1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6 
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11 
12 #include <drm/drm_syncobj.h>
13 
14 #include "display/intel_frontbuffer.h"
15 
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gt.h"
19 #include "gt/intel_gt_buffer_pool.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_ring.h"
22 
23 #include "i915_drv.h"
24 #include "i915_gem_clflush.h"
25 #include "i915_gem_context.h"
26 #include "i915_gem_ioctls.h"
27 #include "i915_sw_fence_work.h"
28 #include "i915_trace.h"
29 #include "i915_user_extensions.h"
30 
31 struct eb_vma {
32 	struct i915_vma *vma;
33 	unsigned int flags;
34 
35 	/** This vma's place in the execbuf reservation list */
36 	struct drm_i915_gem_exec_object2 *exec;
37 	struct list_head bind_link;
38 	struct list_head reloc_link;
39 
40 	struct hlist_node node;
41 	u32 handle;
42 };
43 
44 enum {
45 	FORCE_CPU_RELOC = 1,
46 	FORCE_GTT_RELOC,
47 	FORCE_GPU_RELOC,
48 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
49 };
50 
51 #define __EXEC_OBJECT_HAS_PIN		BIT(31)
52 #define __EXEC_OBJECT_HAS_FENCE		BIT(30)
53 #define __EXEC_OBJECT_NEEDS_MAP		BIT(29)
54 #define __EXEC_OBJECT_NEEDS_BIAS	BIT(28)
55 #define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 28) /* all of the above */
56 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
57 
58 #define __EXEC_HAS_RELOC	BIT(31)
59 #define __EXEC_ENGINE_PINNED	BIT(30)
60 #define __EXEC_INTERNAL_FLAGS	(~0u << 30)
61 #define UPDATE			PIN_OFFSET_FIXED
62 
63 #define BATCH_OFFSET_BIAS (256*1024)
64 
65 #define __I915_EXEC_ILLEGAL_FLAGS \
66 	(__I915_EXEC_UNKNOWN_FLAGS | \
67 	 I915_EXEC_CONSTANTS_MASK  | \
68 	 I915_EXEC_RESOURCE_STREAMER)
69 
70 /* Catch emission of unexpected errors for CI! */
71 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
72 #undef EINVAL
73 #define EINVAL ({ \
74 	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
75 	22; \
76 })
77 #endif
78 
79 /**
80  * DOC: User command execution
81  *
82  * Userspace submits commands to be executed on the GPU as an instruction
83  * stream within a GEM object we call a batchbuffer. This instructions may
84  * refer to other GEM objects containing auxiliary state such as kernels,
85  * samplers, render targets and even secondary batchbuffers. Userspace does
86  * not know where in the GPU memory these objects reside and so before the
87  * batchbuffer is passed to the GPU for execution, those addresses in the
88  * batchbuffer and auxiliary objects are updated. This is known as relocation,
89  * or patching. To try and avoid having to relocate each object on the next
90  * execution, userspace is told the location of those objects in this pass,
91  * but this remains just a hint as the kernel may choose a new location for
92  * any object in the future.
93  *
94  * At the level of talking to the hardware, submitting a batchbuffer for the
95  * GPU to execute is to add content to a buffer from which the HW
96  * command streamer is reading.
97  *
98  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
99  *    Execlists, this command is not placed on the same buffer as the
100  *    remaining items.
101  *
102  * 2. Add a command to invalidate caches to the buffer.
103  *
104  * 3. Add a batchbuffer start command to the buffer; the start command is
105  *    essentially a token together with the GPU address of the batchbuffer
106  *    to be executed.
107  *
108  * 4. Add a pipeline flush to the buffer.
109  *
110  * 5. Add a memory write command to the buffer to record when the GPU
111  *    is done executing the batchbuffer. The memory write writes the
112  *    global sequence number of the request, ``i915_request::global_seqno``;
113  *    the i915 driver uses the current value in the register to determine
114  *    if the GPU has completed the batchbuffer.
115  *
116  * 6. Add a user interrupt command to the buffer. This command instructs
117  *    the GPU to issue an interrupt when the command, pipeline flush and
118  *    memory write are completed.
119  *
120  * 7. Inform the hardware of the additional commands added to the buffer
121  *    (by updating the tail pointer).
122  *
123  * Processing an execbuf ioctl is conceptually split up into a few phases.
124  *
125  * 1. Validation - Ensure all the pointers, handles and flags are valid.
126  * 2. Reservation - Assign GPU address space for every object
127  * 3. Relocation - Update any addresses to point to the final locations
128  * 4. Serialisation - Order the request with respect to its dependencies
129  * 5. Construction - Construct a request to execute the batchbuffer
130  * 6. Submission (at some point in the future execution)
131  *
132  * Reserving resources for the execbuf is the most complicated phase. We
133  * neither want to have to migrate the object in the address space, nor do
134  * we want to have to update any relocations pointing to this object. Ideally,
135  * we want to leave the object where it is and for all the existing relocations
136  * to match. If the object is given a new address, or if userspace thinks the
137  * object is elsewhere, we have to parse all the relocation entries and update
138  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
139  * all the target addresses in all of its objects match the value in the
140  * relocation entries and that they all match the presumed offsets given by the
141  * list of execbuffer objects. Using this knowledge, we know that if we haven't
142  * moved any buffers, all the relocation entries are valid and we can skip
143  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
144  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
145  *
146  *      The addresses written in the objects must match the corresponding
147  *      reloc.presumed_offset which in turn must match the corresponding
148  *      execobject.offset.
149  *
150  *      Any render targets written to in the batch must be flagged with
151  *      EXEC_OBJECT_WRITE.
152  *
153  *      To avoid stalling, execobject.offset should match the current
154  *      address of that object within the active context.
155  *
156  * The reservation is done is multiple phases. First we try and keep any
157  * object already bound in its current location - so as long as meets the
158  * constraints imposed by the new execbuffer. Any object left unbound after the
159  * first pass is then fitted into any available idle space. If an object does
160  * not fit, all objects are removed from the reservation and the process rerun
161  * after sorting the objects into a priority order (more difficult to fit
162  * objects are tried first). Failing that, the entire VM is cleared and we try
163  * to fit the execbuf once last time before concluding that it simply will not
164  * fit.
165  *
166  * A small complication to all of this is that we allow userspace not only to
167  * specify an alignment and a size for the object in the address space, but
168  * we also allow userspace to specify the exact offset. This objects are
169  * simpler to place (the location is known a priori) all we have to do is make
170  * sure the space is available.
171  *
172  * Once all the objects are in place, patching up the buried pointers to point
173  * to the final locations is a fairly simple job of walking over the relocation
174  * entry arrays, looking up the right address and rewriting the value into
175  * the object. Simple! ... The relocation entries are stored in user memory
176  * and so to access them we have to copy them into a local buffer. That copy
177  * has to avoid taking any pagefaults as they may lead back to a GEM object
178  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
179  * the relocation into multiple passes. First we try to do everything within an
180  * atomic context (avoid the pagefaults) which requires that we never wait. If
181  * we detect that we may wait, or if we need to fault, then we have to fallback
182  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
183  * bells yet?) Dropping the mutex means that we lose all the state we have
184  * built up so far for the execbuf and we must reset any global data. However,
185  * we do leave the objects pinned in their final locations - which is a
186  * potential issue for concurrent execbufs. Once we have left the mutex, we can
187  * allocate and copy all the relocation entries into a large array at our
188  * leisure, reacquire the mutex, reclaim all the objects and other state and
189  * then proceed to update any incorrect addresses with the objects.
190  *
191  * As we process the relocation entries, we maintain a record of whether the
192  * object is being written to. Using NORELOC, we expect userspace to provide
193  * this information instead. We also check whether we can skip the relocation
194  * by comparing the expected value inside the relocation entry with the target's
195  * final address. If they differ, we have to map the current object and rewrite
196  * the 4 or 8 byte pointer within.
197  *
198  * Serialising an execbuf is quite simple according to the rules of the GEM
199  * ABI. Execution within each context is ordered by the order of submission.
200  * Writes to any GEM object are in order of submission and are exclusive. Reads
201  * from a GEM object are unordered with respect to other reads, but ordered by
202  * writes. A write submitted after a read cannot occur before the read, and
203  * similarly any read submitted after a write cannot occur before the write.
204  * Writes are ordered between engines such that only one write occurs at any
205  * time (completing any reads beforehand) - using semaphores where available
206  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
207  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
208  * reads before starting, and any read (either using set-domain or pread) must
209  * flush all GPU writes before starting. (Note we only employ a barrier before,
210  * we currently rely on userspace not concurrently starting a new execution
211  * whilst reading or writing to an object. This may be an advantage or not
212  * depending on how much you trust userspace not to shoot themselves in the
213  * foot.) Serialisation may just result in the request being inserted into
214  * a DAG awaiting its turn, but most simple is to wait on the CPU until
215  * all dependencies are resolved.
216  *
217  * After all of that, is just a matter of closing the request and handing it to
218  * the hardware (well, leaving it in a queue to be executed). However, we also
219  * offer the ability for batchbuffers to be run with elevated privileges so
220  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
221  * Before any batch is given extra privileges we first must check that it
222  * contains no nefarious instructions, we check that each instruction is from
223  * our whitelist and all registers are also from an allowed list. We first
224  * copy the user's batchbuffer to a shadow (so that the user doesn't have
225  * access to it, either by the CPU or GPU as we scan it) and then parse each
226  * instruction. If everything is ok, we set a flag telling the hardware to run
227  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
228  */
229 
230 struct eb_fence {
231 	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
232 	struct dma_fence *dma_fence;
233 	u64 value;
234 	struct dma_fence_chain *chain_fence;
235 };
236 
237 struct i915_execbuffer {
238 	struct drm_i915_private *i915; /** i915 backpointer */
239 	struct drm_file *file; /** per-file lookup tables and limits */
240 	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
241 	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
242 	struct eb_vma *vma;
243 
244 	struct intel_engine_cs *engine; /** engine to queue the request to */
245 	struct intel_context *context; /* logical state for the request */
246 	struct i915_gem_context *gem_context; /** caller's context */
247 
248 	struct i915_request *request; /** our request to build */
249 	struct eb_vma *batch; /** identity of the batch obj/vma */
250 	struct i915_vma *trampoline; /** trampoline used for chaining */
251 
252 	/** actual size of execobj[] as we may extend it for the cmdparser */
253 	unsigned int buffer_count;
254 
255 	/** list of vma not yet bound during reservation phase */
256 	struct list_head unbound;
257 
258 	/** list of vma that have execobj.relocation_count */
259 	struct list_head relocs;
260 
261 	struct i915_gem_ww_ctx ww;
262 
263 	/**
264 	 * Track the most recently used object for relocations, as we
265 	 * frequently have to perform multiple relocations within the same
266 	 * obj/page
267 	 */
268 	struct reloc_cache {
269 		struct drm_mm_node node; /** temporary GTT binding */
270 		unsigned long vaddr; /** Current kmap address */
271 		unsigned long page; /** Currently mapped page index */
272 		unsigned int gen; /** Cached value of INTEL_GEN */
273 		bool use_64bit_reloc : 1;
274 		bool has_llc : 1;
275 		bool has_fence : 1;
276 		bool needs_unfenced : 1;
277 
278 		struct i915_request *rq;
279 		u32 *rq_cmd;
280 		unsigned int rq_size;
281 		struct intel_gt_buffer_pool_node *pool;
282 	} reloc_cache;
283 
284 	struct intel_gt_buffer_pool_node *reloc_pool; /** relocation pool for -EDEADLK handling */
285 	struct intel_context *reloc_context;
286 
287 	u64 invalid_flags; /** Set of execobj.flags that are invalid */
288 	u32 context_flags; /** Set of execobj.flags to insert from the ctx */
289 
290 	u32 batch_start_offset; /** Location within object of batch */
291 	u32 batch_len; /** Length of batch within object */
292 	u32 batch_flags; /** Flags composed for emit_bb_start() */
293 	struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
294 
295 	/**
296 	 * Indicate either the size of the hastable used to resolve
297 	 * relocation handles, or if negative that we are using a direct
298 	 * index into the execobj[].
299 	 */
300 	int lut_size;
301 	struct hlist_head *buckets; /** ht for relocation handles */
302 
303 	struct eb_fence *fences;
304 	unsigned long num_fences;
305 };
306 
307 static int eb_parse(struct i915_execbuffer *eb);
308 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb,
309 					  bool throttle);
310 static void eb_unpin_engine(struct i915_execbuffer *eb);
311 
312 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
313 {
314 	return intel_engine_requires_cmd_parser(eb->engine) ||
315 		(intel_engine_using_cmd_parser(eb->engine) &&
316 		 eb->args->batch_len);
317 }
318 
319 static int eb_create(struct i915_execbuffer *eb)
320 {
321 	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
322 		unsigned int size = 1 + ilog2(eb->buffer_count);
323 
324 		/*
325 		 * Without a 1:1 association between relocation handles and
326 		 * the execobject[] index, we instead create a hashtable.
327 		 * We size it dynamically based on available memory, starting
328 		 * first with 1:1 assocative hash and scaling back until
329 		 * the allocation succeeds.
330 		 *
331 		 * Later on we use a positive lut_size to indicate we are
332 		 * using this hashtable, and a negative value to indicate a
333 		 * direct lookup.
334 		 */
335 		do {
336 			gfp_t flags;
337 
338 			/* While we can still reduce the allocation size, don't
339 			 * raise a warning and allow the allocation to fail.
340 			 * On the last pass though, we want to try as hard
341 			 * as possible to perform the allocation and warn
342 			 * if it fails.
343 			 */
344 			flags = GFP_KERNEL;
345 			if (size > 1)
346 				flags |= __GFP_NORETRY | __GFP_NOWARN;
347 
348 			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
349 					      flags);
350 			if (eb->buckets)
351 				break;
352 		} while (--size);
353 
354 		if (unlikely(!size))
355 			return -ENOMEM;
356 
357 		eb->lut_size = size;
358 	} else {
359 		eb->lut_size = -eb->buffer_count;
360 	}
361 
362 	return 0;
363 }
364 
365 static bool
366 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
367 		 const struct i915_vma *vma,
368 		 unsigned int flags)
369 {
370 	if (vma->node.size < entry->pad_to_size)
371 		return true;
372 
373 	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
374 		return true;
375 
376 	if (flags & EXEC_OBJECT_PINNED &&
377 	    vma->node.start != entry->offset)
378 		return true;
379 
380 	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
381 	    vma->node.start < BATCH_OFFSET_BIAS)
382 		return true;
383 
384 	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
385 	    (vma->node.start + vma->node.size - 1) >> 32)
386 		return true;
387 
388 	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
389 	    !i915_vma_is_map_and_fenceable(vma))
390 		return true;
391 
392 	return false;
393 }
394 
395 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
396 			unsigned int exec_flags)
397 {
398 	u64 pin_flags = 0;
399 
400 	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
401 		pin_flags |= PIN_GLOBAL;
402 
403 	/*
404 	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
405 	 * limit address to the first 4GBs for unflagged objects.
406 	 */
407 	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
408 		pin_flags |= PIN_ZONE_4G;
409 
410 	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
411 		pin_flags |= PIN_MAPPABLE;
412 
413 	if (exec_flags & EXEC_OBJECT_PINNED)
414 		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
415 	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
416 		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
417 
418 	return pin_flags;
419 }
420 
421 static inline bool
422 eb_pin_vma(struct i915_execbuffer *eb,
423 	   const struct drm_i915_gem_exec_object2 *entry,
424 	   struct eb_vma *ev)
425 {
426 	struct i915_vma *vma = ev->vma;
427 	u64 pin_flags;
428 
429 	if (vma->node.size)
430 		pin_flags = vma->node.start;
431 	else
432 		pin_flags = entry->offset & PIN_OFFSET_MASK;
433 
434 	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
435 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
436 		pin_flags |= PIN_GLOBAL;
437 
438 	/* Attempt to reuse the current location if available */
439 	/* TODO: Add -EDEADLK handling here */
440 	if (unlikely(i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags))) {
441 		if (entry->flags & EXEC_OBJECT_PINNED)
442 			return false;
443 
444 		/* Failing that pick any _free_ space if suitable */
445 		if (unlikely(i915_vma_pin_ww(vma, &eb->ww,
446 					     entry->pad_to_size,
447 					     entry->alignment,
448 					     eb_pin_flags(entry, ev->flags) |
449 					     PIN_USER | PIN_NOEVICT)))
450 			return false;
451 	}
452 
453 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
454 		if (unlikely(i915_vma_pin_fence(vma))) {
455 			i915_vma_unpin(vma);
456 			return false;
457 		}
458 
459 		if (vma->fence)
460 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
461 	}
462 
463 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
464 	return !eb_vma_misplaced(entry, vma, ev->flags);
465 }
466 
467 static inline void
468 eb_unreserve_vma(struct eb_vma *ev)
469 {
470 	if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
471 		return;
472 
473 	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
474 		__i915_vma_unpin_fence(ev->vma);
475 
476 	__i915_vma_unpin(ev->vma);
477 	ev->flags &= ~__EXEC_OBJECT_RESERVED;
478 }
479 
480 static int
481 eb_validate_vma(struct i915_execbuffer *eb,
482 		struct drm_i915_gem_exec_object2 *entry,
483 		struct i915_vma *vma)
484 {
485 	if (unlikely(entry->flags & eb->invalid_flags))
486 		return -EINVAL;
487 
488 	if (unlikely(entry->alignment &&
489 		     !is_power_of_2_u64(entry->alignment)))
490 		return -EINVAL;
491 
492 	/*
493 	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
494 	 * any non-page-aligned or non-canonical addresses.
495 	 */
496 	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
497 		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
498 		return -EINVAL;
499 
500 	/* pad_to_size was once a reserved field, so sanitize it */
501 	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
502 		if (unlikely(offset_in_page(entry->pad_to_size)))
503 			return -EINVAL;
504 	} else {
505 		entry->pad_to_size = 0;
506 	}
507 	/*
508 	 * From drm_mm perspective address space is continuous,
509 	 * so from this point we're always using non-canonical
510 	 * form internally.
511 	 */
512 	entry->offset = gen8_noncanonical_addr(entry->offset);
513 
514 	if (!eb->reloc_cache.has_fence) {
515 		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
516 	} else {
517 		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
518 		     eb->reloc_cache.needs_unfenced) &&
519 		    i915_gem_object_is_tiled(vma->obj))
520 			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
521 	}
522 
523 	if (!(entry->flags & EXEC_OBJECT_PINNED))
524 		entry->flags |= eb->context_flags;
525 
526 	return 0;
527 }
528 
529 static void
530 eb_add_vma(struct i915_execbuffer *eb,
531 	   unsigned int i, unsigned batch_idx,
532 	   struct i915_vma *vma)
533 {
534 	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
535 	struct eb_vma *ev = &eb->vma[i];
536 
537 	GEM_BUG_ON(i915_vma_is_closed(vma));
538 
539 	ev->vma = vma;
540 	ev->exec = entry;
541 	ev->flags = entry->flags;
542 
543 	if (eb->lut_size > 0) {
544 		ev->handle = entry->handle;
545 		hlist_add_head(&ev->node,
546 			       &eb->buckets[hash_32(entry->handle,
547 						    eb->lut_size)]);
548 	}
549 
550 	if (entry->relocation_count)
551 		list_add_tail(&ev->reloc_link, &eb->relocs);
552 
553 	/*
554 	 * SNA is doing fancy tricks with compressing batch buffers, which leads
555 	 * to negative relocation deltas. Usually that works out ok since the
556 	 * relocate address is still positive, except when the batch is placed
557 	 * very low in the GTT. Ensure this doesn't happen.
558 	 *
559 	 * Note that actual hangs have only been observed on gen7, but for
560 	 * paranoia do it everywhere.
561 	 */
562 	if (i == batch_idx) {
563 		if (entry->relocation_count &&
564 		    !(ev->flags & EXEC_OBJECT_PINNED))
565 			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
566 		if (eb->reloc_cache.has_fence)
567 			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
568 
569 		eb->batch = ev;
570 	}
571 }
572 
573 static inline int use_cpu_reloc(const struct reloc_cache *cache,
574 				const struct drm_i915_gem_object *obj)
575 {
576 	if (!i915_gem_object_has_struct_page(obj))
577 		return false;
578 
579 	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
580 		return true;
581 
582 	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
583 		return false;
584 
585 	return (cache->has_llc ||
586 		obj->cache_dirty ||
587 		obj->cache_level != I915_CACHE_NONE);
588 }
589 
590 static int eb_reserve_vma(struct i915_execbuffer *eb,
591 			  struct eb_vma *ev,
592 			  u64 pin_flags)
593 {
594 	struct drm_i915_gem_exec_object2 *entry = ev->exec;
595 	struct i915_vma *vma = ev->vma;
596 	int err;
597 
598 	if (drm_mm_node_allocated(&vma->node) &&
599 	    eb_vma_misplaced(entry, vma, ev->flags)) {
600 		err = i915_vma_unbind(vma);
601 		if (err)
602 			return err;
603 	}
604 
605 	err = i915_vma_pin_ww(vma, &eb->ww,
606 			   entry->pad_to_size, entry->alignment,
607 			   eb_pin_flags(entry, ev->flags) | pin_flags);
608 	if (err)
609 		return err;
610 
611 	if (entry->offset != vma->node.start) {
612 		entry->offset = vma->node.start | UPDATE;
613 		eb->args->flags |= __EXEC_HAS_RELOC;
614 	}
615 
616 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
617 		err = i915_vma_pin_fence(vma);
618 		if (unlikely(err)) {
619 			i915_vma_unpin(vma);
620 			return err;
621 		}
622 
623 		if (vma->fence)
624 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
625 	}
626 
627 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
628 	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
629 
630 	return 0;
631 }
632 
633 static int eb_reserve(struct i915_execbuffer *eb)
634 {
635 	const unsigned int count = eb->buffer_count;
636 	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
637 	struct list_head last;
638 	struct eb_vma *ev;
639 	unsigned int i, pass;
640 	int err = 0;
641 
642 	/*
643 	 * Attempt to pin all of the buffers into the GTT.
644 	 * This is done in 3 phases:
645 	 *
646 	 * 1a. Unbind all objects that do not match the GTT constraints for
647 	 *     the execbuffer (fenceable, mappable, alignment etc).
648 	 * 1b. Increment pin count for already bound objects.
649 	 * 2.  Bind new objects.
650 	 * 3.  Decrement pin count.
651 	 *
652 	 * This avoid unnecessary unbinding of later objects in order to make
653 	 * room for the earlier objects *unless* we need to defragment.
654 	 */
655 	pass = 0;
656 	do {
657 		list_for_each_entry(ev, &eb->unbound, bind_link) {
658 			err = eb_reserve_vma(eb, ev, pin_flags);
659 			if (err)
660 				break;
661 		}
662 		if (err != -ENOSPC)
663 			return err;
664 
665 		/* Resort *all* the objects into priority order */
666 		INIT_LIST_HEAD(&eb->unbound);
667 		INIT_LIST_HEAD(&last);
668 		for (i = 0; i < count; i++) {
669 			unsigned int flags;
670 
671 			ev = &eb->vma[i];
672 			flags = ev->flags;
673 			if (flags & EXEC_OBJECT_PINNED &&
674 			    flags & __EXEC_OBJECT_HAS_PIN)
675 				continue;
676 
677 			eb_unreserve_vma(ev);
678 
679 			if (flags & EXEC_OBJECT_PINNED)
680 				/* Pinned must have their slot */
681 				list_add(&ev->bind_link, &eb->unbound);
682 			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
683 				/* Map require the lowest 256MiB (aperture) */
684 				list_add_tail(&ev->bind_link, &eb->unbound);
685 			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
686 				/* Prioritise 4GiB region for restricted bo */
687 				list_add(&ev->bind_link, &last);
688 			else
689 				list_add_tail(&ev->bind_link, &last);
690 		}
691 		list_splice_tail(&last, &eb->unbound);
692 
693 		switch (pass++) {
694 		case 0:
695 			break;
696 
697 		case 1:
698 			/* Too fragmented, unbind everything and retry */
699 			mutex_lock(&eb->context->vm->mutex);
700 			err = i915_gem_evict_vm(eb->context->vm);
701 			mutex_unlock(&eb->context->vm->mutex);
702 			if (err)
703 				return err;
704 			break;
705 
706 		default:
707 			return -ENOSPC;
708 		}
709 
710 		pin_flags = PIN_USER;
711 	} while (1);
712 }
713 
714 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
715 {
716 	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
717 		return 0;
718 	else
719 		return eb->buffer_count - 1;
720 }
721 
722 static int eb_select_context(struct i915_execbuffer *eb)
723 {
724 	struct i915_gem_context *ctx;
725 
726 	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
727 	if (unlikely(!ctx))
728 		return -ENOENT;
729 
730 	eb->gem_context = ctx;
731 	if (rcu_access_pointer(ctx->vm))
732 		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
733 
734 	eb->context_flags = 0;
735 	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
736 		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
737 
738 	return 0;
739 }
740 
741 static int __eb_add_lut(struct i915_execbuffer *eb,
742 			u32 handle, struct i915_vma *vma)
743 {
744 	struct i915_gem_context *ctx = eb->gem_context;
745 	struct i915_lut_handle *lut;
746 	int err;
747 
748 	lut = i915_lut_handle_alloc();
749 	if (unlikely(!lut))
750 		return -ENOMEM;
751 
752 	i915_vma_get(vma);
753 	if (!atomic_fetch_inc(&vma->open_count))
754 		i915_vma_reopen(vma);
755 	lut->handle = handle;
756 	lut->ctx = ctx;
757 
758 	/* Check that the context hasn't been closed in the meantime */
759 	err = -EINTR;
760 	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
761 		struct i915_address_space *vm = rcu_access_pointer(ctx->vm);
762 
763 		if (unlikely(vm && vma->vm != vm))
764 			err = -EAGAIN; /* user racing with ctx set-vm */
765 		else if (likely(!i915_gem_context_is_closed(ctx)))
766 			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
767 		else
768 			err = -ENOENT;
769 		if (err == 0) { /* And nor has this handle */
770 			struct drm_i915_gem_object *obj = vma->obj;
771 
772 			spin_lock(&obj->lut_lock);
773 			if (idr_find(&eb->file->object_idr, handle) == obj) {
774 				list_add(&lut->obj_link, &obj->lut_list);
775 			} else {
776 				radix_tree_delete(&ctx->handles_vma, handle);
777 				err = -ENOENT;
778 			}
779 			spin_unlock(&obj->lut_lock);
780 		}
781 		mutex_unlock(&ctx->lut_mutex);
782 	}
783 	if (unlikely(err))
784 		goto err;
785 
786 	return 0;
787 
788 err:
789 	i915_vma_close(vma);
790 	i915_vma_put(vma);
791 	i915_lut_handle_free(lut);
792 	return err;
793 }
794 
795 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
796 {
797 	struct i915_address_space *vm = eb->context->vm;
798 
799 	do {
800 		struct drm_i915_gem_object *obj;
801 		struct i915_vma *vma;
802 		int err;
803 
804 		rcu_read_lock();
805 		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
806 		if (likely(vma && vma->vm == vm))
807 			vma = i915_vma_tryget(vma);
808 		rcu_read_unlock();
809 		if (likely(vma))
810 			return vma;
811 
812 		obj = i915_gem_object_lookup(eb->file, handle);
813 		if (unlikely(!obj))
814 			return ERR_PTR(-ENOENT);
815 
816 		vma = i915_vma_instance(obj, vm, NULL);
817 		if (IS_ERR(vma)) {
818 			i915_gem_object_put(obj);
819 			return vma;
820 		}
821 
822 		err = __eb_add_lut(eb, handle, vma);
823 		if (likely(!err))
824 			return vma;
825 
826 		i915_gem_object_put(obj);
827 		if (err != -EEXIST)
828 			return ERR_PTR(err);
829 	} while (1);
830 }
831 
832 static int eb_lookup_vmas(struct i915_execbuffer *eb)
833 {
834 	struct drm_i915_private *i915 = eb->i915;
835 	unsigned int batch = eb_batch_index(eb);
836 	unsigned int i;
837 	int err = 0;
838 
839 	INIT_LIST_HEAD(&eb->relocs);
840 
841 	for (i = 0; i < eb->buffer_count; i++) {
842 		struct i915_vma *vma;
843 
844 		vma = eb_lookup_vma(eb, eb->exec[i].handle);
845 		if (IS_ERR(vma)) {
846 			err = PTR_ERR(vma);
847 			goto err;
848 		}
849 
850 		err = eb_validate_vma(eb, &eb->exec[i], vma);
851 		if (unlikely(err)) {
852 			i915_vma_put(vma);
853 			goto err;
854 		}
855 
856 		eb_add_vma(eb, i, batch, vma);
857 	}
858 
859 	if (unlikely(eb->batch->flags & EXEC_OBJECT_WRITE)) {
860 		drm_dbg(&i915->drm,
861 			"Attempting to use self-modifying batch buffer\n");
862 		return -EINVAL;
863 	}
864 
865 	if (range_overflows_t(u64,
866 			      eb->batch_start_offset, eb->batch_len,
867 			      eb->batch->vma->size)) {
868 		drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
869 		return -EINVAL;
870 	}
871 
872 	if (eb->batch_len == 0)
873 		eb->batch_len = eb->batch->vma->size - eb->batch_start_offset;
874 
875 	return 0;
876 
877 err:
878 	eb->vma[i].vma = NULL;
879 	return err;
880 }
881 
882 static int eb_validate_vmas(struct i915_execbuffer *eb)
883 {
884 	unsigned int i;
885 	int err;
886 
887 	INIT_LIST_HEAD(&eb->unbound);
888 
889 	for (i = 0; i < eb->buffer_count; i++) {
890 		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
891 		struct eb_vma *ev = &eb->vma[i];
892 		struct i915_vma *vma = ev->vma;
893 
894 		err = i915_gem_object_lock(vma->obj, &eb->ww);
895 		if (err)
896 			return err;
897 
898 		if (eb_pin_vma(eb, entry, ev)) {
899 			if (entry->offset != vma->node.start) {
900 				entry->offset = vma->node.start | UPDATE;
901 				eb->args->flags |= __EXEC_HAS_RELOC;
902 			}
903 		} else {
904 			eb_unreserve_vma(ev);
905 
906 			list_add_tail(&ev->bind_link, &eb->unbound);
907 			if (drm_mm_node_allocated(&vma->node)) {
908 				err = i915_vma_unbind(vma);
909 				if (err)
910 					return err;
911 			}
912 		}
913 
914 		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
915 			   eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
916 	}
917 
918 	if (!list_empty(&eb->unbound))
919 		return eb_reserve(eb);
920 
921 	return 0;
922 }
923 
924 static struct eb_vma *
925 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
926 {
927 	if (eb->lut_size < 0) {
928 		if (handle >= -eb->lut_size)
929 			return NULL;
930 		return &eb->vma[handle];
931 	} else {
932 		struct hlist_head *head;
933 		struct eb_vma *ev;
934 
935 		head = &eb->buckets[hash_32(handle, eb->lut_size)];
936 		hlist_for_each_entry(ev, head, node) {
937 			if (ev->handle == handle)
938 				return ev;
939 		}
940 		return NULL;
941 	}
942 }
943 
944 static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
945 {
946 	const unsigned int count = eb->buffer_count;
947 	unsigned int i;
948 
949 	for (i = 0; i < count; i++) {
950 		struct eb_vma *ev = &eb->vma[i];
951 		struct i915_vma *vma = ev->vma;
952 
953 		if (!vma)
954 			break;
955 
956 		eb_unreserve_vma(ev);
957 
958 		if (final)
959 			i915_vma_put(vma);
960 	}
961 
962 	eb_unpin_engine(eb);
963 }
964 
965 static void eb_destroy(const struct i915_execbuffer *eb)
966 {
967 	GEM_BUG_ON(eb->reloc_cache.rq);
968 
969 	if (eb->lut_size > 0)
970 		kfree(eb->buckets);
971 }
972 
973 static inline u64
974 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
975 		  const struct i915_vma *target)
976 {
977 	return gen8_canonical_addr((int)reloc->delta + target->node.start);
978 }
979 
980 static void reloc_cache_clear(struct reloc_cache *cache)
981 {
982 	cache->rq = NULL;
983 	cache->rq_cmd = NULL;
984 	cache->pool = NULL;
985 	cache->rq_size = 0;
986 }
987 
988 static void reloc_cache_init(struct reloc_cache *cache,
989 			     struct drm_i915_private *i915)
990 {
991 	cache->page = -1;
992 	cache->vaddr = 0;
993 	/* Must be a variable in the struct to allow GCC to unroll. */
994 	cache->gen = INTEL_GEN(i915);
995 	cache->has_llc = HAS_LLC(i915);
996 	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
997 	cache->has_fence = cache->gen < 4;
998 	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
999 	cache->node.flags = 0;
1000 	reloc_cache_clear(cache);
1001 }
1002 
1003 static inline void *unmask_page(unsigned long p)
1004 {
1005 	return (void *)(uintptr_t)(p & PAGE_MASK);
1006 }
1007 
1008 static inline unsigned int unmask_flags(unsigned long p)
1009 {
1010 	return p & ~PAGE_MASK;
1011 }
1012 
1013 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1014 
1015 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1016 {
1017 	struct drm_i915_private *i915 =
1018 		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1019 	return &i915->ggtt;
1020 }
1021 
1022 static void reloc_cache_put_pool(struct i915_execbuffer *eb, struct reloc_cache *cache)
1023 {
1024 	if (!cache->pool)
1025 		return;
1026 
1027 	/*
1028 	 * This is a bit nasty, normally we keep objects locked until the end
1029 	 * of execbuffer, but we already submit this, and have to unlock before
1030 	 * dropping the reference. Fortunately we can only hold 1 pool node at
1031 	 * a time, so this should be harmless.
1032 	 */
1033 	i915_gem_ww_unlock_single(cache->pool->obj);
1034 	intel_gt_buffer_pool_put(cache->pool);
1035 	cache->pool = NULL;
1036 }
1037 
1038 static void reloc_gpu_flush(struct i915_execbuffer *eb, struct reloc_cache *cache)
1039 {
1040 	struct drm_i915_gem_object *obj = cache->rq->batch->obj;
1041 
1042 	GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
1043 	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
1044 
1045 	__i915_gem_object_flush_map(obj, 0, sizeof(u32) * (cache->rq_size + 1));
1046 	i915_gem_object_unpin_map(obj);
1047 
1048 	intel_gt_chipset_flush(cache->rq->engine->gt);
1049 
1050 	i915_request_add(cache->rq);
1051 	reloc_cache_put_pool(eb, cache);
1052 	reloc_cache_clear(cache);
1053 
1054 	eb->reloc_pool = NULL;
1055 }
1056 
1057 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1058 {
1059 	void *vaddr;
1060 
1061 	if (cache->rq)
1062 		reloc_gpu_flush(eb, cache);
1063 
1064 	if (!cache->vaddr)
1065 		return;
1066 
1067 	vaddr = unmask_page(cache->vaddr);
1068 	if (cache->vaddr & KMAP) {
1069 		struct drm_i915_gem_object *obj =
1070 			(struct drm_i915_gem_object *)cache->node.mm;
1071 		if (cache->vaddr & CLFLUSH_AFTER)
1072 			mb();
1073 
1074 		kunmap_atomic(vaddr);
1075 		i915_gem_object_finish_access(obj);
1076 	} else {
1077 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1078 
1079 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1080 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1081 
1082 		if (drm_mm_node_allocated(&cache->node)) {
1083 			ggtt->vm.clear_range(&ggtt->vm,
1084 					     cache->node.start,
1085 					     cache->node.size);
1086 			mutex_lock(&ggtt->vm.mutex);
1087 			drm_mm_remove_node(&cache->node);
1088 			mutex_unlock(&ggtt->vm.mutex);
1089 		} else {
1090 			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1091 		}
1092 	}
1093 
1094 	cache->vaddr = 0;
1095 	cache->page = -1;
1096 }
1097 
1098 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1099 			struct reloc_cache *cache,
1100 			unsigned long pageno)
1101 {
1102 	void *vaddr;
1103 	struct page *page;
1104 
1105 	if (cache->vaddr) {
1106 		kunmap_atomic(unmask_page(cache->vaddr));
1107 	} else {
1108 		unsigned int flushes;
1109 		int err;
1110 
1111 		err = i915_gem_object_prepare_write(obj, &flushes);
1112 		if (err)
1113 			return ERR_PTR(err);
1114 
1115 		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1116 		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1117 
1118 		cache->vaddr = flushes | KMAP;
1119 		cache->node.mm = (void *)obj;
1120 		if (flushes)
1121 			mb();
1122 	}
1123 
1124 	page = i915_gem_object_get_page(obj, pageno);
1125 	if (!obj->mm.dirty)
1126 		set_page_dirty(page);
1127 
1128 	vaddr = kmap_atomic(page);
1129 	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1130 	cache->page = pageno;
1131 
1132 	return vaddr;
1133 }
1134 
1135 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1136 			 struct i915_execbuffer *eb,
1137 			 unsigned long page)
1138 {
1139 	struct reloc_cache *cache = &eb->reloc_cache;
1140 	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1141 	unsigned long offset;
1142 	void *vaddr;
1143 
1144 	if (cache->vaddr) {
1145 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1146 		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1147 	} else {
1148 		struct i915_vma *vma;
1149 		int err;
1150 
1151 		if (i915_gem_object_is_tiled(obj))
1152 			return ERR_PTR(-EINVAL);
1153 
1154 		if (use_cpu_reloc(cache, obj))
1155 			return NULL;
1156 
1157 		err = i915_gem_object_set_to_gtt_domain(obj, true);
1158 		if (err)
1159 			return ERR_PTR(err);
1160 
1161 		vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1162 						  PIN_MAPPABLE |
1163 						  PIN_NONBLOCK /* NOWARN */ |
1164 						  PIN_NOEVICT);
1165 		if (vma == ERR_PTR(-EDEADLK))
1166 			return vma;
1167 
1168 		if (IS_ERR(vma)) {
1169 			memset(&cache->node, 0, sizeof(cache->node));
1170 			mutex_lock(&ggtt->vm.mutex);
1171 			err = drm_mm_insert_node_in_range
1172 				(&ggtt->vm.mm, &cache->node,
1173 				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1174 				 0, ggtt->mappable_end,
1175 				 DRM_MM_INSERT_LOW);
1176 			mutex_unlock(&ggtt->vm.mutex);
1177 			if (err) /* no inactive aperture space, use cpu reloc */
1178 				return NULL;
1179 		} else {
1180 			cache->node.start = vma->node.start;
1181 			cache->node.mm = (void *)vma;
1182 		}
1183 	}
1184 
1185 	offset = cache->node.start;
1186 	if (drm_mm_node_allocated(&cache->node)) {
1187 		ggtt->vm.insert_page(&ggtt->vm,
1188 				     i915_gem_object_get_dma_address(obj, page),
1189 				     offset, I915_CACHE_NONE, 0);
1190 	} else {
1191 		offset += page << PAGE_SHIFT;
1192 	}
1193 
1194 	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1195 							 offset);
1196 	cache->page = page;
1197 	cache->vaddr = (unsigned long)vaddr;
1198 
1199 	return vaddr;
1200 }
1201 
1202 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1203 			 struct i915_execbuffer *eb,
1204 			 unsigned long page)
1205 {
1206 	struct reloc_cache *cache = &eb->reloc_cache;
1207 	void *vaddr;
1208 
1209 	if (cache->page == page) {
1210 		vaddr = unmask_page(cache->vaddr);
1211 	} else {
1212 		vaddr = NULL;
1213 		if ((cache->vaddr & KMAP) == 0)
1214 			vaddr = reloc_iomap(obj, eb, page);
1215 		if (!vaddr)
1216 			vaddr = reloc_kmap(obj, cache, page);
1217 	}
1218 
1219 	return vaddr;
1220 }
1221 
1222 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1223 {
1224 	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1225 		if (flushes & CLFLUSH_BEFORE) {
1226 			clflushopt(addr);
1227 			mb();
1228 		}
1229 
1230 		*addr = value;
1231 
1232 		/*
1233 		 * Writes to the same cacheline are serialised by the CPU
1234 		 * (including clflush). On the write path, we only require
1235 		 * that it hits memory in an orderly fashion and place
1236 		 * mb barriers at the start and end of the relocation phase
1237 		 * to ensure ordering of clflush wrt to the system.
1238 		 */
1239 		if (flushes & CLFLUSH_AFTER)
1240 			clflushopt(addr);
1241 	} else
1242 		*addr = value;
1243 }
1244 
1245 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1246 {
1247 	struct drm_i915_gem_object *obj = vma->obj;
1248 	int err;
1249 
1250 	assert_vma_held(vma);
1251 
1252 	if (obj->cache_dirty & ~obj->cache_coherent)
1253 		i915_gem_clflush_object(obj, 0);
1254 	obj->write_domain = 0;
1255 
1256 	err = i915_request_await_object(rq, vma->obj, true);
1257 	if (err == 0)
1258 		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1259 
1260 	return err;
1261 }
1262 
1263 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1264 			     struct intel_engine_cs *engine,
1265 			     struct i915_vma *vma,
1266 			     unsigned int len)
1267 {
1268 	struct reloc_cache *cache = &eb->reloc_cache;
1269 	struct intel_gt_buffer_pool_node *pool = eb->reloc_pool;
1270 	struct i915_request *rq;
1271 	struct i915_vma *batch;
1272 	u32 *cmd;
1273 	int err;
1274 
1275 	if (!pool) {
1276 		pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE);
1277 		if (IS_ERR(pool))
1278 			return PTR_ERR(pool);
1279 	}
1280 	eb->reloc_pool = NULL;
1281 
1282 	err = i915_gem_object_lock(pool->obj, &eb->ww);
1283 	if (err)
1284 		goto err_pool;
1285 
1286 	cmd = i915_gem_object_pin_map(pool->obj,
1287 				      cache->has_llc ?
1288 				      I915_MAP_FORCE_WB :
1289 				      I915_MAP_FORCE_WC);
1290 	if (IS_ERR(cmd)) {
1291 		err = PTR_ERR(cmd);
1292 		goto err_pool;
1293 	}
1294 
1295 	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1296 	if (IS_ERR(batch)) {
1297 		err = PTR_ERR(batch);
1298 		goto err_unmap;
1299 	}
1300 
1301 	err = i915_vma_pin_ww(batch, &eb->ww, 0, 0, PIN_USER | PIN_NONBLOCK);
1302 	if (err)
1303 		goto err_unmap;
1304 
1305 	if (engine == eb->context->engine) {
1306 		rq = i915_request_create(eb->context);
1307 	} else {
1308 		struct intel_context *ce = eb->reloc_context;
1309 
1310 		if (!ce) {
1311 			ce = intel_context_create(engine);
1312 			if (IS_ERR(ce)) {
1313 				err = PTR_ERR(ce);
1314 				goto err_unpin;
1315 			}
1316 
1317 			i915_vm_put(ce->vm);
1318 			ce->vm = i915_vm_get(eb->context->vm);
1319 			eb->reloc_context = ce;
1320 		}
1321 
1322 		err = intel_context_pin_ww(ce, &eb->ww);
1323 		if (err)
1324 			goto err_unpin;
1325 
1326 		rq = i915_request_create(ce);
1327 		intel_context_unpin(ce);
1328 	}
1329 	if (IS_ERR(rq)) {
1330 		err = PTR_ERR(rq);
1331 		goto err_unpin;
1332 	}
1333 
1334 	err = intel_gt_buffer_pool_mark_active(pool, rq);
1335 	if (err)
1336 		goto err_request;
1337 
1338 	err = reloc_move_to_gpu(rq, vma);
1339 	if (err)
1340 		goto err_request;
1341 
1342 	err = eb->engine->emit_bb_start(rq,
1343 					batch->node.start, PAGE_SIZE,
1344 					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1345 	if (err)
1346 		goto skip_request;
1347 
1348 	assert_vma_held(batch);
1349 	err = i915_request_await_object(rq, batch->obj, false);
1350 	if (err == 0)
1351 		err = i915_vma_move_to_active(batch, rq, 0);
1352 	if (err)
1353 		goto skip_request;
1354 
1355 	rq->batch = batch;
1356 	i915_vma_unpin(batch);
1357 
1358 	cache->rq = rq;
1359 	cache->rq_cmd = cmd;
1360 	cache->rq_size = 0;
1361 	cache->pool = pool;
1362 
1363 	/* Return with batch mapping (cmd) still pinned */
1364 	return 0;
1365 
1366 skip_request:
1367 	i915_request_set_error_once(rq, err);
1368 err_request:
1369 	i915_request_add(rq);
1370 err_unpin:
1371 	i915_vma_unpin(batch);
1372 err_unmap:
1373 	i915_gem_object_unpin_map(pool->obj);
1374 err_pool:
1375 	eb->reloc_pool = pool;
1376 	return err;
1377 }
1378 
1379 static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
1380 {
1381 	return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6);
1382 }
1383 
1384 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1385 		      struct i915_vma *vma,
1386 		      unsigned int len)
1387 {
1388 	struct reloc_cache *cache = &eb->reloc_cache;
1389 	u32 *cmd;
1390 
1391 	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1392 		reloc_gpu_flush(eb, cache);
1393 
1394 	if (unlikely(!cache->rq)) {
1395 		int err;
1396 		struct intel_engine_cs *engine = eb->engine;
1397 
1398 		if (!reloc_can_use_engine(engine)) {
1399 			engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
1400 			if (!engine)
1401 				return ERR_PTR(-ENODEV);
1402 		}
1403 
1404 		err = __reloc_gpu_alloc(eb, engine, vma, len);
1405 		if (unlikely(err))
1406 			return ERR_PTR(err);
1407 	}
1408 
1409 	cmd = cache->rq_cmd + cache->rq_size;
1410 	cache->rq_size += len;
1411 
1412 	return cmd;
1413 }
1414 
1415 static inline bool use_reloc_gpu(struct i915_vma *vma)
1416 {
1417 	if (DBG_FORCE_RELOC == FORCE_GPU_RELOC)
1418 		return true;
1419 
1420 	if (DBG_FORCE_RELOC)
1421 		return false;
1422 
1423 	return !dma_resv_test_signaled_rcu(vma->resv, true);
1424 }
1425 
1426 static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
1427 {
1428 	struct page *page;
1429 	unsigned long addr;
1430 
1431 	GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
1432 
1433 	page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
1434 	addr = PFN_PHYS(page_to_pfn(page));
1435 	GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
1436 
1437 	return addr + offset_in_page(offset);
1438 }
1439 
1440 static int __reloc_entry_gpu(struct i915_execbuffer *eb,
1441 			      struct i915_vma *vma,
1442 			      u64 offset,
1443 			      u64 target_addr)
1444 {
1445 	const unsigned int gen = eb->reloc_cache.gen;
1446 	unsigned int len;
1447 	u32 *batch;
1448 	u64 addr;
1449 
1450 	if (gen >= 8)
1451 		len = offset & 7 ? 8 : 5;
1452 	else if (gen >= 4)
1453 		len = 4;
1454 	else
1455 		len = 3;
1456 
1457 	batch = reloc_gpu(eb, vma, len);
1458 	if (batch == ERR_PTR(-EDEADLK))
1459 		return -EDEADLK;
1460 	else if (IS_ERR(batch))
1461 		return false;
1462 
1463 	addr = gen8_canonical_addr(vma->node.start + offset);
1464 	if (gen >= 8) {
1465 		if (offset & 7) {
1466 			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1467 			*batch++ = lower_32_bits(addr);
1468 			*batch++ = upper_32_bits(addr);
1469 			*batch++ = lower_32_bits(target_addr);
1470 
1471 			addr = gen8_canonical_addr(addr + 4);
1472 
1473 			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1474 			*batch++ = lower_32_bits(addr);
1475 			*batch++ = upper_32_bits(addr);
1476 			*batch++ = upper_32_bits(target_addr);
1477 		} else {
1478 			*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1479 			*batch++ = lower_32_bits(addr);
1480 			*batch++ = upper_32_bits(addr);
1481 			*batch++ = lower_32_bits(target_addr);
1482 			*batch++ = upper_32_bits(target_addr);
1483 		}
1484 	} else if (gen >= 6) {
1485 		*batch++ = MI_STORE_DWORD_IMM_GEN4;
1486 		*batch++ = 0;
1487 		*batch++ = addr;
1488 		*batch++ = target_addr;
1489 	} else if (IS_I965G(eb->i915)) {
1490 		*batch++ = MI_STORE_DWORD_IMM_GEN4;
1491 		*batch++ = 0;
1492 		*batch++ = vma_phys_addr(vma, offset);
1493 		*batch++ = target_addr;
1494 	} else if (gen >= 4) {
1495 		*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1496 		*batch++ = 0;
1497 		*batch++ = addr;
1498 		*batch++ = target_addr;
1499 	} else if (gen >= 3 &&
1500 		   !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
1501 		*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1502 		*batch++ = addr;
1503 		*batch++ = target_addr;
1504 	} else {
1505 		*batch++ = MI_STORE_DWORD_IMM;
1506 		*batch++ = vma_phys_addr(vma, offset);
1507 		*batch++ = target_addr;
1508 	}
1509 
1510 	return true;
1511 }
1512 
1513 static int reloc_entry_gpu(struct i915_execbuffer *eb,
1514 			    struct i915_vma *vma,
1515 			    u64 offset,
1516 			    u64 target_addr)
1517 {
1518 	if (eb->reloc_cache.vaddr)
1519 		return false;
1520 
1521 	if (!use_reloc_gpu(vma))
1522 		return false;
1523 
1524 	return __reloc_entry_gpu(eb, vma, offset, target_addr);
1525 }
1526 
1527 static u64
1528 relocate_entry(struct i915_vma *vma,
1529 	       const struct drm_i915_gem_relocation_entry *reloc,
1530 	       struct i915_execbuffer *eb,
1531 	       const struct i915_vma *target)
1532 {
1533 	u64 target_addr = relocation_target(reloc, target);
1534 	u64 offset = reloc->offset;
1535 	int reloc_gpu = reloc_entry_gpu(eb, vma, offset, target_addr);
1536 
1537 	if (reloc_gpu < 0)
1538 		return reloc_gpu;
1539 
1540 	if (!reloc_gpu) {
1541 		bool wide = eb->reloc_cache.use_64bit_reloc;
1542 		void *vaddr;
1543 
1544 repeat:
1545 		vaddr = reloc_vaddr(vma->obj, eb,
1546 				    offset >> PAGE_SHIFT);
1547 		if (IS_ERR(vaddr))
1548 			return PTR_ERR(vaddr);
1549 
1550 		GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1551 		clflush_write32(vaddr + offset_in_page(offset),
1552 				lower_32_bits(target_addr),
1553 				eb->reloc_cache.vaddr);
1554 
1555 		if (wide) {
1556 			offset += sizeof(u32);
1557 			target_addr >>= 32;
1558 			wide = false;
1559 			goto repeat;
1560 		}
1561 	}
1562 
1563 	return target->node.start | UPDATE;
1564 }
1565 
1566 static u64
1567 eb_relocate_entry(struct i915_execbuffer *eb,
1568 		  struct eb_vma *ev,
1569 		  const struct drm_i915_gem_relocation_entry *reloc)
1570 {
1571 	struct drm_i915_private *i915 = eb->i915;
1572 	struct eb_vma *target;
1573 	int err;
1574 
1575 	/* we've already hold a reference to all valid objects */
1576 	target = eb_get_vma(eb, reloc->target_handle);
1577 	if (unlikely(!target))
1578 		return -ENOENT;
1579 
1580 	/* Validate that the target is in a valid r/w GPU domain */
1581 	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1582 		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1583 			  "target %d offset %d "
1584 			  "read %08x write %08x",
1585 			  reloc->target_handle,
1586 			  (int) reloc->offset,
1587 			  reloc->read_domains,
1588 			  reloc->write_domain);
1589 		return -EINVAL;
1590 	}
1591 	if (unlikely((reloc->write_domain | reloc->read_domains)
1592 		     & ~I915_GEM_GPU_DOMAINS)) {
1593 		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1594 			  "target %d offset %d "
1595 			  "read %08x write %08x",
1596 			  reloc->target_handle,
1597 			  (int) reloc->offset,
1598 			  reloc->read_domains,
1599 			  reloc->write_domain);
1600 		return -EINVAL;
1601 	}
1602 
1603 	if (reloc->write_domain) {
1604 		target->flags |= EXEC_OBJECT_WRITE;
1605 
1606 		/*
1607 		 * Sandybridge PPGTT errata: We need a global gtt mapping
1608 		 * for MI and pipe_control writes because the gpu doesn't
1609 		 * properly redirect them through the ppgtt for non_secure
1610 		 * batchbuffers.
1611 		 */
1612 		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1613 		    IS_GEN(eb->i915, 6)) {
1614 			err = i915_vma_bind(target->vma,
1615 					    target->vma->obj->cache_level,
1616 					    PIN_GLOBAL, NULL);
1617 			if (err)
1618 				return err;
1619 		}
1620 	}
1621 
1622 	/*
1623 	 * If the relocation already has the right value in it, no
1624 	 * more work needs to be done.
1625 	 */
1626 	if (!DBG_FORCE_RELOC &&
1627 	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1628 		return 0;
1629 
1630 	/* Check that the relocation address is valid... */
1631 	if (unlikely(reloc->offset >
1632 		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1633 		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1634 			  "target %d offset %d size %d.\n",
1635 			  reloc->target_handle,
1636 			  (int)reloc->offset,
1637 			  (int)ev->vma->size);
1638 		return -EINVAL;
1639 	}
1640 	if (unlikely(reloc->offset & 3)) {
1641 		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1642 			  "target %d offset %d.\n",
1643 			  reloc->target_handle,
1644 			  (int)reloc->offset);
1645 		return -EINVAL;
1646 	}
1647 
1648 	/*
1649 	 * If we write into the object, we need to force the synchronisation
1650 	 * barrier, either with an asynchronous clflush or if we executed the
1651 	 * patching using the GPU (though that should be serialised by the
1652 	 * timeline). To be completely sure, and since we are required to
1653 	 * do relocations we are already stalling, disable the user's opt
1654 	 * out of our synchronisation.
1655 	 */
1656 	ev->flags &= ~EXEC_OBJECT_ASYNC;
1657 
1658 	/* and update the user's relocation entry */
1659 	return relocate_entry(ev->vma, reloc, eb, target->vma);
1660 }
1661 
1662 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1663 {
1664 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1665 	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1666 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1667 	struct drm_i915_gem_relocation_entry __user *urelocs =
1668 		u64_to_user_ptr(entry->relocs_ptr);
1669 	unsigned long remain = entry->relocation_count;
1670 
1671 	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1672 		return -EINVAL;
1673 
1674 	/*
1675 	 * We must check that the entire relocation array is safe
1676 	 * to read. However, if the array is not writable the user loses
1677 	 * the updated relocation values.
1678 	 */
1679 	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1680 		return -EFAULT;
1681 
1682 	do {
1683 		struct drm_i915_gem_relocation_entry *r = stack;
1684 		unsigned int count =
1685 			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1686 		unsigned int copied;
1687 
1688 		/*
1689 		 * This is the fast path and we cannot handle a pagefault
1690 		 * whilst holding the struct mutex lest the user pass in the
1691 		 * relocations contained within a mmaped bo. For in such a case
1692 		 * we, the page fault handler would call i915_gem_fault() and
1693 		 * we would try to acquire the struct mutex again. Obviously
1694 		 * this is bad and so lockdep complains vehemently.
1695 		 */
1696 		pagefault_disable();
1697 		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1698 		pagefault_enable();
1699 		if (unlikely(copied)) {
1700 			remain = -EFAULT;
1701 			goto out;
1702 		}
1703 
1704 		remain -= count;
1705 		do {
1706 			u64 offset = eb_relocate_entry(eb, ev, r);
1707 
1708 			if (likely(offset == 0)) {
1709 			} else if ((s64)offset < 0) {
1710 				remain = (int)offset;
1711 				goto out;
1712 			} else {
1713 				/*
1714 				 * Note that reporting an error now
1715 				 * leaves everything in an inconsistent
1716 				 * state as we have *already* changed
1717 				 * the relocation value inside the
1718 				 * object. As we have not changed the
1719 				 * reloc.presumed_offset or will not
1720 				 * change the execobject.offset, on the
1721 				 * call we may not rewrite the value
1722 				 * inside the object, leaving it
1723 				 * dangling and causing a GPU hang. Unless
1724 				 * userspace dynamically rebuilds the
1725 				 * relocations on each execbuf rather than
1726 				 * presume a static tree.
1727 				 *
1728 				 * We did previously check if the relocations
1729 				 * were writable (access_ok), an error now
1730 				 * would be a strange race with mprotect,
1731 				 * having already demonstrated that we
1732 				 * can read from this userspace address.
1733 				 */
1734 				offset = gen8_canonical_addr(offset & ~UPDATE);
1735 				__put_user(offset,
1736 					   &urelocs[r - stack].presumed_offset);
1737 			}
1738 		} while (r++, --count);
1739 		urelocs += ARRAY_SIZE(stack);
1740 	} while (remain);
1741 out:
1742 	reloc_cache_reset(&eb->reloc_cache, eb);
1743 	return remain;
1744 }
1745 
1746 static int
1747 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1748 {
1749 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1750 	struct drm_i915_gem_relocation_entry *relocs =
1751 		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1752 	unsigned int i;
1753 	int err;
1754 
1755 	for (i = 0; i < entry->relocation_count; i++) {
1756 		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1757 
1758 		if ((s64)offset < 0) {
1759 			err = (int)offset;
1760 			goto err;
1761 		}
1762 	}
1763 	err = 0;
1764 err:
1765 	reloc_cache_reset(&eb->reloc_cache, eb);
1766 	return err;
1767 }
1768 
1769 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1770 {
1771 	const char __user *addr, *end;
1772 	unsigned long size;
1773 	char __maybe_unused c;
1774 
1775 	size = entry->relocation_count;
1776 	if (size == 0)
1777 		return 0;
1778 
1779 	if (size > N_RELOC(ULONG_MAX))
1780 		return -EINVAL;
1781 
1782 	addr = u64_to_user_ptr(entry->relocs_ptr);
1783 	size *= sizeof(struct drm_i915_gem_relocation_entry);
1784 	if (!access_ok(addr, size))
1785 		return -EFAULT;
1786 
1787 	end = addr + size;
1788 	for (; addr < end; addr += PAGE_SIZE) {
1789 		int err = __get_user(c, addr);
1790 		if (err)
1791 			return err;
1792 	}
1793 	return __get_user(c, end - 1);
1794 }
1795 
1796 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1797 {
1798 	struct drm_i915_gem_relocation_entry *relocs;
1799 	const unsigned int count = eb->buffer_count;
1800 	unsigned int i;
1801 	int err;
1802 
1803 	for (i = 0; i < count; i++) {
1804 		const unsigned int nreloc = eb->exec[i].relocation_count;
1805 		struct drm_i915_gem_relocation_entry __user *urelocs;
1806 		unsigned long size;
1807 		unsigned long copied;
1808 
1809 		if (nreloc == 0)
1810 			continue;
1811 
1812 		err = check_relocations(&eb->exec[i]);
1813 		if (err)
1814 			goto err;
1815 
1816 		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1817 		size = nreloc * sizeof(*relocs);
1818 
1819 		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1820 		if (!relocs) {
1821 			err = -ENOMEM;
1822 			goto err;
1823 		}
1824 
1825 		/* copy_from_user is limited to < 4GiB */
1826 		copied = 0;
1827 		do {
1828 			unsigned int len =
1829 				min_t(u64, BIT_ULL(31), size - copied);
1830 
1831 			if (__copy_from_user((char *)relocs + copied,
1832 					     (char __user *)urelocs + copied,
1833 					     len))
1834 				goto end;
1835 
1836 			copied += len;
1837 		} while (copied < size);
1838 
1839 		/*
1840 		 * As we do not update the known relocation offsets after
1841 		 * relocating (due to the complexities in lock handling),
1842 		 * we need to mark them as invalid now so that we force the
1843 		 * relocation processing next time. Just in case the target
1844 		 * object is evicted and then rebound into its old
1845 		 * presumed_offset before the next execbuffer - if that
1846 		 * happened we would make the mistake of assuming that the
1847 		 * relocations were valid.
1848 		 */
1849 		if (!user_access_begin(urelocs, size))
1850 			goto end;
1851 
1852 		for (copied = 0; copied < nreloc; copied++)
1853 			unsafe_put_user(-1,
1854 					&urelocs[copied].presumed_offset,
1855 					end_user);
1856 		user_access_end();
1857 
1858 		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1859 	}
1860 
1861 	return 0;
1862 
1863 end_user:
1864 	user_access_end();
1865 end:
1866 	kvfree(relocs);
1867 	err = -EFAULT;
1868 err:
1869 	while (i--) {
1870 		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1871 		if (eb->exec[i].relocation_count)
1872 			kvfree(relocs);
1873 	}
1874 	return err;
1875 }
1876 
1877 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1878 {
1879 	const unsigned int count = eb->buffer_count;
1880 	unsigned int i;
1881 
1882 	for (i = 0; i < count; i++) {
1883 		int err;
1884 
1885 		err = check_relocations(&eb->exec[i]);
1886 		if (err)
1887 			return err;
1888 	}
1889 
1890 	return 0;
1891 }
1892 
1893 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb,
1894 					   struct i915_request *rq)
1895 {
1896 	bool have_copy = false;
1897 	struct eb_vma *ev;
1898 	int err = 0;
1899 
1900 repeat:
1901 	if (signal_pending(current)) {
1902 		err = -ERESTARTSYS;
1903 		goto out;
1904 	}
1905 
1906 	/* We may process another execbuffer during the unlock... */
1907 	eb_release_vmas(eb, false);
1908 	i915_gem_ww_ctx_fini(&eb->ww);
1909 
1910 	if (rq) {
1911 		/* nonblocking is always false */
1912 		if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
1913 				      MAX_SCHEDULE_TIMEOUT) < 0) {
1914 			i915_request_put(rq);
1915 			rq = NULL;
1916 
1917 			err = -EINTR;
1918 			goto err_relock;
1919 		}
1920 
1921 		i915_request_put(rq);
1922 		rq = NULL;
1923 	}
1924 
1925 	/*
1926 	 * We take 3 passes through the slowpatch.
1927 	 *
1928 	 * 1 - we try to just prefault all the user relocation entries and
1929 	 * then attempt to reuse the atomic pagefault disabled fast path again.
1930 	 *
1931 	 * 2 - we copy the user entries to a local buffer here outside of the
1932 	 * local and allow ourselves to wait upon any rendering before
1933 	 * relocations
1934 	 *
1935 	 * 3 - we already have a local copy of the relocation entries, but
1936 	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1937 	 */
1938 	if (!err) {
1939 		err = eb_prefault_relocations(eb);
1940 	} else if (!have_copy) {
1941 		err = eb_copy_relocations(eb);
1942 		have_copy = err == 0;
1943 	} else {
1944 		cond_resched();
1945 		err = 0;
1946 	}
1947 
1948 	if (!err)
1949 		flush_workqueue(eb->i915->mm.userptr_wq);
1950 
1951 err_relock:
1952 	i915_gem_ww_ctx_init(&eb->ww, true);
1953 	if (err)
1954 		goto out;
1955 
1956 	/* reacquire the objects */
1957 repeat_validate:
1958 	rq = eb_pin_engine(eb, false);
1959 	if (IS_ERR(rq)) {
1960 		err = PTR_ERR(rq);
1961 		rq = NULL;
1962 		goto err;
1963 	}
1964 
1965 	/* We didn't throttle, should be NULL */
1966 	GEM_WARN_ON(rq);
1967 
1968 	err = eb_validate_vmas(eb);
1969 	if (err)
1970 		goto err;
1971 
1972 	GEM_BUG_ON(!eb->batch);
1973 
1974 	list_for_each_entry(ev, &eb->relocs, reloc_link) {
1975 		if (!have_copy) {
1976 			pagefault_disable();
1977 			err = eb_relocate_vma(eb, ev);
1978 			pagefault_enable();
1979 			if (err)
1980 				break;
1981 		} else {
1982 			err = eb_relocate_vma_slow(eb, ev);
1983 			if (err)
1984 				break;
1985 		}
1986 	}
1987 
1988 	if (err == -EDEADLK)
1989 		goto err;
1990 
1991 	if (err && !have_copy)
1992 		goto repeat;
1993 
1994 	if (err)
1995 		goto err;
1996 
1997 	/* as last step, parse the command buffer */
1998 	err = eb_parse(eb);
1999 	if (err)
2000 		goto err;
2001 
2002 	/*
2003 	 * Leave the user relocations as are, this is the painfully slow path,
2004 	 * and we want to avoid the complication of dropping the lock whilst
2005 	 * having buffers reserved in the aperture and so causing spurious
2006 	 * ENOSPC for random operations.
2007 	 */
2008 
2009 err:
2010 	if (err == -EDEADLK) {
2011 		eb_release_vmas(eb, false);
2012 		err = i915_gem_ww_ctx_backoff(&eb->ww);
2013 		if (!err)
2014 			goto repeat_validate;
2015 	}
2016 
2017 	if (err == -EAGAIN)
2018 		goto repeat;
2019 
2020 out:
2021 	if (have_copy) {
2022 		const unsigned int count = eb->buffer_count;
2023 		unsigned int i;
2024 
2025 		for (i = 0; i < count; i++) {
2026 			const struct drm_i915_gem_exec_object2 *entry =
2027 				&eb->exec[i];
2028 			struct drm_i915_gem_relocation_entry *relocs;
2029 
2030 			if (!entry->relocation_count)
2031 				continue;
2032 
2033 			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
2034 			kvfree(relocs);
2035 		}
2036 	}
2037 
2038 	if (rq)
2039 		i915_request_put(rq);
2040 
2041 	return err;
2042 }
2043 
2044 static int eb_relocate_parse(struct i915_execbuffer *eb)
2045 {
2046 	int err;
2047 	struct i915_request *rq = NULL;
2048 	bool throttle = true;
2049 
2050 retry:
2051 	rq = eb_pin_engine(eb, throttle);
2052 	if (IS_ERR(rq)) {
2053 		err = PTR_ERR(rq);
2054 		rq = NULL;
2055 		if (err != -EDEADLK)
2056 			return err;
2057 
2058 		goto err;
2059 	}
2060 
2061 	if (rq) {
2062 		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2063 
2064 		/* Need to drop all locks now for throttling, take slowpath */
2065 		err = i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 0);
2066 		if (err == -ETIME) {
2067 			if (nonblock) {
2068 				err = -EWOULDBLOCK;
2069 				i915_request_put(rq);
2070 				goto err;
2071 			}
2072 			goto slow;
2073 		}
2074 		i915_request_put(rq);
2075 		rq = NULL;
2076 	}
2077 
2078 	/* only throttle once, even if we didn't need to throttle */
2079 	throttle = false;
2080 
2081 	err = eb_validate_vmas(eb);
2082 	if (err == -EAGAIN)
2083 		goto slow;
2084 	else if (err)
2085 		goto err;
2086 
2087 	/* The objects are in their final locations, apply the relocations. */
2088 	if (eb->args->flags & __EXEC_HAS_RELOC) {
2089 		struct eb_vma *ev;
2090 
2091 		list_for_each_entry(ev, &eb->relocs, reloc_link) {
2092 			err = eb_relocate_vma(eb, ev);
2093 			if (err)
2094 				break;
2095 		}
2096 
2097 		if (err == -EDEADLK)
2098 			goto err;
2099 		else if (err)
2100 			goto slow;
2101 	}
2102 
2103 	if (!err)
2104 		err = eb_parse(eb);
2105 
2106 err:
2107 	if (err == -EDEADLK) {
2108 		eb_release_vmas(eb, false);
2109 		err = i915_gem_ww_ctx_backoff(&eb->ww);
2110 		if (!err)
2111 			goto retry;
2112 	}
2113 
2114 	return err;
2115 
2116 slow:
2117 	err = eb_relocate_parse_slow(eb, rq);
2118 	if (err)
2119 		/*
2120 		 * If the user expects the execobject.offset and
2121 		 * reloc.presumed_offset to be an exact match,
2122 		 * as for using NO_RELOC, then we cannot update
2123 		 * the execobject.offset until we have completed
2124 		 * relocation.
2125 		 */
2126 		eb->args->flags &= ~__EXEC_HAS_RELOC;
2127 
2128 	return err;
2129 }
2130 
2131 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2132 {
2133 	const unsigned int count = eb->buffer_count;
2134 	unsigned int i = count;
2135 	int err = 0;
2136 
2137 	while (i--) {
2138 		struct eb_vma *ev = &eb->vma[i];
2139 		struct i915_vma *vma = ev->vma;
2140 		unsigned int flags = ev->flags;
2141 		struct drm_i915_gem_object *obj = vma->obj;
2142 
2143 		assert_vma_held(vma);
2144 
2145 		if (flags & EXEC_OBJECT_CAPTURE) {
2146 			struct i915_capture_list *capture;
2147 
2148 			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2149 			if (capture) {
2150 				capture->next = eb->request->capture_list;
2151 				capture->vma = vma;
2152 				eb->request->capture_list = capture;
2153 			}
2154 		}
2155 
2156 		/*
2157 		 * If the GPU is not _reading_ through the CPU cache, we need
2158 		 * to make sure that any writes (both previous GPU writes from
2159 		 * before a change in snooping levels and normal CPU writes)
2160 		 * caught in that cache are flushed to main memory.
2161 		 *
2162 		 * We want to say
2163 		 *   obj->cache_dirty &&
2164 		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2165 		 * but gcc's optimiser doesn't handle that as well and emits
2166 		 * two jumps instead of one. Maybe one day...
2167 		 */
2168 		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2169 			if (i915_gem_clflush_object(obj, 0))
2170 				flags &= ~EXEC_OBJECT_ASYNC;
2171 		}
2172 
2173 		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2174 			err = i915_request_await_object
2175 				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
2176 		}
2177 
2178 		if (err == 0)
2179 			err = i915_vma_move_to_active(vma, eb->request, flags);
2180 	}
2181 
2182 	if (unlikely(err))
2183 		goto err_skip;
2184 
2185 	/* Unconditionally flush any chipset caches (for streaming writes). */
2186 	intel_gt_chipset_flush(eb->engine->gt);
2187 	return 0;
2188 
2189 err_skip:
2190 	i915_request_set_error_once(eb->request, err);
2191 	return err;
2192 }
2193 
2194 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2195 {
2196 	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2197 		return -EINVAL;
2198 
2199 	/* Kernel clipping was a DRI1 misfeature */
2200 	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2201 			     I915_EXEC_USE_EXTENSIONS))) {
2202 		if (exec->num_cliprects || exec->cliprects_ptr)
2203 			return -EINVAL;
2204 	}
2205 
2206 	if (exec->DR4 == 0xffffffff) {
2207 		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2208 		exec->DR4 = 0;
2209 	}
2210 	if (exec->DR1 || exec->DR4)
2211 		return -EINVAL;
2212 
2213 	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2214 		return -EINVAL;
2215 
2216 	return 0;
2217 }
2218 
2219 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2220 {
2221 	u32 *cs;
2222 	int i;
2223 
2224 	if (!IS_GEN(rq->engine->i915, 7) || rq->engine->id != RCS0) {
2225 		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2226 		return -EINVAL;
2227 	}
2228 
2229 	cs = intel_ring_begin(rq, 4 * 2 + 2);
2230 	if (IS_ERR(cs))
2231 		return PTR_ERR(cs);
2232 
2233 	*cs++ = MI_LOAD_REGISTER_IMM(4);
2234 	for (i = 0; i < 4; i++) {
2235 		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2236 		*cs++ = 0;
2237 	}
2238 	*cs++ = MI_NOOP;
2239 	intel_ring_advance(rq, cs);
2240 
2241 	return 0;
2242 }
2243 
2244 static struct i915_vma *
2245 shadow_batch_pin(struct i915_execbuffer *eb,
2246 		 struct drm_i915_gem_object *obj,
2247 		 struct i915_address_space *vm,
2248 		 unsigned int flags)
2249 {
2250 	struct i915_vma *vma;
2251 	int err;
2252 
2253 	vma = i915_vma_instance(obj, vm, NULL);
2254 	if (IS_ERR(vma))
2255 		return vma;
2256 
2257 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags);
2258 	if (err)
2259 		return ERR_PTR(err);
2260 
2261 	return vma;
2262 }
2263 
2264 struct eb_parse_work {
2265 	struct dma_fence_work base;
2266 	struct intel_engine_cs *engine;
2267 	struct i915_vma *batch;
2268 	struct i915_vma *shadow;
2269 	struct i915_vma *trampoline;
2270 	unsigned long batch_offset;
2271 	unsigned long batch_length;
2272 };
2273 
2274 static int __eb_parse(struct dma_fence_work *work)
2275 {
2276 	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
2277 
2278 	return intel_engine_cmd_parser(pw->engine,
2279 				       pw->batch,
2280 				       pw->batch_offset,
2281 				       pw->batch_length,
2282 				       pw->shadow,
2283 				       pw->trampoline);
2284 }
2285 
2286 static void __eb_parse_release(struct dma_fence_work *work)
2287 {
2288 	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
2289 
2290 	if (pw->trampoline)
2291 		i915_active_release(&pw->trampoline->active);
2292 	i915_active_release(&pw->shadow->active);
2293 	i915_active_release(&pw->batch->active);
2294 }
2295 
2296 static const struct dma_fence_work_ops eb_parse_ops = {
2297 	.name = "eb_parse",
2298 	.work = __eb_parse,
2299 	.release = __eb_parse_release,
2300 };
2301 
2302 static inline int
2303 __parser_mark_active(struct i915_vma *vma,
2304 		     struct intel_timeline *tl,
2305 		     struct dma_fence *fence)
2306 {
2307 	struct intel_gt_buffer_pool_node *node = vma->private;
2308 
2309 	return i915_active_ref(&node->active, tl->fence_context, fence);
2310 }
2311 
2312 static int
2313 parser_mark_active(struct eb_parse_work *pw, struct intel_timeline *tl)
2314 {
2315 	int err;
2316 
2317 	mutex_lock(&tl->mutex);
2318 
2319 	err = __parser_mark_active(pw->shadow, tl, &pw->base.dma);
2320 	if (err)
2321 		goto unlock;
2322 
2323 	if (pw->trampoline) {
2324 		err = __parser_mark_active(pw->trampoline, tl, &pw->base.dma);
2325 		if (err)
2326 			goto unlock;
2327 	}
2328 
2329 unlock:
2330 	mutex_unlock(&tl->mutex);
2331 	return err;
2332 }
2333 
2334 static int eb_parse_pipeline(struct i915_execbuffer *eb,
2335 			     struct i915_vma *shadow,
2336 			     struct i915_vma *trampoline)
2337 {
2338 	struct eb_parse_work *pw;
2339 	int err;
2340 
2341 	GEM_BUG_ON(overflows_type(eb->batch_start_offset, pw->batch_offset));
2342 	GEM_BUG_ON(overflows_type(eb->batch_len, pw->batch_length));
2343 
2344 	pw = kzalloc(sizeof(*pw), GFP_KERNEL);
2345 	if (!pw)
2346 		return -ENOMEM;
2347 
2348 	err = i915_active_acquire(&eb->batch->vma->active);
2349 	if (err)
2350 		goto err_free;
2351 
2352 	err = i915_active_acquire(&shadow->active);
2353 	if (err)
2354 		goto err_batch;
2355 
2356 	if (trampoline) {
2357 		err = i915_active_acquire(&trampoline->active);
2358 		if (err)
2359 			goto err_shadow;
2360 	}
2361 
2362 	dma_fence_work_init(&pw->base, &eb_parse_ops);
2363 
2364 	pw->engine = eb->engine;
2365 	pw->batch = eb->batch->vma;
2366 	pw->batch_offset = eb->batch_start_offset;
2367 	pw->batch_length = eb->batch_len;
2368 	pw->shadow = shadow;
2369 	pw->trampoline = trampoline;
2370 
2371 	/* Mark active refs early for this worker, in case we get interrupted */
2372 	err = parser_mark_active(pw, eb->context->timeline);
2373 	if (err)
2374 		goto err_commit;
2375 
2376 	err = dma_resv_reserve_shared(pw->batch->resv, 1);
2377 	if (err)
2378 		goto err_commit;
2379 
2380 	/* Wait for all writes (and relocs) into the batch to complete */
2381 	err = i915_sw_fence_await_reservation(&pw->base.chain,
2382 					      pw->batch->resv, NULL, false,
2383 					      0, I915_FENCE_GFP);
2384 	if (err < 0)
2385 		goto err_commit;
2386 
2387 	/* Keep the batch alive and unwritten as we parse */
2388 	dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);
2389 
2390 	/* Force execution to wait for completion of the parser */
2391 	dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
2392 
2393 	dma_fence_work_commit_imm(&pw->base);
2394 	return 0;
2395 
2396 err_commit:
2397 	i915_sw_fence_set_error_once(&pw->base.chain, err);
2398 	dma_fence_work_commit_imm(&pw->base);
2399 	return err;
2400 
2401 err_shadow:
2402 	i915_active_release(&shadow->active);
2403 err_batch:
2404 	i915_active_release(&eb->batch->vma->active);
2405 err_free:
2406 	kfree(pw);
2407 	return err;
2408 }
2409 
2410 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2411 {
2412 	/*
2413 	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2414 	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2415 	 * hsw should have this fixed, but bdw mucks it up again. */
2416 	if (eb->batch_flags & I915_DISPATCH_SECURE)
2417 		return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0);
2418 
2419 	return NULL;
2420 }
2421 
2422 static int eb_parse(struct i915_execbuffer *eb)
2423 {
2424 	struct drm_i915_private *i915 = eb->i915;
2425 	struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2426 	struct i915_vma *shadow, *trampoline, *batch;
2427 	unsigned int len;
2428 	int err;
2429 
2430 	if (!eb_use_cmdparser(eb)) {
2431 		batch = eb_dispatch_secure(eb, eb->batch->vma);
2432 		if (IS_ERR(batch))
2433 			return PTR_ERR(batch);
2434 
2435 		goto secure_batch;
2436 	}
2437 
2438 	len = eb->batch_len;
2439 	if (!CMDPARSER_USES_GGTT(eb->i915)) {
2440 		/*
2441 		 * ppGTT backed shadow buffers must be mapped RO, to prevent
2442 		 * post-scan tampering
2443 		 */
2444 		if (!eb->context->vm->has_read_only) {
2445 			drm_dbg(&i915->drm,
2446 				"Cannot prevent post-scan tampering without RO capable vm\n");
2447 			return -EINVAL;
2448 		}
2449 	} else {
2450 		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2451 	}
2452 
2453 	if (!pool) {
2454 		pool = intel_gt_get_buffer_pool(eb->engine->gt, len);
2455 		if (IS_ERR(pool))
2456 			return PTR_ERR(pool);
2457 		eb->batch_pool = pool;
2458 	}
2459 
2460 	err = i915_gem_object_lock(pool->obj, &eb->ww);
2461 	if (err)
2462 		goto err;
2463 
2464 	shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2465 	if (IS_ERR(shadow)) {
2466 		err = PTR_ERR(shadow);
2467 		goto err;
2468 	}
2469 	i915_gem_object_set_readonly(shadow->obj);
2470 	shadow->private = pool;
2471 
2472 	trampoline = NULL;
2473 	if (CMDPARSER_USES_GGTT(eb->i915)) {
2474 		trampoline = shadow;
2475 
2476 		shadow = shadow_batch_pin(eb, pool->obj,
2477 					  &eb->engine->gt->ggtt->vm,
2478 					  PIN_GLOBAL);
2479 		if (IS_ERR(shadow)) {
2480 			err = PTR_ERR(shadow);
2481 			shadow = trampoline;
2482 			goto err_shadow;
2483 		}
2484 		shadow->private = pool;
2485 
2486 		eb->batch_flags |= I915_DISPATCH_SECURE;
2487 	}
2488 
2489 	batch = eb_dispatch_secure(eb, shadow);
2490 	if (IS_ERR(batch)) {
2491 		err = PTR_ERR(batch);
2492 		goto err_trampoline;
2493 	}
2494 
2495 	err = eb_parse_pipeline(eb, shadow, trampoline);
2496 	if (err)
2497 		goto err_unpin_batch;
2498 
2499 	eb->batch = &eb->vma[eb->buffer_count++];
2500 	eb->batch->vma = i915_vma_get(shadow);
2501 	eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
2502 
2503 	eb->trampoline = trampoline;
2504 	eb->batch_start_offset = 0;
2505 
2506 secure_batch:
2507 	if (batch) {
2508 		eb->batch = &eb->vma[eb->buffer_count++];
2509 		eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
2510 		eb->batch->vma = i915_vma_get(batch);
2511 	}
2512 	return 0;
2513 
2514 err_unpin_batch:
2515 	if (batch)
2516 		i915_vma_unpin(batch);
2517 err_trampoline:
2518 	if (trampoline)
2519 		i915_vma_unpin(trampoline);
2520 err_shadow:
2521 	i915_vma_unpin(shadow);
2522 err:
2523 	return err;
2524 }
2525 
2526 static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
2527 {
2528 	int err;
2529 
2530 	err = eb_move_to_gpu(eb);
2531 	if (err)
2532 		return err;
2533 
2534 	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2535 		err = i915_reset_gen7_sol_offsets(eb->request);
2536 		if (err)
2537 			return err;
2538 	}
2539 
2540 	/*
2541 	 * After we completed waiting for other engines (using HW semaphores)
2542 	 * then we can signal that this request/batch is ready to run. This
2543 	 * allows us to determine if the batch is still waiting on the GPU
2544 	 * or actually running by checking the breadcrumb.
2545 	 */
2546 	if (eb->engine->emit_init_breadcrumb) {
2547 		err = eb->engine->emit_init_breadcrumb(eb->request);
2548 		if (err)
2549 			return err;
2550 	}
2551 
2552 	err = eb->engine->emit_bb_start(eb->request,
2553 					batch->node.start +
2554 					eb->batch_start_offset,
2555 					eb->batch_len,
2556 					eb->batch_flags);
2557 	if (err)
2558 		return err;
2559 
2560 	if (eb->trampoline) {
2561 		GEM_BUG_ON(eb->batch_start_offset);
2562 		err = eb->engine->emit_bb_start(eb->request,
2563 						eb->trampoline->node.start +
2564 						eb->batch_len,
2565 						0, 0);
2566 		if (err)
2567 			return err;
2568 	}
2569 
2570 	if (intel_context_nopreempt(eb->context))
2571 		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2572 
2573 	return 0;
2574 }
2575 
2576 static int num_vcs_engines(const struct drm_i915_private *i915)
2577 {
2578 	return hweight64(VDBOX_MASK(&i915->gt));
2579 }
2580 
2581 /*
2582  * Find one BSD ring to dispatch the corresponding BSD command.
2583  * The engine index is returned.
2584  */
2585 static unsigned int
2586 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2587 			 struct drm_file *file)
2588 {
2589 	struct drm_i915_file_private *file_priv = file->driver_priv;
2590 
2591 	/* Check whether the file_priv has already selected one ring. */
2592 	if ((int)file_priv->bsd_engine < 0)
2593 		file_priv->bsd_engine =
2594 			get_random_int() % num_vcs_engines(dev_priv);
2595 
2596 	return file_priv->bsd_engine;
2597 }
2598 
2599 static const enum intel_engine_id user_ring_map[] = {
2600 	[I915_EXEC_DEFAULT]	= RCS0,
2601 	[I915_EXEC_RENDER]	= RCS0,
2602 	[I915_EXEC_BLT]		= BCS0,
2603 	[I915_EXEC_BSD]		= VCS0,
2604 	[I915_EXEC_VEBOX]	= VECS0
2605 };
2606 
2607 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2608 {
2609 	struct intel_ring *ring = ce->ring;
2610 	struct intel_timeline *tl = ce->timeline;
2611 	struct i915_request *rq;
2612 
2613 	/*
2614 	 * Completely unscientific finger-in-the-air estimates for suitable
2615 	 * maximum user request size (to avoid blocking) and then backoff.
2616 	 */
2617 	if (intel_ring_update_space(ring) >= PAGE_SIZE)
2618 		return NULL;
2619 
2620 	/*
2621 	 * Find a request that after waiting upon, there will be at least half
2622 	 * the ring available. The hysteresis allows us to compete for the
2623 	 * shared ring and should mean that we sleep less often prior to
2624 	 * claiming our resources, but not so long that the ring completely
2625 	 * drains before we can submit our next request.
2626 	 */
2627 	list_for_each_entry(rq, &tl->requests, link) {
2628 		if (rq->ring != ring)
2629 			continue;
2630 
2631 		if (__intel_ring_space(rq->postfix,
2632 				       ring->emit, ring->size) > ring->size / 2)
2633 			break;
2634 	}
2635 	if (&rq->link == &tl->requests)
2636 		return NULL; /* weird, we will check again later for real */
2637 
2638 	return i915_request_get(rq);
2639 }
2640 
2641 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2642 {
2643 	struct intel_context *ce = eb->context;
2644 	struct intel_timeline *tl;
2645 	struct i915_request *rq = NULL;
2646 	int err;
2647 
2648 	GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2649 
2650 	if (unlikely(intel_context_is_banned(ce)))
2651 		return ERR_PTR(-EIO);
2652 
2653 	/*
2654 	 * Pinning the contexts may generate requests in order to acquire
2655 	 * GGTT space, so do this first before we reserve a seqno for
2656 	 * ourselves.
2657 	 */
2658 	err = intel_context_pin_ww(ce, &eb->ww);
2659 	if (err)
2660 		return ERR_PTR(err);
2661 
2662 	/*
2663 	 * Take a local wakeref for preparing to dispatch the execbuf as
2664 	 * we expect to access the hardware fairly frequently in the
2665 	 * process, and require the engine to be kept awake between accesses.
2666 	 * Upon dispatch, we acquire another prolonged wakeref that we hold
2667 	 * until the timeline is idle, which in turn releases the wakeref
2668 	 * taken on the engine, and the parent device.
2669 	 */
2670 	tl = intel_context_timeline_lock(ce);
2671 	if (IS_ERR(tl)) {
2672 		intel_context_unpin(ce);
2673 		return ERR_CAST(tl);
2674 	}
2675 
2676 	intel_context_enter(ce);
2677 	if (throttle)
2678 		rq = eb_throttle(eb, ce);
2679 	intel_context_timeline_unlock(tl);
2680 
2681 	eb->args->flags |= __EXEC_ENGINE_PINNED;
2682 	return rq;
2683 }
2684 
2685 static void eb_unpin_engine(struct i915_execbuffer *eb)
2686 {
2687 	struct intel_context *ce = eb->context;
2688 	struct intel_timeline *tl = ce->timeline;
2689 
2690 	if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2691 		return;
2692 
2693 	eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2694 
2695 	mutex_lock(&tl->mutex);
2696 	intel_context_exit(ce);
2697 	mutex_unlock(&tl->mutex);
2698 
2699 	intel_context_unpin(ce);
2700 }
2701 
2702 static unsigned int
2703 eb_select_legacy_ring(struct i915_execbuffer *eb)
2704 {
2705 	struct drm_i915_private *i915 = eb->i915;
2706 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2707 	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2708 
2709 	if (user_ring_id != I915_EXEC_BSD &&
2710 	    (args->flags & I915_EXEC_BSD_MASK)) {
2711 		drm_dbg(&i915->drm,
2712 			"execbuf with non bsd ring but with invalid "
2713 			"bsd dispatch flags: %d\n", (int)(args->flags));
2714 		return -1;
2715 	}
2716 
2717 	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2718 		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2719 
2720 		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2721 			bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2722 		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2723 			   bsd_idx <= I915_EXEC_BSD_RING2) {
2724 			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2725 			bsd_idx--;
2726 		} else {
2727 			drm_dbg(&i915->drm,
2728 				"execbuf with unknown bsd ring: %u\n",
2729 				bsd_idx);
2730 			return -1;
2731 		}
2732 
2733 		return _VCS(bsd_idx);
2734 	}
2735 
2736 	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2737 		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2738 			user_ring_id);
2739 		return -1;
2740 	}
2741 
2742 	return user_ring_map[user_ring_id];
2743 }
2744 
2745 static int
2746 eb_select_engine(struct i915_execbuffer *eb)
2747 {
2748 	struct intel_context *ce;
2749 	unsigned int idx;
2750 	int err;
2751 
2752 	if (i915_gem_context_user_engines(eb->gem_context))
2753 		idx = eb->args->flags & I915_EXEC_RING_MASK;
2754 	else
2755 		idx = eb_select_legacy_ring(eb);
2756 
2757 	ce = i915_gem_context_get_engine(eb->gem_context, idx);
2758 	if (IS_ERR(ce))
2759 		return PTR_ERR(ce);
2760 
2761 	intel_gt_pm_get(ce->engine->gt);
2762 
2763 	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2764 		err = intel_context_alloc_state(ce);
2765 		if (err)
2766 			goto err;
2767 	}
2768 
2769 	/*
2770 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2771 	 * EIO if the GPU is already wedged.
2772 	 */
2773 	err = intel_gt_terminally_wedged(ce->engine->gt);
2774 	if (err)
2775 		goto err;
2776 
2777 	eb->context = ce;
2778 	eb->engine = ce->engine;
2779 
2780 	/*
2781 	 * Make sure engine pool stays alive even if we call intel_context_put
2782 	 * during ww handling. The pool is destroyed when last pm reference
2783 	 * is dropped, which breaks our -EDEADLK handling.
2784 	 */
2785 	return err;
2786 
2787 err:
2788 	intel_gt_pm_put(ce->engine->gt);
2789 	intel_context_put(ce);
2790 	return err;
2791 }
2792 
2793 static void
2794 eb_put_engine(struct i915_execbuffer *eb)
2795 {
2796 	intel_gt_pm_put(eb->engine->gt);
2797 	intel_context_put(eb->context);
2798 }
2799 
2800 static void
2801 __free_fence_array(struct eb_fence *fences, unsigned int n)
2802 {
2803 	while (n--) {
2804 		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2805 		dma_fence_put(fences[n].dma_fence);
2806 		kfree(fences[n].chain_fence);
2807 	}
2808 	kvfree(fences);
2809 }
2810 
2811 static int
2812 add_timeline_fence_array(struct i915_execbuffer *eb,
2813 			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2814 {
2815 	struct drm_i915_gem_exec_fence __user *user_fences;
2816 	u64 __user *user_values;
2817 	struct eb_fence *f;
2818 	u64 nfences;
2819 	int err = 0;
2820 
2821 	nfences = timeline_fences->fence_count;
2822 	if (!nfences)
2823 		return 0;
2824 
2825 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2826 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2827 	if (nfences > min_t(unsigned long,
2828 			    ULONG_MAX / sizeof(*user_fences),
2829 			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2830 		return -EINVAL;
2831 
2832 	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2833 	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2834 		return -EFAULT;
2835 
2836 	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2837 	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2838 		return -EFAULT;
2839 
2840 	f = krealloc(eb->fences,
2841 		     (eb->num_fences + nfences) * sizeof(*f),
2842 		     __GFP_NOWARN | GFP_KERNEL);
2843 	if (!f)
2844 		return -ENOMEM;
2845 
2846 	eb->fences = f;
2847 	f += eb->num_fences;
2848 
2849 	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2850 		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2851 
2852 	while (nfences--) {
2853 		struct drm_i915_gem_exec_fence user_fence;
2854 		struct drm_syncobj *syncobj;
2855 		struct dma_fence *fence = NULL;
2856 		u64 point;
2857 
2858 		if (__copy_from_user(&user_fence,
2859 				     user_fences++,
2860 				     sizeof(user_fence)))
2861 			return -EFAULT;
2862 
2863 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2864 			return -EINVAL;
2865 
2866 		if (__get_user(point, user_values++))
2867 			return -EFAULT;
2868 
2869 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2870 		if (!syncobj) {
2871 			DRM_DEBUG("Invalid syncobj handle provided\n");
2872 			return -ENOENT;
2873 		}
2874 
2875 		fence = drm_syncobj_fence_get(syncobj);
2876 
2877 		if (!fence && user_fence.flags &&
2878 		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2879 			DRM_DEBUG("Syncobj handle has no fence\n");
2880 			drm_syncobj_put(syncobj);
2881 			return -EINVAL;
2882 		}
2883 
2884 		if (fence)
2885 			err = dma_fence_chain_find_seqno(&fence, point);
2886 
2887 		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2888 			DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2889 			dma_fence_put(fence);
2890 			drm_syncobj_put(syncobj);
2891 			return err;
2892 		}
2893 
2894 		/*
2895 		 * A point might have been signaled already and
2896 		 * garbage collected from the timeline. In this case
2897 		 * just ignore the point and carry on.
2898 		 */
2899 		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2900 			drm_syncobj_put(syncobj);
2901 			continue;
2902 		}
2903 
2904 		/*
2905 		 * For timeline syncobjs we need to preallocate chains for
2906 		 * later signaling.
2907 		 */
2908 		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2909 			/*
2910 			 * Waiting and signaling the same point (when point !=
2911 			 * 0) would break the timeline.
2912 			 */
2913 			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2914 				DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
2915 				dma_fence_put(fence);
2916 				drm_syncobj_put(syncobj);
2917 				return -EINVAL;
2918 			}
2919 
2920 			f->chain_fence =
2921 				kmalloc(sizeof(*f->chain_fence),
2922 					GFP_KERNEL);
2923 			if (!f->chain_fence) {
2924 				drm_syncobj_put(syncobj);
2925 				dma_fence_put(fence);
2926 				return -ENOMEM;
2927 			}
2928 		} else {
2929 			f->chain_fence = NULL;
2930 		}
2931 
2932 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2933 		f->dma_fence = fence;
2934 		f->value = point;
2935 		f++;
2936 		eb->num_fences++;
2937 	}
2938 
2939 	return 0;
2940 }
2941 
2942 static int add_fence_array(struct i915_execbuffer *eb)
2943 {
2944 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2945 	struct drm_i915_gem_exec_fence __user *user;
2946 	unsigned long num_fences = args->num_cliprects;
2947 	struct eb_fence *f;
2948 
2949 	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2950 		return 0;
2951 
2952 	if (!num_fences)
2953 		return 0;
2954 
2955 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2956 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2957 	if (num_fences > min_t(unsigned long,
2958 			       ULONG_MAX / sizeof(*user),
2959 			       SIZE_MAX / sizeof(*f) - eb->num_fences))
2960 		return -EINVAL;
2961 
2962 	user = u64_to_user_ptr(args->cliprects_ptr);
2963 	if (!access_ok(user, num_fences * sizeof(*user)))
2964 		return -EFAULT;
2965 
2966 	f = krealloc(eb->fences,
2967 		     (eb->num_fences + num_fences) * sizeof(*f),
2968 		     __GFP_NOWARN | GFP_KERNEL);
2969 	if (!f)
2970 		return -ENOMEM;
2971 
2972 	eb->fences = f;
2973 	f += eb->num_fences;
2974 	while (num_fences--) {
2975 		struct drm_i915_gem_exec_fence user_fence;
2976 		struct drm_syncobj *syncobj;
2977 		struct dma_fence *fence = NULL;
2978 
2979 		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2980 			return -EFAULT;
2981 
2982 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2983 			return -EINVAL;
2984 
2985 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2986 		if (!syncobj) {
2987 			DRM_DEBUG("Invalid syncobj handle provided\n");
2988 			return -ENOENT;
2989 		}
2990 
2991 		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2992 			fence = drm_syncobj_fence_get(syncobj);
2993 			if (!fence) {
2994 				DRM_DEBUG("Syncobj handle has no fence\n");
2995 				drm_syncobj_put(syncobj);
2996 				return -EINVAL;
2997 			}
2998 		}
2999 
3000 		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
3001 			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
3002 
3003 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
3004 		f->dma_fence = fence;
3005 		f->value = 0;
3006 		f->chain_fence = NULL;
3007 		f++;
3008 		eb->num_fences++;
3009 	}
3010 
3011 	return 0;
3012 }
3013 
3014 static void put_fence_array(struct eb_fence *fences, int num_fences)
3015 {
3016 	if (fences)
3017 		__free_fence_array(fences, num_fences);
3018 }
3019 
3020 static int
3021 await_fence_array(struct i915_execbuffer *eb)
3022 {
3023 	unsigned int n;
3024 	int err;
3025 
3026 	for (n = 0; n < eb->num_fences; n++) {
3027 		struct drm_syncobj *syncobj;
3028 		unsigned int flags;
3029 
3030 		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3031 
3032 		if (!eb->fences[n].dma_fence)
3033 			continue;
3034 
3035 		err = i915_request_await_dma_fence(eb->request,
3036 						   eb->fences[n].dma_fence);
3037 		if (err < 0)
3038 			return err;
3039 	}
3040 
3041 	return 0;
3042 }
3043 
3044 static void signal_fence_array(const struct i915_execbuffer *eb)
3045 {
3046 	struct dma_fence * const fence = &eb->request->fence;
3047 	unsigned int n;
3048 
3049 	for (n = 0; n < eb->num_fences; n++) {
3050 		struct drm_syncobj *syncobj;
3051 		unsigned int flags;
3052 
3053 		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3054 		if (!(flags & I915_EXEC_FENCE_SIGNAL))
3055 			continue;
3056 
3057 		if (eb->fences[n].chain_fence) {
3058 			drm_syncobj_add_point(syncobj,
3059 					      eb->fences[n].chain_fence,
3060 					      fence,
3061 					      eb->fences[n].value);
3062 			/*
3063 			 * The chain's ownership is transferred to the
3064 			 * timeline.
3065 			 */
3066 			eb->fences[n].chain_fence = NULL;
3067 		} else {
3068 			drm_syncobj_replace_fence(syncobj, fence);
3069 		}
3070 	}
3071 }
3072 
3073 static int
3074 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3075 {
3076 	struct i915_execbuffer *eb = data;
3077 	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3078 
3079 	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3080 		return -EFAULT;
3081 
3082 	return add_timeline_fence_array(eb, &timeline_fences);
3083 }
3084 
3085 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3086 {
3087 	struct i915_request *rq, *rn;
3088 
3089 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
3090 		if (rq == end || !i915_request_retire(rq))
3091 			break;
3092 }
3093 
3094 static void eb_request_add(struct i915_execbuffer *eb)
3095 {
3096 	struct i915_request *rq = eb->request;
3097 	struct intel_timeline * const tl = i915_request_timeline(rq);
3098 	struct i915_sched_attr attr = {};
3099 	struct i915_request *prev;
3100 
3101 	lockdep_assert_held(&tl->mutex);
3102 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
3103 
3104 	trace_i915_request_add(rq);
3105 
3106 	prev = __i915_request_commit(rq);
3107 
3108 	/* Check that the context wasn't destroyed before submission */
3109 	if (likely(!intel_context_is_closed(eb->context))) {
3110 		attr = eb->gem_context->sched;
3111 	} else {
3112 		/* Serialise with context_close via the add_to_timeline */
3113 		i915_request_set_error_once(rq, -ENOENT);
3114 		__i915_request_skip(rq);
3115 	}
3116 
3117 	__i915_request_queue(rq, &attr);
3118 
3119 	/* Try to clean up the client's timeline after submitting the request */
3120 	if (prev)
3121 		retire_requests(tl, prev);
3122 
3123 	mutex_unlock(&tl->mutex);
3124 }
3125 
3126 static const i915_user_extension_fn execbuf_extensions[] = {
3127 	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3128 };
3129 
3130 static int
3131 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3132 			  struct i915_execbuffer *eb)
3133 {
3134 	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3135 		return 0;
3136 
3137 	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3138 	 * have another flag also using it at the same time.
3139 	 */
3140 	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3141 		return -EINVAL;
3142 
3143 	if (args->num_cliprects != 0)
3144 		return -EINVAL;
3145 
3146 	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3147 				    execbuf_extensions,
3148 				    ARRAY_SIZE(execbuf_extensions),
3149 				    eb);
3150 }
3151 
3152 static int
3153 i915_gem_do_execbuffer(struct drm_device *dev,
3154 		       struct drm_file *file,
3155 		       struct drm_i915_gem_execbuffer2 *args,
3156 		       struct drm_i915_gem_exec_object2 *exec)
3157 {
3158 	struct drm_i915_private *i915 = to_i915(dev);
3159 	struct i915_execbuffer eb;
3160 	struct dma_fence *in_fence = NULL;
3161 	struct sync_file *out_fence = NULL;
3162 	struct i915_vma *batch;
3163 	int out_fence_fd = -1;
3164 	int err;
3165 
3166 	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3167 	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3168 		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3169 
3170 	eb.i915 = i915;
3171 	eb.file = file;
3172 	eb.args = args;
3173 	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3174 		args->flags |= __EXEC_HAS_RELOC;
3175 
3176 	eb.exec = exec;
3177 	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3178 	eb.vma[0].vma = NULL;
3179 	eb.reloc_pool = eb.batch_pool = NULL;
3180 	eb.reloc_context = NULL;
3181 
3182 	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3183 	reloc_cache_init(&eb.reloc_cache, eb.i915);
3184 
3185 	eb.buffer_count = args->buffer_count;
3186 	eb.batch_start_offset = args->batch_start_offset;
3187 	eb.batch_len = args->batch_len;
3188 	eb.trampoline = NULL;
3189 
3190 	eb.fences = NULL;
3191 	eb.num_fences = 0;
3192 
3193 	eb.batch_flags = 0;
3194 	if (args->flags & I915_EXEC_SECURE) {
3195 		if (INTEL_GEN(i915) >= 11)
3196 			return -ENODEV;
3197 
3198 		/* Return -EPERM to trigger fallback code on old binaries. */
3199 		if (!HAS_SECURE_BATCHES(i915))
3200 			return -EPERM;
3201 
3202 		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3203 			return -EPERM;
3204 
3205 		eb.batch_flags |= I915_DISPATCH_SECURE;
3206 	}
3207 	if (args->flags & I915_EXEC_IS_PINNED)
3208 		eb.batch_flags |= I915_DISPATCH_PINNED;
3209 
3210 	err = parse_execbuf2_extensions(args, &eb);
3211 	if (err)
3212 		goto err_ext;
3213 
3214 	err = add_fence_array(&eb);
3215 	if (err)
3216 		goto err_ext;
3217 
3218 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3219 	if (args->flags & IN_FENCES) {
3220 		if ((args->flags & IN_FENCES) == IN_FENCES)
3221 			return -EINVAL;
3222 
3223 		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3224 		if (!in_fence) {
3225 			err = -EINVAL;
3226 			goto err_ext;
3227 		}
3228 	}
3229 #undef IN_FENCES
3230 
3231 	if (args->flags & I915_EXEC_FENCE_OUT) {
3232 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3233 		if (out_fence_fd < 0) {
3234 			err = out_fence_fd;
3235 			goto err_in_fence;
3236 		}
3237 	}
3238 
3239 	err = eb_create(&eb);
3240 	if (err)
3241 		goto err_out_fence;
3242 
3243 	GEM_BUG_ON(!eb.lut_size);
3244 
3245 	err = eb_select_context(&eb);
3246 	if (unlikely(err))
3247 		goto err_destroy;
3248 
3249 	err = eb_select_engine(&eb);
3250 	if (unlikely(err))
3251 		goto err_context;
3252 
3253 	err = eb_lookup_vmas(&eb);
3254 	if (err) {
3255 		eb_release_vmas(&eb, true);
3256 		goto err_engine;
3257 	}
3258 
3259 	i915_gem_ww_ctx_init(&eb.ww, true);
3260 
3261 	err = eb_relocate_parse(&eb);
3262 	if (err) {
3263 		/*
3264 		 * If the user expects the execobject.offset and
3265 		 * reloc.presumed_offset to be an exact match,
3266 		 * as for using NO_RELOC, then we cannot update
3267 		 * the execobject.offset until we have completed
3268 		 * relocation.
3269 		 */
3270 		args->flags &= ~__EXEC_HAS_RELOC;
3271 		goto err_vma;
3272 	}
3273 
3274 	ww_acquire_done(&eb.ww.ctx);
3275 
3276 	batch = eb.batch->vma;
3277 
3278 	/* All GPU relocation batches must be submitted prior to the user rq */
3279 	GEM_BUG_ON(eb.reloc_cache.rq);
3280 
3281 	/* Allocate a request for this batch buffer nice and early. */
3282 	eb.request = i915_request_create(eb.context);
3283 	if (IS_ERR(eb.request)) {
3284 		err = PTR_ERR(eb.request);
3285 		goto err_vma;
3286 	}
3287 
3288 	if (in_fence) {
3289 		if (args->flags & I915_EXEC_FENCE_SUBMIT)
3290 			err = i915_request_await_execution(eb.request,
3291 							   in_fence,
3292 							   eb.engine->bond_execute);
3293 		else
3294 			err = i915_request_await_dma_fence(eb.request,
3295 							   in_fence);
3296 		if (err < 0)
3297 			goto err_request;
3298 	}
3299 
3300 	if (eb.fences) {
3301 		err = await_fence_array(&eb);
3302 		if (err)
3303 			goto err_request;
3304 	}
3305 
3306 	if (out_fence_fd != -1) {
3307 		out_fence = sync_file_create(&eb.request->fence);
3308 		if (!out_fence) {
3309 			err = -ENOMEM;
3310 			goto err_request;
3311 		}
3312 	}
3313 
3314 	/*
3315 	 * Whilst this request exists, batch_obj will be on the
3316 	 * active_list, and so will hold the active reference. Only when this
3317 	 * request is retired will the the batch_obj be moved onto the
3318 	 * inactive_list and lose its active reference. Hence we do not need
3319 	 * to explicitly hold another reference here.
3320 	 */
3321 	eb.request->batch = batch;
3322 	if (eb.batch_pool)
3323 		intel_gt_buffer_pool_mark_active(eb.batch_pool, eb.request);
3324 
3325 	trace_i915_request_queue(eb.request, eb.batch_flags);
3326 	err = eb_submit(&eb, batch);
3327 err_request:
3328 	i915_request_get(eb.request);
3329 	eb_request_add(&eb);
3330 
3331 	if (eb.fences)
3332 		signal_fence_array(&eb);
3333 
3334 	if (out_fence) {
3335 		if (err == 0) {
3336 			fd_install(out_fence_fd, out_fence->file);
3337 			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3338 			args->rsvd2 |= (u64)out_fence_fd << 32;
3339 			out_fence_fd = -1;
3340 		} else {
3341 			fput(out_fence->file);
3342 		}
3343 	}
3344 	i915_request_put(eb.request);
3345 
3346 err_vma:
3347 	eb_release_vmas(&eb, true);
3348 	if (eb.trampoline)
3349 		i915_vma_unpin(eb.trampoline);
3350 	WARN_ON(err == -EDEADLK);
3351 	i915_gem_ww_ctx_fini(&eb.ww);
3352 
3353 	if (eb.batch_pool)
3354 		intel_gt_buffer_pool_put(eb.batch_pool);
3355 	if (eb.reloc_pool)
3356 		intel_gt_buffer_pool_put(eb.reloc_pool);
3357 	if (eb.reloc_context)
3358 		intel_context_put(eb.reloc_context);
3359 err_engine:
3360 	eb_put_engine(&eb);
3361 err_context:
3362 	i915_gem_context_put(eb.gem_context);
3363 err_destroy:
3364 	eb_destroy(&eb);
3365 err_out_fence:
3366 	if (out_fence_fd != -1)
3367 		put_unused_fd(out_fence_fd);
3368 err_in_fence:
3369 	dma_fence_put(in_fence);
3370 err_ext:
3371 	put_fence_array(eb.fences, eb.num_fences);
3372 	return err;
3373 }
3374 
3375 static size_t eb_element_size(void)
3376 {
3377 	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3378 }
3379 
3380 static bool check_buffer_count(size_t count)
3381 {
3382 	const size_t sz = eb_element_size();
3383 
3384 	/*
3385 	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3386 	 * array size (see eb_create()). Otherwise, we can accept an array as
3387 	 * large as can be addressed (though use large arrays at your peril)!
3388 	 */
3389 
3390 	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3391 }
3392 
3393 /*
3394  * Legacy execbuffer just creates an exec2 list from the original exec object
3395  * list array and passes it to the real function.
3396  */
3397 int
3398 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
3399 			  struct drm_file *file)
3400 {
3401 	struct drm_i915_private *i915 = to_i915(dev);
3402 	struct drm_i915_gem_execbuffer *args = data;
3403 	struct drm_i915_gem_execbuffer2 exec2;
3404 	struct drm_i915_gem_exec_object *exec_list = NULL;
3405 	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
3406 	const size_t count = args->buffer_count;
3407 	unsigned int i;
3408 	int err;
3409 
3410 	if (!check_buffer_count(count)) {
3411 		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3412 		return -EINVAL;
3413 	}
3414 
3415 	exec2.buffers_ptr = args->buffers_ptr;
3416 	exec2.buffer_count = args->buffer_count;
3417 	exec2.batch_start_offset = args->batch_start_offset;
3418 	exec2.batch_len = args->batch_len;
3419 	exec2.DR1 = args->DR1;
3420 	exec2.DR4 = args->DR4;
3421 	exec2.num_cliprects = args->num_cliprects;
3422 	exec2.cliprects_ptr = args->cliprects_ptr;
3423 	exec2.flags = I915_EXEC_RENDER;
3424 	i915_execbuffer2_set_context_id(exec2, 0);
3425 
3426 	err = i915_gem_check_execbuffer(&exec2);
3427 	if (err)
3428 		return err;
3429 
3430 	/* Copy in the exec list from userland */
3431 	exec_list = kvmalloc_array(count, sizeof(*exec_list),
3432 				   __GFP_NOWARN | GFP_KERNEL);
3433 
3434 	/* Allocate extra slots for use by the command parser */
3435 	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3436 				    __GFP_NOWARN | GFP_KERNEL);
3437 	if (exec_list == NULL || exec2_list == NULL) {
3438 		drm_dbg(&i915->drm,
3439 			"Failed to allocate exec list for %d buffers\n",
3440 			args->buffer_count);
3441 		kvfree(exec_list);
3442 		kvfree(exec2_list);
3443 		return -ENOMEM;
3444 	}
3445 	err = copy_from_user(exec_list,
3446 			     u64_to_user_ptr(args->buffers_ptr),
3447 			     sizeof(*exec_list) * count);
3448 	if (err) {
3449 		drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
3450 			args->buffer_count, err);
3451 		kvfree(exec_list);
3452 		kvfree(exec2_list);
3453 		return -EFAULT;
3454 	}
3455 
3456 	for (i = 0; i < args->buffer_count; i++) {
3457 		exec2_list[i].handle = exec_list[i].handle;
3458 		exec2_list[i].relocation_count = exec_list[i].relocation_count;
3459 		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
3460 		exec2_list[i].alignment = exec_list[i].alignment;
3461 		exec2_list[i].offset = exec_list[i].offset;
3462 		if (INTEL_GEN(to_i915(dev)) < 4)
3463 			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
3464 		else
3465 			exec2_list[i].flags = 0;
3466 	}
3467 
3468 	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list);
3469 	if (exec2.flags & __EXEC_HAS_RELOC) {
3470 		struct drm_i915_gem_exec_object __user *user_exec_list =
3471 			u64_to_user_ptr(args->buffers_ptr);
3472 
3473 		/* Copy the new buffer offsets back to the user's exec list. */
3474 		for (i = 0; i < args->buffer_count; i++) {
3475 			if (!(exec2_list[i].offset & UPDATE))
3476 				continue;
3477 
3478 			exec2_list[i].offset =
3479 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3480 			exec2_list[i].offset &= PIN_OFFSET_MASK;
3481 			if (__copy_to_user(&user_exec_list[i].offset,
3482 					   &exec2_list[i].offset,
3483 					   sizeof(user_exec_list[i].offset)))
3484 				break;
3485 		}
3486 	}
3487 
3488 	kvfree(exec_list);
3489 	kvfree(exec2_list);
3490 	return err;
3491 }
3492 
3493 int
3494 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3495 			   struct drm_file *file)
3496 {
3497 	struct drm_i915_private *i915 = to_i915(dev);
3498 	struct drm_i915_gem_execbuffer2 *args = data;
3499 	struct drm_i915_gem_exec_object2 *exec2_list;
3500 	const size_t count = args->buffer_count;
3501 	int err;
3502 
3503 	if (!check_buffer_count(count)) {
3504 		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3505 		return -EINVAL;
3506 	}
3507 
3508 	err = i915_gem_check_execbuffer(args);
3509 	if (err)
3510 		return err;
3511 
3512 	/* Allocate extra slots for use by the command parser */
3513 	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3514 				    __GFP_NOWARN | GFP_KERNEL);
3515 	if (exec2_list == NULL) {
3516 		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3517 			count);
3518 		return -ENOMEM;
3519 	}
3520 	if (copy_from_user(exec2_list,
3521 			   u64_to_user_ptr(args->buffers_ptr),
3522 			   sizeof(*exec2_list) * count)) {
3523 		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3524 		kvfree(exec2_list);
3525 		return -EFAULT;
3526 	}
3527 
3528 	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3529 
3530 	/*
3531 	 * Now that we have begun execution of the batchbuffer, we ignore
3532 	 * any new error after this point. Also given that we have already
3533 	 * updated the associated relocations, we try to write out the current
3534 	 * object locations irrespective of any error.
3535 	 */
3536 	if (args->flags & __EXEC_HAS_RELOC) {
3537 		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3538 			u64_to_user_ptr(args->buffers_ptr);
3539 		unsigned int i;
3540 
3541 		/* Copy the new buffer offsets back to the user's exec list. */
3542 		/*
3543 		 * Note: count * sizeof(*user_exec_list) does not overflow,
3544 		 * because we checked 'count' in check_buffer_count().
3545 		 *
3546 		 * And this range already got effectively checked earlier
3547 		 * when we did the "copy_from_user()" above.
3548 		 */
3549 		if (!user_write_access_begin(user_exec_list,
3550 					     count * sizeof(*user_exec_list)))
3551 			goto end;
3552 
3553 		for (i = 0; i < args->buffer_count; i++) {
3554 			if (!(exec2_list[i].offset & UPDATE))
3555 				continue;
3556 
3557 			exec2_list[i].offset =
3558 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3559 			unsafe_put_user(exec2_list[i].offset,
3560 					&user_exec_list[i].offset,
3561 					end_user);
3562 		}
3563 end_user:
3564 		user_write_access_end();
3565 end:;
3566 	}
3567 
3568 	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3569 	kvfree(exec2_list);
3570 	return err;
3571 }
3572 
3573 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3574 #include "selftests/i915_gem_execbuffer.c"
3575 #endif
3576