1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6 
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11 
12 #include <drm/drm_syncobj.h>
13 #include <drm/i915_drm.h>
14 
15 #include "display/intel_frontbuffer.h"
16 
17 #include "gem/i915_gem_ioctls.h"
18 #include "gt/intel_context.h"
19 #include "gt/intel_engine_pool.h"
20 #include "gt/intel_gt.h"
21 #include "gt/intel_gt_pm.h"
22 
23 #include "i915_drv.h"
24 #include "i915_gem_clflush.h"
25 #include "i915_gem_context.h"
26 #include "i915_gem_ioctls.h"
27 #include "i915_trace.h"
28 
29 enum {
30 	FORCE_CPU_RELOC = 1,
31 	FORCE_GTT_RELOC,
32 	FORCE_GPU_RELOC,
33 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
34 };
35 
36 #define __EXEC_OBJECT_HAS_REF		BIT(31)
37 #define __EXEC_OBJECT_HAS_PIN		BIT(30)
38 #define __EXEC_OBJECT_HAS_FENCE		BIT(29)
39 #define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
40 #define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
41 #define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
42 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
43 
44 #define __EXEC_HAS_RELOC	BIT(31)
45 #define __EXEC_VALIDATED	BIT(30)
46 #define __EXEC_INTERNAL_FLAGS	(~0u << 30)
47 #define UPDATE			PIN_OFFSET_FIXED
48 
49 #define BATCH_OFFSET_BIAS (256*1024)
50 
51 #define __I915_EXEC_ILLEGAL_FLAGS \
52 	(__I915_EXEC_UNKNOWN_FLAGS | \
53 	 I915_EXEC_CONSTANTS_MASK  | \
54 	 I915_EXEC_RESOURCE_STREAMER)
55 
56 /* Catch emission of unexpected errors for CI! */
57 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
58 #undef EINVAL
59 #define EINVAL ({ \
60 	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
61 	22; \
62 })
63 #endif
64 
65 /**
66  * DOC: User command execution
67  *
68  * Userspace submits commands to be executed on the GPU as an instruction
69  * stream within a GEM object we call a batchbuffer. This instructions may
70  * refer to other GEM objects containing auxiliary state such as kernels,
71  * samplers, render targets and even secondary batchbuffers. Userspace does
72  * not know where in the GPU memory these objects reside and so before the
73  * batchbuffer is passed to the GPU for execution, those addresses in the
74  * batchbuffer and auxiliary objects are updated. This is known as relocation,
75  * or patching. To try and avoid having to relocate each object on the next
76  * execution, userspace is told the location of those objects in this pass,
77  * but this remains just a hint as the kernel may choose a new location for
78  * any object in the future.
79  *
80  * At the level of talking to the hardware, submitting a batchbuffer for the
81  * GPU to execute is to add content to a buffer from which the HW
82  * command streamer is reading.
83  *
84  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
85  *    Execlists, this command is not placed on the same buffer as the
86  *    remaining items.
87  *
88  * 2. Add a command to invalidate caches to the buffer.
89  *
90  * 3. Add a batchbuffer start command to the buffer; the start command is
91  *    essentially a token together with the GPU address of the batchbuffer
92  *    to be executed.
93  *
94  * 4. Add a pipeline flush to the buffer.
95  *
96  * 5. Add a memory write command to the buffer to record when the GPU
97  *    is done executing the batchbuffer. The memory write writes the
98  *    global sequence number of the request, ``i915_request::global_seqno``;
99  *    the i915 driver uses the current value in the register to determine
100  *    if the GPU has completed the batchbuffer.
101  *
102  * 6. Add a user interrupt command to the buffer. This command instructs
103  *    the GPU to issue an interrupt when the command, pipeline flush and
104  *    memory write are completed.
105  *
106  * 7. Inform the hardware of the additional commands added to the buffer
107  *    (by updating the tail pointer).
108  *
109  * Processing an execbuf ioctl is conceptually split up into a few phases.
110  *
111  * 1. Validation - Ensure all the pointers, handles and flags are valid.
112  * 2. Reservation - Assign GPU address space for every object
113  * 3. Relocation - Update any addresses to point to the final locations
114  * 4. Serialisation - Order the request with respect to its dependencies
115  * 5. Construction - Construct a request to execute the batchbuffer
116  * 6. Submission (at some point in the future execution)
117  *
118  * Reserving resources for the execbuf is the most complicated phase. We
119  * neither want to have to migrate the object in the address space, nor do
120  * we want to have to update any relocations pointing to this object. Ideally,
121  * we want to leave the object where it is and for all the existing relocations
122  * to match. If the object is given a new address, or if userspace thinks the
123  * object is elsewhere, we have to parse all the relocation entries and update
124  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
125  * all the target addresses in all of its objects match the value in the
126  * relocation entries and that they all match the presumed offsets given by the
127  * list of execbuffer objects. Using this knowledge, we know that if we haven't
128  * moved any buffers, all the relocation entries are valid and we can skip
129  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
130  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
131  *
132  *      The addresses written in the objects must match the corresponding
133  *      reloc.presumed_offset which in turn must match the corresponding
134  *      execobject.offset.
135  *
136  *      Any render targets written to in the batch must be flagged with
137  *      EXEC_OBJECT_WRITE.
138  *
139  *      To avoid stalling, execobject.offset should match the current
140  *      address of that object within the active context.
141  *
142  * The reservation is done is multiple phases. First we try and keep any
143  * object already bound in its current location - so as long as meets the
144  * constraints imposed by the new execbuffer. Any object left unbound after the
145  * first pass is then fitted into any available idle space. If an object does
146  * not fit, all objects are removed from the reservation and the process rerun
147  * after sorting the objects into a priority order (more difficult to fit
148  * objects are tried first). Failing that, the entire VM is cleared and we try
149  * to fit the execbuf once last time before concluding that it simply will not
150  * fit.
151  *
152  * A small complication to all of this is that we allow userspace not only to
153  * specify an alignment and a size for the object in the address space, but
154  * we also allow userspace to specify the exact offset. This objects are
155  * simpler to place (the location is known a priori) all we have to do is make
156  * sure the space is available.
157  *
158  * Once all the objects are in place, patching up the buried pointers to point
159  * to the final locations is a fairly simple job of walking over the relocation
160  * entry arrays, looking up the right address and rewriting the value into
161  * the object. Simple! ... The relocation entries are stored in user memory
162  * and so to access them we have to copy them into a local buffer. That copy
163  * has to avoid taking any pagefaults as they may lead back to a GEM object
164  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
165  * the relocation into multiple passes. First we try to do everything within an
166  * atomic context (avoid the pagefaults) which requires that we never wait. If
167  * we detect that we may wait, or if we need to fault, then we have to fallback
168  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
169  * bells yet?) Dropping the mutex means that we lose all the state we have
170  * built up so far for the execbuf and we must reset any global data. However,
171  * we do leave the objects pinned in their final locations - which is a
172  * potential issue for concurrent execbufs. Once we have left the mutex, we can
173  * allocate and copy all the relocation entries into a large array at our
174  * leisure, reacquire the mutex, reclaim all the objects and other state and
175  * then proceed to update any incorrect addresses with the objects.
176  *
177  * As we process the relocation entries, we maintain a record of whether the
178  * object is being written to. Using NORELOC, we expect userspace to provide
179  * this information instead. We also check whether we can skip the relocation
180  * by comparing the expected value inside the relocation entry with the target's
181  * final address. If they differ, we have to map the current object and rewrite
182  * the 4 or 8 byte pointer within.
183  *
184  * Serialising an execbuf is quite simple according to the rules of the GEM
185  * ABI. Execution within each context is ordered by the order of submission.
186  * Writes to any GEM object are in order of submission and are exclusive. Reads
187  * from a GEM object are unordered with respect to other reads, but ordered by
188  * writes. A write submitted after a read cannot occur before the read, and
189  * similarly any read submitted after a write cannot occur before the write.
190  * Writes are ordered between engines such that only one write occurs at any
191  * time (completing any reads beforehand) - using semaphores where available
192  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
193  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
194  * reads before starting, and any read (either using set-domain or pread) must
195  * flush all GPU writes before starting. (Note we only employ a barrier before,
196  * we currently rely on userspace not concurrently starting a new execution
197  * whilst reading or writing to an object. This may be an advantage or not
198  * depending on how much you trust userspace not to shoot themselves in the
199  * foot.) Serialisation may just result in the request being inserted into
200  * a DAG awaiting its turn, but most simple is to wait on the CPU until
201  * all dependencies are resolved.
202  *
203  * After all of that, is just a matter of closing the request and handing it to
204  * the hardware (well, leaving it in a queue to be executed). However, we also
205  * offer the ability for batchbuffers to be run with elevated privileges so
206  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
207  * Before any batch is given extra privileges we first must check that it
208  * contains no nefarious instructions, we check that each instruction is from
209  * our whitelist and all registers are also from an allowed list. We first
210  * copy the user's batchbuffer to a shadow (so that the user doesn't have
211  * access to it, either by the CPU or GPU as we scan it) and then parse each
212  * instruction. If everything is ok, we set a flag telling the hardware to run
213  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
214  */
215 
216 struct i915_execbuffer {
217 	struct drm_i915_private *i915; /** i915 backpointer */
218 	struct drm_file *file; /** per-file lookup tables and limits */
219 	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
220 	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
221 	struct i915_vma **vma;
222 	unsigned int *flags;
223 
224 	struct intel_engine_cs *engine; /** engine to queue the request to */
225 	struct intel_context *context; /* logical state for the request */
226 	struct i915_gem_context *gem_context; /** caller's context */
227 
228 	struct i915_request *request; /** our request to build */
229 	struct i915_vma *batch; /** identity of the batch obj/vma */
230 
231 	/** actual size of execobj[] as we may extend it for the cmdparser */
232 	unsigned int buffer_count;
233 
234 	/** list of vma not yet bound during reservation phase */
235 	struct list_head unbound;
236 
237 	/** list of vma that have execobj.relocation_count */
238 	struct list_head relocs;
239 
240 	/**
241 	 * Track the most recently used object for relocations, as we
242 	 * frequently have to perform multiple relocations within the same
243 	 * obj/page
244 	 */
245 	struct reloc_cache {
246 		struct drm_mm_node node; /** temporary GTT binding */
247 		unsigned long vaddr; /** Current kmap address */
248 		unsigned long page; /** Currently mapped page index */
249 		unsigned int gen; /** Cached value of INTEL_GEN */
250 		bool use_64bit_reloc : 1;
251 		bool has_llc : 1;
252 		bool has_fence : 1;
253 		bool needs_unfenced : 1;
254 
255 		struct i915_request *rq;
256 		u32 *rq_cmd;
257 		unsigned int rq_size;
258 	} reloc_cache;
259 
260 	u64 invalid_flags; /** Set of execobj.flags that are invalid */
261 	u32 context_flags; /** Set of execobj.flags to insert from the ctx */
262 
263 	u32 batch_start_offset; /** Location within object of batch */
264 	u32 batch_len; /** Length of batch within object */
265 	u32 batch_flags; /** Flags composed for emit_bb_start() */
266 
267 	/**
268 	 * Indicate either the size of the hastable used to resolve
269 	 * relocation handles, or if negative that we are using a direct
270 	 * index into the execobj[].
271 	 */
272 	int lut_size;
273 	struct hlist_head *buckets; /** ht for relocation handles */
274 };
275 
276 #define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
277 
278 /*
279  * Used to convert any address to canonical form.
280  * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
281  * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
282  * addresses to be in a canonical form:
283  * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
284  * canonical form [63:48] == [47]."
285  */
286 #define GEN8_HIGH_ADDRESS_BIT 47
287 static inline u64 gen8_canonical_addr(u64 address)
288 {
289 	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
290 }
291 
292 static inline u64 gen8_noncanonical_addr(u64 address)
293 {
294 	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
295 }
296 
297 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
298 {
299 	return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
300 }
301 
302 static int eb_create(struct i915_execbuffer *eb)
303 {
304 	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
305 		unsigned int size = 1 + ilog2(eb->buffer_count);
306 
307 		/*
308 		 * Without a 1:1 association between relocation handles and
309 		 * the execobject[] index, we instead create a hashtable.
310 		 * We size it dynamically based on available memory, starting
311 		 * first with 1:1 assocative hash and scaling back until
312 		 * the allocation succeeds.
313 		 *
314 		 * Later on we use a positive lut_size to indicate we are
315 		 * using this hashtable, and a negative value to indicate a
316 		 * direct lookup.
317 		 */
318 		do {
319 			gfp_t flags;
320 
321 			/* While we can still reduce the allocation size, don't
322 			 * raise a warning and allow the allocation to fail.
323 			 * On the last pass though, we want to try as hard
324 			 * as possible to perform the allocation and warn
325 			 * if it fails.
326 			 */
327 			flags = GFP_KERNEL;
328 			if (size > 1)
329 				flags |= __GFP_NORETRY | __GFP_NOWARN;
330 
331 			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
332 					      flags);
333 			if (eb->buckets)
334 				break;
335 		} while (--size);
336 
337 		if (unlikely(!size))
338 			return -ENOMEM;
339 
340 		eb->lut_size = size;
341 	} else {
342 		eb->lut_size = -eb->buffer_count;
343 	}
344 
345 	return 0;
346 }
347 
348 static bool
349 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
350 		 const struct i915_vma *vma,
351 		 unsigned int flags)
352 {
353 	if (vma->node.size < entry->pad_to_size)
354 		return true;
355 
356 	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
357 		return true;
358 
359 	if (flags & EXEC_OBJECT_PINNED &&
360 	    vma->node.start != entry->offset)
361 		return true;
362 
363 	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
364 	    vma->node.start < BATCH_OFFSET_BIAS)
365 		return true;
366 
367 	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
368 	    (vma->node.start + vma->node.size - 1) >> 32)
369 		return true;
370 
371 	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
372 	    !i915_vma_is_map_and_fenceable(vma))
373 		return true;
374 
375 	return false;
376 }
377 
378 static inline bool
379 eb_pin_vma(struct i915_execbuffer *eb,
380 	   const struct drm_i915_gem_exec_object2 *entry,
381 	   struct i915_vma *vma)
382 {
383 	unsigned int exec_flags = *vma->exec_flags;
384 	u64 pin_flags;
385 
386 	if (vma->node.size)
387 		pin_flags = vma->node.start;
388 	else
389 		pin_flags = entry->offset & PIN_OFFSET_MASK;
390 
391 	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
392 	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
393 		pin_flags |= PIN_GLOBAL;
394 
395 	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
396 		return false;
397 
398 	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
399 		if (unlikely(i915_vma_pin_fence(vma))) {
400 			i915_vma_unpin(vma);
401 			return false;
402 		}
403 
404 		if (vma->fence)
405 			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
406 	}
407 
408 	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
409 	return !eb_vma_misplaced(entry, vma, exec_flags);
410 }
411 
412 static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
413 {
414 	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
415 
416 	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
417 		__i915_vma_unpin_fence(vma);
418 
419 	__i915_vma_unpin(vma);
420 }
421 
422 static inline void
423 eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
424 {
425 	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
426 		return;
427 
428 	__eb_unreserve_vma(vma, *flags);
429 	*flags &= ~__EXEC_OBJECT_RESERVED;
430 }
431 
432 static int
433 eb_validate_vma(struct i915_execbuffer *eb,
434 		struct drm_i915_gem_exec_object2 *entry,
435 		struct i915_vma *vma)
436 {
437 	if (unlikely(entry->flags & eb->invalid_flags))
438 		return -EINVAL;
439 
440 	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
441 		return -EINVAL;
442 
443 	/*
444 	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
445 	 * any non-page-aligned or non-canonical addresses.
446 	 */
447 	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
448 		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
449 		return -EINVAL;
450 
451 	/* pad_to_size was once a reserved field, so sanitize it */
452 	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
453 		if (unlikely(offset_in_page(entry->pad_to_size)))
454 			return -EINVAL;
455 	} else {
456 		entry->pad_to_size = 0;
457 	}
458 
459 	if (unlikely(vma->exec_flags)) {
460 		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
461 			  entry->handle, (int)(entry - eb->exec));
462 		return -EINVAL;
463 	}
464 
465 	/*
466 	 * From drm_mm perspective address space is continuous,
467 	 * so from this point we're always using non-canonical
468 	 * form internally.
469 	 */
470 	entry->offset = gen8_noncanonical_addr(entry->offset);
471 
472 	if (!eb->reloc_cache.has_fence) {
473 		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
474 	} else {
475 		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
476 		     eb->reloc_cache.needs_unfenced) &&
477 		    i915_gem_object_is_tiled(vma->obj))
478 			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
479 	}
480 
481 	if (!(entry->flags & EXEC_OBJECT_PINNED))
482 		entry->flags |= eb->context_flags;
483 
484 	return 0;
485 }
486 
487 static int
488 eb_add_vma(struct i915_execbuffer *eb,
489 	   unsigned int i, unsigned batch_idx,
490 	   struct i915_vma *vma)
491 {
492 	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
493 	int err;
494 
495 	GEM_BUG_ON(i915_vma_is_closed(vma));
496 
497 	if (!(eb->args->flags & __EXEC_VALIDATED)) {
498 		err = eb_validate_vma(eb, entry, vma);
499 		if (unlikely(err))
500 			return err;
501 	}
502 
503 	if (eb->lut_size > 0) {
504 		vma->exec_handle = entry->handle;
505 		hlist_add_head(&vma->exec_node,
506 			       &eb->buckets[hash_32(entry->handle,
507 						    eb->lut_size)]);
508 	}
509 
510 	if (entry->relocation_count)
511 		list_add_tail(&vma->reloc_link, &eb->relocs);
512 
513 	/*
514 	 * Stash a pointer from the vma to execobj, so we can query its flags,
515 	 * size, alignment etc as provided by the user. Also we stash a pointer
516 	 * to the vma inside the execobj so that we can use a direct lookup
517 	 * to find the right target VMA when doing relocations.
518 	 */
519 	eb->vma[i] = vma;
520 	eb->flags[i] = entry->flags;
521 	vma->exec_flags = &eb->flags[i];
522 
523 	/*
524 	 * SNA is doing fancy tricks with compressing batch buffers, which leads
525 	 * to negative relocation deltas. Usually that works out ok since the
526 	 * relocate address is still positive, except when the batch is placed
527 	 * very low in the GTT. Ensure this doesn't happen.
528 	 *
529 	 * Note that actual hangs have only been observed on gen7, but for
530 	 * paranoia do it everywhere.
531 	 */
532 	if (i == batch_idx) {
533 		if (entry->relocation_count &&
534 		    !(eb->flags[i] & EXEC_OBJECT_PINNED))
535 			eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
536 		if (eb->reloc_cache.has_fence)
537 			eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
538 
539 		eb->batch = vma;
540 	}
541 
542 	err = 0;
543 	if (eb_pin_vma(eb, entry, vma)) {
544 		if (entry->offset != vma->node.start) {
545 			entry->offset = vma->node.start | UPDATE;
546 			eb->args->flags |= __EXEC_HAS_RELOC;
547 		}
548 	} else {
549 		eb_unreserve_vma(vma, vma->exec_flags);
550 
551 		list_add_tail(&vma->exec_link, &eb->unbound);
552 		if (drm_mm_node_allocated(&vma->node))
553 			err = i915_vma_unbind(vma);
554 		if (unlikely(err))
555 			vma->exec_flags = NULL;
556 	}
557 	return err;
558 }
559 
560 static inline int use_cpu_reloc(const struct reloc_cache *cache,
561 				const struct drm_i915_gem_object *obj)
562 {
563 	if (!i915_gem_object_has_struct_page(obj))
564 		return false;
565 
566 	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
567 		return true;
568 
569 	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
570 		return false;
571 
572 	return (cache->has_llc ||
573 		obj->cache_dirty ||
574 		obj->cache_level != I915_CACHE_NONE);
575 }
576 
577 static int eb_reserve_vma(const struct i915_execbuffer *eb,
578 			  struct i915_vma *vma)
579 {
580 	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
581 	unsigned int exec_flags = *vma->exec_flags;
582 	u64 pin_flags;
583 	int err;
584 
585 	pin_flags = PIN_USER | PIN_NONBLOCK;
586 	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
587 		pin_flags |= PIN_GLOBAL;
588 
589 	/*
590 	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
591 	 * limit address to the first 4GBs for unflagged objects.
592 	 */
593 	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
594 		pin_flags |= PIN_ZONE_4G;
595 
596 	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
597 		pin_flags |= PIN_MAPPABLE;
598 
599 	if (exec_flags & EXEC_OBJECT_PINNED) {
600 		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
601 		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
602 	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
603 		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
604 	}
605 
606 	err = i915_vma_pin(vma,
607 			   entry->pad_to_size, entry->alignment,
608 			   pin_flags);
609 	if (err)
610 		return err;
611 
612 	if (entry->offset != vma->node.start) {
613 		entry->offset = vma->node.start | UPDATE;
614 		eb->args->flags |= __EXEC_HAS_RELOC;
615 	}
616 
617 	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
618 		err = i915_vma_pin_fence(vma);
619 		if (unlikely(err)) {
620 			i915_vma_unpin(vma);
621 			return err;
622 		}
623 
624 		if (vma->fence)
625 			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
626 	}
627 
628 	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
629 	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
630 
631 	return 0;
632 }
633 
634 static int eb_reserve(struct i915_execbuffer *eb)
635 {
636 	const unsigned int count = eb->buffer_count;
637 	struct list_head last;
638 	struct i915_vma *vma;
639 	unsigned int i, pass;
640 	int err;
641 
642 	/*
643 	 * Attempt to pin all of the buffers into the GTT.
644 	 * This is done in 3 phases:
645 	 *
646 	 * 1a. Unbind all objects that do not match the GTT constraints for
647 	 *     the execbuffer (fenceable, mappable, alignment etc).
648 	 * 1b. Increment pin count for already bound objects.
649 	 * 2.  Bind new objects.
650 	 * 3.  Decrement pin count.
651 	 *
652 	 * This avoid unnecessary unbinding of later objects in order to make
653 	 * room for the earlier objects *unless* we need to defragment.
654 	 */
655 
656 	pass = 0;
657 	err = 0;
658 	do {
659 		list_for_each_entry(vma, &eb->unbound, exec_link) {
660 			err = eb_reserve_vma(eb, vma);
661 			if (err)
662 				break;
663 		}
664 		if (err != -ENOSPC)
665 			return err;
666 
667 		/* Resort *all* the objects into priority order */
668 		INIT_LIST_HEAD(&eb->unbound);
669 		INIT_LIST_HEAD(&last);
670 		for (i = 0; i < count; i++) {
671 			unsigned int flags = eb->flags[i];
672 			struct i915_vma *vma = eb->vma[i];
673 
674 			if (flags & EXEC_OBJECT_PINNED &&
675 			    flags & __EXEC_OBJECT_HAS_PIN)
676 				continue;
677 
678 			eb_unreserve_vma(vma, &eb->flags[i]);
679 
680 			if (flags & EXEC_OBJECT_PINNED)
681 				/* Pinned must have their slot */
682 				list_add(&vma->exec_link, &eb->unbound);
683 			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
684 				/* Map require the lowest 256MiB (aperture) */
685 				list_add_tail(&vma->exec_link, &eb->unbound);
686 			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
687 				/* Prioritise 4GiB region for restricted bo */
688 				list_add(&vma->exec_link, &last);
689 			else
690 				list_add_tail(&vma->exec_link, &last);
691 		}
692 		list_splice_tail(&last, &eb->unbound);
693 
694 		switch (pass++) {
695 		case 0:
696 			break;
697 
698 		case 1:
699 			/* Too fragmented, unbind everything and retry */
700 			err = i915_gem_evict_vm(eb->context->vm);
701 			if (err)
702 				return err;
703 			break;
704 
705 		default:
706 			return -ENOSPC;
707 		}
708 	} while (1);
709 }
710 
711 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
712 {
713 	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
714 		return 0;
715 	else
716 		return eb->buffer_count - 1;
717 }
718 
719 static int eb_select_context(struct i915_execbuffer *eb)
720 {
721 	struct i915_gem_context *ctx;
722 
723 	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
724 	if (unlikely(!ctx))
725 		return -ENOENT;
726 
727 	eb->gem_context = ctx;
728 	if (ctx->vm)
729 		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
730 
731 	eb->context_flags = 0;
732 	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
733 		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
734 
735 	return 0;
736 }
737 
738 static int eb_lookup_vmas(struct i915_execbuffer *eb)
739 {
740 	struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
741 	struct drm_i915_gem_object *obj;
742 	unsigned int i, batch;
743 	int err;
744 
745 	if (unlikely(i915_gem_context_is_banned(eb->gem_context)))
746 		return -EIO;
747 
748 	INIT_LIST_HEAD(&eb->relocs);
749 	INIT_LIST_HEAD(&eb->unbound);
750 
751 	batch = eb_batch_index(eb);
752 
753 	mutex_lock(&eb->gem_context->mutex);
754 	if (unlikely(i915_gem_context_is_closed(eb->gem_context))) {
755 		err = -ENOENT;
756 		goto err_ctx;
757 	}
758 
759 	for (i = 0; i < eb->buffer_count; i++) {
760 		u32 handle = eb->exec[i].handle;
761 		struct i915_lut_handle *lut;
762 		struct i915_vma *vma;
763 
764 		vma = radix_tree_lookup(handles_vma, handle);
765 		if (likely(vma))
766 			goto add_vma;
767 
768 		obj = i915_gem_object_lookup(eb->file, handle);
769 		if (unlikely(!obj)) {
770 			err = -ENOENT;
771 			goto err_vma;
772 		}
773 
774 		vma = i915_vma_instance(obj, eb->context->vm, NULL);
775 		if (IS_ERR(vma)) {
776 			err = PTR_ERR(vma);
777 			goto err_obj;
778 		}
779 
780 		lut = i915_lut_handle_alloc();
781 		if (unlikely(!lut)) {
782 			err = -ENOMEM;
783 			goto err_obj;
784 		}
785 
786 		err = radix_tree_insert(handles_vma, handle, vma);
787 		if (unlikely(err)) {
788 			i915_lut_handle_free(lut);
789 			goto err_obj;
790 		}
791 
792 		/* transfer ref to lut */
793 		if (!atomic_fetch_inc(&vma->open_count))
794 			i915_vma_reopen(vma);
795 		lut->handle = handle;
796 		lut->ctx = eb->gem_context;
797 
798 		i915_gem_object_lock(obj);
799 		list_add(&lut->obj_link, &obj->lut_list);
800 		i915_gem_object_unlock(obj);
801 
802 add_vma:
803 		err = eb_add_vma(eb, i, batch, vma);
804 		if (unlikely(err))
805 			goto err_vma;
806 
807 		GEM_BUG_ON(vma != eb->vma[i]);
808 		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
809 		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
810 			   eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
811 	}
812 
813 	mutex_unlock(&eb->gem_context->mutex);
814 
815 	eb->args->flags |= __EXEC_VALIDATED;
816 	return eb_reserve(eb);
817 
818 err_obj:
819 	i915_gem_object_put(obj);
820 err_vma:
821 	eb->vma[i] = NULL;
822 err_ctx:
823 	mutex_unlock(&eb->gem_context->mutex);
824 	return err;
825 }
826 
827 static struct i915_vma *
828 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
829 {
830 	if (eb->lut_size < 0) {
831 		if (handle >= -eb->lut_size)
832 			return NULL;
833 		return eb->vma[handle];
834 	} else {
835 		struct hlist_head *head;
836 		struct i915_vma *vma;
837 
838 		head = &eb->buckets[hash_32(handle, eb->lut_size)];
839 		hlist_for_each_entry(vma, head, exec_node) {
840 			if (vma->exec_handle == handle)
841 				return vma;
842 		}
843 		return NULL;
844 	}
845 }
846 
847 static void eb_release_vmas(const struct i915_execbuffer *eb)
848 {
849 	const unsigned int count = eb->buffer_count;
850 	unsigned int i;
851 
852 	for (i = 0; i < count; i++) {
853 		struct i915_vma *vma = eb->vma[i];
854 		unsigned int flags = eb->flags[i];
855 
856 		if (!vma)
857 			break;
858 
859 		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
860 		vma->exec_flags = NULL;
861 		eb->vma[i] = NULL;
862 
863 		if (flags & __EXEC_OBJECT_HAS_PIN)
864 			__eb_unreserve_vma(vma, flags);
865 
866 		if (flags & __EXEC_OBJECT_HAS_REF)
867 			i915_vma_put(vma);
868 	}
869 }
870 
871 static void eb_reset_vmas(const struct i915_execbuffer *eb)
872 {
873 	eb_release_vmas(eb);
874 	if (eb->lut_size > 0)
875 		memset(eb->buckets, 0,
876 		       sizeof(struct hlist_head) << eb->lut_size);
877 }
878 
879 static void eb_destroy(const struct i915_execbuffer *eb)
880 {
881 	GEM_BUG_ON(eb->reloc_cache.rq);
882 
883 	if (eb->lut_size > 0)
884 		kfree(eb->buckets);
885 }
886 
887 static inline u64
888 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
889 		  const struct i915_vma *target)
890 {
891 	return gen8_canonical_addr((int)reloc->delta + target->node.start);
892 }
893 
894 static void reloc_cache_init(struct reloc_cache *cache,
895 			     struct drm_i915_private *i915)
896 {
897 	cache->page = -1;
898 	cache->vaddr = 0;
899 	/* Must be a variable in the struct to allow GCC to unroll. */
900 	cache->gen = INTEL_GEN(i915);
901 	cache->has_llc = HAS_LLC(i915);
902 	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
903 	cache->has_fence = cache->gen < 4;
904 	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
905 	cache->node.allocated = false;
906 	cache->rq = NULL;
907 	cache->rq_size = 0;
908 }
909 
910 static inline void *unmask_page(unsigned long p)
911 {
912 	return (void *)(uintptr_t)(p & PAGE_MASK);
913 }
914 
915 static inline unsigned int unmask_flags(unsigned long p)
916 {
917 	return p & ~PAGE_MASK;
918 }
919 
920 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
921 
922 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
923 {
924 	struct drm_i915_private *i915 =
925 		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
926 	return &i915->ggtt;
927 }
928 
929 static void reloc_gpu_flush(struct reloc_cache *cache)
930 {
931 	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
932 	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
933 
934 	__i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
935 	i915_gem_object_unpin_map(cache->rq->batch->obj);
936 
937 	intel_gt_chipset_flush(cache->rq->engine->gt);
938 
939 	i915_request_add(cache->rq);
940 	cache->rq = NULL;
941 }
942 
943 static void reloc_cache_reset(struct reloc_cache *cache)
944 {
945 	void *vaddr;
946 
947 	if (cache->rq)
948 		reloc_gpu_flush(cache);
949 
950 	if (!cache->vaddr)
951 		return;
952 
953 	vaddr = unmask_page(cache->vaddr);
954 	if (cache->vaddr & KMAP) {
955 		if (cache->vaddr & CLFLUSH_AFTER)
956 			mb();
957 
958 		kunmap_atomic(vaddr);
959 		i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
960 	} else {
961 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
962 
963 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
964 		io_mapping_unmap_atomic((void __iomem *)vaddr);
965 
966 		if (cache->node.allocated) {
967 			ggtt->vm.clear_range(&ggtt->vm,
968 					     cache->node.start,
969 					     cache->node.size);
970 			drm_mm_remove_node(&cache->node);
971 		} else {
972 			i915_vma_unpin((struct i915_vma *)cache->node.mm);
973 		}
974 	}
975 
976 	cache->vaddr = 0;
977 	cache->page = -1;
978 }
979 
980 static void *reloc_kmap(struct drm_i915_gem_object *obj,
981 			struct reloc_cache *cache,
982 			unsigned long page)
983 {
984 	void *vaddr;
985 
986 	if (cache->vaddr) {
987 		kunmap_atomic(unmask_page(cache->vaddr));
988 	} else {
989 		unsigned int flushes;
990 		int err;
991 
992 		err = i915_gem_object_prepare_write(obj, &flushes);
993 		if (err)
994 			return ERR_PTR(err);
995 
996 		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
997 		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
998 
999 		cache->vaddr = flushes | KMAP;
1000 		cache->node.mm = (void *)obj;
1001 		if (flushes)
1002 			mb();
1003 	}
1004 
1005 	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
1006 	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1007 	cache->page = page;
1008 
1009 	return vaddr;
1010 }
1011 
1012 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1013 			 struct reloc_cache *cache,
1014 			 unsigned long page)
1015 {
1016 	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1017 	unsigned long offset;
1018 	void *vaddr;
1019 
1020 	if (cache->vaddr) {
1021 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1022 		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1023 	} else {
1024 		struct i915_vma *vma;
1025 		int err;
1026 
1027 		if (i915_gem_object_is_tiled(obj))
1028 			return ERR_PTR(-EINVAL);
1029 
1030 		if (use_cpu_reloc(cache, obj))
1031 			return NULL;
1032 
1033 		i915_gem_object_lock(obj);
1034 		err = i915_gem_object_set_to_gtt_domain(obj, true);
1035 		i915_gem_object_unlock(obj);
1036 		if (err)
1037 			return ERR_PTR(err);
1038 
1039 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1040 					       PIN_MAPPABLE |
1041 					       PIN_NONBLOCK /* NOWARN */ |
1042 					       PIN_NOEVICT);
1043 		if (IS_ERR(vma)) {
1044 			memset(&cache->node, 0, sizeof(cache->node));
1045 			err = drm_mm_insert_node_in_range
1046 				(&ggtt->vm.mm, &cache->node,
1047 				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1048 				 0, ggtt->mappable_end,
1049 				 DRM_MM_INSERT_LOW);
1050 			if (err) /* no inactive aperture space, use cpu reloc */
1051 				return NULL;
1052 		} else {
1053 			cache->node.start = vma->node.start;
1054 			cache->node.mm = (void *)vma;
1055 		}
1056 	}
1057 
1058 	offset = cache->node.start;
1059 	if (cache->node.allocated) {
1060 		ggtt->vm.insert_page(&ggtt->vm,
1061 				     i915_gem_object_get_dma_address(obj, page),
1062 				     offset, I915_CACHE_NONE, 0);
1063 	} else {
1064 		offset += page << PAGE_SHIFT;
1065 	}
1066 
1067 	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1068 							 offset);
1069 	cache->page = page;
1070 	cache->vaddr = (unsigned long)vaddr;
1071 
1072 	return vaddr;
1073 }
1074 
1075 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1076 			 struct reloc_cache *cache,
1077 			 unsigned long page)
1078 {
1079 	void *vaddr;
1080 
1081 	if (cache->page == page) {
1082 		vaddr = unmask_page(cache->vaddr);
1083 	} else {
1084 		vaddr = NULL;
1085 		if ((cache->vaddr & KMAP) == 0)
1086 			vaddr = reloc_iomap(obj, cache, page);
1087 		if (!vaddr)
1088 			vaddr = reloc_kmap(obj, cache, page);
1089 	}
1090 
1091 	return vaddr;
1092 }
1093 
1094 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1095 {
1096 	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1097 		if (flushes & CLFLUSH_BEFORE) {
1098 			clflushopt(addr);
1099 			mb();
1100 		}
1101 
1102 		*addr = value;
1103 
1104 		/*
1105 		 * Writes to the same cacheline are serialised by the CPU
1106 		 * (including clflush). On the write path, we only require
1107 		 * that it hits memory in an orderly fashion and place
1108 		 * mb barriers at the start and end of the relocation phase
1109 		 * to ensure ordering of clflush wrt to the system.
1110 		 */
1111 		if (flushes & CLFLUSH_AFTER)
1112 			clflushopt(addr);
1113 	} else
1114 		*addr = value;
1115 }
1116 
1117 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1118 {
1119 	struct drm_i915_gem_object *obj = vma->obj;
1120 	int err;
1121 
1122 	i915_vma_lock(vma);
1123 
1124 	if (obj->cache_dirty & ~obj->cache_coherent)
1125 		i915_gem_clflush_object(obj, 0);
1126 	obj->write_domain = 0;
1127 
1128 	err = i915_request_await_object(rq, vma->obj, true);
1129 	if (err == 0)
1130 		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1131 
1132 	i915_vma_unlock(vma);
1133 
1134 	return err;
1135 }
1136 
1137 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1138 			     struct i915_vma *vma,
1139 			     unsigned int len)
1140 {
1141 	struct reloc_cache *cache = &eb->reloc_cache;
1142 	struct intel_engine_pool_node *pool;
1143 	struct i915_request *rq;
1144 	struct i915_vma *batch;
1145 	u32 *cmd;
1146 	int err;
1147 
1148 	pool = intel_engine_pool_get(&eb->engine->pool, PAGE_SIZE);
1149 	if (IS_ERR(pool))
1150 		return PTR_ERR(pool);
1151 
1152 	cmd = i915_gem_object_pin_map(pool->obj,
1153 				      cache->has_llc ?
1154 				      I915_MAP_FORCE_WB :
1155 				      I915_MAP_FORCE_WC);
1156 	if (IS_ERR(cmd)) {
1157 		err = PTR_ERR(cmd);
1158 		goto out_pool;
1159 	}
1160 
1161 	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1162 	if (IS_ERR(batch)) {
1163 		err = PTR_ERR(batch);
1164 		goto err_unmap;
1165 	}
1166 
1167 	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1168 	if (err)
1169 		goto err_unmap;
1170 
1171 	rq = i915_request_create(eb->context);
1172 	if (IS_ERR(rq)) {
1173 		err = PTR_ERR(rq);
1174 		goto err_unpin;
1175 	}
1176 
1177 	err = intel_engine_pool_mark_active(pool, rq);
1178 	if (err)
1179 		goto err_request;
1180 
1181 	err = reloc_move_to_gpu(rq, vma);
1182 	if (err)
1183 		goto err_request;
1184 
1185 	err = eb->engine->emit_bb_start(rq,
1186 					batch->node.start, PAGE_SIZE,
1187 					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1188 	if (err)
1189 		goto skip_request;
1190 
1191 	i915_vma_lock(batch);
1192 	err = i915_request_await_object(rq, batch->obj, false);
1193 	if (err == 0)
1194 		err = i915_vma_move_to_active(batch, rq, 0);
1195 	i915_vma_unlock(batch);
1196 	if (err)
1197 		goto skip_request;
1198 
1199 	rq->batch = batch;
1200 	i915_vma_unpin(batch);
1201 
1202 	cache->rq = rq;
1203 	cache->rq_cmd = cmd;
1204 	cache->rq_size = 0;
1205 
1206 	/* Return with batch mapping (cmd) still pinned */
1207 	goto out_pool;
1208 
1209 skip_request:
1210 	i915_request_skip(rq, err);
1211 err_request:
1212 	i915_request_add(rq);
1213 err_unpin:
1214 	i915_vma_unpin(batch);
1215 err_unmap:
1216 	i915_gem_object_unpin_map(pool->obj);
1217 out_pool:
1218 	intel_engine_pool_put(pool);
1219 	return err;
1220 }
1221 
1222 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1223 		      struct i915_vma *vma,
1224 		      unsigned int len)
1225 {
1226 	struct reloc_cache *cache = &eb->reloc_cache;
1227 	u32 *cmd;
1228 
1229 	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1230 		reloc_gpu_flush(cache);
1231 
1232 	if (unlikely(!cache->rq)) {
1233 		int err;
1234 
1235 		/* If we need to copy for the cmdparser, we will stall anyway */
1236 		if (eb_use_cmdparser(eb))
1237 			return ERR_PTR(-EWOULDBLOCK);
1238 
1239 		if (!intel_engine_can_store_dword(eb->engine))
1240 			return ERR_PTR(-ENODEV);
1241 
1242 		err = __reloc_gpu_alloc(eb, vma, len);
1243 		if (unlikely(err))
1244 			return ERR_PTR(err);
1245 	}
1246 
1247 	cmd = cache->rq_cmd + cache->rq_size;
1248 	cache->rq_size += len;
1249 
1250 	return cmd;
1251 }
1252 
1253 static u64
1254 relocate_entry(struct i915_vma *vma,
1255 	       const struct drm_i915_gem_relocation_entry *reloc,
1256 	       struct i915_execbuffer *eb,
1257 	       const struct i915_vma *target)
1258 {
1259 	u64 offset = reloc->offset;
1260 	u64 target_offset = relocation_target(reloc, target);
1261 	bool wide = eb->reloc_cache.use_64bit_reloc;
1262 	void *vaddr;
1263 
1264 	if (!eb->reloc_cache.vaddr &&
1265 	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1266 	     !dma_resv_test_signaled_rcu(vma->resv, true))) {
1267 		const unsigned int gen = eb->reloc_cache.gen;
1268 		unsigned int len;
1269 		u32 *batch;
1270 		u64 addr;
1271 
1272 		if (wide)
1273 			len = offset & 7 ? 8 : 5;
1274 		else if (gen >= 4)
1275 			len = 4;
1276 		else
1277 			len = 3;
1278 
1279 		batch = reloc_gpu(eb, vma, len);
1280 		if (IS_ERR(batch))
1281 			goto repeat;
1282 
1283 		addr = gen8_canonical_addr(vma->node.start + offset);
1284 		if (wide) {
1285 			if (offset & 7) {
1286 				*batch++ = MI_STORE_DWORD_IMM_GEN4;
1287 				*batch++ = lower_32_bits(addr);
1288 				*batch++ = upper_32_bits(addr);
1289 				*batch++ = lower_32_bits(target_offset);
1290 
1291 				addr = gen8_canonical_addr(addr + 4);
1292 
1293 				*batch++ = MI_STORE_DWORD_IMM_GEN4;
1294 				*batch++ = lower_32_bits(addr);
1295 				*batch++ = upper_32_bits(addr);
1296 				*batch++ = upper_32_bits(target_offset);
1297 			} else {
1298 				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1299 				*batch++ = lower_32_bits(addr);
1300 				*batch++ = upper_32_bits(addr);
1301 				*batch++ = lower_32_bits(target_offset);
1302 				*batch++ = upper_32_bits(target_offset);
1303 			}
1304 		} else if (gen >= 6) {
1305 			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1306 			*batch++ = 0;
1307 			*batch++ = addr;
1308 			*batch++ = target_offset;
1309 		} else if (gen >= 4) {
1310 			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1311 			*batch++ = 0;
1312 			*batch++ = addr;
1313 			*batch++ = target_offset;
1314 		} else {
1315 			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1316 			*batch++ = addr;
1317 			*batch++ = target_offset;
1318 		}
1319 
1320 		goto out;
1321 	}
1322 
1323 repeat:
1324 	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1325 	if (IS_ERR(vaddr))
1326 		return PTR_ERR(vaddr);
1327 
1328 	clflush_write32(vaddr + offset_in_page(offset),
1329 			lower_32_bits(target_offset),
1330 			eb->reloc_cache.vaddr);
1331 
1332 	if (wide) {
1333 		offset += sizeof(u32);
1334 		target_offset >>= 32;
1335 		wide = false;
1336 		goto repeat;
1337 	}
1338 
1339 out:
1340 	return target->node.start | UPDATE;
1341 }
1342 
1343 static u64
1344 eb_relocate_entry(struct i915_execbuffer *eb,
1345 		  struct i915_vma *vma,
1346 		  const struct drm_i915_gem_relocation_entry *reloc)
1347 {
1348 	struct i915_vma *target;
1349 	int err;
1350 
1351 	/* we've already hold a reference to all valid objects */
1352 	target = eb_get_vma(eb, reloc->target_handle);
1353 	if (unlikely(!target))
1354 		return -ENOENT;
1355 
1356 	/* Validate that the target is in a valid r/w GPU domain */
1357 	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1358 		DRM_DEBUG("reloc with multiple write domains: "
1359 			  "target %d offset %d "
1360 			  "read %08x write %08x",
1361 			  reloc->target_handle,
1362 			  (int) reloc->offset,
1363 			  reloc->read_domains,
1364 			  reloc->write_domain);
1365 		return -EINVAL;
1366 	}
1367 	if (unlikely((reloc->write_domain | reloc->read_domains)
1368 		     & ~I915_GEM_GPU_DOMAINS)) {
1369 		DRM_DEBUG("reloc with read/write non-GPU domains: "
1370 			  "target %d offset %d "
1371 			  "read %08x write %08x",
1372 			  reloc->target_handle,
1373 			  (int) reloc->offset,
1374 			  reloc->read_domains,
1375 			  reloc->write_domain);
1376 		return -EINVAL;
1377 	}
1378 
1379 	if (reloc->write_domain) {
1380 		*target->exec_flags |= EXEC_OBJECT_WRITE;
1381 
1382 		/*
1383 		 * Sandybridge PPGTT errata: We need a global gtt mapping
1384 		 * for MI and pipe_control writes because the gpu doesn't
1385 		 * properly redirect them through the ppgtt for non_secure
1386 		 * batchbuffers.
1387 		 */
1388 		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1389 		    IS_GEN(eb->i915, 6)) {
1390 			err = i915_vma_bind(target, target->obj->cache_level,
1391 					    PIN_GLOBAL);
1392 			if (WARN_ONCE(err,
1393 				      "Unexpected failure to bind target VMA!"))
1394 				return err;
1395 		}
1396 	}
1397 
1398 	/*
1399 	 * If the relocation already has the right value in it, no
1400 	 * more work needs to be done.
1401 	 */
1402 	if (!DBG_FORCE_RELOC &&
1403 	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1404 		return 0;
1405 
1406 	/* Check that the relocation address is valid... */
1407 	if (unlikely(reloc->offset >
1408 		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1409 		DRM_DEBUG("Relocation beyond object bounds: "
1410 			  "target %d offset %d size %d.\n",
1411 			  reloc->target_handle,
1412 			  (int)reloc->offset,
1413 			  (int)vma->size);
1414 		return -EINVAL;
1415 	}
1416 	if (unlikely(reloc->offset & 3)) {
1417 		DRM_DEBUG("Relocation not 4-byte aligned: "
1418 			  "target %d offset %d.\n",
1419 			  reloc->target_handle,
1420 			  (int)reloc->offset);
1421 		return -EINVAL;
1422 	}
1423 
1424 	/*
1425 	 * If we write into the object, we need to force the synchronisation
1426 	 * barrier, either with an asynchronous clflush or if we executed the
1427 	 * patching using the GPU (though that should be serialised by the
1428 	 * timeline). To be completely sure, and since we are required to
1429 	 * do relocations we are already stalling, disable the user's opt
1430 	 * out of our synchronisation.
1431 	 */
1432 	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1433 
1434 	/* and update the user's relocation entry */
1435 	return relocate_entry(vma, reloc, eb, target);
1436 }
1437 
1438 static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1439 {
1440 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1441 	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1442 	struct drm_i915_gem_relocation_entry __user *urelocs;
1443 	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1444 	unsigned int remain;
1445 
1446 	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1447 	remain = entry->relocation_count;
1448 	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1449 		return -EINVAL;
1450 
1451 	/*
1452 	 * We must check that the entire relocation array is safe
1453 	 * to read. However, if the array is not writable the user loses
1454 	 * the updated relocation values.
1455 	 */
1456 	if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1457 		return -EFAULT;
1458 
1459 	do {
1460 		struct drm_i915_gem_relocation_entry *r = stack;
1461 		unsigned int count =
1462 			min_t(unsigned int, remain, ARRAY_SIZE(stack));
1463 		unsigned int copied;
1464 
1465 		/*
1466 		 * This is the fast path and we cannot handle a pagefault
1467 		 * whilst holding the struct mutex lest the user pass in the
1468 		 * relocations contained within a mmaped bo. For in such a case
1469 		 * we, the page fault handler would call i915_gem_fault() and
1470 		 * we would try to acquire the struct mutex again. Obviously
1471 		 * this is bad and so lockdep complains vehemently.
1472 		 */
1473 		pagefault_disable();
1474 		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1475 		pagefault_enable();
1476 		if (unlikely(copied)) {
1477 			remain = -EFAULT;
1478 			goto out;
1479 		}
1480 
1481 		remain -= count;
1482 		do {
1483 			u64 offset = eb_relocate_entry(eb, vma, r);
1484 
1485 			if (likely(offset == 0)) {
1486 			} else if ((s64)offset < 0) {
1487 				remain = (int)offset;
1488 				goto out;
1489 			} else {
1490 				/*
1491 				 * Note that reporting an error now
1492 				 * leaves everything in an inconsistent
1493 				 * state as we have *already* changed
1494 				 * the relocation value inside the
1495 				 * object. As we have not changed the
1496 				 * reloc.presumed_offset or will not
1497 				 * change the execobject.offset, on the
1498 				 * call we may not rewrite the value
1499 				 * inside the object, leaving it
1500 				 * dangling and causing a GPU hang. Unless
1501 				 * userspace dynamically rebuilds the
1502 				 * relocations on each execbuf rather than
1503 				 * presume a static tree.
1504 				 *
1505 				 * We did previously check if the relocations
1506 				 * were writable (access_ok), an error now
1507 				 * would be a strange race with mprotect,
1508 				 * having already demonstrated that we
1509 				 * can read from this userspace address.
1510 				 */
1511 				offset = gen8_canonical_addr(offset & ~UPDATE);
1512 				if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
1513 					remain = -EFAULT;
1514 					goto out;
1515 				}
1516 			}
1517 		} while (r++, --count);
1518 		urelocs += ARRAY_SIZE(stack);
1519 	} while (remain);
1520 out:
1521 	reloc_cache_reset(&eb->reloc_cache);
1522 	return remain;
1523 }
1524 
1525 static int
1526 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1527 {
1528 	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1529 	struct drm_i915_gem_relocation_entry *relocs =
1530 		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1531 	unsigned int i;
1532 	int err;
1533 
1534 	for (i = 0; i < entry->relocation_count; i++) {
1535 		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1536 
1537 		if ((s64)offset < 0) {
1538 			err = (int)offset;
1539 			goto err;
1540 		}
1541 	}
1542 	err = 0;
1543 err:
1544 	reloc_cache_reset(&eb->reloc_cache);
1545 	return err;
1546 }
1547 
1548 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1549 {
1550 	const char __user *addr, *end;
1551 	unsigned long size;
1552 	char __maybe_unused c;
1553 
1554 	size = entry->relocation_count;
1555 	if (size == 0)
1556 		return 0;
1557 
1558 	if (size > N_RELOC(ULONG_MAX))
1559 		return -EINVAL;
1560 
1561 	addr = u64_to_user_ptr(entry->relocs_ptr);
1562 	size *= sizeof(struct drm_i915_gem_relocation_entry);
1563 	if (!access_ok(addr, size))
1564 		return -EFAULT;
1565 
1566 	end = addr + size;
1567 	for (; addr < end; addr += PAGE_SIZE) {
1568 		int err = __get_user(c, addr);
1569 		if (err)
1570 			return err;
1571 	}
1572 	return __get_user(c, end - 1);
1573 }
1574 
1575 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1576 {
1577 	struct drm_i915_gem_relocation_entry *relocs;
1578 	const unsigned int count = eb->buffer_count;
1579 	unsigned int i;
1580 	int err;
1581 
1582 	for (i = 0; i < count; i++) {
1583 		const unsigned int nreloc = eb->exec[i].relocation_count;
1584 		struct drm_i915_gem_relocation_entry __user *urelocs;
1585 		unsigned long size;
1586 		unsigned long copied;
1587 
1588 		if (nreloc == 0)
1589 			continue;
1590 
1591 		err = check_relocations(&eb->exec[i]);
1592 		if (err)
1593 			goto err;
1594 
1595 		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1596 		size = nreloc * sizeof(*relocs);
1597 
1598 		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1599 		if (!relocs) {
1600 			err = -ENOMEM;
1601 			goto err;
1602 		}
1603 
1604 		/* copy_from_user is limited to < 4GiB */
1605 		copied = 0;
1606 		do {
1607 			unsigned int len =
1608 				min_t(u64, BIT_ULL(31), size - copied);
1609 
1610 			if (__copy_from_user((char *)relocs + copied,
1611 					     (char __user *)urelocs + copied,
1612 					     len))
1613 				goto end;
1614 
1615 			copied += len;
1616 		} while (copied < size);
1617 
1618 		/*
1619 		 * As we do not update the known relocation offsets after
1620 		 * relocating (due to the complexities in lock handling),
1621 		 * we need to mark them as invalid now so that we force the
1622 		 * relocation processing next time. Just in case the target
1623 		 * object is evicted and then rebound into its old
1624 		 * presumed_offset before the next execbuffer - if that
1625 		 * happened we would make the mistake of assuming that the
1626 		 * relocations were valid.
1627 		 */
1628 		if (!user_access_begin(urelocs, size))
1629 			goto end;
1630 
1631 		for (copied = 0; copied < nreloc; copied++)
1632 			unsafe_put_user(-1,
1633 					&urelocs[copied].presumed_offset,
1634 					end_user);
1635 		user_access_end();
1636 
1637 		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1638 	}
1639 
1640 	return 0;
1641 
1642 end_user:
1643 	user_access_end();
1644 end:
1645 	kvfree(relocs);
1646 	err = -EFAULT;
1647 err:
1648 	while (i--) {
1649 		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1650 		if (eb->exec[i].relocation_count)
1651 			kvfree(relocs);
1652 	}
1653 	return err;
1654 }
1655 
1656 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1657 {
1658 	const unsigned int count = eb->buffer_count;
1659 	unsigned int i;
1660 
1661 	if (unlikely(i915_modparams.prefault_disable))
1662 		return 0;
1663 
1664 	for (i = 0; i < count; i++) {
1665 		int err;
1666 
1667 		err = check_relocations(&eb->exec[i]);
1668 		if (err)
1669 			return err;
1670 	}
1671 
1672 	return 0;
1673 }
1674 
1675 static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1676 {
1677 	struct drm_device *dev = &eb->i915->drm;
1678 	bool have_copy = false;
1679 	struct i915_vma *vma;
1680 	int err = 0;
1681 
1682 repeat:
1683 	if (signal_pending(current)) {
1684 		err = -ERESTARTSYS;
1685 		goto out;
1686 	}
1687 
1688 	/* We may process another execbuffer during the unlock... */
1689 	eb_reset_vmas(eb);
1690 	mutex_unlock(&dev->struct_mutex);
1691 
1692 	/*
1693 	 * We take 3 passes through the slowpatch.
1694 	 *
1695 	 * 1 - we try to just prefault all the user relocation entries and
1696 	 * then attempt to reuse the atomic pagefault disabled fast path again.
1697 	 *
1698 	 * 2 - we copy the user entries to a local buffer here outside of the
1699 	 * local and allow ourselves to wait upon any rendering before
1700 	 * relocations
1701 	 *
1702 	 * 3 - we already have a local copy of the relocation entries, but
1703 	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1704 	 */
1705 	if (!err) {
1706 		err = eb_prefault_relocations(eb);
1707 	} else if (!have_copy) {
1708 		err = eb_copy_relocations(eb);
1709 		have_copy = err == 0;
1710 	} else {
1711 		cond_resched();
1712 		err = 0;
1713 	}
1714 	if (err) {
1715 		mutex_lock(&dev->struct_mutex);
1716 		goto out;
1717 	}
1718 
1719 	/* A frequent cause for EAGAIN are currently unavailable client pages */
1720 	flush_workqueue(eb->i915->mm.userptr_wq);
1721 
1722 	err = i915_mutex_lock_interruptible(dev);
1723 	if (err) {
1724 		mutex_lock(&dev->struct_mutex);
1725 		goto out;
1726 	}
1727 
1728 	/* reacquire the objects */
1729 	err = eb_lookup_vmas(eb);
1730 	if (err)
1731 		goto err;
1732 
1733 	GEM_BUG_ON(!eb->batch);
1734 
1735 	list_for_each_entry(vma, &eb->relocs, reloc_link) {
1736 		if (!have_copy) {
1737 			pagefault_disable();
1738 			err = eb_relocate_vma(eb, vma);
1739 			pagefault_enable();
1740 			if (err)
1741 				goto repeat;
1742 		} else {
1743 			err = eb_relocate_vma_slow(eb, vma);
1744 			if (err)
1745 				goto err;
1746 		}
1747 	}
1748 
1749 	/*
1750 	 * Leave the user relocations as are, this is the painfully slow path,
1751 	 * and we want to avoid the complication of dropping the lock whilst
1752 	 * having buffers reserved in the aperture and so causing spurious
1753 	 * ENOSPC for random operations.
1754 	 */
1755 
1756 err:
1757 	if (err == -EAGAIN)
1758 		goto repeat;
1759 
1760 out:
1761 	if (have_copy) {
1762 		const unsigned int count = eb->buffer_count;
1763 		unsigned int i;
1764 
1765 		for (i = 0; i < count; i++) {
1766 			const struct drm_i915_gem_exec_object2 *entry =
1767 				&eb->exec[i];
1768 			struct drm_i915_gem_relocation_entry *relocs;
1769 
1770 			if (!entry->relocation_count)
1771 				continue;
1772 
1773 			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1774 			kvfree(relocs);
1775 		}
1776 	}
1777 
1778 	return err;
1779 }
1780 
1781 static int eb_relocate(struct i915_execbuffer *eb)
1782 {
1783 	if (eb_lookup_vmas(eb))
1784 		goto slow;
1785 
1786 	/* The objects are in their final locations, apply the relocations. */
1787 	if (eb->args->flags & __EXEC_HAS_RELOC) {
1788 		struct i915_vma *vma;
1789 
1790 		list_for_each_entry(vma, &eb->relocs, reloc_link) {
1791 			if (eb_relocate_vma(eb, vma))
1792 				goto slow;
1793 		}
1794 	}
1795 
1796 	return 0;
1797 
1798 slow:
1799 	return eb_relocate_slow(eb);
1800 }
1801 
1802 static int eb_move_to_gpu(struct i915_execbuffer *eb)
1803 {
1804 	const unsigned int count = eb->buffer_count;
1805 	struct ww_acquire_ctx acquire;
1806 	unsigned int i;
1807 	int err = 0;
1808 
1809 	ww_acquire_init(&acquire, &reservation_ww_class);
1810 
1811 	for (i = 0; i < count; i++) {
1812 		struct i915_vma *vma = eb->vma[i];
1813 
1814 		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
1815 		if (!err)
1816 			continue;
1817 
1818 		GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */
1819 
1820 		if (err == -EDEADLK) {
1821 			GEM_BUG_ON(i == 0);
1822 			do {
1823 				int j = i - 1;
1824 
1825 				ww_mutex_unlock(&eb->vma[j]->resv->lock);
1826 
1827 				swap(eb->flags[i], eb->flags[j]);
1828 				swap(eb->vma[i],  eb->vma[j]);
1829 				eb->vma[i]->exec_flags = &eb->flags[i];
1830 			} while (--i);
1831 			GEM_BUG_ON(vma != eb->vma[0]);
1832 			vma->exec_flags = &eb->flags[0];
1833 
1834 			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
1835 							       &acquire);
1836 		}
1837 		if (err)
1838 			break;
1839 	}
1840 	ww_acquire_done(&acquire);
1841 
1842 	while (i--) {
1843 		unsigned int flags = eb->flags[i];
1844 		struct i915_vma *vma = eb->vma[i];
1845 		struct drm_i915_gem_object *obj = vma->obj;
1846 
1847 		assert_vma_held(vma);
1848 
1849 		if (flags & EXEC_OBJECT_CAPTURE) {
1850 			struct i915_capture_list *capture;
1851 
1852 			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1853 			if (capture) {
1854 				capture->next = eb->request->capture_list;
1855 				capture->vma = vma;
1856 				eb->request->capture_list = capture;
1857 			}
1858 		}
1859 
1860 		/*
1861 		 * If the GPU is not _reading_ through the CPU cache, we need
1862 		 * to make sure that any writes (both previous GPU writes from
1863 		 * before a change in snooping levels and normal CPU writes)
1864 		 * caught in that cache are flushed to main memory.
1865 		 *
1866 		 * We want to say
1867 		 *   obj->cache_dirty &&
1868 		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1869 		 * but gcc's optimiser doesn't handle that as well and emits
1870 		 * two jumps instead of one. Maybe one day...
1871 		 */
1872 		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1873 			if (i915_gem_clflush_object(obj, 0))
1874 				flags &= ~EXEC_OBJECT_ASYNC;
1875 		}
1876 
1877 		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
1878 			err = i915_request_await_object
1879 				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
1880 		}
1881 
1882 		if (err == 0)
1883 			err = i915_vma_move_to_active(vma, eb->request, flags);
1884 
1885 		i915_vma_unlock(vma);
1886 
1887 		__eb_unreserve_vma(vma, flags);
1888 		vma->exec_flags = NULL;
1889 
1890 		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1891 			i915_vma_put(vma);
1892 	}
1893 	ww_acquire_fini(&acquire);
1894 
1895 	if (unlikely(err))
1896 		goto err_skip;
1897 
1898 	eb->exec = NULL;
1899 
1900 	/* Unconditionally flush any chipset caches (for streaming writes). */
1901 	intel_gt_chipset_flush(eb->engine->gt);
1902 	return 0;
1903 
1904 err_skip:
1905 	i915_request_skip(eb->request, err);
1906 	return err;
1907 }
1908 
1909 static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1910 {
1911 	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1912 		return false;
1913 
1914 	/* Kernel clipping was a DRI1 misfeature */
1915 	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1916 		if (exec->num_cliprects || exec->cliprects_ptr)
1917 			return false;
1918 	}
1919 
1920 	if (exec->DR4 == 0xffffffff) {
1921 		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1922 		exec->DR4 = 0;
1923 	}
1924 	if (exec->DR1 || exec->DR4)
1925 		return false;
1926 
1927 	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1928 		return false;
1929 
1930 	return true;
1931 }
1932 
1933 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1934 {
1935 	u32 *cs;
1936 	int i;
1937 
1938 	if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1939 		DRM_DEBUG("sol reset is gen7/rcs only\n");
1940 		return -EINVAL;
1941 	}
1942 
1943 	cs = intel_ring_begin(rq, 4 * 2 + 2);
1944 	if (IS_ERR(cs))
1945 		return PTR_ERR(cs);
1946 
1947 	*cs++ = MI_LOAD_REGISTER_IMM(4);
1948 	for (i = 0; i < 4; i++) {
1949 		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1950 		*cs++ = 0;
1951 	}
1952 	*cs++ = MI_NOOP;
1953 	intel_ring_advance(rq, cs);
1954 
1955 	return 0;
1956 }
1957 
1958 static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1959 {
1960 	struct intel_engine_pool_node *pool;
1961 	struct i915_vma *vma;
1962 	int err;
1963 
1964 	pool = intel_engine_pool_get(&eb->engine->pool, eb->batch_len);
1965 	if (IS_ERR(pool))
1966 		return ERR_CAST(pool);
1967 
1968 	err = intel_engine_cmd_parser(eb->engine,
1969 				      eb->batch->obj,
1970 				      pool->obj,
1971 				      eb->batch_start_offset,
1972 				      eb->batch_len,
1973 				      is_master);
1974 	if (err) {
1975 		if (err == -EACCES) /* unhandled chained batch */
1976 			vma = NULL;
1977 		else
1978 			vma = ERR_PTR(err);
1979 		goto err;
1980 	}
1981 
1982 	vma = i915_gem_object_ggtt_pin(pool->obj, NULL, 0, 0, 0);
1983 	if (IS_ERR(vma))
1984 		goto err;
1985 
1986 	eb->vma[eb->buffer_count] = i915_vma_get(vma);
1987 	eb->flags[eb->buffer_count] =
1988 		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
1989 	vma->exec_flags = &eb->flags[eb->buffer_count];
1990 	eb->buffer_count++;
1991 
1992 	vma->private = pool;
1993 	return vma;
1994 
1995 err:
1996 	intel_engine_pool_put(pool);
1997 	return vma;
1998 }
1999 
2000 static void
2001 add_to_client(struct i915_request *rq, struct drm_file *file)
2002 {
2003 	struct drm_i915_file_private *file_priv = file->driver_priv;
2004 
2005 	rq->file_priv = file_priv;
2006 
2007 	spin_lock(&file_priv->mm.lock);
2008 	list_add_tail(&rq->client_link, &file_priv->mm.request_list);
2009 	spin_unlock(&file_priv->mm.lock);
2010 }
2011 
2012 static int eb_submit(struct i915_execbuffer *eb)
2013 {
2014 	int err;
2015 
2016 	err = eb_move_to_gpu(eb);
2017 	if (err)
2018 		return err;
2019 
2020 	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2021 		err = i915_reset_gen7_sol_offsets(eb->request);
2022 		if (err)
2023 			return err;
2024 	}
2025 
2026 	/*
2027 	 * After we completed waiting for other engines (using HW semaphores)
2028 	 * then we can signal that this request/batch is ready to run. This
2029 	 * allows us to determine if the batch is still waiting on the GPU
2030 	 * or actually running by checking the breadcrumb.
2031 	 */
2032 	if (eb->engine->emit_init_breadcrumb) {
2033 		err = eb->engine->emit_init_breadcrumb(eb->request);
2034 		if (err)
2035 			return err;
2036 	}
2037 
2038 	err = eb->engine->emit_bb_start(eb->request,
2039 					eb->batch->node.start +
2040 					eb->batch_start_offset,
2041 					eb->batch_len,
2042 					eb->batch_flags);
2043 	if (err)
2044 		return err;
2045 
2046 	return 0;
2047 }
2048 
2049 static int num_vcs_engines(const struct drm_i915_private *i915)
2050 {
2051 	return hweight64(INTEL_INFO(i915)->engine_mask &
2052 			 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
2053 }
2054 
2055 /*
2056  * Find one BSD ring to dispatch the corresponding BSD command.
2057  * The engine index is returned.
2058  */
2059 static unsigned int
2060 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2061 			 struct drm_file *file)
2062 {
2063 	struct drm_i915_file_private *file_priv = file->driver_priv;
2064 
2065 	/* Check whether the file_priv has already selected one ring. */
2066 	if ((int)file_priv->bsd_engine < 0)
2067 		file_priv->bsd_engine =
2068 			get_random_int() % num_vcs_engines(dev_priv);
2069 
2070 	return file_priv->bsd_engine;
2071 }
2072 
2073 static const enum intel_engine_id user_ring_map[] = {
2074 	[I915_EXEC_DEFAULT]	= RCS0,
2075 	[I915_EXEC_RENDER]	= RCS0,
2076 	[I915_EXEC_BLT]		= BCS0,
2077 	[I915_EXEC_BSD]		= VCS0,
2078 	[I915_EXEC_VEBOX]	= VECS0
2079 };
2080 
2081 static struct i915_request *eb_throttle(struct intel_context *ce)
2082 {
2083 	struct intel_ring *ring = ce->ring;
2084 	struct intel_timeline *tl = ce->timeline;
2085 	struct i915_request *rq;
2086 
2087 	/*
2088 	 * Completely unscientific finger-in-the-air estimates for suitable
2089 	 * maximum user request size (to avoid blocking) and then backoff.
2090 	 */
2091 	if (intel_ring_update_space(ring) >= PAGE_SIZE)
2092 		return NULL;
2093 
2094 	/*
2095 	 * Find a request that after waiting upon, there will be at least half
2096 	 * the ring available. The hysteresis allows us to compete for the
2097 	 * shared ring and should mean that we sleep less often prior to
2098 	 * claiming our resources, but not so long that the ring completely
2099 	 * drains before we can submit our next request.
2100 	 */
2101 	list_for_each_entry(rq, &tl->requests, link) {
2102 		if (rq->ring != ring)
2103 			continue;
2104 
2105 		if (__intel_ring_space(rq->postfix,
2106 				       ring->emit, ring->size) > ring->size / 2)
2107 			break;
2108 	}
2109 	if (&rq->link == &tl->requests)
2110 		return NULL; /* weird, we will check again later for real */
2111 
2112 	return i915_request_get(rq);
2113 }
2114 
2115 static int
2116 __eb_pin_context(struct i915_execbuffer *eb, struct intel_context *ce)
2117 {
2118 	int err;
2119 
2120 	if (likely(atomic_inc_not_zero(&ce->pin_count)))
2121 		return 0;
2122 
2123 	err = mutex_lock_interruptible(&eb->i915->drm.struct_mutex);
2124 	if (err)
2125 		return err;
2126 
2127 	err = __intel_context_do_pin(ce);
2128 	mutex_unlock(&eb->i915->drm.struct_mutex);
2129 
2130 	return err;
2131 }
2132 
2133 static void
2134 __eb_unpin_context(struct i915_execbuffer *eb, struct intel_context *ce)
2135 {
2136 	if (likely(atomic_add_unless(&ce->pin_count, -1, 1)))
2137 		return;
2138 
2139 	mutex_lock(&eb->i915->drm.struct_mutex);
2140 	intel_context_unpin(ce);
2141 	mutex_unlock(&eb->i915->drm.struct_mutex);
2142 }
2143 
2144 static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
2145 {
2146 	struct intel_timeline *tl;
2147 	struct i915_request *rq;
2148 	int err;
2149 
2150 	/*
2151 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2152 	 * EIO if the GPU is already wedged.
2153 	 */
2154 	err = intel_gt_terminally_wedged(ce->engine->gt);
2155 	if (err)
2156 		return err;
2157 
2158 	/*
2159 	 * Pinning the contexts may generate requests in order to acquire
2160 	 * GGTT space, so do this first before we reserve a seqno for
2161 	 * ourselves.
2162 	 */
2163 	err = __eb_pin_context(eb, ce);
2164 	if (err)
2165 		return err;
2166 
2167 	/*
2168 	 * Take a local wakeref for preparing to dispatch the execbuf as
2169 	 * we expect to access the hardware fairly frequently in the
2170 	 * process, and require the engine to be kept awake between accesses.
2171 	 * Upon dispatch, we acquire another prolonged wakeref that we hold
2172 	 * until the timeline is idle, which in turn releases the wakeref
2173 	 * taken on the engine, and the parent device.
2174 	 */
2175 	tl = intel_context_timeline_lock(ce);
2176 	if (IS_ERR(tl)) {
2177 		err = PTR_ERR(tl);
2178 		goto err_unpin;
2179 	}
2180 
2181 	intel_context_enter(ce);
2182 	rq = eb_throttle(ce);
2183 
2184 	intel_context_timeline_unlock(tl);
2185 
2186 	if (rq) {
2187 		if (i915_request_wait(rq,
2188 				      I915_WAIT_INTERRUPTIBLE,
2189 				      MAX_SCHEDULE_TIMEOUT) < 0) {
2190 			i915_request_put(rq);
2191 			err = -EINTR;
2192 			goto err_exit;
2193 		}
2194 
2195 		i915_request_put(rq);
2196 	}
2197 
2198 	eb->engine = ce->engine;
2199 	eb->context = ce;
2200 	return 0;
2201 
2202 err_exit:
2203 	mutex_lock(&tl->mutex);
2204 	intel_context_exit(ce);
2205 	intel_context_timeline_unlock(tl);
2206 err_unpin:
2207 	__eb_unpin_context(eb, ce);
2208 	return err;
2209 }
2210 
2211 static void eb_unpin_engine(struct i915_execbuffer *eb)
2212 {
2213 	struct intel_context *ce = eb->context;
2214 	struct intel_timeline *tl = ce->timeline;
2215 
2216 	mutex_lock(&tl->mutex);
2217 	intel_context_exit(ce);
2218 	mutex_unlock(&tl->mutex);
2219 
2220 	__eb_unpin_context(eb, ce);
2221 }
2222 
2223 static unsigned int
2224 eb_select_legacy_ring(struct i915_execbuffer *eb,
2225 		      struct drm_file *file,
2226 		      struct drm_i915_gem_execbuffer2 *args)
2227 {
2228 	struct drm_i915_private *i915 = eb->i915;
2229 	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2230 
2231 	if (user_ring_id != I915_EXEC_BSD &&
2232 	    (args->flags & I915_EXEC_BSD_MASK)) {
2233 		DRM_DEBUG("execbuf with non bsd ring but with invalid "
2234 			  "bsd dispatch flags: %d\n", (int)(args->flags));
2235 		return -1;
2236 	}
2237 
2238 	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2239 		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2240 
2241 		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2242 			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2243 		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2244 			   bsd_idx <= I915_EXEC_BSD_RING2) {
2245 			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2246 			bsd_idx--;
2247 		} else {
2248 			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
2249 				  bsd_idx);
2250 			return -1;
2251 		}
2252 
2253 		return _VCS(bsd_idx);
2254 	}
2255 
2256 	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2257 		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2258 		return -1;
2259 	}
2260 
2261 	return user_ring_map[user_ring_id];
2262 }
2263 
2264 static int
2265 eb_pin_engine(struct i915_execbuffer *eb,
2266 	      struct drm_file *file,
2267 	      struct drm_i915_gem_execbuffer2 *args)
2268 {
2269 	struct intel_context *ce;
2270 	unsigned int idx;
2271 	int err;
2272 
2273 	if (i915_gem_context_user_engines(eb->gem_context))
2274 		idx = args->flags & I915_EXEC_RING_MASK;
2275 	else
2276 		idx = eb_select_legacy_ring(eb, file, args);
2277 
2278 	ce = i915_gem_context_get_engine(eb->gem_context, idx);
2279 	if (IS_ERR(ce))
2280 		return PTR_ERR(ce);
2281 
2282 	err = __eb_pin_engine(eb, ce);
2283 	intel_context_put(ce);
2284 
2285 	return err;
2286 }
2287 
2288 static void
2289 __free_fence_array(struct drm_syncobj **fences, unsigned int n)
2290 {
2291 	while (n--)
2292 		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2293 	kvfree(fences);
2294 }
2295 
2296 static struct drm_syncobj **
2297 get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2298 		struct drm_file *file)
2299 {
2300 	const unsigned long nfences = args->num_cliprects;
2301 	struct drm_i915_gem_exec_fence __user *user;
2302 	struct drm_syncobj **fences;
2303 	unsigned long n;
2304 	int err;
2305 
2306 	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2307 		return NULL;
2308 
2309 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2310 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2311 	if (nfences > min_t(unsigned long,
2312 			    ULONG_MAX / sizeof(*user),
2313 			    SIZE_MAX / sizeof(*fences)))
2314 		return ERR_PTR(-EINVAL);
2315 
2316 	user = u64_to_user_ptr(args->cliprects_ptr);
2317 	if (!access_ok(user, nfences * sizeof(*user)))
2318 		return ERR_PTR(-EFAULT);
2319 
2320 	fences = kvmalloc_array(nfences, sizeof(*fences),
2321 				__GFP_NOWARN | GFP_KERNEL);
2322 	if (!fences)
2323 		return ERR_PTR(-ENOMEM);
2324 
2325 	for (n = 0; n < nfences; n++) {
2326 		struct drm_i915_gem_exec_fence fence;
2327 		struct drm_syncobj *syncobj;
2328 
2329 		if (__copy_from_user(&fence, user++, sizeof(fence))) {
2330 			err = -EFAULT;
2331 			goto err;
2332 		}
2333 
2334 		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2335 			err = -EINVAL;
2336 			goto err;
2337 		}
2338 
2339 		syncobj = drm_syncobj_find(file, fence.handle);
2340 		if (!syncobj) {
2341 			DRM_DEBUG("Invalid syncobj handle provided\n");
2342 			err = -ENOENT;
2343 			goto err;
2344 		}
2345 
2346 		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2347 			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2348 
2349 		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2350 	}
2351 
2352 	return fences;
2353 
2354 err:
2355 	__free_fence_array(fences, n);
2356 	return ERR_PTR(err);
2357 }
2358 
2359 static void
2360 put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2361 		struct drm_syncobj **fences)
2362 {
2363 	if (fences)
2364 		__free_fence_array(fences, args->num_cliprects);
2365 }
2366 
2367 static int
2368 await_fence_array(struct i915_execbuffer *eb,
2369 		  struct drm_syncobj **fences)
2370 {
2371 	const unsigned int nfences = eb->args->num_cliprects;
2372 	unsigned int n;
2373 	int err;
2374 
2375 	for (n = 0; n < nfences; n++) {
2376 		struct drm_syncobj *syncobj;
2377 		struct dma_fence *fence;
2378 		unsigned int flags;
2379 
2380 		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2381 		if (!(flags & I915_EXEC_FENCE_WAIT))
2382 			continue;
2383 
2384 		fence = drm_syncobj_fence_get(syncobj);
2385 		if (!fence)
2386 			return -EINVAL;
2387 
2388 		err = i915_request_await_dma_fence(eb->request, fence);
2389 		dma_fence_put(fence);
2390 		if (err < 0)
2391 			return err;
2392 	}
2393 
2394 	return 0;
2395 }
2396 
2397 static void
2398 signal_fence_array(struct i915_execbuffer *eb,
2399 		   struct drm_syncobj **fences)
2400 {
2401 	const unsigned int nfences = eb->args->num_cliprects;
2402 	struct dma_fence * const fence = &eb->request->fence;
2403 	unsigned int n;
2404 
2405 	for (n = 0; n < nfences; n++) {
2406 		struct drm_syncobj *syncobj;
2407 		unsigned int flags;
2408 
2409 		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2410 		if (!(flags & I915_EXEC_FENCE_SIGNAL))
2411 			continue;
2412 
2413 		drm_syncobj_replace_fence(syncobj, fence);
2414 	}
2415 }
2416 
2417 static int
2418 i915_gem_do_execbuffer(struct drm_device *dev,
2419 		       struct drm_file *file,
2420 		       struct drm_i915_gem_execbuffer2 *args,
2421 		       struct drm_i915_gem_exec_object2 *exec,
2422 		       struct drm_syncobj **fences)
2423 {
2424 	struct i915_execbuffer eb;
2425 	struct dma_fence *in_fence = NULL;
2426 	struct dma_fence *exec_fence = NULL;
2427 	struct sync_file *out_fence = NULL;
2428 	int out_fence_fd = -1;
2429 	int err;
2430 
2431 	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2432 	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2433 		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2434 
2435 	eb.i915 = to_i915(dev);
2436 	eb.file = file;
2437 	eb.args = args;
2438 	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2439 		args->flags |= __EXEC_HAS_RELOC;
2440 
2441 	eb.exec = exec;
2442 	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
2443 	eb.vma[0] = NULL;
2444 	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);
2445 
2446 	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2447 	reloc_cache_init(&eb.reloc_cache, eb.i915);
2448 
2449 	eb.buffer_count = args->buffer_count;
2450 	eb.batch_start_offset = args->batch_start_offset;
2451 	eb.batch_len = args->batch_len;
2452 
2453 	eb.batch_flags = 0;
2454 	if (args->flags & I915_EXEC_SECURE) {
2455 		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2456 		    return -EPERM;
2457 
2458 		eb.batch_flags |= I915_DISPATCH_SECURE;
2459 	}
2460 	if (args->flags & I915_EXEC_IS_PINNED)
2461 		eb.batch_flags |= I915_DISPATCH_PINNED;
2462 
2463 	if (args->flags & I915_EXEC_FENCE_IN) {
2464 		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2465 		if (!in_fence)
2466 			return -EINVAL;
2467 	}
2468 
2469 	if (args->flags & I915_EXEC_FENCE_SUBMIT) {
2470 		if (in_fence) {
2471 			err = -EINVAL;
2472 			goto err_in_fence;
2473 		}
2474 
2475 		exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2476 		if (!exec_fence) {
2477 			err = -EINVAL;
2478 			goto err_in_fence;
2479 		}
2480 	}
2481 
2482 	if (args->flags & I915_EXEC_FENCE_OUT) {
2483 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2484 		if (out_fence_fd < 0) {
2485 			err = out_fence_fd;
2486 			goto err_exec_fence;
2487 		}
2488 	}
2489 
2490 	err = eb_create(&eb);
2491 	if (err)
2492 		goto err_out_fence;
2493 
2494 	GEM_BUG_ON(!eb.lut_size);
2495 
2496 	err = eb_select_context(&eb);
2497 	if (unlikely(err))
2498 		goto err_destroy;
2499 
2500 	err = eb_pin_engine(&eb, file, args);
2501 	if (unlikely(err))
2502 		goto err_context;
2503 
2504 	err = i915_mutex_lock_interruptible(dev);
2505 	if (err)
2506 		goto err_engine;
2507 
2508 	err = eb_relocate(&eb);
2509 	if (err) {
2510 		/*
2511 		 * If the user expects the execobject.offset and
2512 		 * reloc.presumed_offset to be an exact match,
2513 		 * as for using NO_RELOC, then we cannot update
2514 		 * the execobject.offset until we have completed
2515 		 * relocation.
2516 		 */
2517 		args->flags &= ~__EXEC_HAS_RELOC;
2518 		goto err_vma;
2519 	}
2520 
2521 	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2522 		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2523 		err = -EINVAL;
2524 		goto err_vma;
2525 	}
2526 	if (eb.batch_start_offset > eb.batch->size ||
2527 	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2528 		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2529 		err = -EINVAL;
2530 		goto err_vma;
2531 	}
2532 
2533 	if (eb_use_cmdparser(&eb)) {
2534 		struct i915_vma *vma;
2535 
2536 		vma = eb_parse(&eb, drm_is_current_master(file));
2537 		if (IS_ERR(vma)) {
2538 			err = PTR_ERR(vma);
2539 			goto err_vma;
2540 		}
2541 
2542 		if (vma) {
2543 			/*
2544 			 * Batch parsed and accepted:
2545 			 *
2546 			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
2547 			 * bit from MI_BATCH_BUFFER_START commands issued in
2548 			 * the dispatch_execbuffer implementations. We
2549 			 * specifically don't want that set on batches the
2550 			 * command parser has accepted.
2551 			 */
2552 			eb.batch_flags |= I915_DISPATCH_SECURE;
2553 			eb.batch_start_offset = 0;
2554 			eb.batch = vma;
2555 		}
2556 	}
2557 
2558 	if (eb.batch_len == 0)
2559 		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2560 
2561 	/*
2562 	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2563 	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2564 	 * hsw should have this fixed, but bdw mucks it up again. */
2565 	if (eb.batch_flags & I915_DISPATCH_SECURE) {
2566 		struct i915_vma *vma;
2567 
2568 		/*
2569 		 * So on first glance it looks freaky that we pin the batch here
2570 		 * outside of the reservation loop. But:
2571 		 * - The batch is already pinned into the relevant ppgtt, so we
2572 		 *   already have the backing storage fully allocated.
2573 		 * - No other BO uses the global gtt (well contexts, but meh),
2574 		 *   so we don't really have issues with multiple objects not
2575 		 *   fitting due to fragmentation.
2576 		 * So this is actually safe.
2577 		 */
2578 		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
2579 		if (IS_ERR(vma)) {
2580 			err = PTR_ERR(vma);
2581 			goto err_vma;
2582 		}
2583 
2584 		eb.batch = vma;
2585 	}
2586 
2587 	/* All GPU relocation batches must be submitted prior to the user rq */
2588 	GEM_BUG_ON(eb.reloc_cache.rq);
2589 
2590 	/* Allocate a request for this batch buffer nice and early. */
2591 	eb.request = i915_request_create(eb.context);
2592 	if (IS_ERR(eb.request)) {
2593 		err = PTR_ERR(eb.request);
2594 		goto err_batch_unpin;
2595 	}
2596 
2597 	if (in_fence) {
2598 		err = i915_request_await_dma_fence(eb.request, in_fence);
2599 		if (err < 0)
2600 			goto err_request;
2601 	}
2602 
2603 	if (exec_fence) {
2604 		err = i915_request_await_execution(eb.request, exec_fence,
2605 						   eb.engine->bond_execute);
2606 		if (err < 0)
2607 			goto err_request;
2608 	}
2609 
2610 	if (fences) {
2611 		err = await_fence_array(&eb, fences);
2612 		if (err)
2613 			goto err_request;
2614 	}
2615 
2616 	if (out_fence_fd != -1) {
2617 		out_fence = sync_file_create(&eb.request->fence);
2618 		if (!out_fence) {
2619 			err = -ENOMEM;
2620 			goto err_request;
2621 		}
2622 	}
2623 
2624 	/*
2625 	 * Whilst this request exists, batch_obj will be on the
2626 	 * active_list, and so will hold the active reference. Only when this
2627 	 * request is retired will the the batch_obj be moved onto the
2628 	 * inactive_list and lose its active reference. Hence we do not need
2629 	 * to explicitly hold another reference here.
2630 	 */
2631 	eb.request->batch = eb.batch;
2632 	if (eb.batch->private)
2633 		intel_engine_pool_mark_active(eb.batch->private, eb.request);
2634 
2635 	trace_i915_request_queue(eb.request, eb.batch_flags);
2636 	err = eb_submit(&eb);
2637 err_request:
2638 	add_to_client(eb.request, file);
2639 	i915_request_add(eb.request);
2640 
2641 	if (fences)
2642 		signal_fence_array(&eb, fences);
2643 
2644 	if (out_fence) {
2645 		if (err == 0) {
2646 			fd_install(out_fence_fd, out_fence->file);
2647 			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2648 			args->rsvd2 |= (u64)out_fence_fd << 32;
2649 			out_fence_fd = -1;
2650 		} else {
2651 			fput(out_fence->file);
2652 		}
2653 	}
2654 
2655 err_batch_unpin:
2656 	if (eb.batch_flags & I915_DISPATCH_SECURE)
2657 		i915_vma_unpin(eb.batch);
2658 	if (eb.batch->private)
2659 		intel_engine_pool_put(eb.batch->private);
2660 err_vma:
2661 	if (eb.exec)
2662 		eb_release_vmas(&eb);
2663 	mutex_unlock(&dev->struct_mutex);
2664 err_engine:
2665 	eb_unpin_engine(&eb);
2666 err_context:
2667 	i915_gem_context_put(eb.gem_context);
2668 err_destroy:
2669 	eb_destroy(&eb);
2670 err_out_fence:
2671 	if (out_fence_fd != -1)
2672 		put_unused_fd(out_fence_fd);
2673 err_exec_fence:
2674 	dma_fence_put(exec_fence);
2675 err_in_fence:
2676 	dma_fence_put(in_fence);
2677 	return err;
2678 }
2679 
2680 static size_t eb_element_size(void)
2681 {
2682 	return (sizeof(struct drm_i915_gem_exec_object2) +
2683 		sizeof(struct i915_vma *) +
2684 		sizeof(unsigned int));
2685 }
2686 
2687 static bool check_buffer_count(size_t count)
2688 {
2689 	const size_t sz = eb_element_size();
2690 
2691 	/*
2692 	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2693 	 * array size (see eb_create()). Otherwise, we can accept an array as
2694 	 * large as can be addressed (though use large arrays at your peril)!
2695 	 */
2696 
2697 	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
2698 }
2699 
2700 /*
2701  * Legacy execbuffer just creates an exec2 list from the original exec object
2702  * list array and passes it to the real function.
2703  */
2704 int
2705 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2706 			  struct drm_file *file)
2707 {
2708 	struct drm_i915_gem_execbuffer *args = data;
2709 	struct drm_i915_gem_execbuffer2 exec2;
2710 	struct drm_i915_gem_exec_object *exec_list = NULL;
2711 	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2712 	const size_t count = args->buffer_count;
2713 	unsigned int i;
2714 	int err;
2715 
2716 	if (!check_buffer_count(count)) {
2717 		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2718 		return -EINVAL;
2719 	}
2720 
2721 	exec2.buffers_ptr = args->buffers_ptr;
2722 	exec2.buffer_count = args->buffer_count;
2723 	exec2.batch_start_offset = args->batch_start_offset;
2724 	exec2.batch_len = args->batch_len;
2725 	exec2.DR1 = args->DR1;
2726 	exec2.DR4 = args->DR4;
2727 	exec2.num_cliprects = args->num_cliprects;
2728 	exec2.cliprects_ptr = args->cliprects_ptr;
2729 	exec2.flags = I915_EXEC_RENDER;
2730 	i915_execbuffer2_set_context_id(exec2, 0);
2731 
2732 	if (!i915_gem_check_execbuffer(&exec2))
2733 		return -EINVAL;
2734 
2735 	/* Copy in the exec list from userland */
2736 	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2737 				   __GFP_NOWARN | GFP_KERNEL);
2738 	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2739 				    __GFP_NOWARN | GFP_KERNEL);
2740 	if (exec_list == NULL || exec2_list == NULL) {
2741 		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2742 			  args->buffer_count);
2743 		kvfree(exec_list);
2744 		kvfree(exec2_list);
2745 		return -ENOMEM;
2746 	}
2747 	err = copy_from_user(exec_list,
2748 			     u64_to_user_ptr(args->buffers_ptr),
2749 			     sizeof(*exec_list) * count);
2750 	if (err) {
2751 		DRM_DEBUG("copy %d exec entries failed %d\n",
2752 			  args->buffer_count, err);
2753 		kvfree(exec_list);
2754 		kvfree(exec2_list);
2755 		return -EFAULT;
2756 	}
2757 
2758 	for (i = 0; i < args->buffer_count; i++) {
2759 		exec2_list[i].handle = exec_list[i].handle;
2760 		exec2_list[i].relocation_count = exec_list[i].relocation_count;
2761 		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2762 		exec2_list[i].alignment = exec_list[i].alignment;
2763 		exec2_list[i].offset = exec_list[i].offset;
2764 		if (INTEL_GEN(to_i915(dev)) < 4)
2765 			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2766 		else
2767 			exec2_list[i].flags = 0;
2768 	}
2769 
2770 	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2771 	if (exec2.flags & __EXEC_HAS_RELOC) {
2772 		struct drm_i915_gem_exec_object __user *user_exec_list =
2773 			u64_to_user_ptr(args->buffers_ptr);
2774 
2775 		/* Copy the new buffer offsets back to the user's exec list. */
2776 		for (i = 0; i < args->buffer_count; i++) {
2777 			if (!(exec2_list[i].offset & UPDATE))
2778 				continue;
2779 
2780 			exec2_list[i].offset =
2781 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2782 			exec2_list[i].offset &= PIN_OFFSET_MASK;
2783 			if (__copy_to_user(&user_exec_list[i].offset,
2784 					   &exec2_list[i].offset,
2785 					   sizeof(user_exec_list[i].offset)))
2786 				break;
2787 		}
2788 	}
2789 
2790 	kvfree(exec_list);
2791 	kvfree(exec2_list);
2792 	return err;
2793 }
2794 
2795 int
2796 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2797 			   struct drm_file *file)
2798 {
2799 	struct drm_i915_gem_execbuffer2 *args = data;
2800 	struct drm_i915_gem_exec_object2 *exec2_list;
2801 	struct drm_syncobj **fences = NULL;
2802 	const size_t count = args->buffer_count;
2803 	int err;
2804 
2805 	if (!check_buffer_count(count)) {
2806 		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2807 		return -EINVAL;
2808 	}
2809 
2810 	if (!i915_gem_check_execbuffer(args))
2811 		return -EINVAL;
2812 
2813 	/* Allocate an extra slot for use by the command parser */
2814 	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2815 				    __GFP_NOWARN | GFP_KERNEL);
2816 	if (exec2_list == NULL) {
2817 		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
2818 			  count);
2819 		return -ENOMEM;
2820 	}
2821 	if (copy_from_user(exec2_list,
2822 			   u64_to_user_ptr(args->buffers_ptr),
2823 			   sizeof(*exec2_list) * count)) {
2824 		DRM_DEBUG("copy %zd exec entries failed\n", count);
2825 		kvfree(exec2_list);
2826 		return -EFAULT;
2827 	}
2828 
2829 	if (args->flags & I915_EXEC_FENCE_ARRAY) {
2830 		fences = get_fence_array(args, file);
2831 		if (IS_ERR(fences)) {
2832 			kvfree(exec2_list);
2833 			return PTR_ERR(fences);
2834 		}
2835 	}
2836 
2837 	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2838 
2839 	/*
2840 	 * Now that we have begun execution of the batchbuffer, we ignore
2841 	 * any new error after this point. Also given that we have already
2842 	 * updated the associated relocations, we try to write out the current
2843 	 * object locations irrespective of any error.
2844 	 */
2845 	if (args->flags & __EXEC_HAS_RELOC) {
2846 		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2847 			u64_to_user_ptr(args->buffers_ptr);
2848 		unsigned int i;
2849 
2850 		/* Copy the new buffer offsets back to the user's exec list. */
2851 		/*
2852 		 * Note: count * sizeof(*user_exec_list) does not overflow,
2853 		 * because we checked 'count' in check_buffer_count().
2854 		 *
2855 		 * And this range already got effectively checked earlier
2856 		 * when we did the "copy_from_user()" above.
2857 		 */
2858 		if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2859 			goto end;
2860 
2861 		for (i = 0; i < args->buffer_count; i++) {
2862 			if (!(exec2_list[i].offset & UPDATE))
2863 				continue;
2864 
2865 			exec2_list[i].offset =
2866 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2867 			unsafe_put_user(exec2_list[i].offset,
2868 					&user_exec_list[i].offset,
2869 					end_user);
2870 		}
2871 end_user:
2872 		user_access_end();
2873 end:;
2874 	}
2875 
2876 	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2877 	put_fence_array(args, fences);
2878 	kvfree(exec2_list);
2879 	return err;
2880 }
2881