1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6 
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11 
12 #include <drm/drm_syncobj.h>
13 
14 #include "display/intel_frontbuffer.h"
15 
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gpu_commands.h"
19 #include "gt/intel_gt.h"
20 #include "gt/intel_gt_buffer_pool.h"
21 #include "gt/intel_gt_pm.h"
22 #include "gt/intel_ring.h"
23 
24 #include "i915_drv.h"
25 #include "i915_gem_clflush.h"
26 #include "i915_gem_context.h"
27 #include "i915_gem_ioctls.h"
28 #include "i915_trace.h"
29 #include "i915_user_extensions.h"
30 
31 struct eb_vma {
32 	struct i915_vma *vma;
33 	unsigned int flags;
34 
35 	/** This vma's place in the execbuf reservation list */
36 	struct drm_i915_gem_exec_object2 *exec;
37 	struct list_head bind_link;
38 	struct list_head reloc_link;
39 
40 	struct hlist_node node;
41 	u32 handle;
42 };
43 
44 enum {
45 	FORCE_CPU_RELOC = 1,
46 	FORCE_GTT_RELOC,
47 	FORCE_GPU_RELOC,
48 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
49 };
50 
51 /* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */
52 #define __EXEC_OBJECT_HAS_PIN		BIT(30)
53 #define __EXEC_OBJECT_HAS_FENCE		BIT(29)
54 #define __EXEC_OBJECT_USERPTR_INIT	BIT(28)
55 #define __EXEC_OBJECT_NEEDS_MAP		BIT(27)
56 #define __EXEC_OBJECT_NEEDS_BIAS	BIT(26)
57 #define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 26) /* all of the above + */
58 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
59 
60 #define __EXEC_HAS_RELOC	BIT(31)
61 #define __EXEC_ENGINE_PINNED	BIT(30)
62 #define __EXEC_USERPTR_USED	BIT(29)
63 #define __EXEC_INTERNAL_FLAGS	(~0u << 29)
64 #define UPDATE			PIN_OFFSET_FIXED
65 
66 #define BATCH_OFFSET_BIAS (256*1024)
67 
68 #define __I915_EXEC_ILLEGAL_FLAGS \
69 	(__I915_EXEC_UNKNOWN_FLAGS | \
70 	 I915_EXEC_CONSTANTS_MASK  | \
71 	 I915_EXEC_RESOURCE_STREAMER)
72 
73 /* Catch emission of unexpected errors for CI! */
74 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
75 #undef EINVAL
76 #define EINVAL ({ \
77 	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
78 	22; \
79 })
80 #endif
81 
82 /**
83  * DOC: User command execution
84  *
85  * Userspace submits commands to be executed on the GPU as an instruction
86  * stream within a GEM object we call a batchbuffer. This instructions may
87  * refer to other GEM objects containing auxiliary state such as kernels,
88  * samplers, render targets and even secondary batchbuffers. Userspace does
89  * not know where in the GPU memory these objects reside and so before the
90  * batchbuffer is passed to the GPU for execution, those addresses in the
91  * batchbuffer and auxiliary objects are updated. This is known as relocation,
92  * or patching. To try and avoid having to relocate each object on the next
93  * execution, userspace is told the location of those objects in this pass,
94  * but this remains just a hint as the kernel may choose a new location for
95  * any object in the future.
96  *
97  * At the level of talking to the hardware, submitting a batchbuffer for the
98  * GPU to execute is to add content to a buffer from which the HW
99  * command streamer is reading.
100  *
101  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
102  *    Execlists, this command is not placed on the same buffer as the
103  *    remaining items.
104  *
105  * 2. Add a command to invalidate caches to the buffer.
106  *
107  * 3. Add a batchbuffer start command to the buffer; the start command is
108  *    essentially a token together with the GPU address of the batchbuffer
109  *    to be executed.
110  *
111  * 4. Add a pipeline flush to the buffer.
112  *
113  * 5. Add a memory write command to the buffer to record when the GPU
114  *    is done executing the batchbuffer. The memory write writes the
115  *    global sequence number of the request, ``i915_request::global_seqno``;
116  *    the i915 driver uses the current value in the register to determine
117  *    if the GPU has completed the batchbuffer.
118  *
119  * 6. Add a user interrupt command to the buffer. This command instructs
120  *    the GPU to issue an interrupt when the command, pipeline flush and
121  *    memory write are completed.
122  *
123  * 7. Inform the hardware of the additional commands added to the buffer
124  *    (by updating the tail pointer).
125  *
126  * Processing an execbuf ioctl is conceptually split up into a few phases.
127  *
128  * 1. Validation - Ensure all the pointers, handles and flags are valid.
129  * 2. Reservation - Assign GPU address space for every object
130  * 3. Relocation - Update any addresses to point to the final locations
131  * 4. Serialisation - Order the request with respect to its dependencies
132  * 5. Construction - Construct a request to execute the batchbuffer
133  * 6. Submission (at some point in the future execution)
134  *
135  * Reserving resources for the execbuf is the most complicated phase. We
136  * neither want to have to migrate the object in the address space, nor do
137  * we want to have to update any relocations pointing to this object. Ideally,
138  * we want to leave the object where it is and for all the existing relocations
139  * to match. If the object is given a new address, or if userspace thinks the
140  * object is elsewhere, we have to parse all the relocation entries and update
141  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
142  * all the target addresses in all of its objects match the value in the
143  * relocation entries and that they all match the presumed offsets given by the
144  * list of execbuffer objects. Using this knowledge, we know that if we haven't
145  * moved any buffers, all the relocation entries are valid and we can skip
146  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
147  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
148  *
149  *      The addresses written in the objects must match the corresponding
150  *      reloc.presumed_offset which in turn must match the corresponding
151  *      execobject.offset.
152  *
153  *      Any render targets written to in the batch must be flagged with
154  *      EXEC_OBJECT_WRITE.
155  *
156  *      To avoid stalling, execobject.offset should match the current
157  *      address of that object within the active context.
158  *
159  * The reservation is done is multiple phases. First we try and keep any
160  * object already bound in its current location - so as long as meets the
161  * constraints imposed by the new execbuffer. Any object left unbound after the
162  * first pass is then fitted into any available idle space. If an object does
163  * not fit, all objects are removed from the reservation and the process rerun
164  * after sorting the objects into a priority order (more difficult to fit
165  * objects are tried first). Failing that, the entire VM is cleared and we try
166  * to fit the execbuf once last time before concluding that it simply will not
167  * fit.
168  *
169  * A small complication to all of this is that we allow userspace not only to
170  * specify an alignment and a size for the object in the address space, but
171  * we also allow userspace to specify the exact offset. This objects are
172  * simpler to place (the location is known a priori) all we have to do is make
173  * sure the space is available.
174  *
175  * Once all the objects are in place, patching up the buried pointers to point
176  * to the final locations is a fairly simple job of walking over the relocation
177  * entry arrays, looking up the right address and rewriting the value into
178  * the object. Simple! ... The relocation entries are stored in user memory
179  * and so to access them we have to copy them into a local buffer. That copy
180  * has to avoid taking any pagefaults as they may lead back to a GEM object
181  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
182  * the relocation into multiple passes. First we try to do everything within an
183  * atomic context (avoid the pagefaults) which requires that we never wait. If
184  * we detect that we may wait, or if we need to fault, then we have to fallback
185  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
186  * bells yet?) Dropping the mutex means that we lose all the state we have
187  * built up so far for the execbuf and we must reset any global data. However,
188  * we do leave the objects pinned in their final locations - which is a
189  * potential issue for concurrent execbufs. Once we have left the mutex, we can
190  * allocate and copy all the relocation entries into a large array at our
191  * leisure, reacquire the mutex, reclaim all the objects and other state and
192  * then proceed to update any incorrect addresses with the objects.
193  *
194  * As we process the relocation entries, we maintain a record of whether the
195  * object is being written to. Using NORELOC, we expect userspace to provide
196  * this information instead. We also check whether we can skip the relocation
197  * by comparing the expected value inside the relocation entry with the target's
198  * final address. If they differ, we have to map the current object and rewrite
199  * the 4 or 8 byte pointer within.
200  *
201  * Serialising an execbuf is quite simple according to the rules of the GEM
202  * ABI. Execution within each context is ordered by the order of submission.
203  * Writes to any GEM object are in order of submission and are exclusive. Reads
204  * from a GEM object are unordered with respect to other reads, but ordered by
205  * writes. A write submitted after a read cannot occur before the read, and
206  * similarly any read submitted after a write cannot occur before the write.
207  * Writes are ordered between engines such that only one write occurs at any
208  * time (completing any reads beforehand) - using semaphores where available
209  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
210  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
211  * reads before starting, and any read (either using set-domain or pread) must
212  * flush all GPU writes before starting. (Note we only employ a barrier before,
213  * we currently rely on userspace not concurrently starting a new execution
214  * whilst reading or writing to an object. This may be an advantage or not
215  * depending on how much you trust userspace not to shoot themselves in the
216  * foot.) Serialisation may just result in the request being inserted into
217  * a DAG awaiting its turn, but most simple is to wait on the CPU until
218  * all dependencies are resolved.
219  *
220  * After all of that, is just a matter of closing the request and handing it to
221  * the hardware (well, leaving it in a queue to be executed). However, we also
222  * offer the ability for batchbuffers to be run with elevated privileges so
223  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
224  * Before any batch is given extra privileges we first must check that it
225  * contains no nefarious instructions, we check that each instruction is from
226  * our whitelist and all registers are also from an allowed list. We first
227  * copy the user's batchbuffer to a shadow (so that the user doesn't have
228  * access to it, either by the CPU or GPU as we scan it) and then parse each
229  * instruction. If everything is ok, we set a flag telling the hardware to run
230  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
231  */
232 
233 struct eb_fence {
234 	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
235 	struct dma_fence *dma_fence;
236 	u64 value;
237 	struct dma_fence_chain *chain_fence;
238 };
239 
240 struct i915_execbuffer {
241 	struct drm_i915_private *i915; /** i915 backpointer */
242 	struct drm_file *file; /** per-file lookup tables and limits */
243 	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
244 	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
245 	struct eb_vma *vma;
246 
247 	struct intel_engine_cs *engine; /** engine to queue the request to */
248 	struct intel_context *context; /* logical state for the request */
249 	struct i915_gem_context *gem_context; /** caller's context */
250 
251 	struct i915_request *request; /** our request to build */
252 	struct eb_vma *batch; /** identity of the batch obj/vma */
253 	struct i915_vma *trampoline; /** trampoline used for chaining */
254 
255 	/** actual size of execobj[] as we may extend it for the cmdparser */
256 	unsigned int buffer_count;
257 
258 	/** list of vma not yet bound during reservation phase */
259 	struct list_head unbound;
260 
261 	/** list of vma that have execobj.relocation_count */
262 	struct list_head relocs;
263 
264 	struct i915_gem_ww_ctx ww;
265 
266 	/**
267 	 * Track the most recently used object for relocations, as we
268 	 * frequently have to perform multiple relocations within the same
269 	 * obj/page
270 	 */
271 	struct reloc_cache {
272 		struct drm_mm_node node; /** temporary GTT binding */
273 		unsigned long vaddr; /** Current kmap address */
274 		unsigned long page; /** Currently mapped page index */
275 		unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
276 		bool use_64bit_reloc : 1;
277 		bool has_llc : 1;
278 		bool has_fence : 1;
279 		bool needs_unfenced : 1;
280 
281 		struct i915_request *rq;
282 		u32 *rq_cmd;
283 		unsigned int rq_size;
284 		struct intel_gt_buffer_pool_node *pool;
285 	} reloc_cache;
286 
287 	struct intel_gt_buffer_pool_node *reloc_pool; /** relocation pool for -EDEADLK handling */
288 	struct intel_context *reloc_context;
289 
290 	u64 invalid_flags; /** Set of execobj.flags that are invalid */
291 	u32 context_flags; /** Set of execobj.flags to insert from the ctx */
292 
293 	u64 batch_len; /** Length of batch within object */
294 	u32 batch_start_offset; /** Location within object of batch */
295 	u32 batch_flags; /** Flags composed for emit_bb_start() */
296 	struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
297 
298 	/**
299 	 * Indicate either the size of the hastable used to resolve
300 	 * relocation handles, or if negative that we are using a direct
301 	 * index into the execobj[].
302 	 */
303 	int lut_size;
304 	struct hlist_head *buckets; /** ht for relocation handles */
305 
306 	struct eb_fence *fences;
307 	unsigned long num_fences;
308 };
309 
310 static int eb_parse(struct i915_execbuffer *eb);
311 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb,
312 					  bool throttle);
313 static void eb_unpin_engine(struct i915_execbuffer *eb);
314 
315 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
316 {
317 	return intel_engine_requires_cmd_parser(eb->engine) ||
318 		(intel_engine_using_cmd_parser(eb->engine) &&
319 		 eb->args->batch_len);
320 }
321 
322 static int eb_create(struct i915_execbuffer *eb)
323 {
324 	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
325 		unsigned int size = 1 + ilog2(eb->buffer_count);
326 
327 		/*
328 		 * Without a 1:1 association between relocation handles and
329 		 * the execobject[] index, we instead create a hashtable.
330 		 * We size it dynamically based on available memory, starting
331 		 * first with 1:1 assocative hash and scaling back until
332 		 * the allocation succeeds.
333 		 *
334 		 * Later on we use a positive lut_size to indicate we are
335 		 * using this hashtable, and a negative value to indicate a
336 		 * direct lookup.
337 		 */
338 		do {
339 			gfp_t flags;
340 
341 			/* While we can still reduce the allocation size, don't
342 			 * raise a warning and allow the allocation to fail.
343 			 * On the last pass though, we want to try as hard
344 			 * as possible to perform the allocation and warn
345 			 * if it fails.
346 			 */
347 			flags = GFP_KERNEL;
348 			if (size > 1)
349 				flags |= __GFP_NORETRY | __GFP_NOWARN;
350 
351 			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
352 					      flags);
353 			if (eb->buckets)
354 				break;
355 		} while (--size);
356 
357 		if (unlikely(!size))
358 			return -ENOMEM;
359 
360 		eb->lut_size = size;
361 	} else {
362 		eb->lut_size = -eb->buffer_count;
363 	}
364 
365 	return 0;
366 }
367 
368 static bool
369 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
370 		 const struct i915_vma *vma,
371 		 unsigned int flags)
372 {
373 	if (vma->node.size < entry->pad_to_size)
374 		return true;
375 
376 	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
377 		return true;
378 
379 	if (flags & EXEC_OBJECT_PINNED &&
380 	    vma->node.start != entry->offset)
381 		return true;
382 
383 	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
384 	    vma->node.start < BATCH_OFFSET_BIAS)
385 		return true;
386 
387 	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
388 	    (vma->node.start + vma->node.size + 4095) >> 32)
389 		return true;
390 
391 	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
392 	    !i915_vma_is_map_and_fenceable(vma))
393 		return true;
394 
395 	return false;
396 }
397 
398 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
399 			unsigned int exec_flags)
400 {
401 	u64 pin_flags = 0;
402 
403 	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
404 		pin_flags |= PIN_GLOBAL;
405 
406 	/*
407 	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
408 	 * limit address to the first 4GBs for unflagged objects.
409 	 */
410 	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
411 		pin_flags |= PIN_ZONE_4G;
412 
413 	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
414 		pin_flags |= PIN_MAPPABLE;
415 
416 	if (exec_flags & EXEC_OBJECT_PINNED)
417 		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
418 	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
419 		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
420 
421 	return pin_flags;
422 }
423 
424 static inline int
425 eb_pin_vma(struct i915_execbuffer *eb,
426 	   const struct drm_i915_gem_exec_object2 *entry,
427 	   struct eb_vma *ev)
428 {
429 	struct i915_vma *vma = ev->vma;
430 	u64 pin_flags;
431 	int err;
432 
433 	if (vma->node.size)
434 		pin_flags = vma->node.start;
435 	else
436 		pin_flags = entry->offset & PIN_OFFSET_MASK;
437 
438 	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
439 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
440 		pin_flags |= PIN_GLOBAL;
441 
442 	/* Attempt to reuse the current location if available */
443 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
444 	if (err == -EDEADLK)
445 		return err;
446 
447 	if (unlikely(err)) {
448 		if (entry->flags & EXEC_OBJECT_PINNED)
449 			return err;
450 
451 		/* Failing that pick any _free_ space if suitable */
452 		err = i915_vma_pin_ww(vma, &eb->ww,
453 					     entry->pad_to_size,
454 					     entry->alignment,
455 					     eb_pin_flags(entry, ev->flags) |
456 					     PIN_USER | PIN_NOEVICT);
457 		if (unlikely(err))
458 			return err;
459 	}
460 
461 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
462 		err = i915_vma_pin_fence(vma);
463 		if (unlikely(err)) {
464 			i915_vma_unpin(vma);
465 			return err;
466 		}
467 
468 		if (vma->fence)
469 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
470 	}
471 
472 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
473 	if (eb_vma_misplaced(entry, vma, ev->flags))
474 		return -EBADSLT;
475 
476 	return 0;
477 }
478 
479 static inline void
480 eb_unreserve_vma(struct eb_vma *ev)
481 {
482 	if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
483 		return;
484 
485 	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
486 		__i915_vma_unpin_fence(ev->vma);
487 
488 	__i915_vma_unpin(ev->vma);
489 	ev->flags &= ~__EXEC_OBJECT_RESERVED;
490 }
491 
492 static int
493 eb_validate_vma(struct i915_execbuffer *eb,
494 		struct drm_i915_gem_exec_object2 *entry,
495 		struct i915_vma *vma)
496 {
497 	/* Relocations are disallowed for all platforms after TGL-LP.  This
498 	 * also covers all platforms with local memory.
499 	 */
500 	if (entry->relocation_count &&
501 	    GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
502 		return -EINVAL;
503 
504 	if (unlikely(entry->flags & eb->invalid_flags))
505 		return -EINVAL;
506 
507 	if (unlikely(entry->alignment &&
508 		     !is_power_of_2_u64(entry->alignment)))
509 		return -EINVAL;
510 
511 	/*
512 	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
513 	 * any non-page-aligned or non-canonical addresses.
514 	 */
515 	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
516 		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
517 		return -EINVAL;
518 
519 	/* pad_to_size was once a reserved field, so sanitize it */
520 	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
521 		if (unlikely(offset_in_page(entry->pad_to_size)))
522 			return -EINVAL;
523 	} else {
524 		entry->pad_to_size = 0;
525 	}
526 	/*
527 	 * From drm_mm perspective address space is continuous,
528 	 * so from this point we're always using non-canonical
529 	 * form internally.
530 	 */
531 	entry->offset = gen8_noncanonical_addr(entry->offset);
532 
533 	if (!eb->reloc_cache.has_fence) {
534 		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
535 	} else {
536 		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
537 		     eb->reloc_cache.needs_unfenced) &&
538 		    i915_gem_object_is_tiled(vma->obj))
539 			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
540 	}
541 
542 	if (!(entry->flags & EXEC_OBJECT_PINNED))
543 		entry->flags |= eb->context_flags;
544 
545 	return 0;
546 }
547 
548 static void
549 eb_add_vma(struct i915_execbuffer *eb,
550 	   unsigned int i, unsigned batch_idx,
551 	   struct i915_vma *vma)
552 {
553 	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
554 	struct eb_vma *ev = &eb->vma[i];
555 
556 	ev->vma = vma;
557 	ev->exec = entry;
558 	ev->flags = entry->flags;
559 
560 	if (eb->lut_size > 0) {
561 		ev->handle = entry->handle;
562 		hlist_add_head(&ev->node,
563 			       &eb->buckets[hash_32(entry->handle,
564 						    eb->lut_size)]);
565 	}
566 
567 	if (entry->relocation_count)
568 		list_add_tail(&ev->reloc_link, &eb->relocs);
569 
570 	/*
571 	 * SNA is doing fancy tricks with compressing batch buffers, which leads
572 	 * to negative relocation deltas. Usually that works out ok since the
573 	 * relocate address is still positive, except when the batch is placed
574 	 * very low in the GTT. Ensure this doesn't happen.
575 	 *
576 	 * Note that actual hangs have only been observed on gen7, but for
577 	 * paranoia do it everywhere.
578 	 */
579 	if (i == batch_idx) {
580 		if (entry->relocation_count &&
581 		    !(ev->flags & EXEC_OBJECT_PINNED))
582 			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
583 		if (eb->reloc_cache.has_fence)
584 			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
585 
586 		eb->batch = ev;
587 	}
588 }
589 
590 static inline int use_cpu_reloc(const struct reloc_cache *cache,
591 				const struct drm_i915_gem_object *obj)
592 {
593 	if (!i915_gem_object_has_struct_page(obj))
594 		return false;
595 
596 	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
597 		return true;
598 
599 	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
600 		return false;
601 
602 	return (cache->has_llc ||
603 		obj->cache_dirty ||
604 		obj->cache_level != I915_CACHE_NONE);
605 }
606 
607 static int eb_reserve_vma(struct i915_execbuffer *eb,
608 			  struct eb_vma *ev,
609 			  u64 pin_flags)
610 {
611 	struct drm_i915_gem_exec_object2 *entry = ev->exec;
612 	struct i915_vma *vma = ev->vma;
613 	int err;
614 
615 	if (drm_mm_node_allocated(&vma->node) &&
616 	    eb_vma_misplaced(entry, vma, ev->flags)) {
617 		err = i915_vma_unbind(vma);
618 		if (err)
619 			return err;
620 	}
621 
622 	err = i915_vma_pin_ww(vma, &eb->ww,
623 			   entry->pad_to_size, entry->alignment,
624 			   eb_pin_flags(entry, ev->flags) | pin_flags);
625 	if (err)
626 		return err;
627 
628 	if (entry->offset != vma->node.start) {
629 		entry->offset = vma->node.start | UPDATE;
630 		eb->args->flags |= __EXEC_HAS_RELOC;
631 	}
632 
633 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
634 		err = i915_vma_pin_fence(vma);
635 		if (unlikely(err)) {
636 			i915_vma_unpin(vma);
637 			return err;
638 		}
639 
640 		if (vma->fence)
641 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
642 	}
643 
644 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
645 	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
646 
647 	return 0;
648 }
649 
650 static int eb_reserve(struct i915_execbuffer *eb)
651 {
652 	const unsigned int count = eb->buffer_count;
653 	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
654 	struct list_head last;
655 	struct eb_vma *ev;
656 	unsigned int i, pass;
657 	int err = 0;
658 
659 	/*
660 	 * Attempt to pin all of the buffers into the GTT.
661 	 * This is done in 3 phases:
662 	 *
663 	 * 1a. Unbind all objects that do not match the GTT constraints for
664 	 *     the execbuffer (fenceable, mappable, alignment etc).
665 	 * 1b. Increment pin count for already bound objects.
666 	 * 2.  Bind new objects.
667 	 * 3.  Decrement pin count.
668 	 *
669 	 * This avoid unnecessary unbinding of later objects in order to make
670 	 * room for the earlier objects *unless* we need to defragment.
671 	 */
672 	pass = 0;
673 	do {
674 		list_for_each_entry(ev, &eb->unbound, bind_link) {
675 			err = eb_reserve_vma(eb, ev, pin_flags);
676 			if (err)
677 				break;
678 		}
679 		if (err != -ENOSPC)
680 			return err;
681 
682 		/* Resort *all* the objects into priority order */
683 		INIT_LIST_HEAD(&eb->unbound);
684 		INIT_LIST_HEAD(&last);
685 		for (i = 0; i < count; i++) {
686 			unsigned int flags;
687 
688 			ev = &eb->vma[i];
689 			flags = ev->flags;
690 			if (flags & EXEC_OBJECT_PINNED &&
691 			    flags & __EXEC_OBJECT_HAS_PIN)
692 				continue;
693 
694 			eb_unreserve_vma(ev);
695 
696 			if (flags & EXEC_OBJECT_PINNED)
697 				/* Pinned must have their slot */
698 				list_add(&ev->bind_link, &eb->unbound);
699 			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
700 				/* Map require the lowest 256MiB (aperture) */
701 				list_add_tail(&ev->bind_link, &eb->unbound);
702 			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
703 				/* Prioritise 4GiB region for restricted bo */
704 				list_add(&ev->bind_link, &last);
705 			else
706 				list_add_tail(&ev->bind_link, &last);
707 		}
708 		list_splice_tail(&last, &eb->unbound);
709 
710 		switch (pass++) {
711 		case 0:
712 			break;
713 
714 		case 1:
715 			/* Too fragmented, unbind everything and retry */
716 			mutex_lock(&eb->context->vm->mutex);
717 			err = i915_gem_evict_vm(eb->context->vm);
718 			mutex_unlock(&eb->context->vm->mutex);
719 			if (err)
720 				return err;
721 			break;
722 
723 		default:
724 			return -ENOSPC;
725 		}
726 
727 		pin_flags = PIN_USER;
728 	} while (1);
729 }
730 
731 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
732 {
733 	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
734 		return 0;
735 	else
736 		return eb->buffer_count - 1;
737 }
738 
739 static int eb_select_context(struct i915_execbuffer *eb)
740 {
741 	struct i915_gem_context *ctx;
742 
743 	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
744 	if (unlikely(!ctx))
745 		return -ENOENT;
746 
747 	eb->gem_context = ctx;
748 	if (rcu_access_pointer(ctx->vm))
749 		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
750 
751 	eb->context_flags = 0;
752 	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
753 		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
754 
755 	return 0;
756 }
757 
758 static int __eb_add_lut(struct i915_execbuffer *eb,
759 			u32 handle, struct i915_vma *vma)
760 {
761 	struct i915_gem_context *ctx = eb->gem_context;
762 	struct i915_lut_handle *lut;
763 	int err;
764 
765 	lut = i915_lut_handle_alloc();
766 	if (unlikely(!lut))
767 		return -ENOMEM;
768 
769 	i915_vma_get(vma);
770 	if (!atomic_fetch_inc(&vma->open_count))
771 		i915_vma_reopen(vma);
772 	lut->handle = handle;
773 	lut->ctx = ctx;
774 
775 	/* Check that the context hasn't been closed in the meantime */
776 	err = -EINTR;
777 	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
778 		struct i915_address_space *vm = rcu_access_pointer(ctx->vm);
779 
780 		if (unlikely(vm && vma->vm != vm))
781 			err = -EAGAIN; /* user racing with ctx set-vm */
782 		else if (likely(!i915_gem_context_is_closed(ctx)))
783 			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
784 		else
785 			err = -ENOENT;
786 		if (err == 0) { /* And nor has this handle */
787 			struct drm_i915_gem_object *obj = vma->obj;
788 
789 			spin_lock(&obj->lut_lock);
790 			if (idr_find(&eb->file->object_idr, handle) == obj) {
791 				list_add(&lut->obj_link, &obj->lut_list);
792 			} else {
793 				radix_tree_delete(&ctx->handles_vma, handle);
794 				err = -ENOENT;
795 			}
796 			spin_unlock(&obj->lut_lock);
797 		}
798 		mutex_unlock(&ctx->lut_mutex);
799 	}
800 	if (unlikely(err))
801 		goto err;
802 
803 	return 0;
804 
805 err:
806 	i915_vma_close(vma);
807 	i915_vma_put(vma);
808 	i915_lut_handle_free(lut);
809 	return err;
810 }
811 
812 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
813 {
814 	struct i915_address_space *vm = eb->context->vm;
815 
816 	do {
817 		struct drm_i915_gem_object *obj;
818 		struct i915_vma *vma;
819 		int err;
820 
821 		rcu_read_lock();
822 		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
823 		if (likely(vma && vma->vm == vm))
824 			vma = i915_vma_tryget(vma);
825 		rcu_read_unlock();
826 		if (likely(vma))
827 			return vma;
828 
829 		obj = i915_gem_object_lookup(eb->file, handle);
830 		if (unlikely(!obj))
831 			return ERR_PTR(-ENOENT);
832 
833 		vma = i915_vma_instance(obj, vm, NULL);
834 		if (IS_ERR(vma)) {
835 			i915_gem_object_put(obj);
836 			return vma;
837 		}
838 
839 		err = __eb_add_lut(eb, handle, vma);
840 		if (likely(!err))
841 			return vma;
842 
843 		i915_gem_object_put(obj);
844 		if (err != -EEXIST)
845 			return ERR_PTR(err);
846 	} while (1);
847 }
848 
849 static int eb_lookup_vmas(struct i915_execbuffer *eb)
850 {
851 	struct drm_i915_private *i915 = eb->i915;
852 	unsigned int batch = eb_batch_index(eb);
853 	unsigned int i;
854 	int err = 0;
855 
856 	INIT_LIST_HEAD(&eb->relocs);
857 
858 	for (i = 0; i < eb->buffer_count; i++) {
859 		struct i915_vma *vma;
860 
861 		vma = eb_lookup_vma(eb, eb->exec[i].handle);
862 		if (IS_ERR(vma)) {
863 			err = PTR_ERR(vma);
864 			goto err;
865 		}
866 
867 		err = eb_validate_vma(eb, &eb->exec[i], vma);
868 		if (unlikely(err)) {
869 			i915_vma_put(vma);
870 			goto err;
871 		}
872 
873 		eb_add_vma(eb, i, batch, vma);
874 
875 		if (i915_gem_object_is_userptr(vma->obj)) {
876 			err = i915_gem_object_userptr_submit_init(vma->obj);
877 			if (err) {
878 				if (i + 1 < eb->buffer_count) {
879 					/*
880 					 * Execbuffer code expects last vma entry to be NULL,
881 					 * since we already initialized this entry,
882 					 * set the next value to NULL or we mess up
883 					 * cleanup handling.
884 					 */
885 					eb->vma[i + 1].vma = NULL;
886 				}
887 
888 				return err;
889 			}
890 
891 			eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
892 			eb->args->flags |= __EXEC_USERPTR_USED;
893 		}
894 	}
895 
896 	if (unlikely(eb->batch->flags & EXEC_OBJECT_WRITE)) {
897 		drm_dbg(&i915->drm,
898 			"Attempting to use self-modifying batch buffer\n");
899 		return -EINVAL;
900 	}
901 
902 	if (range_overflows_t(u64,
903 			      eb->batch_start_offset, eb->batch_len,
904 			      eb->batch->vma->size)) {
905 		drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
906 		return -EINVAL;
907 	}
908 
909 	if (eb->batch_len == 0)
910 		eb->batch_len = eb->batch->vma->size - eb->batch_start_offset;
911 	if (unlikely(eb->batch_len == 0)) { /* impossible! */
912 		drm_dbg(&i915->drm, "Invalid batch length\n");
913 		return -EINVAL;
914 	}
915 
916 	return 0;
917 
918 err:
919 	eb->vma[i].vma = NULL;
920 	return err;
921 }
922 
923 static int eb_validate_vmas(struct i915_execbuffer *eb)
924 {
925 	unsigned int i;
926 	int err;
927 
928 	INIT_LIST_HEAD(&eb->unbound);
929 
930 	for (i = 0; i < eb->buffer_count; i++) {
931 		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
932 		struct eb_vma *ev = &eb->vma[i];
933 		struct i915_vma *vma = ev->vma;
934 
935 		err = i915_gem_object_lock(vma->obj, &eb->ww);
936 		if (err)
937 			return err;
938 
939 		err = eb_pin_vma(eb, entry, ev);
940 		if (err == -EDEADLK)
941 			return err;
942 
943 		if (!err) {
944 			if (entry->offset != vma->node.start) {
945 				entry->offset = vma->node.start | UPDATE;
946 				eb->args->flags |= __EXEC_HAS_RELOC;
947 			}
948 		} else {
949 			eb_unreserve_vma(ev);
950 
951 			list_add_tail(&ev->bind_link, &eb->unbound);
952 			if (drm_mm_node_allocated(&vma->node)) {
953 				err = i915_vma_unbind(vma);
954 				if (err)
955 					return err;
956 			}
957 		}
958 
959 		if (!(ev->flags & EXEC_OBJECT_WRITE)) {
960 			err = dma_resv_reserve_shared(vma->resv, 1);
961 			if (err)
962 				return err;
963 		}
964 
965 		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
966 			   eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
967 	}
968 
969 	if (!list_empty(&eb->unbound))
970 		return eb_reserve(eb);
971 
972 	return 0;
973 }
974 
975 static struct eb_vma *
976 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
977 {
978 	if (eb->lut_size < 0) {
979 		if (handle >= -eb->lut_size)
980 			return NULL;
981 		return &eb->vma[handle];
982 	} else {
983 		struct hlist_head *head;
984 		struct eb_vma *ev;
985 
986 		head = &eb->buckets[hash_32(handle, eb->lut_size)];
987 		hlist_for_each_entry(ev, head, node) {
988 			if (ev->handle == handle)
989 				return ev;
990 		}
991 		return NULL;
992 	}
993 }
994 
995 static void eb_release_vmas(struct i915_execbuffer *eb, bool final, bool release_userptr)
996 {
997 	const unsigned int count = eb->buffer_count;
998 	unsigned int i;
999 
1000 	for (i = 0; i < count; i++) {
1001 		struct eb_vma *ev = &eb->vma[i];
1002 		struct i915_vma *vma = ev->vma;
1003 
1004 		if (!vma)
1005 			break;
1006 
1007 		eb_unreserve_vma(ev);
1008 
1009 		if (release_userptr && ev->flags & __EXEC_OBJECT_USERPTR_INIT) {
1010 			ev->flags &= ~__EXEC_OBJECT_USERPTR_INIT;
1011 			i915_gem_object_userptr_submit_fini(vma->obj);
1012 		}
1013 
1014 		if (final)
1015 			i915_vma_put(vma);
1016 	}
1017 
1018 	eb_unpin_engine(eb);
1019 }
1020 
1021 static void eb_destroy(const struct i915_execbuffer *eb)
1022 {
1023 	GEM_BUG_ON(eb->reloc_cache.rq);
1024 
1025 	if (eb->lut_size > 0)
1026 		kfree(eb->buckets);
1027 }
1028 
1029 static inline u64
1030 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1031 		  const struct i915_vma *target)
1032 {
1033 	return gen8_canonical_addr((int)reloc->delta + target->node.start);
1034 }
1035 
1036 static void reloc_cache_clear(struct reloc_cache *cache)
1037 {
1038 	cache->rq = NULL;
1039 	cache->rq_cmd = NULL;
1040 	cache->pool = NULL;
1041 	cache->rq_size = 0;
1042 }
1043 
1044 static void reloc_cache_init(struct reloc_cache *cache,
1045 			     struct drm_i915_private *i915)
1046 {
1047 	cache->page = -1;
1048 	cache->vaddr = 0;
1049 	/* Must be a variable in the struct to allow GCC to unroll. */
1050 	cache->graphics_ver = GRAPHICS_VER(i915);
1051 	cache->has_llc = HAS_LLC(i915);
1052 	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1053 	cache->has_fence = cache->graphics_ver < 4;
1054 	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1055 	cache->node.flags = 0;
1056 	reloc_cache_clear(cache);
1057 }
1058 
1059 static inline void *unmask_page(unsigned long p)
1060 {
1061 	return (void *)(uintptr_t)(p & PAGE_MASK);
1062 }
1063 
1064 static inline unsigned int unmask_flags(unsigned long p)
1065 {
1066 	return p & ~PAGE_MASK;
1067 }
1068 
1069 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1070 
1071 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1072 {
1073 	struct drm_i915_private *i915 =
1074 		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1075 	return &i915->ggtt;
1076 }
1077 
1078 static void reloc_cache_put_pool(struct i915_execbuffer *eb, struct reloc_cache *cache)
1079 {
1080 	if (!cache->pool)
1081 		return;
1082 
1083 	/*
1084 	 * This is a bit nasty, normally we keep objects locked until the end
1085 	 * of execbuffer, but we already submit this, and have to unlock before
1086 	 * dropping the reference. Fortunately we can only hold 1 pool node at
1087 	 * a time, so this should be harmless.
1088 	 */
1089 	i915_gem_ww_unlock_single(cache->pool->obj);
1090 	intel_gt_buffer_pool_put(cache->pool);
1091 	cache->pool = NULL;
1092 }
1093 
1094 static void reloc_gpu_flush(struct i915_execbuffer *eb, struct reloc_cache *cache)
1095 {
1096 	struct drm_i915_gem_object *obj = cache->rq->batch->obj;
1097 
1098 	GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
1099 	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
1100 
1101 	i915_gem_object_flush_map(obj);
1102 	i915_gem_object_unpin_map(obj);
1103 
1104 	intel_gt_chipset_flush(cache->rq->engine->gt);
1105 
1106 	i915_request_add(cache->rq);
1107 	reloc_cache_put_pool(eb, cache);
1108 	reloc_cache_clear(cache);
1109 
1110 	eb->reloc_pool = NULL;
1111 }
1112 
1113 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1114 {
1115 	void *vaddr;
1116 
1117 	if (cache->rq)
1118 		reloc_gpu_flush(eb, cache);
1119 
1120 	if (!cache->vaddr)
1121 		return;
1122 
1123 	vaddr = unmask_page(cache->vaddr);
1124 	if (cache->vaddr & KMAP) {
1125 		struct drm_i915_gem_object *obj =
1126 			(struct drm_i915_gem_object *)cache->node.mm;
1127 		if (cache->vaddr & CLFLUSH_AFTER)
1128 			mb();
1129 
1130 		kunmap_atomic(vaddr);
1131 		i915_gem_object_finish_access(obj);
1132 	} else {
1133 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1134 
1135 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1136 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1137 
1138 		if (drm_mm_node_allocated(&cache->node)) {
1139 			ggtt->vm.clear_range(&ggtt->vm,
1140 					     cache->node.start,
1141 					     cache->node.size);
1142 			mutex_lock(&ggtt->vm.mutex);
1143 			drm_mm_remove_node(&cache->node);
1144 			mutex_unlock(&ggtt->vm.mutex);
1145 		} else {
1146 			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1147 		}
1148 	}
1149 
1150 	cache->vaddr = 0;
1151 	cache->page = -1;
1152 }
1153 
1154 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1155 			struct reloc_cache *cache,
1156 			unsigned long pageno)
1157 {
1158 	void *vaddr;
1159 	struct page *page;
1160 
1161 	if (cache->vaddr) {
1162 		kunmap_atomic(unmask_page(cache->vaddr));
1163 	} else {
1164 		unsigned int flushes;
1165 		int err;
1166 
1167 		err = i915_gem_object_prepare_write(obj, &flushes);
1168 		if (err)
1169 			return ERR_PTR(err);
1170 
1171 		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1172 		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1173 
1174 		cache->vaddr = flushes | KMAP;
1175 		cache->node.mm = (void *)obj;
1176 		if (flushes)
1177 			mb();
1178 	}
1179 
1180 	page = i915_gem_object_get_page(obj, pageno);
1181 	if (!obj->mm.dirty)
1182 		set_page_dirty(page);
1183 
1184 	vaddr = kmap_atomic(page);
1185 	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1186 	cache->page = pageno;
1187 
1188 	return vaddr;
1189 }
1190 
1191 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1192 			 struct i915_execbuffer *eb,
1193 			 unsigned long page)
1194 {
1195 	struct reloc_cache *cache = &eb->reloc_cache;
1196 	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1197 	unsigned long offset;
1198 	void *vaddr;
1199 
1200 	if (cache->vaddr) {
1201 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1202 		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1203 	} else {
1204 		struct i915_vma *vma;
1205 		int err;
1206 
1207 		if (i915_gem_object_is_tiled(obj))
1208 			return ERR_PTR(-EINVAL);
1209 
1210 		if (use_cpu_reloc(cache, obj))
1211 			return NULL;
1212 
1213 		err = i915_gem_object_set_to_gtt_domain(obj, true);
1214 		if (err)
1215 			return ERR_PTR(err);
1216 
1217 		vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1218 						  PIN_MAPPABLE |
1219 						  PIN_NONBLOCK /* NOWARN */ |
1220 						  PIN_NOEVICT);
1221 		if (vma == ERR_PTR(-EDEADLK))
1222 			return vma;
1223 
1224 		if (IS_ERR(vma)) {
1225 			memset(&cache->node, 0, sizeof(cache->node));
1226 			mutex_lock(&ggtt->vm.mutex);
1227 			err = drm_mm_insert_node_in_range
1228 				(&ggtt->vm.mm, &cache->node,
1229 				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1230 				 0, ggtt->mappable_end,
1231 				 DRM_MM_INSERT_LOW);
1232 			mutex_unlock(&ggtt->vm.mutex);
1233 			if (err) /* no inactive aperture space, use cpu reloc */
1234 				return NULL;
1235 		} else {
1236 			cache->node.start = vma->node.start;
1237 			cache->node.mm = (void *)vma;
1238 		}
1239 	}
1240 
1241 	offset = cache->node.start;
1242 	if (drm_mm_node_allocated(&cache->node)) {
1243 		ggtt->vm.insert_page(&ggtt->vm,
1244 				     i915_gem_object_get_dma_address(obj, page),
1245 				     offset, I915_CACHE_NONE, 0);
1246 	} else {
1247 		offset += page << PAGE_SHIFT;
1248 	}
1249 
1250 	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1251 							 offset);
1252 	cache->page = page;
1253 	cache->vaddr = (unsigned long)vaddr;
1254 
1255 	return vaddr;
1256 }
1257 
1258 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1259 			 struct i915_execbuffer *eb,
1260 			 unsigned long page)
1261 {
1262 	struct reloc_cache *cache = &eb->reloc_cache;
1263 	void *vaddr;
1264 
1265 	if (cache->page == page) {
1266 		vaddr = unmask_page(cache->vaddr);
1267 	} else {
1268 		vaddr = NULL;
1269 		if ((cache->vaddr & KMAP) == 0)
1270 			vaddr = reloc_iomap(obj, eb, page);
1271 		if (!vaddr)
1272 			vaddr = reloc_kmap(obj, cache, page);
1273 	}
1274 
1275 	return vaddr;
1276 }
1277 
1278 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1279 {
1280 	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1281 		if (flushes & CLFLUSH_BEFORE) {
1282 			clflushopt(addr);
1283 			mb();
1284 		}
1285 
1286 		*addr = value;
1287 
1288 		/*
1289 		 * Writes to the same cacheline are serialised by the CPU
1290 		 * (including clflush). On the write path, we only require
1291 		 * that it hits memory in an orderly fashion and place
1292 		 * mb barriers at the start and end of the relocation phase
1293 		 * to ensure ordering of clflush wrt to the system.
1294 		 */
1295 		if (flushes & CLFLUSH_AFTER)
1296 			clflushopt(addr);
1297 	} else
1298 		*addr = value;
1299 }
1300 
1301 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1302 {
1303 	struct drm_i915_gem_object *obj = vma->obj;
1304 	int err;
1305 
1306 	assert_vma_held(vma);
1307 
1308 	if (obj->cache_dirty & ~obj->cache_coherent)
1309 		i915_gem_clflush_object(obj, 0);
1310 	obj->write_domain = 0;
1311 
1312 	err = i915_request_await_object(rq, vma->obj, true);
1313 	if (err == 0)
1314 		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1315 
1316 	return err;
1317 }
1318 
1319 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1320 			     struct intel_engine_cs *engine,
1321 			     struct i915_vma *vma,
1322 			     unsigned int len)
1323 {
1324 	struct reloc_cache *cache = &eb->reloc_cache;
1325 	struct intel_gt_buffer_pool_node *pool = eb->reloc_pool;
1326 	struct i915_request *rq;
1327 	struct i915_vma *batch;
1328 	u32 *cmd;
1329 	int err;
1330 
1331 	if (!pool) {
1332 		pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE,
1333 						cache->has_llc ?
1334 						I915_MAP_WB :
1335 						I915_MAP_WC);
1336 		if (IS_ERR(pool))
1337 			return PTR_ERR(pool);
1338 	}
1339 	eb->reloc_pool = NULL;
1340 
1341 	err = i915_gem_object_lock(pool->obj, &eb->ww);
1342 	if (err)
1343 		goto err_pool;
1344 
1345 	cmd = i915_gem_object_pin_map(pool->obj, pool->type);
1346 	if (IS_ERR(cmd)) {
1347 		err = PTR_ERR(cmd);
1348 		goto err_pool;
1349 	}
1350 	intel_gt_buffer_pool_mark_used(pool);
1351 
1352 	memset32(cmd, 0, pool->obj->base.size / sizeof(u32));
1353 
1354 	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1355 	if (IS_ERR(batch)) {
1356 		err = PTR_ERR(batch);
1357 		goto err_unmap;
1358 	}
1359 
1360 	err = i915_vma_pin_ww(batch, &eb->ww, 0, 0, PIN_USER | PIN_NONBLOCK);
1361 	if (err)
1362 		goto err_unmap;
1363 
1364 	if (engine == eb->context->engine) {
1365 		rq = i915_request_create(eb->context);
1366 	} else {
1367 		struct intel_context *ce = eb->reloc_context;
1368 
1369 		if (!ce) {
1370 			ce = intel_context_create(engine);
1371 			if (IS_ERR(ce)) {
1372 				err = PTR_ERR(ce);
1373 				goto err_unpin;
1374 			}
1375 
1376 			i915_vm_put(ce->vm);
1377 			ce->vm = i915_vm_get(eb->context->vm);
1378 			eb->reloc_context = ce;
1379 		}
1380 
1381 		err = intel_context_pin_ww(ce, &eb->ww);
1382 		if (err)
1383 			goto err_unpin;
1384 
1385 		rq = i915_request_create(ce);
1386 		intel_context_unpin(ce);
1387 	}
1388 	if (IS_ERR(rq)) {
1389 		err = PTR_ERR(rq);
1390 		goto err_unpin;
1391 	}
1392 
1393 	err = intel_gt_buffer_pool_mark_active(pool, rq);
1394 	if (err)
1395 		goto err_request;
1396 
1397 	err = reloc_move_to_gpu(rq, vma);
1398 	if (err)
1399 		goto err_request;
1400 
1401 	err = eb->engine->emit_bb_start(rq,
1402 					batch->node.start, PAGE_SIZE,
1403 					cache->graphics_ver > 5 ? 0 : I915_DISPATCH_SECURE);
1404 	if (err)
1405 		goto skip_request;
1406 
1407 	assert_vma_held(batch);
1408 	err = i915_request_await_object(rq, batch->obj, false);
1409 	if (err == 0)
1410 		err = i915_vma_move_to_active(batch, rq, 0);
1411 	if (err)
1412 		goto skip_request;
1413 
1414 	rq->batch = batch;
1415 	i915_vma_unpin(batch);
1416 
1417 	cache->rq = rq;
1418 	cache->rq_cmd = cmd;
1419 	cache->rq_size = 0;
1420 	cache->pool = pool;
1421 
1422 	/* Return with batch mapping (cmd) still pinned */
1423 	return 0;
1424 
1425 skip_request:
1426 	i915_request_set_error_once(rq, err);
1427 err_request:
1428 	i915_request_add(rq);
1429 err_unpin:
1430 	i915_vma_unpin(batch);
1431 err_unmap:
1432 	i915_gem_object_unpin_map(pool->obj);
1433 err_pool:
1434 	eb->reloc_pool = pool;
1435 	return err;
1436 }
1437 
1438 static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
1439 {
1440 	return engine->class != VIDEO_DECODE_CLASS || GRAPHICS_VER(engine->i915) != 6;
1441 }
1442 
1443 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1444 		      struct i915_vma *vma,
1445 		      unsigned int len)
1446 {
1447 	struct reloc_cache *cache = &eb->reloc_cache;
1448 	u32 *cmd;
1449 
1450 	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1451 		reloc_gpu_flush(eb, cache);
1452 
1453 	if (unlikely(!cache->rq)) {
1454 		int err;
1455 		struct intel_engine_cs *engine = eb->engine;
1456 
1457 		/* If we need to copy for the cmdparser, we will stall anyway */
1458 		if (eb_use_cmdparser(eb))
1459 			return ERR_PTR(-EWOULDBLOCK);
1460 
1461 		if (!reloc_can_use_engine(engine)) {
1462 			engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
1463 			if (!engine)
1464 				return ERR_PTR(-ENODEV);
1465 		}
1466 
1467 		err = __reloc_gpu_alloc(eb, engine, vma, len);
1468 		if (unlikely(err))
1469 			return ERR_PTR(err);
1470 	}
1471 
1472 	cmd = cache->rq_cmd + cache->rq_size;
1473 	cache->rq_size += len;
1474 
1475 	return cmd;
1476 }
1477 
1478 static inline bool use_reloc_gpu(struct i915_vma *vma)
1479 {
1480 	if (DBG_FORCE_RELOC == FORCE_GPU_RELOC)
1481 		return true;
1482 
1483 	if (DBG_FORCE_RELOC)
1484 		return false;
1485 
1486 	return !dma_resv_test_signaled(vma->resv, true);
1487 }
1488 
1489 static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
1490 {
1491 	struct page *page;
1492 	unsigned long addr;
1493 
1494 	GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
1495 
1496 	page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
1497 	addr = PFN_PHYS(page_to_pfn(page));
1498 	GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
1499 
1500 	return addr + offset_in_page(offset);
1501 }
1502 
1503 static int __reloc_entry_gpu(struct i915_execbuffer *eb,
1504 			      struct i915_vma *vma,
1505 			      u64 offset,
1506 			      u64 target_addr)
1507 {
1508 	const unsigned int ver = eb->reloc_cache.graphics_ver;
1509 	unsigned int len;
1510 	u32 *batch;
1511 	u64 addr;
1512 
1513 	if (ver >= 8)
1514 		len = offset & 7 ? 8 : 5;
1515 	else if (ver >= 4)
1516 		len = 4;
1517 	else
1518 		len = 3;
1519 
1520 	batch = reloc_gpu(eb, vma, len);
1521 	if (batch == ERR_PTR(-EDEADLK))
1522 		return -EDEADLK;
1523 	else if (IS_ERR(batch))
1524 		return false;
1525 
1526 	addr = gen8_canonical_addr(vma->node.start + offset);
1527 	if (ver >= 8) {
1528 		if (offset & 7) {
1529 			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1530 			*batch++ = lower_32_bits(addr);
1531 			*batch++ = upper_32_bits(addr);
1532 			*batch++ = lower_32_bits(target_addr);
1533 
1534 			addr = gen8_canonical_addr(addr + 4);
1535 
1536 			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1537 			*batch++ = lower_32_bits(addr);
1538 			*batch++ = upper_32_bits(addr);
1539 			*batch++ = upper_32_bits(target_addr);
1540 		} else {
1541 			*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1542 			*batch++ = lower_32_bits(addr);
1543 			*batch++ = upper_32_bits(addr);
1544 			*batch++ = lower_32_bits(target_addr);
1545 			*batch++ = upper_32_bits(target_addr);
1546 		}
1547 	} else if (ver >= 6) {
1548 		*batch++ = MI_STORE_DWORD_IMM_GEN4;
1549 		*batch++ = 0;
1550 		*batch++ = addr;
1551 		*batch++ = target_addr;
1552 	} else if (IS_I965G(eb->i915)) {
1553 		*batch++ = MI_STORE_DWORD_IMM_GEN4;
1554 		*batch++ = 0;
1555 		*batch++ = vma_phys_addr(vma, offset);
1556 		*batch++ = target_addr;
1557 	} else if (ver >= 4) {
1558 		*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1559 		*batch++ = 0;
1560 		*batch++ = addr;
1561 		*batch++ = target_addr;
1562 	} else if (ver >= 3 &&
1563 		   !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
1564 		*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1565 		*batch++ = addr;
1566 		*batch++ = target_addr;
1567 	} else {
1568 		*batch++ = MI_STORE_DWORD_IMM;
1569 		*batch++ = vma_phys_addr(vma, offset);
1570 		*batch++ = target_addr;
1571 	}
1572 
1573 	return true;
1574 }
1575 
1576 static int reloc_entry_gpu(struct i915_execbuffer *eb,
1577 			    struct i915_vma *vma,
1578 			    u64 offset,
1579 			    u64 target_addr)
1580 {
1581 	if (eb->reloc_cache.vaddr)
1582 		return false;
1583 
1584 	if (!use_reloc_gpu(vma))
1585 		return false;
1586 
1587 	return __reloc_entry_gpu(eb, vma, offset, target_addr);
1588 }
1589 
1590 static u64
1591 relocate_entry(struct i915_vma *vma,
1592 	       const struct drm_i915_gem_relocation_entry *reloc,
1593 	       struct i915_execbuffer *eb,
1594 	       const struct i915_vma *target)
1595 {
1596 	u64 target_addr = relocation_target(reloc, target);
1597 	u64 offset = reloc->offset;
1598 	int reloc_gpu = reloc_entry_gpu(eb, vma, offset, target_addr);
1599 
1600 	if (reloc_gpu < 0)
1601 		return reloc_gpu;
1602 
1603 	if (!reloc_gpu) {
1604 		bool wide = eb->reloc_cache.use_64bit_reloc;
1605 		void *vaddr;
1606 
1607 repeat:
1608 		vaddr = reloc_vaddr(vma->obj, eb,
1609 				    offset >> PAGE_SHIFT);
1610 		if (IS_ERR(vaddr))
1611 			return PTR_ERR(vaddr);
1612 
1613 		GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1614 		clflush_write32(vaddr + offset_in_page(offset),
1615 				lower_32_bits(target_addr),
1616 				eb->reloc_cache.vaddr);
1617 
1618 		if (wide) {
1619 			offset += sizeof(u32);
1620 			target_addr >>= 32;
1621 			wide = false;
1622 			goto repeat;
1623 		}
1624 	}
1625 
1626 	return target->node.start | UPDATE;
1627 }
1628 
1629 static u64
1630 eb_relocate_entry(struct i915_execbuffer *eb,
1631 		  struct eb_vma *ev,
1632 		  const struct drm_i915_gem_relocation_entry *reloc)
1633 {
1634 	struct drm_i915_private *i915 = eb->i915;
1635 	struct eb_vma *target;
1636 	int err;
1637 
1638 	/* we've already hold a reference to all valid objects */
1639 	target = eb_get_vma(eb, reloc->target_handle);
1640 	if (unlikely(!target))
1641 		return -ENOENT;
1642 
1643 	/* Validate that the target is in a valid r/w GPU domain */
1644 	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1645 		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1646 			  "target %d offset %d "
1647 			  "read %08x write %08x",
1648 			  reloc->target_handle,
1649 			  (int) reloc->offset,
1650 			  reloc->read_domains,
1651 			  reloc->write_domain);
1652 		return -EINVAL;
1653 	}
1654 	if (unlikely((reloc->write_domain | reloc->read_domains)
1655 		     & ~I915_GEM_GPU_DOMAINS)) {
1656 		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1657 			  "target %d offset %d "
1658 			  "read %08x write %08x",
1659 			  reloc->target_handle,
1660 			  (int) reloc->offset,
1661 			  reloc->read_domains,
1662 			  reloc->write_domain);
1663 		return -EINVAL;
1664 	}
1665 
1666 	if (reloc->write_domain) {
1667 		target->flags |= EXEC_OBJECT_WRITE;
1668 
1669 		/*
1670 		 * Sandybridge PPGTT errata: We need a global gtt mapping
1671 		 * for MI and pipe_control writes because the gpu doesn't
1672 		 * properly redirect them through the ppgtt for non_secure
1673 		 * batchbuffers.
1674 		 */
1675 		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1676 		    GRAPHICS_VER(eb->i915) == 6) {
1677 			err = i915_vma_bind(target->vma,
1678 					    target->vma->obj->cache_level,
1679 					    PIN_GLOBAL, NULL);
1680 			if (err)
1681 				return err;
1682 		}
1683 	}
1684 
1685 	/*
1686 	 * If the relocation already has the right value in it, no
1687 	 * more work needs to be done.
1688 	 */
1689 	if (!DBG_FORCE_RELOC &&
1690 	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1691 		return 0;
1692 
1693 	/* Check that the relocation address is valid... */
1694 	if (unlikely(reloc->offset >
1695 		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1696 		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1697 			  "target %d offset %d size %d.\n",
1698 			  reloc->target_handle,
1699 			  (int)reloc->offset,
1700 			  (int)ev->vma->size);
1701 		return -EINVAL;
1702 	}
1703 	if (unlikely(reloc->offset & 3)) {
1704 		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1705 			  "target %d offset %d.\n",
1706 			  reloc->target_handle,
1707 			  (int)reloc->offset);
1708 		return -EINVAL;
1709 	}
1710 
1711 	/*
1712 	 * If we write into the object, we need to force the synchronisation
1713 	 * barrier, either with an asynchronous clflush or if we executed the
1714 	 * patching using the GPU (though that should be serialised by the
1715 	 * timeline). To be completely sure, and since we are required to
1716 	 * do relocations we are already stalling, disable the user's opt
1717 	 * out of our synchronisation.
1718 	 */
1719 	ev->flags &= ~EXEC_OBJECT_ASYNC;
1720 
1721 	/* and update the user's relocation entry */
1722 	return relocate_entry(ev->vma, reloc, eb, target->vma);
1723 }
1724 
1725 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1726 {
1727 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1728 	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1729 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1730 	struct drm_i915_gem_relocation_entry __user *urelocs =
1731 		u64_to_user_ptr(entry->relocs_ptr);
1732 	unsigned long remain = entry->relocation_count;
1733 
1734 	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1735 		return -EINVAL;
1736 
1737 	/*
1738 	 * We must check that the entire relocation array is safe
1739 	 * to read. However, if the array is not writable the user loses
1740 	 * the updated relocation values.
1741 	 */
1742 	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1743 		return -EFAULT;
1744 
1745 	do {
1746 		struct drm_i915_gem_relocation_entry *r = stack;
1747 		unsigned int count =
1748 			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1749 		unsigned int copied;
1750 
1751 		/*
1752 		 * This is the fast path and we cannot handle a pagefault
1753 		 * whilst holding the struct mutex lest the user pass in the
1754 		 * relocations contained within a mmaped bo. For in such a case
1755 		 * we, the page fault handler would call i915_gem_fault() and
1756 		 * we would try to acquire the struct mutex again. Obviously
1757 		 * this is bad and so lockdep complains vehemently.
1758 		 */
1759 		pagefault_disable();
1760 		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1761 		pagefault_enable();
1762 		if (unlikely(copied)) {
1763 			remain = -EFAULT;
1764 			goto out;
1765 		}
1766 
1767 		remain -= count;
1768 		do {
1769 			u64 offset = eb_relocate_entry(eb, ev, r);
1770 
1771 			if (likely(offset == 0)) {
1772 			} else if ((s64)offset < 0) {
1773 				remain = (int)offset;
1774 				goto out;
1775 			} else {
1776 				/*
1777 				 * Note that reporting an error now
1778 				 * leaves everything in an inconsistent
1779 				 * state as we have *already* changed
1780 				 * the relocation value inside the
1781 				 * object. As we have not changed the
1782 				 * reloc.presumed_offset or will not
1783 				 * change the execobject.offset, on the
1784 				 * call we may not rewrite the value
1785 				 * inside the object, leaving it
1786 				 * dangling and causing a GPU hang. Unless
1787 				 * userspace dynamically rebuilds the
1788 				 * relocations on each execbuf rather than
1789 				 * presume a static tree.
1790 				 *
1791 				 * We did previously check if the relocations
1792 				 * were writable (access_ok), an error now
1793 				 * would be a strange race with mprotect,
1794 				 * having already demonstrated that we
1795 				 * can read from this userspace address.
1796 				 */
1797 				offset = gen8_canonical_addr(offset & ~UPDATE);
1798 				__put_user(offset,
1799 					   &urelocs[r - stack].presumed_offset);
1800 			}
1801 		} while (r++, --count);
1802 		urelocs += ARRAY_SIZE(stack);
1803 	} while (remain);
1804 out:
1805 	reloc_cache_reset(&eb->reloc_cache, eb);
1806 	return remain;
1807 }
1808 
1809 static int
1810 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1811 {
1812 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1813 	struct drm_i915_gem_relocation_entry *relocs =
1814 		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1815 	unsigned int i;
1816 	int err;
1817 
1818 	for (i = 0; i < entry->relocation_count; i++) {
1819 		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1820 
1821 		if ((s64)offset < 0) {
1822 			err = (int)offset;
1823 			goto err;
1824 		}
1825 	}
1826 	err = 0;
1827 err:
1828 	reloc_cache_reset(&eb->reloc_cache, eb);
1829 	return err;
1830 }
1831 
1832 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1833 {
1834 	const char __user *addr, *end;
1835 	unsigned long size;
1836 	char __maybe_unused c;
1837 
1838 	size = entry->relocation_count;
1839 	if (size == 0)
1840 		return 0;
1841 
1842 	if (size > N_RELOC(ULONG_MAX))
1843 		return -EINVAL;
1844 
1845 	addr = u64_to_user_ptr(entry->relocs_ptr);
1846 	size *= sizeof(struct drm_i915_gem_relocation_entry);
1847 	if (!access_ok(addr, size))
1848 		return -EFAULT;
1849 
1850 	end = addr + size;
1851 	for (; addr < end; addr += PAGE_SIZE) {
1852 		int err = __get_user(c, addr);
1853 		if (err)
1854 			return err;
1855 	}
1856 	return __get_user(c, end - 1);
1857 }
1858 
1859 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1860 {
1861 	struct drm_i915_gem_relocation_entry *relocs;
1862 	const unsigned int count = eb->buffer_count;
1863 	unsigned int i;
1864 	int err;
1865 
1866 	for (i = 0; i < count; i++) {
1867 		const unsigned int nreloc = eb->exec[i].relocation_count;
1868 		struct drm_i915_gem_relocation_entry __user *urelocs;
1869 		unsigned long size;
1870 		unsigned long copied;
1871 
1872 		if (nreloc == 0)
1873 			continue;
1874 
1875 		err = check_relocations(&eb->exec[i]);
1876 		if (err)
1877 			goto err;
1878 
1879 		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1880 		size = nreloc * sizeof(*relocs);
1881 
1882 		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1883 		if (!relocs) {
1884 			err = -ENOMEM;
1885 			goto err;
1886 		}
1887 
1888 		/* copy_from_user is limited to < 4GiB */
1889 		copied = 0;
1890 		do {
1891 			unsigned int len =
1892 				min_t(u64, BIT_ULL(31), size - copied);
1893 
1894 			if (__copy_from_user((char *)relocs + copied,
1895 					     (char __user *)urelocs + copied,
1896 					     len))
1897 				goto end;
1898 
1899 			copied += len;
1900 		} while (copied < size);
1901 
1902 		/*
1903 		 * As we do not update the known relocation offsets after
1904 		 * relocating (due to the complexities in lock handling),
1905 		 * we need to mark them as invalid now so that we force the
1906 		 * relocation processing next time. Just in case the target
1907 		 * object is evicted and then rebound into its old
1908 		 * presumed_offset before the next execbuffer - if that
1909 		 * happened we would make the mistake of assuming that the
1910 		 * relocations were valid.
1911 		 */
1912 		if (!user_access_begin(urelocs, size))
1913 			goto end;
1914 
1915 		for (copied = 0; copied < nreloc; copied++)
1916 			unsafe_put_user(-1,
1917 					&urelocs[copied].presumed_offset,
1918 					end_user);
1919 		user_access_end();
1920 
1921 		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1922 	}
1923 
1924 	return 0;
1925 
1926 end_user:
1927 	user_access_end();
1928 end:
1929 	kvfree(relocs);
1930 	err = -EFAULT;
1931 err:
1932 	while (i--) {
1933 		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1934 		if (eb->exec[i].relocation_count)
1935 			kvfree(relocs);
1936 	}
1937 	return err;
1938 }
1939 
1940 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1941 {
1942 	const unsigned int count = eb->buffer_count;
1943 	unsigned int i;
1944 
1945 	for (i = 0; i < count; i++) {
1946 		int err;
1947 
1948 		err = check_relocations(&eb->exec[i]);
1949 		if (err)
1950 			return err;
1951 	}
1952 
1953 	return 0;
1954 }
1955 
1956 static int eb_reinit_userptr(struct i915_execbuffer *eb)
1957 {
1958 	const unsigned int count = eb->buffer_count;
1959 	unsigned int i;
1960 	int ret;
1961 
1962 	if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1963 		return 0;
1964 
1965 	for (i = 0; i < count; i++) {
1966 		struct eb_vma *ev = &eb->vma[i];
1967 
1968 		if (!i915_gem_object_is_userptr(ev->vma->obj))
1969 			continue;
1970 
1971 		ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1972 		if (ret)
1973 			return ret;
1974 
1975 		ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1976 	}
1977 
1978 	return 0;
1979 }
1980 
1981 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb,
1982 					   struct i915_request *rq)
1983 {
1984 	bool have_copy = false;
1985 	struct eb_vma *ev;
1986 	int err = 0;
1987 
1988 repeat:
1989 	if (signal_pending(current)) {
1990 		err = -ERESTARTSYS;
1991 		goto out;
1992 	}
1993 
1994 	/* We may process another execbuffer during the unlock... */
1995 	eb_release_vmas(eb, false, true);
1996 	i915_gem_ww_ctx_fini(&eb->ww);
1997 
1998 	if (rq) {
1999 		/* nonblocking is always false */
2000 		if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2001 				      MAX_SCHEDULE_TIMEOUT) < 0) {
2002 			i915_request_put(rq);
2003 			rq = NULL;
2004 
2005 			err = -EINTR;
2006 			goto err_relock;
2007 		}
2008 
2009 		i915_request_put(rq);
2010 		rq = NULL;
2011 	}
2012 
2013 	/*
2014 	 * We take 3 passes through the slowpatch.
2015 	 *
2016 	 * 1 - we try to just prefault all the user relocation entries and
2017 	 * then attempt to reuse the atomic pagefault disabled fast path again.
2018 	 *
2019 	 * 2 - we copy the user entries to a local buffer here outside of the
2020 	 * local and allow ourselves to wait upon any rendering before
2021 	 * relocations
2022 	 *
2023 	 * 3 - we already have a local copy of the relocation entries, but
2024 	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
2025 	 */
2026 	if (!err) {
2027 		err = eb_prefault_relocations(eb);
2028 	} else if (!have_copy) {
2029 		err = eb_copy_relocations(eb);
2030 		have_copy = err == 0;
2031 	} else {
2032 		cond_resched();
2033 		err = 0;
2034 	}
2035 
2036 	if (!err)
2037 		err = eb_reinit_userptr(eb);
2038 
2039 err_relock:
2040 	i915_gem_ww_ctx_init(&eb->ww, true);
2041 	if (err)
2042 		goto out;
2043 
2044 	/* reacquire the objects */
2045 repeat_validate:
2046 	rq = eb_pin_engine(eb, false);
2047 	if (IS_ERR(rq)) {
2048 		err = PTR_ERR(rq);
2049 		rq = NULL;
2050 		goto err;
2051 	}
2052 
2053 	/* We didn't throttle, should be NULL */
2054 	GEM_WARN_ON(rq);
2055 
2056 	err = eb_validate_vmas(eb);
2057 	if (err)
2058 		goto err;
2059 
2060 	GEM_BUG_ON(!eb->batch);
2061 
2062 	list_for_each_entry(ev, &eb->relocs, reloc_link) {
2063 		if (!have_copy) {
2064 			pagefault_disable();
2065 			err = eb_relocate_vma(eb, ev);
2066 			pagefault_enable();
2067 			if (err)
2068 				break;
2069 		} else {
2070 			err = eb_relocate_vma_slow(eb, ev);
2071 			if (err)
2072 				break;
2073 		}
2074 	}
2075 
2076 	if (err == -EDEADLK)
2077 		goto err;
2078 
2079 	if (err && !have_copy)
2080 		goto repeat;
2081 
2082 	if (err)
2083 		goto err;
2084 
2085 	/* as last step, parse the command buffer */
2086 	err = eb_parse(eb);
2087 	if (err)
2088 		goto err;
2089 
2090 	/*
2091 	 * Leave the user relocations as are, this is the painfully slow path,
2092 	 * and we want to avoid the complication of dropping the lock whilst
2093 	 * having buffers reserved in the aperture and so causing spurious
2094 	 * ENOSPC for random operations.
2095 	 */
2096 
2097 err:
2098 	if (err == -EDEADLK) {
2099 		eb_release_vmas(eb, false, false);
2100 		err = i915_gem_ww_ctx_backoff(&eb->ww);
2101 		if (!err)
2102 			goto repeat_validate;
2103 	}
2104 
2105 	if (err == -EAGAIN)
2106 		goto repeat;
2107 
2108 out:
2109 	if (have_copy) {
2110 		const unsigned int count = eb->buffer_count;
2111 		unsigned int i;
2112 
2113 		for (i = 0; i < count; i++) {
2114 			const struct drm_i915_gem_exec_object2 *entry =
2115 				&eb->exec[i];
2116 			struct drm_i915_gem_relocation_entry *relocs;
2117 
2118 			if (!entry->relocation_count)
2119 				continue;
2120 
2121 			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
2122 			kvfree(relocs);
2123 		}
2124 	}
2125 
2126 	if (rq)
2127 		i915_request_put(rq);
2128 
2129 	return err;
2130 }
2131 
2132 static int eb_relocate_parse(struct i915_execbuffer *eb)
2133 {
2134 	int err;
2135 	struct i915_request *rq = NULL;
2136 	bool throttle = true;
2137 
2138 retry:
2139 	rq = eb_pin_engine(eb, throttle);
2140 	if (IS_ERR(rq)) {
2141 		err = PTR_ERR(rq);
2142 		rq = NULL;
2143 		if (err != -EDEADLK)
2144 			return err;
2145 
2146 		goto err;
2147 	}
2148 
2149 	if (rq) {
2150 		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2151 
2152 		/* Need to drop all locks now for throttling, take slowpath */
2153 		err = i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 0);
2154 		if (err == -ETIME) {
2155 			if (nonblock) {
2156 				err = -EWOULDBLOCK;
2157 				i915_request_put(rq);
2158 				goto err;
2159 			}
2160 			goto slow;
2161 		}
2162 		i915_request_put(rq);
2163 		rq = NULL;
2164 	}
2165 
2166 	/* only throttle once, even if we didn't need to throttle */
2167 	throttle = false;
2168 
2169 	err = eb_validate_vmas(eb);
2170 	if (err == -EAGAIN)
2171 		goto slow;
2172 	else if (err)
2173 		goto err;
2174 
2175 	/* The objects are in their final locations, apply the relocations. */
2176 	if (eb->args->flags & __EXEC_HAS_RELOC) {
2177 		struct eb_vma *ev;
2178 
2179 		list_for_each_entry(ev, &eb->relocs, reloc_link) {
2180 			err = eb_relocate_vma(eb, ev);
2181 			if (err)
2182 				break;
2183 		}
2184 
2185 		if (err == -EDEADLK)
2186 			goto err;
2187 		else if (err)
2188 			goto slow;
2189 	}
2190 
2191 	if (!err)
2192 		err = eb_parse(eb);
2193 
2194 err:
2195 	if (err == -EDEADLK) {
2196 		eb_release_vmas(eb, false, false);
2197 		err = i915_gem_ww_ctx_backoff(&eb->ww);
2198 		if (!err)
2199 			goto retry;
2200 	}
2201 
2202 	return err;
2203 
2204 slow:
2205 	err = eb_relocate_parse_slow(eb, rq);
2206 	if (err)
2207 		/*
2208 		 * If the user expects the execobject.offset and
2209 		 * reloc.presumed_offset to be an exact match,
2210 		 * as for using NO_RELOC, then we cannot update
2211 		 * the execobject.offset until we have completed
2212 		 * relocation.
2213 		 */
2214 		eb->args->flags &= ~__EXEC_HAS_RELOC;
2215 
2216 	return err;
2217 }
2218 
2219 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2220 {
2221 	const unsigned int count = eb->buffer_count;
2222 	unsigned int i = count;
2223 	int err = 0;
2224 
2225 	while (i--) {
2226 		struct eb_vma *ev = &eb->vma[i];
2227 		struct i915_vma *vma = ev->vma;
2228 		unsigned int flags = ev->flags;
2229 		struct drm_i915_gem_object *obj = vma->obj;
2230 
2231 		assert_vma_held(vma);
2232 
2233 		if (flags & EXEC_OBJECT_CAPTURE) {
2234 			struct i915_capture_list *capture;
2235 
2236 			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2237 			if (capture) {
2238 				capture->next = eb->request->capture_list;
2239 				capture->vma = vma;
2240 				eb->request->capture_list = capture;
2241 			}
2242 		}
2243 
2244 		/*
2245 		 * If the GPU is not _reading_ through the CPU cache, we need
2246 		 * to make sure that any writes (both previous GPU writes from
2247 		 * before a change in snooping levels and normal CPU writes)
2248 		 * caught in that cache are flushed to main memory.
2249 		 *
2250 		 * We want to say
2251 		 *   obj->cache_dirty &&
2252 		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2253 		 * but gcc's optimiser doesn't handle that as well and emits
2254 		 * two jumps instead of one. Maybe one day...
2255 		 */
2256 		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2257 			if (i915_gem_clflush_object(obj, 0))
2258 				flags &= ~EXEC_OBJECT_ASYNC;
2259 		}
2260 
2261 		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2262 			err = i915_request_await_object
2263 				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
2264 		}
2265 
2266 		if (err == 0)
2267 			err = i915_vma_move_to_active(vma, eb->request,
2268 						      flags | __EXEC_OBJECT_NO_RESERVE);
2269 	}
2270 
2271 #ifdef CONFIG_MMU_NOTIFIER
2272 	if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2273 		spin_lock(&eb->i915->mm.notifier_lock);
2274 
2275 		/*
2276 		 * count is always at least 1, otherwise __EXEC_USERPTR_USED
2277 		 * could not have been set
2278 		 */
2279 		for (i = 0; i < count; i++) {
2280 			struct eb_vma *ev = &eb->vma[i];
2281 			struct drm_i915_gem_object *obj = ev->vma->obj;
2282 
2283 			if (!i915_gem_object_is_userptr(obj))
2284 				continue;
2285 
2286 			err = i915_gem_object_userptr_submit_done(obj);
2287 			if (err)
2288 				break;
2289 		}
2290 
2291 		spin_unlock(&eb->i915->mm.notifier_lock);
2292 	}
2293 #endif
2294 
2295 	if (unlikely(err))
2296 		goto err_skip;
2297 
2298 	/* Unconditionally flush any chipset caches (for streaming writes). */
2299 	intel_gt_chipset_flush(eb->engine->gt);
2300 	return 0;
2301 
2302 err_skip:
2303 	i915_request_set_error_once(eb->request, err);
2304 	return err;
2305 }
2306 
2307 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2308 {
2309 	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2310 		return -EINVAL;
2311 
2312 	/* Kernel clipping was a DRI1 misfeature */
2313 	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2314 			     I915_EXEC_USE_EXTENSIONS))) {
2315 		if (exec->num_cliprects || exec->cliprects_ptr)
2316 			return -EINVAL;
2317 	}
2318 
2319 	if (exec->DR4 == 0xffffffff) {
2320 		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2321 		exec->DR4 = 0;
2322 	}
2323 	if (exec->DR1 || exec->DR4)
2324 		return -EINVAL;
2325 
2326 	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2327 		return -EINVAL;
2328 
2329 	return 0;
2330 }
2331 
2332 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2333 {
2334 	u32 *cs;
2335 	int i;
2336 
2337 	if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
2338 		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2339 		return -EINVAL;
2340 	}
2341 
2342 	cs = intel_ring_begin(rq, 4 * 2 + 2);
2343 	if (IS_ERR(cs))
2344 		return PTR_ERR(cs);
2345 
2346 	*cs++ = MI_LOAD_REGISTER_IMM(4);
2347 	for (i = 0; i < 4; i++) {
2348 		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2349 		*cs++ = 0;
2350 	}
2351 	*cs++ = MI_NOOP;
2352 	intel_ring_advance(rq, cs);
2353 
2354 	return 0;
2355 }
2356 
2357 static struct i915_vma *
2358 shadow_batch_pin(struct i915_execbuffer *eb,
2359 		 struct drm_i915_gem_object *obj,
2360 		 struct i915_address_space *vm,
2361 		 unsigned int flags)
2362 {
2363 	struct i915_vma *vma;
2364 	int err;
2365 
2366 	vma = i915_vma_instance(obj, vm, NULL);
2367 	if (IS_ERR(vma))
2368 		return vma;
2369 
2370 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags);
2371 	if (err)
2372 		return ERR_PTR(err);
2373 
2374 	return vma;
2375 }
2376 
2377 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2378 {
2379 	/*
2380 	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2381 	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2382 	 * hsw should have this fixed, but bdw mucks it up again. */
2383 	if (eb->batch_flags & I915_DISPATCH_SECURE)
2384 		return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0);
2385 
2386 	return NULL;
2387 }
2388 
2389 static int eb_parse(struct i915_execbuffer *eb)
2390 {
2391 	struct drm_i915_private *i915 = eb->i915;
2392 	struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2393 	struct i915_vma *shadow, *trampoline, *batch;
2394 	unsigned long len;
2395 	int err;
2396 
2397 	if (!eb_use_cmdparser(eb)) {
2398 		batch = eb_dispatch_secure(eb, eb->batch->vma);
2399 		if (IS_ERR(batch))
2400 			return PTR_ERR(batch);
2401 
2402 		goto secure_batch;
2403 	}
2404 
2405 	len = eb->batch_len;
2406 	if (!CMDPARSER_USES_GGTT(eb->i915)) {
2407 		/*
2408 		 * ppGTT backed shadow buffers must be mapped RO, to prevent
2409 		 * post-scan tampering
2410 		 */
2411 		if (!eb->context->vm->has_read_only) {
2412 			drm_dbg(&i915->drm,
2413 				"Cannot prevent post-scan tampering without RO capable vm\n");
2414 			return -EINVAL;
2415 		}
2416 	} else {
2417 		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2418 	}
2419 	if (unlikely(len < eb->batch_len)) /* last paranoid check of overflow */
2420 		return -EINVAL;
2421 
2422 	if (!pool) {
2423 		pool = intel_gt_get_buffer_pool(eb->engine->gt, len,
2424 						I915_MAP_WB);
2425 		if (IS_ERR(pool))
2426 			return PTR_ERR(pool);
2427 		eb->batch_pool = pool;
2428 	}
2429 
2430 	err = i915_gem_object_lock(pool->obj, &eb->ww);
2431 	if (err)
2432 		goto err;
2433 
2434 	shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2435 	if (IS_ERR(shadow)) {
2436 		err = PTR_ERR(shadow);
2437 		goto err;
2438 	}
2439 	intel_gt_buffer_pool_mark_used(pool);
2440 	i915_gem_object_set_readonly(shadow->obj);
2441 	shadow->private = pool;
2442 
2443 	trampoline = NULL;
2444 	if (CMDPARSER_USES_GGTT(eb->i915)) {
2445 		trampoline = shadow;
2446 
2447 		shadow = shadow_batch_pin(eb, pool->obj,
2448 					  &eb->engine->gt->ggtt->vm,
2449 					  PIN_GLOBAL);
2450 		if (IS_ERR(shadow)) {
2451 			err = PTR_ERR(shadow);
2452 			shadow = trampoline;
2453 			goto err_shadow;
2454 		}
2455 		shadow->private = pool;
2456 
2457 		eb->batch_flags |= I915_DISPATCH_SECURE;
2458 	}
2459 
2460 	batch = eb_dispatch_secure(eb, shadow);
2461 	if (IS_ERR(batch)) {
2462 		err = PTR_ERR(batch);
2463 		goto err_trampoline;
2464 	}
2465 
2466 	err = dma_resv_reserve_shared(shadow->resv, 1);
2467 	if (err)
2468 		goto err_trampoline;
2469 
2470 	err = intel_engine_cmd_parser(eb->engine,
2471 				      eb->batch->vma,
2472 				      eb->batch_start_offset,
2473 				      eb->batch_len,
2474 				      shadow, trampoline);
2475 	if (err)
2476 		goto err_unpin_batch;
2477 
2478 	eb->batch = &eb->vma[eb->buffer_count++];
2479 	eb->batch->vma = i915_vma_get(shadow);
2480 	eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
2481 
2482 	eb->trampoline = trampoline;
2483 	eb->batch_start_offset = 0;
2484 
2485 secure_batch:
2486 	if (batch) {
2487 		eb->batch = &eb->vma[eb->buffer_count++];
2488 		eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
2489 		eb->batch->vma = i915_vma_get(batch);
2490 	}
2491 	return 0;
2492 
2493 err_unpin_batch:
2494 	if (batch)
2495 		i915_vma_unpin(batch);
2496 err_trampoline:
2497 	if (trampoline)
2498 		i915_vma_unpin(trampoline);
2499 err_shadow:
2500 	i915_vma_unpin(shadow);
2501 err:
2502 	return err;
2503 }
2504 
2505 static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
2506 {
2507 	int err;
2508 
2509 	if (intel_context_nopreempt(eb->context))
2510 		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2511 
2512 	err = eb_move_to_gpu(eb);
2513 	if (err)
2514 		return err;
2515 
2516 	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2517 		err = i915_reset_gen7_sol_offsets(eb->request);
2518 		if (err)
2519 			return err;
2520 	}
2521 
2522 	/*
2523 	 * After we completed waiting for other engines (using HW semaphores)
2524 	 * then we can signal that this request/batch is ready to run. This
2525 	 * allows us to determine if the batch is still waiting on the GPU
2526 	 * or actually running by checking the breadcrumb.
2527 	 */
2528 	if (eb->engine->emit_init_breadcrumb) {
2529 		err = eb->engine->emit_init_breadcrumb(eb->request);
2530 		if (err)
2531 			return err;
2532 	}
2533 
2534 	err = eb->engine->emit_bb_start(eb->request,
2535 					batch->node.start +
2536 					eb->batch_start_offset,
2537 					eb->batch_len,
2538 					eb->batch_flags);
2539 	if (err)
2540 		return err;
2541 
2542 	if (eb->trampoline) {
2543 		GEM_BUG_ON(eb->batch_start_offset);
2544 		err = eb->engine->emit_bb_start(eb->request,
2545 						eb->trampoline->node.start +
2546 						eb->batch_len,
2547 						0, 0);
2548 		if (err)
2549 			return err;
2550 	}
2551 
2552 	return 0;
2553 }
2554 
2555 static int num_vcs_engines(const struct drm_i915_private *i915)
2556 {
2557 	return hweight_long(VDBOX_MASK(&i915->gt));
2558 }
2559 
2560 /*
2561  * Find one BSD ring to dispatch the corresponding BSD command.
2562  * The engine index is returned.
2563  */
2564 static unsigned int
2565 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2566 			 struct drm_file *file)
2567 {
2568 	struct drm_i915_file_private *file_priv = file->driver_priv;
2569 
2570 	/* Check whether the file_priv has already selected one ring. */
2571 	if ((int)file_priv->bsd_engine < 0)
2572 		file_priv->bsd_engine =
2573 			get_random_int() % num_vcs_engines(dev_priv);
2574 
2575 	return file_priv->bsd_engine;
2576 }
2577 
2578 static const enum intel_engine_id user_ring_map[] = {
2579 	[I915_EXEC_DEFAULT]	= RCS0,
2580 	[I915_EXEC_RENDER]	= RCS0,
2581 	[I915_EXEC_BLT]		= BCS0,
2582 	[I915_EXEC_BSD]		= VCS0,
2583 	[I915_EXEC_VEBOX]	= VECS0
2584 };
2585 
2586 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2587 {
2588 	struct intel_ring *ring = ce->ring;
2589 	struct intel_timeline *tl = ce->timeline;
2590 	struct i915_request *rq;
2591 
2592 	/*
2593 	 * Completely unscientific finger-in-the-air estimates for suitable
2594 	 * maximum user request size (to avoid blocking) and then backoff.
2595 	 */
2596 	if (intel_ring_update_space(ring) >= PAGE_SIZE)
2597 		return NULL;
2598 
2599 	/*
2600 	 * Find a request that after waiting upon, there will be at least half
2601 	 * the ring available. The hysteresis allows us to compete for the
2602 	 * shared ring and should mean that we sleep less often prior to
2603 	 * claiming our resources, but not so long that the ring completely
2604 	 * drains before we can submit our next request.
2605 	 */
2606 	list_for_each_entry(rq, &tl->requests, link) {
2607 		if (rq->ring != ring)
2608 			continue;
2609 
2610 		if (__intel_ring_space(rq->postfix,
2611 				       ring->emit, ring->size) > ring->size / 2)
2612 			break;
2613 	}
2614 	if (&rq->link == &tl->requests)
2615 		return NULL; /* weird, we will check again later for real */
2616 
2617 	return i915_request_get(rq);
2618 }
2619 
2620 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2621 {
2622 	struct intel_context *ce = eb->context;
2623 	struct intel_timeline *tl;
2624 	struct i915_request *rq = NULL;
2625 	int err;
2626 
2627 	GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2628 
2629 	if (unlikely(intel_context_is_banned(ce)))
2630 		return ERR_PTR(-EIO);
2631 
2632 	/*
2633 	 * Pinning the contexts may generate requests in order to acquire
2634 	 * GGTT space, so do this first before we reserve a seqno for
2635 	 * ourselves.
2636 	 */
2637 	err = intel_context_pin_ww(ce, &eb->ww);
2638 	if (err)
2639 		return ERR_PTR(err);
2640 
2641 	/*
2642 	 * Take a local wakeref for preparing to dispatch the execbuf as
2643 	 * we expect to access the hardware fairly frequently in the
2644 	 * process, and require the engine to be kept awake between accesses.
2645 	 * Upon dispatch, we acquire another prolonged wakeref that we hold
2646 	 * until the timeline is idle, which in turn releases the wakeref
2647 	 * taken on the engine, and the parent device.
2648 	 */
2649 	tl = intel_context_timeline_lock(ce);
2650 	if (IS_ERR(tl)) {
2651 		intel_context_unpin(ce);
2652 		return ERR_CAST(tl);
2653 	}
2654 
2655 	intel_context_enter(ce);
2656 	if (throttle)
2657 		rq = eb_throttle(eb, ce);
2658 	intel_context_timeline_unlock(tl);
2659 
2660 	eb->args->flags |= __EXEC_ENGINE_PINNED;
2661 	return rq;
2662 }
2663 
2664 static void eb_unpin_engine(struct i915_execbuffer *eb)
2665 {
2666 	struct intel_context *ce = eb->context;
2667 	struct intel_timeline *tl = ce->timeline;
2668 
2669 	if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2670 		return;
2671 
2672 	eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2673 
2674 	mutex_lock(&tl->mutex);
2675 	intel_context_exit(ce);
2676 	mutex_unlock(&tl->mutex);
2677 
2678 	intel_context_unpin(ce);
2679 }
2680 
2681 static unsigned int
2682 eb_select_legacy_ring(struct i915_execbuffer *eb)
2683 {
2684 	struct drm_i915_private *i915 = eb->i915;
2685 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2686 	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2687 
2688 	if (user_ring_id != I915_EXEC_BSD &&
2689 	    (args->flags & I915_EXEC_BSD_MASK)) {
2690 		drm_dbg(&i915->drm,
2691 			"execbuf with non bsd ring but with invalid "
2692 			"bsd dispatch flags: %d\n", (int)(args->flags));
2693 		return -1;
2694 	}
2695 
2696 	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2697 		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2698 
2699 		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2700 			bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2701 		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2702 			   bsd_idx <= I915_EXEC_BSD_RING2) {
2703 			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2704 			bsd_idx--;
2705 		} else {
2706 			drm_dbg(&i915->drm,
2707 				"execbuf with unknown bsd ring: %u\n",
2708 				bsd_idx);
2709 			return -1;
2710 		}
2711 
2712 		return _VCS(bsd_idx);
2713 	}
2714 
2715 	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2716 		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2717 			user_ring_id);
2718 		return -1;
2719 	}
2720 
2721 	return user_ring_map[user_ring_id];
2722 }
2723 
2724 static int
2725 eb_select_engine(struct i915_execbuffer *eb)
2726 {
2727 	struct intel_context *ce;
2728 	unsigned int idx;
2729 	int err;
2730 
2731 	if (i915_gem_context_user_engines(eb->gem_context))
2732 		idx = eb->args->flags & I915_EXEC_RING_MASK;
2733 	else
2734 		idx = eb_select_legacy_ring(eb);
2735 
2736 	ce = i915_gem_context_get_engine(eb->gem_context, idx);
2737 	if (IS_ERR(ce))
2738 		return PTR_ERR(ce);
2739 
2740 	intel_gt_pm_get(ce->engine->gt);
2741 
2742 	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2743 		err = intel_context_alloc_state(ce);
2744 		if (err)
2745 			goto err;
2746 	}
2747 
2748 	/*
2749 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2750 	 * EIO if the GPU is already wedged.
2751 	 */
2752 	err = intel_gt_terminally_wedged(ce->engine->gt);
2753 	if (err)
2754 		goto err;
2755 
2756 	eb->context = ce;
2757 	eb->engine = ce->engine;
2758 
2759 	/*
2760 	 * Make sure engine pool stays alive even if we call intel_context_put
2761 	 * during ww handling. The pool is destroyed when last pm reference
2762 	 * is dropped, which breaks our -EDEADLK handling.
2763 	 */
2764 	return err;
2765 
2766 err:
2767 	intel_gt_pm_put(ce->engine->gt);
2768 	intel_context_put(ce);
2769 	return err;
2770 }
2771 
2772 static void
2773 eb_put_engine(struct i915_execbuffer *eb)
2774 {
2775 	intel_gt_pm_put(eb->engine->gt);
2776 	intel_context_put(eb->context);
2777 }
2778 
2779 static void
2780 __free_fence_array(struct eb_fence *fences, unsigned int n)
2781 {
2782 	while (n--) {
2783 		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2784 		dma_fence_put(fences[n].dma_fence);
2785 		kfree(fences[n].chain_fence);
2786 	}
2787 	kvfree(fences);
2788 }
2789 
2790 static int
2791 add_timeline_fence_array(struct i915_execbuffer *eb,
2792 			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2793 {
2794 	struct drm_i915_gem_exec_fence __user *user_fences;
2795 	u64 __user *user_values;
2796 	struct eb_fence *f;
2797 	u64 nfences;
2798 	int err = 0;
2799 
2800 	nfences = timeline_fences->fence_count;
2801 	if (!nfences)
2802 		return 0;
2803 
2804 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2805 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2806 	if (nfences > min_t(unsigned long,
2807 			    ULONG_MAX / sizeof(*user_fences),
2808 			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2809 		return -EINVAL;
2810 
2811 	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2812 	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2813 		return -EFAULT;
2814 
2815 	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2816 	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2817 		return -EFAULT;
2818 
2819 	f = krealloc(eb->fences,
2820 		     (eb->num_fences + nfences) * sizeof(*f),
2821 		     __GFP_NOWARN | GFP_KERNEL);
2822 	if (!f)
2823 		return -ENOMEM;
2824 
2825 	eb->fences = f;
2826 	f += eb->num_fences;
2827 
2828 	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2829 		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2830 
2831 	while (nfences--) {
2832 		struct drm_i915_gem_exec_fence user_fence;
2833 		struct drm_syncobj *syncobj;
2834 		struct dma_fence *fence = NULL;
2835 		u64 point;
2836 
2837 		if (__copy_from_user(&user_fence,
2838 				     user_fences++,
2839 				     sizeof(user_fence)))
2840 			return -EFAULT;
2841 
2842 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2843 			return -EINVAL;
2844 
2845 		if (__get_user(point, user_values++))
2846 			return -EFAULT;
2847 
2848 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2849 		if (!syncobj) {
2850 			DRM_DEBUG("Invalid syncobj handle provided\n");
2851 			return -ENOENT;
2852 		}
2853 
2854 		fence = drm_syncobj_fence_get(syncobj);
2855 
2856 		if (!fence && user_fence.flags &&
2857 		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2858 			DRM_DEBUG("Syncobj handle has no fence\n");
2859 			drm_syncobj_put(syncobj);
2860 			return -EINVAL;
2861 		}
2862 
2863 		if (fence)
2864 			err = dma_fence_chain_find_seqno(&fence, point);
2865 
2866 		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2867 			DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2868 			dma_fence_put(fence);
2869 			drm_syncobj_put(syncobj);
2870 			return err;
2871 		}
2872 
2873 		/*
2874 		 * A point might have been signaled already and
2875 		 * garbage collected from the timeline. In this case
2876 		 * just ignore the point and carry on.
2877 		 */
2878 		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2879 			drm_syncobj_put(syncobj);
2880 			continue;
2881 		}
2882 
2883 		/*
2884 		 * For timeline syncobjs we need to preallocate chains for
2885 		 * later signaling.
2886 		 */
2887 		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2888 			/*
2889 			 * Waiting and signaling the same point (when point !=
2890 			 * 0) would break the timeline.
2891 			 */
2892 			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2893 				DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
2894 				dma_fence_put(fence);
2895 				drm_syncobj_put(syncobj);
2896 				return -EINVAL;
2897 			}
2898 
2899 			f->chain_fence =
2900 				kmalloc(sizeof(*f->chain_fence),
2901 					GFP_KERNEL);
2902 			if (!f->chain_fence) {
2903 				drm_syncobj_put(syncobj);
2904 				dma_fence_put(fence);
2905 				return -ENOMEM;
2906 			}
2907 		} else {
2908 			f->chain_fence = NULL;
2909 		}
2910 
2911 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2912 		f->dma_fence = fence;
2913 		f->value = point;
2914 		f++;
2915 		eb->num_fences++;
2916 	}
2917 
2918 	return 0;
2919 }
2920 
2921 static int add_fence_array(struct i915_execbuffer *eb)
2922 {
2923 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2924 	struct drm_i915_gem_exec_fence __user *user;
2925 	unsigned long num_fences = args->num_cliprects;
2926 	struct eb_fence *f;
2927 
2928 	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2929 		return 0;
2930 
2931 	if (!num_fences)
2932 		return 0;
2933 
2934 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2935 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2936 	if (num_fences > min_t(unsigned long,
2937 			       ULONG_MAX / sizeof(*user),
2938 			       SIZE_MAX / sizeof(*f) - eb->num_fences))
2939 		return -EINVAL;
2940 
2941 	user = u64_to_user_ptr(args->cliprects_ptr);
2942 	if (!access_ok(user, num_fences * sizeof(*user)))
2943 		return -EFAULT;
2944 
2945 	f = krealloc(eb->fences,
2946 		     (eb->num_fences + num_fences) * sizeof(*f),
2947 		     __GFP_NOWARN | GFP_KERNEL);
2948 	if (!f)
2949 		return -ENOMEM;
2950 
2951 	eb->fences = f;
2952 	f += eb->num_fences;
2953 	while (num_fences--) {
2954 		struct drm_i915_gem_exec_fence user_fence;
2955 		struct drm_syncobj *syncobj;
2956 		struct dma_fence *fence = NULL;
2957 
2958 		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2959 			return -EFAULT;
2960 
2961 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2962 			return -EINVAL;
2963 
2964 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2965 		if (!syncobj) {
2966 			DRM_DEBUG("Invalid syncobj handle provided\n");
2967 			return -ENOENT;
2968 		}
2969 
2970 		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2971 			fence = drm_syncobj_fence_get(syncobj);
2972 			if (!fence) {
2973 				DRM_DEBUG("Syncobj handle has no fence\n");
2974 				drm_syncobj_put(syncobj);
2975 				return -EINVAL;
2976 			}
2977 		}
2978 
2979 		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2980 			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2981 
2982 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2983 		f->dma_fence = fence;
2984 		f->value = 0;
2985 		f->chain_fence = NULL;
2986 		f++;
2987 		eb->num_fences++;
2988 	}
2989 
2990 	return 0;
2991 }
2992 
2993 static void put_fence_array(struct eb_fence *fences, int num_fences)
2994 {
2995 	if (fences)
2996 		__free_fence_array(fences, num_fences);
2997 }
2998 
2999 static int
3000 await_fence_array(struct i915_execbuffer *eb)
3001 {
3002 	unsigned int n;
3003 	int err;
3004 
3005 	for (n = 0; n < eb->num_fences; n++) {
3006 		struct drm_syncobj *syncobj;
3007 		unsigned int flags;
3008 
3009 		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3010 
3011 		if (!eb->fences[n].dma_fence)
3012 			continue;
3013 
3014 		err = i915_request_await_dma_fence(eb->request,
3015 						   eb->fences[n].dma_fence);
3016 		if (err < 0)
3017 			return err;
3018 	}
3019 
3020 	return 0;
3021 }
3022 
3023 static void signal_fence_array(const struct i915_execbuffer *eb)
3024 {
3025 	struct dma_fence * const fence = &eb->request->fence;
3026 	unsigned int n;
3027 
3028 	for (n = 0; n < eb->num_fences; n++) {
3029 		struct drm_syncobj *syncobj;
3030 		unsigned int flags;
3031 
3032 		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3033 		if (!(flags & I915_EXEC_FENCE_SIGNAL))
3034 			continue;
3035 
3036 		if (eb->fences[n].chain_fence) {
3037 			drm_syncobj_add_point(syncobj,
3038 					      eb->fences[n].chain_fence,
3039 					      fence,
3040 					      eb->fences[n].value);
3041 			/*
3042 			 * The chain's ownership is transferred to the
3043 			 * timeline.
3044 			 */
3045 			eb->fences[n].chain_fence = NULL;
3046 		} else {
3047 			drm_syncobj_replace_fence(syncobj, fence);
3048 		}
3049 	}
3050 }
3051 
3052 static int
3053 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3054 {
3055 	struct i915_execbuffer *eb = data;
3056 	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3057 
3058 	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3059 		return -EFAULT;
3060 
3061 	return add_timeline_fence_array(eb, &timeline_fences);
3062 }
3063 
3064 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3065 {
3066 	struct i915_request *rq, *rn;
3067 
3068 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
3069 		if (rq == end || !i915_request_retire(rq))
3070 			break;
3071 }
3072 
3073 static int eb_request_add(struct i915_execbuffer *eb, int err)
3074 {
3075 	struct i915_request *rq = eb->request;
3076 	struct intel_timeline * const tl = i915_request_timeline(rq);
3077 	struct i915_sched_attr attr = {};
3078 	struct i915_request *prev;
3079 
3080 	lockdep_assert_held(&tl->mutex);
3081 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
3082 
3083 	trace_i915_request_add(rq);
3084 
3085 	prev = __i915_request_commit(rq);
3086 
3087 	/* Check that the context wasn't destroyed before submission */
3088 	if (likely(!intel_context_is_closed(eb->context))) {
3089 		attr = eb->gem_context->sched;
3090 	} else {
3091 		/* Serialise with context_close via the add_to_timeline */
3092 		i915_request_set_error_once(rq, -ENOENT);
3093 		__i915_request_skip(rq);
3094 		err = -ENOENT; /* override any transient errors */
3095 	}
3096 
3097 	__i915_request_queue(rq, &attr);
3098 
3099 	/* Try to clean up the client's timeline after submitting the request */
3100 	if (prev)
3101 		retire_requests(tl, prev);
3102 
3103 	mutex_unlock(&tl->mutex);
3104 
3105 	return err;
3106 }
3107 
3108 static const i915_user_extension_fn execbuf_extensions[] = {
3109 	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3110 };
3111 
3112 static int
3113 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3114 			  struct i915_execbuffer *eb)
3115 {
3116 	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3117 		return 0;
3118 
3119 	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3120 	 * have another flag also using it at the same time.
3121 	 */
3122 	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3123 		return -EINVAL;
3124 
3125 	if (args->num_cliprects != 0)
3126 		return -EINVAL;
3127 
3128 	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3129 				    execbuf_extensions,
3130 				    ARRAY_SIZE(execbuf_extensions),
3131 				    eb);
3132 }
3133 
3134 static int
3135 i915_gem_do_execbuffer(struct drm_device *dev,
3136 		       struct drm_file *file,
3137 		       struct drm_i915_gem_execbuffer2 *args,
3138 		       struct drm_i915_gem_exec_object2 *exec)
3139 {
3140 	struct drm_i915_private *i915 = to_i915(dev);
3141 	struct i915_execbuffer eb;
3142 	struct dma_fence *in_fence = NULL;
3143 	struct sync_file *out_fence = NULL;
3144 	struct i915_vma *batch;
3145 	int out_fence_fd = -1;
3146 	int err;
3147 
3148 	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3149 	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3150 		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3151 
3152 	eb.i915 = i915;
3153 	eb.file = file;
3154 	eb.args = args;
3155 	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3156 		args->flags |= __EXEC_HAS_RELOC;
3157 
3158 	eb.exec = exec;
3159 	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3160 	eb.vma[0].vma = NULL;
3161 	eb.reloc_pool = eb.batch_pool = NULL;
3162 	eb.reloc_context = NULL;
3163 
3164 	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3165 	reloc_cache_init(&eb.reloc_cache, eb.i915);
3166 
3167 	eb.buffer_count = args->buffer_count;
3168 	eb.batch_start_offset = args->batch_start_offset;
3169 	eb.batch_len = args->batch_len;
3170 	eb.trampoline = NULL;
3171 
3172 	eb.fences = NULL;
3173 	eb.num_fences = 0;
3174 
3175 	eb.batch_flags = 0;
3176 	if (args->flags & I915_EXEC_SECURE) {
3177 		if (GRAPHICS_VER(i915) >= 11)
3178 			return -ENODEV;
3179 
3180 		/* Return -EPERM to trigger fallback code on old binaries. */
3181 		if (!HAS_SECURE_BATCHES(i915))
3182 			return -EPERM;
3183 
3184 		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3185 			return -EPERM;
3186 
3187 		eb.batch_flags |= I915_DISPATCH_SECURE;
3188 	}
3189 	if (args->flags & I915_EXEC_IS_PINNED)
3190 		eb.batch_flags |= I915_DISPATCH_PINNED;
3191 
3192 	err = parse_execbuf2_extensions(args, &eb);
3193 	if (err)
3194 		goto err_ext;
3195 
3196 	err = add_fence_array(&eb);
3197 	if (err)
3198 		goto err_ext;
3199 
3200 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3201 	if (args->flags & IN_FENCES) {
3202 		if ((args->flags & IN_FENCES) == IN_FENCES)
3203 			return -EINVAL;
3204 
3205 		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3206 		if (!in_fence) {
3207 			err = -EINVAL;
3208 			goto err_ext;
3209 		}
3210 	}
3211 #undef IN_FENCES
3212 
3213 	if (args->flags & I915_EXEC_FENCE_OUT) {
3214 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3215 		if (out_fence_fd < 0) {
3216 			err = out_fence_fd;
3217 			goto err_in_fence;
3218 		}
3219 	}
3220 
3221 	err = eb_create(&eb);
3222 	if (err)
3223 		goto err_out_fence;
3224 
3225 	GEM_BUG_ON(!eb.lut_size);
3226 
3227 	err = eb_select_context(&eb);
3228 	if (unlikely(err))
3229 		goto err_destroy;
3230 
3231 	err = eb_select_engine(&eb);
3232 	if (unlikely(err))
3233 		goto err_context;
3234 
3235 	err = eb_lookup_vmas(&eb);
3236 	if (err) {
3237 		eb_release_vmas(&eb, true, true);
3238 		goto err_engine;
3239 	}
3240 
3241 	i915_gem_ww_ctx_init(&eb.ww, true);
3242 
3243 	err = eb_relocate_parse(&eb);
3244 	if (err) {
3245 		/*
3246 		 * If the user expects the execobject.offset and
3247 		 * reloc.presumed_offset to be an exact match,
3248 		 * as for using NO_RELOC, then we cannot update
3249 		 * the execobject.offset until we have completed
3250 		 * relocation.
3251 		 */
3252 		args->flags &= ~__EXEC_HAS_RELOC;
3253 		goto err_vma;
3254 	}
3255 
3256 	ww_acquire_done(&eb.ww.ctx);
3257 
3258 	batch = eb.batch->vma;
3259 
3260 	/* All GPU relocation batches must be submitted prior to the user rq */
3261 	GEM_BUG_ON(eb.reloc_cache.rq);
3262 
3263 	/* Allocate a request for this batch buffer nice and early. */
3264 	eb.request = i915_request_create(eb.context);
3265 	if (IS_ERR(eb.request)) {
3266 		err = PTR_ERR(eb.request);
3267 		goto err_vma;
3268 	}
3269 
3270 	if (in_fence) {
3271 		if (args->flags & I915_EXEC_FENCE_SUBMIT)
3272 			err = i915_request_await_execution(eb.request,
3273 							   in_fence,
3274 							   eb.engine->bond_execute);
3275 		else
3276 			err = i915_request_await_dma_fence(eb.request,
3277 							   in_fence);
3278 		if (err < 0)
3279 			goto err_request;
3280 	}
3281 
3282 	if (eb.fences) {
3283 		err = await_fence_array(&eb);
3284 		if (err)
3285 			goto err_request;
3286 	}
3287 
3288 	if (out_fence_fd != -1) {
3289 		out_fence = sync_file_create(&eb.request->fence);
3290 		if (!out_fence) {
3291 			err = -ENOMEM;
3292 			goto err_request;
3293 		}
3294 	}
3295 
3296 	/*
3297 	 * Whilst this request exists, batch_obj will be on the
3298 	 * active_list, and so will hold the active reference. Only when this
3299 	 * request is retired will the the batch_obj be moved onto the
3300 	 * inactive_list and lose its active reference. Hence we do not need
3301 	 * to explicitly hold another reference here.
3302 	 */
3303 	eb.request->batch = batch;
3304 	if (eb.batch_pool)
3305 		intel_gt_buffer_pool_mark_active(eb.batch_pool, eb.request);
3306 
3307 	trace_i915_request_queue(eb.request, eb.batch_flags);
3308 	err = eb_submit(&eb, batch);
3309 
3310 err_request:
3311 	i915_request_get(eb.request);
3312 	err = eb_request_add(&eb, err);
3313 
3314 	if (eb.fences)
3315 		signal_fence_array(&eb);
3316 
3317 	if (out_fence) {
3318 		if (err == 0) {
3319 			fd_install(out_fence_fd, out_fence->file);
3320 			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3321 			args->rsvd2 |= (u64)out_fence_fd << 32;
3322 			out_fence_fd = -1;
3323 		} else {
3324 			fput(out_fence->file);
3325 		}
3326 	}
3327 	i915_request_put(eb.request);
3328 
3329 err_vma:
3330 	eb_release_vmas(&eb, true, true);
3331 	if (eb.trampoline)
3332 		i915_vma_unpin(eb.trampoline);
3333 	WARN_ON(err == -EDEADLK);
3334 	i915_gem_ww_ctx_fini(&eb.ww);
3335 
3336 	if (eb.batch_pool)
3337 		intel_gt_buffer_pool_put(eb.batch_pool);
3338 	if (eb.reloc_pool)
3339 		intel_gt_buffer_pool_put(eb.reloc_pool);
3340 	if (eb.reloc_context)
3341 		intel_context_put(eb.reloc_context);
3342 err_engine:
3343 	eb_put_engine(&eb);
3344 err_context:
3345 	i915_gem_context_put(eb.gem_context);
3346 err_destroy:
3347 	eb_destroy(&eb);
3348 err_out_fence:
3349 	if (out_fence_fd != -1)
3350 		put_unused_fd(out_fence_fd);
3351 err_in_fence:
3352 	dma_fence_put(in_fence);
3353 err_ext:
3354 	put_fence_array(eb.fences, eb.num_fences);
3355 	return err;
3356 }
3357 
3358 static size_t eb_element_size(void)
3359 {
3360 	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3361 }
3362 
3363 static bool check_buffer_count(size_t count)
3364 {
3365 	const size_t sz = eb_element_size();
3366 
3367 	/*
3368 	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3369 	 * array size (see eb_create()). Otherwise, we can accept an array as
3370 	 * large as can be addressed (though use large arrays at your peril)!
3371 	 */
3372 
3373 	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3374 }
3375 
3376 int
3377 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3378 			   struct drm_file *file)
3379 {
3380 	struct drm_i915_private *i915 = to_i915(dev);
3381 	struct drm_i915_gem_execbuffer2 *args = data;
3382 	struct drm_i915_gem_exec_object2 *exec2_list;
3383 	const size_t count = args->buffer_count;
3384 	int err;
3385 
3386 	if (!check_buffer_count(count)) {
3387 		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3388 		return -EINVAL;
3389 	}
3390 
3391 	err = i915_gem_check_execbuffer(args);
3392 	if (err)
3393 		return err;
3394 
3395 	/* Allocate extra slots for use by the command parser */
3396 	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3397 				    __GFP_NOWARN | GFP_KERNEL);
3398 	if (exec2_list == NULL) {
3399 		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3400 			count);
3401 		return -ENOMEM;
3402 	}
3403 	if (copy_from_user(exec2_list,
3404 			   u64_to_user_ptr(args->buffers_ptr),
3405 			   sizeof(*exec2_list) * count)) {
3406 		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3407 		kvfree(exec2_list);
3408 		return -EFAULT;
3409 	}
3410 
3411 	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3412 
3413 	/*
3414 	 * Now that we have begun execution of the batchbuffer, we ignore
3415 	 * any new error after this point. Also given that we have already
3416 	 * updated the associated relocations, we try to write out the current
3417 	 * object locations irrespective of any error.
3418 	 */
3419 	if (args->flags & __EXEC_HAS_RELOC) {
3420 		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3421 			u64_to_user_ptr(args->buffers_ptr);
3422 		unsigned int i;
3423 
3424 		/* Copy the new buffer offsets back to the user's exec list. */
3425 		/*
3426 		 * Note: count * sizeof(*user_exec_list) does not overflow,
3427 		 * because we checked 'count' in check_buffer_count().
3428 		 *
3429 		 * And this range already got effectively checked earlier
3430 		 * when we did the "copy_from_user()" above.
3431 		 */
3432 		if (!user_write_access_begin(user_exec_list,
3433 					     count * sizeof(*user_exec_list)))
3434 			goto end;
3435 
3436 		for (i = 0; i < args->buffer_count; i++) {
3437 			if (!(exec2_list[i].offset & UPDATE))
3438 				continue;
3439 
3440 			exec2_list[i].offset =
3441 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3442 			unsafe_put_user(exec2_list[i].offset,
3443 					&user_exec_list[i].offset,
3444 					end_user);
3445 		}
3446 end_user:
3447 		user_write_access_end();
3448 end:;
3449 	}
3450 
3451 	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3452 	kvfree(exec2_list);
3453 	return err;
3454 }
3455 
3456 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3457 #include "selftests/i915_gem_execbuffer.c"
3458 #endif
3459