1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008,2010 Intel Corporation 5 */ 6 7 #include <linux/dma-resv.h> 8 #include <linux/highmem.h> 9 #include <linux/sync_file.h> 10 #include <linux/uaccess.h> 11 12 #include <drm/drm_syncobj.h> 13 14 #include "display/intel_frontbuffer.h" 15 16 #include "gem/i915_gem_ioctls.h" 17 #include "gt/intel_context.h" 18 #include "gt/intel_gpu_commands.h" 19 #include "gt/intel_gt.h" 20 #include "gt/intel_gt_buffer_pool.h" 21 #include "gt/intel_gt_pm.h" 22 #include "gt/intel_ring.h" 23 24 #include "pxp/intel_pxp.h" 25 26 #include "i915_cmd_parser.h" 27 #include "i915_drv.h" 28 #include "i915_file_private.h" 29 #include "i915_gem_clflush.h" 30 #include "i915_gem_context.h" 31 #include "i915_gem_evict.h" 32 #include "i915_gem_ioctls.h" 33 #include "i915_trace.h" 34 #include "i915_user_extensions.h" 35 36 struct eb_vma { 37 struct i915_vma *vma; 38 unsigned int flags; 39 40 /** This vma's place in the execbuf reservation list */ 41 struct drm_i915_gem_exec_object2 *exec; 42 struct list_head bind_link; 43 struct list_head reloc_link; 44 45 struct hlist_node node; 46 u32 handle; 47 }; 48 49 enum { 50 FORCE_CPU_RELOC = 1, 51 FORCE_GTT_RELOC, 52 FORCE_GPU_RELOC, 53 #define DBG_FORCE_RELOC 0 /* choose one of the above! */ 54 }; 55 56 /* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */ 57 #define __EXEC_OBJECT_HAS_PIN BIT(30) 58 #define __EXEC_OBJECT_HAS_FENCE BIT(29) 59 #define __EXEC_OBJECT_USERPTR_INIT BIT(28) 60 #define __EXEC_OBJECT_NEEDS_MAP BIT(27) 61 #define __EXEC_OBJECT_NEEDS_BIAS BIT(26) 62 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 26) /* all of the above + */ 63 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) 64 65 #define __EXEC_HAS_RELOC BIT(31) 66 #define __EXEC_ENGINE_PINNED BIT(30) 67 #define __EXEC_USERPTR_USED BIT(29) 68 #define __EXEC_INTERNAL_FLAGS (~0u << 29) 69 #define UPDATE PIN_OFFSET_FIXED 70 71 #define BATCH_OFFSET_BIAS (256*1024) 72 73 #define __I915_EXEC_ILLEGAL_FLAGS \ 74 (__I915_EXEC_UNKNOWN_FLAGS | \ 75 I915_EXEC_CONSTANTS_MASK | \ 76 I915_EXEC_RESOURCE_STREAMER) 77 78 /* Catch emission of unexpected errors for CI! */ 79 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 80 #undef EINVAL 81 #define EINVAL ({ \ 82 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 83 22; \ 84 }) 85 #endif 86 87 /** 88 * DOC: User command execution 89 * 90 * Userspace submits commands to be executed on the GPU as an instruction 91 * stream within a GEM object we call a batchbuffer. This instructions may 92 * refer to other GEM objects containing auxiliary state such as kernels, 93 * samplers, render targets and even secondary batchbuffers. Userspace does 94 * not know where in the GPU memory these objects reside and so before the 95 * batchbuffer is passed to the GPU for execution, those addresses in the 96 * batchbuffer and auxiliary objects are updated. This is known as relocation, 97 * or patching. To try and avoid having to relocate each object on the next 98 * execution, userspace is told the location of those objects in this pass, 99 * but this remains just a hint as the kernel may choose a new location for 100 * any object in the future. 101 * 102 * At the level of talking to the hardware, submitting a batchbuffer for the 103 * GPU to execute is to add content to a buffer from which the HW 104 * command streamer is reading. 105 * 106 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. 107 * Execlists, this command is not placed on the same buffer as the 108 * remaining items. 109 * 110 * 2. Add a command to invalidate caches to the buffer. 111 * 112 * 3. Add a batchbuffer start command to the buffer; the start command is 113 * essentially a token together with the GPU address of the batchbuffer 114 * to be executed. 115 * 116 * 4. Add a pipeline flush to the buffer. 117 * 118 * 5. Add a memory write command to the buffer to record when the GPU 119 * is done executing the batchbuffer. The memory write writes the 120 * global sequence number of the request, ``i915_request::global_seqno``; 121 * the i915 driver uses the current value in the register to determine 122 * if the GPU has completed the batchbuffer. 123 * 124 * 6. Add a user interrupt command to the buffer. This command instructs 125 * the GPU to issue an interrupt when the command, pipeline flush and 126 * memory write are completed. 127 * 128 * 7. Inform the hardware of the additional commands added to the buffer 129 * (by updating the tail pointer). 130 * 131 * Processing an execbuf ioctl is conceptually split up into a few phases. 132 * 133 * 1. Validation - Ensure all the pointers, handles and flags are valid. 134 * 2. Reservation - Assign GPU address space for every object 135 * 3. Relocation - Update any addresses to point to the final locations 136 * 4. Serialisation - Order the request with respect to its dependencies 137 * 5. Construction - Construct a request to execute the batchbuffer 138 * 6. Submission (at some point in the future execution) 139 * 140 * Reserving resources for the execbuf is the most complicated phase. We 141 * neither want to have to migrate the object in the address space, nor do 142 * we want to have to update any relocations pointing to this object. Ideally, 143 * we want to leave the object where it is and for all the existing relocations 144 * to match. If the object is given a new address, or if userspace thinks the 145 * object is elsewhere, we have to parse all the relocation entries and update 146 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that 147 * all the target addresses in all of its objects match the value in the 148 * relocation entries and that they all match the presumed offsets given by the 149 * list of execbuffer objects. Using this knowledge, we know that if we haven't 150 * moved any buffers, all the relocation entries are valid and we can skip 151 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 152 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 153 * 154 * The addresses written in the objects must match the corresponding 155 * reloc.presumed_offset which in turn must match the corresponding 156 * execobject.offset. 157 * 158 * Any render targets written to in the batch must be flagged with 159 * EXEC_OBJECT_WRITE. 160 * 161 * To avoid stalling, execobject.offset should match the current 162 * address of that object within the active context. 163 * 164 * The reservation is done is multiple phases. First we try and keep any 165 * object already bound in its current location - so as long as meets the 166 * constraints imposed by the new execbuffer. Any object left unbound after the 167 * first pass is then fitted into any available idle space. If an object does 168 * not fit, all objects are removed from the reservation and the process rerun 169 * after sorting the objects into a priority order (more difficult to fit 170 * objects are tried first). Failing that, the entire VM is cleared and we try 171 * to fit the execbuf once last time before concluding that it simply will not 172 * fit. 173 * 174 * A small complication to all of this is that we allow userspace not only to 175 * specify an alignment and a size for the object in the address space, but 176 * we also allow userspace to specify the exact offset. This objects are 177 * simpler to place (the location is known a priori) all we have to do is make 178 * sure the space is available. 179 * 180 * Once all the objects are in place, patching up the buried pointers to point 181 * to the final locations is a fairly simple job of walking over the relocation 182 * entry arrays, looking up the right address and rewriting the value into 183 * the object. Simple! ... The relocation entries are stored in user memory 184 * and so to access them we have to copy them into a local buffer. That copy 185 * has to avoid taking any pagefaults as they may lead back to a GEM object 186 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split 187 * the relocation into multiple passes. First we try to do everything within an 188 * atomic context (avoid the pagefaults) which requires that we never wait. If 189 * we detect that we may wait, or if we need to fault, then we have to fallback 190 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 191 * bells yet?) Dropping the mutex means that we lose all the state we have 192 * built up so far for the execbuf and we must reset any global data. However, 193 * we do leave the objects pinned in their final locations - which is a 194 * potential issue for concurrent execbufs. Once we have left the mutex, we can 195 * allocate and copy all the relocation entries into a large array at our 196 * leisure, reacquire the mutex, reclaim all the objects and other state and 197 * then proceed to update any incorrect addresses with the objects. 198 * 199 * As we process the relocation entries, we maintain a record of whether the 200 * object is being written to. Using NORELOC, we expect userspace to provide 201 * this information instead. We also check whether we can skip the relocation 202 * by comparing the expected value inside the relocation entry with the target's 203 * final address. If they differ, we have to map the current object and rewrite 204 * the 4 or 8 byte pointer within. 205 * 206 * Serialising an execbuf is quite simple according to the rules of the GEM 207 * ABI. Execution within each context is ordered by the order of submission. 208 * Writes to any GEM object are in order of submission and are exclusive. Reads 209 * from a GEM object are unordered with respect to other reads, but ordered by 210 * writes. A write submitted after a read cannot occur before the read, and 211 * similarly any read submitted after a write cannot occur before the write. 212 * Writes are ordered between engines such that only one write occurs at any 213 * time (completing any reads beforehand) - using semaphores where available 214 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 215 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 216 * reads before starting, and any read (either using set-domain or pread) must 217 * flush all GPU writes before starting. (Note we only employ a barrier before, 218 * we currently rely on userspace not concurrently starting a new execution 219 * whilst reading or writing to an object. This may be an advantage or not 220 * depending on how much you trust userspace not to shoot themselves in the 221 * foot.) Serialisation may just result in the request being inserted into 222 * a DAG awaiting its turn, but most simple is to wait on the CPU until 223 * all dependencies are resolved. 224 * 225 * After all of that, is just a matter of closing the request and handing it to 226 * the hardware (well, leaving it in a queue to be executed). However, we also 227 * offer the ability for batchbuffers to be run with elevated privileges so 228 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 229 * Before any batch is given extra privileges we first must check that it 230 * contains no nefarious instructions, we check that each instruction is from 231 * our whitelist and all registers are also from an allowed list. We first 232 * copy the user's batchbuffer to a shadow (so that the user doesn't have 233 * access to it, either by the CPU or GPU as we scan it) and then parse each 234 * instruction. If everything is ok, we set a flag telling the hardware to run 235 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 236 */ 237 238 struct eb_fence { 239 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */ 240 struct dma_fence *dma_fence; 241 u64 value; 242 struct dma_fence_chain *chain_fence; 243 }; 244 245 struct i915_execbuffer { 246 struct drm_i915_private *i915; /** i915 backpointer */ 247 struct drm_file *file; /** per-file lookup tables and limits */ 248 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 249 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 250 struct eb_vma *vma; 251 252 struct intel_gt *gt; /* gt for the execbuf */ 253 struct intel_context *context; /* logical state for the request */ 254 struct i915_gem_context *gem_context; /** caller's context */ 255 256 /** our requests to build */ 257 struct i915_request *requests[MAX_ENGINE_INSTANCE + 1]; 258 /** identity of the batch obj/vma */ 259 struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1]; 260 struct i915_vma *trampoline; /** trampoline used for chaining */ 261 262 /** used for excl fence in dma_resv objects when > 1 BB submitted */ 263 struct dma_fence *composite_fence; 264 265 /** actual size of execobj[] as we may extend it for the cmdparser */ 266 unsigned int buffer_count; 267 268 /* number of batches in execbuf IOCTL */ 269 unsigned int num_batches; 270 271 /** list of vma not yet bound during reservation phase */ 272 struct list_head unbound; 273 274 /** list of vma that have execobj.relocation_count */ 275 struct list_head relocs; 276 277 struct i915_gem_ww_ctx ww; 278 279 /** 280 * Track the most recently used object for relocations, as we 281 * frequently have to perform multiple relocations within the same 282 * obj/page 283 */ 284 struct reloc_cache { 285 struct drm_mm_node node; /** temporary GTT binding */ 286 unsigned long vaddr; /** Current kmap address */ 287 unsigned long page; /** Currently mapped page index */ 288 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */ 289 bool use_64bit_reloc : 1; 290 bool has_llc : 1; 291 bool has_fence : 1; 292 bool needs_unfenced : 1; 293 } reloc_cache; 294 295 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 296 297 /** Length of batch within object */ 298 u64 batch_len[MAX_ENGINE_INSTANCE + 1]; 299 u32 batch_start_offset; /** Location within object of batch */ 300 u32 batch_flags; /** Flags composed for emit_bb_start() */ 301 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */ 302 303 /** 304 * Indicate either the size of the hastable used to resolve 305 * relocation handles, or if negative that we are using a direct 306 * index into the execobj[]. 307 */ 308 int lut_size; 309 struct hlist_head *buckets; /** ht for relocation handles */ 310 311 struct eb_fence *fences; 312 unsigned long num_fences; 313 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 314 struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1]; 315 #endif 316 }; 317 318 static int eb_parse(struct i915_execbuffer *eb); 319 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle); 320 static void eb_unpin_engine(struct i915_execbuffer *eb); 321 static void eb_capture_release(struct i915_execbuffer *eb); 322 323 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) 324 { 325 return intel_engine_requires_cmd_parser(eb->context->engine) || 326 (intel_engine_using_cmd_parser(eb->context->engine) && 327 eb->args->batch_len); 328 } 329 330 static int eb_create(struct i915_execbuffer *eb) 331 { 332 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 333 unsigned int size = 1 + ilog2(eb->buffer_count); 334 335 /* 336 * Without a 1:1 association between relocation handles and 337 * the execobject[] index, we instead create a hashtable. 338 * We size it dynamically based on available memory, starting 339 * first with 1:1 assocative hash and scaling back until 340 * the allocation succeeds. 341 * 342 * Later on we use a positive lut_size to indicate we are 343 * using this hashtable, and a negative value to indicate a 344 * direct lookup. 345 */ 346 do { 347 gfp_t flags; 348 349 /* While we can still reduce the allocation size, don't 350 * raise a warning and allow the allocation to fail. 351 * On the last pass though, we want to try as hard 352 * as possible to perform the allocation and warn 353 * if it fails. 354 */ 355 flags = GFP_KERNEL; 356 if (size > 1) 357 flags |= __GFP_NORETRY | __GFP_NOWARN; 358 359 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 360 flags); 361 if (eb->buckets) 362 break; 363 } while (--size); 364 365 if (unlikely(!size)) 366 return -ENOMEM; 367 368 eb->lut_size = size; 369 } else { 370 eb->lut_size = -eb->buffer_count; 371 } 372 373 return 0; 374 } 375 376 static bool 377 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 378 const struct i915_vma *vma, 379 unsigned int flags) 380 { 381 if (vma->node.size < entry->pad_to_size) 382 return true; 383 384 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) 385 return true; 386 387 if (flags & EXEC_OBJECT_PINNED && 388 vma->node.start != entry->offset) 389 return true; 390 391 if (flags & __EXEC_OBJECT_NEEDS_BIAS && 392 vma->node.start < BATCH_OFFSET_BIAS) 393 return true; 394 395 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 396 (vma->node.start + vma->node.size + 4095) >> 32) 397 return true; 398 399 if (flags & __EXEC_OBJECT_NEEDS_MAP && 400 !i915_vma_is_map_and_fenceable(vma)) 401 return true; 402 403 return false; 404 } 405 406 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry, 407 unsigned int exec_flags) 408 { 409 u64 pin_flags = 0; 410 411 if (exec_flags & EXEC_OBJECT_NEEDS_GTT) 412 pin_flags |= PIN_GLOBAL; 413 414 /* 415 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 416 * limit address to the first 4GBs for unflagged objects. 417 */ 418 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 419 pin_flags |= PIN_ZONE_4G; 420 421 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) 422 pin_flags |= PIN_MAPPABLE; 423 424 if (exec_flags & EXEC_OBJECT_PINNED) 425 pin_flags |= entry->offset | PIN_OFFSET_FIXED; 426 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) 427 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 428 429 return pin_flags; 430 } 431 432 static inline int 433 eb_pin_vma(struct i915_execbuffer *eb, 434 const struct drm_i915_gem_exec_object2 *entry, 435 struct eb_vma *ev) 436 { 437 struct i915_vma *vma = ev->vma; 438 u64 pin_flags; 439 int err; 440 441 if (vma->node.size) 442 pin_flags = vma->node.start; 443 else 444 pin_flags = entry->offset & PIN_OFFSET_MASK; 445 446 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE; 447 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) 448 pin_flags |= PIN_GLOBAL; 449 450 /* Attempt to reuse the current location if available */ 451 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags); 452 if (err == -EDEADLK) 453 return err; 454 455 if (unlikely(err)) { 456 if (entry->flags & EXEC_OBJECT_PINNED) 457 return err; 458 459 /* Failing that pick any _free_ space if suitable */ 460 err = i915_vma_pin_ww(vma, &eb->ww, 461 entry->pad_to_size, 462 entry->alignment, 463 eb_pin_flags(entry, ev->flags) | 464 PIN_USER | PIN_NOEVICT | PIN_VALIDATE); 465 if (unlikely(err)) 466 return err; 467 } 468 469 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 470 err = i915_vma_pin_fence(vma); 471 if (unlikely(err)) 472 return err; 473 474 if (vma->fence) 475 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 476 } 477 478 ev->flags |= __EXEC_OBJECT_HAS_PIN; 479 if (eb_vma_misplaced(entry, vma, ev->flags)) 480 return -EBADSLT; 481 482 return 0; 483 } 484 485 static inline void 486 eb_unreserve_vma(struct eb_vma *ev) 487 { 488 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE)) 489 __i915_vma_unpin_fence(ev->vma); 490 491 ev->flags &= ~__EXEC_OBJECT_RESERVED; 492 } 493 494 static int 495 eb_validate_vma(struct i915_execbuffer *eb, 496 struct drm_i915_gem_exec_object2 *entry, 497 struct i915_vma *vma) 498 { 499 /* Relocations are disallowed for all platforms after TGL-LP. This 500 * also covers all platforms with local memory. 501 */ 502 if (entry->relocation_count && 503 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915)) 504 return -EINVAL; 505 506 if (unlikely(entry->flags & eb->invalid_flags)) 507 return -EINVAL; 508 509 if (unlikely(entry->alignment && 510 !is_power_of_2_u64(entry->alignment))) 511 return -EINVAL; 512 513 /* 514 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 515 * any non-page-aligned or non-canonical addresses. 516 */ 517 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 518 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) 519 return -EINVAL; 520 521 /* pad_to_size was once a reserved field, so sanitize it */ 522 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 523 if (unlikely(offset_in_page(entry->pad_to_size))) 524 return -EINVAL; 525 } else { 526 entry->pad_to_size = 0; 527 } 528 /* 529 * From drm_mm perspective address space is continuous, 530 * so from this point we're always using non-canonical 531 * form internally. 532 */ 533 entry->offset = gen8_noncanonical_addr(entry->offset); 534 535 if (!eb->reloc_cache.has_fence) { 536 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 537 } else { 538 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 539 eb->reloc_cache.needs_unfenced) && 540 i915_gem_object_is_tiled(vma->obj)) 541 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 542 } 543 544 return 0; 545 } 546 547 static inline bool 548 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx) 549 { 550 return eb->args->flags & I915_EXEC_BATCH_FIRST ? 551 buffer_idx < eb->num_batches : 552 buffer_idx >= eb->args->buffer_count - eb->num_batches; 553 } 554 555 static int 556 eb_add_vma(struct i915_execbuffer *eb, 557 unsigned int *current_batch, 558 unsigned int i, 559 struct i915_vma *vma) 560 { 561 struct drm_i915_private *i915 = eb->i915; 562 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 563 struct eb_vma *ev = &eb->vma[i]; 564 565 ev->vma = vma; 566 ev->exec = entry; 567 ev->flags = entry->flags; 568 569 if (eb->lut_size > 0) { 570 ev->handle = entry->handle; 571 hlist_add_head(&ev->node, 572 &eb->buckets[hash_32(entry->handle, 573 eb->lut_size)]); 574 } 575 576 if (entry->relocation_count) 577 list_add_tail(&ev->reloc_link, &eb->relocs); 578 579 /* 580 * SNA is doing fancy tricks with compressing batch buffers, which leads 581 * to negative relocation deltas. Usually that works out ok since the 582 * relocate address is still positive, except when the batch is placed 583 * very low in the GTT. Ensure this doesn't happen. 584 * 585 * Note that actual hangs have only been observed on gen7, but for 586 * paranoia do it everywhere. 587 */ 588 if (is_batch_buffer(eb, i)) { 589 if (entry->relocation_count && 590 !(ev->flags & EXEC_OBJECT_PINNED)) 591 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; 592 if (eb->reloc_cache.has_fence) 593 ev->flags |= EXEC_OBJECT_NEEDS_FENCE; 594 595 eb->batches[*current_batch] = ev; 596 597 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) { 598 drm_dbg(&i915->drm, 599 "Attempting to use self-modifying batch buffer\n"); 600 return -EINVAL; 601 } 602 603 if (range_overflows_t(u64, 604 eb->batch_start_offset, 605 eb->args->batch_len, 606 ev->vma->size)) { 607 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); 608 return -EINVAL; 609 } 610 611 if (eb->args->batch_len == 0) 612 eb->batch_len[*current_batch] = ev->vma->size - 613 eb->batch_start_offset; 614 else 615 eb->batch_len[*current_batch] = eb->args->batch_len; 616 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */ 617 drm_dbg(&i915->drm, "Invalid batch length\n"); 618 return -EINVAL; 619 } 620 621 ++*current_batch; 622 } 623 624 return 0; 625 } 626 627 static inline int use_cpu_reloc(const struct reloc_cache *cache, 628 const struct drm_i915_gem_object *obj) 629 { 630 if (!i915_gem_object_has_struct_page(obj)) 631 return false; 632 633 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 634 return true; 635 636 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 637 return false; 638 639 return (cache->has_llc || 640 obj->cache_dirty || 641 obj->cache_level != I915_CACHE_NONE); 642 } 643 644 static int eb_reserve_vma(struct i915_execbuffer *eb, 645 struct eb_vma *ev, 646 u64 pin_flags) 647 { 648 struct drm_i915_gem_exec_object2 *entry = ev->exec; 649 struct i915_vma *vma = ev->vma; 650 int err; 651 652 if (drm_mm_node_allocated(&vma->node) && 653 eb_vma_misplaced(entry, vma, ev->flags)) { 654 err = i915_vma_unbind(vma); 655 if (err) 656 return err; 657 } 658 659 err = i915_vma_pin_ww(vma, &eb->ww, 660 entry->pad_to_size, entry->alignment, 661 eb_pin_flags(entry, ev->flags) | pin_flags); 662 if (err) 663 return err; 664 665 if (entry->offset != vma->node.start) { 666 entry->offset = vma->node.start | UPDATE; 667 eb->args->flags |= __EXEC_HAS_RELOC; 668 } 669 670 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 671 err = i915_vma_pin_fence(vma); 672 if (unlikely(err)) 673 return err; 674 675 if (vma->fence) 676 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 677 } 678 679 ev->flags |= __EXEC_OBJECT_HAS_PIN; 680 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); 681 682 return 0; 683 } 684 685 static bool eb_unbind(struct i915_execbuffer *eb, bool force) 686 { 687 const unsigned int count = eb->buffer_count; 688 unsigned int i; 689 struct list_head last; 690 bool unpinned = false; 691 692 /* Resort *all* the objects into priority order */ 693 INIT_LIST_HEAD(&eb->unbound); 694 INIT_LIST_HEAD(&last); 695 696 for (i = 0; i < count; i++) { 697 struct eb_vma *ev = &eb->vma[i]; 698 unsigned int flags = ev->flags; 699 700 if (!force && flags & EXEC_OBJECT_PINNED && 701 flags & __EXEC_OBJECT_HAS_PIN) 702 continue; 703 704 unpinned = true; 705 eb_unreserve_vma(ev); 706 707 if (flags & EXEC_OBJECT_PINNED) 708 /* Pinned must have their slot */ 709 list_add(&ev->bind_link, &eb->unbound); 710 else if (flags & __EXEC_OBJECT_NEEDS_MAP) 711 /* Map require the lowest 256MiB (aperture) */ 712 list_add_tail(&ev->bind_link, &eb->unbound); 713 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 714 /* Prioritise 4GiB region for restricted bo */ 715 list_add(&ev->bind_link, &last); 716 else 717 list_add_tail(&ev->bind_link, &last); 718 } 719 720 list_splice_tail(&last, &eb->unbound); 721 return unpinned; 722 } 723 724 static int eb_reserve(struct i915_execbuffer *eb) 725 { 726 struct eb_vma *ev; 727 unsigned int pass; 728 int err = 0; 729 bool unpinned; 730 731 /* 732 * Attempt to pin all of the buffers into the GTT. 733 * This is done in 2 phases: 734 * 735 * 1. Unbind all objects that do not match the GTT constraints for 736 * the execbuffer (fenceable, mappable, alignment etc). 737 * 2. Bind new objects. 738 * 739 * This avoid unnecessary unbinding of later objects in order to make 740 * room for the earlier objects *unless* we need to defragment. 741 * 742 * Defragmenting is skipped if all objects are pinned at a fixed location. 743 */ 744 for (pass = 0; pass <= 2; pass++) { 745 int pin_flags = PIN_USER | PIN_VALIDATE; 746 747 if (pass == 0) 748 pin_flags |= PIN_NONBLOCK; 749 750 if (pass >= 1) 751 unpinned = eb_unbind(eb, pass == 2); 752 753 if (pass == 2) { 754 err = mutex_lock_interruptible(&eb->context->vm->mutex); 755 if (!err) { 756 err = i915_gem_evict_vm(eb->context->vm, &eb->ww); 757 mutex_unlock(&eb->context->vm->mutex); 758 } 759 if (err) 760 return err; 761 } 762 763 list_for_each_entry(ev, &eb->unbound, bind_link) { 764 err = eb_reserve_vma(eb, ev, pin_flags); 765 if (err) 766 break; 767 } 768 769 if (err != -ENOSPC) 770 break; 771 } 772 773 return err; 774 } 775 776 static int eb_select_context(struct i915_execbuffer *eb) 777 { 778 struct i915_gem_context *ctx; 779 780 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 781 if (unlikely(IS_ERR(ctx))) 782 return PTR_ERR(ctx); 783 784 eb->gem_context = ctx; 785 if (i915_gem_context_has_full_ppgtt(ctx)) 786 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 787 788 return 0; 789 } 790 791 static int __eb_add_lut(struct i915_execbuffer *eb, 792 u32 handle, struct i915_vma *vma) 793 { 794 struct i915_gem_context *ctx = eb->gem_context; 795 struct i915_lut_handle *lut; 796 int err; 797 798 lut = i915_lut_handle_alloc(); 799 if (unlikely(!lut)) 800 return -ENOMEM; 801 802 i915_vma_get(vma); 803 if (!atomic_fetch_inc(&vma->open_count)) 804 i915_vma_reopen(vma); 805 lut->handle = handle; 806 lut->ctx = ctx; 807 808 /* Check that the context hasn't been closed in the meantime */ 809 err = -EINTR; 810 if (!mutex_lock_interruptible(&ctx->lut_mutex)) { 811 if (likely(!i915_gem_context_is_closed(ctx))) 812 err = radix_tree_insert(&ctx->handles_vma, handle, vma); 813 else 814 err = -ENOENT; 815 if (err == 0) { /* And nor has this handle */ 816 struct drm_i915_gem_object *obj = vma->obj; 817 818 spin_lock(&obj->lut_lock); 819 if (idr_find(&eb->file->object_idr, handle) == obj) { 820 list_add(&lut->obj_link, &obj->lut_list); 821 } else { 822 radix_tree_delete(&ctx->handles_vma, handle); 823 err = -ENOENT; 824 } 825 spin_unlock(&obj->lut_lock); 826 } 827 mutex_unlock(&ctx->lut_mutex); 828 } 829 if (unlikely(err)) 830 goto err; 831 832 return 0; 833 834 err: 835 i915_vma_close(vma); 836 i915_vma_put(vma); 837 i915_lut_handle_free(lut); 838 return err; 839 } 840 841 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle) 842 { 843 struct i915_address_space *vm = eb->context->vm; 844 845 do { 846 struct drm_i915_gem_object *obj; 847 struct i915_vma *vma; 848 int err; 849 850 rcu_read_lock(); 851 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle); 852 if (likely(vma && vma->vm == vm)) 853 vma = i915_vma_tryget(vma); 854 rcu_read_unlock(); 855 if (likely(vma)) 856 return vma; 857 858 obj = i915_gem_object_lookup(eb->file, handle); 859 if (unlikely(!obj)) 860 return ERR_PTR(-ENOENT); 861 862 /* 863 * If the user has opted-in for protected-object tracking, make 864 * sure the object encryption can be used. 865 * We only need to do this when the object is first used with 866 * this context, because the context itself will be banned when 867 * the protected objects become invalid. 868 */ 869 if (i915_gem_context_uses_protected_content(eb->gem_context) && 870 i915_gem_object_is_protected(obj)) { 871 err = intel_pxp_key_check(&vm->gt->pxp, obj, true); 872 if (err) { 873 i915_gem_object_put(obj); 874 return ERR_PTR(err); 875 } 876 } 877 878 vma = i915_vma_instance(obj, vm, NULL); 879 if (IS_ERR(vma)) { 880 i915_gem_object_put(obj); 881 return vma; 882 } 883 884 err = __eb_add_lut(eb, handle, vma); 885 if (likely(!err)) 886 return vma; 887 888 i915_gem_object_put(obj); 889 if (err != -EEXIST) 890 return ERR_PTR(err); 891 } while (1); 892 } 893 894 static int eb_lookup_vmas(struct i915_execbuffer *eb) 895 { 896 unsigned int i, current_batch = 0; 897 int err = 0; 898 899 INIT_LIST_HEAD(&eb->relocs); 900 901 for (i = 0; i < eb->buffer_count; i++) { 902 struct i915_vma *vma; 903 904 vma = eb_lookup_vma(eb, eb->exec[i].handle); 905 if (IS_ERR(vma)) { 906 err = PTR_ERR(vma); 907 goto err; 908 } 909 910 err = eb_validate_vma(eb, &eb->exec[i], vma); 911 if (unlikely(err)) { 912 i915_vma_put(vma); 913 goto err; 914 } 915 916 err = eb_add_vma(eb, ¤t_batch, i, vma); 917 if (err) 918 return err; 919 920 if (i915_gem_object_is_userptr(vma->obj)) { 921 err = i915_gem_object_userptr_submit_init(vma->obj); 922 if (err) { 923 if (i + 1 < eb->buffer_count) { 924 /* 925 * Execbuffer code expects last vma entry to be NULL, 926 * since we already initialized this entry, 927 * set the next value to NULL or we mess up 928 * cleanup handling. 929 */ 930 eb->vma[i + 1].vma = NULL; 931 } 932 933 return err; 934 } 935 936 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT; 937 eb->args->flags |= __EXEC_USERPTR_USED; 938 } 939 } 940 941 return 0; 942 943 err: 944 eb->vma[i].vma = NULL; 945 return err; 946 } 947 948 static int eb_lock_vmas(struct i915_execbuffer *eb) 949 { 950 unsigned int i; 951 int err; 952 953 for (i = 0; i < eb->buffer_count; i++) { 954 struct eb_vma *ev = &eb->vma[i]; 955 struct i915_vma *vma = ev->vma; 956 957 err = i915_gem_object_lock(vma->obj, &eb->ww); 958 if (err) 959 return err; 960 } 961 962 return 0; 963 } 964 965 static int eb_validate_vmas(struct i915_execbuffer *eb) 966 { 967 unsigned int i; 968 int err; 969 970 INIT_LIST_HEAD(&eb->unbound); 971 972 err = eb_lock_vmas(eb); 973 if (err) 974 return err; 975 976 for (i = 0; i < eb->buffer_count; i++) { 977 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 978 struct eb_vma *ev = &eb->vma[i]; 979 struct i915_vma *vma = ev->vma; 980 981 err = eb_pin_vma(eb, entry, ev); 982 if (err == -EDEADLK) 983 return err; 984 985 if (!err) { 986 if (entry->offset != vma->node.start) { 987 entry->offset = vma->node.start | UPDATE; 988 eb->args->flags |= __EXEC_HAS_RELOC; 989 } 990 } else { 991 eb_unreserve_vma(ev); 992 993 list_add_tail(&ev->bind_link, &eb->unbound); 994 if (drm_mm_node_allocated(&vma->node)) { 995 err = i915_vma_unbind(vma); 996 if (err) 997 return err; 998 } 999 } 1000 1001 /* Reserve enough slots to accommodate composite fences */ 1002 err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches); 1003 if (err) 1004 return err; 1005 1006 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && 1007 eb_vma_misplaced(&eb->exec[i], vma, ev->flags)); 1008 } 1009 1010 if (!list_empty(&eb->unbound)) 1011 return eb_reserve(eb); 1012 1013 return 0; 1014 } 1015 1016 static struct eb_vma * 1017 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 1018 { 1019 if (eb->lut_size < 0) { 1020 if (handle >= -eb->lut_size) 1021 return NULL; 1022 return &eb->vma[handle]; 1023 } else { 1024 struct hlist_head *head; 1025 struct eb_vma *ev; 1026 1027 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 1028 hlist_for_each_entry(ev, head, node) { 1029 if (ev->handle == handle) 1030 return ev; 1031 } 1032 return NULL; 1033 } 1034 } 1035 1036 static void eb_release_vmas(struct i915_execbuffer *eb, bool final) 1037 { 1038 const unsigned int count = eb->buffer_count; 1039 unsigned int i; 1040 1041 for (i = 0; i < count; i++) { 1042 struct eb_vma *ev = &eb->vma[i]; 1043 struct i915_vma *vma = ev->vma; 1044 1045 if (!vma) 1046 break; 1047 1048 eb_unreserve_vma(ev); 1049 1050 if (final) 1051 i915_vma_put(vma); 1052 } 1053 1054 eb_capture_release(eb); 1055 eb_unpin_engine(eb); 1056 } 1057 1058 static void eb_destroy(const struct i915_execbuffer *eb) 1059 { 1060 if (eb->lut_size > 0) 1061 kfree(eb->buckets); 1062 } 1063 1064 static inline u64 1065 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 1066 const struct i915_vma *target) 1067 { 1068 return gen8_canonical_addr((int)reloc->delta + target->node.start); 1069 } 1070 1071 static void reloc_cache_init(struct reloc_cache *cache, 1072 struct drm_i915_private *i915) 1073 { 1074 cache->page = -1; 1075 cache->vaddr = 0; 1076 /* Must be a variable in the struct to allow GCC to unroll. */ 1077 cache->graphics_ver = GRAPHICS_VER(i915); 1078 cache->has_llc = HAS_LLC(i915); 1079 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 1080 cache->has_fence = cache->graphics_ver < 4; 1081 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 1082 cache->node.flags = 0; 1083 } 1084 1085 static inline void *unmask_page(unsigned long p) 1086 { 1087 return (void *)(uintptr_t)(p & PAGE_MASK); 1088 } 1089 1090 static inline unsigned int unmask_flags(unsigned long p) 1091 { 1092 return p & ~PAGE_MASK; 1093 } 1094 1095 #define KMAP 0x4 /* after CLFLUSH_FLAGS */ 1096 1097 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 1098 { 1099 struct drm_i915_private *i915 = 1100 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 1101 return to_gt(i915)->ggtt; 1102 } 1103 1104 static void reloc_cache_unmap(struct reloc_cache *cache) 1105 { 1106 void *vaddr; 1107 1108 if (!cache->vaddr) 1109 return; 1110 1111 vaddr = unmask_page(cache->vaddr); 1112 if (cache->vaddr & KMAP) 1113 kunmap_atomic(vaddr); 1114 else 1115 io_mapping_unmap_atomic((void __iomem *)vaddr); 1116 } 1117 1118 static void reloc_cache_remap(struct reloc_cache *cache, 1119 struct drm_i915_gem_object *obj) 1120 { 1121 void *vaddr; 1122 1123 if (!cache->vaddr) 1124 return; 1125 1126 if (cache->vaddr & KMAP) { 1127 struct page *page = i915_gem_object_get_page(obj, cache->page); 1128 1129 vaddr = kmap_atomic(page); 1130 cache->vaddr = unmask_flags(cache->vaddr) | 1131 (unsigned long)vaddr; 1132 } else { 1133 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1134 unsigned long offset; 1135 1136 offset = cache->node.start; 1137 if (!drm_mm_node_allocated(&cache->node)) 1138 offset += cache->page << PAGE_SHIFT; 1139 1140 cache->vaddr = (unsigned long) 1141 io_mapping_map_atomic_wc(&ggtt->iomap, offset); 1142 } 1143 } 1144 1145 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb) 1146 { 1147 void *vaddr; 1148 1149 if (!cache->vaddr) 1150 return; 1151 1152 vaddr = unmask_page(cache->vaddr); 1153 if (cache->vaddr & KMAP) { 1154 struct drm_i915_gem_object *obj = 1155 (struct drm_i915_gem_object *)cache->node.mm; 1156 if (cache->vaddr & CLFLUSH_AFTER) 1157 mb(); 1158 1159 kunmap_atomic(vaddr); 1160 i915_gem_object_finish_access(obj); 1161 } else { 1162 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1163 1164 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1165 io_mapping_unmap_atomic((void __iomem *)vaddr); 1166 1167 if (drm_mm_node_allocated(&cache->node)) { 1168 ggtt->vm.clear_range(&ggtt->vm, 1169 cache->node.start, 1170 cache->node.size); 1171 mutex_lock(&ggtt->vm.mutex); 1172 drm_mm_remove_node(&cache->node); 1173 mutex_unlock(&ggtt->vm.mutex); 1174 } else { 1175 i915_vma_unpin((struct i915_vma *)cache->node.mm); 1176 } 1177 } 1178 1179 cache->vaddr = 0; 1180 cache->page = -1; 1181 } 1182 1183 static void *reloc_kmap(struct drm_i915_gem_object *obj, 1184 struct reloc_cache *cache, 1185 unsigned long pageno) 1186 { 1187 void *vaddr; 1188 struct page *page; 1189 1190 if (cache->vaddr) { 1191 kunmap_atomic(unmask_page(cache->vaddr)); 1192 } else { 1193 unsigned int flushes; 1194 int err; 1195 1196 err = i915_gem_object_prepare_write(obj, &flushes); 1197 if (err) 1198 return ERR_PTR(err); 1199 1200 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 1201 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); 1202 1203 cache->vaddr = flushes | KMAP; 1204 cache->node.mm = (void *)obj; 1205 if (flushes) 1206 mb(); 1207 } 1208 1209 page = i915_gem_object_get_page(obj, pageno); 1210 if (!obj->mm.dirty) 1211 set_page_dirty(page); 1212 1213 vaddr = kmap_atomic(page); 1214 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 1215 cache->page = pageno; 1216 1217 return vaddr; 1218 } 1219 1220 static void *reloc_iomap(struct i915_vma *batch, 1221 struct i915_execbuffer *eb, 1222 unsigned long page) 1223 { 1224 struct drm_i915_gem_object *obj = batch->obj; 1225 struct reloc_cache *cache = &eb->reloc_cache; 1226 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1227 unsigned long offset; 1228 void *vaddr; 1229 1230 if (cache->vaddr) { 1231 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1232 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1233 } else { 1234 struct i915_vma *vma = ERR_PTR(-ENODEV); 1235 int err; 1236 1237 if (i915_gem_object_is_tiled(obj)) 1238 return ERR_PTR(-EINVAL); 1239 1240 if (use_cpu_reloc(cache, obj)) 1241 return NULL; 1242 1243 err = i915_gem_object_set_to_gtt_domain(obj, true); 1244 if (err) 1245 return ERR_PTR(err); 1246 1247 /* 1248 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch 1249 * VMA from the object list because we no longer pin. 1250 * 1251 * Only attempt to pin the batch buffer to ggtt if the current batch 1252 * is not inside ggtt, or the batch buffer is not misplaced. 1253 */ 1254 if (!i915_is_ggtt(batch->vm) || 1255 !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) { 1256 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0, 1257 PIN_MAPPABLE | 1258 PIN_NONBLOCK /* NOWARN */ | 1259 PIN_NOEVICT); 1260 } 1261 1262 if (vma == ERR_PTR(-EDEADLK)) 1263 return vma; 1264 1265 if (IS_ERR(vma)) { 1266 memset(&cache->node, 0, sizeof(cache->node)); 1267 mutex_lock(&ggtt->vm.mutex); 1268 err = drm_mm_insert_node_in_range 1269 (&ggtt->vm.mm, &cache->node, 1270 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1271 0, ggtt->mappable_end, 1272 DRM_MM_INSERT_LOW); 1273 mutex_unlock(&ggtt->vm.mutex); 1274 if (err) /* no inactive aperture space, use cpu reloc */ 1275 return NULL; 1276 } else { 1277 cache->node.start = vma->node.start; 1278 cache->node.mm = (void *)vma; 1279 } 1280 } 1281 1282 offset = cache->node.start; 1283 if (drm_mm_node_allocated(&cache->node)) { 1284 ggtt->vm.insert_page(&ggtt->vm, 1285 i915_gem_object_get_dma_address(obj, page), 1286 offset, I915_CACHE_NONE, 0); 1287 } else { 1288 offset += page << PAGE_SHIFT; 1289 } 1290 1291 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, 1292 offset); 1293 cache->page = page; 1294 cache->vaddr = (unsigned long)vaddr; 1295 1296 return vaddr; 1297 } 1298 1299 static void *reloc_vaddr(struct i915_vma *vma, 1300 struct i915_execbuffer *eb, 1301 unsigned long page) 1302 { 1303 struct reloc_cache *cache = &eb->reloc_cache; 1304 void *vaddr; 1305 1306 if (cache->page == page) { 1307 vaddr = unmask_page(cache->vaddr); 1308 } else { 1309 vaddr = NULL; 1310 if ((cache->vaddr & KMAP) == 0) 1311 vaddr = reloc_iomap(vma, eb, page); 1312 if (!vaddr) 1313 vaddr = reloc_kmap(vma->obj, cache, page); 1314 } 1315 1316 return vaddr; 1317 } 1318 1319 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1320 { 1321 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1322 if (flushes & CLFLUSH_BEFORE) 1323 drm_clflush_virt_range(addr, sizeof(*addr)); 1324 1325 *addr = value; 1326 1327 /* 1328 * Writes to the same cacheline are serialised by the CPU 1329 * (including clflush). On the write path, we only require 1330 * that it hits memory in an orderly fashion and place 1331 * mb barriers at the start and end of the relocation phase 1332 * to ensure ordering of clflush wrt to the system. 1333 */ 1334 if (flushes & CLFLUSH_AFTER) 1335 drm_clflush_virt_range(addr, sizeof(*addr)); 1336 } else 1337 *addr = value; 1338 } 1339 1340 static u64 1341 relocate_entry(struct i915_vma *vma, 1342 const struct drm_i915_gem_relocation_entry *reloc, 1343 struct i915_execbuffer *eb, 1344 const struct i915_vma *target) 1345 { 1346 u64 target_addr = relocation_target(reloc, target); 1347 u64 offset = reloc->offset; 1348 bool wide = eb->reloc_cache.use_64bit_reloc; 1349 void *vaddr; 1350 1351 repeat: 1352 vaddr = reloc_vaddr(vma, eb, 1353 offset >> PAGE_SHIFT); 1354 if (IS_ERR(vaddr)) 1355 return PTR_ERR(vaddr); 1356 1357 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32))); 1358 clflush_write32(vaddr + offset_in_page(offset), 1359 lower_32_bits(target_addr), 1360 eb->reloc_cache.vaddr); 1361 1362 if (wide) { 1363 offset += sizeof(u32); 1364 target_addr >>= 32; 1365 wide = false; 1366 goto repeat; 1367 } 1368 1369 return target->node.start | UPDATE; 1370 } 1371 1372 static u64 1373 eb_relocate_entry(struct i915_execbuffer *eb, 1374 struct eb_vma *ev, 1375 const struct drm_i915_gem_relocation_entry *reloc) 1376 { 1377 struct drm_i915_private *i915 = eb->i915; 1378 struct eb_vma *target; 1379 int err; 1380 1381 /* we've already hold a reference to all valid objects */ 1382 target = eb_get_vma(eb, reloc->target_handle); 1383 if (unlikely(!target)) 1384 return -ENOENT; 1385 1386 /* Validate that the target is in a valid r/w GPU domain */ 1387 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1388 drm_dbg(&i915->drm, "reloc with multiple write domains: " 1389 "target %d offset %d " 1390 "read %08x write %08x", 1391 reloc->target_handle, 1392 (int) reloc->offset, 1393 reloc->read_domains, 1394 reloc->write_domain); 1395 return -EINVAL; 1396 } 1397 if (unlikely((reloc->write_domain | reloc->read_domains) 1398 & ~I915_GEM_GPU_DOMAINS)) { 1399 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " 1400 "target %d offset %d " 1401 "read %08x write %08x", 1402 reloc->target_handle, 1403 (int) reloc->offset, 1404 reloc->read_domains, 1405 reloc->write_domain); 1406 return -EINVAL; 1407 } 1408 1409 if (reloc->write_domain) { 1410 target->flags |= EXEC_OBJECT_WRITE; 1411 1412 /* 1413 * Sandybridge PPGTT errata: We need a global gtt mapping 1414 * for MI and pipe_control writes because the gpu doesn't 1415 * properly redirect them through the ppgtt for non_secure 1416 * batchbuffers. 1417 */ 1418 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1419 GRAPHICS_VER(eb->i915) == 6 && 1420 !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) { 1421 struct i915_vma *vma = target->vma; 1422 1423 reloc_cache_unmap(&eb->reloc_cache); 1424 mutex_lock(&vma->vm->mutex); 1425 err = i915_vma_bind(target->vma, 1426 target->vma->obj->cache_level, 1427 PIN_GLOBAL, NULL, NULL); 1428 mutex_unlock(&vma->vm->mutex); 1429 reloc_cache_remap(&eb->reloc_cache, ev->vma->obj); 1430 if (err) 1431 return err; 1432 } 1433 } 1434 1435 /* 1436 * If the relocation already has the right value in it, no 1437 * more work needs to be done. 1438 */ 1439 if (!DBG_FORCE_RELOC && 1440 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset) 1441 return 0; 1442 1443 /* Check that the relocation address is valid... */ 1444 if (unlikely(reloc->offset > 1445 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1446 drm_dbg(&i915->drm, "Relocation beyond object bounds: " 1447 "target %d offset %d size %d.\n", 1448 reloc->target_handle, 1449 (int)reloc->offset, 1450 (int)ev->vma->size); 1451 return -EINVAL; 1452 } 1453 if (unlikely(reloc->offset & 3)) { 1454 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " 1455 "target %d offset %d.\n", 1456 reloc->target_handle, 1457 (int)reloc->offset); 1458 return -EINVAL; 1459 } 1460 1461 /* 1462 * If we write into the object, we need to force the synchronisation 1463 * barrier, either with an asynchronous clflush or if we executed the 1464 * patching using the GPU (though that should be serialised by the 1465 * timeline). To be completely sure, and since we are required to 1466 * do relocations we are already stalling, disable the user's opt 1467 * out of our synchronisation. 1468 */ 1469 ev->flags &= ~EXEC_OBJECT_ASYNC; 1470 1471 /* and update the user's relocation entry */ 1472 return relocate_entry(ev->vma, reloc, eb, target->vma); 1473 } 1474 1475 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) 1476 { 1477 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1478 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1479 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1480 struct drm_i915_gem_relocation_entry __user *urelocs = 1481 u64_to_user_ptr(entry->relocs_ptr); 1482 unsigned long remain = entry->relocation_count; 1483 1484 if (unlikely(remain > N_RELOC(ULONG_MAX))) 1485 return -EINVAL; 1486 1487 /* 1488 * We must check that the entire relocation array is safe 1489 * to read. However, if the array is not writable the user loses 1490 * the updated relocation values. 1491 */ 1492 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs)))) 1493 return -EFAULT; 1494 1495 do { 1496 struct drm_i915_gem_relocation_entry *r = stack; 1497 unsigned int count = 1498 min_t(unsigned long, remain, ARRAY_SIZE(stack)); 1499 unsigned int copied; 1500 1501 /* 1502 * This is the fast path and we cannot handle a pagefault 1503 * whilst holding the struct mutex lest the user pass in the 1504 * relocations contained within a mmaped bo. For in such a case 1505 * we, the page fault handler would call i915_gem_fault() and 1506 * we would try to acquire the struct mutex again. Obviously 1507 * this is bad and so lockdep complains vehemently. 1508 */ 1509 pagefault_disable(); 1510 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); 1511 pagefault_enable(); 1512 if (unlikely(copied)) { 1513 remain = -EFAULT; 1514 goto out; 1515 } 1516 1517 remain -= count; 1518 do { 1519 u64 offset = eb_relocate_entry(eb, ev, r); 1520 1521 if (likely(offset == 0)) { 1522 } else if ((s64)offset < 0) { 1523 remain = (int)offset; 1524 goto out; 1525 } else { 1526 /* 1527 * Note that reporting an error now 1528 * leaves everything in an inconsistent 1529 * state as we have *already* changed 1530 * the relocation value inside the 1531 * object. As we have not changed the 1532 * reloc.presumed_offset or will not 1533 * change the execobject.offset, on the 1534 * call we may not rewrite the value 1535 * inside the object, leaving it 1536 * dangling and causing a GPU hang. Unless 1537 * userspace dynamically rebuilds the 1538 * relocations on each execbuf rather than 1539 * presume a static tree. 1540 * 1541 * We did previously check if the relocations 1542 * were writable (access_ok), an error now 1543 * would be a strange race with mprotect, 1544 * having already demonstrated that we 1545 * can read from this userspace address. 1546 */ 1547 offset = gen8_canonical_addr(offset & ~UPDATE); 1548 __put_user(offset, 1549 &urelocs[r - stack].presumed_offset); 1550 } 1551 } while (r++, --count); 1552 urelocs += ARRAY_SIZE(stack); 1553 } while (remain); 1554 out: 1555 reloc_cache_reset(&eb->reloc_cache, eb); 1556 return remain; 1557 } 1558 1559 static int 1560 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev) 1561 { 1562 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1563 struct drm_i915_gem_relocation_entry *relocs = 1564 u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1565 unsigned int i; 1566 int err; 1567 1568 for (i = 0; i < entry->relocation_count; i++) { 1569 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]); 1570 1571 if ((s64)offset < 0) { 1572 err = (int)offset; 1573 goto err; 1574 } 1575 } 1576 err = 0; 1577 err: 1578 reloc_cache_reset(&eb->reloc_cache, eb); 1579 return err; 1580 } 1581 1582 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) 1583 { 1584 const char __user *addr, *end; 1585 unsigned long size; 1586 char __maybe_unused c; 1587 1588 size = entry->relocation_count; 1589 if (size == 0) 1590 return 0; 1591 1592 if (size > N_RELOC(ULONG_MAX)) 1593 return -EINVAL; 1594 1595 addr = u64_to_user_ptr(entry->relocs_ptr); 1596 size *= sizeof(struct drm_i915_gem_relocation_entry); 1597 if (!access_ok(addr, size)) 1598 return -EFAULT; 1599 1600 end = addr + size; 1601 for (; addr < end; addr += PAGE_SIZE) { 1602 int err = __get_user(c, addr); 1603 if (err) 1604 return err; 1605 } 1606 return __get_user(c, end - 1); 1607 } 1608 1609 static int eb_copy_relocations(const struct i915_execbuffer *eb) 1610 { 1611 struct drm_i915_gem_relocation_entry *relocs; 1612 const unsigned int count = eb->buffer_count; 1613 unsigned int i; 1614 int err; 1615 1616 for (i = 0; i < count; i++) { 1617 const unsigned int nreloc = eb->exec[i].relocation_count; 1618 struct drm_i915_gem_relocation_entry __user *urelocs; 1619 unsigned long size; 1620 unsigned long copied; 1621 1622 if (nreloc == 0) 1623 continue; 1624 1625 err = check_relocations(&eb->exec[i]); 1626 if (err) 1627 goto err; 1628 1629 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); 1630 size = nreloc * sizeof(*relocs); 1631 1632 relocs = kvmalloc_array(size, 1, GFP_KERNEL); 1633 if (!relocs) { 1634 err = -ENOMEM; 1635 goto err; 1636 } 1637 1638 /* copy_from_user is limited to < 4GiB */ 1639 copied = 0; 1640 do { 1641 unsigned int len = 1642 min_t(u64, BIT_ULL(31), size - copied); 1643 1644 if (__copy_from_user((char *)relocs + copied, 1645 (char __user *)urelocs + copied, 1646 len)) 1647 goto end; 1648 1649 copied += len; 1650 } while (copied < size); 1651 1652 /* 1653 * As we do not update the known relocation offsets after 1654 * relocating (due to the complexities in lock handling), 1655 * we need to mark them as invalid now so that we force the 1656 * relocation processing next time. Just in case the target 1657 * object is evicted and then rebound into its old 1658 * presumed_offset before the next execbuffer - if that 1659 * happened we would make the mistake of assuming that the 1660 * relocations were valid. 1661 */ 1662 if (!user_access_begin(urelocs, size)) 1663 goto end; 1664 1665 for (copied = 0; copied < nreloc; copied++) 1666 unsafe_put_user(-1, 1667 &urelocs[copied].presumed_offset, 1668 end_user); 1669 user_access_end(); 1670 1671 eb->exec[i].relocs_ptr = (uintptr_t)relocs; 1672 } 1673 1674 return 0; 1675 1676 end_user: 1677 user_access_end(); 1678 end: 1679 kvfree(relocs); 1680 err = -EFAULT; 1681 err: 1682 while (i--) { 1683 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); 1684 if (eb->exec[i].relocation_count) 1685 kvfree(relocs); 1686 } 1687 return err; 1688 } 1689 1690 static int eb_prefault_relocations(const struct i915_execbuffer *eb) 1691 { 1692 const unsigned int count = eb->buffer_count; 1693 unsigned int i; 1694 1695 for (i = 0; i < count; i++) { 1696 int err; 1697 1698 err = check_relocations(&eb->exec[i]); 1699 if (err) 1700 return err; 1701 } 1702 1703 return 0; 1704 } 1705 1706 static int eb_reinit_userptr(struct i915_execbuffer *eb) 1707 { 1708 const unsigned int count = eb->buffer_count; 1709 unsigned int i; 1710 int ret; 1711 1712 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED))) 1713 return 0; 1714 1715 for (i = 0; i < count; i++) { 1716 struct eb_vma *ev = &eb->vma[i]; 1717 1718 if (!i915_gem_object_is_userptr(ev->vma->obj)) 1719 continue; 1720 1721 ret = i915_gem_object_userptr_submit_init(ev->vma->obj); 1722 if (ret) 1723 return ret; 1724 1725 ev->flags |= __EXEC_OBJECT_USERPTR_INIT; 1726 } 1727 1728 return 0; 1729 } 1730 1731 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb) 1732 { 1733 bool have_copy = false; 1734 struct eb_vma *ev; 1735 int err = 0; 1736 1737 repeat: 1738 if (signal_pending(current)) { 1739 err = -ERESTARTSYS; 1740 goto out; 1741 } 1742 1743 /* We may process another execbuffer during the unlock... */ 1744 eb_release_vmas(eb, false); 1745 i915_gem_ww_ctx_fini(&eb->ww); 1746 1747 /* 1748 * We take 3 passes through the slowpatch. 1749 * 1750 * 1 - we try to just prefault all the user relocation entries and 1751 * then attempt to reuse the atomic pagefault disabled fast path again. 1752 * 1753 * 2 - we copy the user entries to a local buffer here outside of the 1754 * local and allow ourselves to wait upon any rendering before 1755 * relocations 1756 * 1757 * 3 - we already have a local copy of the relocation entries, but 1758 * were interrupted (EAGAIN) whilst waiting for the objects, try again. 1759 */ 1760 if (!err) { 1761 err = eb_prefault_relocations(eb); 1762 } else if (!have_copy) { 1763 err = eb_copy_relocations(eb); 1764 have_copy = err == 0; 1765 } else { 1766 cond_resched(); 1767 err = 0; 1768 } 1769 1770 if (!err) 1771 err = eb_reinit_userptr(eb); 1772 1773 i915_gem_ww_ctx_init(&eb->ww, true); 1774 if (err) 1775 goto out; 1776 1777 /* reacquire the objects */ 1778 repeat_validate: 1779 err = eb_pin_engine(eb, false); 1780 if (err) 1781 goto err; 1782 1783 err = eb_validate_vmas(eb); 1784 if (err) 1785 goto err; 1786 1787 GEM_BUG_ON(!eb->batches[0]); 1788 1789 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1790 if (!have_copy) { 1791 err = eb_relocate_vma(eb, ev); 1792 if (err) 1793 break; 1794 } else { 1795 err = eb_relocate_vma_slow(eb, ev); 1796 if (err) 1797 break; 1798 } 1799 } 1800 1801 if (err == -EDEADLK) 1802 goto err; 1803 1804 if (err && !have_copy) 1805 goto repeat; 1806 1807 if (err) 1808 goto err; 1809 1810 /* as last step, parse the command buffer */ 1811 err = eb_parse(eb); 1812 if (err) 1813 goto err; 1814 1815 /* 1816 * Leave the user relocations as are, this is the painfully slow path, 1817 * and we want to avoid the complication of dropping the lock whilst 1818 * having buffers reserved in the aperture and so causing spurious 1819 * ENOSPC for random operations. 1820 */ 1821 1822 err: 1823 if (err == -EDEADLK) { 1824 eb_release_vmas(eb, false); 1825 err = i915_gem_ww_ctx_backoff(&eb->ww); 1826 if (!err) 1827 goto repeat_validate; 1828 } 1829 1830 if (err == -EAGAIN) 1831 goto repeat; 1832 1833 out: 1834 if (have_copy) { 1835 const unsigned int count = eb->buffer_count; 1836 unsigned int i; 1837 1838 for (i = 0; i < count; i++) { 1839 const struct drm_i915_gem_exec_object2 *entry = 1840 &eb->exec[i]; 1841 struct drm_i915_gem_relocation_entry *relocs; 1842 1843 if (!entry->relocation_count) 1844 continue; 1845 1846 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1847 kvfree(relocs); 1848 } 1849 } 1850 1851 return err; 1852 } 1853 1854 static int eb_relocate_parse(struct i915_execbuffer *eb) 1855 { 1856 int err; 1857 bool throttle = true; 1858 1859 retry: 1860 err = eb_pin_engine(eb, throttle); 1861 if (err) { 1862 if (err != -EDEADLK) 1863 return err; 1864 1865 goto err; 1866 } 1867 1868 /* only throttle once, even if we didn't need to throttle */ 1869 throttle = false; 1870 1871 err = eb_validate_vmas(eb); 1872 if (err == -EAGAIN) 1873 goto slow; 1874 else if (err) 1875 goto err; 1876 1877 /* The objects are in their final locations, apply the relocations. */ 1878 if (eb->args->flags & __EXEC_HAS_RELOC) { 1879 struct eb_vma *ev; 1880 1881 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1882 err = eb_relocate_vma(eb, ev); 1883 if (err) 1884 break; 1885 } 1886 1887 if (err == -EDEADLK) 1888 goto err; 1889 else if (err) 1890 goto slow; 1891 } 1892 1893 if (!err) 1894 err = eb_parse(eb); 1895 1896 err: 1897 if (err == -EDEADLK) { 1898 eb_release_vmas(eb, false); 1899 err = i915_gem_ww_ctx_backoff(&eb->ww); 1900 if (!err) 1901 goto retry; 1902 } 1903 1904 return err; 1905 1906 slow: 1907 err = eb_relocate_parse_slow(eb); 1908 if (err) 1909 /* 1910 * If the user expects the execobject.offset and 1911 * reloc.presumed_offset to be an exact match, 1912 * as for using NO_RELOC, then we cannot update 1913 * the execobject.offset until we have completed 1914 * relocation. 1915 */ 1916 eb->args->flags &= ~__EXEC_HAS_RELOC; 1917 1918 return err; 1919 } 1920 1921 /* 1922 * Using two helper loops for the order of which requests / batches are created 1923 * and added the to backend. Requests are created in order from the parent to 1924 * the last child. Requests are added in the reverse order, from the last child 1925 * to parent. This is done for locking reasons as the timeline lock is acquired 1926 * during request creation and released when the request is added to the 1927 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be 1928 * the ordering. 1929 */ 1930 #define for_each_batch_create_order(_eb, _i) \ 1931 for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i)) 1932 #define for_each_batch_add_order(_eb, _i) \ 1933 BUILD_BUG_ON(!typecheck(int, _i)); \ 1934 for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i)) 1935 1936 static struct i915_request * 1937 eb_find_first_request_added(struct i915_execbuffer *eb) 1938 { 1939 int i; 1940 1941 for_each_batch_add_order(eb, i) 1942 if (eb->requests[i]) 1943 return eb->requests[i]; 1944 1945 GEM_BUG_ON("Request not found"); 1946 1947 return NULL; 1948 } 1949 1950 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 1951 1952 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */ 1953 static int eb_capture_stage(struct i915_execbuffer *eb) 1954 { 1955 const unsigned int count = eb->buffer_count; 1956 unsigned int i = count, j; 1957 1958 while (i--) { 1959 struct eb_vma *ev = &eb->vma[i]; 1960 struct i915_vma *vma = ev->vma; 1961 unsigned int flags = ev->flags; 1962 1963 if (!(flags & EXEC_OBJECT_CAPTURE)) 1964 continue; 1965 1966 if (i915_gem_context_is_recoverable(eb->gem_context) && 1967 (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0))) 1968 return -EINVAL; 1969 1970 for_each_batch_create_order(eb, j) { 1971 struct i915_capture_list *capture; 1972 1973 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 1974 if (!capture) 1975 continue; 1976 1977 capture->next = eb->capture_lists[j]; 1978 capture->vma_res = i915_vma_resource_get(vma->resource); 1979 eb->capture_lists[j] = capture; 1980 } 1981 } 1982 1983 return 0; 1984 } 1985 1986 /* Commit once we're in the critical path */ 1987 static void eb_capture_commit(struct i915_execbuffer *eb) 1988 { 1989 unsigned int j; 1990 1991 for_each_batch_create_order(eb, j) { 1992 struct i915_request *rq = eb->requests[j]; 1993 1994 if (!rq) 1995 break; 1996 1997 rq->capture_list = eb->capture_lists[j]; 1998 eb->capture_lists[j] = NULL; 1999 } 2000 } 2001 2002 /* 2003 * Release anything that didn't get committed due to errors. 2004 * The capture_list will otherwise be freed at request retire. 2005 */ 2006 static void eb_capture_release(struct i915_execbuffer *eb) 2007 { 2008 unsigned int j; 2009 2010 for_each_batch_create_order(eb, j) { 2011 if (eb->capture_lists[j]) { 2012 i915_request_free_capture_list(eb->capture_lists[j]); 2013 eb->capture_lists[j] = NULL; 2014 } 2015 } 2016 } 2017 2018 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2019 { 2020 memset(eb->capture_lists, 0, sizeof(eb->capture_lists)); 2021 } 2022 2023 #else 2024 2025 static int eb_capture_stage(struct i915_execbuffer *eb) 2026 { 2027 return 0; 2028 } 2029 2030 static void eb_capture_commit(struct i915_execbuffer *eb) 2031 { 2032 } 2033 2034 static void eb_capture_release(struct i915_execbuffer *eb) 2035 { 2036 } 2037 2038 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2039 { 2040 } 2041 2042 #endif 2043 2044 static int eb_move_to_gpu(struct i915_execbuffer *eb) 2045 { 2046 const unsigned int count = eb->buffer_count; 2047 unsigned int i = count; 2048 int err = 0, j; 2049 2050 while (i--) { 2051 struct eb_vma *ev = &eb->vma[i]; 2052 struct i915_vma *vma = ev->vma; 2053 unsigned int flags = ev->flags; 2054 struct drm_i915_gem_object *obj = vma->obj; 2055 2056 assert_vma_held(vma); 2057 2058 /* 2059 * If the GPU is not _reading_ through the CPU cache, we need 2060 * to make sure that any writes (both previous GPU writes from 2061 * before a change in snooping levels and normal CPU writes) 2062 * caught in that cache are flushed to main memory. 2063 * 2064 * We want to say 2065 * obj->cache_dirty && 2066 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) 2067 * but gcc's optimiser doesn't handle that as well and emits 2068 * two jumps instead of one. Maybe one day... 2069 * 2070 * FIXME: There is also sync flushing in set_pages(), which 2071 * serves a different purpose(some of the time at least). 2072 * 2073 * We should consider: 2074 * 2075 * 1. Rip out the async flush code. 2076 * 2077 * 2. Or make the sync flushing use the async clflush path 2078 * using mandatory fences underneath. Currently the below 2079 * async flush happens after we bind the object. 2080 */ 2081 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { 2082 if (i915_gem_clflush_object(obj, 0)) 2083 flags &= ~EXEC_OBJECT_ASYNC; 2084 } 2085 2086 /* We only need to await on the first request */ 2087 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { 2088 err = i915_request_await_object 2089 (eb_find_first_request_added(eb), obj, 2090 flags & EXEC_OBJECT_WRITE); 2091 } 2092 2093 for_each_batch_add_order(eb, j) { 2094 if (err) 2095 break; 2096 if (!eb->requests[j]) 2097 continue; 2098 2099 err = _i915_vma_move_to_active(vma, eb->requests[j], 2100 j ? NULL : 2101 eb->composite_fence ? 2102 eb->composite_fence : 2103 &eb->requests[j]->fence, 2104 flags | __EXEC_OBJECT_NO_RESERVE); 2105 } 2106 } 2107 2108 #ifdef CONFIG_MMU_NOTIFIER 2109 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) { 2110 read_lock(&eb->i915->mm.notifier_lock); 2111 2112 /* 2113 * count is always at least 1, otherwise __EXEC_USERPTR_USED 2114 * could not have been set 2115 */ 2116 for (i = 0; i < count; i++) { 2117 struct eb_vma *ev = &eb->vma[i]; 2118 struct drm_i915_gem_object *obj = ev->vma->obj; 2119 2120 if (!i915_gem_object_is_userptr(obj)) 2121 continue; 2122 2123 err = i915_gem_object_userptr_submit_done(obj); 2124 if (err) 2125 break; 2126 } 2127 2128 read_unlock(&eb->i915->mm.notifier_lock); 2129 } 2130 #endif 2131 2132 if (unlikely(err)) 2133 goto err_skip; 2134 2135 /* Unconditionally flush any chipset caches (for streaming writes). */ 2136 intel_gt_chipset_flush(eb->gt); 2137 eb_capture_commit(eb); 2138 2139 return 0; 2140 2141 err_skip: 2142 for_each_batch_create_order(eb, j) { 2143 if (!eb->requests[j]) 2144 break; 2145 2146 i915_request_set_error_once(eb->requests[j], err); 2147 } 2148 return err; 2149 } 2150 2151 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) 2152 { 2153 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 2154 return -EINVAL; 2155 2156 /* Kernel clipping was a DRI1 misfeature */ 2157 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY | 2158 I915_EXEC_USE_EXTENSIONS))) { 2159 if (exec->num_cliprects || exec->cliprects_ptr) 2160 return -EINVAL; 2161 } 2162 2163 if (exec->DR4 == 0xffffffff) { 2164 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); 2165 exec->DR4 = 0; 2166 } 2167 if (exec->DR1 || exec->DR4) 2168 return -EINVAL; 2169 2170 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 2171 return -EINVAL; 2172 2173 return 0; 2174 } 2175 2176 static int i915_reset_gen7_sol_offsets(struct i915_request *rq) 2177 { 2178 u32 *cs; 2179 int i; 2180 2181 if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) { 2182 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n"); 2183 return -EINVAL; 2184 } 2185 2186 cs = intel_ring_begin(rq, 4 * 2 + 2); 2187 if (IS_ERR(cs)) 2188 return PTR_ERR(cs); 2189 2190 *cs++ = MI_LOAD_REGISTER_IMM(4); 2191 for (i = 0; i < 4; i++) { 2192 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 2193 *cs++ = 0; 2194 } 2195 *cs++ = MI_NOOP; 2196 intel_ring_advance(rq, cs); 2197 2198 return 0; 2199 } 2200 2201 static struct i915_vma * 2202 shadow_batch_pin(struct i915_execbuffer *eb, 2203 struct drm_i915_gem_object *obj, 2204 struct i915_address_space *vm, 2205 unsigned int flags) 2206 { 2207 struct i915_vma *vma; 2208 int err; 2209 2210 vma = i915_vma_instance(obj, vm, NULL); 2211 if (IS_ERR(vma)) 2212 return vma; 2213 2214 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE); 2215 if (err) 2216 return ERR_PTR(err); 2217 2218 return vma; 2219 } 2220 2221 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma) 2222 { 2223 /* 2224 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2225 * batch" bit. Hence we need to pin secure batches into the global gtt. 2226 * hsw should have this fixed, but bdw mucks it up again. */ 2227 if (eb->batch_flags & I915_DISPATCH_SECURE) 2228 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE); 2229 2230 return NULL; 2231 } 2232 2233 static int eb_parse(struct i915_execbuffer *eb) 2234 { 2235 struct drm_i915_private *i915 = eb->i915; 2236 struct intel_gt_buffer_pool_node *pool = eb->batch_pool; 2237 struct i915_vma *shadow, *trampoline, *batch; 2238 unsigned long len; 2239 int err; 2240 2241 if (!eb_use_cmdparser(eb)) { 2242 batch = eb_dispatch_secure(eb, eb->batches[0]->vma); 2243 if (IS_ERR(batch)) 2244 return PTR_ERR(batch); 2245 2246 goto secure_batch; 2247 } 2248 2249 if (intel_context_is_parallel(eb->context)) 2250 return -EINVAL; 2251 2252 len = eb->batch_len[0]; 2253 if (!CMDPARSER_USES_GGTT(eb->i915)) { 2254 /* 2255 * ppGTT backed shadow buffers must be mapped RO, to prevent 2256 * post-scan tampering 2257 */ 2258 if (!eb->context->vm->has_read_only) { 2259 drm_dbg(&i915->drm, 2260 "Cannot prevent post-scan tampering without RO capable vm\n"); 2261 return -EINVAL; 2262 } 2263 } else { 2264 len += I915_CMD_PARSER_TRAMPOLINE_SIZE; 2265 } 2266 if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */ 2267 return -EINVAL; 2268 2269 if (!pool) { 2270 pool = intel_gt_get_buffer_pool(eb->gt, len, 2271 I915_MAP_WB); 2272 if (IS_ERR(pool)) 2273 return PTR_ERR(pool); 2274 eb->batch_pool = pool; 2275 } 2276 2277 err = i915_gem_object_lock(pool->obj, &eb->ww); 2278 if (err) 2279 return err; 2280 2281 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER); 2282 if (IS_ERR(shadow)) 2283 return PTR_ERR(shadow); 2284 2285 intel_gt_buffer_pool_mark_used(pool); 2286 i915_gem_object_set_readonly(shadow->obj); 2287 shadow->private = pool; 2288 2289 trampoline = NULL; 2290 if (CMDPARSER_USES_GGTT(eb->i915)) { 2291 trampoline = shadow; 2292 2293 shadow = shadow_batch_pin(eb, pool->obj, 2294 &eb->gt->ggtt->vm, 2295 PIN_GLOBAL); 2296 if (IS_ERR(shadow)) 2297 return PTR_ERR(shadow); 2298 2299 shadow->private = pool; 2300 2301 eb->batch_flags |= I915_DISPATCH_SECURE; 2302 } 2303 2304 batch = eb_dispatch_secure(eb, shadow); 2305 if (IS_ERR(batch)) 2306 return PTR_ERR(batch); 2307 2308 err = dma_resv_reserve_fences(shadow->obj->base.resv, 1); 2309 if (err) 2310 return err; 2311 2312 err = intel_engine_cmd_parser(eb->context->engine, 2313 eb->batches[0]->vma, 2314 eb->batch_start_offset, 2315 eb->batch_len[0], 2316 shadow, trampoline); 2317 if (err) 2318 return err; 2319 2320 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2321 eb->batches[0]->vma = i915_vma_get(shadow); 2322 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2323 2324 eb->trampoline = trampoline; 2325 eb->batch_start_offset = 0; 2326 2327 secure_batch: 2328 if (batch) { 2329 if (intel_context_is_parallel(eb->context)) 2330 return -EINVAL; 2331 2332 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2333 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2334 eb->batches[0]->vma = i915_vma_get(batch); 2335 } 2336 return 0; 2337 } 2338 2339 static int eb_request_submit(struct i915_execbuffer *eb, 2340 struct i915_request *rq, 2341 struct i915_vma *batch, 2342 u64 batch_len) 2343 { 2344 int err; 2345 2346 if (intel_context_nopreempt(rq->context)) 2347 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags); 2348 2349 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 2350 err = i915_reset_gen7_sol_offsets(rq); 2351 if (err) 2352 return err; 2353 } 2354 2355 /* 2356 * After we completed waiting for other engines (using HW semaphores) 2357 * then we can signal that this request/batch is ready to run. This 2358 * allows us to determine if the batch is still waiting on the GPU 2359 * or actually running by checking the breadcrumb. 2360 */ 2361 if (rq->context->engine->emit_init_breadcrumb) { 2362 err = rq->context->engine->emit_init_breadcrumb(rq); 2363 if (err) 2364 return err; 2365 } 2366 2367 err = rq->context->engine->emit_bb_start(rq, 2368 batch->node.start + 2369 eb->batch_start_offset, 2370 batch_len, 2371 eb->batch_flags); 2372 if (err) 2373 return err; 2374 2375 if (eb->trampoline) { 2376 GEM_BUG_ON(intel_context_is_parallel(rq->context)); 2377 GEM_BUG_ON(eb->batch_start_offset); 2378 err = rq->context->engine->emit_bb_start(rq, 2379 eb->trampoline->node.start + 2380 batch_len, 0, 0); 2381 if (err) 2382 return err; 2383 } 2384 2385 return 0; 2386 } 2387 2388 static int eb_submit(struct i915_execbuffer *eb) 2389 { 2390 unsigned int i; 2391 int err; 2392 2393 err = eb_move_to_gpu(eb); 2394 2395 for_each_batch_create_order(eb, i) { 2396 if (!eb->requests[i]) 2397 break; 2398 2399 trace_i915_request_queue(eb->requests[i], eb->batch_flags); 2400 if (!err) 2401 err = eb_request_submit(eb, eb->requests[i], 2402 eb->batches[i]->vma, 2403 eb->batch_len[i]); 2404 } 2405 2406 return err; 2407 } 2408 2409 static int num_vcs_engines(struct drm_i915_private *i915) 2410 { 2411 return hweight_long(VDBOX_MASK(to_gt(i915))); 2412 } 2413 2414 /* 2415 * Find one BSD ring to dispatch the corresponding BSD command. 2416 * The engine index is returned. 2417 */ 2418 static unsigned int 2419 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, 2420 struct drm_file *file) 2421 { 2422 struct drm_i915_file_private *file_priv = file->driver_priv; 2423 2424 /* Check whether the file_priv has already selected one ring. */ 2425 if ((int)file_priv->bsd_engine < 0) 2426 file_priv->bsd_engine = 2427 prandom_u32_max(num_vcs_engines(dev_priv)); 2428 2429 return file_priv->bsd_engine; 2430 } 2431 2432 static const enum intel_engine_id user_ring_map[] = { 2433 [I915_EXEC_DEFAULT] = RCS0, 2434 [I915_EXEC_RENDER] = RCS0, 2435 [I915_EXEC_BLT] = BCS0, 2436 [I915_EXEC_BSD] = VCS0, 2437 [I915_EXEC_VEBOX] = VECS0 2438 }; 2439 2440 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce) 2441 { 2442 struct intel_ring *ring = ce->ring; 2443 struct intel_timeline *tl = ce->timeline; 2444 struct i915_request *rq; 2445 2446 /* 2447 * Completely unscientific finger-in-the-air estimates for suitable 2448 * maximum user request size (to avoid blocking) and then backoff. 2449 */ 2450 if (intel_ring_update_space(ring) >= PAGE_SIZE) 2451 return NULL; 2452 2453 /* 2454 * Find a request that after waiting upon, there will be at least half 2455 * the ring available. The hysteresis allows us to compete for the 2456 * shared ring and should mean that we sleep less often prior to 2457 * claiming our resources, but not so long that the ring completely 2458 * drains before we can submit our next request. 2459 */ 2460 list_for_each_entry(rq, &tl->requests, link) { 2461 if (rq->ring != ring) 2462 continue; 2463 2464 if (__intel_ring_space(rq->postfix, 2465 ring->emit, ring->size) > ring->size / 2) 2466 break; 2467 } 2468 if (&rq->link == &tl->requests) 2469 return NULL; /* weird, we will check again later for real */ 2470 2471 return i915_request_get(rq); 2472 } 2473 2474 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce, 2475 bool throttle) 2476 { 2477 struct intel_timeline *tl; 2478 struct i915_request *rq = NULL; 2479 2480 /* 2481 * Take a local wakeref for preparing to dispatch the execbuf as 2482 * we expect to access the hardware fairly frequently in the 2483 * process, and require the engine to be kept awake between accesses. 2484 * Upon dispatch, we acquire another prolonged wakeref that we hold 2485 * until the timeline is idle, which in turn releases the wakeref 2486 * taken on the engine, and the parent device. 2487 */ 2488 tl = intel_context_timeline_lock(ce); 2489 if (IS_ERR(tl)) 2490 return PTR_ERR(tl); 2491 2492 intel_context_enter(ce); 2493 if (throttle) 2494 rq = eb_throttle(eb, ce); 2495 intel_context_timeline_unlock(tl); 2496 2497 if (rq) { 2498 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; 2499 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT; 2500 2501 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 2502 timeout) < 0) { 2503 i915_request_put(rq); 2504 2505 /* 2506 * Error path, cannot use intel_context_timeline_lock as 2507 * that is user interruptable and this clean up step 2508 * must be done. 2509 */ 2510 mutex_lock(&ce->timeline->mutex); 2511 intel_context_exit(ce); 2512 mutex_unlock(&ce->timeline->mutex); 2513 2514 if (nonblock) 2515 return -EWOULDBLOCK; 2516 else 2517 return -EINTR; 2518 } 2519 i915_request_put(rq); 2520 } 2521 2522 return 0; 2523 } 2524 2525 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle) 2526 { 2527 struct intel_context *ce = eb->context, *child; 2528 int err; 2529 int i = 0, j = 0; 2530 2531 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED); 2532 2533 if (unlikely(intel_context_is_banned(ce))) 2534 return -EIO; 2535 2536 /* 2537 * Pinning the contexts may generate requests in order to acquire 2538 * GGTT space, so do this first before we reserve a seqno for 2539 * ourselves. 2540 */ 2541 err = intel_context_pin_ww(ce, &eb->ww); 2542 if (err) 2543 return err; 2544 for_each_child(ce, child) { 2545 err = intel_context_pin_ww(child, &eb->ww); 2546 GEM_BUG_ON(err); /* perma-pinned should incr a counter */ 2547 } 2548 2549 for_each_child(ce, child) { 2550 err = eb_pin_timeline(eb, child, throttle); 2551 if (err) 2552 goto unwind; 2553 ++i; 2554 } 2555 err = eb_pin_timeline(eb, ce, throttle); 2556 if (err) 2557 goto unwind; 2558 2559 eb->args->flags |= __EXEC_ENGINE_PINNED; 2560 return 0; 2561 2562 unwind: 2563 for_each_child(ce, child) { 2564 if (j++ < i) { 2565 mutex_lock(&child->timeline->mutex); 2566 intel_context_exit(child); 2567 mutex_unlock(&child->timeline->mutex); 2568 } 2569 } 2570 for_each_child(ce, child) 2571 intel_context_unpin(child); 2572 intel_context_unpin(ce); 2573 return err; 2574 } 2575 2576 static void eb_unpin_engine(struct i915_execbuffer *eb) 2577 { 2578 struct intel_context *ce = eb->context, *child; 2579 2580 if (!(eb->args->flags & __EXEC_ENGINE_PINNED)) 2581 return; 2582 2583 eb->args->flags &= ~__EXEC_ENGINE_PINNED; 2584 2585 for_each_child(ce, child) { 2586 mutex_lock(&child->timeline->mutex); 2587 intel_context_exit(child); 2588 mutex_unlock(&child->timeline->mutex); 2589 2590 intel_context_unpin(child); 2591 } 2592 2593 mutex_lock(&ce->timeline->mutex); 2594 intel_context_exit(ce); 2595 mutex_unlock(&ce->timeline->mutex); 2596 2597 intel_context_unpin(ce); 2598 } 2599 2600 static unsigned int 2601 eb_select_legacy_ring(struct i915_execbuffer *eb) 2602 { 2603 struct drm_i915_private *i915 = eb->i915; 2604 struct drm_i915_gem_execbuffer2 *args = eb->args; 2605 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2606 2607 if (user_ring_id != I915_EXEC_BSD && 2608 (args->flags & I915_EXEC_BSD_MASK)) { 2609 drm_dbg(&i915->drm, 2610 "execbuf with non bsd ring but with invalid " 2611 "bsd dispatch flags: %d\n", (int)(args->flags)); 2612 return -1; 2613 } 2614 2615 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) { 2616 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2617 2618 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2619 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file); 2620 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2621 bsd_idx <= I915_EXEC_BSD_RING2) { 2622 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2623 bsd_idx--; 2624 } else { 2625 drm_dbg(&i915->drm, 2626 "execbuf with unknown bsd ring: %u\n", 2627 bsd_idx); 2628 return -1; 2629 } 2630 2631 return _VCS(bsd_idx); 2632 } 2633 2634 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { 2635 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", 2636 user_ring_id); 2637 return -1; 2638 } 2639 2640 return user_ring_map[user_ring_id]; 2641 } 2642 2643 static int 2644 eb_select_engine(struct i915_execbuffer *eb) 2645 { 2646 struct intel_context *ce, *child; 2647 unsigned int idx; 2648 int err; 2649 2650 if (i915_gem_context_user_engines(eb->gem_context)) 2651 idx = eb->args->flags & I915_EXEC_RING_MASK; 2652 else 2653 idx = eb_select_legacy_ring(eb); 2654 2655 ce = i915_gem_context_get_engine(eb->gem_context, idx); 2656 if (IS_ERR(ce)) 2657 return PTR_ERR(ce); 2658 2659 if (intel_context_is_parallel(ce)) { 2660 if (eb->buffer_count < ce->parallel.number_children + 1) { 2661 intel_context_put(ce); 2662 return -EINVAL; 2663 } 2664 if (eb->batch_start_offset || eb->args->batch_len) { 2665 intel_context_put(ce); 2666 return -EINVAL; 2667 } 2668 } 2669 eb->num_batches = ce->parallel.number_children + 1; 2670 2671 for_each_child(ce, child) 2672 intel_context_get(child); 2673 intel_gt_pm_get(ce->engine->gt); 2674 2675 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) { 2676 err = intel_context_alloc_state(ce); 2677 if (err) 2678 goto err; 2679 } 2680 for_each_child(ce, child) { 2681 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) { 2682 err = intel_context_alloc_state(child); 2683 if (err) 2684 goto err; 2685 } 2686 } 2687 2688 /* 2689 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 2690 * EIO if the GPU is already wedged. 2691 */ 2692 err = intel_gt_terminally_wedged(ce->engine->gt); 2693 if (err) 2694 goto err; 2695 2696 if (!i915_vm_tryget(ce->vm)) { 2697 err = -ENOENT; 2698 goto err; 2699 } 2700 2701 eb->context = ce; 2702 eb->gt = ce->engine->gt; 2703 2704 /* 2705 * Make sure engine pool stays alive even if we call intel_context_put 2706 * during ww handling. The pool is destroyed when last pm reference 2707 * is dropped, which breaks our -EDEADLK handling. 2708 */ 2709 return err; 2710 2711 err: 2712 intel_gt_pm_put(ce->engine->gt); 2713 for_each_child(ce, child) 2714 intel_context_put(child); 2715 intel_context_put(ce); 2716 return err; 2717 } 2718 2719 static void 2720 eb_put_engine(struct i915_execbuffer *eb) 2721 { 2722 struct intel_context *child; 2723 2724 i915_vm_put(eb->context->vm); 2725 intel_gt_pm_put(eb->gt); 2726 for_each_child(eb->context, child) 2727 intel_context_put(child); 2728 intel_context_put(eb->context); 2729 } 2730 2731 static void 2732 __free_fence_array(struct eb_fence *fences, unsigned int n) 2733 { 2734 while (n--) { 2735 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2)); 2736 dma_fence_put(fences[n].dma_fence); 2737 dma_fence_chain_free(fences[n].chain_fence); 2738 } 2739 kvfree(fences); 2740 } 2741 2742 static int 2743 add_timeline_fence_array(struct i915_execbuffer *eb, 2744 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences) 2745 { 2746 struct drm_i915_gem_exec_fence __user *user_fences; 2747 u64 __user *user_values; 2748 struct eb_fence *f; 2749 u64 nfences; 2750 int err = 0; 2751 2752 nfences = timeline_fences->fence_count; 2753 if (!nfences) 2754 return 0; 2755 2756 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2757 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2758 if (nfences > min_t(unsigned long, 2759 ULONG_MAX / sizeof(*user_fences), 2760 SIZE_MAX / sizeof(*f)) - eb->num_fences) 2761 return -EINVAL; 2762 2763 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr); 2764 if (!access_ok(user_fences, nfences * sizeof(*user_fences))) 2765 return -EFAULT; 2766 2767 user_values = u64_to_user_ptr(timeline_fences->values_ptr); 2768 if (!access_ok(user_values, nfences * sizeof(*user_values))) 2769 return -EFAULT; 2770 2771 f = krealloc(eb->fences, 2772 (eb->num_fences + nfences) * sizeof(*f), 2773 __GFP_NOWARN | GFP_KERNEL); 2774 if (!f) 2775 return -ENOMEM; 2776 2777 eb->fences = f; 2778 f += eb->num_fences; 2779 2780 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2781 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2782 2783 while (nfences--) { 2784 struct drm_i915_gem_exec_fence user_fence; 2785 struct drm_syncobj *syncobj; 2786 struct dma_fence *fence = NULL; 2787 u64 point; 2788 2789 if (__copy_from_user(&user_fence, 2790 user_fences++, 2791 sizeof(user_fence))) 2792 return -EFAULT; 2793 2794 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2795 return -EINVAL; 2796 2797 if (__get_user(point, user_values++)) 2798 return -EFAULT; 2799 2800 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2801 if (!syncobj) { 2802 DRM_DEBUG("Invalid syncobj handle provided\n"); 2803 return -ENOENT; 2804 } 2805 2806 fence = drm_syncobj_fence_get(syncobj); 2807 2808 if (!fence && user_fence.flags && 2809 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2810 DRM_DEBUG("Syncobj handle has no fence\n"); 2811 drm_syncobj_put(syncobj); 2812 return -EINVAL; 2813 } 2814 2815 if (fence) 2816 err = dma_fence_chain_find_seqno(&fence, point); 2817 2818 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2819 DRM_DEBUG("Syncobj handle missing requested point %llu\n", point); 2820 dma_fence_put(fence); 2821 drm_syncobj_put(syncobj); 2822 return err; 2823 } 2824 2825 /* 2826 * A point might have been signaled already and 2827 * garbage collected from the timeline. In this case 2828 * just ignore the point and carry on. 2829 */ 2830 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2831 drm_syncobj_put(syncobj); 2832 continue; 2833 } 2834 2835 /* 2836 * For timeline syncobjs we need to preallocate chains for 2837 * later signaling. 2838 */ 2839 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) { 2840 /* 2841 * Waiting and signaling the same point (when point != 2842 * 0) would break the timeline. 2843 */ 2844 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2845 DRM_DEBUG("Trying to wait & signal the same timeline point.\n"); 2846 dma_fence_put(fence); 2847 drm_syncobj_put(syncobj); 2848 return -EINVAL; 2849 } 2850 2851 f->chain_fence = dma_fence_chain_alloc(); 2852 if (!f->chain_fence) { 2853 drm_syncobj_put(syncobj); 2854 dma_fence_put(fence); 2855 return -ENOMEM; 2856 } 2857 } else { 2858 f->chain_fence = NULL; 2859 } 2860 2861 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2862 f->dma_fence = fence; 2863 f->value = point; 2864 f++; 2865 eb->num_fences++; 2866 } 2867 2868 return 0; 2869 } 2870 2871 static int add_fence_array(struct i915_execbuffer *eb) 2872 { 2873 struct drm_i915_gem_execbuffer2 *args = eb->args; 2874 struct drm_i915_gem_exec_fence __user *user; 2875 unsigned long num_fences = args->num_cliprects; 2876 struct eb_fence *f; 2877 2878 if (!(args->flags & I915_EXEC_FENCE_ARRAY)) 2879 return 0; 2880 2881 if (!num_fences) 2882 return 0; 2883 2884 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2885 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2886 if (num_fences > min_t(unsigned long, 2887 ULONG_MAX / sizeof(*user), 2888 SIZE_MAX / sizeof(*f) - eb->num_fences)) 2889 return -EINVAL; 2890 2891 user = u64_to_user_ptr(args->cliprects_ptr); 2892 if (!access_ok(user, num_fences * sizeof(*user))) 2893 return -EFAULT; 2894 2895 f = krealloc(eb->fences, 2896 (eb->num_fences + num_fences) * sizeof(*f), 2897 __GFP_NOWARN | GFP_KERNEL); 2898 if (!f) 2899 return -ENOMEM; 2900 2901 eb->fences = f; 2902 f += eb->num_fences; 2903 while (num_fences--) { 2904 struct drm_i915_gem_exec_fence user_fence; 2905 struct drm_syncobj *syncobj; 2906 struct dma_fence *fence = NULL; 2907 2908 if (__copy_from_user(&user_fence, user++, sizeof(user_fence))) 2909 return -EFAULT; 2910 2911 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2912 return -EINVAL; 2913 2914 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2915 if (!syncobj) { 2916 DRM_DEBUG("Invalid syncobj handle provided\n"); 2917 return -ENOENT; 2918 } 2919 2920 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2921 fence = drm_syncobj_fence_get(syncobj); 2922 if (!fence) { 2923 DRM_DEBUG("Syncobj handle has no fence\n"); 2924 drm_syncobj_put(syncobj); 2925 return -EINVAL; 2926 } 2927 } 2928 2929 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2930 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2931 2932 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2933 f->dma_fence = fence; 2934 f->value = 0; 2935 f->chain_fence = NULL; 2936 f++; 2937 eb->num_fences++; 2938 } 2939 2940 return 0; 2941 } 2942 2943 static void put_fence_array(struct eb_fence *fences, int num_fences) 2944 { 2945 if (fences) 2946 __free_fence_array(fences, num_fences); 2947 } 2948 2949 static int 2950 await_fence_array(struct i915_execbuffer *eb, 2951 struct i915_request *rq) 2952 { 2953 unsigned int n; 2954 int err; 2955 2956 for (n = 0; n < eb->num_fences; n++) { 2957 struct drm_syncobj *syncobj; 2958 unsigned int flags; 2959 2960 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 2961 2962 if (!eb->fences[n].dma_fence) 2963 continue; 2964 2965 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence); 2966 if (err < 0) 2967 return err; 2968 } 2969 2970 return 0; 2971 } 2972 2973 static void signal_fence_array(const struct i915_execbuffer *eb, 2974 struct dma_fence * const fence) 2975 { 2976 unsigned int n; 2977 2978 for (n = 0; n < eb->num_fences; n++) { 2979 struct drm_syncobj *syncobj; 2980 unsigned int flags; 2981 2982 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 2983 if (!(flags & I915_EXEC_FENCE_SIGNAL)) 2984 continue; 2985 2986 if (eb->fences[n].chain_fence) { 2987 drm_syncobj_add_point(syncobj, 2988 eb->fences[n].chain_fence, 2989 fence, 2990 eb->fences[n].value); 2991 /* 2992 * The chain's ownership is transferred to the 2993 * timeline. 2994 */ 2995 eb->fences[n].chain_fence = NULL; 2996 } else { 2997 drm_syncobj_replace_fence(syncobj, fence); 2998 } 2999 } 3000 } 3001 3002 static int 3003 parse_timeline_fences(struct i915_user_extension __user *ext, void *data) 3004 { 3005 struct i915_execbuffer *eb = data; 3006 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences; 3007 3008 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences))) 3009 return -EFAULT; 3010 3011 return add_timeline_fence_array(eb, &timeline_fences); 3012 } 3013 3014 static void retire_requests(struct intel_timeline *tl, struct i915_request *end) 3015 { 3016 struct i915_request *rq, *rn; 3017 3018 list_for_each_entry_safe(rq, rn, &tl->requests, link) 3019 if (rq == end || !i915_request_retire(rq)) 3020 break; 3021 } 3022 3023 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq, 3024 int err, bool last_parallel) 3025 { 3026 struct intel_timeline * const tl = i915_request_timeline(rq); 3027 struct i915_sched_attr attr = {}; 3028 struct i915_request *prev; 3029 3030 lockdep_assert_held(&tl->mutex); 3031 lockdep_unpin_lock(&tl->mutex, rq->cookie); 3032 3033 trace_i915_request_add(rq); 3034 3035 prev = __i915_request_commit(rq); 3036 3037 /* Check that the context wasn't destroyed before submission */ 3038 if (likely(!intel_context_is_closed(eb->context))) { 3039 attr = eb->gem_context->sched; 3040 } else { 3041 /* Serialise with context_close via the add_to_timeline */ 3042 i915_request_set_error_once(rq, -ENOENT); 3043 __i915_request_skip(rq); 3044 err = -ENOENT; /* override any transient errors */ 3045 } 3046 3047 if (intel_context_is_parallel(eb->context)) { 3048 if (err) { 3049 __i915_request_skip(rq); 3050 set_bit(I915_FENCE_FLAG_SKIP_PARALLEL, 3051 &rq->fence.flags); 3052 } 3053 if (last_parallel) 3054 set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, 3055 &rq->fence.flags); 3056 } 3057 3058 __i915_request_queue(rq, &attr); 3059 3060 /* Try to clean up the client's timeline after submitting the request */ 3061 if (prev) 3062 retire_requests(tl, prev); 3063 3064 mutex_unlock(&tl->mutex); 3065 3066 return err; 3067 } 3068 3069 static int eb_requests_add(struct i915_execbuffer *eb, int err) 3070 { 3071 int i; 3072 3073 /* 3074 * We iterate in reverse order of creation to release timeline mutexes in 3075 * same order. 3076 */ 3077 for_each_batch_add_order(eb, i) { 3078 struct i915_request *rq = eb->requests[i]; 3079 3080 if (!rq) 3081 continue; 3082 err |= eb_request_add(eb, rq, err, i == 0); 3083 } 3084 3085 return err; 3086 } 3087 3088 static const i915_user_extension_fn execbuf_extensions[] = { 3089 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences, 3090 }; 3091 3092 static int 3093 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args, 3094 struct i915_execbuffer *eb) 3095 { 3096 if (!(args->flags & I915_EXEC_USE_EXTENSIONS)) 3097 return 0; 3098 3099 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot 3100 * have another flag also using it at the same time. 3101 */ 3102 if (eb->args->flags & I915_EXEC_FENCE_ARRAY) 3103 return -EINVAL; 3104 3105 if (args->num_cliprects != 0) 3106 return -EINVAL; 3107 3108 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr), 3109 execbuf_extensions, 3110 ARRAY_SIZE(execbuf_extensions), 3111 eb); 3112 } 3113 3114 static void eb_requests_get(struct i915_execbuffer *eb) 3115 { 3116 unsigned int i; 3117 3118 for_each_batch_create_order(eb, i) { 3119 if (!eb->requests[i]) 3120 break; 3121 3122 i915_request_get(eb->requests[i]); 3123 } 3124 } 3125 3126 static void eb_requests_put(struct i915_execbuffer *eb) 3127 { 3128 unsigned int i; 3129 3130 for_each_batch_create_order(eb, i) { 3131 if (!eb->requests[i]) 3132 break; 3133 3134 i915_request_put(eb->requests[i]); 3135 } 3136 } 3137 3138 static struct sync_file * 3139 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd) 3140 { 3141 struct sync_file *out_fence = NULL; 3142 struct dma_fence_array *fence_array; 3143 struct dma_fence **fences; 3144 unsigned int i; 3145 3146 GEM_BUG_ON(!intel_context_is_parent(eb->context)); 3147 3148 fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL); 3149 if (!fences) 3150 return ERR_PTR(-ENOMEM); 3151 3152 for_each_batch_create_order(eb, i) { 3153 fences[i] = &eb->requests[i]->fence; 3154 __set_bit(I915_FENCE_FLAG_COMPOSITE, 3155 &eb->requests[i]->fence.flags); 3156 } 3157 3158 fence_array = dma_fence_array_create(eb->num_batches, 3159 fences, 3160 eb->context->parallel.fence_context, 3161 eb->context->parallel.seqno++, 3162 false); 3163 if (!fence_array) { 3164 kfree(fences); 3165 return ERR_PTR(-ENOMEM); 3166 } 3167 3168 /* Move ownership to the dma_fence_array created above */ 3169 for_each_batch_create_order(eb, i) 3170 dma_fence_get(fences[i]); 3171 3172 if (out_fence_fd != -1) { 3173 out_fence = sync_file_create(&fence_array->base); 3174 /* sync_file now owns fence_arry, drop creation ref */ 3175 dma_fence_put(&fence_array->base); 3176 if (!out_fence) 3177 return ERR_PTR(-ENOMEM); 3178 } 3179 3180 eb->composite_fence = &fence_array->base; 3181 3182 return out_fence; 3183 } 3184 3185 static struct sync_file * 3186 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq, 3187 struct dma_fence *in_fence, int out_fence_fd) 3188 { 3189 struct sync_file *out_fence = NULL; 3190 int err; 3191 3192 if (unlikely(eb->gem_context->syncobj)) { 3193 struct dma_fence *fence; 3194 3195 fence = drm_syncobj_fence_get(eb->gem_context->syncobj); 3196 err = i915_request_await_dma_fence(rq, fence); 3197 dma_fence_put(fence); 3198 if (err) 3199 return ERR_PTR(err); 3200 } 3201 3202 if (in_fence) { 3203 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT) 3204 err = i915_request_await_execution(rq, in_fence); 3205 else 3206 err = i915_request_await_dma_fence(rq, in_fence); 3207 if (err < 0) 3208 return ERR_PTR(err); 3209 } 3210 3211 if (eb->fences) { 3212 err = await_fence_array(eb, rq); 3213 if (err) 3214 return ERR_PTR(err); 3215 } 3216 3217 if (intel_context_is_parallel(eb->context)) { 3218 out_fence = eb_composite_fence_create(eb, out_fence_fd); 3219 if (IS_ERR(out_fence)) 3220 return ERR_PTR(-ENOMEM); 3221 } else if (out_fence_fd != -1) { 3222 out_fence = sync_file_create(&rq->fence); 3223 if (!out_fence) 3224 return ERR_PTR(-ENOMEM); 3225 } 3226 3227 return out_fence; 3228 } 3229 3230 static struct intel_context * 3231 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number) 3232 { 3233 struct intel_context *child; 3234 3235 if (likely(context_number == 0)) 3236 return eb->context; 3237 3238 for_each_child(eb->context, child) 3239 if (!--context_number) 3240 return child; 3241 3242 GEM_BUG_ON("Context not found"); 3243 3244 return NULL; 3245 } 3246 3247 static struct sync_file * 3248 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence, 3249 int out_fence_fd) 3250 { 3251 struct sync_file *out_fence = NULL; 3252 unsigned int i; 3253 3254 for_each_batch_create_order(eb, i) { 3255 /* Allocate a request for this batch buffer nice and early. */ 3256 eb->requests[i] = i915_request_create(eb_find_context(eb, i)); 3257 if (IS_ERR(eb->requests[i])) { 3258 out_fence = ERR_CAST(eb->requests[i]); 3259 eb->requests[i] = NULL; 3260 return out_fence; 3261 } 3262 3263 /* 3264 * Only the first request added (committed to backend) has to 3265 * take the in fences into account as all subsequent requests 3266 * will have fences inserted inbetween them. 3267 */ 3268 if (i + 1 == eb->num_batches) { 3269 out_fence = eb_fences_add(eb, eb->requests[i], 3270 in_fence, out_fence_fd); 3271 if (IS_ERR(out_fence)) 3272 return out_fence; 3273 } 3274 3275 /* 3276 * Not really on stack, but we don't want to call 3277 * kfree on the batch_snapshot when we put it, so use the 3278 * _onstack interface. 3279 */ 3280 if (eb->batches[i]->vma) 3281 eb->requests[i]->batch_res = 3282 i915_vma_resource_get(eb->batches[i]->vma->resource); 3283 if (eb->batch_pool) { 3284 GEM_BUG_ON(intel_context_is_parallel(eb->context)); 3285 intel_gt_buffer_pool_mark_active(eb->batch_pool, 3286 eb->requests[i]); 3287 } 3288 } 3289 3290 return out_fence; 3291 } 3292 3293 static int 3294 i915_gem_do_execbuffer(struct drm_device *dev, 3295 struct drm_file *file, 3296 struct drm_i915_gem_execbuffer2 *args, 3297 struct drm_i915_gem_exec_object2 *exec) 3298 { 3299 struct drm_i915_private *i915 = to_i915(dev); 3300 struct i915_execbuffer eb; 3301 struct dma_fence *in_fence = NULL; 3302 struct sync_file *out_fence = NULL; 3303 int out_fence_fd = -1; 3304 int err; 3305 3306 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); 3307 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 3308 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 3309 3310 eb.i915 = i915; 3311 eb.file = file; 3312 eb.args = args; 3313 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 3314 args->flags |= __EXEC_HAS_RELOC; 3315 3316 eb.exec = exec; 3317 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1); 3318 eb.vma[0].vma = NULL; 3319 eb.batch_pool = NULL; 3320 3321 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 3322 reloc_cache_init(&eb.reloc_cache, eb.i915); 3323 3324 eb.buffer_count = args->buffer_count; 3325 eb.batch_start_offset = args->batch_start_offset; 3326 eb.trampoline = NULL; 3327 3328 eb.fences = NULL; 3329 eb.num_fences = 0; 3330 3331 eb_capture_list_clear(&eb); 3332 3333 memset(eb.requests, 0, sizeof(struct i915_request *) * 3334 ARRAY_SIZE(eb.requests)); 3335 eb.composite_fence = NULL; 3336 3337 eb.batch_flags = 0; 3338 if (args->flags & I915_EXEC_SECURE) { 3339 if (GRAPHICS_VER(i915) >= 11) 3340 return -ENODEV; 3341 3342 /* Return -EPERM to trigger fallback code on old binaries. */ 3343 if (!HAS_SECURE_BATCHES(i915)) 3344 return -EPERM; 3345 3346 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 3347 return -EPERM; 3348 3349 eb.batch_flags |= I915_DISPATCH_SECURE; 3350 } 3351 if (args->flags & I915_EXEC_IS_PINNED) 3352 eb.batch_flags |= I915_DISPATCH_PINNED; 3353 3354 err = parse_execbuf2_extensions(args, &eb); 3355 if (err) 3356 goto err_ext; 3357 3358 err = add_fence_array(&eb); 3359 if (err) 3360 goto err_ext; 3361 3362 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT) 3363 if (args->flags & IN_FENCES) { 3364 if ((args->flags & IN_FENCES) == IN_FENCES) 3365 return -EINVAL; 3366 3367 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 3368 if (!in_fence) { 3369 err = -EINVAL; 3370 goto err_ext; 3371 } 3372 } 3373 #undef IN_FENCES 3374 3375 if (args->flags & I915_EXEC_FENCE_OUT) { 3376 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 3377 if (out_fence_fd < 0) { 3378 err = out_fence_fd; 3379 goto err_in_fence; 3380 } 3381 } 3382 3383 err = eb_create(&eb); 3384 if (err) 3385 goto err_out_fence; 3386 3387 GEM_BUG_ON(!eb.lut_size); 3388 3389 err = eb_select_context(&eb); 3390 if (unlikely(err)) 3391 goto err_destroy; 3392 3393 err = eb_select_engine(&eb); 3394 if (unlikely(err)) 3395 goto err_context; 3396 3397 err = eb_lookup_vmas(&eb); 3398 if (err) { 3399 eb_release_vmas(&eb, true); 3400 goto err_engine; 3401 } 3402 3403 i915_gem_ww_ctx_init(&eb.ww, true); 3404 3405 err = eb_relocate_parse(&eb); 3406 if (err) { 3407 /* 3408 * If the user expects the execobject.offset and 3409 * reloc.presumed_offset to be an exact match, 3410 * as for using NO_RELOC, then we cannot update 3411 * the execobject.offset until we have completed 3412 * relocation. 3413 */ 3414 args->flags &= ~__EXEC_HAS_RELOC; 3415 goto err_vma; 3416 } 3417 3418 ww_acquire_done(&eb.ww.ctx); 3419 err = eb_capture_stage(&eb); 3420 if (err) 3421 goto err_vma; 3422 3423 out_fence = eb_requests_create(&eb, in_fence, out_fence_fd); 3424 if (IS_ERR(out_fence)) { 3425 err = PTR_ERR(out_fence); 3426 out_fence = NULL; 3427 if (eb.requests[0]) 3428 goto err_request; 3429 else 3430 goto err_vma; 3431 } 3432 3433 err = eb_submit(&eb); 3434 3435 err_request: 3436 eb_requests_get(&eb); 3437 err = eb_requests_add(&eb, err); 3438 3439 if (eb.fences) 3440 signal_fence_array(&eb, eb.composite_fence ? 3441 eb.composite_fence : 3442 &eb.requests[0]->fence); 3443 3444 if (out_fence) { 3445 if (err == 0) { 3446 fd_install(out_fence_fd, out_fence->file); 3447 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ 3448 args->rsvd2 |= (u64)out_fence_fd << 32; 3449 out_fence_fd = -1; 3450 } else { 3451 fput(out_fence->file); 3452 } 3453 } 3454 3455 if (unlikely(eb.gem_context->syncobj)) { 3456 drm_syncobj_replace_fence(eb.gem_context->syncobj, 3457 eb.composite_fence ? 3458 eb.composite_fence : 3459 &eb.requests[0]->fence); 3460 } 3461 3462 if (!out_fence && eb.composite_fence) 3463 dma_fence_put(eb.composite_fence); 3464 3465 eb_requests_put(&eb); 3466 3467 err_vma: 3468 eb_release_vmas(&eb, true); 3469 WARN_ON(err == -EDEADLK); 3470 i915_gem_ww_ctx_fini(&eb.ww); 3471 3472 if (eb.batch_pool) 3473 intel_gt_buffer_pool_put(eb.batch_pool); 3474 err_engine: 3475 eb_put_engine(&eb); 3476 err_context: 3477 i915_gem_context_put(eb.gem_context); 3478 err_destroy: 3479 eb_destroy(&eb); 3480 err_out_fence: 3481 if (out_fence_fd != -1) 3482 put_unused_fd(out_fence_fd); 3483 err_in_fence: 3484 dma_fence_put(in_fence); 3485 err_ext: 3486 put_fence_array(eb.fences, eb.num_fences); 3487 return err; 3488 } 3489 3490 static size_t eb_element_size(void) 3491 { 3492 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma); 3493 } 3494 3495 static bool check_buffer_count(size_t count) 3496 { 3497 const size_t sz = eb_element_size(); 3498 3499 /* 3500 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup 3501 * array size (see eb_create()). Otherwise, we can accept an array as 3502 * large as can be addressed (though use large arrays at your peril)! 3503 */ 3504 3505 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); 3506 } 3507 3508 int 3509 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 3510 struct drm_file *file) 3511 { 3512 struct drm_i915_private *i915 = to_i915(dev); 3513 struct drm_i915_gem_execbuffer2 *args = data; 3514 struct drm_i915_gem_exec_object2 *exec2_list; 3515 const size_t count = args->buffer_count; 3516 int err; 3517 3518 if (!check_buffer_count(count)) { 3519 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 3520 return -EINVAL; 3521 } 3522 3523 err = i915_gem_check_execbuffer(args); 3524 if (err) 3525 return err; 3526 3527 /* Allocate extra slots for use by the command parser */ 3528 exec2_list = kvmalloc_array(count + 2, eb_element_size(), 3529 __GFP_NOWARN | GFP_KERNEL); 3530 if (exec2_list == NULL) { 3531 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", 3532 count); 3533 return -ENOMEM; 3534 } 3535 if (copy_from_user(exec2_list, 3536 u64_to_user_ptr(args->buffers_ptr), 3537 sizeof(*exec2_list) * count)) { 3538 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); 3539 kvfree(exec2_list); 3540 return -EFAULT; 3541 } 3542 3543 err = i915_gem_do_execbuffer(dev, file, args, exec2_list); 3544 3545 /* 3546 * Now that we have begun execution of the batchbuffer, we ignore 3547 * any new error after this point. Also given that we have already 3548 * updated the associated relocations, we try to write out the current 3549 * object locations irrespective of any error. 3550 */ 3551 if (args->flags & __EXEC_HAS_RELOC) { 3552 struct drm_i915_gem_exec_object2 __user *user_exec_list = 3553 u64_to_user_ptr(args->buffers_ptr); 3554 unsigned int i; 3555 3556 /* Copy the new buffer offsets back to the user's exec list. */ 3557 /* 3558 * Note: count * sizeof(*user_exec_list) does not overflow, 3559 * because we checked 'count' in check_buffer_count(). 3560 * 3561 * And this range already got effectively checked earlier 3562 * when we did the "copy_from_user()" above. 3563 */ 3564 if (!user_write_access_begin(user_exec_list, 3565 count * sizeof(*user_exec_list))) 3566 goto end; 3567 3568 for (i = 0; i < args->buffer_count; i++) { 3569 if (!(exec2_list[i].offset & UPDATE)) 3570 continue; 3571 3572 exec2_list[i].offset = 3573 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 3574 unsafe_put_user(exec2_list[i].offset, 3575 &user_exec_list[i].offset, 3576 end_user); 3577 } 3578 end_user: 3579 user_write_access_end(); 3580 end:; 3581 } 3582 3583 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 3584 kvfree(exec2_list); 3585 return err; 3586 } 3587