 err = i915_vma_pin_fence(vma); 621 if (unlikely(err)) { 622 i915_vma_unpin(vma); 623 return err; 624 } 625 626 if (vma->fence) 627 exec_flags |= __EXEC_OBJECT_HAS_FENCE; 628 } 629 630 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN; 631 GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags)); 632 633 return 0; 634 } 635 636 static int eb_reserve(struct i915_execbuffer *eb) 637 { 638 const unsigned int count = eb->buffer_count; 639 struct list_head last; 640 struct i915_vma *vma; 641 unsigned int i, pass; 642 int err; 643 644 /* 645 * Attempt to pin all of the buffers into the GTT. 646 * This is done in 3 phases: 647 * 648 * 1a. Unbind all objects that do not match the GTT constraints for 649 * the execbuffer (fenceable, mappable, alignment etc). 650 * 1b. Increment pin count for already bound objects. 651 * 2. Bind new objects. 652 * 3. Decrement pin count. 653 * 654 * This avoid unnecessary unbinding of later objects in order to make 655 * room for the earlier objects *unless* we need to defragment. 656 */ 657 658 pass = 0; 659 err = 0; 660 do { 661 list_for_each_entry(vma, &eb->unbound, exec_link) { 662 err = eb_reserve_vma(eb, vma); 663 if (err) 664 break; 665 } 666 if (err != -ENOSPC) 667 return err; 668 669 /* Resort *all* the objects into priority order */ 670 INIT_LIST_HEAD(&eb->unbound); 671 INIT_LIST_HEAD(&last); 672 for (i = 0; i < count; i++) { 673 unsigned int flags = eb->flags[i]; 674 struct i915_vma *vma = eb->vma[i]; 675 676 if (flags & EXEC_OBJECT_PINNED && 677 flags & __EXEC_OBJECT_HAS_PIN) 678 continue; 679 680 eb_unreserve_vma(vma, &eb->flags[i]); 681 682 if (flags & EXEC_OBJECT_PINNED) 683 /* Pinned must have their slot */ 684 list_add(&vma->exec_link, &eb->unbound); 685 else if (flags & __EXEC_OBJECT_NEEDS_MAP) 686 /* Map require the lowest 256MiB (aperture) */ 687 list_add_tail(&vma->exec_link, &eb->unbound); 688 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 689 /* Prioritise 4GiB region for restricted bo */ 690 list_add(&vma->exec_link, &last); 691 else 692 list_add_tail(&vma->exec_link, &last); 693 } 694 list_splice_tail(&last, &eb->unbound); 695 696 switch (pass++) { 697 case 0: 698 break; 699 700 case 1: 701 /* Too fragmented, unbind everything and retry */ 702 err = i915_gem_evict_vm(eb->context->vm); 703 if (err) 704 return err; 705 break; 706 707 default: 708 return -ENOSPC; 709 } 710 } while (1); 711 } 712 713 static unsigned int eb_batch_index(const struct i915_execbuffer *eb) 714 { 715 if (eb->args->flags & I915_EXEC_BATCH_FIRST) 716 return 0; 717 else 718 return eb->buffer_count - 1; 719 } 720 721 static int eb_select_context(struct i915_execbuffer *eb) 722 { 723 struct i915_gem_context *ctx; 724 725 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 726 if (unlikely(!ctx)) 727 return -ENOENT; 728 729 eb->gem_context = ctx; 730 if (ctx->vm) 731 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 732 733 eb->context_flags = 0; 734 if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags)) 735 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS; 736 737 return 0; 738 } 739 740 static int eb_lookup_vmas(struct i915_execbuffer *eb) 741 { 742 struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma; 743 struct drm_i915_gem_object *obj; 744 unsigned int i, batch; 745 int err; 746 747 if (unlikely(i915_gem_context_is_banned(eb->gem_context))) 748 return -EIO; 749 750 INIT_LIST_HEAD(&eb->relocs); 751 INIT_LIST_HEAD(&eb->unbound); 752 753 batch = eb_batch_index(eb); 754 755 mutex_lock(&eb->gem_context->mutex); 756 if (unlikely(i915_gem_context_is_closed(eb->gem_context))) { 757 err = -ENOENT; 758 goto err_ctx; 759 } 760 761 for (i = 0; i < eb->buffer_count; i++) { 762 u32 handle = eb->exec[i].handle; 763 struct i915_lut_handle *lut; 764 struct i915_vma *vma; 765 766 vma = radix_tree_lookup(handles_vma, handle); 767 if (likely(vma)) 768 goto add_vma; 769 770 obj = i915_gem_object_lookup(eb->file, handle); 771 if (unlikely(!obj)) { 772 err = -ENOENT; 773 goto err_vma; 774 } 775 776 vma = i915_vma_instance(obj, eb->context->vm, NULL); 777 if (IS_ERR(vma)) { 778 err = PTR_ERR(vma); 779 goto err_obj; 780 } 781 782 lut = i915_lut_handle_alloc(); 783 if (unlikely(!lut)) { 784 err = -ENOMEM; 785 goto err_obj; 786 } 787 788 err = radix_tree_insert(handles_vma, handle, vma); 789 if (unlikely(err)) { 790 i915_lut_handle_free(lut); 791 goto err_obj; 792 } 793 794 /* transfer ref to lut */ 795 if (!atomic_fetch_inc(&vma->open_count)) 796 i915_vma_reopen(vma); 797 lut->handle = handle; 798 lut->ctx = eb->gem_context; 799 800 i915_gem_object_lock(obj); 801 list_add(&lut->obj_link, &obj->lut_list); 802 i915_gem_object_unlock(obj); 803 804 add_vma: 805 err = eb_add_vma(eb, i, batch, vma); 806 if (unlikely(err)) 807 goto err_vma; 808 809 GEM_BUG_ON(vma != eb->vma[i]); 810 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]); 811 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && 812 eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i])); 813 } 814 815 mutex_unlock(&eb->gem_context->mutex); 816 817 eb->args->flags |= __EXEC_VALIDATED; 818 return eb_reserve(eb); 819 820 err_obj: 821 i915_gem_object_put(obj); 822 err_vma: 823 eb->vma[i] = NULL; 824 err_ctx: 825 mutex_unlock(&eb->gem_context->mutex); 826 return err; 827 } 828 829 static struct i915_vma * 830 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 831 { 832 if (eb->lut_size < 0) { 833 if (handle >= -eb->lut_size) 834 return NULL; 835 return eb->vma[handle]; 836 } else { 837 struct hlist_head *head; 838 struct i915_vma *vma; 839 840 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 841 hlist_for_each_entry(vma, head, exec_node) { 842 if (vma->exec_handle == handle) 843 return vma; 844 } 845 return NULL; 846 } 847 } 848 849 static void eb_release_vmas(const struct i915_execbuffer *eb) 850 { 851 const unsigned int count = eb->buffer_count; 852 unsigned int i; 853 854 for (i = 0; i < count; i++) { 855 struct i915_vma *vma = eb->vma[i]; 856 unsigned int flags = eb->flags[i]; 857 858 if (!vma) 859 break; 860 861 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]); 862 vma->exec_flags = NULL; 863 eb->vma[i] = NULL; 864 865 if (flags & __EXEC_OBJECT_HAS_PIN) 866 __eb_unreserve_vma(vma, flags); 867 868 if (flags & __EXEC_OBJECT_HAS_REF) 869 i915_vma_put(vma); 870 } 871 } 872 873 static void eb_reset_vmas(const struct i915_execbuffer *eb) 874 { 875 eb_release_vmas(eb); 876 if (eb->lut_size > 0) 877 memset(eb->buckets, 0, 878 sizeof(struct hlist_head) << eb->lut_size); 879 } 880 881 static void eb_destroy(const struct i915_execbuffer *eb) 882 { 883 GEM_BUG_ON(eb->reloc_cache.rq); 884 885 if (eb->lut_size > 0) 886 kfree(eb->buckets); 887 } 888 889 static inline u64 890 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 891 const struct i915_vma *target) 892 { 893 return gen8_canonical_addr((int)reloc->delta + target->node.start); 894 } 895 896 static void reloc_cache_init(struct reloc_cache *cache, 897 struct drm_i915_private *i915) 898 { 899 cache->page = -1; 900 cache->vaddr = 0; 901 /* Must be a variable in the struct to allow GCC to unroll. */ 902 cache->gen = INTEL_GEN(i915); 903 cache->has_llc = HAS_LLC(i915); 904 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 905 cache->has_fence = cache->gen < 4; 906 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 907 cache->node.allocated = false; 908 cache->rq = NULL; 909 cache->rq_size = 0; 910 } 911 912 static inline void *unmask_page(unsigned long p) 913 { 914 return (void *)(uintptr_t)(p & PAGE_MASK); 915 } 916 917 static inline unsigned int unmask_flags(unsigned long p) 918 { 919 return p & ~PAGE_MASK; 920 } 921 922 #define KMAP 0x4 /* after CLFLUSH_FLAGS */ 923 924 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 925 { 926 struct drm_i915_private *i915 = 927 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 928 return &i915->ggtt; 929 } 930 931 static void reloc_gpu_flush(struct reloc_cache *cache) 932 { 933 GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32)); 934 cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END; 935 936 __i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size); 937 i915_gem_object_unpin_map(cache->rq->batch->obj); 938 939 intel_gt_chipset_flush(cache->rq->engine->gt); 940 941 i915_request_add(cache->rq); 942 cache->rq = NULL; 943 } 944 945 static void reloc_cache_reset(struct reloc_cache *cache) 946 { 947 void *vaddr; 948 949 if (cache->rq) 950 reloc_gpu_flush(cache); 951 952 if (!cache->vaddr) 953 return; 954 955 vaddr = unmask_page(cache->vaddr); 956 if (cache->vaddr & KMAP) { 957 if (cache->vaddr & CLFLUSH_AFTER) 958 mb(); 959 960 kunmap_atomic(vaddr); 961 i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm); 962 } else { 963 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 964 965 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 966 io_mapping_unmap_atomic((void __iomem *)vaddr); 967 968 if (cache->node.allocated) { 969 ggtt->vm.clear_range(&ggtt->vm, 970 cache->node.start, 971 cache->node.size); 972 drm_mm_remove_node(&cache->node); 973 } else { 974 i915_vma_unpin((struct i915_vma *)cache->node.mm); 975 } 976 } 977 978 cache->vaddr = 0; 979 cache->page = -1; 980 } 981 982 static void *reloc_kmap(struct drm_i915_gem_object *obj, 983 struct reloc_cache *cache, 984 unsigned long page) 985 { 986 void *vaddr; 987 988 if (cache->vaddr) { 989 kunmap_atomic(unmask_page(cache->vaddr)); 990 } else { 991 unsigned int flushes; 992 int err; 993 994 err = i915_gem_object_prepare_write(obj, &flushes); 995 if (err) 996 return ERR_PTR(err); 997 998 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 999 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); 1000 1001 cache->vaddr = flushes | KMAP; 1002 cache->node.mm = (void *)obj; 1003 if (flushes) 1004 mb(); 1005 } 1006 1007 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page)); 1008 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 1009 cache->page = page; 1010 1011 return vaddr; 1012 } 1013 1014 static void *reloc_iomap(struct drm_i915_gem_object *obj, 1015 struct reloc_cache *cache, 1016 unsigned long page) 1017 { 1018 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1019 unsigned long offset; 1020 void *vaddr; 1021 1022 if (cache->vaddr) { 1023 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1024 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1025 } else { 1026 struct i915_vma *vma; 1027 int err; 1028 1029 if (i915_gem_object_is_tiled(obj)) 1030 return ERR_PTR(-EINVAL); 1031 1032 if (use_cpu_reloc(cache, obj)) 1033 return NULL; 1034 1035 i915_gem_object_lock(obj); 1036 err = i915_gem_object_set_to_gtt_domain(obj, true); 1037 i915_gem_object_unlock(obj); 1038 if (err) 1039 return ERR_PTR(err); 1040 1041 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 1042 PIN_MAPPABLE | 1043 PIN_NONBLOCK /* NOWARN */ | 1044 PIN_NOEVICT); 1045 if (IS_ERR(vma)) { 1046 memset(&cache->node, 0, sizeof(cache->node)); 1047 err = drm_mm_insert_node_in_range 1048 (&ggtt->vm.mm, &cache->node, 1049 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1050 0, ggtt->mappable_end, 1051 DRM_MM_INSERT_LOW); 1052 if (err) /* no inactive aperture space, use cpu reloc */ 1053 return NULL; 1054 } else { 1055 cache->node.start = vma->node.start; 1056 cache->node.mm = (void *)vma; 1057 } 1058 } 1059 1060 offset = cache->node.start; 1061 if (cache->node.allocated) { 1062 ggtt->vm.insert_page(&ggtt->vm, 1063 i915_gem_object_get_dma_address(obj, page), 1064 offset, I915_CACHE_NONE, 0); 1065 } else { 1066 offset += page << PAGE_SHIFT; 1067 } 1068 1069 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, 1070 offset); 1071 cache->page = page; 1072 cache->vaddr = (unsigned long)vaddr; 1073 1074 return vaddr; 1075 } 1076 1077 static void *reloc_vaddr(struct drm_i915_gem_object *obj, 1078 struct reloc_cache *cache, 1079 unsigned long page) 1080 { 1081 void *vaddr; 1082 1083 if (cache->page == page) { 1084 vaddr = unmask_page(cache->vaddr); 1085 } else { 1086 vaddr = NULL; 1087 if ((cache->vaddr & KMAP) == 0) 1088 vaddr = reloc_iomap(obj, cache, page); 1089 if (!vaddr) 1090 vaddr = reloc_kmap(obj, cache, page); 1091 } 1092 1093 return vaddr; 1094 } 1095 1096 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1097 { 1098 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1099 if (flushes & CLFLUSH_BEFORE) { 1100 clflushopt(addr); 1101 mb(); 1102 } 1103 1104 *addr = value; 1105 1106 /* 1107 * Writes to the same cacheline are serialised by the CPU 1108 * (including clflush). On the write path, we only require 1109 * that it hits memory in an orderly fashion and place 1110 * mb barriers at the start and end of the relocation phase 1111 * to ensure ordering of clflush wrt to the system. 1112 */ 1113 if (flushes & CLFLUSH_AFTER) 1114 clflushopt(addr); 1115 } else 1116 *addr = value; 1117 } 1118 1119 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma) 1120 { 1121 struct drm_i915_gem_object *obj = vma->obj; 1122 int err; 1123 1124 i915_vma_lock(vma); 1125 1126 if (obj->cache_dirty & ~obj->cache_coherent) 1127 i915_gem_clflush_object(obj, 0); 1128 obj->write_domain = 0; 1129 1130 err = i915_request_await_object(rq, vma->obj, true); 1131 if (err == 0) 1132 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE); 1133 1134 i915_vma_unlock(vma); 1135 1136 return err; 1137 } 1138 1139 static int __reloc_gpu_alloc(struct i915_execbuffer *eb, 1140 struct i915_vma *vma, 1141 unsigned int len) 1142 { 1143 struct reloc_cache *cache = &eb->reloc_cache; 1144 struct intel_engine_pool_node *pool; 1145 struct i915_request *rq; 1146 struct i915_vma *batch; 1147 u32 *cmd; 1148 int err; 1149 1150 pool = intel_engine_pool_get(&eb->engine->pool, PAGE_SIZE); 1151 if (IS_ERR(pool)) 1152 return PTR_ERR(pool); 1153 1154 cmd = i915_gem_object_pin_map(pool->obj, 1155 cache->has_llc ? 1156 I915_MAP_FORCE_WB : 1157 I915_MAP_FORCE_WC); 1158 if (IS_ERR(cmd)) { 1159 err = PTR_ERR(cmd); 1160 goto out_pool; 1161 } 1162 1163 batch = i915_vma_instance(pool->obj, vma->vm, NULL); 1164 if (IS_ERR(batch)) { 1165 err = PTR_ERR(batch); 1166 goto err_unmap; 1167 } 1168 1169 err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK); 1170 if (err) 1171 goto err_unmap; 1172 1173 rq = i915_request_create(eb->context); 1174 if (IS_ERR(rq)) { 1175 err = PTR_ERR(rq); 1176 goto err_unpin; 1177 } 1178 1179 err = intel_engine_pool_mark_active(pool, rq); 1180 if (err) 1181 goto err_request; 1182 1183 err = reloc_move_to_gpu(rq, vma); 1184 if (err) 1185 goto err_request; 1186 1187 err = eb->engine->emit_bb_start(rq, 1188 batch->node.start, PAGE_SIZE, 1189 cache->gen > 5 ? 0 : I915_DISPATCH_SECURE); 1190 if (err) 1191 goto skip_request; 1192 1193 i915_vma_lock(batch); 1194 err = i915_request_await_object(rq, batch->obj, false); 1195 if (err == 0) 1196 err = i915_vma_move_to_active(batch, rq, 0); 1197 i915_vma_unlock(batch); 1198 if (err) 1199 goto skip_request; 1200 1201 rq->batch = batch; 1202 i915_vma_unpin(batch); 1203 1204 cache->rq = rq; 1205 cache->rq_cmd = cmd; 1206 cache->rq_size = 0; 1207 1208 /* Return with batch mapping (cmd) still pinned */ 1209 goto out_pool; 1210 1211 skip_request: 1212 i915_request_skip(rq, err); 1213 err_request: 1214 i915_request_add(rq); 1215 err_unpin: 1216 i915_vma_unpin(batch); 1217 err_unmap: 1218 i915_gem_object_unpin_map(pool->obj); 1219 out_pool: 1220 intel_engine_pool_put(pool); 1221 return err; 1222 } 1223 1224 static u32 *reloc_gpu(struct i915_execbuffer *eb, 1225 struct i915_vma *vma, 1226 unsigned int len) 1227 { 1228 struct reloc_cache *cache = &eb->reloc_cache; 1229 u32 *cmd; 1230 1231 if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1)) 1232 reloc_gpu_flush(cache); 1233 1234 if (unlikely(!cache->rq)) { 1235 int err; 1236 1237 /* If we need to copy for the cmdparser, we will stall anyway */ 1238 if (eb_use_cmdparser(eb)) 1239 return ERR_PTR(-EWOULDBLOCK); 1240 1241 if (!intel_engine_can_store_dword(eb->engine)) 1242 return ERR_PTR(-ENODEV); 1243 1244 err = __reloc_gpu_alloc(eb, vma, len); 1245 if (unlikely(err)) 1246 return ERR_PTR(err); 1247 } 1248 1249 cmd = cache->rq_cmd + cache->rq_size; 1250 cache->rq_size += len; 1251 1252 return cmd; 1253 } 1254 1255 static u64 1256 relocate_entry(struct i915_vma *vma, 1257 const struct drm_i915_gem_relocation_entry *reloc, 1258 struct i915_execbuffer *eb, 1259 const struct i915_vma *target) 1260 { 1261 u64 offset = reloc->offset; 1262 u64 target_offset = relocation_target(reloc, target); 1263 bool wide = eb->reloc_cache.use_64bit_reloc; 1264 void *vaddr; 1265 1266 if (!eb->reloc_cache.vaddr && 1267 (DBG_FORCE_RELOC == FORCE_GPU_RELOC || 1268 !dma_resv_test_signaled_rcu(vma->resv, true))) { 1269 const unsigned int gen = eb->reloc_cache.gen; 1270 unsigned int len; 1271 u32 *batch; 1272 u64 addr; 1273 1274 if (wide) 1275 len = offset & 7 ? 8 : 5; 1276 else if (gen >= 4) 1277 len = 4; 1278 else 1279 len = 3; 1280 1281 batch = reloc_gpu(eb, vma, len); 1282 if (IS_ERR(batch)) 1283 goto repeat; 1284 1285 addr = gen8_canonical_addr(vma->node.start + offset); 1286 if (wide) { 1287 if (offset & 7) { 1288 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1289 *batch++ = lower_32_bits(addr); 1290 *batch++ = upper_32_bits(addr); 1291 *batch++ = lower_32_bits(target_offset); 1292 1293 addr = gen8_canonical_addr(addr + 4); 1294 1295 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1296 *batch++ = lower_32_bits(addr); 1297 *batch++ = upper_32_bits(addr); 1298 *batch++ = upper_32_bits(target_offset); 1299 } else { 1300 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1; 1301 *batch++ = lower_32_bits(addr); 1302 *batch++ = upper_32_bits(addr); 1303 *batch++ = lower_32_bits(target_offset); 1304 *batch++ = upper_32_bits(target_offset); 1305 } 1306 } else if (gen >= 6) { 1307 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1308 *batch++ = 0; 1309 *batch++ = addr; 1310 *batch++ = target_offset; 1311 } else if (gen >= 4) { 1312 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 1313 *batch++ = 0; 1314 *batch++ = addr; 1315 *batch++ = target_offset; 1316 } else { 1317 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL; 1318 *batch++ = addr; 1319 *batch++ = target_offset; 1320 } 1321 1322 goto out; 1323 } 1324 1325 repeat: 1326 vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT); 1327 if (IS_ERR(vaddr)) 1328 return PTR_ERR(vaddr); 1329 1330 clflush_write32(vaddr + offset_in_page(offset), 1331 lower_32_bits(target_offset), 1332 eb->reloc_cache.vaddr); 1333 1334 if (wide) { 1335 offset += sizeof(u32); 1336 target_offset >>= 32; 1337 wide = false; 1338 goto repeat; 1339 } 1340 1341 out: 1342 return target->node.start | UPDATE; 1343 } 1344 1345 static u64 1346 eb_relocate_entry(struct i915_execbuffer *eb, 1347 struct i915_vma *vma, 1348 const struct drm_i915_gem_relocation_entry *reloc) 1349 { 1350 struct i915_vma *target; 1351 int err; 1352 1353 /* we've already hold a reference to all valid objects */ 1354 target = eb_get_vma(eb, reloc->target_handle); 1355 if (unlikely(!target)) 1356 return -ENOENT; 1357 1358 /* Validate that the target is in a valid r/w GPU domain */ 1359 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1360 DRM_DEBUG("reloc with multiple write domains: " 1361 "target %d offset %d " 1362 "read %08x write %08x", 1363 reloc->target_handle, 1364 (int) reloc->offset, 1365 reloc->read_domains, 1366 reloc->write_domain); 1367 return -EINVAL; 1368 } 1369 if (unlikely((reloc->write_domain | reloc->read_domains) 1370 & ~I915_GEM_GPU_DOMAINS)) { 1371 DRM_DEBUG("reloc with read/write non-GPU domains: " 1372 "target %d offset %d " 1373 "read %08x write %08x", 1374 reloc->target_handle, 1375 (int) reloc->offset, 1376 reloc->read_domains, 1377 reloc->write_domain); 1378 return -EINVAL; 1379 } 1380 1381 if (reloc->write_domain) { 1382 *target->exec_flags |= EXEC_OBJECT_WRITE; 1383 1384 /* 1385 * Sandybridge PPGTT errata: We need a global gtt mapping 1386 * for MI and pipe_control writes because the gpu doesn't 1387 * properly redirect them through the ppgtt for non_secure 1388 * batchbuffers. 1389 */ 1390 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1391 IS_GEN(eb->i915, 6)) { 1392 err = i915_vma_bind(target, target->obj->cache_level, 1393 PIN_GLOBAL); 1394 if (WARN_ONCE(err, 1395 "Unexpected failure to bind target VMA!")) 1396 return err; 1397 } 1398 } 1399 1400 /* 1401 * If the relocation already has the right value in it, no 1402 * more work needs to be done. 1403 */ 1404 if (!DBG_FORCE_RELOC && 1405 gen8_canonical_addr(target->node.start) == reloc->presumed_offset) 1406 return 0; 1407 1408 /* Check that the relocation address is valid... */ 1409 if (unlikely(reloc->offset > 1410 vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1411 DRM_DEBUG("Relocation beyond object bounds: " 1412 "target %d offset %d size %d.\n", 1413 reloc->target_handle, 1414 (int)reloc->offset, 1415 (int)vma->size); 1416 return -EINVAL; 1417 } 1418 if (unlikely(reloc->offset & 3)) { 1419 DRM_DEBUG("Relocation not 4-byte aligned: " 1420 "target %d offset %d.\n", 1421 reloc->target_handle, 1422 (int)reloc->offset); 1423 return -EINVAL; 1424 } 1425 1426 /* 1427 * If we write into the object, we need to force the synchronisation 1428 * barrier, either with an asynchronous clflush or if we executed the 1429 * patching using the GPU (though that should be serialised by the 1430 * timeline). To be completely sure, and since we are required to 1431 * do relocations we are already stalling, disable the user's opt 1432 * out of our synchronisation. 1433 */ 1434 *vma->exec_flags &= ~EXEC_OBJECT_ASYNC; 1435 1436 /* and update the user's relocation entry */ 1437 return relocate_entry(vma, reloc, eb, target); 1438 } 1439 1440 static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma) 1441 { 1442 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1443 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1444 struct drm_i915_gem_relocation_entry __user *urelocs; 1445 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma); 1446 unsigned int remain; 1447 1448 urelocs = u64_to_user_ptr(entry->relocs_ptr); 1449 remain = entry->relocation_count; 1450 if (unlikely(remain > N_RELOC(ULONG_MAX))) 1451 return -EINVAL; 1452 1453 /* 1454 * We must check that the entire relocation array is safe 1455 * to read. However, if the array is not writable the user loses 1456 * the updated relocation values. 1457 */ 1458 if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs)))) 1459 return -EFAULT; 1460 1461 do { 1462 struct drm_i915_gem_relocation_entry *r = stack; 1463 unsigned int count = 1464 min_t(unsigned int, remain, ARRAY_SIZE(stack)); 1465 unsigned int copied; 1466 1467 /* 1468 * This is the fast path and we cannot handle a pagefault 1469 * whilst holding the struct mutex lest the user pass in the 1470 * relocations contained within a mmaped bo. For in such a case 1471 * we, the page fault handler would call i915_gem_fault() and 1472 * we would try to acquire the struct mutex again. Obviously 1473 * this is bad and so lockdep complains vehemently. 1474 */ 1475 pagefault_disable(); 1476 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); 1477 pagefault_enable(); 1478 if (unlikely(copied)) { 1479 remain = -EFAULT; 1480 goto out; 1481 } 1482 1483 remain -= count; 1484 do { 1485 u64 offset = eb_relocate_entry(eb, vma, r); 1486 1487 if (likely(offset == 0)) { 1488 } else if ((s64)offset < 0) { 1489 remain = (int)offset; 1490 goto out; 1491 } else { 1492 /* 1493 * Note that reporting an error now 1494 * leaves everything in an inconsistent 1495 * state as we have *already* changed 1496 * the relocation value inside the 1497 * object. As we have not changed the 1498 * reloc.presumed_offset or will not 1499 * change the execobject.offset, on the 1500 * call we may not rewrite the value 1501 * inside the object, leaving it 1502 * dangling and causing a GPU hang. Unless 1503 * userspace dynamically rebuilds the 1504 * relocations on each execbuf rather than 1505 * presume a static tree. 1506 * 1507 * We did previously check if the relocations 1508 * were writable (access_ok), an error now 1509 * would be a strange race with mprotect, 1510 * having already demonstrated that we 1511 * can read from this userspace address. 1512 */ 1513 offset = gen8_canonical_addr(offset & ~UPDATE); 1514 if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) { 1515 remain = -EFAULT; 1516 goto out; 1517 } 1518 } 1519 } while (r++, --count); 1520 urelocs += ARRAY_SIZE(stack); 1521 } while (remain); 1522 out: 1523 reloc_cache_reset(&eb->reloc_cache); 1524 return remain; 1525 } 1526 1527 static int 1528 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma) 1529 { 1530 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma); 1531 struct drm_i915_gem_relocation_entry *relocs = 1532 u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1533 unsigned int i; 1534 int err; 1535 1536 for (i = 0; i < entry->relocation_count; i++) { 1537 u64 offset = eb_relocate_entry(eb, vma, &relocs[i]); 1538 1539 if ((s64)offset < 0) { 1540 err = (int)offset; 1541 goto err; 1542 } 1543 } 1544 err = 0; 1545 err: 1546 reloc_cache_reset(&eb->reloc_cache); 1547 return err; 1548 } 1549 1550 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) 1551 { 1552 const char __user *addr, *end; 1553 unsigned long size; 1554 char __maybe_unused c; 1555 1556 size = entry->relocation_count; 1557 if (size == 0) 1558 return 0; 1559 1560 if (size > N_RELOC(ULONG_MAX)) 1561 return -EINVAL; 1562 1563 addr = u64_to_user_ptr(entry->relocs_ptr); 1564 size *= sizeof(struct drm_i915_gem_relocation_entry); 1565 if (!access_ok(addr, size)) 1566 return -EFAULT; 1567 1568 end = addr + size; 1569 for (; addr < end; addr += PAGE_SIZE) { 1570 int err = __get_user(c, addr); 1571 if (err) 1572 return err; 1573 } 1574 return __get_user(c, end - 1); 1575 } 1576 1577 static int eb_copy_relocations(const struct i915_execbuffer *eb) 1578 { 1579 struct drm_i915_gem_relocation_entry *relocs; 1580 const unsigned int count = eb->buffer_count; 1581 unsigned int i; 1582 int err; 1583 1584 for (i = 0; i < count; i++) { 1585 const unsigned int nreloc = eb->exec[i].relocation_count; 1586 struct drm_i915_gem_relocation_entry __user *urelocs; 1587 unsigned long size; 1588 unsigned long copied; 1589 1590 if (nreloc == 0) 1591 continue; 1592 1593 err = check_relocations(&eb->exec[i]); 1594 if (err) 1595 goto err; 1596 1597 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); 1598 size = nreloc * sizeof(*relocs); 1599 1600 relocs = kvmalloc_array(size, 1, GFP_KERNEL); 1601 if (!relocs) { 1602 err = -ENOMEM; 1603 goto err; 1604 } 1605 1606 /* copy_from_user is limited to < 4GiB */ 1607 copied = 0; 1608 do { 1609 unsigned int len = 1610 min_t(u64, BIT_ULL(31), size - copied); 1611 1612 if (__copy_from_user((char *)relocs + copied, 1613 (char __user *)urelocs + copied, 1614 len)) 1615 goto end; 1616 1617 copied += len; 1618 } while (copied < size); 1619 1620 /* 1621 * As we do not update the known relocation offsets after 1622 * relocating (due to the complexities in lock handling), 1623 * we need to mark them as invalid now so that we force the 1624 * relocation processing next time. Just in case the target 1625 * object is evicted and then rebound into its old 1626 * presumed_offset before the next execbuffer - if that 1627 * happened we would make the mistake of assuming that the 1628 * relocations were valid. 1629 */ 1630 if (!user_access_begin(urelocs, size)) 1631 goto end; 1632 1633 for (copied = 0; copied < nreloc; copied++) 1634 unsafe_put_user(-1, 1635 &urelocs[copied].presumed_offset, 1636 end_user); 1637 user_access_end(); 1638 1639 eb->exec[i].relocs_ptr = (uintptr_t)relocs; 1640 } 1641 1642 return 0; 1643 1644 end_user: 1645 user_access_end(); 1646 end: 1647 kvfree(relocs); 1648 err = -EFAULT; 1649 err: 1650 while (i--) { 1651 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); 1652 if (eb->exec[i].relocation_count) 1653 kvfree(relocs); 1654 } 1655 return err; 1656 } 1657 1658 static int eb_prefault_relocations(const struct i915_execbuffer *eb) 1659 { 1660 const unsigned int count = eb->buffer_count; 1661 unsigned int i; 1662 1663 if (unlikely(i915_modparams.prefault_disable)) 1664 return 0; 1665 1666 for (i = 0; i < count; i++) { 1667 int err; 1668 1669 err = check_relocations(&eb->exec[i]); 1670 if (err) 1671 return err; 1672 } 1673 1674 return 0; 1675 } 1676 1677 static noinline int eb_relocate_slow(struct i915_execbuffer *eb) 1678 { 1679 struct drm_device *dev = &eb->i915->drm; 1680 bool have_copy = false; 1681 struct i915_vma *vma; 1682 int err = 0; 1683 1684 repeat: 1685 if (signal_pending(current)) { 1686 err = -ERESTARTSYS; 1687 goto out; 1688 } 1689 1690 /* We may process another execbuffer during the unlock... */ 1691 eb_reset_vmas(eb); 1692 mutex_unlock(&dev->struct_mutex); 1693 1694 /* 1695 * We take 3 passes through the slowpatch. 1696 * 1697 * 1 - we try to just prefault all the user relocation entries and 1698 * then attempt to reuse the atomic pagefault disabled fast path again. 1699 * 1700 * 2 - we copy the user entries to a local buffer here outside of the 1701 * local and allow ourselves to wait upon any rendering before 1702 * relocations 1703 * 1704 * 3 - we already have a local copy of the relocation entries, but 1705 * were interrupted (EAGAIN) whilst waiting for the objects, try again. 1706 */ 1707 if (!err) { 1708 err = eb_prefault_relocations(eb); 1709 } else if (!have_copy) { 1710 err = eb_copy_relocations(eb); 1711 have_copy = err == 0; 1712 } else { 1713 cond_resched(); 1714 err = 0; 1715 } 1716 if (err) { 1717 mutex_lock(&dev->struct_mutex); 1718 goto out; 1719 } 1720 1721 /* A frequent cause for EAGAIN are currently unavailable client pages */ 1722 flush_workqueue(eb->i915->mm.userptr_wq); 1723 1724 err = i915_mutex_lock_interruptible(dev); 1725 if (err) { 1726 mutex_lock(&dev->struct_mutex); 1727 goto out; 1728 } 1729 1730 /* reacquire the objects */ 1731 err = eb_lookup_vmas(eb); 1732 if (err) 1733 goto err; 1734 1735 GEM_BUG_ON(!eb->batch); 1736 1737 list_for_each_entry(vma, &eb->relocs, reloc_link) { 1738 if (!have_copy) { 1739 pagefault_disable(); 1740 err = eb_relocate_vma(eb, vma); 1741 pagefault_enable(); 1742 if (err) 1743 goto repeat; 1744 } else { 1745 err = eb_relocate_vma_slow(eb, vma); 1746 if (err) 1747 goto err; 1748 } 1749 } 1750 1751 /* 1752 * Leave the user relocations as are, this is the painfully slow path, 1753 * and we want to avoid the complication of dropping the lock whilst 1754 * having buffers reserved in the aperture and so causing spurious 1755 * ENOSPC for random operations. 1756 */ 1757 1758 err: 1759 if (err == -EAGAIN) 1760 goto repeat; 1761 1762 out: 1763 if (have_copy) { 1764 const unsigned int count = eb->buffer_count; 1765 unsigned int i; 1766 1767 for (i = 0; i < count; i++) { 1768 const struct drm_i915_gem_exec_object2 *entry = 1769 &eb->exec[i]; 1770 struct drm_i915_gem_relocation_entry *relocs; 1771 1772 if (!entry->relocation_count) 1773 continue; 1774 1775 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1776 kvfree(relocs); 1777 } 1778 } 1779 1780 return err; 1781 } 1782 1783 static int eb_relocate(struct i915_execbuffer *eb) 1784 { 1785 if (eb_lookup_vmas(eb)) 1786 goto slow; 1787 1788 /* The objects are in their final locations, apply the relocations. */ 1789 if (eb->args->flags & __EXEC_HAS_RELOC) { 1790 struct i915_vma *vma; 1791 1792 list_for_each_entry(vma, &eb->relocs, reloc_link) { 1793 if (eb_relocate_vma(eb, vma)) 1794 goto slow; 1795 } 1796 } 1797 1798 return 0; 1799 1800 slow: 1801 return eb_relocate_slow(eb); 1802 } 1803 1804 static int eb_move_to_gpu(struct i915_execbuffer *eb) 1805 { 1806 const unsigned int count = eb->buffer_count; 1807 struct ww_acquire_ctx acquire; 1808 unsigned int i; 1809 int err = 0; 1810 1811 ww_acquire_init(&acquire, &reservation_ww_class); 1812 1813 for (i = 0; i < count; i++) { 1814 struct i915_vma *vma = eb->vma[i]; 1815 1816 err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire); 1817 if (!err) 1818 continue; 1819 1820 GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */ 1821 1822 if (err == -EDEADLK) { 1823 GEM_BUG_ON(i == 0); 1824 do { 1825 int j = i - 1; 1826 1827 ww_mutex_unlock(&eb->vma[j]->resv->lock); 1828 1829 swap(eb->flags[i], eb->flags[j]); 1830 swap(eb->vma[i], eb->vma[j]); 1831 eb->vma[i]->exec_flags = &eb->flags[i]; 1832 } while (--i); 1833 GEM_BUG_ON(vma != eb->vma[0]); 1834 vma->exec_flags = &eb->flags[0]; 1835 1836 err = ww_mutex_lock_slow_interruptible(&vma->resv->lock, 1837 &acquire); 1838 } 1839 if (err) 1840 break; 1841 } 1842 ww_acquire_done(&acquire); 1843 1844 while (i--) { 1845 unsigned int flags = eb->flags[i]; 1846 struct i915_vma *vma = eb->vma[i]; 1847 struct drm_i915_gem_object *obj = vma->obj; 1848 1849 assert_vma_held(vma); 1850 1851 if (flags & EXEC_OBJECT_CAPTURE) { 1852 struct i915_capture_list *capture; 1853 1854 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 1855 if (capture) { 1856 capture->next = eb->request->capture_list; 1857 capture->vma = vma; 1858 eb->request->capture_list = capture; 1859 } 1860 } 1861 1862 /* 1863 * If the GPU is not _reading_ through the CPU cache, we need 1864 * to make sure that any writes (both previous GPU writes from 1865 * before a change in snooping levels and normal CPU writes) 1866 * caught in that cache are flushed to main memory. 1867 * 1868 * We want to say 1869 * obj->cache_dirty && 1870 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) 1871 * but gcc's optimiser doesn't handle that as well and emits 1872 * two jumps instead of one. Maybe one day... 1873 */ 1874 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { 1875 if (i915_gem_clflush_object(obj, 0)) 1876 flags &= ~EXEC_OBJECT_ASYNC; 1877 } 1878 1879 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { 1880 err = i915_request_await_object 1881 (eb->request, obj, flags & EXEC_OBJECT_WRITE); 1882 } 1883 1884 if (err == 0) 1885 err = i915_vma_move_to_active(vma, eb->request, flags); 1886 1887 i915_vma_unlock(vma); 1888 1889 __eb_unreserve_vma(vma, flags); 1890 vma->exec_flags = NULL; 1891 1892 if (unlikely(flags & __EXEC_OBJECT_HAS_REF)) 1893 i915_vma_put(vma); 1894 } 1895 ww_acquire_fini(&acquire); 1896 1897 if (unlikely(err)) 1898 goto err_skip; 1899 1900 eb->exec = NULL; 1901 1902 /* Unconditionally flush any chipset caches (for streaming writes). */ 1903 intel_gt_chipset_flush(eb->engine->gt); 1904 return 0; 1905 1906 err_skip: 1907 i915_request_skip(eb->request, err); 1908 return err; 1909 } 1910 1911 static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) 1912 { 1913 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 1914 return false; 1915 1916 /* Kernel clipping was a DRI1 misfeature */ 1917 if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) { 1918 if (exec->num_cliprects || exec->cliprects_ptr) 1919 return false; 1920 } 1921 1922 if (exec->DR4 == 0xffffffff) { 1923 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); 1924 exec->DR4 = 0; 1925 } 1926 if (exec->DR1 || exec->DR4) 1927 return false; 1928 1929 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 1930 return false; 1931 1932 return true; 1933 } 1934 1935 static int i915_reset_gen7_sol_offsets(struct i915_request *rq) 1936 { 1937 u32 *cs; 1938 int i; 1939 1940 if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) { 1941 DRM_DEBUG("sol reset is gen7/rcs only\n"); 1942 return -EINVAL; 1943 } 1944 1945 cs = intel_ring_begin(rq, 4 * 2 + 2); 1946 if (IS_ERR(cs)) 1947 return PTR_ERR(cs); 1948 1949 *cs++ = MI_LOAD_REGISTER_IMM(4); 1950 for (i = 0; i < 4; i++) { 1951 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 1952 *cs++ = 0; 1953 } 1954 *cs++ = MI_NOOP; 1955 intel_ring_advance(rq, cs); 1956 1957 return 0; 1958 } 1959 1960 static struct i915_vma * 1961 shadow_batch_pin(struct i915_execbuffer *eb, struct drm_i915_gem_object *obj) 1962 { 1963 struct drm_i915_private *dev_priv = eb->i915; 1964 struct i915_vma * const vma = *eb->vma; 1965 struct i915_address_space *vm; 1966 u64 flags; 1967 1968 /* 1969 * PPGTT backed shadow buffers must be mapped RO, to prevent 1970 * post-scan tampering 1971 */ 1972 if (CMDPARSER_USES_GGTT(dev_priv)) { 1973 flags = PIN_GLOBAL; 1974 vm = &dev_priv->ggtt.vm; 1975 } else if (vma->vm->has_read_only) { 1976 flags = PIN_USER; 1977 vm = vma->vm; 1978 i915_gem_object_set_readonly(obj); 1979 } else { 1980 DRM_DEBUG("Cannot prevent post-scan tampering without RO capable vm\n"); 1981 return ERR_PTR(-EINVAL); 1982 } 1983 1984 return i915_gem_object_pin(obj, vm, NULL, 0, 0, flags); 1985 } 1986 1987 static struct i915_vma *eb_parse(struct i915_execbuffer *eb) 1988 { 1989 struct intel_engine_pool_node *pool; 1990 struct i915_vma *vma; 1991 u64 batch_start; 1992 u64 shadow_batch_start; 1993 int err; 1994 1995 pool = intel_engine_pool_get(&eb->engine->pool, eb->batch_len); 1996 if (IS_ERR(pool)) 1997 return ERR_CAST(pool); 1998 1999 vma = shadow_batch_pin(eb, pool->obj); 2000 if (IS_ERR(vma)) 2001 goto err; 2002 2003 batch_start = gen8_canonical_addr(eb->batch->node.start) + 2004 eb->batch_start_offset; 2005 2006 shadow_batch_start = gen8_canonical_addr(vma->node.start); 2007 2008 err = intel_engine_cmd_parser(eb->gem_context, 2009 eb->engine, 2010 eb->batch->obj, 2011 batch_start, 2012 eb->batch_start_offset, 2013 eb->batch_len, 2014 pool->obj, 2015 shadow_batch_start); 2016 2017 if (err) { 2018 i915_vma_unpin(vma); 2019 2020 /* 2021 * Unsafe GGTT-backed buffers can still be submitted safely 2022 * as non-secure. 2023 * For PPGTT backing however, we have no choice but to forcibly 2024 * reject unsafe buffers 2025 */ 2026 if (CMDPARSER_USES_GGTT(eb->i915) && (err == -EACCES)) 2027 /* Execute original buffer non-secure */ 2028 vma = NULL; 2029 else 2030 vma = ERR_PTR(err); 2031 goto err; 2032 } 2033 2034 eb->vma[eb->buffer_count] = i915_vma_get(vma); 2035 eb->flags[eb->buffer_count] = 2036 __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF; 2037 vma->exec_flags = &eb->flags[eb->buffer_count]; 2038 eb->buffer_count++; 2039 2040 eb->batch_start_offset = 0; 2041 eb->batch = vma; 2042 2043 if (CMDPARSER_USES_GGTT(eb->i915)) 2044 eb->batch_flags |= I915_DISPATCH_SECURE; 2045 2046 /* eb->batch_len unchanged */ 2047 2048 vma->private = pool; 2049 return vma; 2050 2051 err: 2052 intel_engine_pool_put(pool); 2053 return vma; 2054 } 2055 2056 static void 2057 add_to_client(struct i915_request *rq, struct drm_file *file) 2058 { 2059 struct drm_i915_file_private *file_priv = file->driver_priv; 2060 2061 rq->file_priv = file_priv; 2062 2063 spin_lock(&file_priv->mm.lock); 2064 list_add_tail(&rq->client_link, &file_priv->mm.request_list); 2065 spin_unlock(&file_priv->mm.lock); 2066 } 2067 2068 static int eb_submit(struct i915_execbuffer *eb) 2069 { 2070 int err; 2071 2072 err = eb_move_to_gpu(eb); 2073 if (err) 2074 return err; 2075 2076 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 2077 err = i915_reset_gen7_sol_offsets(eb->request); 2078 if (err) 2079 return err; 2080 } 2081 2082 /* 2083 * After we completed waiting for other engines (using HW semaphores) 2084 * then we can signal that this request/batch is ready to run. This 2085 * allows us to determine if the batch is still waiting on the GPU 2086 * or actually running by checking the breadcrumb. 2087 */ 2088 if (eb->engine->emit_init_breadcrumb) { 2089 err = eb->engine->emit_init_breadcrumb(eb->request); 2090 if (err) 2091 return err; 2092 } 2093 2094 err = eb->engine->emit_bb_start(eb->request, 2095 eb->batch->node.start + 2096 eb->batch_start_offset, 2097 eb->batch_len, 2098 eb->batch_flags); 2099 if (err) 2100 return err; 2101 2102 return 0; 2103 } 2104 2105 static int num_vcs_engines(const struct drm_i915_private *i915) 2106 { 2107 return hweight64(INTEL_INFO(i915)->engine_mask & 2108 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0)); 2109 } 2110 2111 /* 2112 * Find one BSD ring to dispatch the corresponding BSD command. 2113 * The engine index is returned. 2114 */ 2115 static unsigned int 2116 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, 2117 struct drm_file *file) 2118 { 2119 struct drm_i915_file_private *file_priv = file->driver_priv; 2120 2121 /* Check whether the file_priv has already selected one ring. */ 2122 if ((int)file_priv->bsd_engine < 0) 2123 file_priv->bsd_engine = 2124 get_random_int() % num_vcs_engines(dev_priv); 2125 2126 return file_priv->bsd_engine; 2127 } 2128 2129 static const enum intel_engine_id user_ring_map[] = { 2130 [I915_EXEC_DEFAULT] = RCS0, 2131 [I915_EXEC_RENDER] = RCS0, 2132 [I915_EXEC_BLT] = BCS0, 2133 [I915_EXEC_BSD] = VCS0, 2134 [I915_EXEC_VEBOX] = VECS0 2135 }; 2136 2137 static struct i915_request *eb_throttle(struct intel_context *ce) 2138 { 2139 struct intel_ring *ring = ce->ring; 2140 struct intel_timeline *tl = ce->timeline; 2141 struct i915_request *rq; 2142 2143 /* 2144 * Completely unscientific finger-in-the-air estimates for suitable 2145 * maximum user request size (to avoid blocking) and then backoff. 2146 */ 2147 if (intel_ring_update_space(ring) >= PAGE_SIZE) 2148 return NULL; 2149 2150 /* 2151 * Find a request that after waiting upon, there will be at least half 2152 * the ring available. The hysteresis allows us to compete for the 2153 * shared ring and should mean that we sleep less often prior to 2154 * claiming our resources, but not so long that the ring completely 2155 * drains before we can submit our next request. 2156 */ 2157 list_for_each_entry(rq, &tl->requests, link) { 2158 if (rq->ring != ring) 2159 continue; 2160 2161 if (__intel_ring_space(rq->postfix, 2162 ring->emit, ring->size) > ring->size / 2) 2163 break; 2164 } 2165 if (&rq->link == &tl->requests) 2166 return NULL; /* weird, we will check again later for real */ 2167 2168 return i915_request_get(rq); 2169 } 2170 2171 static int 2172 __eb_pin_context(struct i915_execbuffer *eb, struct intel_context *ce) 2173 { 2174 int err; 2175 2176 if (likely(atomic_inc_not_zero(&ce->pin_count))) 2177 return 0; 2178 2179 err = mutex_lock_interruptible(&eb->i915->drm.struct_mutex); 2180 if (err) 2181 return err; 2182 2183 err = __intel_context_do_pin(ce); 2184 mutex_unlock(&eb->i915->drm.struct_mutex); 2185 2186 return err; 2187 } 2188 2189 static void 2190 __eb_unpin_context(struct i915_execbuffer *eb, struct intel_context *ce) 2191 { 2192 if (likely(atomic_add_unless(&ce->pin_count, -1, 1))) 2193 return; 2194 2195 mutex_lock(&eb->i915->drm.struct_mutex); 2196 intel_context_unpin(ce); 2197 mutex_unlock(&eb->i915->drm.struct_mutex); 2198 } 2199 2200 static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce) 2201 { 2202 struct intel_timeline *tl; 2203 struct i915_request *rq; 2204 int err; 2205 2206 /* 2207 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 2208 * EIO if the GPU is already wedged. 2209 */ 2210 err = intel_gt_terminally_wedged(ce->engine->gt); 2211 if (err) 2212 return err; 2213 2214 /* 2215 * Pinning the contexts may generate requests in order to acquire 2216 * GGTT space, so do this first before we reserve a seqno for 2217 * ourselves. 2218 */ 2219 err = __eb_pin_context(eb, ce); 2220 if (err) 2221 return err; 2222 2223 /* 2224 * Take a local wakeref for preparing to dispatch the execbuf as 2225 * we expect to access the hardware fairly frequently in the 2226 * process, and require the engine to be kept awake between accesses. 2227 * Upon dispatch, we acquire another prolonged wakeref that we hold 2228 * until the timeline is idle, which in turn releases the wakeref 2229 * taken on the engine, and the parent device. 2230 */ 2231 tl = intel_context_timeline_lock(ce); 2232 if (IS_ERR(tl)) { 2233 err = PTR_ERR(tl); 2234 goto err_unpin; 2235 } 2236 2237 intel_context_enter(ce); 2238 rq = eb_throttle(ce); 2239 2240 intel_context_timeline_unlock(tl); 2241 2242 if (rq) { 2243 if (i915_request_wait(rq, 2244 I915_WAIT_INTERRUPTIBLE, 2245 MAX_SCHEDULE_TIMEOUT) < 0) { 2246 i915_request_put(rq); 2247 err = -EINTR; 2248 goto err_exit; 2249 } 2250 2251 i915_request_put(rq); 2252 } 2253 2254 eb->engine = ce->engine; 2255 eb->context = ce; 2256 return 0; 2257 2258 err_exit: 2259 mutex_lock(&tl->mutex); 2260 intel_context_exit(ce); 2261 intel_context_timeline_unlock(tl); 2262 err_unpin: 2263 __eb_unpin_context(eb, ce); 2264 return err; 2265 } 2266 2267 static void eb_unpin_engine(struct i915_execbuffer *eb) 2268 { 2269 struct intel_context *ce = eb->context; 2270 struct intel_timeline *tl = ce->timeline; 2271 2272 mutex_lock(&tl->mutex); 2273 intel_context_exit(ce); 2274 mutex_unlock(&tl->mutex); 2275 2276 __eb_unpin_context(eb, ce); 2277 } 2278 2279 static unsigned int 2280 eb_select_legacy_ring(struct i915_execbuffer *eb, 2281 struct drm_file *file, 2282 struct drm_i915_gem_execbuffer2 *args) 2283 { 2284 struct drm_i915_private *i915 = eb->i915; 2285 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2286 2287 if (user_ring_id != I915_EXEC_BSD && 2288 (args->flags & I915_EXEC_BSD_MASK)) { 2289 DRM_DEBUG("execbuf with non bsd ring but with invalid " 2290 "bsd dispatch flags: %d\n", (int)(args->flags)); 2291 return -1; 2292 } 2293 2294 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) { 2295 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2296 2297 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2298 bsd_idx = gen8_dispatch_bsd_engine(i915, file); 2299 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2300 bsd_idx <= I915_EXEC_BSD_RING2) { 2301 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2302 bsd_idx--; 2303 } else { 2304 DRM_DEBUG("execbuf with unknown bsd ring: %u\n", 2305 bsd_idx); 2306 return -1; 2307 } 2308 2309 return _VCS(bsd_idx); 2310 } 2311 2312 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { 2313 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id); 2314 return -1; 2315 } 2316 2317 return user_ring_map[user_ring_id]; 2318 } 2319 2320 static int 2321 eb_pin_engine(struct i915_execbuffer *eb, 2322 struct drm_file *file, 2323 struct drm_i915_gem_execbuffer2 *args) 2324 { 2325 struct intel_context *ce; 2326 unsigned int idx; 2327 int err; 2328 2329 if (i915_gem_context_user_engines(eb->gem_context)) 2330 idx = args->flags & I915_EXEC_RING_MASK; 2331 else 2332 idx = eb_select_legacy_ring(eb, file, args); 2333 2334 ce = i915_gem_context_get_engine(eb->gem_context, idx); 2335 if (IS_ERR(ce)) 2336 return PTR_ERR(ce); 2337 2338 err = __eb_pin_engine(eb, ce); 2339 intel_context_put(ce); 2340 2341 return err; 2342 } 2343 2344 static void 2345 __free_fence_array(struct drm_syncobj **fences, unsigned int n) 2346 { 2347 while (n--) 2348 drm_syncobj_put(ptr_mask_bits(fences[n], 2)); 2349 kvfree(fences); 2350 } 2351 2352 static struct drm_syncobj ** 2353 get_fence_array(struct drm_i915_gem_execbuffer2 *args, 2354 struct drm_file *file) 2355 { 2356 const unsigned long nfences = args->num_cliprects; 2357 struct drm_i915_gem_exec_fence __user *user; 2358 struct drm_syncobj **fences; 2359 unsigned long n; 2360 int err; 2361 2362 if (!(args->flags & I915_EXEC_FENCE_ARRAY)) 2363 return NULL; 2364 2365 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2366 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2367 if (nfences > min_t(unsigned long, 2368 ULONG_MAX / sizeof(*user), 2369 SIZE_MAX / sizeof(*fences))) 2370 return ERR_PTR(-EINVAL); 2371 2372 user = u64_to_user_ptr(args->cliprects_ptr); 2373 if (!access_ok(user, nfences * sizeof(*user))) 2374 return ERR_PTR(-EFAULT); 2375 2376 fences = kvmalloc_array(nfences, sizeof(*fences), 2377 __GFP_NOWARN | GFP_KERNEL); 2378 if (!fences) 2379 return ERR_PTR(-ENOMEM); 2380 2381 for (n = 0; n < nfences; n++) { 2382 struct drm_i915_gem_exec_fence fence; 2383 struct drm_syncobj *syncobj; 2384 2385 if (__copy_from_user(&fence, user++, sizeof(fence))) { 2386 err = -EFAULT; 2387 goto err; 2388 } 2389 2390 if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) { 2391 err = -EINVAL; 2392 goto err; 2393 } 2394 2395 syncobj = drm_syncobj_find(file, fence.handle); 2396 if (!syncobj) { 2397 DRM_DEBUG("Invalid syncobj handle provided\n"); 2398 err = -ENOENT; 2399 goto err; 2400 } 2401 2402 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2403 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2404 2405 fences[n] = ptr_pack_bits(syncobj, fence.flags, 2); 2406 } 2407 2408 return fences; 2409 2410 err: 2411 __free_fence_array(fences, n); 2412 return ERR_PTR(err); 2413 } 2414 2415 static void 2416 put_fence_array(struct drm_i915_gem_execbuffer2 *args, 2417 struct drm_syncobj **fences) 2418 { 2419 if (fences) 2420 __free_fence_array(fences, args->num_cliprects); 2421 } 2422 2423 static int 2424 await_fence_array(struct i915_execbuffer *eb, 2425 struct drm_syncobj **fences) 2426 { 2427 const unsigned int nfences = eb->args->num_cliprects; 2428 unsigned int n; 2429 int err; 2430 2431 for (n = 0; n < nfences; n++) { 2432 struct drm_syncobj *syncobj; 2433 struct dma_fence *fence; 2434 unsigned int flags; 2435 2436 syncobj = ptr_unpack_bits(fences[n], &flags, 2); 2437 if (!(flags & I915_EXEC_FENCE_WAIT)) 2438 continue; 2439 2440 fence = drm_syncobj_fence_get(syncobj); 2441 if (!fence) 2442 return -EINVAL; 2443 2444 err = i915_request_await_dma_fence(eb->request, fence); 2445 dma_fence_put(fence); 2446 if (err < 0) 2447 return err; 2448 } 2449 2450 return 0; 2451 } 2452 2453 static void 2454 signal_fence_array(struct i915_execbuffer *eb, 2455 struct drm_syncobj **fences) 2456 { 2457 const unsigned int nfences = eb->args->num_cliprects; 2458 struct dma_fence * const fence = &eb->request->fence; 2459 unsigned int n; 2460 2461 for (n = 0; n < nfences; n++) { 2462 struct drm_syncobj *syncobj; 2463 unsigned int flags; 2464 2465 syncobj = ptr_unpack_bits(fences[n], &flags, 2); 2466 if (!(flags & I915_EXEC_FENCE_SIGNAL)) 2467 continue; 2468 2469 drm_syncobj_replace_fence(syncobj, fence); 2470 } 2471 } 2472 2473 static int 2474 i915_gem_do_execbuffer(struct drm_device *dev, 2475 struct drm_file *file, 2476 struct drm_i915_gem_execbuffer2 *args, 2477 struct drm_i915_gem_exec_object2 *exec, 2478 struct drm_syncobj **fences) 2479 { 2480 struct drm_i915_private *i915 = to_i915(dev); 2481 struct i915_execbuffer eb; 2482 struct dma_fence *in_fence = NULL; 2483 struct dma_fence *exec_fence = NULL; 2484 struct sync_file *out_fence = NULL; 2485 int out_fence_fd = -1; 2486 int err; 2487 2488 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); 2489 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 2490 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 2491 2492 eb.i915 = i915; 2493 eb.file = file; 2494 eb.args = args; 2495 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 2496 args->flags |= __EXEC_HAS_RELOC; 2497 2498 eb.exec = exec; 2499 eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1); 2500 eb.vma[0] = NULL; 2501 eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1); 2502 2503 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 2504 reloc_cache_init(&eb.reloc_cache, eb.i915); 2505 2506 eb.buffer_count = args->buffer_count; 2507 eb.batch_start_offset = args->batch_start_offset; 2508 eb.batch_len = args->batch_len; 2509 2510 eb.batch_flags = 0; 2511 if (args->flags & I915_EXEC_SECURE) { 2512 if (INTEL_GEN(i915) >= 11) 2513 return -ENODEV; 2514 2515 /* Return -EPERM to trigger fallback code on old binaries. */ 2516 if (!HAS_SECURE_BATCHES(i915)) 2517 return -EPERM; 2518 2519 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 2520 return -EPERM; 2521 2522 eb.batch_flags |= I915_DISPATCH_SECURE; 2523 } 2524 if (args->flags & I915_EXEC_IS_PINNED) 2525 eb.batch_flags |= I915_DISPATCH_PINNED; 2526 2527 if (args->flags & I915_EXEC_FENCE_IN) { 2528 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 2529 if (!in_fence) 2530 return -EINVAL; 2531 } 2532 2533 if (args->flags & I915_EXEC_FENCE_SUBMIT) { 2534 if (in_fence) { 2535 err = -EINVAL; 2536 goto err_in_fence; 2537 } 2538 2539 exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 2540 if (!exec_fence) { 2541 err = -EINVAL; 2542 goto err_in_fence; 2543 } 2544 } 2545 2546 if (args->flags & I915_EXEC_FENCE_OUT) { 2547 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 2548 if (out_fence_fd < 0) { 2549 err = out_fence_fd; 2550 goto err_exec_fence; 2551 } 2552 } 2553 2554 err = eb_create(&eb); 2555 if (err) 2556 goto err_out_fence; 2557 2558 GEM_BUG_ON(!eb.lut_size); 2559 2560 err = eb_select_context(&eb); 2561 if (unlikely(err)) 2562 goto err_destroy; 2563 2564 err = eb_pin_engine(&eb, file, args); 2565 if (unlikely(err)) 2566 goto err_context; 2567 2568 err = i915_mutex_lock_interruptible(dev); 2569 if (err) 2570 goto err_engine; 2571 2572 err = eb_relocate(&eb); 2573 if (err) { 2574 /* 2575 * If the user expects the execobject.offset and 2576 * reloc.presumed_offset to be an exact match, 2577 * as for using NO_RELOC, then we cannot update 2578 * the execobject.offset until we have completed 2579 * relocation. 2580 */ 2581 args->flags &= ~__EXEC_HAS_RELOC; 2582 goto err_vma; 2583 } 2584 2585 if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) { 2586 DRM_DEBUG("Attempting to use self-modifying batch buffer\n"); 2587 err = -EINVAL; 2588 goto err_vma; 2589 } 2590 if (eb.batch_start_offset > eb.batch->size || 2591 eb.batch_len > eb.batch->size - eb.batch_start_offset) { 2592 DRM_DEBUG("Attempting to use out-of-bounds batch\n"); 2593 err = -EINVAL; 2594 goto err_vma; 2595 } 2596 2597 if (eb.batch_len == 0) 2598 eb.batch_len = eb.batch->size - eb.batch_start_offset; 2599 2600 if (eb_use_cmdparser(&eb)) { 2601 struct i915_vma *vma; 2602 2603 vma = eb_parse(&eb); 2604 if (IS_ERR(vma)) { 2605 err = PTR_ERR(vma); 2606 goto err_vma; 2607 } 2608 } 2609 2610 /* 2611 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2612 * batch" bit. Hence we need to pin secure batches into the global gtt. 2613 * hsw should have this fixed, but bdw mucks it up again. */ 2614 if (eb.batch_flags & I915_DISPATCH_SECURE) { 2615 struct i915_vma *vma; 2616 2617 /* 2618 * So on first glance it looks freaky that we pin the batch here 2619 * outside of the reservation loop. But: 2620 * - The batch is already pinned into the relevant ppgtt, so we 2621 * already have the backing storage fully allocated. 2622 * - No other BO uses the global gtt (well contexts, but meh), 2623 * so we don't really have issues with multiple objects not 2624 * fitting due to fragmentation. 2625 * So this is actually safe. 2626 */ 2627 vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0); 2628 if (IS_ERR(vma)) { 2629 err = PTR_ERR(vma); 2630 goto err_vma; 2631 } 2632 2633 eb.batch = vma; 2634 } 2635 2636 /* All GPU relocation batches must be submitted prior to the user rq */ 2637 GEM_BUG_ON(eb.reloc_cache.rq); 2638 2639 /* Allocate a request for this batch buffer nice and early. */ 2640 eb.request = i915_request_create(eb.context); 2641 if (IS_ERR(eb.request)) { 2642 err = PTR_ERR(eb.request); 2643 goto err_batch_unpin; 2644 } 2645 2646 if (in_fence) { 2647 err = i915_request_await_dma_fence(eb.request, in_fence); 2648 if (err < 0) 2649 goto err_request; 2650 } 2651 2652 if (exec_fence) { 2653 err = i915_request_await_execution(eb.request, exec_fence, 2654 eb.engine->bond_execute); 2655 if (err < 0) 2656 goto err_request; 2657 } 2658 2659 if (fences) { 2660 err = await_fence_array(&eb, fences); 2661 if (err) 2662 goto err_request; 2663 } 2664 2665 if (out_fence_fd != -1) { 2666 out_fence = sync_file_create(&eb.request->fence); 2667 if (!out_fence) { 2668 err = -ENOMEM; 2669 goto err_request; 2670 } 2671 } 2672 2673 /* 2674 * Whilst this request exists, batch_obj will be on the 2675 * active_list, and so will hold the active reference. Only when this 2676 * request is retired will the the batch_obj be moved onto the 2677 * inactive_list and lose its active reference. Hence we do not need 2678 * to explicitly hold another reference here. 2679 */ 2680 eb.request->batch = eb.batch; 2681 if (eb.batch->private) 2682 intel_engine_pool_mark_active(eb.batch->private, eb.request); 2683 2684 trace_i915_request_queue(eb.request, eb.batch_flags); 2685 err = eb_submit(&eb); 2686 err_request: 2687 add_to_client(eb.request, file); 2688 i915_request_add(eb.request); 2689 2690 if (fences) 2691 signal_fence_array(&eb, fences); 2692 2693 if (out_fence) { 2694 if (err == 0) { 2695 fd_install(out_fence_fd, out_fence->file); 2696 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ 2697 args->rsvd2 |= (u64)out_fence_fd << 32; 2698 out_fence_fd = -1; 2699 } else { 2700 fput(out_fence->file); 2701 } 2702 } 2703 2704 err_batch_unpin: 2705 if (eb.batch_flags & I915_DISPATCH_SECURE) 2706 i915_vma_unpin(eb.batch); 2707 if (eb.batch->private) 2708 intel_engine_pool_put(eb.batch->private); 2709 err_vma: 2710 if (eb.exec) 2711 eb_release_vmas(&eb); 2712 mutex_unlock(&dev->struct_mutex); 2713 err_engine: 2714 eb_unpin_engine(&eb); 2715 err_context: 2716 i915_gem_context_put(eb.gem_context); 2717 err_destroy: 2718 eb_destroy(&eb); 2719 err_out_fence: 2720 if (out_fence_fd != -1) 2721 put_unused_fd(out_fence_fd); 2722 err_exec_fence: 2723 dma_fence_put(exec_fence); 2724 err_in_fence: 2725 dma_fence_put(in_fence); 2726 return err; 2727 } 2728 2729 static size_t eb_element_size(void) 2730 { 2731 return (sizeof(struct drm_i915_gem_exec_object2) + 2732 sizeof(struct i915_vma *) + 2733 sizeof(unsigned int)); 2734 } 2735 2736 static bool check_buffer_count(size_t count) 2737 { 2738 const size_t sz = eb_element_size(); 2739 2740 /* 2741 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup 2742 * array size (see eb_create()). Otherwise, we can accept an array as 2743 * large as can be addressed (though use large arrays at your peril)! 2744 */ 2745 2746 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); 2747 } 2748 2749 /* 2750 * Legacy execbuffer just creates an exec2 list from the original exec object 2751 * list array and passes it to the real function. 2752 */ 2753 int 2754 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data, 2755 struct drm_file *file) 2756 { 2757 struct drm_i915_gem_execbuffer *args = data; 2758 struct drm_i915_gem_execbuffer2 exec2; 2759 struct drm_i915_gem_exec_object *exec_list = NULL; 2760 struct drm_i915_gem_exec_object2 *exec2_list = NULL; 2761 const size_t count = args->buffer_count; 2762 unsigned int i; 2763 int err; 2764 2765 if (!check_buffer_count(count)) { 2766 DRM_DEBUG("execbuf2 with %zd buffers\n", count); 2767 return -EINVAL; 2768 } 2769 2770 exec2.buffers_ptr = args->buffers_ptr; 2771 exec2.buffer_count = args->buffer_count; 2772 exec2.batch_start_offset = args->batch_start_offset; 2773 exec2.batch_len = args->batch_len; 2774 exec2.DR1 = args->DR1; 2775 exec2.DR4 = args->DR4; 2776 exec2.num_cliprects = args->num_cliprects; 2777 exec2.cliprects_ptr = args->cliprects_ptr; 2778 exec2.flags = I915_EXEC_RENDER; 2779 i915_execbuffer2_set_context_id(exec2, 0); 2780 2781 if (!i915_gem_check_execbuffer(&exec2)) 2782 return -EINVAL; 2783 2784 /* Copy in the exec list from userland */ 2785 exec_list = kvmalloc_array(count, sizeof(*exec_list), 2786 __GFP_NOWARN | GFP_KERNEL); 2787 exec2_list = kvmalloc_array(count + 1, eb_element_size(), 2788 __GFP_NOWARN | GFP_KERNEL); 2789 if (exec_list == NULL || exec2_list == NULL) { 2790 DRM_DEBUG("Failed to allocate exec list for %d buffers\n", 2791 args->buffer_count); 2792 kvfree(exec_list); 2793 kvfree(exec2_list); 2794 return -ENOMEM; 2795 } 2796 err = copy_from_user(exec_list, 2797 u64_to_user_ptr(args->buffers_ptr), 2798 sizeof(*exec_list) * count); 2799 if (err) { 2800 DRM_DEBUG("copy %d exec entries failed %d\n", 2801 args->buffer_count, err); 2802 kvfree(exec_list); 2803 kvfree(exec2_list); 2804 return -EFAULT; 2805 } 2806 2807 for (i = 0; i < args->buffer_count; i++) { 2808 exec2_list[i].handle = exec_list[i].handle; 2809 exec2_list[i].relocation_count = exec_list[i].relocation_count; 2810 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr; 2811 exec2_list[i].alignment = exec_list[i].alignment; 2812 exec2_list[i].offset = exec_list[i].offset; 2813 if (INTEL_GEN(to_i915(dev)) < 4) 2814 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE; 2815 else 2816 exec2_list[i].flags = 0; 2817 } 2818 2819 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL); 2820 if (exec2.flags & __EXEC_HAS_RELOC) { 2821 struct drm_i915_gem_exec_object __user *user_exec_list = 2822 u64_to_user_ptr(args->buffers_ptr); 2823 2824 /* Copy the new buffer offsets back to the user's exec list. */ 2825 for (i = 0; i < args->buffer_count; i++) { 2826 if (!(exec2_list[i].offset & UPDATE)) 2827 continue; 2828 2829 exec2_list[i].offset = 2830 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 2831 exec2_list[i].offset &= PIN_OFFSET_MASK; 2832 if (__copy_to_user(&user_exec_list[i].offset, 2833 &exec2_list[i].offset, 2834 sizeof(user_exec_list[i].offset))) 2835 break; 2836 } 2837 } 2838 2839 kvfree(exec_list); 2840 kvfree(exec2_list); 2841 return err; 2842 } 2843 2844 int 2845 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 2846 struct drm_file *file) 2847 { 2848 struct drm_i915_gem_execbuffer2 *args = data; 2849 struct drm_i915_gem_exec_object2 *exec2_list; 2850 struct drm_syncobj **fences = NULL; 2851 const size_t count = args->buffer_count; 2852 int err; 2853 2854 if (!check_buffer_count(count)) { 2855 DRM_DEBUG("execbuf2 with %zd buffers\n", count); 2856 return -EINVAL; 2857 } 2858 2859 if (!i915_gem_check_execbuffer(args)) 2860 return -EINVAL; 2861 2862 /* Allocate an extra slot for use by the command parser */ 2863 exec2_list = kvmalloc_array(count + 1, eb_element_size(), 2864 __GFP_NOWARN | GFP_KERNEL); 2865 if (exec2_list == NULL) { 2866 DRM_DEBUG("Failed to allocate exec list for %zd buffers\n", 2867 count); 2868 return -ENOMEM; 2869 } 2870 if (copy_from_user(exec2_list, 2871 u64_to_user_ptr(args->buffers_ptr), 2872 sizeof(*exec2_list) * count)) { 2873 DRM_DEBUG("copy %zd exec entries failed\n", count); 2874 kvfree(exec2_list); 2875 return -EFAULT; 2876 } 2877 2878 if (args->flags & I915_EXEC_FENCE_ARRAY) { 2879 fences = get_fence_array(args, file); 2880 if (IS_ERR(fences)) { 2881 kvfree(exec2_list); 2882 return PTR_ERR(fences); 2883 } 2884 } 2885 2886 err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences); 2887 2888 /* 2889 * Now that we have begun execution of the batchbuffer, we ignore 2890 * any new error after this point. Also given that we have already 2891 * updated the associated relocations, we try to write out the current 2892 * object locations irrespective of any error. 2893 */ 2894 if (args->flags & __EXEC_HAS_RELOC) { 2895 struct drm_i915_gem_exec_object2 __user *user_exec_list = 2896 u64_to_user_ptr(args->buffers_ptr); 2897 unsigned int i; 2898 2899 /* Copy the new buffer offsets back to the user's exec list. */ 2900 /* 2901 * Note: count * sizeof(*user_exec_list) does not overflow, 2902 * because we checked 'count' in check_buffer_count(). 2903 * 2904 * And this range already got effectively checked earlier 2905 * when we did the "copy_from_user()" above. 2906 */ 2907 if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list))) 2908 goto end; 2909 2910 for (i = 0; i < args->buffer_count; i++) { 2911 if (!(exec2_list[i].offset & UPDATE)) 2912 continue; 2913 2914 exec2_list[i].offset = 2915 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 2916 unsafe_put_user(exec2_list[i].offset, 2917 &user_exec_list[i].offset, 2918 end_user); 2919 } 2920 end_user: 2921 user_access_end(); 2922 end:; 2923 } 2924 2925 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 2926 put_fence_array(args, fences); 2927 kvfree(exec2_list); 2928 return err; 2929 } 2930