1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008,2010 Intel Corporation 5 */ 6 7 #include <linux/dma-resv.h> 8 #include <linux/highmem.h> 9 #include <linux/sync_file.h> 10 #include <linux/uaccess.h> 11 12 #include <drm/drm_syncobj.h> 13 14 #include "display/intel_frontbuffer.h" 15 16 #include "gem/i915_gem_ioctls.h" 17 #include "gt/intel_context.h" 18 #include "gt/intel_gpu_commands.h" 19 #include "gt/intel_gt.h" 20 #include "gt/intel_gt_buffer_pool.h" 21 #include "gt/intel_gt_pm.h" 22 #include "gt/intel_ring.h" 23 24 #include "pxp/intel_pxp.h" 25 26 #include "i915_cmd_parser.h" 27 #include "i915_drv.h" 28 #include "i915_file_private.h" 29 #include "i915_gem_clflush.h" 30 #include "i915_gem_context.h" 31 #include "i915_gem_evict.h" 32 #include "i915_gem_ioctls.h" 33 #include "i915_reg.h" 34 #include "i915_trace.h" 35 #include "i915_user_extensions.h" 36 37 struct eb_vma { 38 struct i915_vma *vma; 39 unsigned int flags; 40 41 /** This vma's place in the execbuf reservation list */ 42 struct drm_i915_gem_exec_object2 *exec; 43 struct list_head bind_link; 44 struct list_head reloc_link; 45 46 struct hlist_node node; 47 u32 handle; 48 }; 49 50 enum { 51 FORCE_CPU_RELOC = 1, 52 FORCE_GTT_RELOC, 53 FORCE_GPU_RELOC, 54 #define DBG_FORCE_RELOC 0 /* choose one of the above! */ 55 }; 56 57 /* __EXEC_OBJECT_ flags > BIT(29) defined in i915_vma.h */ 58 #define __EXEC_OBJECT_HAS_PIN BIT(29) 59 #define __EXEC_OBJECT_HAS_FENCE BIT(28) 60 #define __EXEC_OBJECT_USERPTR_INIT BIT(27) 61 #define __EXEC_OBJECT_NEEDS_MAP BIT(26) 62 #define __EXEC_OBJECT_NEEDS_BIAS BIT(25) 63 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 25) /* all of the above + */ 64 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) 65 66 #define __EXEC_HAS_RELOC BIT(31) 67 #define __EXEC_ENGINE_PINNED BIT(30) 68 #define __EXEC_USERPTR_USED BIT(29) 69 #define __EXEC_INTERNAL_FLAGS (~0u << 29) 70 #define UPDATE PIN_OFFSET_FIXED 71 72 #define BATCH_OFFSET_BIAS (256*1024) 73 74 #define __I915_EXEC_ILLEGAL_FLAGS \ 75 (__I915_EXEC_UNKNOWN_FLAGS | \ 76 I915_EXEC_CONSTANTS_MASK | \ 77 I915_EXEC_RESOURCE_STREAMER) 78 79 /* Catch emission of unexpected errors for CI! */ 80 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 81 #undef EINVAL 82 #define EINVAL ({ \ 83 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 84 22; \ 85 }) 86 #endif 87 88 /** 89 * DOC: User command execution 90 * 91 * Userspace submits commands to be executed on the GPU as an instruction 92 * stream within a GEM object we call a batchbuffer. This instructions may 93 * refer to other GEM objects containing auxiliary state such as kernels, 94 * samplers, render targets and even secondary batchbuffers. Userspace does 95 * not know where in the GPU memory these objects reside and so before the 96 * batchbuffer is passed to the GPU for execution, those addresses in the 97 * batchbuffer and auxiliary objects are updated. This is known as relocation, 98 * or patching. To try and avoid having to relocate each object on the next 99 * execution, userspace is told the location of those objects in this pass, 100 * but this remains just a hint as the kernel may choose a new location for 101 * any object in the future. 102 * 103 * At the level of talking to the hardware, submitting a batchbuffer for the 104 * GPU to execute is to add content to a buffer from which the HW 105 * command streamer is reading. 106 * 107 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. 108 * Execlists, this command is not placed on the same buffer as the 109 * remaining items. 110 * 111 * 2. Add a command to invalidate caches to the buffer. 112 * 113 * 3. Add a batchbuffer start command to the buffer; the start command is 114 * essentially a token together with the GPU address of the batchbuffer 115 * to be executed. 116 * 117 * 4. Add a pipeline flush to the buffer. 118 * 119 * 5. Add a memory write command to the buffer to record when the GPU 120 * is done executing the batchbuffer. The memory write writes the 121 * global sequence number of the request, ``i915_request::global_seqno``; 122 * the i915 driver uses the current value in the register to determine 123 * if the GPU has completed the batchbuffer. 124 * 125 * 6. Add a user interrupt command to the buffer. This command instructs 126 * the GPU to issue an interrupt when the command, pipeline flush and 127 * memory write are completed. 128 * 129 * 7. Inform the hardware of the additional commands added to the buffer 130 * (by updating the tail pointer). 131 * 132 * Processing an execbuf ioctl is conceptually split up into a few phases. 133 * 134 * 1. Validation - Ensure all the pointers, handles and flags are valid. 135 * 2. Reservation - Assign GPU address space for every object 136 * 3. Relocation - Update any addresses to point to the final locations 137 * 4. Serialisation - Order the request with respect to its dependencies 138 * 5. Construction - Construct a request to execute the batchbuffer 139 * 6. Submission (at some point in the future execution) 140 * 141 * Reserving resources for the execbuf is the most complicated phase. We 142 * neither want to have to migrate the object in the address space, nor do 143 * we want to have to update any relocations pointing to this object. Ideally, 144 * we want to leave the object where it is and for all the existing relocations 145 * to match. If the object is given a new address, or if userspace thinks the 146 * object is elsewhere, we have to parse all the relocation entries and update 147 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that 148 * all the target addresses in all of its objects match the value in the 149 * relocation entries and that they all match the presumed offsets given by the 150 * list of execbuffer objects. Using this knowledge, we know that if we haven't 151 * moved any buffers, all the relocation entries are valid and we can skip 152 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 153 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 154 * 155 * The addresses written in the objects must match the corresponding 156 * reloc.presumed_offset which in turn must match the corresponding 157 * execobject.offset. 158 * 159 * Any render targets written to in the batch must be flagged with 160 * EXEC_OBJECT_WRITE. 161 * 162 * To avoid stalling, execobject.offset should match the current 163 * address of that object within the active context. 164 * 165 * The reservation is done is multiple phases. First we try and keep any 166 * object already bound in its current location - so as long as meets the 167 * constraints imposed by the new execbuffer. Any object left unbound after the 168 * first pass is then fitted into any available idle space. If an object does 169 * not fit, all objects are removed from the reservation and the process rerun 170 * after sorting the objects into a priority order (more difficult to fit 171 * objects are tried first). Failing that, the entire VM is cleared and we try 172 * to fit the execbuf once last time before concluding that it simply will not 173 * fit. 174 * 175 * A small complication to all of this is that we allow userspace not only to 176 * specify an alignment and a size for the object in the address space, but 177 * we also allow userspace to specify the exact offset. This objects are 178 * simpler to place (the location is known a priori) all we have to do is make 179 * sure the space is available. 180 * 181 * Once all the objects are in place, patching up the buried pointers to point 182 * to the final locations is a fairly simple job of walking over the relocation 183 * entry arrays, looking up the right address and rewriting the value into 184 * the object. Simple! ... The relocation entries are stored in user memory 185 * and so to access them we have to copy them into a local buffer. That copy 186 * has to avoid taking any pagefaults as they may lead back to a GEM object 187 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split 188 * the relocation into multiple passes. First we try to do everything within an 189 * atomic context (avoid the pagefaults) which requires that we never wait. If 190 * we detect that we may wait, or if we need to fault, then we have to fallback 191 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 192 * bells yet?) Dropping the mutex means that we lose all the state we have 193 * built up so far for the execbuf and we must reset any global data. However, 194 * we do leave the objects pinned in their final locations - which is a 195 * potential issue for concurrent execbufs. Once we have left the mutex, we can 196 * allocate and copy all the relocation entries into a large array at our 197 * leisure, reacquire the mutex, reclaim all the objects and other state and 198 * then proceed to update any incorrect addresses with the objects. 199 * 200 * As we process the relocation entries, we maintain a record of whether the 201 * object is being written to. Using NORELOC, we expect userspace to provide 202 * this information instead. We also check whether we can skip the relocation 203 * by comparing the expected value inside the relocation entry with the target's 204 * final address. If they differ, we have to map the current object and rewrite 205 * the 4 or 8 byte pointer within. 206 * 207 * Serialising an execbuf is quite simple according to the rules of the GEM 208 * ABI. Execution within each context is ordered by the order of submission. 209 * Writes to any GEM object are in order of submission and are exclusive. Reads 210 * from a GEM object are unordered with respect to other reads, but ordered by 211 * writes. A write submitted after a read cannot occur before the read, and 212 * similarly any read submitted after a write cannot occur before the write. 213 * Writes are ordered between engines such that only one write occurs at any 214 * time (completing any reads beforehand) - using semaphores where available 215 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 216 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 217 * reads before starting, and any read (either using set-domain or pread) must 218 * flush all GPU writes before starting. (Note we only employ a barrier before, 219 * we currently rely on userspace not concurrently starting a new execution 220 * whilst reading or writing to an object. This may be an advantage or not 221 * depending on how much you trust userspace not to shoot themselves in the 222 * foot.) Serialisation may just result in the request being inserted into 223 * a DAG awaiting its turn, but most simple is to wait on the CPU until 224 * all dependencies are resolved. 225 * 226 * After all of that, is just a matter of closing the request and handing it to 227 * the hardware (well, leaving it in a queue to be executed). However, we also 228 * offer the ability for batchbuffers to be run with elevated privileges so 229 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 230 * Before any batch is given extra privileges we first must check that it 231 * contains no nefarious instructions, we check that each instruction is from 232 * our whitelist and all registers are also from an allowed list. We first 233 * copy the user's batchbuffer to a shadow (so that the user doesn't have 234 * access to it, either by the CPU or GPU as we scan it) and then parse each 235 * instruction. If everything is ok, we set a flag telling the hardware to run 236 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 237 */ 238 239 struct eb_fence { 240 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */ 241 struct dma_fence *dma_fence; 242 u64 value; 243 struct dma_fence_chain *chain_fence; 244 }; 245 246 struct i915_execbuffer { 247 struct drm_i915_private *i915; /** i915 backpointer */ 248 struct drm_file *file; /** per-file lookup tables and limits */ 249 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 250 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 251 struct eb_vma *vma; 252 253 struct intel_gt *gt; /* gt for the execbuf */ 254 struct intel_context *context; /* logical state for the request */ 255 struct i915_gem_context *gem_context; /** caller's context */ 256 257 /** our requests to build */ 258 struct i915_request *requests[MAX_ENGINE_INSTANCE + 1]; 259 /** identity of the batch obj/vma */ 260 struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1]; 261 struct i915_vma *trampoline; /** trampoline used for chaining */ 262 263 /** used for excl fence in dma_resv objects when > 1 BB submitted */ 264 struct dma_fence *composite_fence; 265 266 /** actual size of execobj[] as we may extend it for the cmdparser */ 267 unsigned int buffer_count; 268 269 /* number of batches in execbuf IOCTL */ 270 unsigned int num_batches; 271 272 /** list of vma not yet bound during reservation phase */ 273 struct list_head unbound; 274 275 /** list of vma that have execobj.relocation_count */ 276 struct list_head relocs; 277 278 struct i915_gem_ww_ctx ww; 279 280 /** 281 * Track the most recently used object for relocations, as we 282 * frequently have to perform multiple relocations within the same 283 * obj/page 284 */ 285 struct reloc_cache { 286 struct drm_mm_node node; /** temporary GTT binding */ 287 unsigned long vaddr; /** Current kmap address */ 288 unsigned long page; /** Currently mapped page index */ 289 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */ 290 bool use_64bit_reloc : 1; 291 bool has_llc : 1; 292 bool has_fence : 1; 293 bool needs_unfenced : 1; 294 } reloc_cache; 295 296 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 297 298 /** Length of batch within object */ 299 u64 batch_len[MAX_ENGINE_INSTANCE + 1]; 300 u32 batch_start_offset; /** Location within object of batch */ 301 u32 batch_flags; /** Flags composed for emit_bb_start() */ 302 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */ 303 304 /** 305 * Indicate either the size of the hastable used to resolve 306 * relocation handles, or if negative that we are using a direct 307 * index into the execobj[]. 308 */ 309 int lut_size; 310 struct hlist_head *buckets; /** ht for relocation handles */ 311 312 struct eb_fence *fences; 313 unsigned long num_fences; 314 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 315 struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1]; 316 #endif 317 }; 318 319 static int eb_parse(struct i915_execbuffer *eb); 320 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle); 321 static void eb_unpin_engine(struct i915_execbuffer *eb); 322 static void eb_capture_release(struct i915_execbuffer *eb); 323 324 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) 325 { 326 return intel_engine_requires_cmd_parser(eb->context->engine) || 327 (intel_engine_using_cmd_parser(eb->context->engine) && 328 eb->args->batch_len); 329 } 330 331 static int eb_create(struct i915_execbuffer *eb) 332 { 333 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 334 unsigned int size = 1 + ilog2(eb->buffer_count); 335 336 /* 337 * Without a 1:1 association between relocation handles and 338 * the execobject[] index, we instead create a hashtable. 339 * We size it dynamically based on available memory, starting 340 * first with 1:1 assocative hash and scaling back until 341 * the allocation succeeds. 342 * 343 * Later on we use a positive lut_size to indicate we are 344 * using this hashtable, and a negative value to indicate a 345 * direct lookup. 346 */ 347 do { 348 gfp_t flags; 349 350 /* While we can still reduce the allocation size, don't 351 * raise a warning and allow the allocation to fail. 352 * On the last pass though, we want to try as hard 353 * as possible to perform the allocation and warn 354 * if it fails. 355 */ 356 flags = GFP_KERNEL; 357 if (size > 1) 358 flags |= __GFP_NORETRY | __GFP_NOWARN; 359 360 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 361 flags); 362 if (eb->buckets) 363 break; 364 } while (--size); 365 366 if (unlikely(!size)) 367 return -ENOMEM; 368 369 eb->lut_size = size; 370 } else { 371 eb->lut_size = -eb->buffer_count; 372 } 373 374 return 0; 375 } 376 377 static bool 378 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 379 const struct i915_vma *vma, 380 unsigned int flags) 381 { 382 if (vma->node.size < entry->pad_to_size) 383 return true; 384 385 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) 386 return true; 387 388 if (flags & EXEC_OBJECT_PINNED && 389 vma->node.start != entry->offset) 390 return true; 391 392 if (flags & __EXEC_OBJECT_NEEDS_BIAS && 393 vma->node.start < BATCH_OFFSET_BIAS) 394 return true; 395 396 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 397 (vma->node.start + vma->node.size + 4095) >> 32) 398 return true; 399 400 if (flags & __EXEC_OBJECT_NEEDS_MAP && 401 !i915_vma_is_map_and_fenceable(vma)) 402 return true; 403 404 return false; 405 } 406 407 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry, 408 unsigned int exec_flags) 409 { 410 u64 pin_flags = 0; 411 412 if (exec_flags & EXEC_OBJECT_NEEDS_GTT) 413 pin_flags |= PIN_GLOBAL; 414 415 /* 416 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 417 * limit address to the first 4GBs for unflagged objects. 418 */ 419 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 420 pin_flags |= PIN_ZONE_4G; 421 422 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) 423 pin_flags |= PIN_MAPPABLE; 424 425 if (exec_flags & EXEC_OBJECT_PINNED) 426 pin_flags |= entry->offset | PIN_OFFSET_FIXED; 427 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) 428 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 429 430 return pin_flags; 431 } 432 433 static inline int 434 eb_pin_vma(struct i915_execbuffer *eb, 435 const struct drm_i915_gem_exec_object2 *entry, 436 struct eb_vma *ev) 437 { 438 struct i915_vma *vma = ev->vma; 439 u64 pin_flags; 440 int err; 441 442 if (vma->node.size) 443 pin_flags = vma->node.start; 444 else 445 pin_flags = entry->offset & PIN_OFFSET_MASK; 446 447 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE; 448 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) 449 pin_flags |= PIN_GLOBAL; 450 451 /* Attempt to reuse the current location if available */ 452 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags); 453 if (err == -EDEADLK) 454 return err; 455 456 if (unlikely(err)) { 457 if (entry->flags & EXEC_OBJECT_PINNED) 458 return err; 459 460 /* Failing that pick any _free_ space if suitable */ 461 err = i915_vma_pin_ww(vma, &eb->ww, 462 entry->pad_to_size, 463 entry->alignment, 464 eb_pin_flags(entry, ev->flags) | 465 PIN_USER | PIN_NOEVICT | PIN_VALIDATE); 466 if (unlikely(err)) 467 return err; 468 } 469 470 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 471 err = i915_vma_pin_fence(vma); 472 if (unlikely(err)) 473 return err; 474 475 if (vma->fence) 476 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 477 } 478 479 ev->flags |= __EXEC_OBJECT_HAS_PIN; 480 if (eb_vma_misplaced(entry, vma, ev->flags)) 481 return -EBADSLT; 482 483 return 0; 484 } 485 486 static inline void 487 eb_unreserve_vma(struct eb_vma *ev) 488 { 489 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE)) 490 __i915_vma_unpin_fence(ev->vma); 491 492 ev->flags &= ~__EXEC_OBJECT_RESERVED; 493 } 494 495 static int 496 eb_validate_vma(struct i915_execbuffer *eb, 497 struct drm_i915_gem_exec_object2 *entry, 498 struct i915_vma *vma) 499 { 500 /* Relocations are disallowed for all platforms after TGL-LP. This 501 * also covers all platforms with local memory. 502 */ 503 if (entry->relocation_count && 504 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915)) 505 return -EINVAL; 506 507 if (unlikely(entry->flags & eb->invalid_flags)) 508 return -EINVAL; 509 510 if (unlikely(entry->alignment && 511 !is_power_of_2_u64(entry->alignment))) 512 return -EINVAL; 513 514 /* 515 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 516 * any non-page-aligned or non-canonical addresses. 517 */ 518 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 519 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) 520 return -EINVAL; 521 522 /* pad_to_size was once a reserved field, so sanitize it */ 523 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 524 if (unlikely(offset_in_page(entry->pad_to_size))) 525 return -EINVAL; 526 } else { 527 entry->pad_to_size = 0; 528 } 529 /* 530 * From drm_mm perspective address space is continuous, 531 * so from this point we're always using non-canonical 532 * form internally. 533 */ 534 entry->offset = gen8_noncanonical_addr(entry->offset); 535 536 if (!eb->reloc_cache.has_fence) { 537 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 538 } else { 539 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 540 eb->reloc_cache.needs_unfenced) && 541 i915_gem_object_is_tiled(vma->obj)) 542 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 543 } 544 545 return 0; 546 } 547 548 static inline bool 549 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx) 550 { 551 return eb->args->flags & I915_EXEC_BATCH_FIRST ? 552 buffer_idx < eb->num_batches : 553 buffer_idx >= eb->args->buffer_count - eb->num_batches; 554 } 555 556 static int 557 eb_add_vma(struct i915_execbuffer *eb, 558 unsigned int *current_batch, 559 unsigned int i, 560 struct i915_vma *vma) 561 { 562 struct drm_i915_private *i915 = eb->i915; 563 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 564 struct eb_vma *ev = &eb->vma[i]; 565 566 ev->vma = vma; 567 ev->exec = entry; 568 ev->flags = entry->flags; 569 570 if (eb->lut_size > 0) { 571 ev->handle = entry->handle; 572 hlist_add_head(&ev->node, 573 &eb->buckets[hash_32(entry->handle, 574 eb->lut_size)]); 575 } 576 577 if (entry->relocation_count) 578 list_add_tail(&ev->reloc_link, &eb->relocs); 579 580 /* 581 * SNA is doing fancy tricks with compressing batch buffers, which leads 582 * to negative relocation deltas. Usually that works out ok since the 583 * relocate address is still positive, except when the batch is placed 584 * very low in the GTT. Ensure this doesn't happen. 585 * 586 * Note that actual hangs have only been observed on gen7, but for 587 * paranoia do it everywhere. 588 */ 589 if (is_batch_buffer(eb, i)) { 590 if (entry->relocation_count && 591 !(ev->flags & EXEC_OBJECT_PINNED)) 592 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; 593 if (eb->reloc_cache.has_fence) 594 ev->flags |= EXEC_OBJECT_NEEDS_FENCE; 595 596 eb->batches[*current_batch] = ev; 597 598 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) { 599 drm_dbg(&i915->drm, 600 "Attempting to use self-modifying batch buffer\n"); 601 return -EINVAL; 602 } 603 604 if (range_overflows_t(u64, 605 eb->batch_start_offset, 606 eb->args->batch_len, 607 ev->vma->size)) { 608 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); 609 return -EINVAL; 610 } 611 612 if (eb->args->batch_len == 0) 613 eb->batch_len[*current_batch] = ev->vma->size - 614 eb->batch_start_offset; 615 else 616 eb->batch_len[*current_batch] = eb->args->batch_len; 617 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */ 618 drm_dbg(&i915->drm, "Invalid batch length\n"); 619 return -EINVAL; 620 } 621 622 ++*current_batch; 623 } 624 625 return 0; 626 } 627 628 static inline int use_cpu_reloc(const struct reloc_cache *cache, 629 const struct drm_i915_gem_object *obj) 630 { 631 if (!i915_gem_object_has_struct_page(obj)) 632 return false; 633 634 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 635 return true; 636 637 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 638 return false; 639 640 return (cache->has_llc || 641 obj->cache_dirty || 642 obj->cache_level != I915_CACHE_NONE); 643 } 644 645 static int eb_reserve_vma(struct i915_execbuffer *eb, 646 struct eb_vma *ev, 647 u64 pin_flags) 648 { 649 struct drm_i915_gem_exec_object2 *entry = ev->exec; 650 struct i915_vma *vma = ev->vma; 651 int err; 652 653 if (drm_mm_node_allocated(&vma->node) && 654 eb_vma_misplaced(entry, vma, ev->flags)) { 655 err = i915_vma_unbind(vma); 656 if (err) 657 return err; 658 } 659 660 err = i915_vma_pin_ww(vma, &eb->ww, 661 entry->pad_to_size, entry->alignment, 662 eb_pin_flags(entry, ev->flags) | pin_flags); 663 if (err) 664 return err; 665 666 if (entry->offset != vma->node.start) { 667 entry->offset = vma->node.start | UPDATE; 668 eb->args->flags |= __EXEC_HAS_RELOC; 669 } 670 671 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 672 err = i915_vma_pin_fence(vma); 673 if (unlikely(err)) 674 return err; 675 676 if (vma->fence) 677 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 678 } 679 680 ev->flags |= __EXEC_OBJECT_HAS_PIN; 681 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); 682 683 return 0; 684 } 685 686 static bool eb_unbind(struct i915_execbuffer *eb, bool force) 687 { 688 const unsigned int count = eb->buffer_count; 689 unsigned int i; 690 struct list_head last; 691 bool unpinned = false; 692 693 /* Resort *all* the objects into priority order */ 694 INIT_LIST_HEAD(&eb->unbound); 695 INIT_LIST_HEAD(&last); 696 697 for (i = 0; i < count; i++) { 698 struct eb_vma *ev = &eb->vma[i]; 699 unsigned int flags = ev->flags; 700 701 if (!force && flags & EXEC_OBJECT_PINNED && 702 flags & __EXEC_OBJECT_HAS_PIN) 703 continue; 704 705 unpinned = true; 706 eb_unreserve_vma(ev); 707 708 if (flags & EXEC_OBJECT_PINNED) 709 /* Pinned must have their slot */ 710 list_add(&ev->bind_link, &eb->unbound); 711 else if (flags & __EXEC_OBJECT_NEEDS_MAP) 712 /* Map require the lowest 256MiB (aperture) */ 713 list_add_tail(&ev->bind_link, &eb->unbound); 714 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 715 /* Prioritise 4GiB region for restricted bo */ 716 list_add(&ev->bind_link, &last); 717 else 718 list_add_tail(&ev->bind_link, &last); 719 } 720 721 list_splice_tail(&last, &eb->unbound); 722 return unpinned; 723 } 724 725 static int eb_reserve(struct i915_execbuffer *eb) 726 { 727 struct eb_vma *ev; 728 unsigned int pass; 729 int err = 0; 730 bool unpinned; 731 732 /* 733 * Attempt to pin all of the buffers into the GTT. 734 * This is done in 2 phases: 735 * 736 * 1. Unbind all objects that do not match the GTT constraints for 737 * the execbuffer (fenceable, mappable, alignment etc). 738 * 2. Bind new objects. 739 * 740 * This avoid unnecessary unbinding of later objects in order to make 741 * room for the earlier objects *unless* we need to defragment. 742 * 743 * Defragmenting is skipped if all objects are pinned at a fixed location. 744 */ 745 for (pass = 0; pass <= 2; pass++) { 746 int pin_flags = PIN_USER | PIN_VALIDATE; 747 748 if (pass == 0) 749 pin_flags |= PIN_NONBLOCK; 750 751 if (pass >= 1) 752 unpinned = eb_unbind(eb, pass == 2); 753 754 if (pass == 2) { 755 err = mutex_lock_interruptible(&eb->context->vm->mutex); 756 if (!err) { 757 err = i915_gem_evict_vm(eb->context->vm, &eb->ww); 758 mutex_unlock(&eb->context->vm->mutex); 759 } 760 if (err) 761 return err; 762 } 763 764 list_for_each_entry(ev, &eb->unbound, bind_link) { 765 err = eb_reserve_vma(eb, ev, pin_flags); 766 if (err) 767 break; 768 } 769 770 if (err != -ENOSPC) 771 break; 772 } 773 774 return err; 775 } 776 777 static int eb_select_context(struct i915_execbuffer *eb) 778 { 779 struct i915_gem_context *ctx; 780 781 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 782 if (unlikely(IS_ERR(ctx))) 783 return PTR_ERR(ctx); 784 785 eb->gem_context = ctx; 786 if (i915_gem_context_has_full_ppgtt(ctx)) 787 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 788 789 return 0; 790 } 791 792 static int __eb_add_lut(struct i915_execbuffer *eb, 793 u32 handle, struct i915_vma *vma) 794 { 795 struct i915_gem_context *ctx = eb->gem_context; 796 struct i915_lut_handle *lut; 797 int err; 798 799 lut = i915_lut_handle_alloc(); 800 if (unlikely(!lut)) 801 return -ENOMEM; 802 803 i915_vma_get(vma); 804 if (!atomic_fetch_inc(&vma->open_count)) 805 i915_vma_reopen(vma); 806 lut->handle = handle; 807 lut->ctx = ctx; 808 809 /* Check that the context hasn't been closed in the meantime */ 810 err = -EINTR; 811 if (!mutex_lock_interruptible(&ctx->lut_mutex)) { 812 if (likely(!i915_gem_context_is_closed(ctx))) 813 err = radix_tree_insert(&ctx->handles_vma, handle, vma); 814 else 815 err = -ENOENT; 816 if (err == 0) { /* And nor has this handle */ 817 struct drm_i915_gem_object *obj = vma->obj; 818 819 spin_lock(&obj->lut_lock); 820 if (idr_find(&eb->file->object_idr, handle) == obj) { 821 list_add(&lut->obj_link, &obj->lut_list); 822 } else { 823 radix_tree_delete(&ctx->handles_vma, handle); 824 err = -ENOENT; 825 } 826 spin_unlock(&obj->lut_lock); 827 } 828 mutex_unlock(&ctx->lut_mutex); 829 } 830 if (unlikely(err)) 831 goto err; 832 833 return 0; 834 835 err: 836 i915_vma_close(vma); 837 i915_vma_put(vma); 838 i915_lut_handle_free(lut); 839 return err; 840 } 841 842 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle) 843 { 844 struct i915_address_space *vm = eb->context->vm; 845 846 do { 847 struct drm_i915_gem_object *obj; 848 struct i915_vma *vma; 849 int err; 850 851 rcu_read_lock(); 852 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle); 853 if (likely(vma && vma->vm == vm)) 854 vma = i915_vma_tryget(vma); 855 rcu_read_unlock(); 856 if (likely(vma)) 857 return vma; 858 859 obj = i915_gem_object_lookup(eb->file, handle); 860 if (unlikely(!obj)) 861 return ERR_PTR(-ENOENT); 862 863 /* 864 * If the user has opted-in for protected-object tracking, make 865 * sure the object encryption can be used. 866 * We only need to do this when the object is first used with 867 * this context, because the context itself will be banned when 868 * the protected objects become invalid. 869 */ 870 if (i915_gem_context_uses_protected_content(eb->gem_context) && 871 i915_gem_object_is_protected(obj)) { 872 err = intel_pxp_key_check(&vm->gt->pxp, obj, true); 873 if (err) { 874 i915_gem_object_put(obj); 875 return ERR_PTR(err); 876 } 877 } 878 879 vma = i915_vma_instance(obj, vm, NULL); 880 if (IS_ERR(vma)) { 881 i915_gem_object_put(obj); 882 return vma; 883 } 884 885 err = __eb_add_lut(eb, handle, vma); 886 if (likely(!err)) 887 return vma; 888 889 i915_gem_object_put(obj); 890 if (err != -EEXIST) 891 return ERR_PTR(err); 892 } while (1); 893 } 894 895 static int eb_lookup_vmas(struct i915_execbuffer *eb) 896 { 897 unsigned int i, current_batch = 0; 898 int err = 0; 899 900 INIT_LIST_HEAD(&eb->relocs); 901 902 for (i = 0; i < eb->buffer_count; i++) { 903 struct i915_vma *vma; 904 905 vma = eb_lookup_vma(eb, eb->exec[i].handle); 906 if (IS_ERR(vma)) { 907 err = PTR_ERR(vma); 908 goto err; 909 } 910 911 err = eb_validate_vma(eb, &eb->exec[i], vma); 912 if (unlikely(err)) { 913 i915_vma_put(vma); 914 goto err; 915 } 916 917 err = eb_add_vma(eb, ¤t_batch, i, vma); 918 if (err) 919 return err; 920 921 if (i915_gem_object_is_userptr(vma->obj)) { 922 err = i915_gem_object_userptr_submit_init(vma->obj); 923 if (err) { 924 if (i + 1 < eb->buffer_count) { 925 /* 926 * Execbuffer code expects last vma entry to be NULL, 927 * since we already initialized this entry, 928 * set the next value to NULL or we mess up 929 * cleanup handling. 930 */ 931 eb->vma[i + 1].vma = NULL; 932 } 933 934 return err; 935 } 936 937 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT; 938 eb->args->flags |= __EXEC_USERPTR_USED; 939 } 940 } 941 942 return 0; 943 944 err: 945 eb->vma[i].vma = NULL; 946 return err; 947 } 948 949 static int eb_lock_vmas(struct i915_execbuffer *eb) 950 { 951 unsigned int i; 952 int err; 953 954 for (i = 0; i < eb->buffer_count; i++) { 955 struct eb_vma *ev = &eb->vma[i]; 956 struct i915_vma *vma = ev->vma; 957 958 err = i915_gem_object_lock(vma->obj, &eb->ww); 959 if (err) 960 return err; 961 } 962 963 return 0; 964 } 965 966 static int eb_validate_vmas(struct i915_execbuffer *eb) 967 { 968 unsigned int i; 969 int err; 970 971 INIT_LIST_HEAD(&eb->unbound); 972 973 err = eb_lock_vmas(eb); 974 if (err) 975 return err; 976 977 for (i = 0; i < eb->buffer_count; i++) { 978 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 979 struct eb_vma *ev = &eb->vma[i]; 980 struct i915_vma *vma = ev->vma; 981 982 err = eb_pin_vma(eb, entry, ev); 983 if (err == -EDEADLK) 984 return err; 985 986 if (!err) { 987 if (entry->offset != vma->node.start) { 988 entry->offset = vma->node.start | UPDATE; 989 eb->args->flags |= __EXEC_HAS_RELOC; 990 } 991 } else { 992 eb_unreserve_vma(ev); 993 994 list_add_tail(&ev->bind_link, &eb->unbound); 995 if (drm_mm_node_allocated(&vma->node)) { 996 err = i915_vma_unbind(vma); 997 if (err) 998 return err; 999 } 1000 } 1001 1002 /* Reserve enough slots to accommodate composite fences */ 1003 err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches); 1004 if (err) 1005 return err; 1006 1007 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && 1008 eb_vma_misplaced(&eb->exec[i], vma, ev->flags)); 1009 } 1010 1011 if (!list_empty(&eb->unbound)) 1012 return eb_reserve(eb); 1013 1014 return 0; 1015 } 1016 1017 static struct eb_vma * 1018 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 1019 { 1020 if (eb->lut_size < 0) { 1021 if (handle >= -eb->lut_size) 1022 return NULL; 1023 return &eb->vma[handle]; 1024 } else { 1025 struct hlist_head *head; 1026 struct eb_vma *ev; 1027 1028 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 1029 hlist_for_each_entry(ev, head, node) { 1030 if (ev->handle == handle) 1031 return ev; 1032 } 1033 return NULL; 1034 } 1035 } 1036 1037 static void eb_release_vmas(struct i915_execbuffer *eb, bool final) 1038 { 1039 const unsigned int count = eb->buffer_count; 1040 unsigned int i; 1041 1042 for (i = 0; i < count; i++) { 1043 struct eb_vma *ev = &eb->vma[i]; 1044 struct i915_vma *vma = ev->vma; 1045 1046 if (!vma) 1047 break; 1048 1049 eb_unreserve_vma(ev); 1050 1051 if (final) 1052 i915_vma_put(vma); 1053 } 1054 1055 eb_capture_release(eb); 1056 eb_unpin_engine(eb); 1057 } 1058 1059 static void eb_destroy(const struct i915_execbuffer *eb) 1060 { 1061 if (eb->lut_size > 0) 1062 kfree(eb->buckets); 1063 } 1064 1065 static inline u64 1066 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 1067 const struct i915_vma *target) 1068 { 1069 return gen8_canonical_addr((int)reloc->delta + target->node.start); 1070 } 1071 1072 static void reloc_cache_init(struct reloc_cache *cache, 1073 struct drm_i915_private *i915) 1074 { 1075 cache->page = -1; 1076 cache->vaddr = 0; 1077 /* Must be a variable in the struct to allow GCC to unroll. */ 1078 cache->graphics_ver = GRAPHICS_VER(i915); 1079 cache->has_llc = HAS_LLC(i915); 1080 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 1081 cache->has_fence = cache->graphics_ver < 4; 1082 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 1083 cache->node.flags = 0; 1084 } 1085 1086 static inline void *unmask_page(unsigned long p) 1087 { 1088 return (void *)(uintptr_t)(p & PAGE_MASK); 1089 } 1090 1091 static inline unsigned int unmask_flags(unsigned long p) 1092 { 1093 return p & ~PAGE_MASK; 1094 } 1095 1096 #define KMAP 0x4 /* after CLFLUSH_FLAGS */ 1097 1098 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 1099 { 1100 struct drm_i915_private *i915 = 1101 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 1102 return to_gt(i915)->ggtt; 1103 } 1104 1105 static void reloc_cache_unmap(struct reloc_cache *cache) 1106 { 1107 void *vaddr; 1108 1109 if (!cache->vaddr) 1110 return; 1111 1112 vaddr = unmask_page(cache->vaddr); 1113 if (cache->vaddr & KMAP) 1114 kunmap_atomic(vaddr); 1115 else 1116 io_mapping_unmap_atomic((void __iomem *)vaddr); 1117 } 1118 1119 static void reloc_cache_remap(struct reloc_cache *cache, 1120 struct drm_i915_gem_object *obj) 1121 { 1122 void *vaddr; 1123 1124 if (!cache->vaddr) 1125 return; 1126 1127 if (cache->vaddr & KMAP) { 1128 struct page *page = i915_gem_object_get_page(obj, cache->page); 1129 1130 vaddr = kmap_atomic(page); 1131 cache->vaddr = unmask_flags(cache->vaddr) | 1132 (unsigned long)vaddr; 1133 } else { 1134 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1135 unsigned long offset; 1136 1137 offset = cache->node.start; 1138 if (!drm_mm_node_allocated(&cache->node)) 1139 offset += cache->page << PAGE_SHIFT; 1140 1141 cache->vaddr = (unsigned long) 1142 io_mapping_map_atomic_wc(&ggtt->iomap, offset); 1143 } 1144 } 1145 1146 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb) 1147 { 1148 void *vaddr; 1149 1150 if (!cache->vaddr) 1151 return; 1152 1153 vaddr = unmask_page(cache->vaddr); 1154 if (cache->vaddr & KMAP) { 1155 struct drm_i915_gem_object *obj = 1156 (struct drm_i915_gem_object *)cache->node.mm; 1157 if (cache->vaddr & CLFLUSH_AFTER) 1158 mb(); 1159 1160 kunmap_atomic(vaddr); 1161 i915_gem_object_finish_access(obj); 1162 } else { 1163 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1164 1165 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1166 io_mapping_unmap_atomic((void __iomem *)vaddr); 1167 1168 if (drm_mm_node_allocated(&cache->node)) { 1169 ggtt->vm.clear_range(&ggtt->vm, 1170 cache->node.start, 1171 cache->node.size); 1172 mutex_lock(&ggtt->vm.mutex); 1173 drm_mm_remove_node(&cache->node); 1174 mutex_unlock(&ggtt->vm.mutex); 1175 } else { 1176 i915_vma_unpin((struct i915_vma *)cache->node.mm); 1177 } 1178 } 1179 1180 cache->vaddr = 0; 1181 cache->page = -1; 1182 } 1183 1184 static void *reloc_kmap(struct drm_i915_gem_object *obj, 1185 struct reloc_cache *cache, 1186 unsigned long pageno) 1187 { 1188 void *vaddr; 1189 struct page *page; 1190 1191 if (cache->vaddr) { 1192 kunmap_atomic(unmask_page(cache->vaddr)); 1193 } else { 1194 unsigned int flushes; 1195 int err; 1196 1197 err = i915_gem_object_prepare_write(obj, &flushes); 1198 if (err) 1199 return ERR_PTR(err); 1200 1201 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 1202 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); 1203 1204 cache->vaddr = flushes | KMAP; 1205 cache->node.mm = (void *)obj; 1206 if (flushes) 1207 mb(); 1208 } 1209 1210 page = i915_gem_object_get_page(obj, pageno); 1211 if (!obj->mm.dirty) 1212 set_page_dirty(page); 1213 1214 vaddr = kmap_atomic(page); 1215 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 1216 cache->page = pageno; 1217 1218 return vaddr; 1219 } 1220 1221 static void *reloc_iomap(struct i915_vma *batch, 1222 struct i915_execbuffer *eb, 1223 unsigned long page) 1224 { 1225 struct drm_i915_gem_object *obj = batch->obj; 1226 struct reloc_cache *cache = &eb->reloc_cache; 1227 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1228 unsigned long offset; 1229 void *vaddr; 1230 1231 if (cache->vaddr) { 1232 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1233 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1234 } else { 1235 struct i915_vma *vma = ERR_PTR(-ENODEV); 1236 int err; 1237 1238 if (i915_gem_object_is_tiled(obj)) 1239 return ERR_PTR(-EINVAL); 1240 1241 if (use_cpu_reloc(cache, obj)) 1242 return NULL; 1243 1244 err = i915_gem_object_set_to_gtt_domain(obj, true); 1245 if (err) 1246 return ERR_PTR(err); 1247 1248 /* 1249 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch 1250 * VMA from the object list because we no longer pin. 1251 * 1252 * Only attempt to pin the batch buffer to ggtt if the current batch 1253 * is not inside ggtt, or the batch buffer is not misplaced. 1254 */ 1255 if (!i915_is_ggtt(batch->vm) || 1256 !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) { 1257 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0, 1258 PIN_MAPPABLE | 1259 PIN_NONBLOCK /* NOWARN */ | 1260 PIN_NOEVICT); 1261 } 1262 1263 if (vma == ERR_PTR(-EDEADLK)) 1264 return vma; 1265 1266 if (IS_ERR(vma)) { 1267 memset(&cache->node, 0, sizeof(cache->node)); 1268 mutex_lock(&ggtt->vm.mutex); 1269 err = drm_mm_insert_node_in_range 1270 (&ggtt->vm.mm, &cache->node, 1271 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1272 0, ggtt->mappable_end, 1273 DRM_MM_INSERT_LOW); 1274 mutex_unlock(&ggtt->vm.mutex); 1275 if (err) /* no inactive aperture space, use cpu reloc */ 1276 return NULL; 1277 } else { 1278 cache->node.start = vma->node.start; 1279 cache->node.mm = (void *)vma; 1280 } 1281 } 1282 1283 offset = cache->node.start; 1284 if (drm_mm_node_allocated(&cache->node)) { 1285 ggtt->vm.insert_page(&ggtt->vm, 1286 i915_gem_object_get_dma_address(obj, page), 1287 offset, I915_CACHE_NONE, 0); 1288 } else { 1289 offset += page << PAGE_SHIFT; 1290 } 1291 1292 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, 1293 offset); 1294 cache->page = page; 1295 cache->vaddr = (unsigned long)vaddr; 1296 1297 return vaddr; 1298 } 1299 1300 static void *reloc_vaddr(struct i915_vma *vma, 1301 struct i915_execbuffer *eb, 1302 unsigned long page) 1303 { 1304 struct reloc_cache *cache = &eb->reloc_cache; 1305 void *vaddr; 1306 1307 if (cache->page == page) { 1308 vaddr = unmask_page(cache->vaddr); 1309 } else { 1310 vaddr = NULL; 1311 if ((cache->vaddr & KMAP) == 0) 1312 vaddr = reloc_iomap(vma, eb, page); 1313 if (!vaddr) 1314 vaddr = reloc_kmap(vma->obj, cache, page); 1315 } 1316 1317 return vaddr; 1318 } 1319 1320 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1321 { 1322 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1323 if (flushes & CLFLUSH_BEFORE) 1324 drm_clflush_virt_range(addr, sizeof(*addr)); 1325 1326 *addr = value; 1327 1328 /* 1329 * Writes to the same cacheline are serialised by the CPU 1330 * (including clflush). On the write path, we only require 1331 * that it hits memory in an orderly fashion and place 1332 * mb barriers at the start and end of the relocation phase 1333 * to ensure ordering of clflush wrt to the system. 1334 */ 1335 if (flushes & CLFLUSH_AFTER) 1336 drm_clflush_virt_range(addr, sizeof(*addr)); 1337 } else 1338 *addr = value; 1339 } 1340 1341 static u64 1342 relocate_entry(struct i915_vma *vma, 1343 const struct drm_i915_gem_relocation_entry *reloc, 1344 struct i915_execbuffer *eb, 1345 const struct i915_vma *target) 1346 { 1347 u64 target_addr = relocation_target(reloc, target); 1348 u64 offset = reloc->offset; 1349 bool wide = eb->reloc_cache.use_64bit_reloc; 1350 void *vaddr; 1351 1352 repeat: 1353 vaddr = reloc_vaddr(vma, eb, 1354 offset >> PAGE_SHIFT); 1355 if (IS_ERR(vaddr)) 1356 return PTR_ERR(vaddr); 1357 1358 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32))); 1359 clflush_write32(vaddr + offset_in_page(offset), 1360 lower_32_bits(target_addr), 1361 eb->reloc_cache.vaddr); 1362 1363 if (wide) { 1364 offset += sizeof(u32); 1365 target_addr >>= 32; 1366 wide = false; 1367 goto repeat; 1368 } 1369 1370 return target->node.start | UPDATE; 1371 } 1372 1373 static u64 1374 eb_relocate_entry(struct i915_execbuffer *eb, 1375 struct eb_vma *ev, 1376 const struct drm_i915_gem_relocation_entry *reloc) 1377 { 1378 struct drm_i915_private *i915 = eb->i915; 1379 struct eb_vma *target; 1380 int err; 1381 1382 /* we've already hold a reference to all valid objects */ 1383 target = eb_get_vma(eb, reloc->target_handle); 1384 if (unlikely(!target)) 1385 return -ENOENT; 1386 1387 /* Validate that the target is in a valid r/w GPU domain */ 1388 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1389 drm_dbg(&i915->drm, "reloc with multiple write domains: " 1390 "target %d offset %d " 1391 "read %08x write %08x", 1392 reloc->target_handle, 1393 (int) reloc->offset, 1394 reloc->read_domains, 1395 reloc->write_domain); 1396 return -EINVAL; 1397 } 1398 if (unlikely((reloc->write_domain | reloc->read_domains) 1399 & ~I915_GEM_GPU_DOMAINS)) { 1400 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " 1401 "target %d offset %d " 1402 "read %08x write %08x", 1403 reloc->target_handle, 1404 (int) reloc->offset, 1405 reloc->read_domains, 1406 reloc->write_domain); 1407 return -EINVAL; 1408 } 1409 1410 if (reloc->write_domain) { 1411 target->flags |= EXEC_OBJECT_WRITE; 1412 1413 /* 1414 * Sandybridge PPGTT errata: We need a global gtt mapping 1415 * for MI and pipe_control writes because the gpu doesn't 1416 * properly redirect them through the ppgtt for non_secure 1417 * batchbuffers. 1418 */ 1419 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1420 GRAPHICS_VER(eb->i915) == 6 && 1421 !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) { 1422 struct i915_vma *vma = target->vma; 1423 1424 reloc_cache_unmap(&eb->reloc_cache); 1425 mutex_lock(&vma->vm->mutex); 1426 err = i915_vma_bind(target->vma, 1427 target->vma->obj->cache_level, 1428 PIN_GLOBAL, NULL, NULL); 1429 mutex_unlock(&vma->vm->mutex); 1430 reloc_cache_remap(&eb->reloc_cache, ev->vma->obj); 1431 if (err) 1432 return err; 1433 } 1434 } 1435 1436 /* 1437 * If the relocation already has the right value in it, no 1438 * more work needs to be done. 1439 */ 1440 if (!DBG_FORCE_RELOC && 1441 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset) 1442 return 0; 1443 1444 /* Check that the relocation address is valid... */ 1445 if (unlikely(reloc->offset > 1446 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1447 drm_dbg(&i915->drm, "Relocation beyond object bounds: " 1448 "target %d offset %d size %d.\n", 1449 reloc->target_handle, 1450 (int)reloc->offset, 1451 (int)ev->vma->size); 1452 return -EINVAL; 1453 } 1454 if (unlikely(reloc->offset & 3)) { 1455 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " 1456 "target %d offset %d.\n", 1457 reloc->target_handle, 1458 (int)reloc->offset); 1459 return -EINVAL; 1460 } 1461 1462 /* 1463 * If we write into the object, we need to force the synchronisation 1464 * barrier, either with an asynchronous clflush or if we executed the 1465 * patching using the GPU (though that should be serialised by the 1466 * timeline). To be completely sure, and since we are required to 1467 * do relocations we are already stalling, disable the user's opt 1468 * out of our synchronisation. 1469 */ 1470 ev->flags &= ~EXEC_OBJECT_ASYNC; 1471 1472 /* and update the user's relocation entry */ 1473 return relocate_entry(ev->vma, reloc, eb, target->vma); 1474 } 1475 1476 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) 1477 { 1478 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1479 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1480 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1481 struct drm_i915_gem_relocation_entry __user *urelocs = 1482 u64_to_user_ptr(entry->relocs_ptr); 1483 unsigned long remain = entry->relocation_count; 1484 1485 if (unlikely(remain > N_RELOC(ULONG_MAX))) 1486 return -EINVAL; 1487 1488 /* 1489 * We must check that the entire relocation array is safe 1490 * to read. However, if the array is not writable the user loses 1491 * the updated relocation values. 1492 */ 1493 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs)))) 1494 return -EFAULT; 1495 1496 do { 1497 struct drm_i915_gem_relocation_entry *r = stack; 1498 unsigned int count = 1499 min_t(unsigned long, remain, ARRAY_SIZE(stack)); 1500 unsigned int copied; 1501 1502 /* 1503 * This is the fast path and we cannot handle a pagefault 1504 * whilst holding the struct mutex lest the user pass in the 1505 * relocations contained within a mmaped bo. For in such a case 1506 * we, the page fault handler would call i915_gem_fault() and 1507 * we would try to acquire the struct mutex again. Obviously 1508 * this is bad and so lockdep complains vehemently. 1509 */ 1510 pagefault_disable(); 1511 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); 1512 pagefault_enable(); 1513 if (unlikely(copied)) { 1514 remain = -EFAULT; 1515 goto out; 1516 } 1517 1518 remain -= count; 1519 do { 1520 u64 offset = eb_relocate_entry(eb, ev, r); 1521 1522 if (likely(offset == 0)) { 1523 } else if ((s64)offset < 0) { 1524 remain = (int)offset; 1525 goto out; 1526 } else { 1527 /* 1528 * Note that reporting an error now 1529 * leaves everything in an inconsistent 1530 * state as we have *already* changed 1531 * the relocation value inside the 1532 * object. As we have not changed the 1533 * reloc.presumed_offset or will not 1534 * change the execobject.offset, on the 1535 * call we may not rewrite the value 1536 * inside the object, leaving it 1537 * dangling and causing a GPU hang. Unless 1538 * userspace dynamically rebuilds the 1539 * relocations on each execbuf rather than 1540 * presume a static tree. 1541 * 1542 * We did previously check if the relocations 1543 * were writable (access_ok), an error now 1544 * would be a strange race with mprotect, 1545 * having already demonstrated that we 1546 * can read from this userspace address. 1547 */ 1548 offset = gen8_canonical_addr(offset & ~UPDATE); 1549 __put_user(offset, 1550 &urelocs[r - stack].presumed_offset); 1551 } 1552 } while (r++, --count); 1553 urelocs += ARRAY_SIZE(stack); 1554 } while (remain); 1555 out: 1556 reloc_cache_reset(&eb->reloc_cache, eb); 1557 return remain; 1558 } 1559 1560 static int 1561 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev) 1562 { 1563 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1564 struct drm_i915_gem_relocation_entry *relocs = 1565 u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1566 unsigned int i; 1567 int err; 1568 1569 for (i = 0; i < entry->relocation_count; i++) { 1570 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]); 1571 1572 if ((s64)offset < 0) { 1573 err = (int)offset; 1574 goto err; 1575 } 1576 } 1577 err = 0; 1578 err: 1579 reloc_cache_reset(&eb->reloc_cache, eb); 1580 return err; 1581 } 1582 1583 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) 1584 { 1585 const char __user *addr, *end; 1586 unsigned long size; 1587 char __maybe_unused c; 1588 1589 size = entry->relocation_count; 1590 if (size == 0) 1591 return 0; 1592 1593 if (size > N_RELOC(ULONG_MAX)) 1594 return -EINVAL; 1595 1596 addr = u64_to_user_ptr(entry->relocs_ptr); 1597 size *= sizeof(struct drm_i915_gem_relocation_entry); 1598 if (!access_ok(addr, size)) 1599 return -EFAULT; 1600 1601 end = addr + size; 1602 for (; addr < end; addr += PAGE_SIZE) { 1603 int err = __get_user(c, addr); 1604 if (err) 1605 return err; 1606 } 1607 return __get_user(c, end - 1); 1608 } 1609 1610 static int eb_copy_relocations(const struct i915_execbuffer *eb) 1611 { 1612 struct drm_i915_gem_relocation_entry *relocs; 1613 const unsigned int count = eb->buffer_count; 1614 unsigned int i; 1615 int err; 1616 1617 for (i = 0; i < count; i++) { 1618 const unsigned int nreloc = eb->exec[i].relocation_count; 1619 struct drm_i915_gem_relocation_entry __user *urelocs; 1620 unsigned long size; 1621 unsigned long copied; 1622 1623 if (nreloc == 0) 1624 continue; 1625 1626 err = check_relocations(&eb->exec[i]); 1627 if (err) 1628 goto err; 1629 1630 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); 1631 size = nreloc * sizeof(*relocs); 1632 1633 relocs = kvmalloc_array(size, 1, GFP_KERNEL); 1634 if (!relocs) { 1635 err = -ENOMEM; 1636 goto err; 1637 } 1638 1639 /* copy_from_user is limited to < 4GiB */ 1640 copied = 0; 1641 do { 1642 unsigned int len = 1643 min_t(u64, BIT_ULL(31), size - copied); 1644 1645 if (__copy_from_user((char *)relocs + copied, 1646 (char __user *)urelocs + copied, 1647 len)) 1648 goto end; 1649 1650 copied += len; 1651 } while (copied < size); 1652 1653 /* 1654 * As we do not update the known relocation offsets after 1655 * relocating (due to the complexities in lock handling), 1656 * we need to mark them as invalid now so that we force the 1657 * relocation processing next time. Just in case the target 1658 * object is evicted and then rebound into its old 1659 * presumed_offset before the next execbuffer - if that 1660 * happened we would make the mistake of assuming that the 1661 * relocations were valid. 1662 */ 1663 if (!user_access_begin(urelocs, size)) 1664 goto end; 1665 1666 for (copied = 0; copied < nreloc; copied++) 1667 unsafe_put_user(-1, 1668 &urelocs[copied].presumed_offset, 1669 end_user); 1670 user_access_end(); 1671 1672 eb->exec[i].relocs_ptr = (uintptr_t)relocs; 1673 } 1674 1675 return 0; 1676 1677 end_user: 1678 user_access_end(); 1679 end: 1680 kvfree(relocs); 1681 err = -EFAULT; 1682 err: 1683 while (i--) { 1684 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); 1685 if (eb->exec[i].relocation_count) 1686 kvfree(relocs); 1687 } 1688 return err; 1689 } 1690 1691 static int eb_prefault_relocations(const struct i915_execbuffer *eb) 1692 { 1693 const unsigned int count = eb->buffer_count; 1694 unsigned int i; 1695 1696 for (i = 0; i < count; i++) { 1697 int err; 1698 1699 err = check_relocations(&eb->exec[i]); 1700 if (err) 1701 return err; 1702 } 1703 1704 return 0; 1705 } 1706 1707 static int eb_reinit_userptr(struct i915_execbuffer *eb) 1708 { 1709 const unsigned int count = eb->buffer_count; 1710 unsigned int i; 1711 int ret; 1712 1713 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED))) 1714 return 0; 1715 1716 for (i = 0; i < count; i++) { 1717 struct eb_vma *ev = &eb->vma[i]; 1718 1719 if (!i915_gem_object_is_userptr(ev->vma->obj)) 1720 continue; 1721 1722 ret = i915_gem_object_userptr_submit_init(ev->vma->obj); 1723 if (ret) 1724 return ret; 1725 1726 ev->flags |= __EXEC_OBJECT_USERPTR_INIT; 1727 } 1728 1729 return 0; 1730 } 1731 1732 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb) 1733 { 1734 bool have_copy = false; 1735 struct eb_vma *ev; 1736 int err = 0; 1737 1738 repeat: 1739 if (signal_pending(current)) { 1740 err = -ERESTARTSYS; 1741 goto out; 1742 } 1743 1744 /* We may process another execbuffer during the unlock... */ 1745 eb_release_vmas(eb, false); 1746 i915_gem_ww_ctx_fini(&eb->ww); 1747 1748 /* 1749 * We take 3 passes through the slowpatch. 1750 * 1751 * 1 - we try to just prefault all the user relocation entries and 1752 * then attempt to reuse the atomic pagefault disabled fast path again. 1753 * 1754 * 2 - we copy the user entries to a local buffer here outside of the 1755 * local and allow ourselves to wait upon any rendering before 1756 * relocations 1757 * 1758 * 3 - we already have a local copy of the relocation entries, but 1759 * were interrupted (EAGAIN) whilst waiting for the objects, try again. 1760 */ 1761 if (!err) { 1762 err = eb_prefault_relocations(eb); 1763 } else if (!have_copy) { 1764 err = eb_copy_relocations(eb); 1765 have_copy = err == 0; 1766 } else { 1767 cond_resched(); 1768 err = 0; 1769 } 1770 1771 if (!err) 1772 err = eb_reinit_userptr(eb); 1773 1774 i915_gem_ww_ctx_init(&eb->ww, true); 1775 if (err) 1776 goto out; 1777 1778 /* reacquire the objects */ 1779 repeat_validate: 1780 err = eb_pin_engine(eb, false); 1781 if (err) 1782 goto err; 1783 1784 err = eb_validate_vmas(eb); 1785 if (err) 1786 goto err; 1787 1788 GEM_BUG_ON(!eb->batches[0]); 1789 1790 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1791 if (!have_copy) { 1792 err = eb_relocate_vma(eb, ev); 1793 if (err) 1794 break; 1795 } else { 1796 err = eb_relocate_vma_slow(eb, ev); 1797 if (err) 1798 break; 1799 } 1800 } 1801 1802 if (err == -EDEADLK) 1803 goto err; 1804 1805 if (err && !have_copy) 1806 goto repeat; 1807 1808 if (err) 1809 goto err; 1810 1811 /* as last step, parse the command buffer */ 1812 err = eb_parse(eb); 1813 if (err) 1814 goto err; 1815 1816 /* 1817 * Leave the user relocations as are, this is the painfully slow path, 1818 * and we want to avoid the complication of dropping the lock whilst 1819 * having buffers reserved in the aperture and so causing spurious 1820 * ENOSPC for random operations. 1821 */ 1822 1823 err: 1824 if (err == -EDEADLK) { 1825 eb_release_vmas(eb, false); 1826 err = i915_gem_ww_ctx_backoff(&eb->ww); 1827 if (!err) 1828 goto repeat_validate; 1829 } 1830 1831 if (err == -EAGAIN) 1832 goto repeat; 1833 1834 out: 1835 if (have_copy) { 1836 const unsigned int count = eb->buffer_count; 1837 unsigned int i; 1838 1839 for (i = 0; i < count; i++) { 1840 const struct drm_i915_gem_exec_object2 *entry = 1841 &eb->exec[i]; 1842 struct drm_i915_gem_relocation_entry *relocs; 1843 1844 if (!entry->relocation_count) 1845 continue; 1846 1847 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1848 kvfree(relocs); 1849 } 1850 } 1851 1852 return err; 1853 } 1854 1855 static int eb_relocate_parse(struct i915_execbuffer *eb) 1856 { 1857 int err; 1858 bool throttle = true; 1859 1860 retry: 1861 err = eb_pin_engine(eb, throttle); 1862 if (err) { 1863 if (err != -EDEADLK) 1864 return err; 1865 1866 goto err; 1867 } 1868 1869 /* only throttle once, even if we didn't need to throttle */ 1870 throttle = false; 1871 1872 err = eb_validate_vmas(eb); 1873 if (err == -EAGAIN) 1874 goto slow; 1875 else if (err) 1876 goto err; 1877 1878 /* The objects are in their final locations, apply the relocations. */ 1879 if (eb->args->flags & __EXEC_HAS_RELOC) { 1880 struct eb_vma *ev; 1881 1882 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1883 err = eb_relocate_vma(eb, ev); 1884 if (err) 1885 break; 1886 } 1887 1888 if (err == -EDEADLK) 1889 goto err; 1890 else if (err) 1891 goto slow; 1892 } 1893 1894 if (!err) 1895 err = eb_parse(eb); 1896 1897 err: 1898 if (err == -EDEADLK) { 1899 eb_release_vmas(eb, false); 1900 err = i915_gem_ww_ctx_backoff(&eb->ww); 1901 if (!err) 1902 goto retry; 1903 } 1904 1905 return err; 1906 1907 slow: 1908 err = eb_relocate_parse_slow(eb); 1909 if (err) 1910 /* 1911 * If the user expects the execobject.offset and 1912 * reloc.presumed_offset to be an exact match, 1913 * as for using NO_RELOC, then we cannot update 1914 * the execobject.offset until we have completed 1915 * relocation. 1916 */ 1917 eb->args->flags &= ~__EXEC_HAS_RELOC; 1918 1919 return err; 1920 } 1921 1922 /* 1923 * Using two helper loops for the order of which requests / batches are created 1924 * and added the to backend. Requests are created in order from the parent to 1925 * the last child. Requests are added in the reverse order, from the last child 1926 * to parent. This is done for locking reasons as the timeline lock is acquired 1927 * during request creation and released when the request is added to the 1928 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be 1929 * the ordering. 1930 */ 1931 #define for_each_batch_create_order(_eb, _i) \ 1932 for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i)) 1933 #define for_each_batch_add_order(_eb, _i) \ 1934 BUILD_BUG_ON(!typecheck(int, _i)); \ 1935 for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i)) 1936 1937 static struct i915_request * 1938 eb_find_first_request_added(struct i915_execbuffer *eb) 1939 { 1940 int i; 1941 1942 for_each_batch_add_order(eb, i) 1943 if (eb->requests[i]) 1944 return eb->requests[i]; 1945 1946 GEM_BUG_ON("Request not found"); 1947 1948 return NULL; 1949 } 1950 1951 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 1952 1953 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */ 1954 static int eb_capture_stage(struct i915_execbuffer *eb) 1955 { 1956 const unsigned int count = eb->buffer_count; 1957 unsigned int i = count, j; 1958 1959 while (i--) { 1960 struct eb_vma *ev = &eb->vma[i]; 1961 struct i915_vma *vma = ev->vma; 1962 unsigned int flags = ev->flags; 1963 1964 if (!(flags & EXEC_OBJECT_CAPTURE)) 1965 continue; 1966 1967 if (i915_gem_context_is_recoverable(eb->gem_context) && 1968 (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0))) 1969 return -EINVAL; 1970 1971 for_each_batch_create_order(eb, j) { 1972 struct i915_capture_list *capture; 1973 1974 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 1975 if (!capture) 1976 continue; 1977 1978 capture->next = eb->capture_lists[j]; 1979 capture->vma_res = i915_vma_resource_get(vma->resource); 1980 eb->capture_lists[j] = capture; 1981 } 1982 } 1983 1984 return 0; 1985 } 1986 1987 /* Commit once we're in the critical path */ 1988 static void eb_capture_commit(struct i915_execbuffer *eb) 1989 { 1990 unsigned int j; 1991 1992 for_each_batch_create_order(eb, j) { 1993 struct i915_request *rq = eb->requests[j]; 1994 1995 if (!rq) 1996 break; 1997 1998 rq->capture_list = eb->capture_lists[j]; 1999 eb->capture_lists[j] = NULL; 2000 } 2001 } 2002 2003 /* 2004 * Release anything that didn't get committed due to errors. 2005 * The capture_list will otherwise be freed at request retire. 2006 */ 2007 static void eb_capture_release(struct i915_execbuffer *eb) 2008 { 2009 unsigned int j; 2010 2011 for_each_batch_create_order(eb, j) { 2012 if (eb->capture_lists[j]) { 2013 i915_request_free_capture_list(eb->capture_lists[j]); 2014 eb->capture_lists[j] = NULL; 2015 } 2016 } 2017 } 2018 2019 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2020 { 2021 memset(eb->capture_lists, 0, sizeof(eb->capture_lists)); 2022 } 2023 2024 #else 2025 2026 static int eb_capture_stage(struct i915_execbuffer *eb) 2027 { 2028 return 0; 2029 } 2030 2031 static void eb_capture_commit(struct i915_execbuffer *eb) 2032 { 2033 } 2034 2035 static void eb_capture_release(struct i915_execbuffer *eb) 2036 { 2037 } 2038 2039 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2040 { 2041 } 2042 2043 #endif 2044 2045 static int eb_move_to_gpu(struct i915_execbuffer *eb) 2046 { 2047 const unsigned int count = eb->buffer_count; 2048 unsigned int i = count; 2049 int err = 0, j; 2050 2051 while (i--) { 2052 struct eb_vma *ev = &eb->vma[i]; 2053 struct i915_vma *vma = ev->vma; 2054 unsigned int flags = ev->flags; 2055 struct drm_i915_gem_object *obj = vma->obj; 2056 2057 assert_vma_held(vma); 2058 2059 /* 2060 * If the GPU is not _reading_ through the CPU cache, we need 2061 * to make sure that any writes (both previous GPU writes from 2062 * before a change in snooping levels and normal CPU writes) 2063 * caught in that cache are flushed to main memory. 2064 * 2065 * We want to say 2066 * obj->cache_dirty && 2067 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) 2068 * but gcc's optimiser doesn't handle that as well and emits 2069 * two jumps instead of one. Maybe one day... 2070 * 2071 * FIXME: There is also sync flushing in set_pages(), which 2072 * serves a different purpose(some of the time at least). 2073 * 2074 * We should consider: 2075 * 2076 * 1. Rip out the async flush code. 2077 * 2078 * 2. Or make the sync flushing use the async clflush path 2079 * using mandatory fences underneath. Currently the below 2080 * async flush happens after we bind the object. 2081 */ 2082 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { 2083 if (i915_gem_clflush_object(obj, 0)) 2084 flags &= ~EXEC_OBJECT_ASYNC; 2085 } 2086 2087 /* We only need to await on the first request */ 2088 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { 2089 err = i915_request_await_object 2090 (eb_find_first_request_added(eb), obj, 2091 flags & EXEC_OBJECT_WRITE); 2092 } 2093 2094 for_each_batch_add_order(eb, j) { 2095 if (err) 2096 break; 2097 if (!eb->requests[j]) 2098 continue; 2099 2100 err = _i915_vma_move_to_active(vma, eb->requests[j], 2101 j ? NULL : 2102 eb->composite_fence ? 2103 eb->composite_fence : 2104 &eb->requests[j]->fence, 2105 flags | __EXEC_OBJECT_NO_RESERVE | 2106 __EXEC_OBJECT_NO_REQUEST_AWAIT); 2107 } 2108 } 2109 2110 #ifdef CONFIG_MMU_NOTIFIER 2111 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) { 2112 read_lock(&eb->i915->mm.notifier_lock); 2113 2114 /* 2115 * count is always at least 1, otherwise __EXEC_USERPTR_USED 2116 * could not have been set 2117 */ 2118 for (i = 0; i < count; i++) { 2119 struct eb_vma *ev = &eb->vma[i]; 2120 struct drm_i915_gem_object *obj = ev->vma->obj; 2121 2122 if (!i915_gem_object_is_userptr(obj)) 2123 continue; 2124 2125 err = i915_gem_object_userptr_submit_done(obj); 2126 if (err) 2127 break; 2128 } 2129 2130 read_unlock(&eb->i915->mm.notifier_lock); 2131 } 2132 #endif 2133 2134 if (unlikely(err)) 2135 goto err_skip; 2136 2137 /* Unconditionally flush any chipset caches (for streaming writes). */ 2138 intel_gt_chipset_flush(eb->gt); 2139 eb_capture_commit(eb); 2140 2141 return 0; 2142 2143 err_skip: 2144 for_each_batch_create_order(eb, j) { 2145 if (!eb->requests[j]) 2146 break; 2147 2148 i915_request_set_error_once(eb->requests[j], err); 2149 } 2150 return err; 2151 } 2152 2153 static int i915_gem_check_execbuffer(struct drm_i915_private *i915, 2154 struct drm_i915_gem_execbuffer2 *exec) 2155 { 2156 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 2157 return -EINVAL; 2158 2159 /* Kernel clipping was a DRI1 misfeature */ 2160 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY | 2161 I915_EXEC_USE_EXTENSIONS))) { 2162 if (exec->num_cliprects || exec->cliprects_ptr) 2163 return -EINVAL; 2164 } 2165 2166 if (exec->DR4 == 0xffffffff) { 2167 drm_dbg(&i915->drm, "UXA submitting garbage DR4, fixing up\n"); 2168 exec->DR4 = 0; 2169 } 2170 if (exec->DR1 || exec->DR4) 2171 return -EINVAL; 2172 2173 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 2174 return -EINVAL; 2175 2176 return 0; 2177 } 2178 2179 static int i915_reset_gen7_sol_offsets(struct i915_request *rq) 2180 { 2181 u32 *cs; 2182 int i; 2183 2184 if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) { 2185 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n"); 2186 return -EINVAL; 2187 } 2188 2189 cs = intel_ring_begin(rq, 4 * 2 + 2); 2190 if (IS_ERR(cs)) 2191 return PTR_ERR(cs); 2192 2193 *cs++ = MI_LOAD_REGISTER_IMM(4); 2194 for (i = 0; i < 4; i++) { 2195 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 2196 *cs++ = 0; 2197 } 2198 *cs++ = MI_NOOP; 2199 intel_ring_advance(rq, cs); 2200 2201 return 0; 2202 } 2203 2204 static struct i915_vma * 2205 shadow_batch_pin(struct i915_execbuffer *eb, 2206 struct drm_i915_gem_object *obj, 2207 struct i915_address_space *vm, 2208 unsigned int flags) 2209 { 2210 struct i915_vma *vma; 2211 int err; 2212 2213 vma = i915_vma_instance(obj, vm, NULL); 2214 if (IS_ERR(vma)) 2215 return vma; 2216 2217 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE); 2218 if (err) 2219 return ERR_PTR(err); 2220 2221 return vma; 2222 } 2223 2224 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma) 2225 { 2226 /* 2227 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2228 * batch" bit. Hence we need to pin secure batches into the global gtt. 2229 * hsw should have this fixed, but bdw mucks it up again. */ 2230 if (eb->batch_flags & I915_DISPATCH_SECURE) 2231 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE); 2232 2233 return NULL; 2234 } 2235 2236 static int eb_parse(struct i915_execbuffer *eb) 2237 { 2238 struct drm_i915_private *i915 = eb->i915; 2239 struct intel_gt_buffer_pool_node *pool = eb->batch_pool; 2240 struct i915_vma *shadow, *trampoline, *batch; 2241 unsigned long len; 2242 int err; 2243 2244 if (!eb_use_cmdparser(eb)) { 2245 batch = eb_dispatch_secure(eb, eb->batches[0]->vma); 2246 if (IS_ERR(batch)) 2247 return PTR_ERR(batch); 2248 2249 goto secure_batch; 2250 } 2251 2252 if (intel_context_is_parallel(eb->context)) 2253 return -EINVAL; 2254 2255 len = eb->batch_len[0]; 2256 if (!CMDPARSER_USES_GGTT(eb->i915)) { 2257 /* 2258 * ppGTT backed shadow buffers must be mapped RO, to prevent 2259 * post-scan tampering 2260 */ 2261 if (!eb->context->vm->has_read_only) { 2262 drm_dbg(&i915->drm, 2263 "Cannot prevent post-scan tampering without RO capable vm\n"); 2264 return -EINVAL; 2265 } 2266 } else { 2267 len += I915_CMD_PARSER_TRAMPOLINE_SIZE; 2268 } 2269 if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */ 2270 return -EINVAL; 2271 2272 if (!pool) { 2273 pool = intel_gt_get_buffer_pool(eb->gt, len, 2274 I915_MAP_WB); 2275 if (IS_ERR(pool)) 2276 return PTR_ERR(pool); 2277 eb->batch_pool = pool; 2278 } 2279 2280 err = i915_gem_object_lock(pool->obj, &eb->ww); 2281 if (err) 2282 return err; 2283 2284 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER); 2285 if (IS_ERR(shadow)) 2286 return PTR_ERR(shadow); 2287 2288 intel_gt_buffer_pool_mark_used(pool); 2289 i915_gem_object_set_readonly(shadow->obj); 2290 shadow->private = pool; 2291 2292 trampoline = NULL; 2293 if (CMDPARSER_USES_GGTT(eb->i915)) { 2294 trampoline = shadow; 2295 2296 shadow = shadow_batch_pin(eb, pool->obj, 2297 &eb->gt->ggtt->vm, 2298 PIN_GLOBAL); 2299 if (IS_ERR(shadow)) 2300 return PTR_ERR(shadow); 2301 2302 shadow->private = pool; 2303 2304 eb->batch_flags |= I915_DISPATCH_SECURE; 2305 } 2306 2307 batch = eb_dispatch_secure(eb, shadow); 2308 if (IS_ERR(batch)) 2309 return PTR_ERR(batch); 2310 2311 err = dma_resv_reserve_fences(shadow->obj->base.resv, 1); 2312 if (err) 2313 return err; 2314 2315 err = intel_engine_cmd_parser(eb->context->engine, 2316 eb->batches[0]->vma, 2317 eb->batch_start_offset, 2318 eb->batch_len[0], 2319 shadow, trampoline); 2320 if (err) 2321 return err; 2322 2323 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2324 eb->batches[0]->vma = i915_vma_get(shadow); 2325 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2326 2327 eb->trampoline = trampoline; 2328 eb->batch_start_offset = 0; 2329 2330 secure_batch: 2331 if (batch) { 2332 if (intel_context_is_parallel(eb->context)) 2333 return -EINVAL; 2334 2335 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2336 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2337 eb->batches[0]->vma = i915_vma_get(batch); 2338 } 2339 return 0; 2340 } 2341 2342 static int eb_request_submit(struct i915_execbuffer *eb, 2343 struct i915_request *rq, 2344 struct i915_vma *batch, 2345 u64 batch_len) 2346 { 2347 int err; 2348 2349 if (intel_context_nopreempt(rq->context)) 2350 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags); 2351 2352 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 2353 err = i915_reset_gen7_sol_offsets(rq); 2354 if (err) 2355 return err; 2356 } 2357 2358 /* 2359 * After we completed waiting for other engines (using HW semaphores) 2360 * then we can signal that this request/batch is ready to run. This 2361 * allows us to determine if the batch is still waiting on the GPU 2362 * or actually running by checking the breadcrumb. 2363 */ 2364 if (rq->context->engine->emit_init_breadcrumb) { 2365 err = rq->context->engine->emit_init_breadcrumb(rq); 2366 if (err) 2367 return err; 2368 } 2369 2370 err = rq->context->engine->emit_bb_start(rq, 2371 batch->node.start + 2372 eb->batch_start_offset, 2373 batch_len, 2374 eb->batch_flags); 2375 if (err) 2376 return err; 2377 2378 if (eb->trampoline) { 2379 GEM_BUG_ON(intel_context_is_parallel(rq->context)); 2380 GEM_BUG_ON(eb->batch_start_offset); 2381 err = rq->context->engine->emit_bb_start(rq, 2382 eb->trampoline->node.start + 2383 batch_len, 0, 0); 2384 if (err) 2385 return err; 2386 } 2387 2388 return 0; 2389 } 2390 2391 static int eb_submit(struct i915_execbuffer *eb) 2392 { 2393 unsigned int i; 2394 int err; 2395 2396 err = eb_move_to_gpu(eb); 2397 2398 for_each_batch_create_order(eb, i) { 2399 if (!eb->requests[i]) 2400 break; 2401 2402 trace_i915_request_queue(eb->requests[i], eb->batch_flags); 2403 if (!err) 2404 err = eb_request_submit(eb, eb->requests[i], 2405 eb->batches[i]->vma, 2406 eb->batch_len[i]); 2407 } 2408 2409 return err; 2410 } 2411 2412 static int num_vcs_engines(struct drm_i915_private *i915) 2413 { 2414 return hweight_long(VDBOX_MASK(to_gt(i915))); 2415 } 2416 2417 /* 2418 * Find one BSD ring to dispatch the corresponding BSD command. 2419 * The engine index is returned. 2420 */ 2421 static unsigned int 2422 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, 2423 struct drm_file *file) 2424 { 2425 struct drm_i915_file_private *file_priv = file->driver_priv; 2426 2427 /* Check whether the file_priv has already selected one ring. */ 2428 if ((int)file_priv->bsd_engine < 0) 2429 file_priv->bsd_engine = 2430 prandom_u32_max(num_vcs_engines(dev_priv)); 2431 2432 return file_priv->bsd_engine; 2433 } 2434 2435 static const enum intel_engine_id user_ring_map[] = { 2436 [I915_EXEC_DEFAULT] = RCS0, 2437 [I915_EXEC_RENDER] = RCS0, 2438 [I915_EXEC_BLT] = BCS0, 2439 [I915_EXEC_BSD] = VCS0, 2440 [I915_EXEC_VEBOX] = VECS0 2441 }; 2442 2443 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce) 2444 { 2445 struct intel_ring *ring = ce->ring; 2446 struct intel_timeline *tl = ce->timeline; 2447 struct i915_request *rq; 2448 2449 /* 2450 * Completely unscientific finger-in-the-air estimates for suitable 2451 * maximum user request size (to avoid blocking) and then backoff. 2452 */ 2453 if (intel_ring_update_space(ring) >= PAGE_SIZE) 2454 return NULL; 2455 2456 /* 2457 * Find a request that after waiting upon, there will be at least half 2458 * the ring available. The hysteresis allows us to compete for the 2459 * shared ring and should mean that we sleep less often prior to 2460 * claiming our resources, but not so long that the ring completely 2461 * drains before we can submit our next request. 2462 */ 2463 list_for_each_entry(rq, &tl->requests, link) { 2464 if (rq->ring != ring) 2465 continue; 2466 2467 if (__intel_ring_space(rq->postfix, 2468 ring->emit, ring->size) > ring->size / 2) 2469 break; 2470 } 2471 if (&rq->link == &tl->requests) 2472 return NULL; /* weird, we will check again later for real */ 2473 2474 return i915_request_get(rq); 2475 } 2476 2477 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce, 2478 bool throttle) 2479 { 2480 struct intel_timeline *tl; 2481 struct i915_request *rq = NULL; 2482 2483 /* 2484 * Take a local wakeref for preparing to dispatch the execbuf as 2485 * we expect to access the hardware fairly frequently in the 2486 * process, and require the engine to be kept awake between accesses. 2487 * Upon dispatch, we acquire another prolonged wakeref that we hold 2488 * until the timeline is idle, which in turn releases the wakeref 2489 * taken on the engine, and the parent device. 2490 */ 2491 tl = intel_context_timeline_lock(ce); 2492 if (IS_ERR(tl)) 2493 return PTR_ERR(tl); 2494 2495 intel_context_enter(ce); 2496 if (throttle) 2497 rq = eb_throttle(eb, ce); 2498 intel_context_timeline_unlock(tl); 2499 2500 if (rq) { 2501 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; 2502 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT; 2503 2504 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 2505 timeout) < 0) { 2506 i915_request_put(rq); 2507 2508 /* 2509 * Error path, cannot use intel_context_timeline_lock as 2510 * that is user interruptable and this clean up step 2511 * must be done. 2512 */ 2513 mutex_lock(&ce->timeline->mutex); 2514 intel_context_exit(ce); 2515 mutex_unlock(&ce->timeline->mutex); 2516 2517 if (nonblock) 2518 return -EWOULDBLOCK; 2519 else 2520 return -EINTR; 2521 } 2522 i915_request_put(rq); 2523 } 2524 2525 return 0; 2526 } 2527 2528 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle) 2529 { 2530 struct intel_context *ce = eb->context, *child; 2531 int err; 2532 int i = 0, j = 0; 2533 2534 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED); 2535 2536 if (unlikely(intel_context_is_banned(ce))) 2537 return -EIO; 2538 2539 /* 2540 * Pinning the contexts may generate requests in order to acquire 2541 * GGTT space, so do this first before we reserve a seqno for 2542 * ourselves. 2543 */ 2544 err = intel_context_pin_ww(ce, &eb->ww); 2545 if (err) 2546 return err; 2547 for_each_child(ce, child) { 2548 err = intel_context_pin_ww(child, &eb->ww); 2549 GEM_BUG_ON(err); /* perma-pinned should incr a counter */ 2550 } 2551 2552 for_each_child(ce, child) { 2553 err = eb_pin_timeline(eb, child, throttle); 2554 if (err) 2555 goto unwind; 2556 ++i; 2557 } 2558 err = eb_pin_timeline(eb, ce, throttle); 2559 if (err) 2560 goto unwind; 2561 2562 eb->args->flags |= __EXEC_ENGINE_PINNED; 2563 return 0; 2564 2565 unwind: 2566 for_each_child(ce, child) { 2567 if (j++ < i) { 2568 mutex_lock(&child->timeline->mutex); 2569 intel_context_exit(child); 2570 mutex_unlock(&child->timeline->mutex); 2571 } 2572 } 2573 for_each_child(ce, child) 2574 intel_context_unpin(child); 2575 intel_context_unpin(ce); 2576 return err; 2577 } 2578 2579 static void eb_unpin_engine(struct i915_execbuffer *eb) 2580 { 2581 struct intel_context *ce = eb->context, *child; 2582 2583 if (!(eb->args->flags & __EXEC_ENGINE_PINNED)) 2584 return; 2585 2586 eb->args->flags &= ~__EXEC_ENGINE_PINNED; 2587 2588 for_each_child(ce, child) { 2589 mutex_lock(&child->timeline->mutex); 2590 intel_context_exit(child); 2591 mutex_unlock(&child->timeline->mutex); 2592 2593 intel_context_unpin(child); 2594 } 2595 2596 mutex_lock(&ce->timeline->mutex); 2597 intel_context_exit(ce); 2598 mutex_unlock(&ce->timeline->mutex); 2599 2600 intel_context_unpin(ce); 2601 } 2602 2603 static unsigned int 2604 eb_select_legacy_ring(struct i915_execbuffer *eb) 2605 { 2606 struct drm_i915_private *i915 = eb->i915; 2607 struct drm_i915_gem_execbuffer2 *args = eb->args; 2608 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2609 2610 if (user_ring_id != I915_EXEC_BSD && 2611 (args->flags & I915_EXEC_BSD_MASK)) { 2612 drm_dbg(&i915->drm, 2613 "execbuf with non bsd ring but with invalid " 2614 "bsd dispatch flags: %d\n", (int)(args->flags)); 2615 return -1; 2616 } 2617 2618 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) { 2619 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2620 2621 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2622 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file); 2623 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2624 bsd_idx <= I915_EXEC_BSD_RING2) { 2625 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2626 bsd_idx--; 2627 } else { 2628 drm_dbg(&i915->drm, 2629 "execbuf with unknown bsd ring: %u\n", 2630 bsd_idx); 2631 return -1; 2632 } 2633 2634 return _VCS(bsd_idx); 2635 } 2636 2637 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { 2638 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", 2639 user_ring_id); 2640 return -1; 2641 } 2642 2643 return user_ring_map[user_ring_id]; 2644 } 2645 2646 static int 2647 eb_select_engine(struct i915_execbuffer *eb) 2648 { 2649 struct intel_context *ce, *child; 2650 unsigned int idx; 2651 int err; 2652 2653 if (i915_gem_context_user_engines(eb->gem_context)) 2654 idx = eb->args->flags & I915_EXEC_RING_MASK; 2655 else 2656 idx = eb_select_legacy_ring(eb); 2657 2658 ce = i915_gem_context_get_engine(eb->gem_context, idx); 2659 if (IS_ERR(ce)) 2660 return PTR_ERR(ce); 2661 2662 if (intel_context_is_parallel(ce)) { 2663 if (eb->buffer_count < ce->parallel.number_children + 1) { 2664 intel_context_put(ce); 2665 return -EINVAL; 2666 } 2667 if (eb->batch_start_offset || eb->args->batch_len) { 2668 intel_context_put(ce); 2669 return -EINVAL; 2670 } 2671 } 2672 eb->num_batches = ce->parallel.number_children + 1; 2673 2674 for_each_child(ce, child) 2675 intel_context_get(child); 2676 intel_gt_pm_get(ce->engine->gt); 2677 2678 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) { 2679 err = intel_context_alloc_state(ce); 2680 if (err) 2681 goto err; 2682 } 2683 for_each_child(ce, child) { 2684 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) { 2685 err = intel_context_alloc_state(child); 2686 if (err) 2687 goto err; 2688 } 2689 } 2690 2691 /* 2692 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 2693 * EIO if the GPU is already wedged. 2694 */ 2695 err = intel_gt_terminally_wedged(ce->engine->gt); 2696 if (err) 2697 goto err; 2698 2699 if (!i915_vm_tryget(ce->vm)) { 2700 err = -ENOENT; 2701 goto err; 2702 } 2703 2704 eb->context = ce; 2705 eb->gt = ce->engine->gt; 2706 2707 /* 2708 * Make sure engine pool stays alive even if we call intel_context_put 2709 * during ww handling. The pool is destroyed when last pm reference 2710 * is dropped, which breaks our -EDEADLK handling. 2711 */ 2712 return err; 2713 2714 err: 2715 intel_gt_pm_put(ce->engine->gt); 2716 for_each_child(ce, child) 2717 intel_context_put(child); 2718 intel_context_put(ce); 2719 return err; 2720 } 2721 2722 static void 2723 eb_put_engine(struct i915_execbuffer *eb) 2724 { 2725 struct intel_context *child; 2726 2727 i915_vm_put(eb->context->vm); 2728 intel_gt_pm_put(eb->gt); 2729 for_each_child(eb->context, child) 2730 intel_context_put(child); 2731 intel_context_put(eb->context); 2732 } 2733 2734 static void 2735 __free_fence_array(struct eb_fence *fences, unsigned int n) 2736 { 2737 while (n--) { 2738 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2)); 2739 dma_fence_put(fences[n].dma_fence); 2740 dma_fence_chain_free(fences[n].chain_fence); 2741 } 2742 kvfree(fences); 2743 } 2744 2745 static int 2746 add_timeline_fence_array(struct i915_execbuffer *eb, 2747 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences) 2748 { 2749 struct drm_i915_gem_exec_fence __user *user_fences; 2750 u64 __user *user_values; 2751 struct eb_fence *f; 2752 u64 nfences; 2753 int err = 0; 2754 2755 nfences = timeline_fences->fence_count; 2756 if (!nfences) 2757 return 0; 2758 2759 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2760 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2761 if (nfences > min_t(unsigned long, 2762 ULONG_MAX / sizeof(*user_fences), 2763 SIZE_MAX / sizeof(*f)) - eb->num_fences) 2764 return -EINVAL; 2765 2766 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr); 2767 if (!access_ok(user_fences, nfences * sizeof(*user_fences))) 2768 return -EFAULT; 2769 2770 user_values = u64_to_user_ptr(timeline_fences->values_ptr); 2771 if (!access_ok(user_values, nfences * sizeof(*user_values))) 2772 return -EFAULT; 2773 2774 f = krealloc(eb->fences, 2775 (eb->num_fences + nfences) * sizeof(*f), 2776 __GFP_NOWARN | GFP_KERNEL); 2777 if (!f) 2778 return -ENOMEM; 2779 2780 eb->fences = f; 2781 f += eb->num_fences; 2782 2783 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2784 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2785 2786 while (nfences--) { 2787 struct drm_i915_gem_exec_fence user_fence; 2788 struct drm_syncobj *syncobj; 2789 struct dma_fence *fence = NULL; 2790 u64 point; 2791 2792 if (__copy_from_user(&user_fence, 2793 user_fences++, 2794 sizeof(user_fence))) 2795 return -EFAULT; 2796 2797 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2798 return -EINVAL; 2799 2800 if (__get_user(point, user_values++)) 2801 return -EFAULT; 2802 2803 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2804 if (!syncobj) { 2805 drm_dbg(&eb->i915->drm, 2806 "Invalid syncobj handle provided\n"); 2807 return -ENOENT; 2808 } 2809 2810 fence = drm_syncobj_fence_get(syncobj); 2811 2812 if (!fence && user_fence.flags && 2813 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2814 drm_dbg(&eb->i915->drm, 2815 "Syncobj handle has no fence\n"); 2816 drm_syncobj_put(syncobj); 2817 return -EINVAL; 2818 } 2819 2820 if (fence) 2821 err = dma_fence_chain_find_seqno(&fence, point); 2822 2823 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2824 drm_dbg(&eb->i915->drm, 2825 "Syncobj handle missing requested point %llu\n", 2826 point); 2827 dma_fence_put(fence); 2828 drm_syncobj_put(syncobj); 2829 return err; 2830 } 2831 2832 /* 2833 * A point might have been signaled already and 2834 * garbage collected from the timeline. In this case 2835 * just ignore the point and carry on. 2836 */ 2837 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2838 drm_syncobj_put(syncobj); 2839 continue; 2840 } 2841 2842 /* 2843 * For timeline syncobjs we need to preallocate chains for 2844 * later signaling. 2845 */ 2846 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) { 2847 /* 2848 * Waiting and signaling the same point (when point != 2849 * 0) would break the timeline. 2850 */ 2851 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2852 drm_dbg(&eb->i915->drm, 2853 "Trying to wait & signal the same timeline point.\n"); 2854 dma_fence_put(fence); 2855 drm_syncobj_put(syncobj); 2856 return -EINVAL; 2857 } 2858 2859 f->chain_fence = dma_fence_chain_alloc(); 2860 if (!f->chain_fence) { 2861 drm_syncobj_put(syncobj); 2862 dma_fence_put(fence); 2863 return -ENOMEM; 2864 } 2865 } else { 2866 f->chain_fence = NULL; 2867 } 2868 2869 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2870 f->dma_fence = fence; 2871 f->value = point; 2872 f++; 2873 eb->num_fences++; 2874 } 2875 2876 return 0; 2877 } 2878 2879 static int add_fence_array(struct i915_execbuffer *eb) 2880 { 2881 struct drm_i915_gem_execbuffer2 *args = eb->args; 2882 struct drm_i915_gem_exec_fence __user *user; 2883 unsigned long num_fences = args->num_cliprects; 2884 struct eb_fence *f; 2885 2886 if (!(args->flags & I915_EXEC_FENCE_ARRAY)) 2887 return 0; 2888 2889 if (!num_fences) 2890 return 0; 2891 2892 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2893 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2894 if (num_fences > min_t(unsigned long, 2895 ULONG_MAX / sizeof(*user), 2896 SIZE_MAX / sizeof(*f) - eb->num_fences)) 2897 return -EINVAL; 2898 2899 user = u64_to_user_ptr(args->cliprects_ptr); 2900 if (!access_ok(user, num_fences * sizeof(*user))) 2901 return -EFAULT; 2902 2903 f = krealloc(eb->fences, 2904 (eb->num_fences + num_fences) * sizeof(*f), 2905 __GFP_NOWARN | GFP_KERNEL); 2906 if (!f) 2907 return -ENOMEM; 2908 2909 eb->fences = f; 2910 f += eb->num_fences; 2911 while (num_fences--) { 2912 struct drm_i915_gem_exec_fence user_fence; 2913 struct drm_syncobj *syncobj; 2914 struct dma_fence *fence = NULL; 2915 2916 if (__copy_from_user(&user_fence, user++, sizeof(user_fence))) 2917 return -EFAULT; 2918 2919 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2920 return -EINVAL; 2921 2922 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2923 if (!syncobj) { 2924 drm_dbg(&eb->i915->drm, 2925 "Invalid syncobj handle provided\n"); 2926 return -ENOENT; 2927 } 2928 2929 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2930 fence = drm_syncobj_fence_get(syncobj); 2931 if (!fence) { 2932 drm_dbg(&eb->i915->drm, 2933 "Syncobj handle has no fence\n"); 2934 drm_syncobj_put(syncobj); 2935 return -EINVAL; 2936 } 2937 } 2938 2939 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2940 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2941 2942 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2943 f->dma_fence = fence; 2944 f->value = 0; 2945 f->chain_fence = NULL; 2946 f++; 2947 eb->num_fences++; 2948 } 2949 2950 return 0; 2951 } 2952 2953 static void put_fence_array(struct eb_fence *fences, int num_fences) 2954 { 2955 if (fences) 2956 __free_fence_array(fences, num_fences); 2957 } 2958 2959 static int 2960 await_fence_array(struct i915_execbuffer *eb, 2961 struct i915_request *rq) 2962 { 2963 unsigned int n; 2964 int err; 2965 2966 for (n = 0; n < eb->num_fences; n++) { 2967 if (!eb->fences[n].dma_fence) 2968 continue; 2969 2970 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence); 2971 if (err < 0) 2972 return err; 2973 } 2974 2975 return 0; 2976 } 2977 2978 static void signal_fence_array(const struct i915_execbuffer *eb, 2979 struct dma_fence * const fence) 2980 { 2981 unsigned int n; 2982 2983 for (n = 0; n < eb->num_fences; n++) { 2984 struct drm_syncobj *syncobj; 2985 unsigned int flags; 2986 2987 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 2988 if (!(flags & I915_EXEC_FENCE_SIGNAL)) 2989 continue; 2990 2991 if (eb->fences[n].chain_fence) { 2992 drm_syncobj_add_point(syncobj, 2993 eb->fences[n].chain_fence, 2994 fence, 2995 eb->fences[n].value); 2996 /* 2997 * The chain's ownership is transferred to the 2998 * timeline. 2999 */ 3000 eb->fences[n].chain_fence = NULL; 3001 } else { 3002 drm_syncobj_replace_fence(syncobj, fence); 3003 } 3004 } 3005 } 3006 3007 static int 3008 parse_timeline_fences(struct i915_user_extension __user *ext, void *data) 3009 { 3010 struct i915_execbuffer *eb = data; 3011 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences; 3012 3013 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences))) 3014 return -EFAULT; 3015 3016 return add_timeline_fence_array(eb, &timeline_fences); 3017 } 3018 3019 static void retire_requests(struct intel_timeline *tl, struct i915_request *end) 3020 { 3021 struct i915_request *rq, *rn; 3022 3023 list_for_each_entry_safe(rq, rn, &tl->requests, link) 3024 if (rq == end || !i915_request_retire(rq)) 3025 break; 3026 } 3027 3028 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq, 3029 int err, bool last_parallel) 3030 { 3031 struct intel_timeline * const tl = i915_request_timeline(rq); 3032 struct i915_sched_attr attr = {}; 3033 struct i915_request *prev; 3034 3035 lockdep_assert_held(&tl->mutex); 3036 lockdep_unpin_lock(&tl->mutex, rq->cookie); 3037 3038 trace_i915_request_add(rq); 3039 3040 prev = __i915_request_commit(rq); 3041 3042 /* Check that the context wasn't destroyed before submission */ 3043 if (likely(!intel_context_is_closed(eb->context))) { 3044 attr = eb->gem_context->sched; 3045 } else { 3046 /* Serialise with context_close via the add_to_timeline */ 3047 i915_request_set_error_once(rq, -ENOENT); 3048 __i915_request_skip(rq); 3049 err = -ENOENT; /* override any transient errors */ 3050 } 3051 3052 if (intel_context_is_parallel(eb->context)) { 3053 if (err) { 3054 __i915_request_skip(rq); 3055 set_bit(I915_FENCE_FLAG_SKIP_PARALLEL, 3056 &rq->fence.flags); 3057 } 3058 if (last_parallel) 3059 set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, 3060 &rq->fence.flags); 3061 } 3062 3063 __i915_request_queue(rq, &attr); 3064 3065 /* Try to clean up the client's timeline after submitting the request */ 3066 if (prev) 3067 retire_requests(tl, prev); 3068 3069 mutex_unlock(&tl->mutex); 3070 3071 return err; 3072 } 3073 3074 static int eb_requests_add(struct i915_execbuffer *eb, int err) 3075 { 3076 int i; 3077 3078 /* 3079 * We iterate in reverse order of creation to release timeline mutexes in 3080 * same order. 3081 */ 3082 for_each_batch_add_order(eb, i) { 3083 struct i915_request *rq = eb->requests[i]; 3084 3085 if (!rq) 3086 continue; 3087 err |= eb_request_add(eb, rq, err, i == 0); 3088 } 3089 3090 return err; 3091 } 3092 3093 static const i915_user_extension_fn execbuf_extensions[] = { 3094 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences, 3095 }; 3096 3097 static int 3098 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args, 3099 struct i915_execbuffer *eb) 3100 { 3101 if (!(args->flags & I915_EXEC_USE_EXTENSIONS)) 3102 return 0; 3103 3104 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot 3105 * have another flag also using it at the same time. 3106 */ 3107 if (eb->args->flags & I915_EXEC_FENCE_ARRAY) 3108 return -EINVAL; 3109 3110 if (args->num_cliprects != 0) 3111 return -EINVAL; 3112 3113 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr), 3114 execbuf_extensions, 3115 ARRAY_SIZE(execbuf_extensions), 3116 eb); 3117 } 3118 3119 static void eb_requests_get(struct i915_execbuffer *eb) 3120 { 3121 unsigned int i; 3122 3123 for_each_batch_create_order(eb, i) { 3124 if (!eb->requests[i]) 3125 break; 3126 3127 i915_request_get(eb->requests[i]); 3128 } 3129 } 3130 3131 static void eb_requests_put(struct i915_execbuffer *eb) 3132 { 3133 unsigned int i; 3134 3135 for_each_batch_create_order(eb, i) { 3136 if (!eb->requests[i]) 3137 break; 3138 3139 i915_request_put(eb->requests[i]); 3140 } 3141 } 3142 3143 static struct sync_file * 3144 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd) 3145 { 3146 struct sync_file *out_fence = NULL; 3147 struct dma_fence_array *fence_array; 3148 struct dma_fence **fences; 3149 unsigned int i; 3150 3151 GEM_BUG_ON(!intel_context_is_parent(eb->context)); 3152 3153 fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL); 3154 if (!fences) 3155 return ERR_PTR(-ENOMEM); 3156 3157 for_each_batch_create_order(eb, i) { 3158 fences[i] = &eb->requests[i]->fence; 3159 __set_bit(I915_FENCE_FLAG_COMPOSITE, 3160 &eb->requests[i]->fence.flags); 3161 } 3162 3163 fence_array = dma_fence_array_create(eb->num_batches, 3164 fences, 3165 eb->context->parallel.fence_context, 3166 eb->context->parallel.seqno++, 3167 false); 3168 if (!fence_array) { 3169 kfree(fences); 3170 return ERR_PTR(-ENOMEM); 3171 } 3172 3173 /* Move ownership to the dma_fence_array created above */ 3174 for_each_batch_create_order(eb, i) 3175 dma_fence_get(fences[i]); 3176 3177 if (out_fence_fd != -1) { 3178 out_fence = sync_file_create(&fence_array->base); 3179 /* sync_file now owns fence_arry, drop creation ref */ 3180 dma_fence_put(&fence_array->base); 3181 if (!out_fence) 3182 return ERR_PTR(-ENOMEM); 3183 } 3184 3185 eb->composite_fence = &fence_array->base; 3186 3187 return out_fence; 3188 } 3189 3190 static struct sync_file * 3191 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq, 3192 struct dma_fence *in_fence, int out_fence_fd) 3193 { 3194 struct sync_file *out_fence = NULL; 3195 int err; 3196 3197 if (unlikely(eb->gem_context->syncobj)) { 3198 struct dma_fence *fence; 3199 3200 fence = drm_syncobj_fence_get(eb->gem_context->syncobj); 3201 err = i915_request_await_dma_fence(rq, fence); 3202 dma_fence_put(fence); 3203 if (err) 3204 return ERR_PTR(err); 3205 } 3206 3207 if (in_fence) { 3208 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT) 3209 err = i915_request_await_execution(rq, in_fence); 3210 else 3211 err = i915_request_await_dma_fence(rq, in_fence); 3212 if (err < 0) 3213 return ERR_PTR(err); 3214 } 3215 3216 if (eb->fences) { 3217 err = await_fence_array(eb, rq); 3218 if (err) 3219 return ERR_PTR(err); 3220 } 3221 3222 if (intel_context_is_parallel(eb->context)) { 3223 out_fence = eb_composite_fence_create(eb, out_fence_fd); 3224 if (IS_ERR(out_fence)) 3225 return ERR_PTR(-ENOMEM); 3226 } else if (out_fence_fd != -1) { 3227 out_fence = sync_file_create(&rq->fence); 3228 if (!out_fence) 3229 return ERR_PTR(-ENOMEM); 3230 } 3231 3232 return out_fence; 3233 } 3234 3235 static struct intel_context * 3236 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number) 3237 { 3238 struct intel_context *child; 3239 3240 if (likely(context_number == 0)) 3241 return eb->context; 3242 3243 for_each_child(eb->context, child) 3244 if (!--context_number) 3245 return child; 3246 3247 GEM_BUG_ON("Context not found"); 3248 3249 return NULL; 3250 } 3251 3252 static struct sync_file * 3253 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence, 3254 int out_fence_fd) 3255 { 3256 struct sync_file *out_fence = NULL; 3257 unsigned int i; 3258 3259 for_each_batch_create_order(eb, i) { 3260 /* Allocate a request for this batch buffer nice and early. */ 3261 eb->requests[i] = i915_request_create(eb_find_context(eb, i)); 3262 if (IS_ERR(eb->requests[i])) { 3263 out_fence = ERR_CAST(eb->requests[i]); 3264 eb->requests[i] = NULL; 3265 return out_fence; 3266 } 3267 3268 /* 3269 * Only the first request added (committed to backend) has to 3270 * take the in fences into account as all subsequent requests 3271 * will have fences inserted inbetween them. 3272 */ 3273 if (i + 1 == eb->num_batches) { 3274 out_fence = eb_fences_add(eb, eb->requests[i], 3275 in_fence, out_fence_fd); 3276 if (IS_ERR(out_fence)) 3277 return out_fence; 3278 } 3279 3280 /* 3281 * Not really on stack, but we don't want to call 3282 * kfree on the batch_snapshot when we put it, so use the 3283 * _onstack interface. 3284 */ 3285 if (eb->batches[i]->vma) 3286 eb->requests[i]->batch_res = 3287 i915_vma_resource_get(eb->batches[i]->vma->resource); 3288 if (eb->batch_pool) { 3289 GEM_BUG_ON(intel_context_is_parallel(eb->context)); 3290 intel_gt_buffer_pool_mark_active(eb->batch_pool, 3291 eb->requests[i]); 3292 } 3293 } 3294 3295 return out_fence; 3296 } 3297 3298 static int 3299 i915_gem_do_execbuffer(struct drm_device *dev, 3300 struct drm_file *file, 3301 struct drm_i915_gem_execbuffer2 *args, 3302 struct drm_i915_gem_exec_object2 *exec) 3303 { 3304 struct drm_i915_private *i915 = to_i915(dev); 3305 struct i915_execbuffer eb; 3306 struct dma_fence *in_fence = NULL; 3307 struct sync_file *out_fence = NULL; 3308 int out_fence_fd = -1; 3309 int err; 3310 3311 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); 3312 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 3313 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 3314 3315 eb.i915 = i915; 3316 eb.file = file; 3317 eb.args = args; 3318 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 3319 args->flags |= __EXEC_HAS_RELOC; 3320 3321 eb.exec = exec; 3322 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1); 3323 eb.vma[0].vma = NULL; 3324 eb.batch_pool = NULL; 3325 3326 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 3327 reloc_cache_init(&eb.reloc_cache, eb.i915); 3328 3329 eb.buffer_count = args->buffer_count; 3330 eb.batch_start_offset = args->batch_start_offset; 3331 eb.trampoline = NULL; 3332 3333 eb.fences = NULL; 3334 eb.num_fences = 0; 3335 3336 eb_capture_list_clear(&eb); 3337 3338 memset(eb.requests, 0, sizeof(struct i915_request *) * 3339 ARRAY_SIZE(eb.requests)); 3340 eb.composite_fence = NULL; 3341 3342 eb.batch_flags = 0; 3343 if (args->flags & I915_EXEC_SECURE) { 3344 if (GRAPHICS_VER(i915) >= 11) 3345 return -ENODEV; 3346 3347 /* Return -EPERM to trigger fallback code on old binaries. */ 3348 if (!HAS_SECURE_BATCHES(i915)) 3349 return -EPERM; 3350 3351 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 3352 return -EPERM; 3353 3354 eb.batch_flags |= I915_DISPATCH_SECURE; 3355 } 3356 if (args->flags & I915_EXEC_IS_PINNED) 3357 eb.batch_flags |= I915_DISPATCH_PINNED; 3358 3359 err = parse_execbuf2_extensions(args, &eb); 3360 if (err) 3361 goto err_ext; 3362 3363 err = add_fence_array(&eb); 3364 if (err) 3365 goto err_ext; 3366 3367 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT) 3368 if (args->flags & IN_FENCES) { 3369 if ((args->flags & IN_FENCES) == IN_FENCES) 3370 return -EINVAL; 3371 3372 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 3373 if (!in_fence) { 3374 err = -EINVAL; 3375 goto err_ext; 3376 } 3377 } 3378 #undef IN_FENCES 3379 3380 if (args->flags & I915_EXEC_FENCE_OUT) { 3381 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 3382 if (out_fence_fd < 0) { 3383 err = out_fence_fd; 3384 goto err_in_fence; 3385 } 3386 } 3387 3388 err = eb_create(&eb); 3389 if (err) 3390 goto err_out_fence; 3391 3392 GEM_BUG_ON(!eb.lut_size); 3393 3394 err = eb_select_context(&eb); 3395 if (unlikely(err)) 3396 goto err_destroy; 3397 3398 err = eb_select_engine(&eb); 3399 if (unlikely(err)) 3400 goto err_context; 3401 3402 err = eb_lookup_vmas(&eb); 3403 if (err) { 3404 eb_release_vmas(&eb, true); 3405 goto err_engine; 3406 } 3407 3408 i915_gem_ww_ctx_init(&eb.ww, true); 3409 3410 err = eb_relocate_parse(&eb); 3411 if (err) { 3412 /* 3413 * If the user expects the execobject.offset and 3414 * reloc.presumed_offset to be an exact match, 3415 * as for using NO_RELOC, then we cannot update 3416 * the execobject.offset until we have completed 3417 * relocation. 3418 */ 3419 args->flags &= ~__EXEC_HAS_RELOC; 3420 goto err_vma; 3421 } 3422 3423 ww_acquire_done(&eb.ww.ctx); 3424 err = eb_capture_stage(&eb); 3425 if (err) 3426 goto err_vma; 3427 3428 out_fence = eb_requests_create(&eb, in_fence, out_fence_fd); 3429 if (IS_ERR(out_fence)) { 3430 err = PTR_ERR(out_fence); 3431 out_fence = NULL; 3432 if (eb.requests[0]) 3433 goto err_request; 3434 else 3435 goto err_vma; 3436 } 3437 3438 err = eb_submit(&eb); 3439 3440 err_request: 3441 eb_requests_get(&eb); 3442 err = eb_requests_add(&eb, err); 3443 3444 if (eb.fences) 3445 signal_fence_array(&eb, eb.composite_fence ? 3446 eb.composite_fence : 3447 &eb.requests[0]->fence); 3448 3449 if (out_fence) { 3450 if (err == 0) { 3451 fd_install(out_fence_fd, out_fence->file); 3452 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ 3453 args->rsvd2 |= (u64)out_fence_fd << 32; 3454 out_fence_fd = -1; 3455 } else { 3456 fput(out_fence->file); 3457 } 3458 } 3459 3460 if (unlikely(eb.gem_context->syncobj)) { 3461 drm_syncobj_replace_fence(eb.gem_context->syncobj, 3462 eb.composite_fence ? 3463 eb.composite_fence : 3464 &eb.requests[0]->fence); 3465 } 3466 3467 if (!out_fence && eb.composite_fence) 3468 dma_fence_put(eb.composite_fence); 3469 3470 eb_requests_put(&eb); 3471 3472 err_vma: 3473 eb_release_vmas(&eb, true); 3474 WARN_ON(err == -EDEADLK); 3475 i915_gem_ww_ctx_fini(&eb.ww); 3476 3477 if (eb.batch_pool) 3478 intel_gt_buffer_pool_put(eb.batch_pool); 3479 err_engine: 3480 eb_put_engine(&eb); 3481 err_context: 3482 i915_gem_context_put(eb.gem_context); 3483 err_destroy: 3484 eb_destroy(&eb); 3485 err_out_fence: 3486 if (out_fence_fd != -1) 3487 put_unused_fd(out_fence_fd); 3488 err_in_fence: 3489 dma_fence_put(in_fence); 3490 err_ext: 3491 put_fence_array(eb.fences, eb.num_fences); 3492 return err; 3493 } 3494 3495 static size_t eb_element_size(void) 3496 { 3497 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma); 3498 } 3499 3500 static bool check_buffer_count(size_t count) 3501 { 3502 const size_t sz = eb_element_size(); 3503 3504 /* 3505 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup 3506 * array size (see eb_create()). Otherwise, we can accept an array as 3507 * large as can be addressed (though use large arrays at your peril)! 3508 */ 3509 3510 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); 3511 } 3512 3513 int 3514 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 3515 struct drm_file *file) 3516 { 3517 struct drm_i915_private *i915 = to_i915(dev); 3518 struct drm_i915_gem_execbuffer2 *args = data; 3519 struct drm_i915_gem_exec_object2 *exec2_list; 3520 const size_t count = args->buffer_count; 3521 int err; 3522 3523 if (!check_buffer_count(count)) { 3524 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 3525 return -EINVAL; 3526 } 3527 3528 err = i915_gem_check_execbuffer(i915, args); 3529 if (err) 3530 return err; 3531 3532 /* Allocate extra slots for use by the command parser */ 3533 exec2_list = kvmalloc_array(count + 2, eb_element_size(), 3534 __GFP_NOWARN | GFP_KERNEL); 3535 if (exec2_list == NULL) { 3536 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", 3537 count); 3538 return -ENOMEM; 3539 } 3540 if (copy_from_user(exec2_list, 3541 u64_to_user_ptr(args->buffers_ptr), 3542 sizeof(*exec2_list) * count)) { 3543 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); 3544 kvfree(exec2_list); 3545 return -EFAULT; 3546 } 3547 3548 err = i915_gem_do_execbuffer(dev, file, args, exec2_list); 3549 3550 /* 3551 * Now that we have begun execution of the batchbuffer, we ignore 3552 * any new error after this point. Also given that we have already 3553 * updated the associated relocations, we try to write out the current 3554 * object locations irrespective of any error. 3555 */ 3556 if (args->flags & __EXEC_HAS_RELOC) { 3557 struct drm_i915_gem_exec_object2 __user *user_exec_list = 3558 u64_to_user_ptr(args->buffers_ptr); 3559 unsigned int i; 3560 3561 /* Copy the new buffer offsets back to the user's exec list. */ 3562 /* 3563 * Note: count * sizeof(*user_exec_list) does not overflow, 3564 * because we checked 'count' in check_buffer_count(). 3565 * 3566 * And this range already got effectively checked earlier 3567 * when we did the "copy_from_user()" above. 3568 */ 3569 if (!user_write_access_begin(user_exec_list, 3570 count * sizeof(*user_exec_list))) 3571 goto end; 3572 3573 for (i = 0; i < args->buffer_count; i++) { 3574 if (!(exec2_list[i].offset & UPDATE)) 3575 continue; 3576 3577 exec2_list[i].offset = 3578 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 3579 unsafe_put_user(exec2_list[i].offset, 3580 &user_exec_list[i].offset, 3581 end_user); 3582 } 3583 end_user: 3584 user_write_access_end(); 3585 end:; 3586 } 3587 3588 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 3589 kvfree(exec2_list); 3590 return err; 3591 } 3592