1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6 
7 #include <linux/dma-resv.h>
8 #include <linux/highmem.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11 
12 #include <drm/drm_syncobj.h>
13 
14 #include "display/intel_frontbuffer.h"
15 
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gpu_commands.h"
19 #include "gt/intel_gt.h"
20 #include "gt/intel_gt_buffer_pool.h"
21 #include "gt/intel_gt_pm.h"
22 #include "gt/intel_ring.h"
23 
24 #include "pxp/intel_pxp.h"
25 
26 #include "i915_cmd_parser.h"
27 #include "i915_drv.h"
28 #include "i915_file_private.h"
29 #include "i915_gem_clflush.h"
30 #include "i915_gem_context.h"
31 #include "i915_gem_evict.h"
32 #include "i915_gem_ioctls.h"
33 #include "i915_trace.h"
34 #include "i915_user_extensions.h"
35 
36 struct eb_vma {
37 	struct i915_vma *vma;
38 	unsigned int flags;
39 
40 	/** This vma's place in the execbuf reservation list */
41 	struct drm_i915_gem_exec_object2 *exec;
42 	struct list_head bind_link;
43 	struct list_head reloc_link;
44 
45 	struct hlist_node node;
46 	u32 handle;
47 };
48 
49 enum {
50 	FORCE_CPU_RELOC = 1,
51 	FORCE_GTT_RELOC,
52 	FORCE_GPU_RELOC,
53 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
54 };
55 
56 /* __EXEC_OBJECT_ flags > BIT(29) defined in i915_vma.h */
57 #define __EXEC_OBJECT_HAS_PIN		BIT(29)
58 #define __EXEC_OBJECT_HAS_FENCE		BIT(28)
59 #define __EXEC_OBJECT_USERPTR_INIT	BIT(27)
60 #define __EXEC_OBJECT_NEEDS_MAP		BIT(26)
61 #define __EXEC_OBJECT_NEEDS_BIAS	BIT(25)
62 #define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 25) /* all of the above + */
63 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
64 
65 #define __EXEC_HAS_RELOC	BIT(31)
66 #define __EXEC_ENGINE_PINNED	BIT(30)
67 #define __EXEC_USERPTR_USED	BIT(29)
68 #define __EXEC_INTERNAL_FLAGS	(~0u << 29)
69 #define UPDATE			PIN_OFFSET_FIXED
70 
71 #define BATCH_OFFSET_BIAS (256*1024)
72 
73 #define __I915_EXEC_ILLEGAL_FLAGS \
74 	(__I915_EXEC_UNKNOWN_FLAGS | \
75 	 I915_EXEC_CONSTANTS_MASK  | \
76 	 I915_EXEC_RESOURCE_STREAMER)
77 
78 /* Catch emission of unexpected errors for CI! */
79 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
80 #undef EINVAL
81 #define EINVAL ({ \
82 	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
83 	22; \
84 })
85 #endif
86 
87 /**
88  * DOC: User command execution
89  *
90  * Userspace submits commands to be executed on the GPU as an instruction
91  * stream within a GEM object we call a batchbuffer. This instructions may
92  * refer to other GEM objects containing auxiliary state such as kernels,
93  * samplers, render targets and even secondary batchbuffers. Userspace does
94  * not know where in the GPU memory these objects reside and so before the
95  * batchbuffer is passed to the GPU for execution, those addresses in the
96  * batchbuffer and auxiliary objects are updated. This is known as relocation,
97  * or patching. To try and avoid having to relocate each object on the next
98  * execution, userspace is told the location of those objects in this pass,
99  * but this remains just a hint as the kernel may choose a new location for
100  * any object in the future.
101  *
102  * At the level of talking to the hardware, submitting a batchbuffer for the
103  * GPU to execute is to add content to a buffer from which the HW
104  * command streamer is reading.
105  *
106  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
107  *    Execlists, this command is not placed on the same buffer as the
108  *    remaining items.
109  *
110  * 2. Add a command to invalidate caches to the buffer.
111  *
112  * 3. Add a batchbuffer start command to the buffer; the start command is
113  *    essentially a token together with the GPU address of the batchbuffer
114  *    to be executed.
115  *
116  * 4. Add a pipeline flush to the buffer.
117  *
118  * 5. Add a memory write command to the buffer to record when the GPU
119  *    is done executing the batchbuffer. The memory write writes the
120  *    global sequence number of the request, ``i915_request::global_seqno``;
121  *    the i915 driver uses the current value in the register to determine
122  *    if the GPU has completed the batchbuffer.
123  *
124  * 6. Add a user interrupt command to the buffer. This command instructs
125  *    the GPU to issue an interrupt when the command, pipeline flush and
126  *    memory write are completed.
127  *
128  * 7. Inform the hardware of the additional commands added to the buffer
129  *    (by updating the tail pointer).
130  *
131  * Processing an execbuf ioctl is conceptually split up into a few phases.
132  *
133  * 1. Validation - Ensure all the pointers, handles and flags are valid.
134  * 2. Reservation - Assign GPU address space for every object
135  * 3. Relocation - Update any addresses to point to the final locations
136  * 4. Serialisation - Order the request with respect to its dependencies
137  * 5. Construction - Construct a request to execute the batchbuffer
138  * 6. Submission (at some point in the future execution)
139  *
140  * Reserving resources for the execbuf is the most complicated phase. We
141  * neither want to have to migrate the object in the address space, nor do
142  * we want to have to update any relocations pointing to this object. Ideally,
143  * we want to leave the object where it is and for all the existing relocations
144  * to match. If the object is given a new address, or if userspace thinks the
145  * object is elsewhere, we have to parse all the relocation entries and update
146  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
147  * all the target addresses in all of its objects match the value in the
148  * relocation entries and that they all match the presumed offsets given by the
149  * list of execbuffer objects. Using this knowledge, we know that if we haven't
150  * moved any buffers, all the relocation entries are valid and we can skip
151  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
152  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
153  *
154  *      The addresses written in the objects must match the corresponding
155  *      reloc.presumed_offset which in turn must match the corresponding
156  *      execobject.offset.
157  *
158  *      Any render targets written to in the batch must be flagged with
159  *      EXEC_OBJECT_WRITE.
160  *
161  *      To avoid stalling, execobject.offset should match the current
162  *      address of that object within the active context.
163  *
164  * The reservation is done is multiple phases. First we try and keep any
165  * object already bound in its current location - so as long as meets the
166  * constraints imposed by the new execbuffer. Any object left unbound after the
167  * first pass is then fitted into any available idle space. If an object does
168  * not fit, all objects are removed from the reservation and the process rerun
169  * after sorting the objects into a priority order (more difficult to fit
170  * objects are tried first). Failing that, the entire VM is cleared and we try
171  * to fit the execbuf once last time before concluding that it simply will not
172  * fit.
173  *
174  * A small complication to all of this is that we allow userspace not only to
175  * specify an alignment and a size for the object in the address space, but
176  * we also allow userspace to specify the exact offset. This objects are
177  * simpler to place (the location is known a priori) all we have to do is make
178  * sure the space is available.
179  *
180  * Once all the objects are in place, patching up the buried pointers to point
181  * to the final locations is a fairly simple job of walking over the relocation
182  * entry arrays, looking up the right address and rewriting the value into
183  * the object. Simple! ... The relocation entries are stored in user memory
184  * and so to access them we have to copy them into a local buffer. That copy
185  * has to avoid taking any pagefaults as they may lead back to a GEM object
186  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
187  * the relocation into multiple passes. First we try to do everything within an
188  * atomic context (avoid the pagefaults) which requires that we never wait. If
189  * we detect that we may wait, or if we need to fault, then we have to fallback
190  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
191  * bells yet?) Dropping the mutex means that we lose all the state we have
192  * built up so far for the execbuf and we must reset any global data. However,
193  * we do leave the objects pinned in their final locations - which is a
194  * potential issue for concurrent execbufs. Once we have left the mutex, we can
195  * allocate and copy all the relocation entries into a large array at our
196  * leisure, reacquire the mutex, reclaim all the objects and other state and
197  * then proceed to update any incorrect addresses with the objects.
198  *
199  * As we process the relocation entries, we maintain a record of whether the
200  * object is being written to. Using NORELOC, we expect userspace to provide
201  * this information instead. We also check whether we can skip the relocation
202  * by comparing the expected value inside the relocation entry with the target's
203  * final address. If they differ, we have to map the current object and rewrite
204  * the 4 or 8 byte pointer within.
205  *
206  * Serialising an execbuf is quite simple according to the rules of the GEM
207  * ABI. Execution within each context is ordered by the order of submission.
208  * Writes to any GEM object are in order of submission and are exclusive. Reads
209  * from a GEM object are unordered with respect to other reads, but ordered by
210  * writes. A write submitted after a read cannot occur before the read, and
211  * similarly any read submitted after a write cannot occur before the write.
212  * Writes are ordered between engines such that only one write occurs at any
213  * time (completing any reads beforehand) - using semaphores where available
214  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
215  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
216  * reads before starting, and any read (either using set-domain or pread) must
217  * flush all GPU writes before starting. (Note we only employ a barrier before,
218  * we currently rely on userspace not concurrently starting a new execution
219  * whilst reading or writing to an object. This may be an advantage or not
220  * depending on how much you trust userspace not to shoot themselves in the
221  * foot.) Serialisation may just result in the request being inserted into
222  * a DAG awaiting its turn, but most simple is to wait on the CPU until
223  * all dependencies are resolved.
224  *
225  * After all of that, is just a matter of closing the request and handing it to
226  * the hardware (well, leaving it in a queue to be executed). However, we also
227  * offer the ability for batchbuffers to be run with elevated privileges so
228  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
229  * Before any batch is given extra privileges we first must check that it
230  * contains no nefarious instructions, we check that each instruction is from
231  * our whitelist and all registers are also from an allowed list. We first
232  * copy the user's batchbuffer to a shadow (so that the user doesn't have
233  * access to it, either by the CPU or GPU as we scan it) and then parse each
234  * instruction. If everything is ok, we set a flag telling the hardware to run
235  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
236  */
237 
238 struct eb_fence {
239 	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
240 	struct dma_fence *dma_fence;
241 	u64 value;
242 	struct dma_fence_chain *chain_fence;
243 };
244 
245 struct i915_execbuffer {
246 	struct drm_i915_private *i915; /** i915 backpointer */
247 	struct drm_file *file; /** per-file lookup tables and limits */
248 	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
249 	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
250 	struct eb_vma *vma;
251 
252 	struct intel_gt *gt; /* gt for the execbuf */
253 	struct intel_context *context; /* logical state for the request */
254 	struct i915_gem_context *gem_context; /** caller's context */
255 
256 	/** our requests to build */
257 	struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
258 	/** identity of the batch obj/vma */
259 	struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
260 	struct i915_vma *trampoline; /** trampoline used for chaining */
261 
262 	/** used for excl fence in dma_resv objects when > 1 BB submitted */
263 	struct dma_fence *composite_fence;
264 
265 	/** actual size of execobj[] as we may extend it for the cmdparser */
266 	unsigned int buffer_count;
267 
268 	/* number of batches in execbuf IOCTL */
269 	unsigned int num_batches;
270 
271 	/** list of vma not yet bound during reservation phase */
272 	struct list_head unbound;
273 
274 	/** list of vma that have execobj.relocation_count */
275 	struct list_head relocs;
276 
277 	struct i915_gem_ww_ctx ww;
278 
279 	/**
280 	 * Track the most recently used object for relocations, as we
281 	 * frequently have to perform multiple relocations within the same
282 	 * obj/page
283 	 */
284 	struct reloc_cache {
285 		struct drm_mm_node node; /** temporary GTT binding */
286 		unsigned long vaddr; /** Current kmap address */
287 		unsigned long page; /** Currently mapped page index */
288 		unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
289 		bool use_64bit_reloc : 1;
290 		bool has_llc : 1;
291 		bool has_fence : 1;
292 		bool needs_unfenced : 1;
293 	} reloc_cache;
294 
295 	u64 invalid_flags; /** Set of execobj.flags that are invalid */
296 
297 	/** Length of batch within object */
298 	u64 batch_len[MAX_ENGINE_INSTANCE + 1];
299 	u32 batch_start_offset; /** Location within object of batch */
300 	u32 batch_flags; /** Flags composed for emit_bb_start() */
301 	struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
302 
303 	/**
304 	 * Indicate either the size of the hastable used to resolve
305 	 * relocation handles, or if negative that we are using a direct
306 	 * index into the execobj[].
307 	 */
308 	int lut_size;
309 	struct hlist_head *buckets; /** ht for relocation handles */
310 
311 	struct eb_fence *fences;
312 	unsigned long num_fences;
313 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
314 	struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
315 #endif
316 };
317 
318 static int eb_parse(struct i915_execbuffer *eb);
319 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
320 static void eb_unpin_engine(struct i915_execbuffer *eb);
321 static void eb_capture_release(struct i915_execbuffer *eb);
322 
323 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
324 {
325 	return intel_engine_requires_cmd_parser(eb->context->engine) ||
326 		(intel_engine_using_cmd_parser(eb->context->engine) &&
327 		 eb->args->batch_len);
328 }
329 
330 static int eb_create(struct i915_execbuffer *eb)
331 {
332 	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
333 		unsigned int size = 1 + ilog2(eb->buffer_count);
334 
335 		/*
336 		 * Without a 1:1 association between relocation handles and
337 		 * the execobject[] index, we instead create a hashtable.
338 		 * We size it dynamically based on available memory, starting
339 		 * first with 1:1 assocative hash and scaling back until
340 		 * the allocation succeeds.
341 		 *
342 		 * Later on we use a positive lut_size to indicate we are
343 		 * using this hashtable, and a negative value to indicate a
344 		 * direct lookup.
345 		 */
346 		do {
347 			gfp_t flags;
348 
349 			/* While we can still reduce the allocation size, don't
350 			 * raise a warning and allow the allocation to fail.
351 			 * On the last pass though, we want to try as hard
352 			 * as possible to perform the allocation and warn
353 			 * if it fails.
354 			 */
355 			flags = GFP_KERNEL;
356 			if (size > 1)
357 				flags |= __GFP_NORETRY | __GFP_NOWARN;
358 
359 			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
360 					      flags);
361 			if (eb->buckets)
362 				break;
363 		} while (--size);
364 
365 		if (unlikely(!size))
366 			return -ENOMEM;
367 
368 		eb->lut_size = size;
369 	} else {
370 		eb->lut_size = -eb->buffer_count;
371 	}
372 
373 	return 0;
374 }
375 
376 static bool
377 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
378 		 const struct i915_vma *vma,
379 		 unsigned int flags)
380 {
381 	const u64 start = i915_vma_offset(vma);
382 	const u64 size = i915_vma_size(vma);
383 
384 	if (size < entry->pad_to_size)
385 		return true;
386 
387 	if (entry->alignment && !IS_ALIGNED(start, entry->alignment))
388 		return true;
389 
390 	if (flags & EXEC_OBJECT_PINNED &&
391 	    start != entry->offset)
392 		return true;
393 
394 	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
395 	    start < BATCH_OFFSET_BIAS)
396 		return true;
397 
398 	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
399 	    (start + size + 4095) >> 32)
400 		return true;
401 
402 	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
403 	    !i915_vma_is_map_and_fenceable(vma))
404 		return true;
405 
406 	return false;
407 }
408 
409 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
410 			unsigned int exec_flags)
411 {
412 	u64 pin_flags = 0;
413 
414 	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
415 		pin_flags |= PIN_GLOBAL;
416 
417 	/*
418 	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
419 	 * limit address to the first 4GBs for unflagged objects.
420 	 */
421 	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
422 		pin_flags |= PIN_ZONE_4G;
423 
424 	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
425 		pin_flags |= PIN_MAPPABLE;
426 
427 	if (exec_flags & EXEC_OBJECT_PINNED)
428 		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
429 	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
430 		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
431 
432 	return pin_flags;
433 }
434 
435 static inline int
436 eb_pin_vma(struct i915_execbuffer *eb,
437 	   const struct drm_i915_gem_exec_object2 *entry,
438 	   struct eb_vma *ev)
439 {
440 	struct i915_vma *vma = ev->vma;
441 	u64 pin_flags;
442 	int err;
443 
444 	if (vma->node.size)
445 		pin_flags =  __i915_vma_offset(vma);
446 	else
447 		pin_flags = entry->offset & PIN_OFFSET_MASK;
448 
449 	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE;
450 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
451 		pin_flags |= PIN_GLOBAL;
452 
453 	/* Attempt to reuse the current location if available */
454 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
455 	if (err == -EDEADLK)
456 		return err;
457 
458 	if (unlikely(err)) {
459 		if (entry->flags & EXEC_OBJECT_PINNED)
460 			return err;
461 
462 		/* Failing that pick any _free_ space if suitable */
463 		err = i915_vma_pin_ww(vma, &eb->ww,
464 					     entry->pad_to_size,
465 					     entry->alignment,
466 					     eb_pin_flags(entry, ev->flags) |
467 					     PIN_USER | PIN_NOEVICT | PIN_VALIDATE);
468 		if (unlikely(err))
469 			return err;
470 	}
471 
472 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
473 		err = i915_vma_pin_fence(vma);
474 		if (unlikely(err))
475 			return err;
476 
477 		if (vma->fence)
478 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
479 	}
480 
481 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
482 	if (eb_vma_misplaced(entry, vma, ev->flags))
483 		return -EBADSLT;
484 
485 	return 0;
486 }
487 
488 static inline void
489 eb_unreserve_vma(struct eb_vma *ev)
490 {
491 	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
492 		__i915_vma_unpin_fence(ev->vma);
493 
494 	ev->flags &= ~__EXEC_OBJECT_RESERVED;
495 }
496 
497 static int
498 eb_validate_vma(struct i915_execbuffer *eb,
499 		struct drm_i915_gem_exec_object2 *entry,
500 		struct i915_vma *vma)
501 {
502 	/* Relocations are disallowed for all platforms after TGL-LP.  This
503 	 * also covers all platforms with local memory.
504 	 */
505 	if (entry->relocation_count &&
506 	    GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
507 		return -EINVAL;
508 
509 	if (unlikely(entry->flags & eb->invalid_flags))
510 		return -EINVAL;
511 
512 	if (unlikely(entry->alignment &&
513 		     !is_power_of_2_u64(entry->alignment)))
514 		return -EINVAL;
515 
516 	/*
517 	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
518 	 * any non-page-aligned or non-canonical addresses.
519 	 */
520 	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
521 		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
522 		return -EINVAL;
523 
524 	/* pad_to_size was once a reserved field, so sanitize it */
525 	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
526 		if (unlikely(offset_in_page(entry->pad_to_size)))
527 			return -EINVAL;
528 	} else {
529 		entry->pad_to_size = 0;
530 	}
531 	/*
532 	 * From drm_mm perspective address space is continuous,
533 	 * so from this point we're always using non-canonical
534 	 * form internally.
535 	 */
536 	entry->offset = gen8_noncanonical_addr(entry->offset);
537 
538 	if (!eb->reloc_cache.has_fence) {
539 		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
540 	} else {
541 		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
542 		     eb->reloc_cache.needs_unfenced) &&
543 		    i915_gem_object_is_tiled(vma->obj))
544 			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
545 	}
546 
547 	return 0;
548 }
549 
550 static inline bool
551 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
552 {
553 	return eb->args->flags & I915_EXEC_BATCH_FIRST ?
554 		buffer_idx < eb->num_batches :
555 		buffer_idx >= eb->args->buffer_count - eb->num_batches;
556 }
557 
558 static int
559 eb_add_vma(struct i915_execbuffer *eb,
560 	   unsigned int *current_batch,
561 	   unsigned int i,
562 	   struct i915_vma *vma)
563 {
564 	struct drm_i915_private *i915 = eb->i915;
565 	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
566 	struct eb_vma *ev = &eb->vma[i];
567 
568 	ev->vma = vma;
569 	ev->exec = entry;
570 	ev->flags = entry->flags;
571 
572 	if (eb->lut_size > 0) {
573 		ev->handle = entry->handle;
574 		hlist_add_head(&ev->node,
575 			       &eb->buckets[hash_32(entry->handle,
576 						    eb->lut_size)]);
577 	}
578 
579 	if (entry->relocation_count)
580 		list_add_tail(&ev->reloc_link, &eb->relocs);
581 
582 	/*
583 	 * SNA is doing fancy tricks with compressing batch buffers, which leads
584 	 * to negative relocation deltas. Usually that works out ok since the
585 	 * relocate address is still positive, except when the batch is placed
586 	 * very low in the GTT. Ensure this doesn't happen.
587 	 *
588 	 * Note that actual hangs have only been observed on gen7, but for
589 	 * paranoia do it everywhere.
590 	 */
591 	if (is_batch_buffer(eb, i)) {
592 		if (entry->relocation_count &&
593 		    !(ev->flags & EXEC_OBJECT_PINNED))
594 			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
595 		if (eb->reloc_cache.has_fence)
596 			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
597 
598 		eb->batches[*current_batch] = ev;
599 
600 		if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
601 			drm_dbg(&i915->drm,
602 				"Attempting to use self-modifying batch buffer\n");
603 			return -EINVAL;
604 		}
605 
606 		if (range_overflows_t(u64,
607 				      eb->batch_start_offset,
608 				      eb->args->batch_len,
609 				      ev->vma->size)) {
610 			drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
611 			return -EINVAL;
612 		}
613 
614 		if (eb->args->batch_len == 0)
615 			eb->batch_len[*current_batch] = ev->vma->size -
616 				eb->batch_start_offset;
617 		else
618 			eb->batch_len[*current_batch] = eb->args->batch_len;
619 		if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
620 			drm_dbg(&i915->drm, "Invalid batch length\n");
621 			return -EINVAL;
622 		}
623 
624 		++*current_batch;
625 	}
626 
627 	return 0;
628 }
629 
630 static inline int use_cpu_reloc(const struct reloc_cache *cache,
631 				const struct drm_i915_gem_object *obj)
632 {
633 	if (!i915_gem_object_has_struct_page(obj))
634 		return false;
635 
636 	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
637 		return true;
638 
639 	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
640 		return false;
641 
642 	return (cache->has_llc ||
643 		obj->cache_dirty ||
644 		obj->cache_level != I915_CACHE_NONE);
645 }
646 
647 static int eb_reserve_vma(struct i915_execbuffer *eb,
648 			  struct eb_vma *ev,
649 			  u64 pin_flags)
650 {
651 	struct drm_i915_gem_exec_object2 *entry = ev->exec;
652 	struct i915_vma *vma = ev->vma;
653 	int err;
654 
655 	if (drm_mm_node_allocated(&vma->node) &&
656 	    eb_vma_misplaced(entry, vma, ev->flags)) {
657 		err = i915_vma_unbind(vma);
658 		if (err)
659 			return err;
660 	}
661 
662 	err = i915_vma_pin_ww(vma, &eb->ww,
663 			   entry->pad_to_size, entry->alignment,
664 			   eb_pin_flags(entry, ev->flags) | pin_flags);
665 	if (err)
666 		return err;
667 
668 	if (entry->offset != i915_vma_offset(vma)) {
669 		entry->offset = i915_vma_offset(vma) | UPDATE;
670 		eb->args->flags |= __EXEC_HAS_RELOC;
671 	}
672 
673 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
674 		err = i915_vma_pin_fence(vma);
675 		if (unlikely(err))
676 			return err;
677 
678 		if (vma->fence)
679 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
680 	}
681 
682 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
683 	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
684 
685 	return 0;
686 }
687 
688 static bool eb_unbind(struct i915_execbuffer *eb, bool force)
689 {
690 	const unsigned int count = eb->buffer_count;
691 	unsigned int i;
692 	struct list_head last;
693 	bool unpinned = false;
694 
695 	/* Resort *all* the objects into priority order */
696 	INIT_LIST_HEAD(&eb->unbound);
697 	INIT_LIST_HEAD(&last);
698 
699 	for (i = 0; i < count; i++) {
700 		struct eb_vma *ev = &eb->vma[i];
701 		unsigned int flags = ev->flags;
702 
703 		if (!force && flags & EXEC_OBJECT_PINNED &&
704 		    flags & __EXEC_OBJECT_HAS_PIN)
705 			continue;
706 
707 		unpinned = true;
708 		eb_unreserve_vma(ev);
709 
710 		if (flags & EXEC_OBJECT_PINNED)
711 			/* Pinned must have their slot */
712 			list_add(&ev->bind_link, &eb->unbound);
713 		else if (flags & __EXEC_OBJECT_NEEDS_MAP)
714 			/* Map require the lowest 256MiB (aperture) */
715 			list_add_tail(&ev->bind_link, &eb->unbound);
716 		else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
717 			/* Prioritise 4GiB region for restricted bo */
718 			list_add(&ev->bind_link, &last);
719 		else
720 			list_add_tail(&ev->bind_link, &last);
721 	}
722 
723 	list_splice_tail(&last, &eb->unbound);
724 	return unpinned;
725 }
726 
727 static int eb_reserve(struct i915_execbuffer *eb)
728 {
729 	struct eb_vma *ev;
730 	unsigned int pass;
731 	int err = 0;
732 	bool unpinned;
733 
734 	/*
735 	 * Attempt to pin all of the buffers into the GTT.
736 	 * This is done in 2 phases:
737 	 *
738 	 * 1. Unbind all objects that do not match the GTT constraints for
739 	 *    the execbuffer (fenceable, mappable, alignment etc).
740 	 * 2. Bind new objects.
741 	 *
742 	 * This avoid unnecessary unbinding of later objects in order to make
743 	 * room for the earlier objects *unless* we need to defragment.
744 	 *
745 	 * Defragmenting is skipped if all objects are pinned at a fixed location.
746 	 */
747 	for (pass = 0; pass <= 2; pass++) {
748 		int pin_flags = PIN_USER | PIN_VALIDATE;
749 
750 		if (pass == 0)
751 			pin_flags |= PIN_NONBLOCK;
752 
753 		if (pass >= 1)
754 			unpinned = eb_unbind(eb, pass == 2);
755 
756 		if (pass == 2) {
757 			err = mutex_lock_interruptible(&eb->context->vm->mutex);
758 			if (!err) {
759 				err = i915_gem_evict_vm(eb->context->vm, &eb->ww);
760 				mutex_unlock(&eb->context->vm->mutex);
761 			}
762 			if (err)
763 				return err;
764 		}
765 
766 		list_for_each_entry(ev, &eb->unbound, bind_link) {
767 			err = eb_reserve_vma(eb, ev, pin_flags);
768 			if (err)
769 				break;
770 		}
771 
772 		if (err != -ENOSPC)
773 			break;
774 	}
775 
776 	return err;
777 }
778 
779 static int eb_select_context(struct i915_execbuffer *eb)
780 {
781 	struct i915_gem_context *ctx;
782 
783 	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
784 	if (unlikely(IS_ERR(ctx)))
785 		return PTR_ERR(ctx);
786 
787 	eb->gem_context = ctx;
788 	if (i915_gem_context_has_full_ppgtt(ctx))
789 		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
790 
791 	return 0;
792 }
793 
794 static int __eb_add_lut(struct i915_execbuffer *eb,
795 			u32 handle, struct i915_vma *vma)
796 {
797 	struct i915_gem_context *ctx = eb->gem_context;
798 	struct i915_lut_handle *lut;
799 	int err;
800 
801 	lut = i915_lut_handle_alloc();
802 	if (unlikely(!lut))
803 		return -ENOMEM;
804 
805 	i915_vma_get(vma);
806 	if (!atomic_fetch_inc(&vma->open_count))
807 		i915_vma_reopen(vma);
808 	lut->handle = handle;
809 	lut->ctx = ctx;
810 
811 	/* Check that the context hasn't been closed in the meantime */
812 	err = -EINTR;
813 	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
814 		if (likely(!i915_gem_context_is_closed(ctx)))
815 			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
816 		else
817 			err = -ENOENT;
818 		if (err == 0) { /* And nor has this handle */
819 			struct drm_i915_gem_object *obj = vma->obj;
820 
821 			spin_lock(&obj->lut_lock);
822 			if (idr_find(&eb->file->object_idr, handle) == obj) {
823 				list_add(&lut->obj_link, &obj->lut_list);
824 			} else {
825 				radix_tree_delete(&ctx->handles_vma, handle);
826 				err = -ENOENT;
827 			}
828 			spin_unlock(&obj->lut_lock);
829 		}
830 		mutex_unlock(&ctx->lut_mutex);
831 	}
832 	if (unlikely(err))
833 		goto err;
834 
835 	return 0;
836 
837 err:
838 	i915_vma_close(vma);
839 	i915_vma_put(vma);
840 	i915_lut_handle_free(lut);
841 	return err;
842 }
843 
844 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
845 {
846 	struct i915_address_space *vm = eb->context->vm;
847 
848 	do {
849 		struct drm_i915_gem_object *obj;
850 		struct i915_vma *vma;
851 		int err;
852 
853 		rcu_read_lock();
854 		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
855 		if (likely(vma && vma->vm == vm))
856 			vma = i915_vma_tryget(vma);
857 		rcu_read_unlock();
858 		if (likely(vma))
859 			return vma;
860 
861 		obj = i915_gem_object_lookup(eb->file, handle);
862 		if (unlikely(!obj))
863 			return ERR_PTR(-ENOENT);
864 
865 		/*
866 		 * If the user has opted-in for protected-object tracking, make
867 		 * sure the object encryption can be used.
868 		 * We only need to do this when the object is first used with
869 		 * this context, because the context itself will be banned when
870 		 * the protected objects become invalid.
871 		 */
872 		if (i915_gem_context_uses_protected_content(eb->gem_context) &&
873 		    i915_gem_object_is_protected(obj)) {
874 			err = intel_pxp_key_check(&vm->gt->pxp, obj, true);
875 			if (err) {
876 				i915_gem_object_put(obj);
877 				return ERR_PTR(err);
878 			}
879 		}
880 
881 		vma = i915_vma_instance(obj, vm, NULL);
882 		if (IS_ERR(vma)) {
883 			i915_gem_object_put(obj);
884 			return vma;
885 		}
886 
887 		err = __eb_add_lut(eb, handle, vma);
888 		if (likely(!err))
889 			return vma;
890 
891 		i915_gem_object_put(obj);
892 		if (err != -EEXIST)
893 			return ERR_PTR(err);
894 	} while (1);
895 }
896 
897 static int eb_lookup_vmas(struct i915_execbuffer *eb)
898 {
899 	unsigned int i, current_batch = 0;
900 	int err = 0;
901 
902 	INIT_LIST_HEAD(&eb->relocs);
903 
904 	for (i = 0; i < eb->buffer_count; i++) {
905 		struct i915_vma *vma;
906 
907 		vma = eb_lookup_vma(eb, eb->exec[i].handle);
908 		if (IS_ERR(vma)) {
909 			err = PTR_ERR(vma);
910 			goto err;
911 		}
912 
913 		err = eb_validate_vma(eb, &eb->exec[i], vma);
914 		if (unlikely(err)) {
915 			i915_vma_put(vma);
916 			goto err;
917 		}
918 
919 		err = eb_add_vma(eb, &current_batch, i, vma);
920 		if (err)
921 			return err;
922 
923 		if (i915_gem_object_is_userptr(vma->obj)) {
924 			err = i915_gem_object_userptr_submit_init(vma->obj);
925 			if (err) {
926 				if (i + 1 < eb->buffer_count) {
927 					/*
928 					 * Execbuffer code expects last vma entry to be NULL,
929 					 * since we already initialized this entry,
930 					 * set the next value to NULL or we mess up
931 					 * cleanup handling.
932 					 */
933 					eb->vma[i + 1].vma = NULL;
934 				}
935 
936 				return err;
937 			}
938 
939 			eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
940 			eb->args->flags |= __EXEC_USERPTR_USED;
941 		}
942 	}
943 
944 	return 0;
945 
946 err:
947 	eb->vma[i].vma = NULL;
948 	return err;
949 }
950 
951 static int eb_lock_vmas(struct i915_execbuffer *eb)
952 {
953 	unsigned int i;
954 	int err;
955 
956 	for (i = 0; i < eb->buffer_count; i++) {
957 		struct eb_vma *ev = &eb->vma[i];
958 		struct i915_vma *vma = ev->vma;
959 
960 		err = i915_gem_object_lock(vma->obj, &eb->ww);
961 		if (err)
962 			return err;
963 	}
964 
965 	return 0;
966 }
967 
968 static int eb_validate_vmas(struct i915_execbuffer *eb)
969 {
970 	unsigned int i;
971 	int err;
972 
973 	INIT_LIST_HEAD(&eb->unbound);
974 
975 	err = eb_lock_vmas(eb);
976 	if (err)
977 		return err;
978 
979 	for (i = 0; i < eb->buffer_count; i++) {
980 		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
981 		struct eb_vma *ev = &eb->vma[i];
982 		struct i915_vma *vma = ev->vma;
983 
984 		err = eb_pin_vma(eb, entry, ev);
985 		if (err == -EDEADLK)
986 			return err;
987 
988 		if (!err) {
989 			if (entry->offset != i915_vma_offset(vma)) {
990 				entry->offset = i915_vma_offset(vma) | UPDATE;
991 				eb->args->flags |= __EXEC_HAS_RELOC;
992 			}
993 		} else {
994 			eb_unreserve_vma(ev);
995 
996 			list_add_tail(&ev->bind_link, &eb->unbound);
997 			if (drm_mm_node_allocated(&vma->node)) {
998 				err = i915_vma_unbind(vma);
999 				if (err)
1000 					return err;
1001 			}
1002 		}
1003 
1004 		/* Reserve enough slots to accommodate composite fences */
1005 		err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches);
1006 		if (err)
1007 			return err;
1008 
1009 		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
1010 			   eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1011 	}
1012 
1013 	if (!list_empty(&eb->unbound))
1014 		return eb_reserve(eb);
1015 
1016 	return 0;
1017 }
1018 
1019 static struct eb_vma *
1020 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
1021 {
1022 	if (eb->lut_size < 0) {
1023 		if (handle >= -eb->lut_size)
1024 			return NULL;
1025 		return &eb->vma[handle];
1026 	} else {
1027 		struct hlist_head *head;
1028 		struct eb_vma *ev;
1029 
1030 		head = &eb->buckets[hash_32(handle, eb->lut_size)];
1031 		hlist_for_each_entry(ev, head, node) {
1032 			if (ev->handle == handle)
1033 				return ev;
1034 		}
1035 		return NULL;
1036 	}
1037 }
1038 
1039 static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
1040 {
1041 	const unsigned int count = eb->buffer_count;
1042 	unsigned int i;
1043 
1044 	for (i = 0; i < count; i++) {
1045 		struct eb_vma *ev = &eb->vma[i];
1046 		struct i915_vma *vma = ev->vma;
1047 
1048 		if (!vma)
1049 			break;
1050 
1051 		eb_unreserve_vma(ev);
1052 
1053 		if (final)
1054 			i915_vma_put(vma);
1055 	}
1056 
1057 	eb_capture_release(eb);
1058 	eb_unpin_engine(eb);
1059 }
1060 
1061 static void eb_destroy(const struct i915_execbuffer *eb)
1062 {
1063 	if (eb->lut_size > 0)
1064 		kfree(eb->buckets);
1065 }
1066 
1067 static inline u64
1068 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1069 		  const struct i915_vma *target)
1070 {
1071 	return gen8_canonical_addr((int)reloc->delta + i915_vma_offset(target));
1072 }
1073 
1074 static void reloc_cache_init(struct reloc_cache *cache,
1075 			     struct drm_i915_private *i915)
1076 {
1077 	cache->page = -1;
1078 	cache->vaddr = 0;
1079 	/* Must be a variable in the struct to allow GCC to unroll. */
1080 	cache->graphics_ver = GRAPHICS_VER(i915);
1081 	cache->has_llc = HAS_LLC(i915);
1082 	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1083 	cache->has_fence = cache->graphics_ver < 4;
1084 	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1085 	cache->node.flags = 0;
1086 }
1087 
1088 static inline void *unmask_page(unsigned long p)
1089 {
1090 	return (void *)(uintptr_t)(p & PAGE_MASK);
1091 }
1092 
1093 static inline unsigned int unmask_flags(unsigned long p)
1094 {
1095 	return p & ~PAGE_MASK;
1096 }
1097 
1098 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1099 
1100 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1101 {
1102 	struct drm_i915_private *i915 =
1103 		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1104 	return to_gt(i915)->ggtt;
1105 }
1106 
1107 static void reloc_cache_unmap(struct reloc_cache *cache)
1108 {
1109 	void *vaddr;
1110 
1111 	if (!cache->vaddr)
1112 		return;
1113 
1114 	vaddr = unmask_page(cache->vaddr);
1115 	if (cache->vaddr & KMAP)
1116 		kunmap_atomic(vaddr);
1117 	else
1118 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1119 }
1120 
1121 static void reloc_cache_remap(struct reloc_cache *cache,
1122 			      struct drm_i915_gem_object *obj)
1123 {
1124 	void *vaddr;
1125 
1126 	if (!cache->vaddr)
1127 		return;
1128 
1129 	if (cache->vaddr & KMAP) {
1130 		struct page *page = i915_gem_object_get_page(obj, cache->page);
1131 
1132 		vaddr = kmap_atomic(page);
1133 		cache->vaddr = unmask_flags(cache->vaddr) |
1134 			(unsigned long)vaddr;
1135 	} else {
1136 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1137 		unsigned long offset;
1138 
1139 		offset = cache->node.start;
1140 		if (!drm_mm_node_allocated(&cache->node))
1141 			offset += cache->page << PAGE_SHIFT;
1142 
1143 		cache->vaddr = (unsigned long)
1144 			io_mapping_map_atomic_wc(&ggtt->iomap, offset);
1145 	}
1146 }
1147 
1148 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1149 {
1150 	void *vaddr;
1151 
1152 	if (!cache->vaddr)
1153 		return;
1154 
1155 	vaddr = unmask_page(cache->vaddr);
1156 	if (cache->vaddr & KMAP) {
1157 		struct drm_i915_gem_object *obj =
1158 			(struct drm_i915_gem_object *)cache->node.mm;
1159 		if (cache->vaddr & CLFLUSH_AFTER)
1160 			mb();
1161 
1162 		kunmap_atomic(vaddr);
1163 		i915_gem_object_finish_access(obj);
1164 	} else {
1165 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1166 
1167 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1168 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1169 
1170 		if (drm_mm_node_allocated(&cache->node)) {
1171 			ggtt->vm.clear_range(&ggtt->vm,
1172 					     cache->node.start,
1173 					     cache->node.size);
1174 			mutex_lock(&ggtt->vm.mutex);
1175 			drm_mm_remove_node(&cache->node);
1176 			mutex_unlock(&ggtt->vm.mutex);
1177 		} else {
1178 			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1179 		}
1180 	}
1181 
1182 	cache->vaddr = 0;
1183 	cache->page = -1;
1184 }
1185 
1186 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1187 			struct reloc_cache *cache,
1188 			unsigned long pageno)
1189 {
1190 	void *vaddr;
1191 	struct page *page;
1192 
1193 	if (cache->vaddr) {
1194 		kunmap_atomic(unmask_page(cache->vaddr));
1195 	} else {
1196 		unsigned int flushes;
1197 		int err;
1198 
1199 		err = i915_gem_object_prepare_write(obj, &flushes);
1200 		if (err)
1201 			return ERR_PTR(err);
1202 
1203 		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1204 		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1205 
1206 		cache->vaddr = flushes | KMAP;
1207 		cache->node.mm = (void *)obj;
1208 		if (flushes)
1209 			mb();
1210 	}
1211 
1212 	page = i915_gem_object_get_page(obj, pageno);
1213 	if (!obj->mm.dirty)
1214 		set_page_dirty(page);
1215 
1216 	vaddr = kmap_atomic(page);
1217 	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1218 	cache->page = pageno;
1219 
1220 	return vaddr;
1221 }
1222 
1223 static void *reloc_iomap(struct i915_vma *batch,
1224 			 struct i915_execbuffer *eb,
1225 			 unsigned long page)
1226 {
1227 	struct drm_i915_gem_object *obj = batch->obj;
1228 	struct reloc_cache *cache = &eb->reloc_cache;
1229 	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1230 	unsigned long offset;
1231 	void *vaddr;
1232 
1233 	if (cache->vaddr) {
1234 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1235 		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1236 	} else {
1237 		struct i915_vma *vma = ERR_PTR(-ENODEV);
1238 		int err;
1239 
1240 		if (i915_gem_object_is_tiled(obj))
1241 			return ERR_PTR(-EINVAL);
1242 
1243 		if (use_cpu_reloc(cache, obj))
1244 			return NULL;
1245 
1246 		err = i915_gem_object_set_to_gtt_domain(obj, true);
1247 		if (err)
1248 			return ERR_PTR(err);
1249 
1250 		/*
1251 		 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch
1252 		 * VMA from the object list because we no longer pin.
1253 		 *
1254 		 * Only attempt to pin the batch buffer to ggtt if the current batch
1255 		 * is not inside ggtt, or the batch buffer is not misplaced.
1256 		 */
1257 		if (!i915_is_ggtt(batch->vm) ||
1258 		    !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) {
1259 			vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1260 							  PIN_MAPPABLE |
1261 							  PIN_NONBLOCK /* NOWARN */ |
1262 							  PIN_NOEVICT);
1263 		}
1264 
1265 		if (vma == ERR_PTR(-EDEADLK))
1266 			return vma;
1267 
1268 		if (IS_ERR(vma)) {
1269 			memset(&cache->node, 0, sizeof(cache->node));
1270 			mutex_lock(&ggtt->vm.mutex);
1271 			err = drm_mm_insert_node_in_range
1272 				(&ggtt->vm.mm, &cache->node,
1273 				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1274 				 0, ggtt->mappable_end,
1275 				 DRM_MM_INSERT_LOW);
1276 			mutex_unlock(&ggtt->vm.mutex);
1277 			if (err) /* no inactive aperture space, use cpu reloc */
1278 				return NULL;
1279 		} else {
1280 			cache->node.start = i915_ggtt_offset(vma);
1281 			cache->node.mm = (void *)vma;
1282 		}
1283 	}
1284 
1285 	offset = cache->node.start;
1286 	if (drm_mm_node_allocated(&cache->node)) {
1287 		ggtt->vm.insert_page(&ggtt->vm,
1288 				     i915_gem_object_get_dma_address(obj, page),
1289 				     offset, I915_CACHE_NONE, 0);
1290 	} else {
1291 		offset += page << PAGE_SHIFT;
1292 	}
1293 
1294 	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1295 							 offset);
1296 	cache->page = page;
1297 	cache->vaddr = (unsigned long)vaddr;
1298 
1299 	return vaddr;
1300 }
1301 
1302 static void *reloc_vaddr(struct i915_vma *vma,
1303 			 struct i915_execbuffer *eb,
1304 			 unsigned long page)
1305 {
1306 	struct reloc_cache *cache = &eb->reloc_cache;
1307 	void *vaddr;
1308 
1309 	if (cache->page == page) {
1310 		vaddr = unmask_page(cache->vaddr);
1311 	} else {
1312 		vaddr = NULL;
1313 		if ((cache->vaddr & KMAP) == 0)
1314 			vaddr = reloc_iomap(vma, eb, page);
1315 		if (!vaddr)
1316 			vaddr = reloc_kmap(vma->obj, cache, page);
1317 	}
1318 
1319 	return vaddr;
1320 }
1321 
1322 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1323 {
1324 	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1325 		if (flushes & CLFLUSH_BEFORE)
1326 			drm_clflush_virt_range(addr, sizeof(*addr));
1327 
1328 		*addr = value;
1329 
1330 		/*
1331 		 * Writes to the same cacheline are serialised by the CPU
1332 		 * (including clflush). On the write path, we only require
1333 		 * that it hits memory in an orderly fashion and place
1334 		 * mb barriers at the start and end of the relocation phase
1335 		 * to ensure ordering of clflush wrt to the system.
1336 		 */
1337 		if (flushes & CLFLUSH_AFTER)
1338 			drm_clflush_virt_range(addr, sizeof(*addr));
1339 	} else
1340 		*addr = value;
1341 }
1342 
1343 static u64
1344 relocate_entry(struct i915_vma *vma,
1345 	       const struct drm_i915_gem_relocation_entry *reloc,
1346 	       struct i915_execbuffer *eb,
1347 	       const struct i915_vma *target)
1348 {
1349 	u64 target_addr = relocation_target(reloc, target);
1350 	u64 offset = reloc->offset;
1351 	bool wide = eb->reloc_cache.use_64bit_reloc;
1352 	void *vaddr;
1353 
1354 repeat:
1355 	vaddr = reloc_vaddr(vma, eb,
1356 			    offset >> PAGE_SHIFT);
1357 	if (IS_ERR(vaddr))
1358 		return PTR_ERR(vaddr);
1359 
1360 	GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1361 	clflush_write32(vaddr + offset_in_page(offset),
1362 			lower_32_bits(target_addr),
1363 			eb->reloc_cache.vaddr);
1364 
1365 	if (wide) {
1366 		offset += sizeof(u32);
1367 		target_addr >>= 32;
1368 		wide = false;
1369 		goto repeat;
1370 	}
1371 
1372 	return target->node.start | UPDATE;
1373 }
1374 
1375 static u64
1376 eb_relocate_entry(struct i915_execbuffer *eb,
1377 		  struct eb_vma *ev,
1378 		  const struct drm_i915_gem_relocation_entry *reloc)
1379 {
1380 	struct drm_i915_private *i915 = eb->i915;
1381 	struct eb_vma *target;
1382 	int err;
1383 
1384 	/* we've already hold a reference to all valid objects */
1385 	target = eb_get_vma(eb, reloc->target_handle);
1386 	if (unlikely(!target))
1387 		return -ENOENT;
1388 
1389 	/* Validate that the target is in a valid r/w GPU domain */
1390 	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1391 		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1392 			  "target %d offset %d "
1393 			  "read %08x write %08x",
1394 			  reloc->target_handle,
1395 			  (int) reloc->offset,
1396 			  reloc->read_domains,
1397 			  reloc->write_domain);
1398 		return -EINVAL;
1399 	}
1400 	if (unlikely((reloc->write_domain | reloc->read_domains)
1401 		     & ~I915_GEM_GPU_DOMAINS)) {
1402 		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1403 			  "target %d offset %d "
1404 			  "read %08x write %08x",
1405 			  reloc->target_handle,
1406 			  (int) reloc->offset,
1407 			  reloc->read_domains,
1408 			  reloc->write_domain);
1409 		return -EINVAL;
1410 	}
1411 
1412 	if (reloc->write_domain) {
1413 		target->flags |= EXEC_OBJECT_WRITE;
1414 
1415 		/*
1416 		 * Sandybridge PPGTT errata: We need a global gtt mapping
1417 		 * for MI and pipe_control writes because the gpu doesn't
1418 		 * properly redirect them through the ppgtt for non_secure
1419 		 * batchbuffers.
1420 		 */
1421 		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1422 		    GRAPHICS_VER(eb->i915) == 6 &&
1423 		    !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
1424 			struct i915_vma *vma = target->vma;
1425 
1426 			reloc_cache_unmap(&eb->reloc_cache);
1427 			mutex_lock(&vma->vm->mutex);
1428 			err = i915_vma_bind(target->vma,
1429 					    target->vma->obj->cache_level,
1430 					    PIN_GLOBAL, NULL, NULL);
1431 			mutex_unlock(&vma->vm->mutex);
1432 			reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
1433 			if (err)
1434 				return err;
1435 		}
1436 	}
1437 
1438 	/*
1439 	 * If the relocation already has the right value in it, no
1440 	 * more work needs to be done.
1441 	 */
1442 	if (!DBG_FORCE_RELOC &&
1443 	    gen8_canonical_addr(i915_vma_offset(target->vma)) == reloc->presumed_offset)
1444 		return 0;
1445 
1446 	/* Check that the relocation address is valid... */
1447 	if (unlikely(reloc->offset >
1448 		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1449 		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1450 			  "target %d offset %d size %d.\n",
1451 			  reloc->target_handle,
1452 			  (int)reloc->offset,
1453 			  (int)ev->vma->size);
1454 		return -EINVAL;
1455 	}
1456 	if (unlikely(reloc->offset & 3)) {
1457 		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1458 			  "target %d offset %d.\n",
1459 			  reloc->target_handle,
1460 			  (int)reloc->offset);
1461 		return -EINVAL;
1462 	}
1463 
1464 	/*
1465 	 * If we write into the object, we need to force the synchronisation
1466 	 * barrier, either with an asynchronous clflush or if we executed the
1467 	 * patching using the GPU (though that should be serialised by the
1468 	 * timeline). To be completely sure, and since we are required to
1469 	 * do relocations we are already stalling, disable the user's opt
1470 	 * out of our synchronisation.
1471 	 */
1472 	ev->flags &= ~EXEC_OBJECT_ASYNC;
1473 
1474 	/* and update the user's relocation entry */
1475 	return relocate_entry(ev->vma, reloc, eb, target->vma);
1476 }
1477 
1478 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1479 {
1480 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1481 	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1482 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1483 	struct drm_i915_gem_relocation_entry __user *urelocs =
1484 		u64_to_user_ptr(entry->relocs_ptr);
1485 	unsigned long remain = entry->relocation_count;
1486 
1487 	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1488 		return -EINVAL;
1489 
1490 	/*
1491 	 * We must check that the entire relocation array is safe
1492 	 * to read. However, if the array is not writable the user loses
1493 	 * the updated relocation values.
1494 	 */
1495 	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1496 		return -EFAULT;
1497 
1498 	do {
1499 		struct drm_i915_gem_relocation_entry *r = stack;
1500 		unsigned int count =
1501 			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1502 		unsigned int copied;
1503 
1504 		/*
1505 		 * This is the fast path and we cannot handle a pagefault
1506 		 * whilst holding the struct mutex lest the user pass in the
1507 		 * relocations contained within a mmaped bo. For in such a case
1508 		 * we, the page fault handler would call i915_gem_fault() and
1509 		 * we would try to acquire the struct mutex again. Obviously
1510 		 * this is bad and so lockdep complains vehemently.
1511 		 */
1512 		pagefault_disable();
1513 		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1514 		pagefault_enable();
1515 		if (unlikely(copied)) {
1516 			remain = -EFAULT;
1517 			goto out;
1518 		}
1519 
1520 		remain -= count;
1521 		do {
1522 			u64 offset = eb_relocate_entry(eb, ev, r);
1523 
1524 			if (likely(offset == 0)) {
1525 			} else if ((s64)offset < 0) {
1526 				remain = (int)offset;
1527 				goto out;
1528 			} else {
1529 				/*
1530 				 * Note that reporting an error now
1531 				 * leaves everything in an inconsistent
1532 				 * state as we have *already* changed
1533 				 * the relocation value inside the
1534 				 * object. As we have not changed the
1535 				 * reloc.presumed_offset or will not
1536 				 * change the execobject.offset, on the
1537 				 * call we may not rewrite the value
1538 				 * inside the object, leaving it
1539 				 * dangling and causing a GPU hang. Unless
1540 				 * userspace dynamically rebuilds the
1541 				 * relocations on each execbuf rather than
1542 				 * presume a static tree.
1543 				 *
1544 				 * We did previously check if the relocations
1545 				 * were writable (access_ok), an error now
1546 				 * would be a strange race with mprotect,
1547 				 * having already demonstrated that we
1548 				 * can read from this userspace address.
1549 				 */
1550 				offset = gen8_canonical_addr(offset & ~UPDATE);
1551 				__put_user(offset,
1552 					   &urelocs[r - stack].presumed_offset);
1553 			}
1554 		} while (r++, --count);
1555 		urelocs += ARRAY_SIZE(stack);
1556 	} while (remain);
1557 out:
1558 	reloc_cache_reset(&eb->reloc_cache, eb);
1559 	return remain;
1560 }
1561 
1562 static int
1563 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1564 {
1565 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1566 	struct drm_i915_gem_relocation_entry *relocs =
1567 		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1568 	unsigned int i;
1569 	int err;
1570 
1571 	for (i = 0; i < entry->relocation_count; i++) {
1572 		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1573 
1574 		if ((s64)offset < 0) {
1575 			err = (int)offset;
1576 			goto err;
1577 		}
1578 	}
1579 	err = 0;
1580 err:
1581 	reloc_cache_reset(&eb->reloc_cache, eb);
1582 	return err;
1583 }
1584 
1585 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1586 {
1587 	const char __user *addr, *end;
1588 	unsigned long size;
1589 	char __maybe_unused c;
1590 
1591 	size = entry->relocation_count;
1592 	if (size == 0)
1593 		return 0;
1594 
1595 	if (size > N_RELOC(ULONG_MAX))
1596 		return -EINVAL;
1597 
1598 	addr = u64_to_user_ptr(entry->relocs_ptr);
1599 	size *= sizeof(struct drm_i915_gem_relocation_entry);
1600 	if (!access_ok(addr, size))
1601 		return -EFAULT;
1602 
1603 	end = addr + size;
1604 	for (; addr < end; addr += PAGE_SIZE) {
1605 		int err = __get_user(c, addr);
1606 		if (err)
1607 			return err;
1608 	}
1609 	return __get_user(c, end - 1);
1610 }
1611 
1612 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1613 {
1614 	struct drm_i915_gem_relocation_entry *relocs;
1615 	const unsigned int count = eb->buffer_count;
1616 	unsigned int i;
1617 	int err;
1618 
1619 	for (i = 0; i < count; i++) {
1620 		const unsigned int nreloc = eb->exec[i].relocation_count;
1621 		struct drm_i915_gem_relocation_entry __user *urelocs;
1622 		unsigned long size;
1623 		unsigned long copied;
1624 
1625 		if (nreloc == 0)
1626 			continue;
1627 
1628 		err = check_relocations(&eb->exec[i]);
1629 		if (err)
1630 			goto err;
1631 
1632 		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1633 		size = nreloc * sizeof(*relocs);
1634 
1635 		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1636 		if (!relocs) {
1637 			err = -ENOMEM;
1638 			goto err;
1639 		}
1640 
1641 		/* copy_from_user is limited to < 4GiB */
1642 		copied = 0;
1643 		do {
1644 			unsigned int len =
1645 				min_t(u64, BIT_ULL(31), size - copied);
1646 
1647 			if (__copy_from_user((char *)relocs + copied,
1648 					     (char __user *)urelocs + copied,
1649 					     len))
1650 				goto end;
1651 
1652 			copied += len;
1653 		} while (copied < size);
1654 
1655 		/*
1656 		 * As we do not update the known relocation offsets after
1657 		 * relocating (due to the complexities in lock handling),
1658 		 * we need to mark them as invalid now so that we force the
1659 		 * relocation processing next time. Just in case the target
1660 		 * object is evicted and then rebound into its old
1661 		 * presumed_offset before the next execbuffer - if that
1662 		 * happened we would make the mistake of assuming that the
1663 		 * relocations were valid.
1664 		 */
1665 		if (!user_access_begin(urelocs, size))
1666 			goto end;
1667 
1668 		for (copied = 0; copied < nreloc; copied++)
1669 			unsafe_put_user(-1,
1670 					&urelocs[copied].presumed_offset,
1671 					end_user);
1672 		user_access_end();
1673 
1674 		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1675 	}
1676 
1677 	return 0;
1678 
1679 end_user:
1680 	user_access_end();
1681 end:
1682 	kvfree(relocs);
1683 	err = -EFAULT;
1684 err:
1685 	while (i--) {
1686 		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1687 		if (eb->exec[i].relocation_count)
1688 			kvfree(relocs);
1689 	}
1690 	return err;
1691 }
1692 
1693 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1694 {
1695 	const unsigned int count = eb->buffer_count;
1696 	unsigned int i;
1697 
1698 	for (i = 0; i < count; i++) {
1699 		int err;
1700 
1701 		err = check_relocations(&eb->exec[i]);
1702 		if (err)
1703 			return err;
1704 	}
1705 
1706 	return 0;
1707 }
1708 
1709 static int eb_reinit_userptr(struct i915_execbuffer *eb)
1710 {
1711 	const unsigned int count = eb->buffer_count;
1712 	unsigned int i;
1713 	int ret;
1714 
1715 	if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1716 		return 0;
1717 
1718 	for (i = 0; i < count; i++) {
1719 		struct eb_vma *ev = &eb->vma[i];
1720 
1721 		if (!i915_gem_object_is_userptr(ev->vma->obj))
1722 			continue;
1723 
1724 		ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1725 		if (ret)
1726 			return ret;
1727 
1728 		ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1729 	}
1730 
1731 	return 0;
1732 }
1733 
1734 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
1735 {
1736 	bool have_copy = false;
1737 	struct eb_vma *ev;
1738 	int err = 0;
1739 
1740 repeat:
1741 	if (signal_pending(current)) {
1742 		err = -ERESTARTSYS;
1743 		goto out;
1744 	}
1745 
1746 	/* We may process another execbuffer during the unlock... */
1747 	eb_release_vmas(eb, false);
1748 	i915_gem_ww_ctx_fini(&eb->ww);
1749 
1750 	/*
1751 	 * We take 3 passes through the slowpatch.
1752 	 *
1753 	 * 1 - we try to just prefault all the user relocation entries and
1754 	 * then attempt to reuse the atomic pagefault disabled fast path again.
1755 	 *
1756 	 * 2 - we copy the user entries to a local buffer here outside of the
1757 	 * local and allow ourselves to wait upon any rendering before
1758 	 * relocations
1759 	 *
1760 	 * 3 - we already have a local copy of the relocation entries, but
1761 	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1762 	 */
1763 	if (!err) {
1764 		err = eb_prefault_relocations(eb);
1765 	} else if (!have_copy) {
1766 		err = eb_copy_relocations(eb);
1767 		have_copy = err == 0;
1768 	} else {
1769 		cond_resched();
1770 		err = 0;
1771 	}
1772 
1773 	if (!err)
1774 		err = eb_reinit_userptr(eb);
1775 
1776 	i915_gem_ww_ctx_init(&eb->ww, true);
1777 	if (err)
1778 		goto out;
1779 
1780 	/* reacquire the objects */
1781 repeat_validate:
1782 	err = eb_pin_engine(eb, false);
1783 	if (err)
1784 		goto err;
1785 
1786 	err = eb_validate_vmas(eb);
1787 	if (err)
1788 		goto err;
1789 
1790 	GEM_BUG_ON(!eb->batches[0]);
1791 
1792 	list_for_each_entry(ev, &eb->relocs, reloc_link) {
1793 		if (!have_copy) {
1794 			err = eb_relocate_vma(eb, ev);
1795 			if (err)
1796 				break;
1797 		} else {
1798 			err = eb_relocate_vma_slow(eb, ev);
1799 			if (err)
1800 				break;
1801 		}
1802 	}
1803 
1804 	if (err == -EDEADLK)
1805 		goto err;
1806 
1807 	if (err && !have_copy)
1808 		goto repeat;
1809 
1810 	if (err)
1811 		goto err;
1812 
1813 	/* as last step, parse the command buffer */
1814 	err = eb_parse(eb);
1815 	if (err)
1816 		goto err;
1817 
1818 	/*
1819 	 * Leave the user relocations as are, this is the painfully slow path,
1820 	 * and we want to avoid the complication of dropping the lock whilst
1821 	 * having buffers reserved in the aperture and so causing spurious
1822 	 * ENOSPC for random operations.
1823 	 */
1824 
1825 err:
1826 	if (err == -EDEADLK) {
1827 		eb_release_vmas(eb, false);
1828 		err = i915_gem_ww_ctx_backoff(&eb->ww);
1829 		if (!err)
1830 			goto repeat_validate;
1831 	}
1832 
1833 	if (err == -EAGAIN)
1834 		goto repeat;
1835 
1836 out:
1837 	if (have_copy) {
1838 		const unsigned int count = eb->buffer_count;
1839 		unsigned int i;
1840 
1841 		for (i = 0; i < count; i++) {
1842 			const struct drm_i915_gem_exec_object2 *entry =
1843 				&eb->exec[i];
1844 			struct drm_i915_gem_relocation_entry *relocs;
1845 
1846 			if (!entry->relocation_count)
1847 				continue;
1848 
1849 			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1850 			kvfree(relocs);
1851 		}
1852 	}
1853 
1854 	return err;
1855 }
1856 
1857 static int eb_relocate_parse(struct i915_execbuffer *eb)
1858 {
1859 	int err;
1860 	bool throttle = true;
1861 
1862 retry:
1863 	err = eb_pin_engine(eb, throttle);
1864 	if (err) {
1865 		if (err != -EDEADLK)
1866 			return err;
1867 
1868 		goto err;
1869 	}
1870 
1871 	/* only throttle once, even if we didn't need to throttle */
1872 	throttle = false;
1873 
1874 	err = eb_validate_vmas(eb);
1875 	if (err == -EAGAIN)
1876 		goto slow;
1877 	else if (err)
1878 		goto err;
1879 
1880 	/* The objects are in their final locations, apply the relocations. */
1881 	if (eb->args->flags & __EXEC_HAS_RELOC) {
1882 		struct eb_vma *ev;
1883 
1884 		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1885 			err = eb_relocate_vma(eb, ev);
1886 			if (err)
1887 				break;
1888 		}
1889 
1890 		if (err == -EDEADLK)
1891 			goto err;
1892 		else if (err)
1893 			goto slow;
1894 	}
1895 
1896 	if (!err)
1897 		err = eb_parse(eb);
1898 
1899 err:
1900 	if (err == -EDEADLK) {
1901 		eb_release_vmas(eb, false);
1902 		err = i915_gem_ww_ctx_backoff(&eb->ww);
1903 		if (!err)
1904 			goto retry;
1905 	}
1906 
1907 	return err;
1908 
1909 slow:
1910 	err = eb_relocate_parse_slow(eb);
1911 	if (err)
1912 		/*
1913 		 * If the user expects the execobject.offset and
1914 		 * reloc.presumed_offset to be an exact match,
1915 		 * as for using NO_RELOC, then we cannot update
1916 		 * the execobject.offset until we have completed
1917 		 * relocation.
1918 		 */
1919 		eb->args->flags &= ~__EXEC_HAS_RELOC;
1920 
1921 	return err;
1922 }
1923 
1924 /*
1925  * Using two helper loops for the order of which requests / batches are created
1926  * and added the to backend. Requests are created in order from the parent to
1927  * the last child. Requests are added in the reverse order, from the last child
1928  * to parent. This is done for locking reasons as the timeline lock is acquired
1929  * during request creation and released when the request is added to the
1930  * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1931  * the ordering.
1932  */
1933 #define for_each_batch_create_order(_eb, _i) \
1934 	for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1935 #define for_each_batch_add_order(_eb, _i) \
1936 	BUILD_BUG_ON(!typecheck(int, _i)); \
1937 	for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1938 
1939 static struct i915_request *
1940 eb_find_first_request_added(struct i915_execbuffer *eb)
1941 {
1942 	int i;
1943 
1944 	for_each_batch_add_order(eb, i)
1945 		if (eb->requests[i])
1946 			return eb->requests[i];
1947 
1948 	GEM_BUG_ON("Request not found");
1949 
1950 	return NULL;
1951 }
1952 
1953 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
1954 
1955 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
1956 static int eb_capture_stage(struct i915_execbuffer *eb)
1957 {
1958 	const unsigned int count = eb->buffer_count;
1959 	unsigned int i = count, j;
1960 
1961 	while (i--) {
1962 		struct eb_vma *ev = &eb->vma[i];
1963 		struct i915_vma *vma = ev->vma;
1964 		unsigned int flags = ev->flags;
1965 
1966 		if (!(flags & EXEC_OBJECT_CAPTURE))
1967 			continue;
1968 
1969 		if (i915_gem_context_is_recoverable(eb->gem_context) &&
1970 		    (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0)))
1971 			return -EINVAL;
1972 
1973 		for_each_batch_create_order(eb, j) {
1974 			struct i915_capture_list *capture;
1975 
1976 			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1977 			if (!capture)
1978 				continue;
1979 
1980 			capture->next = eb->capture_lists[j];
1981 			capture->vma_res = i915_vma_resource_get(vma->resource);
1982 			eb->capture_lists[j] = capture;
1983 		}
1984 	}
1985 
1986 	return 0;
1987 }
1988 
1989 /* Commit once we're in the critical path */
1990 static void eb_capture_commit(struct i915_execbuffer *eb)
1991 {
1992 	unsigned int j;
1993 
1994 	for_each_batch_create_order(eb, j) {
1995 		struct i915_request *rq = eb->requests[j];
1996 
1997 		if (!rq)
1998 			break;
1999 
2000 		rq->capture_list = eb->capture_lists[j];
2001 		eb->capture_lists[j] = NULL;
2002 	}
2003 }
2004 
2005 /*
2006  * Release anything that didn't get committed due to errors.
2007  * The capture_list will otherwise be freed at request retire.
2008  */
2009 static void eb_capture_release(struct i915_execbuffer *eb)
2010 {
2011 	unsigned int j;
2012 
2013 	for_each_batch_create_order(eb, j) {
2014 		if (eb->capture_lists[j]) {
2015 			i915_request_free_capture_list(eb->capture_lists[j]);
2016 			eb->capture_lists[j] = NULL;
2017 		}
2018 	}
2019 }
2020 
2021 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2022 {
2023 	memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
2024 }
2025 
2026 #else
2027 
2028 static int eb_capture_stage(struct i915_execbuffer *eb)
2029 {
2030 	return 0;
2031 }
2032 
2033 static void eb_capture_commit(struct i915_execbuffer *eb)
2034 {
2035 }
2036 
2037 static void eb_capture_release(struct i915_execbuffer *eb)
2038 {
2039 }
2040 
2041 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2042 {
2043 }
2044 
2045 #endif
2046 
2047 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2048 {
2049 	const unsigned int count = eb->buffer_count;
2050 	unsigned int i = count;
2051 	int err = 0, j;
2052 
2053 	while (i--) {
2054 		struct eb_vma *ev = &eb->vma[i];
2055 		struct i915_vma *vma = ev->vma;
2056 		unsigned int flags = ev->flags;
2057 		struct drm_i915_gem_object *obj = vma->obj;
2058 
2059 		assert_vma_held(vma);
2060 
2061 		/*
2062 		 * If the GPU is not _reading_ through the CPU cache, we need
2063 		 * to make sure that any writes (both previous GPU writes from
2064 		 * before a change in snooping levels and normal CPU writes)
2065 		 * caught in that cache are flushed to main memory.
2066 		 *
2067 		 * We want to say
2068 		 *   obj->cache_dirty &&
2069 		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2070 		 * but gcc's optimiser doesn't handle that as well and emits
2071 		 * two jumps instead of one. Maybe one day...
2072 		 *
2073 		 * FIXME: There is also sync flushing in set_pages(), which
2074 		 * serves a different purpose(some of the time at least).
2075 		 *
2076 		 * We should consider:
2077 		 *
2078 		 *   1. Rip out the async flush code.
2079 		 *
2080 		 *   2. Or make the sync flushing use the async clflush path
2081 		 *   using mandatory fences underneath. Currently the below
2082 		 *   async flush happens after we bind the object.
2083 		 */
2084 		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2085 			if (i915_gem_clflush_object(obj, 0))
2086 				flags &= ~EXEC_OBJECT_ASYNC;
2087 		}
2088 
2089 		/* We only need to await on the first request */
2090 		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2091 			err = i915_request_await_object
2092 				(eb_find_first_request_added(eb), obj,
2093 				 flags & EXEC_OBJECT_WRITE);
2094 		}
2095 
2096 		for_each_batch_add_order(eb, j) {
2097 			if (err)
2098 				break;
2099 			if (!eb->requests[j])
2100 				continue;
2101 
2102 			err = _i915_vma_move_to_active(vma, eb->requests[j],
2103 						       j ? NULL :
2104 						       eb->composite_fence ?
2105 						       eb->composite_fence :
2106 						       &eb->requests[j]->fence,
2107 						       flags | __EXEC_OBJECT_NO_RESERVE |
2108 						       __EXEC_OBJECT_NO_REQUEST_AWAIT);
2109 		}
2110 	}
2111 
2112 #ifdef CONFIG_MMU_NOTIFIER
2113 	if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2114 		read_lock(&eb->i915->mm.notifier_lock);
2115 
2116 		/*
2117 		 * count is always at least 1, otherwise __EXEC_USERPTR_USED
2118 		 * could not have been set
2119 		 */
2120 		for (i = 0; i < count; i++) {
2121 			struct eb_vma *ev = &eb->vma[i];
2122 			struct drm_i915_gem_object *obj = ev->vma->obj;
2123 
2124 			if (!i915_gem_object_is_userptr(obj))
2125 				continue;
2126 
2127 			err = i915_gem_object_userptr_submit_done(obj);
2128 			if (err)
2129 				break;
2130 		}
2131 
2132 		read_unlock(&eb->i915->mm.notifier_lock);
2133 	}
2134 #endif
2135 
2136 	if (unlikely(err))
2137 		goto err_skip;
2138 
2139 	/* Unconditionally flush any chipset caches (for streaming writes). */
2140 	intel_gt_chipset_flush(eb->gt);
2141 	eb_capture_commit(eb);
2142 
2143 	return 0;
2144 
2145 err_skip:
2146 	for_each_batch_create_order(eb, j) {
2147 		if (!eb->requests[j])
2148 			break;
2149 
2150 		i915_request_set_error_once(eb->requests[j], err);
2151 	}
2152 	return err;
2153 }
2154 
2155 static int i915_gem_check_execbuffer(struct drm_i915_private *i915,
2156 				     struct drm_i915_gem_execbuffer2 *exec)
2157 {
2158 	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2159 		return -EINVAL;
2160 
2161 	/* Kernel clipping was a DRI1 misfeature */
2162 	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2163 			     I915_EXEC_USE_EXTENSIONS))) {
2164 		if (exec->num_cliprects || exec->cliprects_ptr)
2165 			return -EINVAL;
2166 	}
2167 
2168 	if (exec->DR4 == 0xffffffff) {
2169 		drm_dbg(&i915->drm, "UXA submitting garbage DR4, fixing up\n");
2170 		exec->DR4 = 0;
2171 	}
2172 	if (exec->DR1 || exec->DR4)
2173 		return -EINVAL;
2174 
2175 	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2176 		return -EINVAL;
2177 
2178 	return 0;
2179 }
2180 
2181 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2182 {
2183 	u32 *cs;
2184 	int i;
2185 
2186 	if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
2187 		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2188 		return -EINVAL;
2189 	}
2190 
2191 	cs = intel_ring_begin(rq, 4 * 2 + 2);
2192 	if (IS_ERR(cs))
2193 		return PTR_ERR(cs);
2194 
2195 	*cs++ = MI_LOAD_REGISTER_IMM(4);
2196 	for (i = 0; i < 4; i++) {
2197 		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2198 		*cs++ = 0;
2199 	}
2200 	*cs++ = MI_NOOP;
2201 	intel_ring_advance(rq, cs);
2202 
2203 	return 0;
2204 }
2205 
2206 static struct i915_vma *
2207 shadow_batch_pin(struct i915_execbuffer *eb,
2208 		 struct drm_i915_gem_object *obj,
2209 		 struct i915_address_space *vm,
2210 		 unsigned int flags)
2211 {
2212 	struct i915_vma *vma;
2213 	int err;
2214 
2215 	vma = i915_vma_instance(obj, vm, NULL);
2216 	if (IS_ERR(vma))
2217 		return vma;
2218 
2219 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE);
2220 	if (err)
2221 		return ERR_PTR(err);
2222 
2223 	return vma;
2224 }
2225 
2226 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2227 {
2228 	/*
2229 	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2230 	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2231 	 * hsw should have this fixed, but bdw mucks it up again. */
2232 	if (eb->batch_flags & I915_DISPATCH_SECURE)
2233 		return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE);
2234 
2235 	return NULL;
2236 }
2237 
2238 static int eb_parse(struct i915_execbuffer *eb)
2239 {
2240 	struct drm_i915_private *i915 = eb->i915;
2241 	struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2242 	struct i915_vma *shadow, *trampoline, *batch;
2243 	unsigned long len;
2244 	int err;
2245 
2246 	if (!eb_use_cmdparser(eb)) {
2247 		batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
2248 		if (IS_ERR(batch))
2249 			return PTR_ERR(batch);
2250 
2251 		goto secure_batch;
2252 	}
2253 
2254 	if (intel_context_is_parallel(eb->context))
2255 		return -EINVAL;
2256 
2257 	len = eb->batch_len[0];
2258 	if (!CMDPARSER_USES_GGTT(eb->i915)) {
2259 		/*
2260 		 * ppGTT backed shadow buffers must be mapped RO, to prevent
2261 		 * post-scan tampering
2262 		 */
2263 		if (!eb->context->vm->has_read_only) {
2264 			drm_dbg(&i915->drm,
2265 				"Cannot prevent post-scan tampering without RO capable vm\n");
2266 			return -EINVAL;
2267 		}
2268 	} else {
2269 		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2270 	}
2271 	if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
2272 		return -EINVAL;
2273 
2274 	if (!pool) {
2275 		pool = intel_gt_get_buffer_pool(eb->gt, len,
2276 						I915_MAP_WB);
2277 		if (IS_ERR(pool))
2278 			return PTR_ERR(pool);
2279 		eb->batch_pool = pool;
2280 	}
2281 
2282 	err = i915_gem_object_lock(pool->obj, &eb->ww);
2283 	if (err)
2284 		return err;
2285 
2286 	shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2287 	if (IS_ERR(shadow))
2288 		return PTR_ERR(shadow);
2289 
2290 	intel_gt_buffer_pool_mark_used(pool);
2291 	i915_gem_object_set_readonly(shadow->obj);
2292 	shadow->private = pool;
2293 
2294 	trampoline = NULL;
2295 	if (CMDPARSER_USES_GGTT(eb->i915)) {
2296 		trampoline = shadow;
2297 
2298 		shadow = shadow_batch_pin(eb, pool->obj,
2299 					  &eb->gt->ggtt->vm,
2300 					  PIN_GLOBAL);
2301 		if (IS_ERR(shadow))
2302 			return PTR_ERR(shadow);
2303 
2304 		shadow->private = pool;
2305 
2306 		eb->batch_flags |= I915_DISPATCH_SECURE;
2307 	}
2308 
2309 	batch = eb_dispatch_secure(eb, shadow);
2310 	if (IS_ERR(batch))
2311 		return PTR_ERR(batch);
2312 
2313 	err = dma_resv_reserve_fences(shadow->obj->base.resv, 1);
2314 	if (err)
2315 		return err;
2316 
2317 	err = intel_engine_cmd_parser(eb->context->engine,
2318 				      eb->batches[0]->vma,
2319 				      eb->batch_start_offset,
2320 				      eb->batch_len[0],
2321 				      shadow, trampoline);
2322 	if (err)
2323 		return err;
2324 
2325 	eb->batches[0] = &eb->vma[eb->buffer_count++];
2326 	eb->batches[0]->vma = i915_vma_get(shadow);
2327 	eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2328 
2329 	eb->trampoline = trampoline;
2330 	eb->batch_start_offset = 0;
2331 
2332 secure_batch:
2333 	if (batch) {
2334 		if (intel_context_is_parallel(eb->context))
2335 			return -EINVAL;
2336 
2337 		eb->batches[0] = &eb->vma[eb->buffer_count++];
2338 		eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2339 		eb->batches[0]->vma = i915_vma_get(batch);
2340 	}
2341 	return 0;
2342 }
2343 
2344 static int eb_request_submit(struct i915_execbuffer *eb,
2345 			     struct i915_request *rq,
2346 			     struct i915_vma *batch,
2347 			     u64 batch_len)
2348 {
2349 	int err;
2350 
2351 	if (intel_context_nopreempt(rq->context))
2352 		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
2353 
2354 	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2355 		err = i915_reset_gen7_sol_offsets(rq);
2356 		if (err)
2357 			return err;
2358 	}
2359 
2360 	/*
2361 	 * After we completed waiting for other engines (using HW semaphores)
2362 	 * then we can signal that this request/batch is ready to run. This
2363 	 * allows us to determine if the batch is still waiting on the GPU
2364 	 * or actually running by checking the breadcrumb.
2365 	 */
2366 	if (rq->context->engine->emit_init_breadcrumb) {
2367 		err = rq->context->engine->emit_init_breadcrumb(rq);
2368 		if (err)
2369 			return err;
2370 	}
2371 
2372 	err = rq->context->engine->emit_bb_start(rq,
2373 						 i915_vma_offset(batch) +
2374 						 eb->batch_start_offset,
2375 						 batch_len,
2376 						 eb->batch_flags);
2377 	if (err)
2378 		return err;
2379 
2380 	if (eb->trampoline) {
2381 		GEM_BUG_ON(intel_context_is_parallel(rq->context));
2382 		GEM_BUG_ON(eb->batch_start_offset);
2383 		err = rq->context->engine->emit_bb_start(rq,
2384 							 i915_vma_offset(eb->trampoline) +
2385 							 batch_len, 0, 0);
2386 		if (err)
2387 			return err;
2388 	}
2389 
2390 	return 0;
2391 }
2392 
2393 static int eb_submit(struct i915_execbuffer *eb)
2394 {
2395 	unsigned int i;
2396 	int err;
2397 
2398 	err = eb_move_to_gpu(eb);
2399 
2400 	for_each_batch_create_order(eb, i) {
2401 		if (!eb->requests[i])
2402 			break;
2403 
2404 		trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2405 		if (!err)
2406 			err = eb_request_submit(eb, eb->requests[i],
2407 						eb->batches[i]->vma,
2408 						eb->batch_len[i]);
2409 	}
2410 
2411 	return err;
2412 }
2413 
2414 static int num_vcs_engines(struct drm_i915_private *i915)
2415 {
2416 	return hweight_long(VDBOX_MASK(to_gt(i915)));
2417 }
2418 
2419 /*
2420  * Find one BSD ring to dispatch the corresponding BSD command.
2421  * The engine index is returned.
2422  */
2423 static unsigned int
2424 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2425 			 struct drm_file *file)
2426 {
2427 	struct drm_i915_file_private *file_priv = file->driver_priv;
2428 
2429 	/* Check whether the file_priv has already selected one ring. */
2430 	if ((int)file_priv->bsd_engine < 0)
2431 		file_priv->bsd_engine =
2432 			prandom_u32_max(num_vcs_engines(dev_priv));
2433 
2434 	return file_priv->bsd_engine;
2435 }
2436 
2437 static const enum intel_engine_id user_ring_map[] = {
2438 	[I915_EXEC_DEFAULT]	= RCS0,
2439 	[I915_EXEC_RENDER]	= RCS0,
2440 	[I915_EXEC_BLT]		= BCS0,
2441 	[I915_EXEC_BSD]		= VCS0,
2442 	[I915_EXEC_VEBOX]	= VECS0
2443 };
2444 
2445 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2446 {
2447 	struct intel_ring *ring = ce->ring;
2448 	struct intel_timeline *tl = ce->timeline;
2449 	struct i915_request *rq;
2450 
2451 	/*
2452 	 * Completely unscientific finger-in-the-air estimates for suitable
2453 	 * maximum user request size (to avoid blocking) and then backoff.
2454 	 */
2455 	if (intel_ring_update_space(ring) >= PAGE_SIZE)
2456 		return NULL;
2457 
2458 	/*
2459 	 * Find a request that after waiting upon, there will be at least half
2460 	 * the ring available. The hysteresis allows us to compete for the
2461 	 * shared ring and should mean that we sleep less often prior to
2462 	 * claiming our resources, but not so long that the ring completely
2463 	 * drains before we can submit our next request.
2464 	 */
2465 	list_for_each_entry(rq, &tl->requests, link) {
2466 		if (rq->ring != ring)
2467 			continue;
2468 
2469 		if (__intel_ring_space(rq->postfix,
2470 				       ring->emit, ring->size) > ring->size / 2)
2471 			break;
2472 	}
2473 	if (&rq->link == &tl->requests)
2474 		return NULL; /* weird, we will check again later for real */
2475 
2476 	return i915_request_get(rq);
2477 }
2478 
2479 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2480 			   bool throttle)
2481 {
2482 	struct intel_timeline *tl;
2483 	struct i915_request *rq = NULL;
2484 
2485 	/*
2486 	 * Take a local wakeref for preparing to dispatch the execbuf as
2487 	 * we expect to access the hardware fairly frequently in the
2488 	 * process, and require the engine to be kept awake between accesses.
2489 	 * Upon dispatch, we acquire another prolonged wakeref that we hold
2490 	 * until the timeline is idle, which in turn releases the wakeref
2491 	 * taken on the engine, and the parent device.
2492 	 */
2493 	tl = intel_context_timeline_lock(ce);
2494 	if (IS_ERR(tl))
2495 		return PTR_ERR(tl);
2496 
2497 	intel_context_enter(ce);
2498 	if (throttle)
2499 		rq = eb_throttle(eb, ce);
2500 	intel_context_timeline_unlock(tl);
2501 
2502 	if (rq) {
2503 		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2504 		long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2505 
2506 		if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2507 				      timeout) < 0) {
2508 			i915_request_put(rq);
2509 
2510 			/*
2511 			 * Error path, cannot use intel_context_timeline_lock as
2512 			 * that is user interruptable and this clean up step
2513 			 * must be done.
2514 			 */
2515 			mutex_lock(&ce->timeline->mutex);
2516 			intel_context_exit(ce);
2517 			mutex_unlock(&ce->timeline->mutex);
2518 
2519 			if (nonblock)
2520 				return -EWOULDBLOCK;
2521 			else
2522 				return -EINTR;
2523 		}
2524 		i915_request_put(rq);
2525 	}
2526 
2527 	return 0;
2528 }
2529 
2530 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2531 {
2532 	struct intel_context *ce = eb->context, *child;
2533 	int err;
2534 	int i = 0, j = 0;
2535 
2536 	GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2537 
2538 	if (unlikely(intel_context_is_banned(ce)))
2539 		return -EIO;
2540 
2541 	/*
2542 	 * Pinning the contexts may generate requests in order to acquire
2543 	 * GGTT space, so do this first before we reserve a seqno for
2544 	 * ourselves.
2545 	 */
2546 	err = intel_context_pin_ww(ce, &eb->ww);
2547 	if (err)
2548 		return err;
2549 	for_each_child(ce, child) {
2550 		err = intel_context_pin_ww(child, &eb->ww);
2551 		GEM_BUG_ON(err);	/* perma-pinned should incr a counter */
2552 	}
2553 
2554 	for_each_child(ce, child) {
2555 		err = eb_pin_timeline(eb, child, throttle);
2556 		if (err)
2557 			goto unwind;
2558 		++i;
2559 	}
2560 	err = eb_pin_timeline(eb, ce, throttle);
2561 	if (err)
2562 		goto unwind;
2563 
2564 	eb->args->flags |= __EXEC_ENGINE_PINNED;
2565 	return 0;
2566 
2567 unwind:
2568 	for_each_child(ce, child) {
2569 		if (j++ < i) {
2570 			mutex_lock(&child->timeline->mutex);
2571 			intel_context_exit(child);
2572 			mutex_unlock(&child->timeline->mutex);
2573 		}
2574 	}
2575 	for_each_child(ce, child)
2576 		intel_context_unpin(child);
2577 	intel_context_unpin(ce);
2578 	return err;
2579 }
2580 
2581 static void eb_unpin_engine(struct i915_execbuffer *eb)
2582 {
2583 	struct intel_context *ce = eb->context, *child;
2584 
2585 	if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2586 		return;
2587 
2588 	eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2589 
2590 	for_each_child(ce, child) {
2591 		mutex_lock(&child->timeline->mutex);
2592 		intel_context_exit(child);
2593 		mutex_unlock(&child->timeline->mutex);
2594 
2595 		intel_context_unpin(child);
2596 	}
2597 
2598 	mutex_lock(&ce->timeline->mutex);
2599 	intel_context_exit(ce);
2600 	mutex_unlock(&ce->timeline->mutex);
2601 
2602 	intel_context_unpin(ce);
2603 }
2604 
2605 static unsigned int
2606 eb_select_legacy_ring(struct i915_execbuffer *eb)
2607 {
2608 	struct drm_i915_private *i915 = eb->i915;
2609 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2610 	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2611 
2612 	if (user_ring_id != I915_EXEC_BSD &&
2613 	    (args->flags & I915_EXEC_BSD_MASK)) {
2614 		drm_dbg(&i915->drm,
2615 			"execbuf with non bsd ring but with invalid "
2616 			"bsd dispatch flags: %d\n", (int)(args->flags));
2617 		return -1;
2618 	}
2619 
2620 	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2621 		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2622 
2623 		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2624 			bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2625 		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2626 			   bsd_idx <= I915_EXEC_BSD_RING2) {
2627 			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2628 			bsd_idx--;
2629 		} else {
2630 			drm_dbg(&i915->drm,
2631 				"execbuf with unknown bsd ring: %u\n",
2632 				bsd_idx);
2633 			return -1;
2634 		}
2635 
2636 		return _VCS(bsd_idx);
2637 	}
2638 
2639 	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2640 		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2641 			user_ring_id);
2642 		return -1;
2643 	}
2644 
2645 	return user_ring_map[user_ring_id];
2646 }
2647 
2648 static int
2649 eb_select_engine(struct i915_execbuffer *eb)
2650 {
2651 	struct intel_context *ce, *child;
2652 	unsigned int idx;
2653 	int err;
2654 
2655 	if (i915_gem_context_user_engines(eb->gem_context))
2656 		idx = eb->args->flags & I915_EXEC_RING_MASK;
2657 	else
2658 		idx = eb_select_legacy_ring(eb);
2659 
2660 	ce = i915_gem_context_get_engine(eb->gem_context, idx);
2661 	if (IS_ERR(ce))
2662 		return PTR_ERR(ce);
2663 
2664 	if (intel_context_is_parallel(ce)) {
2665 		if (eb->buffer_count < ce->parallel.number_children + 1) {
2666 			intel_context_put(ce);
2667 			return -EINVAL;
2668 		}
2669 		if (eb->batch_start_offset || eb->args->batch_len) {
2670 			intel_context_put(ce);
2671 			return -EINVAL;
2672 		}
2673 	}
2674 	eb->num_batches = ce->parallel.number_children + 1;
2675 
2676 	for_each_child(ce, child)
2677 		intel_context_get(child);
2678 	intel_gt_pm_get(ce->engine->gt);
2679 
2680 	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2681 		err = intel_context_alloc_state(ce);
2682 		if (err)
2683 			goto err;
2684 	}
2685 	for_each_child(ce, child) {
2686 		if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2687 			err = intel_context_alloc_state(child);
2688 			if (err)
2689 				goto err;
2690 		}
2691 	}
2692 
2693 	/*
2694 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2695 	 * EIO if the GPU is already wedged.
2696 	 */
2697 	err = intel_gt_terminally_wedged(ce->engine->gt);
2698 	if (err)
2699 		goto err;
2700 
2701 	if (!i915_vm_tryget(ce->vm)) {
2702 		err = -ENOENT;
2703 		goto err;
2704 	}
2705 
2706 	eb->context = ce;
2707 	eb->gt = ce->engine->gt;
2708 
2709 	/*
2710 	 * Make sure engine pool stays alive even if we call intel_context_put
2711 	 * during ww handling. The pool is destroyed when last pm reference
2712 	 * is dropped, which breaks our -EDEADLK handling.
2713 	 */
2714 	return err;
2715 
2716 err:
2717 	intel_gt_pm_put(ce->engine->gt);
2718 	for_each_child(ce, child)
2719 		intel_context_put(child);
2720 	intel_context_put(ce);
2721 	return err;
2722 }
2723 
2724 static void
2725 eb_put_engine(struct i915_execbuffer *eb)
2726 {
2727 	struct intel_context *child;
2728 
2729 	i915_vm_put(eb->context->vm);
2730 	intel_gt_pm_put(eb->gt);
2731 	for_each_child(eb->context, child)
2732 		intel_context_put(child);
2733 	intel_context_put(eb->context);
2734 }
2735 
2736 static void
2737 __free_fence_array(struct eb_fence *fences, unsigned int n)
2738 {
2739 	while (n--) {
2740 		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2741 		dma_fence_put(fences[n].dma_fence);
2742 		dma_fence_chain_free(fences[n].chain_fence);
2743 	}
2744 	kvfree(fences);
2745 }
2746 
2747 static int
2748 add_timeline_fence_array(struct i915_execbuffer *eb,
2749 			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2750 {
2751 	struct drm_i915_gem_exec_fence __user *user_fences;
2752 	u64 __user *user_values;
2753 	struct eb_fence *f;
2754 	u64 nfences;
2755 	int err = 0;
2756 
2757 	nfences = timeline_fences->fence_count;
2758 	if (!nfences)
2759 		return 0;
2760 
2761 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2762 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2763 	if (nfences > min_t(unsigned long,
2764 			    ULONG_MAX / sizeof(*user_fences),
2765 			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2766 		return -EINVAL;
2767 
2768 	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2769 	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2770 		return -EFAULT;
2771 
2772 	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2773 	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2774 		return -EFAULT;
2775 
2776 	f = krealloc(eb->fences,
2777 		     (eb->num_fences + nfences) * sizeof(*f),
2778 		     __GFP_NOWARN | GFP_KERNEL);
2779 	if (!f)
2780 		return -ENOMEM;
2781 
2782 	eb->fences = f;
2783 	f += eb->num_fences;
2784 
2785 	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2786 		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2787 
2788 	while (nfences--) {
2789 		struct drm_i915_gem_exec_fence user_fence;
2790 		struct drm_syncobj *syncobj;
2791 		struct dma_fence *fence = NULL;
2792 		u64 point;
2793 
2794 		if (__copy_from_user(&user_fence,
2795 				     user_fences++,
2796 				     sizeof(user_fence)))
2797 			return -EFAULT;
2798 
2799 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2800 			return -EINVAL;
2801 
2802 		if (__get_user(point, user_values++))
2803 			return -EFAULT;
2804 
2805 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2806 		if (!syncobj) {
2807 			drm_dbg(&eb->i915->drm,
2808 				"Invalid syncobj handle provided\n");
2809 			return -ENOENT;
2810 		}
2811 
2812 		fence = drm_syncobj_fence_get(syncobj);
2813 
2814 		if (!fence && user_fence.flags &&
2815 		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2816 			drm_dbg(&eb->i915->drm,
2817 				"Syncobj handle has no fence\n");
2818 			drm_syncobj_put(syncobj);
2819 			return -EINVAL;
2820 		}
2821 
2822 		if (fence)
2823 			err = dma_fence_chain_find_seqno(&fence, point);
2824 
2825 		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2826 			drm_dbg(&eb->i915->drm,
2827 				"Syncobj handle missing requested point %llu\n",
2828 				point);
2829 			dma_fence_put(fence);
2830 			drm_syncobj_put(syncobj);
2831 			return err;
2832 		}
2833 
2834 		/*
2835 		 * A point might have been signaled already and
2836 		 * garbage collected from the timeline. In this case
2837 		 * just ignore the point and carry on.
2838 		 */
2839 		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2840 			drm_syncobj_put(syncobj);
2841 			continue;
2842 		}
2843 
2844 		/*
2845 		 * For timeline syncobjs we need to preallocate chains for
2846 		 * later signaling.
2847 		 */
2848 		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2849 			/*
2850 			 * Waiting and signaling the same point (when point !=
2851 			 * 0) would break the timeline.
2852 			 */
2853 			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2854 				drm_dbg(&eb->i915->drm,
2855 					"Trying to wait & signal the same timeline point.\n");
2856 				dma_fence_put(fence);
2857 				drm_syncobj_put(syncobj);
2858 				return -EINVAL;
2859 			}
2860 
2861 			f->chain_fence = dma_fence_chain_alloc();
2862 			if (!f->chain_fence) {
2863 				drm_syncobj_put(syncobj);
2864 				dma_fence_put(fence);
2865 				return -ENOMEM;
2866 			}
2867 		} else {
2868 			f->chain_fence = NULL;
2869 		}
2870 
2871 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2872 		f->dma_fence = fence;
2873 		f->value = point;
2874 		f++;
2875 		eb->num_fences++;
2876 	}
2877 
2878 	return 0;
2879 }
2880 
2881 static int add_fence_array(struct i915_execbuffer *eb)
2882 {
2883 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2884 	struct drm_i915_gem_exec_fence __user *user;
2885 	unsigned long num_fences = args->num_cliprects;
2886 	struct eb_fence *f;
2887 
2888 	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2889 		return 0;
2890 
2891 	if (!num_fences)
2892 		return 0;
2893 
2894 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2895 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2896 	if (num_fences > min_t(unsigned long,
2897 			       ULONG_MAX / sizeof(*user),
2898 			       SIZE_MAX / sizeof(*f) - eb->num_fences))
2899 		return -EINVAL;
2900 
2901 	user = u64_to_user_ptr(args->cliprects_ptr);
2902 	if (!access_ok(user, num_fences * sizeof(*user)))
2903 		return -EFAULT;
2904 
2905 	f = krealloc(eb->fences,
2906 		     (eb->num_fences + num_fences) * sizeof(*f),
2907 		     __GFP_NOWARN | GFP_KERNEL);
2908 	if (!f)
2909 		return -ENOMEM;
2910 
2911 	eb->fences = f;
2912 	f += eb->num_fences;
2913 	while (num_fences--) {
2914 		struct drm_i915_gem_exec_fence user_fence;
2915 		struct drm_syncobj *syncobj;
2916 		struct dma_fence *fence = NULL;
2917 
2918 		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2919 			return -EFAULT;
2920 
2921 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2922 			return -EINVAL;
2923 
2924 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2925 		if (!syncobj) {
2926 			drm_dbg(&eb->i915->drm,
2927 				"Invalid syncobj handle provided\n");
2928 			return -ENOENT;
2929 		}
2930 
2931 		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2932 			fence = drm_syncobj_fence_get(syncobj);
2933 			if (!fence) {
2934 				drm_dbg(&eb->i915->drm,
2935 					"Syncobj handle has no fence\n");
2936 				drm_syncobj_put(syncobj);
2937 				return -EINVAL;
2938 			}
2939 		}
2940 
2941 		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2942 			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2943 
2944 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2945 		f->dma_fence = fence;
2946 		f->value = 0;
2947 		f->chain_fence = NULL;
2948 		f++;
2949 		eb->num_fences++;
2950 	}
2951 
2952 	return 0;
2953 }
2954 
2955 static void put_fence_array(struct eb_fence *fences, int num_fences)
2956 {
2957 	if (fences)
2958 		__free_fence_array(fences, num_fences);
2959 }
2960 
2961 static int
2962 await_fence_array(struct i915_execbuffer *eb,
2963 		  struct i915_request *rq)
2964 {
2965 	unsigned int n;
2966 	int err;
2967 
2968 	for (n = 0; n < eb->num_fences; n++) {
2969 		if (!eb->fences[n].dma_fence)
2970 			continue;
2971 
2972 		err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
2973 		if (err < 0)
2974 			return err;
2975 	}
2976 
2977 	return 0;
2978 }
2979 
2980 static void signal_fence_array(const struct i915_execbuffer *eb,
2981 			       struct dma_fence * const fence)
2982 {
2983 	unsigned int n;
2984 
2985 	for (n = 0; n < eb->num_fences; n++) {
2986 		struct drm_syncobj *syncobj;
2987 		unsigned int flags;
2988 
2989 		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2990 		if (!(flags & I915_EXEC_FENCE_SIGNAL))
2991 			continue;
2992 
2993 		if (eb->fences[n].chain_fence) {
2994 			drm_syncobj_add_point(syncobj,
2995 					      eb->fences[n].chain_fence,
2996 					      fence,
2997 					      eb->fences[n].value);
2998 			/*
2999 			 * The chain's ownership is transferred to the
3000 			 * timeline.
3001 			 */
3002 			eb->fences[n].chain_fence = NULL;
3003 		} else {
3004 			drm_syncobj_replace_fence(syncobj, fence);
3005 		}
3006 	}
3007 }
3008 
3009 static int
3010 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3011 {
3012 	struct i915_execbuffer *eb = data;
3013 	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3014 
3015 	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3016 		return -EFAULT;
3017 
3018 	return add_timeline_fence_array(eb, &timeline_fences);
3019 }
3020 
3021 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3022 {
3023 	struct i915_request *rq, *rn;
3024 
3025 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
3026 		if (rq == end || !i915_request_retire(rq))
3027 			break;
3028 }
3029 
3030 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
3031 			  int err, bool last_parallel)
3032 {
3033 	struct intel_timeline * const tl = i915_request_timeline(rq);
3034 	struct i915_sched_attr attr = {};
3035 	struct i915_request *prev;
3036 
3037 	lockdep_assert_held(&tl->mutex);
3038 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
3039 
3040 	trace_i915_request_add(rq);
3041 
3042 	prev = __i915_request_commit(rq);
3043 
3044 	/* Check that the context wasn't destroyed before submission */
3045 	if (likely(!intel_context_is_closed(eb->context))) {
3046 		attr = eb->gem_context->sched;
3047 	} else {
3048 		/* Serialise with context_close via the add_to_timeline */
3049 		i915_request_set_error_once(rq, -ENOENT);
3050 		__i915_request_skip(rq);
3051 		err = -ENOENT; /* override any transient errors */
3052 	}
3053 
3054 	if (intel_context_is_parallel(eb->context)) {
3055 		if (err) {
3056 			__i915_request_skip(rq);
3057 			set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
3058 				&rq->fence.flags);
3059 		}
3060 		if (last_parallel)
3061 			set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
3062 				&rq->fence.flags);
3063 	}
3064 
3065 	__i915_request_queue(rq, &attr);
3066 
3067 	/* Try to clean up the client's timeline after submitting the request */
3068 	if (prev)
3069 		retire_requests(tl, prev);
3070 
3071 	mutex_unlock(&tl->mutex);
3072 
3073 	return err;
3074 }
3075 
3076 static int eb_requests_add(struct i915_execbuffer *eb, int err)
3077 {
3078 	int i;
3079 
3080 	/*
3081 	 * We iterate in reverse order of creation to release timeline mutexes in
3082 	 * same order.
3083 	 */
3084 	for_each_batch_add_order(eb, i) {
3085 		struct i915_request *rq = eb->requests[i];
3086 
3087 		if (!rq)
3088 			continue;
3089 		err |= eb_request_add(eb, rq, err, i == 0);
3090 	}
3091 
3092 	return err;
3093 }
3094 
3095 static const i915_user_extension_fn execbuf_extensions[] = {
3096 	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3097 };
3098 
3099 static int
3100 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3101 			  struct i915_execbuffer *eb)
3102 {
3103 	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3104 		return 0;
3105 
3106 	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3107 	 * have another flag also using it at the same time.
3108 	 */
3109 	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3110 		return -EINVAL;
3111 
3112 	if (args->num_cliprects != 0)
3113 		return -EINVAL;
3114 
3115 	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3116 				    execbuf_extensions,
3117 				    ARRAY_SIZE(execbuf_extensions),
3118 				    eb);
3119 }
3120 
3121 static void eb_requests_get(struct i915_execbuffer *eb)
3122 {
3123 	unsigned int i;
3124 
3125 	for_each_batch_create_order(eb, i) {
3126 		if (!eb->requests[i])
3127 			break;
3128 
3129 		i915_request_get(eb->requests[i]);
3130 	}
3131 }
3132 
3133 static void eb_requests_put(struct i915_execbuffer *eb)
3134 {
3135 	unsigned int i;
3136 
3137 	for_each_batch_create_order(eb, i) {
3138 		if (!eb->requests[i])
3139 			break;
3140 
3141 		i915_request_put(eb->requests[i]);
3142 	}
3143 }
3144 
3145 static struct sync_file *
3146 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
3147 {
3148 	struct sync_file *out_fence = NULL;
3149 	struct dma_fence_array *fence_array;
3150 	struct dma_fence **fences;
3151 	unsigned int i;
3152 
3153 	GEM_BUG_ON(!intel_context_is_parent(eb->context));
3154 
3155 	fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3156 	if (!fences)
3157 		return ERR_PTR(-ENOMEM);
3158 
3159 	for_each_batch_create_order(eb, i) {
3160 		fences[i] = &eb->requests[i]->fence;
3161 		__set_bit(I915_FENCE_FLAG_COMPOSITE,
3162 			  &eb->requests[i]->fence.flags);
3163 	}
3164 
3165 	fence_array = dma_fence_array_create(eb->num_batches,
3166 					     fences,
3167 					     eb->context->parallel.fence_context,
3168 					     eb->context->parallel.seqno++,
3169 					     false);
3170 	if (!fence_array) {
3171 		kfree(fences);
3172 		return ERR_PTR(-ENOMEM);
3173 	}
3174 
3175 	/* Move ownership to the dma_fence_array created above */
3176 	for_each_batch_create_order(eb, i)
3177 		dma_fence_get(fences[i]);
3178 
3179 	if (out_fence_fd != -1) {
3180 		out_fence = sync_file_create(&fence_array->base);
3181 		/* sync_file now owns fence_arry, drop creation ref */
3182 		dma_fence_put(&fence_array->base);
3183 		if (!out_fence)
3184 			return ERR_PTR(-ENOMEM);
3185 	}
3186 
3187 	eb->composite_fence = &fence_array->base;
3188 
3189 	return out_fence;
3190 }
3191 
3192 static struct sync_file *
3193 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3194 	      struct dma_fence *in_fence, int out_fence_fd)
3195 {
3196 	struct sync_file *out_fence = NULL;
3197 	int err;
3198 
3199 	if (unlikely(eb->gem_context->syncobj)) {
3200 		struct dma_fence *fence;
3201 
3202 		fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3203 		err = i915_request_await_dma_fence(rq, fence);
3204 		dma_fence_put(fence);
3205 		if (err)
3206 			return ERR_PTR(err);
3207 	}
3208 
3209 	if (in_fence) {
3210 		if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3211 			err = i915_request_await_execution(rq, in_fence);
3212 		else
3213 			err = i915_request_await_dma_fence(rq, in_fence);
3214 		if (err < 0)
3215 			return ERR_PTR(err);
3216 	}
3217 
3218 	if (eb->fences) {
3219 		err = await_fence_array(eb, rq);
3220 		if (err)
3221 			return ERR_PTR(err);
3222 	}
3223 
3224 	if (intel_context_is_parallel(eb->context)) {
3225 		out_fence = eb_composite_fence_create(eb, out_fence_fd);
3226 		if (IS_ERR(out_fence))
3227 			return ERR_PTR(-ENOMEM);
3228 	} else if (out_fence_fd != -1) {
3229 		out_fence = sync_file_create(&rq->fence);
3230 		if (!out_fence)
3231 			return ERR_PTR(-ENOMEM);
3232 	}
3233 
3234 	return out_fence;
3235 }
3236 
3237 static struct intel_context *
3238 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3239 {
3240 	struct intel_context *child;
3241 
3242 	if (likely(context_number == 0))
3243 		return eb->context;
3244 
3245 	for_each_child(eb->context, child)
3246 		if (!--context_number)
3247 			return child;
3248 
3249 	GEM_BUG_ON("Context not found");
3250 
3251 	return NULL;
3252 }
3253 
3254 static struct sync_file *
3255 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3256 		   int out_fence_fd)
3257 {
3258 	struct sync_file *out_fence = NULL;
3259 	unsigned int i;
3260 
3261 	for_each_batch_create_order(eb, i) {
3262 		/* Allocate a request for this batch buffer nice and early. */
3263 		eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3264 		if (IS_ERR(eb->requests[i])) {
3265 			out_fence = ERR_CAST(eb->requests[i]);
3266 			eb->requests[i] = NULL;
3267 			return out_fence;
3268 		}
3269 
3270 		/*
3271 		 * Only the first request added (committed to backend) has to
3272 		 * take the in fences into account as all subsequent requests
3273 		 * will have fences inserted inbetween them.
3274 		 */
3275 		if (i + 1 == eb->num_batches) {
3276 			out_fence = eb_fences_add(eb, eb->requests[i],
3277 						  in_fence, out_fence_fd);
3278 			if (IS_ERR(out_fence))
3279 				return out_fence;
3280 		}
3281 
3282 		/*
3283 		 * Not really on stack, but we don't want to call
3284 		 * kfree on the batch_snapshot when we put it, so use the
3285 		 * _onstack interface.
3286 		 */
3287 		if (eb->batches[i]->vma)
3288 			eb->requests[i]->batch_res =
3289 				i915_vma_resource_get(eb->batches[i]->vma->resource);
3290 		if (eb->batch_pool) {
3291 			GEM_BUG_ON(intel_context_is_parallel(eb->context));
3292 			intel_gt_buffer_pool_mark_active(eb->batch_pool,
3293 							 eb->requests[i]);
3294 		}
3295 	}
3296 
3297 	return out_fence;
3298 }
3299 
3300 static int
3301 i915_gem_do_execbuffer(struct drm_device *dev,
3302 		       struct drm_file *file,
3303 		       struct drm_i915_gem_execbuffer2 *args,
3304 		       struct drm_i915_gem_exec_object2 *exec)
3305 {
3306 	struct drm_i915_private *i915 = to_i915(dev);
3307 	struct i915_execbuffer eb;
3308 	struct dma_fence *in_fence = NULL;
3309 	struct sync_file *out_fence = NULL;
3310 	int out_fence_fd = -1;
3311 	int err;
3312 
3313 	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3314 	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3315 		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3316 
3317 	eb.i915 = i915;
3318 	eb.file = file;
3319 	eb.args = args;
3320 	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3321 		args->flags |= __EXEC_HAS_RELOC;
3322 
3323 	eb.exec = exec;
3324 	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3325 	eb.vma[0].vma = NULL;
3326 	eb.batch_pool = NULL;
3327 
3328 	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3329 	reloc_cache_init(&eb.reloc_cache, eb.i915);
3330 
3331 	eb.buffer_count = args->buffer_count;
3332 	eb.batch_start_offset = args->batch_start_offset;
3333 	eb.trampoline = NULL;
3334 
3335 	eb.fences = NULL;
3336 	eb.num_fences = 0;
3337 
3338 	eb_capture_list_clear(&eb);
3339 
3340 	memset(eb.requests, 0, sizeof(struct i915_request *) *
3341 	       ARRAY_SIZE(eb.requests));
3342 	eb.composite_fence = NULL;
3343 
3344 	eb.batch_flags = 0;
3345 	if (args->flags & I915_EXEC_SECURE) {
3346 		if (GRAPHICS_VER(i915) >= 11)
3347 			return -ENODEV;
3348 
3349 		/* Return -EPERM to trigger fallback code on old binaries. */
3350 		if (!HAS_SECURE_BATCHES(i915))
3351 			return -EPERM;
3352 
3353 		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3354 			return -EPERM;
3355 
3356 		eb.batch_flags |= I915_DISPATCH_SECURE;
3357 	}
3358 	if (args->flags & I915_EXEC_IS_PINNED)
3359 		eb.batch_flags |= I915_DISPATCH_PINNED;
3360 
3361 	err = parse_execbuf2_extensions(args, &eb);
3362 	if (err)
3363 		goto err_ext;
3364 
3365 	err = add_fence_array(&eb);
3366 	if (err)
3367 		goto err_ext;
3368 
3369 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3370 	if (args->flags & IN_FENCES) {
3371 		if ((args->flags & IN_FENCES) == IN_FENCES)
3372 			return -EINVAL;
3373 
3374 		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3375 		if (!in_fence) {
3376 			err = -EINVAL;
3377 			goto err_ext;
3378 		}
3379 	}
3380 #undef IN_FENCES
3381 
3382 	if (args->flags & I915_EXEC_FENCE_OUT) {
3383 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3384 		if (out_fence_fd < 0) {
3385 			err = out_fence_fd;
3386 			goto err_in_fence;
3387 		}
3388 	}
3389 
3390 	err = eb_create(&eb);
3391 	if (err)
3392 		goto err_out_fence;
3393 
3394 	GEM_BUG_ON(!eb.lut_size);
3395 
3396 	err = eb_select_context(&eb);
3397 	if (unlikely(err))
3398 		goto err_destroy;
3399 
3400 	err = eb_select_engine(&eb);
3401 	if (unlikely(err))
3402 		goto err_context;
3403 
3404 	err = eb_lookup_vmas(&eb);
3405 	if (err) {
3406 		eb_release_vmas(&eb, true);
3407 		goto err_engine;
3408 	}
3409 
3410 	i915_gem_ww_ctx_init(&eb.ww, true);
3411 
3412 	err = eb_relocate_parse(&eb);
3413 	if (err) {
3414 		/*
3415 		 * If the user expects the execobject.offset and
3416 		 * reloc.presumed_offset to be an exact match,
3417 		 * as for using NO_RELOC, then we cannot update
3418 		 * the execobject.offset until we have completed
3419 		 * relocation.
3420 		 */
3421 		args->flags &= ~__EXEC_HAS_RELOC;
3422 		goto err_vma;
3423 	}
3424 
3425 	ww_acquire_done(&eb.ww.ctx);
3426 	err = eb_capture_stage(&eb);
3427 	if (err)
3428 		goto err_vma;
3429 
3430 	out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3431 	if (IS_ERR(out_fence)) {
3432 		err = PTR_ERR(out_fence);
3433 		out_fence = NULL;
3434 		if (eb.requests[0])
3435 			goto err_request;
3436 		else
3437 			goto err_vma;
3438 	}
3439 
3440 	err = eb_submit(&eb);
3441 
3442 err_request:
3443 	eb_requests_get(&eb);
3444 	err = eb_requests_add(&eb, err);
3445 
3446 	if (eb.fences)
3447 		signal_fence_array(&eb, eb.composite_fence ?
3448 				   eb.composite_fence :
3449 				   &eb.requests[0]->fence);
3450 
3451 	if (out_fence) {
3452 		if (err == 0) {
3453 			fd_install(out_fence_fd, out_fence->file);
3454 			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3455 			args->rsvd2 |= (u64)out_fence_fd << 32;
3456 			out_fence_fd = -1;
3457 		} else {
3458 			fput(out_fence->file);
3459 		}
3460 	}
3461 
3462 	if (unlikely(eb.gem_context->syncobj)) {
3463 		drm_syncobj_replace_fence(eb.gem_context->syncobj,
3464 					  eb.composite_fence ?
3465 					  eb.composite_fence :
3466 					  &eb.requests[0]->fence);
3467 	}
3468 
3469 	if (!out_fence && eb.composite_fence)
3470 		dma_fence_put(eb.composite_fence);
3471 
3472 	eb_requests_put(&eb);
3473 
3474 err_vma:
3475 	eb_release_vmas(&eb, true);
3476 	WARN_ON(err == -EDEADLK);
3477 	i915_gem_ww_ctx_fini(&eb.ww);
3478 
3479 	if (eb.batch_pool)
3480 		intel_gt_buffer_pool_put(eb.batch_pool);
3481 err_engine:
3482 	eb_put_engine(&eb);
3483 err_context:
3484 	i915_gem_context_put(eb.gem_context);
3485 err_destroy:
3486 	eb_destroy(&eb);
3487 err_out_fence:
3488 	if (out_fence_fd != -1)
3489 		put_unused_fd(out_fence_fd);
3490 err_in_fence:
3491 	dma_fence_put(in_fence);
3492 err_ext:
3493 	put_fence_array(eb.fences, eb.num_fences);
3494 	return err;
3495 }
3496 
3497 static size_t eb_element_size(void)
3498 {
3499 	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3500 }
3501 
3502 static bool check_buffer_count(size_t count)
3503 {
3504 	const size_t sz = eb_element_size();
3505 
3506 	/*
3507 	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3508 	 * array size (see eb_create()). Otherwise, we can accept an array as
3509 	 * large as can be addressed (though use large arrays at your peril)!
3510 	 */
3511 
3512 	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3513 }
3514 
3515 int
3516 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3517 			   struct drm_file *file)
3518 {
3519 	struct drm_i915_private *i915 = to_i915(dev);
3520 	struct drm_i915_gem_execbuffer2 *args = data;
3521 	struct drm_i915_gem_exec_object2 *exec2_list;
3522 	const size_t count = args->buffer_count;
3523 	int err;
3524 
3525 	if (!check_buffer_count(count)) {
3526 		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3527 		return -EINVAL;
3528 	}
3529 
3530 	err = i915_gem_check_execbuffer(i915, args);
3531 	if (err)
3532 		return err;
3533 
3534 	/* Allocate extra slots for use by the command parser */
3535 	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3536 				    __GFP_NOWARN | GFP_KERNEL);
3537 	if (exec2_list == NULL) {
3538 		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3539 			count);
3540 		return -ENOMEM;
3541 	}
3542 	if (copy_from_user(exec2_list,
3543 			   u64_to_user_ptr(args->buffers_ptr),
3544 			   sizeof(*exec2_list) * count)) {
3545 		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3546 		kvfree(exec2_list);
3547 		return -EFAULT;
3548 	}
3549 
3550 	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3551 
3552 	/*
3553 	 * Now that we have begun execution of the batchbuffer, we ignore
3554 	 * any new error after this point. Also given that we have already
3555 	 * updated the associated relocations, we try to write out the current
3556 	 * object locations irrespective of any error.
3557 	 */
3558 	if (args->flags & __EXEC_HAS_RELOC) {
3559 		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3560 			u64_to_user_ptr(args->buffers_ptr);
3561 		unsigned int i;
3562 
3563 		/* Copy the new buffer offsets back to the user's exec list. */
3564 		/*
3565 		 * Note: count * sizeof(*user_exec_list) does not overflow,
3566 		 * because we checked 'count' in check_buffer_count().
3567 		 *
3568 		 * And this range already got effectively checked earlier
3569 		 * when we did the "copy_from_user()" above.
3570 		 */
3571 		if (!user_write_access_begin(user_exec_list,
3572 					     count * sizeof(*user_exec_list)))
3573 			goto end;
3574 
3575 		for (i = 0; i < args->buffer_count; i++) {
3576 			if (!(exec2_list[i].offset & UPDATE))
3577 				continue;
3578 
3579 			exec2_list[i].offset =
3580 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3581 			unsafe_put_user(exec2_list[i].offset,
3582 					&user_exec_list[i].offset,
3583 					end_user);
3584 		}
3585 end_user:
3586 		user_write_access_end();
3587 end:;
3588 	}
3589 
3590 	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3591 	kvfree(exec2_list);
3592 	return err;
3593 }
3594