1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008,2010 Intel Corporation 5 */ 6 7 #include <linux/intel-iommu.h> 8 #include <linux/dma-resv.h> 9 #include <linux/sync_file.h> 10 #include <linux/uaccess.h> 11 12 #include <drm/drm_syncobj.h> 13 #include <drm/i915_drm.h> 14 15 #include "display/intel_frontbuffer.h" 16 17 #include "gem/i915_gem_ioctls.h" 18 #include "gt/intel_context.h" 19 #include "gt/intel_engine_pool.h" 20 #include "gt/intel_gt.h" 21 #include "gt/intel_gt_pm.h" 22 23 #include "i915_drv.h" 24 #include "i915_gem_clflush.h" 25 #include "i915_gem_context.h" 26 #include "i915_gem_ioctls.h" 27 #include "i915_trace.h" 28 29 enum { 30 FORCE_CPU_RELOC = 1, 31 FORCE_GTT_RELOC, 32 FORCE_GPU_RELOC, 33 #define DBG_FORCE_RELOC 0 /* choose one of the above! */ 34 }; 35 36 #define __EXEC_OBJECT_HAS_REF BIT(31) 37 #define __EXEC_OBJECT_HAS_PIN BIT(30) 38 #define __EXEC_OBJECT_HAS_FENCE BIT(29) 39 #define __EXEC_OBJECT_NEEDS_MAP BIT(28) 40 #define __EXEC_OBJECT_NEEDS_BIAS BIT(27) 41 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 27) /* all of the above */ 42 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) 43 44 #define __EXEC_HAS_RELOC BIT(31) 45 #define __EXEC_VALIDATED BIT(30) 46 #define __EXEC_INTERNAL_FLAGS (~0u << 30) 47 #define UPDATE PIN_OFFSET_FIXED 48 49 #define BATCH_OFFSET_BIAS (256*1024) 50 51 #define __I915_EXEC_ILLEGAL_FLAGS \ 52 (__I915_EXEC_UNKNOWN_FLAGS | \ 53 I915_EXEC_CONSTANTS_MASK | \ 54 I915_EXEC_RESOURCE_STREAMER) 55 56 /* Catch emission of unexpected errors for CI! */ 57 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 58 #undef EINVAL 59 #define EINVAL ({ \ 60 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 61 22; \ 62 }) 63 #endif 64 65 /** 66 * DOC: User command execution 67 * 68 * Userspace submits commands to be executed on the GPU as an instruction 69 * stream within a GEM object we call a batchbuffer. This instructions may 70 * refer to other GEM objects containing auxiliary state such as kernels, 71 * samplers, render targets and even secondary batchbuffers. Userspace does 72 * not know where in the GPU memory these objects reside and so before the 73 * batchbuffer is passed to the GPU for execution, those addresses in the 74 * batchbuffer and auxiliary objects are updated. This is known as relocation, 75 * or patching. To try and avoid having to relocate each object on the next 76 * execution, userspace is told the location of those objects in this pass, 77 * but this remains just a hint as the kernel may choose a new location for 78 * any object in the future. 79 * 80 * At the level of talking to the hardware, submitting a batchbuffer for the 81 * GPU to execute is to add content to a buffer from which the HW 82 * command streamer is reading. 83 * 84 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. 85 * Execlists, this command is not placed on the same buffer as the 86 * remaining items. 87 * 88 * 2. Add a command to invalidate caches to the buffer. 89 * 90 * 3. Add a batchbuffer start command to the buffer; the start command is 91 * essentially a token together with the GPU address of the batchbuffer 92 * to be executed. 93 * 94 * 4. Add a pipeline flush to the buffer. 95 * 96 * 5. Add a memory write command to the buffer to record when the GPU 97 * is done executing the batchbuffer. The memory write writes the 98 * global sequence number of the request, ``i915_request::global_seqno``; 99 * the i915 driver uses the current value in the register to determine 100 * if the GPU has completed the batchbuffer. 101 * 102 * 6. Add a user interrupt command to the buffer. This command instructs 103 * the GPU to issue an interrupt when the command, pipeline flush and 104 * memory write are completed. 105 * 106 * 7. Inform the hardware of the additional commands added to the buffer 107 * (by updating the tail pointer). 108 * 109 * Processing an execbuf ioctl is conceptually split up into a few phases. 110 * 111 * 1. Validation - Ensure all the pointers, handles and flags are valid. 112 * 2. Reservation - Assign GPU address space for every object 113 * 3. Relocation - Update any addresses to point to the final locations 114 * 4. Serialisation - Order the request with respect to its dependencies 115 * 5. Construction - Construct a request to execute the batchbuffer 116 * 6. Submission (at some point in the future execution) 117 * 118 * Reserving resources for the execbuf is the most complicated phase. We 119 * neither want to have to migrate the object in the address space, nor do 120 * we want to have to update any relocations pointing to this object. Ideally, 121 * we want to leave the object where it is and for all the existing relocations 122 * to match. If the object is given a new address, or if userspace thinks the 123 * object is elsewhere, we have to parse all the relocation entries and update 124 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that 125 * all the target addresses in all of its objects match the value in the 126 * relocation entries and that they all match the presumed offsets given by the 127 * list of execbuffer objects. Using this knowledge, we know that if we haven't 128 * moved any buffers, all the relocation entries are valid and we can skip 129 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 130 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 131 * 132 * The addresses written in the objects must match the corresponding 133 * reloc.presumed_offset which in turn must match the corresponding 134 * execobject.offset. 135 * 136 * Any render targets written to in the batch must be flagged with 137 * EXEC_OBJECT_WRITE. 138 * 139 * To avoid stalling, execobject.offset should match the current 140 * address of that object within the active context. 141 * 142 * The reservation is done is multiple phases. First we try and keep any 143 * object already bound in its current location - so as long as meets the 144 * constraints imposed by the new execbuffer. Any object left unbound after the 145 * first pass is then fitted into any available idle space. If an object does 146 * not fit, all objects are removed from the reservation and the process rerun 147 * after sorting the objects into a priority order (more difficult to fit 148 * objects are tried first). Failing that, the entire VM is cleared and we try 149 * to fit the execbuf once last time before concluding that it simply will not 150 * fit. 151 * 152 * A small complication to all of this is that we allow userspace not only to 153 * specify an alignment and a size for the object in the address space, but 154 * we also allow userspace to specify the exact offset. This objects are 155 * simpler to place (the location is known a priori) all we have to do is make 156 * sure the space is available. 157 * 158 * Once all the objects are in place, patching up the buried pointers to point 159 * to the final locations is a fairly simple job of walking over the relocation 160 * entry arrays, looking up the right address and rewriting the value into 161 * the object. Simple! ... The relocation entries are stored in user memory 162 * and so to access them we have to copy them into a local buffer. That copy 163 * has to avoid taking any pagefaults as they may lead back to a GEM object 164 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split 165 * the relocation into multiple passes. First we try to do everything within an 166 * atomic context (avoid the pagefaults) which requires that we never wait. If 167 * we detect that we may wait, or if we need to fault, then we have to fallback 168 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 169 * bells yet?) Dropping the mutex means that we lose all the state we have 170 * built up so far for the execbuf and we must reset any global data. However, 171 * we do leave the objects pinned in their final locations - which is a 172 * potential issue for concurrent execbufs. Once we have left the mutex, we can 173 * allocate and copy all the relocation entries into a large array at our 174 * leisure, reacquire the mutex, reclaim all the objects and other state and 175 * then proceed to update any incorrect addresses with the objects. 176 * 177 * As we process the relocation entries, we maintain a record of whether the 178 * object is being written to. Using NORELOC, we expect userspace to provide 179 * this information instead. We also check whether we can skip the relocation 180 * by comparing the expected value inside the relocation entry with the target's 181 * final address. If they differ, we have to map the current object and rewrite 182 * the 4 or 8 byte pointer within. 183 * 184 * Serialising an execbuf is quite simple according to the rules of the GEM 185 * ABI. Execution within each context is ordered by the order of submission. 186 * Writes to any GEM object are in order of submission and are exclusive. Reads 187 * from a GEM object are unordered with respect to other reads, but ordered by 188 * writes. A write submitted after a read cannot occur before the read, and 189 * similarly any read submitted after a write cannot occur before the write. 190 * Writes are ordered between engines such that only one write occurs at any 191 * time (completing any reads beforehand) - using semaphores where available 192 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 193 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 194 * reads before starting, and any read (either using set-domain or pread) must 195 * flush all GPU writes before starting. (Note we only employ a barrier before, 196 * we currently rely on userspace not concurrently starting a new execution 197 * whilst reading or writing to an object. This may be an advantage or not 198 * depending on how much you trust userspace not to shoot themselves in the 199 * foot.) Serialisation may just result in the request being inserted into 200 * a DAG awaiting its turn, but most simple is to wait on the CPU until 201 * all dependencies are resolved. 202 * 203 * After all of that, is just a matter of closing the request and handing it to 204 * the hardware (well, leaving it in a queue to be executed). However, we also 205 * offer the ability for batchbuffers to be run with elevated privileges so 206 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 207 * Before any batch is given extra privileges we first must check that it 208 * contains no nefarious instructions, we check that each instruction is from 209 * our whitelist and all registers are also from an allowed list. We first 210 * copy the user's batchbuffer to a shadow (so that the user doesn't have 211 * access to it, either by the CPU or GPU as we scan it) and then parse each 212 * instruction. If everything is ok, we set a flag telling the hardware to run 213 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 214 */ 215 216 struct i915_execbuffer { 217 struct drm_i915_private *i915; /** i915 backpointer */ 218 struct drm_file *file; /** per-file lookup tables and limits */ 219 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 220 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 221 struct i915_vma **vma; 222 unsigned int *flags; 223 224 struct intel_engine_cs *engine; /** engine to queue the request to */ 225 struct intel_context *context; /* logical state for the request */ 226 struct i915_gem_context *gem_context; /** caller's context */ 227 228 struct i915_request *request; /** our request to build */ 229 struct i915_vma *batch; /** identity of the batch obj/vma */ 230 231 /** actual size of execobj[] as we may extend it for the cmdparser */ 232 unsigned int buffer_count; 233 234 /** list of vma not yet bound during reservation phase */ 235 struct list_head unbound; 236 237 /** list of vma that have execobj.relocation_count */ 238 struct list_head relocs; 239 240 /** 241 * Track the most recently used object for relocations, as we 242 * frequently have to perform multiple relocations within the same 243 * obj/page 244 */ 245 struct reloc_cache { 246 struct drm_mm_node node; /** temporary GTT binding */ 247 unsigned long vaddr; /** Current kmap address */ 248 unsigned long page; /** Currently mapped page index */ 249 unsigned int gen; /** Cached value of INTEL_GEN */ 250 bool use_64bit_reloc : 1; 251 bool has_llc : 1; 252 bool has_fence : 1; 253 bool needs_unfenced : 1; 254 255 struct i915_request *rq; 256 u32 *rq_cmd; 257 unsigned int rq_size; 258 } reloc_cache; 259 260 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 261 u32 context_flags; /** Set of execobj.flags to insert from the ctx */ 262 263 u32 batch_start_offset; /** Location within object of batch */ 264 u32 batch_len; /** Length of batch within object */ 265 u32 batch_flags; /** Flags composed for emit_bb_start() */ 266 267 /** 268 * Indicate either the size of the hastable used to resolve 269 * relocation handles, or if negative that we are using a direct 270 * index into the execobj[]. 271 */ 272 int lut_size; 273 struct hlist_head *buckets; /** ht for relocation handles */ 274 }; 275 276 #define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags]) 277 278 /* 279 * Used to convert any address to canonical form. 280 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS, 281 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the 282 * addresses to be in a canonical form: 283 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct 284 * canonical form [63:48] == [47]." 285 */ 286 #define GEN8_HIGH_ADDRESS_BIT 47 287 static inline u64 gen8_canonical_addr(u64 address) 288 { 289 return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT); 290 } 291 292 static inline u64 gen8_noncanonical_addr(u64 address) 293 { 294 return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0); 295 } 296 297 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) 298 { 299 return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len; 300 } 301 302 static int eb_create(struct i915_execbuffer *eb) 303 { 304 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 305 unsigned int size = 1 + ilog2(eb->buffer_count); 306 307 /* 308 * Without a 1:1 association between relocation handles and 309 * the execobject[] index, we instead create a hashtable. 310 * We size it dynamically based on available memory, starting 311 * first with 1:1 assocative hash and scaling back until 312 * the allocation succeeds. 313 * 314 * Later on we use a positive lut_size to indicate we are 315 * using this hashtable, and a negative value to indicate a 316 * direct lookup. 317 */ 318 do { 319 gfp_t flags; 320 321 /* While we can still reduce the allocation size, don't 322 * raise a warning and allow the allocation to fail. 323 * On the last pass though, we want to try as hard 324 * as possible to perform the allocation and warn 325 * if it fails. 326 */ 327 flags = GFP_KERNEL; 328 if (size > 1) 329 flags |= __GFP_NORETRY | __GFP_NOWARN; 330 331 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 332 flags); 333 if (eb->buckets) 334 break; 335 } while (--size); 336 337 if (unlikely(!size)) 338 return -ENOMEM; 339 340 eb->lut_size = size; 341 } else { 342 eb->lut_size = -eb->buffer_count; 343 } 344 345 return 0; 346 } 347 348 static bool 349 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 350 const struct i915_vma *vma, 351 unsigned int flags) 352 { 353 if (vma->node.size < entry->pad_to_size) 354 return true; 355 356 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) 357 return true; 358 359 if (flags & EXEC_OBJECT_PINNED && 360 vma->node.start != entry->offset) 361 return true; 362 363 if (flags & __EXEC_OBJECT_NEEDS_BIAS && 364 vma->node.start < BATCH_OFFSET_BIAS) 365 return true; 366 367 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 368 (vma->node.start + vma->node.size - 1) >> 32) 369 return true; 370 371 if (flags & __EXEC_OBJECT_NEEDS_MAP && 372 !i915_vma_is_map_and_fenceable(vma)) 373 return true; 374 375 return false; 376 } 377 378 static inline bool 379 eb_pin_vma(struct i915_execbuffer *eb, 380 const struct drm_i915_gem_exec_object2 *entry, 381 struct i915_vma *vma) 382 { 383 unsigned int exec_flags = *vma->exec_flags; 384 u64 pin_flags; 385 386 if (vma->node.size) 387 pin_flags = vma->node.start; 388 else 389 pin_flags = entry->offset & PIN_OFFSET_MASK; 390 391 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED; 392 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT)) 393 pin_flags |= PIN_GLOBAL; 394 395 if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags))) 396 return false; 397 398 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) { 399 if (unlikely(i915_vma_pin_fence(vma))) { 400 i915_vma_unpin(vma); 401 return false; 402 } 403 404 if (vma->fence) 405 exec_flags |= __EXEC_OBJECT_HAS_FENCE; 406 } 407 408 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN; 409 return !eb_vma_misplaced(entry, vma, exec_flags); 410 } 411 412 static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags) 413 { 414 GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN)); 415 416 if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE)) 417 __i915_vma_unpin_fence(vma); 418 419 __i915_vma_unpin(vma); 420 } 421 422 static inline void 423 eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags) 424 { 425 if (!(*flags & __EXEC_OBJECT_HAS_PIN)) 426 return; 427 428 __eb_unreserve_vma(vma, *flags); 429 *flags &= ~__EXEC_OBJECT_RESERVED; 430 } 431 432 static int 433 eb_validate_vma(struct i915_execbuffer *eb, 434 struct drm_i915_gem_exec_object2 *entry, 435 struct i915_vma *vma) 436 { 437 if (unlikely(entry->flags & eb->invalid_flags)) 438 return -EINVAL; 439 440 if (unlikely(entry->alignment && !is_power_of_2(entry->alignment))) 441 return -EINVAL; 442 443 /* 444 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 445 * any non-page-aligned or non-canonical addresses. 446 */ 447 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 448 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) 449 return -EINVAL; 450 451 /* pad_to_size was once a reserved field, so sanitize it */ 452 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 453 if (unlikely(offset_in_page(entry->pad_to_size))) 454 return -EINVAL; 455 } else { 456 entry->pad_to_size = 0; 457 } 458 459 if (unlikely(vma->exec_flags)) { 460 DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n", 461 entry->handle, (int)(entry - eb->exec)); 462 return -EINVAL; 463 } 464 465 /* 466 * From drm_mm perspective address space is continuous, 467 * so from this point we're always using non-canonical 468 * form internally. 469 */ 470 entry->offset = gen8_noncanonical_addr(entry->offset); 471 472 if (!eb->reloc_cache.has_fence) { 473 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 474 } else { 475 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 476 eb->reloc_cache.needs_unfenced) && 477 i915_gem_object_is_tiled(vma->obj)) 478 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 479 } 480 481 if (!(entry->flags & EXEC_OBJECT_PINNED)) 482 entry->flags |= eb->context_flags; 483 484 return 0; 485 } 486 487 static int 488 eb_add_vma(struct i915_execbuffer *eb, 489 unsigned int i, unsigned batch_idx, 490 struct i915_vma *vma) 491 { 492 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 493 int err; 494 495 GEM_BUG_ON(i915_vma_is_closed(vma)); 496 497 if (!(eb->args->flags & __EXEC_VALIDATED)) { 498 err = eb_validate_vma(eb, entry, vma); 499 if (unlikely(err)) 500 return err; 501 } 502 503 if (eb->lut_size > 0) { 504 vma->exec_handle = entry->handle; 505 hlist_add_head(&vma->exec_node, 506 &eb->buckets[hash_32(entry->handle, 507 eb->lut_size)]); 508 } 509 510 if (entry->relocation_count) 511 list_add_tail(&vma->reloc_link, &eb->relocs); 512 513 /* 514 * Stash a pointer from the vma to execobj, so we can query its flags, 515 * size, alignment etc as provided by the user. Also we stash a pointer 516 * to the vma inside the execobj so that we can use a direct lookup 517 * to find the right target VMA when doing relocations. 518 */ 519 eb->vma[i] = vma; 520 eb->flags[i] = entry->flags; 521 vma->exec_flags = &eb->flags[i]; 522 523 /* 524 * SNA is doing fancy tricks with compressing batch buffers, which leads 525 * to negative relocation deltas. Usually that works out ok since the 526 * relocate address is still positive, except when the batch is placed 527 * very low in the GTT. Ensure this doesn't happen. 528 * 529 * Note that actual hangs have only been observed on gen7, but for 530 * paranoia do it everywhere. 531 */ 532 if (i == batch_idx) { 533 if (entry->relocation_count && 534 !(eb->flags[i] & EXEC_OBJECT_PINNED)) 535 eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS; 536 if (eb->reloc_cache.has_fence) 537 eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE; 538 539 eb->batch = vma; 540 } 541 542 err = 0; 543 if (eb_pin_vma(eb, entry, vma)) { 544 if (entry->offset != vma->node.start) { 545 entry->offset = vma->node.start | UPDATE; 546 eb->args->flags |= __EXEC_HAS_RELOC; 547 } 548 } else { 549 eb_unreserve_vma(vma, vma->exec_flags); 550 551 list_add_tail(&vma->exec_link, &eb->unbound); 552 if (drm_mm_node_allocated(&vma->node)) 553 err = i915_vma_unbind(vma); 554 if (unlikely(err)) 555 vma->exec_flags = NULL; 556 } 557 return err; 558 } 559 560 static inline int use_cpu_reloc(const struct reloc_cache *cache, 561 const struct drm_i915_gem_object *obj) 562 { 563 if (!i915_gem_object_has_struct_page(obj)) 564 return false; 565 566 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 567 return true; 568 569 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 570 return false; 571 572 return (cache->has_llc || 573 obj->cache_dirty || 574 obj->cache_level != I915_CACHE_NONE); 575 } 576 577 static int eb_reserve_vma(const struct i915_execbuffer *eb, 578 struct i915_vma *vma) 579 { 580 struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma); 581 unsigned int exec_flags = *vma->exec_flags; 582 u64 pin_flags; 583 int err; 584 585 pin_flags = PIN_USER | PIN_NONBLOCK; 586 if (exec_flags & EXEC_OBJECT_NEEDS_GTT) 587 pin_flags |= PIN_GLOBAL; 588 589 /* 590 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 591 * limit address to the first 4GBs for unflagged objects. 592 */ 593 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 594 pin_flags |= PIN_ZONE_4G; 595 596 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) 597 pin_flags |= PIN_MAPPABLE; 598 599 if (exec_flags & EXEC_OBJECT_PINNED) { 600 pin_flags |= entry->offset | PIN_OFFSET_FIXED; 601 pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */ 602 } else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) { 603 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 604 } 605 606 err = i915_vma_pin(vma, 607 entry->pad_to_size, entry->alignment, 608 pin_flags); 609 if (err) 610 return err; 611 612 if (entry->offset != vma->node.start) { 613 entry->offset = vma->node.start | UPDATE; 614 eb->args->flags |= __EXEC_HAS_RELOC; 615 } 616 617 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) { 618 err = i915_vma_pin_fence(vma); 619 if (unlikely(err)) { 620 i915_vma_unpin(vma); 621 return err; 622 } 623 624 if (vma->fence) 625 exec_flags |= __EXEC_OBJECT_HAS_FENCE; 626 } 627 628 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN; 629 GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags)); 630 631 return 0; 632 } 633 634 static int eb_reserve(struct i915_execbuffer *eb) 635 { 636 const unsigned int count = eb->buffer_count; 637 struct list_head last; 638 struct i915_vma *vma; 639 unsigned int i, pass; 640 int err; 641 642 /* 643 * Attempt to pin all of the buffers into the GTT. 644 * This is done in 3 phases: 645 * 646 * 1a. Unbind all objects that do not match the GTT constraints for 647 * the execbuffer (fenceable, mappable, alignment etc). 648 * 1b. Increment pin count for already bound objects. 649 * 2. Bind new objects. 650 * 3. Decrement pin count. 651 * 652 * This avoid unnecessary unbinding of later objects in order to make 653 * room for the earlier objects *unless* we need to defragment. 654 */ 655 656 pass = 0; 657 err = 0; 658 do { 659 list_for_each_entry(vma, &eb->unbound, exec_link) { 660 err = eb_reserve_vma(eb, vma); 661 if (err) 662 break; 663 } 664 if (err != -ENOSPC) 665 return err; 666 667 /* Resort *all* the objects into priority order */ 668 INIT_LIST_HEAD(&eb->unbound); 669 INIT_LIST_HEAD(&last); 670 for (i = 0; i < count; i++) { 671 unsigned int flags = eb->flags[i]; 672 struct i915_vma *vma = eb->vma[i]; 673 674 if (flags & EXEC_OBJECT_PINNED && 675 flags & __EXEC_OBJECT_HAS_PIN) 676 continue; 677 678 eb_unreserve_vma(vma, &eb->flags[i]); 679 680 if (flags & EXEC_OBJECT_PINNED) 681 /* Pinned must have their slot */ 682 list_add(&vma->exec_link, &eb->unbound); 683 else if (flags & __EXEC_OBJECT_NEEDS_MAP) 684 /* Map require the lowest 256MiB (aperture) */ 685 list_add_tail(&vma->exec_link, &eb->unbound); 686 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 687 /* Prioritise 4GiB region for restricted bo */ 688 list_add(&vma->exec_link, &last); 689 else 690 list_add_tail(&vma->exec_link, &last); 691 } 692 list_splice_tail(&last, &eb->unbound); 693 694 switch (pass++) { 695 case 0: 696 break; 697 698 case 1: 699 /* Too fragmented, unbind everything and retry */ 700 err = i915_gem_evict_vm(eb->context->vm); 701 if (err) 702 return err; 703 break; 704 705 default: 706 return -ENOSPC; 707 } 708 } while (1); 709 } 710 711 static unsigned int eb_batch_index(const struct i915_execbuffer *eb) 712 { 713 if (eb->args->flags & I915_EXEC_BATCH_FIRST) 714 return 0; 715 else 716 return eb->buffer_count - 1; 717 } 718 719 static int eb_select_context(struct i915_execbuffer *eb) 720 { 721 struct i915_gem_context *ctx; 722 723 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 724 if (unlikely(!ctx)) 725 return -ENOENT; 726 727 eb->gem_context = ctx; 728 if (ctx->vm) 729 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 730 731 eb->context_flags = 0; 732 if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags)) 733 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS; 734 735 return 0; 736 } 737 738 static int eb_lookup_vmas(struct i915_execbuffer *eb) 739 { 740 struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma; 741 struct drm_i915_gem_object *obj; 742 unsigned int i, batch; 743 int err; 744 745 if (unlikely(i915_gem_context_is_banned(eb->gem_context))) 746 return -EIO; 747 748 INIT_LIST_HEAD(&eb->relocs); 749 INIT_LIST_HEAD(&eb->unbound); 750 751 batch = eb_batch_index(eb); 752 753 mutex_lock(&eb->gem_context->mutex); 754 if (unlikely(i915_gem_context_is_closed(eb->gem_context))) { 755 err = -ENOENT; 756 goto err_ctx; 757 } 758 759 for (i = 0; i < eb->buffer_count; i++) { 760 u32 handle = eb->exec[i].handle; 761 struct i915_lut_handle *lut; 762 struct i915_vma *vma; 763 764 vma = radix_tree_lookup(handles_vma, handle); 765 if (likely(vma)) 766 goto add_vma; 767 768 obj = i915_gem_object_lookup(eb->file, handle); 769 if (unlikely(!obj)) { 770 err = -ENOENT; 771 goto err_vma; 772 } 773 774 vma = i915_vma_instance(obj, eb->context->vm, NULL); 775 if (IS_ERR(vma)) { 776 err = PTR_ERR(vma); 777 goto err_obj; 778 } 779 780 lut = i915_lut_handle_alloc(); 781 if (unlikely(!lut)) { 782 err = -ENOMEM; 783 goto err_obj; 784 } 785 786 err = radix_tree_insert(handles_vma, handle, vma); 787 if (unlikely(err)) { 788 i915_lut_handle_free(lut); 789 goto err_obj; 790 } 791 792 /* transfer ref to lut */ 793 if (!atomic_fetch_inc(&vma->open_count)) 794 i915_vma_reopen(vma); 795 lut->handle = handle; 796 lut->ctx = eb->gem_context; 797 798 i915_gem_object_lock(obj); 799 list_add(&lut->obj_link, &obj->lut_list); 800 i915_gem_object_unlock(obj); 801 802 add_vma: 803 err = eb_add_vma(eb, i, batch, vma); 804 if (unlikely(err)) 805 goto err_vma; 806 807 GEM_BUG_ON(vma != eb->vma[i]); 808 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]); 809 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && 810 eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i])); 811 } 812 813 mutex_unlock(&eb->gem_context->mutex); 814 815 eb->args->flags |= __EXEC_VALIDATED; 816 return eb_reserve(eb); 817 818 err_obj: 819 i915_gem_object_put(obj); 820 err_vma: 821 eb->vma[i] = NULL; 822 err_ctx: 823 mutex_unlock(&eb->gem_context->mutex); 824 return err; 825 } 826 827 static struct i915_vma * 828 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 829 { 830 if (eb->lut_size < 0) { 831 if (handle >= -eb->lut_size) 832 return NULL; 833 return eb->vma[handle]; 834 } else { 835 struct hlist_head *head; 836 struct i915_vma *vma; 837 838 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 839 hlist_for_each_entry(vma, head, exec_node) { 840 if (vma->exec_handle == handle) 841 return vma; 842 } 843 return NULL; 844 } 845 } 846 847 static void eb_release_vmas(const struct i915_execbuffer *eb) 848 { 849 const unsigned int count = eb->buffer_count; 850 unsigned int i; 851 852 for (i = 0; i < count; i++) { 853 struct i915_vma *vma = eb->vma[i]; 854 unsigned int flags = eb->flags[i]; 855 856 if (!vma) 857 break; 858 859 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]); 860 vma->exec_flags = NULL; 861 eb->vma[i] = NULL; 862 863 if (flags & __EXEC_OBJECT_HAS_PIN) 864 __eb_unreserve_vma(vma, flags); 865 866 if (flags & __EXEC_OBJECT_HAS_REF) 867 i915_vma_put(vma); 868 } 869 } 870 871 static void eb_reset_vmas(const struct i915_execbuffer *eb) 872 { 873 eb_release_vmas(eb); 874 if (eb->lut_size > 0) 875 memset(eb->buckets, 0, 876 sizeof(struct hlist_head) << eb->lut_size); 877 } 878 879 static void eb_destroy(const struct i915_execbuffer *eb) 880 { 881 GEM_BUG_ON(eb->reloc_cache.rq); 882 883 if (eb->lut_size > 0) 884 kfree(eb->buckets); 885 } 886 887 static inline u64 888 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 889 const struct i915_vma *target) 890 { 891 return gen8_canonical_addr((int)reloc->delta + target->node.start); 892 } 893 894 static void reloc_cache_init(struct reloc_cache *cache, 895 struct drm_i915_private *i915) 896 { 897 cache->page = -1; 898 cache->vaddr = 0; 899 /* Must be a variable in the struct to allow GCC to unroll. */ 900 cache->gen = INTEL_GEN(i915); 901 cache->has_llc = HAS_LLC(i915); 902 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 903 cache->has_fence = cache->gen < 4; 904 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 905 cache->node.allocated = false; 906 cache->rq = NULL; 907 cache->rq_size = 0; 908 } 909 910 static inline void *unmask_page(unsigned long p) 911 { 912 return (void *)(uintptr_t)(p & PAGE_MASK); 913 } 914 915 static inline unsigned int unmask_flags(unsigned long p) 916 { 917 return p & ~PAGE_MASK; 918 } 919 920 #define KMAP 0x4 /* after CLFLUSH_FLAGS */ 921 922 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 923 { 924 struct drm_i915_private *i915 = 925 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 926 return &i915->ggtt; 927 } 928 929 static void reloc_gpu_flush(struct reloc_cache *cache) 930 { 931 GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32)); 932 cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END; 933 934 __i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size); 935 i915_gem_object_unpin_map(cache->rq->batch->obj); 936 937 intel_gt_chipset_flush(cache->rq->engine->gt); 938 939 i915_request_add(cache->rq); 940 cache->rq = NULL; 941 } 942 943 static void reloc_cache_reset(struct reloc_cache *cache) 944 { 945 void *vaddr; 946 947 if (cache->rq) 948 reloc_gpu_flush(cache); 949 950 if (!cache->vaddr) 951 return; 952 953 vaddr = unmask_page(cache->vaddr); 954 if (cache->vaddr & KMAP) { 955 if (cache->vaddr & CLFLUSH_AFTER) 956 mb(); 957 958 kunmap_atomic(vaddr); 959 i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm); 960 } else { 961 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 962 963 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 964 io_mapping_unmap_atomic((void __iomem *)vaddr); 965 966 if (cache->node.allocated) { 967 ggtt->vm.clear_range(&ggtt->vm, 968 cache->node.start, 969 cache->node.size); 970 drm_mm_remove_node(&cache->node); 971 } else { 972 i915_vma_unpin((struct i915_vma *)cache->node.mm); 973 } 974 } 975 976 cache->vaddr = 0; 977 cache->page = -1; 978 } 979 980 static void *reloc_kmap(struct drm_i915_gem_object *obj, 981 struct reloc_cache *cache, 982 unsigned long page) 983 { 984 void *vaddr; 985 986 if (cache->vaddr) { 987 kunmap_atomic(unmask_page(cache->vaddr)); 988 } else { 989 unsigned int flushes; 990 int err; 991 992 err = i915_gem_object_prepare_write(obj, &flushes); 993 if (err) 994 return ERR_PTR(err); 995 996 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 997 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); 998 999 cache->vaddr = flushes | KMAP; 1000 cache->node.mm = (void *)obj; 1001 if (flushes) 1002 mb(); 1003 } 1004 1005 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page)); 1006 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 1007 cache->page = page; 1008 1009 return vaddr; 1010 } 1011 1012 static void *reloc_iomap(struct drm_i915_gem_object *obj, 1013 struct reloc_cache *cache, 1014 unsigned long page) 1015 { 1016 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1017 unsigned long offset; 1018 void *vaddr; 1019 1020 if (cache->vaddr) { 1021 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1022 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1023 } else { 1024 struct i915_vma *vma; 1025 int err; 1026 1027 if (i915_gem_object_is_tiled(obj)) 1028 return ERR_PTR(-EINVAL); 1029 1030 if (use_cpu_reloc(cache, obj)) 1031 return NULL; 1032 1033 i915_gem_object_lock(obj); 1034 err = i915_gem_object_set_to_gtt_domain(obj, true); 1035 i915_gem_object_unlock(obj); 1036 if (err) 1037 return ERR_PTR(err); 1038 1039 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 1040 PIN_MAPPABLE | 1041 PIN_NONBLOCK /* NOWARN */ | 1042 PIN_NOEVICT); 1043 if (IS_ERR(vma)) { 1044 memset(&cache->node, 0, sizeof(cache->node)); 1045 err = drm_mm_insert_node_in_range 1046 (&ggtt->vm.mm, &cache->node, 1047 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1048 0, ggtt->mappable_end, 1049 DRM_MM_INSERT_LOW); 1050 if (err) /* no inactive aperture space, use cpu reloc */ 1051 return NULL; 1052 } else { 1053 cache->node.start = vma->node.start; 1054 cache->node.mm = (void *)vma; 1055 } 1056 } 1057 1058 offset = cache->node.start; 1059 if (cache->node.allocated) { 1060 ggtt->vm.insert_page(&ggtt->vm, 1061 i915_gem_object_get_dma_address(obj, page), 1062 offset, I915_CACHE_NONE, 0); 1063 } else { 1064 offset += page << PAGE_SHIFT; 1065 } 1066 1067 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, 1068 offset); 1069 cache->page = page; 1070 cache->vaddr = (unsigned long)vaddr; 1071 1072 return vaddr; 1073 } 1074 1075 static void *reloc_vaddr(struct drm_i915_gem_object *obj, 1076 struct reloc_cache *cache, 1077 unsigned long page) 1078 { 1079 void *vaddr; 1080 1081 if (cache->page == page) { 1082 vaddr = unmask_page(cache->vaddr); 1083 } else { 1084 vaddr = NULL; 1085 if ((cache->vaddr & KMAP) == 0) 1086 vaddr = reloc_iomap(obj, cache, page); 1087 if (!vaddr) 1088 vaddr = reloc_kmap(obj, cache, page); 1089 } 1090 1091 return vaddr; 1092 } 1093 1094 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1095 { 1096 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1097 if (flushes & CLFLUSH_BEFORE) { 1098 clflushopt(addr); 1099 mb(); 1100 } 1101 1102 *addr = value; 1103 1104 /* 1105 * Writes to the same cacheline are serialised by the CPU 1106 * (including clflush). On the write path, we only require 1107 * that it hits memory in an orderly fashion and place 1108 * mb barriers at the start and end of the relocation phase 1109 * to ensure ordering of clflush wrt to the system. 1110 */ 1111 if (flushes & CLFLUSH_AFTER) 1112 clflushopt(addr); 1113 } else 1114 *addr = value; 1115 } 1116 1117 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma) 1118 { 1119 struct drm_i915_gem_object *obj = vma->obj; 1120 int err; 1121 1122 i915_vma_lock(vma); 1123 1124 if (obj->cache_dirty & ~obj->cache_coherent) 1125 i915_gem_clflush_object(obj, 0); 1126 obj->write_domain = 0; 1127 1128 err = i915_request_await_object(rq, vma->obj, true); 1129 if (err == 0) 1130 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE); 1131 1132 i915_vma_unlock(vma); 1133 1134 return err; 1135 } 1136 1137 static int __reloc_gpu_alloc(struct i915_execbuffer *eb, 1138 struct i915_vma *vma, 1139 unsigned int len) 1140 { 1141 struct reloc_cache *cache = &eb->reloc_cache; 1142 struct intel_engine_pool_node *pool; 1143 struct i915_request *rq; 1144 struct i915_vma *batch; 1145 u32 *cmd; 1146 int err; 1147 1148 pool = intel_engine_pool_get(&eb->engine->pool, PAGE_SIZE); 1149 if (IS_ERR(pool)) 1150 return PTR_ERR(pool); 1151 1152 cmd = i915_gem_object_pin_map(pool->obj, 1153 cache->has_llc ? 1154 I915_MAP_FORCE_WB : 1155 I915_MAP_FORCE_WC); 1156 if (IS_ERR(cmd)) { 1157 err = PTR_ERR(cmd); 1158 goto out_pool; 1159 } 1160 1161 batch = i915_vma_instance(pool->obj, vma->vm, NULL); 1162 if (IS_ERR(batch)) { 1163 err = PTR_ERR(batch); 1164 goto err_unmap; 1165 } 1166 1167 err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK); 1168 if (err) 1169 goto err_unmap; 1170 1171 rq = i915_request_create(eb->context); 1172 if (IS_ERR(rq)) { 1173 err = PTR_ERR(rq); 1174 goto err_unpin; 1175 } 1176 1177 err = intel_engine_pool_mark_active(pool, rq); 1178 if (err) 1179 goto err_request; 1180 1181 err = reloc_move_to_gpu(rq, vma); 1182 if (err) 1183 goto err_request; 1184 1185 err = eb->engine->emit_bb_start(rq, 1186 batch->node.start, PAGE_SIZE, 1187 cache->gen > 5 ? 0 : I915_DISPATCH_SECURE); 1188 if (err) 1189 goto skip_request; 1190 1191 i915_vma_lock(batch); 1192 err = i915_request_await_object(rq, batch->obj, false); 1193 if (err == 0) 1194 err = i915_vma_move_to_active(batch, rq, 0); 1195 i915_vma_unlock(batch); 1196 if (err) 1197 goto skip_request; 1198 1199 rq->batch = batch; 1200 i915_vma_unpin(batch); 1201 1202 cache->rq = rq; 1203 cache->rq_cmd = cmd; 1204 cache->rq_size = 0; 1205 1206 /* Return with batch mapping (cmd) still pinned */ 1207 goto out_pool; 1208 1209 skip_request: 1210 i915_request_skip(rq, err); 1211 err_request: 1212 i915_request_add(rq); 1213 err_unpin: 1214 i915_vma_unpin(batch); 1215 err_unmap: 1216 i915_gem_object_unpin_map(pool->obj); 1217 out_pool: 1218 intel_engine_pool_put(pool); 1219 return err; 1220 } 1221 1222 static u32 *reloc_gpu(struct i915_execbuffer *eb, 1223 struct i915_vma *vma, 1224 unsigned int len) 1225 { 1226 struct reloc_cache *cache = &eb->reloc_cache; 1227 u32 *cmd; 1228 1229 if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1)) 1230 reloc_gpu_flush(cache); 1231 1232 if (unlikely(!cache->rq)) { 1233 int err; 1234 1235 /* If we need to copy for the cmdparser, we will stall anyway */ 1236 if (eb_use_cmdparser(eb)) 1237 return ERR_PTR(-EWOULDBLOCK); 1238 1239 if (!intel_engine_can_store_dword(eb->engine)) 1240 return ERR_PTR(-ENODEV); 1241 1242 err = __reloc_gpu_alloc(eb, vma, len); 1243 if (unlikely(err)) 1244 return ERR_PTR(err); 1245 } 1246 1247 cmd = cache->rq_cmd + cache->rq_size; 1248 cache->rq_size += len; 1249 1250 return cmd; 1251 } 1252 1253 static u64 1254 relocate_entry(struct i915_vma *vma, 1255 const struct drm_i915_gem_relocation_entry *reloc, 1256 struct i915_execbuffer *eb, 1257 const struct i915_vma *target) 1258 { 1259 u64 offset = reloc->offset; 1260 u64 target_offset = relocation_target(reloc, target); 1261 bool wide = eb->reloc_cache.use_64bit_reloc; 1262 void *vaddr; 1263 1264 if (!eb->reloc_cache.vaddr && 1265 (DBG_FORCE_RELOC == FORCE_GPU_RELOC || 1266 !dma_resv_test_signaled_rcu(vma->resv, true))) { 1267 const unsigned int gen = eb->reloc_cache.gen; 1268 unsigned int len; 1269 u32 *batch; 1270 u64 addr; 1271 1272 if (wide) 1273 len = offset & 7 ? 8 : 5; 1274 else if (gen >= 4) 1275 len = 4; 1276 else 1277 len = 3; 1278 1279 batch = reloc_gpu(eb, vma, len); 1280 if (IS_ERR(batch)) 1281 goto repeat; 1282 1283 addr = gen8_canonical_addr(vma->node.start + offset); 1284 if (wide) { 1285 if (offset & 7) { 1286 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1287 *batch++ = lower_32_bits(addr); 1288 *batch++ = upper_32_bits(addr); 1289 *batch++ = lower_32_bits(target_offset); 1290 1291 addr = gen8_canonical_addr(addr + 4); 1292 1293 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1294 *batch++ = lower_32_bits(addr); 1295 *batch++ = upper_32_bits(addr); 1296 *batch++ = upper_32_bits(target_offset); 1297 } else { 1298 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1; 1299 *batch++ = lower_32_bits(addr); 1300 *batch++ = upper_32_bits(addr); 1301 *batch++ = lower_32_bits(target_offset); 1302 *batch++ = upper_32_bits(target_offset); 1303 } 1304 } else if (gen >= 6) { 1305 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1306 *batch++ = 0; 1307 *batch++ = addr; 1308 *batch++ = target_offset; 1309 } else if (gen >= 4) { 1310 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 1311 *batch++ = 0; 1312 *batch++ = addr; 1313 *batch++ = target_offset; 1314 } else { 1315 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL; 1316 *batch++ = addr; 1317 *batch++ = target_offset; 1318 } 1319 1320 goto out; 1321 } 1322 1323 repeat: 1324 vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT); 1325 if (IS_ERR(vaddr)) 1326 return PTR_ERR(vaddr); 1327 1328 clflush_write32(vaddr + offset_in_page(offset), 1329 lower_32_bits(target_offset), 1330 eb->reloc_cache.vaddr); 1331 1332 if (wide) { 1333 offset += sizeof(u32); 1334 target_offset >>= 32; 1335 wide = false; 1336 goto repeat; 1337 } 1338 1339 out: 1340 return target->node.start | UPDATE; 1341 } 1342 1343 static u64 1344 eb_relocate_entry(struct i915_execbuffer *eb, 1345 struct i915_vma *vma, 1346 const struct drm_i915_gem_relocation_entry *reloc) 1347 { 1348 struct i915_vma *target; 1349 int err; 1350 1351 /* we've already hold a reference to all valid objects */ 1352 target = eb_get_vma(eb, reloc->target_handle); 1353 if (unlikely(!target)) 1354 return -ENOENT; 1355 1356 /* Validate that the target is in a valid r/w GPU domain */ 1357 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1358 DRM_DEBUG("reloc with multiple write domains: " 1359 "target %d offset %d " 1360 "read %08x write %08x", 1361 reloc->target_handle, 1362 (int) reloc->offset, 1363 reloc->read_domains, 1364 reloc->write_domain); 1365 return -EINVAL; 1366 } 1367 if (unlikely((reloc->write_domain | reloc->read_domains) 1368 & ~I915_GEM_GPU_DOMAINS)) { 1369 DRM_DEBUG("reloc with read/write non-GPU domains: " 1370 "target %d offset %d " 1371 "read %08x write %08x", 1372 reloc->target_handle, 1373 (int) reloc->offset, 1374 reloc->read_domains, 1375 reloc->write_domain); 1376 return -EINVAL; 1377 } 1378 1379 if (reloc->write_domain) { 1380 *target->exec_flags |= EXEC_OBJECT_WRITE; 1381 1382 /* 1383 * Sandybridge PPGTT errata: We need a global gtt mapping 1384 * for MI and pipe_control writes because the gpu doesn't 1385 * properly redirect them through the ppgtt for non_secure 1386 * batchbuffers. 1387 */ 1388 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1389 IS_GEN(eb->i915, 6)) { 1390 err = i915_vma_bind(target, target->obj->cache_level, 1391 PIN_GLOBAL); 1392 if (WARN_ONCE(err, 1393 "Unexpected failure to bind target VMA!")) 1394 return err; 1395 } 1396 } 1397 1398 /* 1399 * If the relocation already has the right value in it, no 1400 * more work needs to be done. 1401 */ 1402 if (!DBG_FORCE_RELOC && 1403 gen8_canonical_addr(target->node.start) == reloc->presumed_offset) 1404 return 0; 1405 1406 /* Check that the relocation address is valid... */ 1407 if (unlikely(reloc->offset > 1408 vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1409 DRM_DEBUG("Relocation beyond object bounds: " 1410 "target %d offset %d size %d.\n", 1411 reloc->target_handle, 1412 (int)reloc->offset, 1413 (int)vma->size); 1414 return -EINVAL; 1415 } 1416 if (unlikely(reloc->offset & 3)) { 1417 DRM_DEBUG("Relocation not 4-byte aligned: " 1418 "target %d offset %d.\n", 1419 reloc->target_handle, 1420 (int)reloc->offset); 1421 return -EINVAL; 1422 } 1423 1424 /* 1425 * If we write into the object, we need to force the synchronisation 1426 * barrier, either with an asynchronous clflush or if we executed the 1427 * patching using the GPU (though that should be serialised by the 1428 * timeline). To be completely sure, and since we are required to 1429 * do relocations we are already stalling, disable the user's opt 1430 * out of our synchronisation. 1431 */ 1432 *vma->exec_flags &= ~EXEC_OBJECT_ASYNC; 1433 1434 /* and update the user's relocation entry */ 1435 return relocate_entry(vma, reloc, eb, target); 1436 } 1437 1438 static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma) 1439 { 1440 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1441 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1442 struct drm_i915_gem_relocation_entry __user *urelocs; 1443 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma); 1444 unsigned int remain; 1445 1446 urelocs = u64_to_user_ptr(entry->relocs_ptr); 1447 remain = entry->relocation_count; 1448 if (unlikely(remain > N_RELOC(ULONG_MAX))) 1449 return -EINVAL; 1450 1451 /* 1452 * We must check that the entire relocation array is safe 1453 * to read. However, if the array is not writable the user loses 1454 * the updated relocation values. 1455 */ 1456 if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs)))) 1457 return -EFAULT; 1458 1459 do { 1460 struct drm_i915_gem_relocation_entry *r = stack; 1461 unsigned int count = 1462 min_t(unsigned int, remain, ARRAY_SIZE(stack)); 1463 unsigned int copied; 1464 1465 /* 1466 * This is the fast path and we cannot handle a pagefault 1467 * whilst holding the struct mutex lest the user pass in the 1468 * relocations contained within a mmaped bo. For in such a case 1469 * we, the page fault handler would call i915_gem_fault() and 1470 * we would try to acquire the struct mutex again. Obviously 1471 * this is bad and so lockdep complains vehemently. 1472 */ 1473 pagefault_disable(); 1474 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); 1475 pagefault_enable(); 1476 if (unlikely(copied)) { 1477 remain = -EFAULT; 1478 goto out; 1479 } 1480 1481 remain -= count; 1482 do { 1483 u64 offset = eb_relocate_entry(eb, vma, r); 1484 1485 if (likely(offset == 0)) { 1486 } else if ((s64)offset < 0) { 1487 remain = (int)offset; 1488 goto out; 1489 } else { 1490 /* 1491 * Note that reporting an error now 1492 * leaves everything in an inconsistent 1493 * state as we have *already* changed 1494 * the relocation value inside the 1495 * object. As we have not changed the 1496 * reloc.presumed_offset or will not 1497 * change the execobject.offset, on the 1498 * call we may not rewrite the value 1499 * inside the object, leaving it 1500 * dangling and causing a GPU hang. Unless 1501 * userspace dynamically rebuilds the 1502 * relocations on each execbuf rather than 1503 * presume a static tree. 1504 * 1505 * We did previously check if the relocations 1506 * were writable (access_ok), an error now 1507 * would be a strange race with mprotect, 1508 * having already demonstrated that we 1509 * can read from this userspace address. 1510 */ 1511 offset = gen8_canonical_addr(offset & ~UPDATE); 1512 if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) { 1513 remain = -EFAULT; 1514 goto out; 1515 } 1516 } 1517 } while (r++, --count); 1518 urelocs += ARRAY_SIZE(stack); 1519 } while (remain); 1520 out: 1521 reloc_cache_reset(&eb->reloc_cache); 1522 return remain; 1523 } 1524 1525 static int 1526 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma) 1527 { 1528 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma); 1529 struct drm_i915_gem_relocation_entry *relocs = 1530 u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1531 unsigned int i; 1532 int err; 1533 1534 for (i = 0; i < entry->relocation_count; i++) { 1535 u64 offset = eb_relocate_entry(eb, vma, &relocs[i]); 1536 1537 if ((s64)offset < 0) { 1538 err = (int)offset; 1539 goto err; 1540 } 1541 } 1542 err = 0; 1543 err: 1544 reloc_cache_reset(&eb->reloc_cache); 1545 return err; 1546 } 1547 1548 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) 1549 { 1550 const char __user *addr, *end; 1551 unsigned long size; 1552 char __maybe_unused c; 1553 1554 size = entry->relocation_count; 1555 if (size == 0) 1556 return 0; 1557 1558 if (size > N_RELOC(ULONG_MAX)) 1559 return -EINVAL; 1560 1561 addr = u64_to_user_ptr(entry->relocs_ptr); 1562 size *= sizeof(struct drm_i915_gem_relocation_entry); 1563 if (!access_ok(addr, size)) 1564 return -EFAULT; 1565 1566 end = addr + size; 1567 for (; addr < end; addr += PAGE_SIZE) { 1568 int err = __get_user(c, addr); 1569 if (err) 1570 return err; 1571 } 1572 return __get_user(c, end - 1); 1573 } 1574 1575 static int eb_copy_relocations(const struct i915_execbuffer *eb) 1576 { 1577 struct drm_i915_gem_relocation_entry *relocs; 1578 const unsigned int count = eb->buffer_count; 1579 unsigned int i; 1580 int err; 1581 1582 for (i = 0; i < count; i++) { 1583 const unsigned int nreloc = eb->exec[i].relocation_count; 1584 struct drm_i915_gem_relocation_entry __user *urelocs; 1585 unsigned long size; 1586 unsigned long copied; 1587 1588 if (nreloc == 0) 1589 continue; 1590 1591 err = check_relocations(&eb->exec[i]); 1592 if (err) 1593 goto err; 1594 1595 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); 1596 size = nreloc * sizeof(*relocs); 1597 1598 relocs = kvmalloc_array(size, 1, GFP_KERNEL); 1599 if (!relocs) { 1600 err = -ENOMEM; 1601 goto err; 1602 } 1603 1604 /* copy_from_user is limited to < 4GiB */ 1605 copied = 0; 1606 do { 1607 unsigned int len = 1608 min_t(u64, BIT_ULL(31), size - copied); 1609 1610 if (__copy_from_user((char *)relocs + copied, 1611 (char __user *)urelocs + copied, 1612 len)) 1613 goto end; 1614 1615 copied += len; 1616 } while (copied < size); 1617 1618 /* 1619 * As we do not update the known relocation offsets after 1620 * relocating (due to the complexities in lock handling), 1621 * we need to mark them as invalid now so that we force the 1622 * relocation processing next time. Just in case the target 1623 * object is evicted and then rebound into its old 1624 * presumed_offset before the next execbuffer - if that 1625 * happened we would make the mistake of assuming that the 1626 * relocations were valid. 1627 */ 1628 if (!user_access_begin(urelocs, size)) 1629 goto end; 1630 1631 for (copied = 0; copied < nreloc; copied++) 1632 unsafe_put_user(-1, 1633 &urelocs[copied].presumed_offset, 1634 end_user); 1635 user_access_end(); 1636 1637 eb->exec[i].relocs_ptr = (uintptr_t)relocs; 1638 } 1639 1640 return 0; 1641 1642 end_user: 1643 user_access_end(); 1644 end: 1645 kvfree(relocs); 1646 err = -EFAULT; 1647 err: 1648 while (i--) { 1649 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); 1650 if (eb->exec[i].relocation_count) 1651 kvfree(relocs); 1652 } 1653 return err; 1654 } 1655 1656 static int eb_prefault_relocations(const struct i915_execbuffer *eb) 1657 { 1658 const unsigned int count = eb->buffer_count; 1659 unsigned int i; 1660 1661 if (unlikely(i915_modparams.prefault_disable)) 1662 return 0; 1663 1664 for (i = 0; i < count; i++) { 1665 int err; 1666 1667 err = check_relocations(&eb->exec[i]); 1668 if (err) 1669 return err; 1670 } 1671 1672 return 0; 1673 } 1674 1675 static noinline int eb_relocate_slow(struct i915_execbuffer *eb) 1676 { 1677 struct drm_device *dev = &eb->i915->drm; 1678 bool have_copy = false; 1679 struct i915_vma *vma; 1680 int err = 0; 1681 1682 repeat: 1683 if (signal_pending(current)) { 1684 err = -ERESTARTSYS; 1685 goto out; 1686 } 1687 1688 /* We may process another execbuffer during the unlock... */ 1689 eb_reset_vmas(eb); 1690 mutex_unlock(&dev->struct_mutex); 1691 1692 /* 1693 * We take 3 passes through the slowpatch. 1694 * 1695 * 1 - we try to just prefault all the user relocation entries and 1696 * then attempt to reuse the atomic pagefault disabled fast path again. 1697 * 1698 * 2 - we copy the user entries to a local buffer here outside of the 1699 * local and allow ourselves to wait upon any rendering before 1700 * relocations 1701 * 1702 * 3 - we already have a local copy of the relocation entries, but 1703 * were interrupted (EAGAIN) whilst waiting for the objects, try again. 1704 */ 1705 if (!err) { 1706 err = eb_prefault_relocations(eb); 1707 } else if (!have_copy) { 1708 err = eb_copy_relocations(eb); 1709 have_copy = err == 0; 1710 } else { 1711 cond_resched(); 1712 err = 0; 1713 } 1714 if (err) { 1715 mutex_lock(&dev->struct_mutex); 1716 goto out; 1717 } 1718 1719 /* A frequent cause for EAGAIN are currently unavailable client pages */ 1720 flush_workqueue(eb->i915->mm.userptr_wq); 1721 1722 err = i915_mutex_lock_interruptible(dev); 1723 if (err) { 1724 mutex_lock(&dev->struct_mutex); 1725 goto out; 1726 } 1727 1728 /* reacquire the objects */ 1729 err = eb_lookup_vmas(eb); 1730 if (err) 1731 goto err; 1732 1733 GEM_BUG_ON(!eb->batch); 1734 1735 list_for_each_entry(vma, &eb->relocs, reloc_link) { 1736 if (!have_copy) { 1737 pagefault_disable(); 1738 err = eb_relocate_vma(eb, vma); 1739 pagefault_enable(); 1740 if (err) 1741 goto repeat; 1742 } else { 1743 err = eb_relocate_vma_slow(eb, vma); 1744 if (err) 1745 goto err; 1746 } 1747 } 1748 1749 /* 1750 * Leave the user relocations as are, this is the painfully slow path, 1751 * and we want to avoid the complication of dropping the lock whilst 1752 * having buffers reserved in the aperture and so causing spurious 1753 * ENOSPC for random operations. 1754 */ 1755 1756 err: 1757 if (err == -EAGAIN) 1758 goto repeat; 1759 1760 out: 1761 if (have_copy) { 1762 const unsigned int count = eb->buffer_count; 1763 unsigned int i; 1764 1765 for (i = 0; i < count; i++) { 1766 const struct drm_i915_gem_exec_object2 *entry = 1767 &eb->exec[i]; 1768 struct drm_i915_gem_relocation_entry *relocs; 1769 1770 if (!entry->relocation_count) 1771 continue; 1772 1773 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1774 kvfree(relocs); 1775 } 1776 } 1777 1778 return err; 1779 } 1780 1781 static int eb_relocate(struct i915_execbuffer *eb) 1782 { 1783 if (eb_lookup_vmas(eb)) 1784 goto slow; 1785 1786 /* The objects are in their final locations, apply the relocations. */ 1787 if (eb->args->flags & __EXEC_HAS_RELOC) { 1788 struct i915_vma *vma; 1789 1790 list_for_each_entry(vma, &eb->relocs, reloc_link) { 1791 if (eb_relocate_vma(eb, vma)) 1792 goto slow; 1793 } 1794 } 1795 1796 return 0; 1797 1798 slow: 1799 return eb_relocate_slow(eb); 1800 } 1801 1802 static int eb_move_to_gpu(struct i915_execbuffer *eb) 1803 { 1804 const unsigned int count = eb->buffer_count; 1805 struct ww_acquire_ctx acquire; 1806 unsigned int i; 1807 int err = 0; 1808 1809 ww_acquire_init(&acquire, &reservation_ww_class); 1810 1811 for (i = 0; i < count; i++) { 1812 struct i915_vma *vma = eb->vma[i]; 1813 1814 err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire); 1815 if (!err) 1816 continue; 1817 1818 GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */ 1819 1820 if (err == -EDEADLK) { 1821 GEM_BUG_ON(i == 0); 1822 do { 1823 int j = i - 1; 1824 1825 ww_mutex_unlock(&eb->vma[j]->resv->lock); 1826 1827 swap(eb->flags[i], eb->flags[j]); 1828 swap(eb->vma[i], eb->vma[j]); 1829 eb->vma[i]->exec_flags = &eb->flags[i]; 1830 } while (--i); 1831 GEM_BUG_ON(vma != eb->vma[0]); 1832 vma->exec_flags = &eb->flags[0]; 1833 1834 err = ww_mutex_lock_slow_interruptible(&vma->resv->lock, 1835 &acquire); 1836 } 1837 if (err) 1838 break; 1839 } 1840 ww_acquire_done(&acquire); 1841 1842 while (i--) { 1843 unsigned int flags = eb->flags[i]; 1844 struct i915_vma *vma = eb->vma[i]; 1845 struct drm_i915_gem_object *obj = vma->obj; 1846 1847 assert_vma_held(vma); 1848 1849 if (flags & EXEC_OBJECT_CAPTURE) { 1850 struct i915_capture_list *capture; 1851 1852 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 1853 if (capture) { 1854 capture->next = eb->request->capture_list; 1855 capture->vma = vma; 1856 eb->request->capture_list = capture; 1857 } 1858 } 1859 1860 /* 1861 * If the GPU is not _reading_ through the CPU cache, we need 1862 * to make sure that any writes (both previous GPU writes from 1863 * before a change in snooping levels and normal CPU writes) 1864 * caught in that cache are flushed to main memory. 1865 * 1866 * We want to say 1867 * obj->cache_dirty && 1868 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) 1869 * but gcc's optimiser doesn't handle that as well and emits 1870 * two jumps instead of one. Maybe one day... 1871 */ 1872 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { 1873 if (i915_gem_clflush_object(obj, 0)) 1874 flags &= ~EXEC_OBJECT_ASYNC; 1875 } 1876 1877 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { 1878 err = i915_request_await_object 1879 (eb->request, obj, flags & EXEC_OBJECT_WRITE); 1880 } 1881 1882 if (err == 0) 1883 err = i915_vma_move_to_active(vma, eb->request, flags); 1884 1885 i915_vma_unlock(vma); 1886 1887 __eb_unreserve_vma(vma, flags); 1888 vma->exec_flags = NULL; 1889 1890 if (unlikely(flags & __EXEC_OBJECT_HAS_REF)) 1891 i915_vma_put(vma); 1892 } 1893 ww_acquire_fini(&acquire); 1894 1895 if (unlikely(err)) 1896 goto err_skip; 1897 1898 eb->exec = NULL; 1899 1900 /* Unconditionally flush any chipset caches (for streaming writes). */ 1901 intel_gt_chipset_flush(eb->engine->gt); 1902 return 0; 1903 1904 err_skip: 1905 i915_request_skip(eb->request, err); 1906 return err; 1907 } 1908 1909 static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) 1910 { 1911 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 1912 return false; 1913 1914 /* Kernel clipping was a DRI1 misfeature */ 1915 if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) { 1916 if (exec->num_cliprects || exec->cliprects_ptr) 1917 return false; 1918 } 1919 1920 if (exec->DR4 == 0xffffffff) { 1921 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); 1922 exec->DR4 = 0; 1923 } 1924 if (exec->DR1 || exec->DR4) 1925 return false; 1926 1927 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 1928 return false; 1929 1930 return true; 1931 } 1932 1933 static int i915_reset_gen7_sol_offsets(struct i915_request *rq) 1934 { 1935 u32 *cs; 1936 int i; 1937 1938 if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) { 1939 DRM_DEBUG("sol reset is gen7/rcs only\n"); 1940 return -EINVAL; 1941 } 1942 1943 cs = intel_ring_begin(rq, 4 * 2 + 2); 1944 if (IS_ERR(cs)) 1945 return PTR_ERR(cs); 1946 1947 *cs++ = MI_LOAD_REGISTER_IMM(4); 1948 for (i = 0; i < 4; i++) { 1949 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 1950 *cs++ = 0; 1951 } 1952 *cs++ = MI_NOOP; 1953 intel_ring_advance(rq, cs); 1954 1955 return 0; 1956 } 1957 1958 static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master) 1959 { 1960 struct intel_engine_pool_node *pool; 1961 struct i915_vma *vma; 1962 int err; 1963 1964 pool = intel_engine_pool_get(&eb->engine->pool, eb->batch_len); 1965 if (IS_ERR(pool)) 1966 return ERR_CAST(pool); 1967 1968 err = intel_engine_cmd_parser(eb->engine, 1969 eb->batch->obj, 1970 pool->obj, 1971 eb->batch_start_offset, 1972 eb->batch_len, 1973 is_master); 1974 if (err) { 1975 if (err == -EACCES) /* unhandled chained batch */ 1976 vma = NULL; 1977 else 1978 vma = ERR_PTR(err); 1979 goto err; 1980 } 1981 1982 vma = i915_gem_object_ggtt_pin(pool->obj, NULL, 0, 0, 0); 1983 if (IS_ERR(vma)) 1984 goto err; 1985 1986 eb->vma[eb->buffer_count] = i915_vma_get(vma); 1987 eb->flags[eb->buffer_count] = 1988 __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF; 1989 vma->exec_flags = &eb->flags[eb->buffer_count]; 1990 eb->buffer_count++; 1991 1992 vma->private = pool; 1993 return vma; 1994 1995 err: 1996 intel_engine_pool_put(pool); 1997 return vma; 1998 } 1999 2000 static void 2001 add_to_client(struct i915_request *rq, struct drm_file *file) 2002 { 2003 struct drm_i915_file_private *file_priv = file->driver_priv; 2004 2005 rq->file_priv = file_priv; 2006 2007 spin_lock(&file_priv->mm.lock); 2008 list_add_tail(&rq->client_link, &file_priv->mm.request_list); 2009 spin_unlock(&file_priv->mm.lock); 2010 } 2011 2012 static int eb_submit(struct i915_execbuffer *eb) 2013 { 2014 int err; 2015 2016 err = eb_move_to_gpu(eb); 2017 if (err) 2018 return err; 2019 2020 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 2021 err = i915_reset_gen7_sol_offsets(eb->request); 2022 if (err) 2023 return err; 2024 } 2025 2026 /* 2027 * After we completed waiting for other engines (using HW semaphores) 2028 * then we can signal that this request/batch is ready to run. This 2029 * allows us to determine if the batch is still waiting on the GPU 2030 * or actually running by checking the breadcrumb. 2031 */ 2032 if (eb->engine->emit_init_breadcrumb) { 2033 err = eb->engine->emit_init_breadcrumb(eb->request); 2034 if (err) 2035 return err; 2036 } 2037 2038 err = eb->engine->emit_bb_start(eb->request, 2039 eb->batch->node.start + 2040 eb->batch_start_offset, 2041 eb->batch_len, 2042 eb->batch_flags); 2043 if (err) 2044 return err; 2045 2046 return 0; 2047 } 2048 2049 static int num_vcs_engines(const struct drm_i915_private *i915) 2050 { 2051 return hweight64(INTEL_INFO(i915)->engine_mask & 2052 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0)); 2053 } 2054 2055 /* 2056 * Find one BSD ring to dispatch the corresponding BSD command. 2057 * The engine index is returned. 2058 */ 2059 static unsigned int 2060 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, 2061 struct drm_file *file) 2062 { 2063 struct drm_i915_file_private *file_priv = file->driver_priv; 2064 2065 /* Check whether the file_priv has already selected one ring. */ 2066 if ((int)file_priv->bsd_engine < 0) 2067 file_priv->bsd_engine = 2068 get_random_int() % num_vcs_engines(dev_priv); 2069 2070 return file_priv->bsd_engine; 2071 } 2072 2073 static const enum intel_engine_id user_ring_map[] = { 2074 [I915_EXEC_DEFAULT] = RCS0, 2075 [I915_EXEC_RENDER] = RCS0, 2076 [I915_EXEC_BLT] = BCS0, 2077 [I915_EXEC_BSD] = VCS0, 2078 [I915_EXEC_VEBOX] = VECS0 2079 }; 2080 2081 static struct i915_request *eb_throttle(struct intel_context *ce) 2082 { 2083 struct intel_ring *ring = ce->ring; 2084 struct intel_timeline *tl = ce->timeline; 2085 struct i915_request *rq; 2086 2087 /* 2088 * Completely unscientific finger-in-the-air estimates for suitable 2089 * maximum user request size (to avoid blocking) and then backoff. 2090 */ 2091 if (intel_ring_update_space(ring) >= PAGE_SIZE) 2092 return NULL; 2093 2094 /* 2095 * Find a request that after waiting upon, there will be at least half 2096 * the ring available. The hysteresis allows us to compete for the 2097 * shared ring and should mean that we sleep less often prior to 2098 * claiming our resources, but not so long that the ring completely 2099 * drains before we can submit our next request. 2100 */ 2101 list_for_each_entry(rq, &tl->requests, link) { 2102 if (rq->ring != ring) 2103 continue; 2104 2105 if (__intel_ring_space(rq->postfix, 2106 ring->emit, ring->size) > ring->size / 2) 2107 break; 2108 } 2109 if (&rq->link == &tl->requests) 2110 return NULL; /* weird, we will check again later for real */ 2111 2112 return i915_request_get(rq); 2113 } 2114 2115 static int 2116 __eb_pin_context(struct i915_execbuffer *eb, struct intel_context *ce) 2117 { 2118 int err; 2119 2120 if (likely(atomic_inc_not_zero(&ce->pin_count))) 2121 return 0; 2122 2123 err = mutex_lock_interruptible(&eb->i915->drm.struct_mutex); 2124 if (err) 2125 return err; 2126 2127 err = __intel_context_do_pin(ce); 2128 mutex_unlock(&eb->i915->drm.struct_mutex); 2129 2130 return err; 2131 } 2132 2133 static void 2134 __eb_unpin_context(struct i915_execbuffer *eb, struct intel_context *ce) 2135 { 2136 if (likely(atomic_add_unless(&ce->pin_count, -1, 1))) 2137 return; 2138 2139 mutex_lock(&eb->i915->drm.struct_mutex); 2140 intel_context_unpin(ce); 2141 mutex_unlock(&eb->i915->drm.struct_mutex); 2142 } 2143 2144 static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce) 2145 { 2146 struct intel_timeline *tl; 2147 struct i915_request *rq; 2148 int err; 2149 2150 /* 2151 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 2152 * EIO if the GPU is already wedged. 2153 */ 2154 err = intel_gt_terminally_wedged(ce->engine->gt); 2155 if (err) 2156 return err; 2157 2158 /* 2159 * Pinning the contexts may generate requests in order to acquire 2160 * GGTT space, so do this first before we reserve a seqno for 2161 * ourselves. 2162 */ 2163 err = __eb_pin_context(eb, ce); 2164 if (err) 2165 return err; 2166 2167 /* 2168 * Take a local wakeref for preparing to dispatch the execbuf as 2169 * we expect to access the hardware fairly frequently in the 2170 * process, and require the engine to be kept awake between accesses. 2171 * Upon dispatch, we acquire another prolonged wakeref that we hold 2172 * until the timeline is idle, which in turn releases the wakeref 2173 * taken on the engine, and the parent device. 2174 */ 2175 tl = intel_context_timeline_lock(ce); 2176 if (IS_ERR(tl)) { 2177 err = PTR_ERR(tl); 2178 goto err_unpin; 2179 } 2180 2181 intel_context_enter(ce); 2182 rq = eb_throttle(ce); 2183 2184 intel_context_timeline_unlock(tl); 2185 2186 if (rq) { 2187 if (i915_request_wait(rq, 2188 I915_WAIT_INTERRUPTIBLE, 2189 MAX_SCHEDULE_TIMEOUT) < 0) { 2190 i915_request_put(rq); 2191 err = -EINTR; 2192 goto err_exit; 2193 } 2194 2195 i915_request_put(rq); 2196 } 2197 2198 eb->engine = ce->engine; 2199 eb->context = ce; 2200 return 0; 2201 2202 err_exit: 2203 mutex_lock(&tl->mutex); 2204 intel_context_exit(ce); 2205 intel_context_timeline_unlock(tl); 2206 err_unpin: 2207 __eb_unpin_context(eb, ce); 2208 return err; 2209 } 2210 2211 static void eb_unpin_engine(struct i915_execbuffer *eb) 2212 { 2213 struct intel_context *ce = eb->context; 2214 struct intel_timeline *tl = ce->timeline; 2215 2216 mutex_lock(&tl->mutex); 2217 intel_context_exit(ce); 2218 mutex_unlock(&tl->mutex); 2219 2220 __eb_unpin_context(eb, ce); 2221 } 2222 2223 static unsigned int 2224 eb_select_legacy_ring(struct i915_execbuffer *eb, 2225 struct drm_file *file, 2226 struct drm_i915_gem_execbuffer2 *args) 2227 { 2228 struct drm_i915_private *i915 = eb->i915; 2229 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2230 2231 if (user_ring_id != I915_EXEC_BSD && 2232 (args->flags & I915_EXEC_BSD_MASK)) { 2233 DRM_DEBUG("execbuf with non bsd ring but with invalid " 2234 "bsd dispatch flags: %d\n", (int)(args->flags)); 2235 return -1; 2236 } 2237 2238 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) { 2239 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2240 2241 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2242 bsd_idx = gen8_dispatch_bsd_engine(i915, file); 2243 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2244 bsd_idx <= I915_EXEC_BSD_RING2) { 2245 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2246 bsd_idx--; 2247 } else { 2248 DRM_DEBUG("execbuf with unknown bsd ring: %u\n", 2249 bsd_idx); 2250 return -1; 2251 } 2252 2253 return _VCS(bsd_idx); 2254 } 2255 2256 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { 2257 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id); 2258 return -1; 2259 } 2260 2261 return user_ring_map[user_ring_id]; 2262 } 2263 2264 static int 2265 eb_pin_engine(struct i915_execbuffer *eb, 2266 struct drm_file *file, 2267 struct drm_i915_gem_execbuffer2 *args) 2268 { 2269 struct intel_context *ce; 2270 unsigned int idx; 2271 int err; 2272 2273 if (i915_gem_context_user_engines(eb->gem_context)) 2274 idx = args->flags & I915_EXEC_RING_MASK; 2275 else 2276 idx = eb_select_legacy_ring(eb, file, args); 2277 2278 ce = i915_gem_context_get_engine(eb->gem_context, idx); 2279 if (IS_ERR(ce)) 2280 return PTR_ERR(ce); 2281 2282 err = __eb_pin_engine(eb, ce); 2283 intel_context_put(ce); 2284 2285 return err; 2286 } 2287 2288 static void 2289 __free_fence_array(struct drm_syncobj **fences, unsigned int n) 2290 { 2291 while (n--) 2292 drm_syncobj_put(ptr_mask_bits(fences[n], 2)); 2293 kvfree(fences); 2294 } 2295 2296 static struct drm_syncobj ** 2297 get_fence_array(struct drm_i915_gem_execbuffer2 *args, 2298 struct drm_file *file) 2299 { 2300 const unsigned long nfences = args->num_cliprects; 2301 struct drm_i915_gem_exec_fence __user *user; 2302 struct drm_syncobj **fences; 2303 unsigned long n; 2304 int err; 2305 2306 if (!(args->flags & I915_EXEC_FENCE_ARRAY)) 2307 return NULL; 2308 2309 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2310 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2311 if (nfences > min_t(unsigned long, 2312 ULONG_MAX / sizeof(*user), 2313 SIZE_MAX / sizeof(*fences))) 2314 return ERR_PTR(-EINVAL); 2315 2316 user = u64_to_user_ptr(args->cliprects_ptr); 2317 if (!access_ok(user, nfences * sizeof(*user))) 2318 return ERR_PTR(-EFAULT); 2319 2320 fences = kvmalloc_array(nfences, sizeof(*fences), 2321 __GFP_NOWARN | GFP_KERNEL); 2322 if (!fences) 2323 return ERR_PTR(-ENOMEM); 2324 2325 for (n = 0; n < nfences; n++) { 2326 struct drm_i915_gem_exec_fence fence; 2327 struct drm_syncobj *syncobj; 2328 2329 if (__copy_from_user(&fence, user++, sizeof(fence))) { 2330 err = -EFAULT; 2331 goto err; 2332 } 2333 2334 if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) { 2335 err = -EINVAL; 2336 goto err; 2337 } 2338 2339 syncobj = drm_syncobj_find(file, fence.handle); 2340 if (!syncobj) { 2341 DRM_DEBUG("Invalid syncobj handle provided\n"); 2342 err = -ENOENT; 2343 goto err; 2344 } 2345 2346 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2347 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2348 2349 fences[n] = ptr_pack_bits(syncobj, fence.flags, 2); 2350 } 2351 2352 return fences; 2353 2354 err: 2355 __free_fence_array(fences, n); 2356 return ERR_PTR(err); 2357 } 2358 2359 static void 2360 put_fence_array(struct drm_i915_gem_execbuffer2 *args, 2361 struct drm_syncobj **fences) 2362 { 2363 if (fences) 2364 __free_fence_array(fences, args->num_cliprects); 2365 } 2366 2367 static int 2368 await_fence_array(struct i915_execbuffer *eb, 2369 struct drm_syncobj **fences) 2370 { 2371 const unsigned int nfences = eb->args->num_cliprects; 2372 unsigned int n; 2373 int err; 2374 2375 for (n = 0; n < nfences; n++) { 2376 struct drm_syncobj *syncobj; 2377 struct dma_fence *fence; 2378 unsigned int flags; 2379 2380 syncobj = ptr_unpack_bits(fences[n], &flags, 2); 2381 if (!(flags & I915_EXEC_FENCE_WAIT)) 2382 continue; 2383 2384 fence = drm_syncobj_fence_get(syncobj); 2385 if (!fence) 2386 return -EINVAL; 2387 2388 err = i915_request_await_dma_fence(eb->request, fence); 2389 dma_fence_put(fence); 2390 if (err < 0) 2391 return err; 2392 } 2393 2394 return 0; 2395 } 2396 2397 static void 2398 signal_fence_array(struct i915_execbuffer *eb, 2399 struct drm_syncobj **fences) 2400 { 2401 const unsigned int nfences = eb->args->num_cliprects; 2402 struct dma_fence * const fence = &eb->request->fence; 2403 unsigned int n; 2404 2405 for (n = 0; n < nfences; n++) { 2406 struct drm_syncobj *syncobj; 2407 unsigned int flags; 2408 2409 syncobj = ptr_unpack_bits(fences[n], &flags, 2); 2410 if (!(flags & I915_EXEC_FENCE_SIGNAL)) 2411 continue; 2412 2413 drm_syncobj_replace_fence(syncobj, fence); 2414 } 2415 } 2416 2417 static int 2418 i915_gem_do_execbuffer(struct drm_device *dev, 2419 struct drm_file *file, 2420 struct drm_i915_gem_execbuffer2 *args, 2421 struct drm_i915_gem_exec_object2 *exec, 2422 struct drm_syncobj **fences) 2423 { 2424 struct i915_execbuffer eb; 2425 struct dma_fence *in_fence = NULL; 2426 struct dma_fence *exec_fence = NULL; 2427 struct sync_file *out_fence = NULL; 2428 int out_fence_fd = -1; 2429 int err; 2430 2431 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); 2432 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 2433 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 2434 2435 eb.i915 = to_i915(dev); 2436 eb.file = file; 2437 eb.args = args; 2438 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 2439 args->flags |= __EXEC_HAS_RELOC; 2440 2441 eb.exec = exec; 2442 eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1); 2443 eb.vma[0] = NULL; 2444 eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1); 2445 2446 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 2447 reloc_cache_init(&eb.reloc_cache, eb.i915); 2448 2449 eb.buffer_count = args->buffer_count; 2450 eb.batch_start_offset = args->batch_start_offset; 2451 eb.batch_len = args->batch_len; 2452 2453 eb.batch_flags = 0; 2454 if (args->flags & I915_EXEC_SECURE) { 2455 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 2456 return -EPERM; 2457 2458 eb.batch_flags |= I915_DISPATCH_SECURE; 2459 } 2460 if (args->flags & I915_EXEC_IS_PINNED) 2461 eb.batch_flags |= I915_DISPATCH_PINNED; 2462 2463 if (args->flags & I915_EXEC_FENCE_IN) { 2464 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 2465 if (!in_fence) 2466 return -EINVAL; 2467 } 2468 2469 if (args->flags & I915_EXEC_FENCE_SUBMIT) { 2470 if (in_fence) { 2471 err = -EINVAL; 2472 goto err_in_fence; 2473 } 2474 2475 exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 2476 if (!exec_fence) { 2477 err = -EINVAL; 2478 goto err_in_fence; 2479 } 2480 } 2481 2482 if (args->flags & I915_EXEC_FENCE_OUT) { 2483 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 2484 if (out_fence_fd < 0) { 2485 err = out_fence_fd; 2486 goto err_exec_fence; 2487 } 2488 } 2489 2490 err = eb_create(&eb); 2491 if (err) 2492 goto err_out_fence; 2493 2494 GEM_BUG_ON(!eb.lut_size); 2495 2496 err = eb_select_context(&eb); 2497 if (unlikely(err)) 2498 goto err_destroy; 2499 2500 err = eb_pin_engine(&eb, file, args); 2501 if (unlikely(err)) 2502 goto err_context; 2503 2504 err = i915_mutex_lock_interruptible(dev); 2505 if (err) 2506 goto err_engine; 2507 2508 err = eb_relocate(&eb); 2509 if (err) { 2510 /* 2511 * If the user expects the execobject.offset and 2512 * reloc.presumed_offset to be an exact match, 2513 * as for using NO_RELOC, then we cannot update 2514 * the execobject.offset until we have completed 2515 * relocation. 2516 */ 2517 args->flags &= ~__EXEC_HAS_RELOC; 2518 goto err_vma; 2519 } 2520 2521 if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) { 2522 DRM_DEBUG("Attempting to use self-modifying batch buffer\n"); 2523 err = -EINVAL; 2524 goto err_vma; 2525 } 2526 if (eb.batch_start_offset > eb.batch->size || 2527 eb.batch_len > eb.batch->size - eb.batch_start_offset) { 2528 DRM_DEBUG("Attempting to use out-of-bounds batch\n"); 2529 err = -EINVAL; 2530 goto err_vma; 2531 } 2532 2533 if (eb_use_cmdparser(&eb)) { 2534 struct i915_vma *vma; 2535 2536 vma = eb_parse(&eb, drm_is_current_master(file)); 2537 if (IS_ERR(vma)) { 2538 err = PTR_ERR(vma); 2539 goto err_vma; 2540 } 2541 2542 if (vma) { 2543 /* 2544 * Batch parsed and accepted: 2545 * 2546 * Set the DISPATCH_SECURE bit to remove the NON_SECURE 2547 * bit from MI_BATCH_BUFFER_START commands issued in 2548 * the dispatch_execbuffer implementations. We 2549 * specifically don't want that set on batches the 2550 * command parser has accepted. 2551 */ 2552 eb.batch_flags |= I915_DISPATCH_SECURE; 2553 eb.batch_start_offset = 0; 2554 eb.batch = vma; 2555 } 2556 } 2557 2558 if (eb.batch_len == 0) 2559 eb.batch_len = eb.batch->size - eb.batch_start_offset; 2560 2561 /* 2562 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2563 * batch" bit. Hence we need to pin secure batches into the global gtt. 2564 * hsw should have this fixed, but bdw mucks it up again. */ 2565 if (eb.batch_flags & I915_DISPATCH_SECURE) { 2566 struct i915_vma *vma; 2567 2568 /* 2569 * So on first glance it looks freaky that we pin the batch here 2570 * outside of the reservation loop. But: 2571 * - The batch is already pinned into the relevant ppgtt, so we 2572 * already have the backing storage fully allocated. 2573 * - No other BO uses the global gtt (well contexts, but meh), 2574 * so we don't really have issues with multiple objects not 2575 * fitting due to fragmentation. 2576 * So this is actually safe. 2577 */ 2578 vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0); 2579 if (IS_ERR(vma)) { 2580 err = PTR_ERR(vma); 2581 goto err_vma; 2582 } 2583 2584 eb.batch = vma; 2585 } 2586 2587 /* All GPU relocation batches must be submitted prior to the user rq */ 2588 GEM_BUG_ON(eb.reloc_cache.rq); 2589 2590 /* Allocate a request for this batch buffer nice and early. */ 2591 eb.request = i915_request_create(eb.context); 2592 if (IS_ERR(eb.request)) { 2593 err = PTR_ERR(eb.request); 2594 goto err_batch_unpin; 2595 } 2596 2597 if (in_fence) { 2598 err = i915_request_await_dma_fence(eb.request, in_fence); 2599 if (err < 0) 2600 goto err_request; 2601 } 2602 2603 if (exec_fence) { 2604 err = i915_request_await_execution(eb.request, exec_fence, 2605 eb.engine->bond_execute); 2606 if (err < 0) 2607 goto err_request; 2608 } 2609 2610 if (fences) { 2611 err = await_fence_array(&eb, fences); 2612 if (err) 2613 goto err_request; 2614 } 2615 2616 if (out_fence_fd != -1) { 2617 out_fence = sync_file_create(&eb.request->fence); 2618 if (!out_fence) { 2619 err = -ENOMEM; 2620 goto err_request; 2621 } 2622 } 2623 2624 /* 2625 * Whilst this request exists, batch_obj will be on the 2626 * active_list, and so will hold the active reference. Only when this 2627 * request is retired will the the batch_obj be moved onto the 2628 * inactive_list and lose its active reference. Hence we do not need 2629 * to explicitly hold another reference here. 2630 */ 2631 eb.request->batch = eb.batch; 2632 if (eb.batch->private) 2633 intel_engine_pool_mark_active(eb.batch->private, eb.request); 2634 2635 trace_i915_request_queue(eb.request, eb.batch_flags); 2636 err = eb_submit(&eb); 2637 err_request: 2638 add_to_client(eb.request, file); 2639 i915_request_add(eb.request); 2640 2641 if (fences) 2642 signal_fence_array(&eb, fences); 2643 2644 if (out_fence) { 2645 if (err == 0) { 2646 fd_install(out_fence_fd, out_fence->file); 2647 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ 2648 args->rsvd2 |= (u64)out_fence_fd << 32; 2649 out_fence_fd = -1; 2650 } else { 2651 fput(out_fence->file); 2652 } 2653 } 2654 2655 err_batch_unpin: 2656 if (eb.batch_flags & I915_DISPATCH_SECURE) 2657 i915_vma_unpin(eb.batch); 2658 if (eb.batch->private) 2659 intel_engine_pool_put(eb.batch->private); 2660 err_vma: 2661 if (eb.exec) 2662 eb_release_vmas(&eb); 2663 mutex_unlock(&dev->struct_mutex); 2664 err_engine: 2665 eb_unpin_engine(&eb); 2666 err_context: 2667 i915_gem_context_put(eb.gem_context); 2668 err_destroy: 2669 eb_destroy(&eb); 2670 err_out_fence: 2671 if (out_fence_fd != -1) 2672 put_unused_fd(out_fence_fd); 2673 err_exec_fence: 2674 dma_fence_put(exec_fence); 2675 err_in_fence: 2676 dma_fence_put(in_fence); 2677 return err; 2678 } 2679 2680 static size_t eb_element_size(void) 2681 { 2682 return (sizeof(struct drm_i915_gem_exec_object2) + 2683 sizeof(struct i915_vma *) + 2684 sizeof(unsigned int)); 2685 } 2686 2687 static bool check_buffer_count(size_t count) 2688 { 2689 const size_t sz = eb_element_size(); 2690 2691 /* 2692 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup 2693 * array size (see eb_create()). Otherwise, we can accept an array as 2694 * large as can be addressed (though use large arrays at your peril)! 2695 */ 2696 2697 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); 2698 } 2699 2700 /* 2701 * Legacy execbuffer just creates an exec2 list from the original exec object 2702 * list array and passes it to the real function. 2703 */ 2704 int 2705 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data, 2706 struct drm_file *file) 2707 { 2708 struct drm_i915_gem_execbuffer *args = data; 2709 struct drm_i915_gem_execbuffer2 exec2; 2710 struct drm_i915_gem_exec_object *exec_list = NULL; 2711 struct drm_i915_gem_exec_object2 *exec2_list = NULL; 2712 const size_t count = args->buffer_count; 2713 unsigned int i; 2714 int err; 2715 2716 if (!check_buffer_count(count)) { 2717 DRM_DEBUG("execbuf2 with %zd buffers\n", count); 2718 return -EINVAL; 2719 } 2720 2721 exec2.buffers_ptr = args->buffers_ptr; 2722 exec2.buffer_count = args->buffer_count; 2723 exec2.batch_start_offset = args->batch_start_offset; 2724 exec2.batch_len = args->batch_len; 2725 exec2.DR1 = args->DR1; 2726 exec2.DR4 = args->DR4; 2727 exec2.num_cliprects = args->num_cliprects; 2728 exec2.cliprects_ptr = args->cliprects_ptr; 2729 exec2.flags = I915_EXEC_RENDER; 2730 i915_execbuffer2_set_context_id(exec2, 0); 2731 2732 if (!i915_gem_check_execbuffer(&exec2)) 2733 return -EINVAL; 2734 2735 /* Copy in the exec list from userland */ 2736 exec_list = kvmalloc_array(count, sizeof(*exec_list), 2737 __GFP_NOWARN | GFP_KERNEL); 2738 exec2_list = kvmalloc_array(count + 1, eb_element_size(), 2739 __GFP_NOWARN | GFP_KERNEL); 2740 if (exec_list == NULL || exec2_list == NULL) { 2741 DRM_DEBUG("Failed to allocate exec list for %d buffers\n", 2742 args->buffer_count); 2743 kvfree(exec_list); 2744 kvfree(exec2_list); 2745 return -ENOMEM; 2746 } 2747 err = copy_from_user(exec_list, 2748 u64_to_user_ptr(args->buffers_ptr), 2749 sizeof(*exec_list) * count); 2750 if (err) { 2751 DRM_DEBUG("copy %d exec entries failed %d\n", 2752 args->buffer_count, err); 2753 kvfree(exec_list); 2754 kvfree(exec2_list); 2755 return -EFAULT; 2756 } 2757 2758 for (i = 0; i < args->buffer_count; i++) { 2759 exec2_list[i].handle = exec_list[i].handle; 2760 exec2_list[i].relocation_count = exec_list[i].relocation_count; 2761 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr; 2762 exec2_list[i].alignment = exec_list[i].alignment; 2763 exec2_list[i].offset = exec_list[i].offset; 2764 if (INTEL_GEN(to_i915(dev)) < 4) 2765 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE; 2766 else 2767 exec2_list[i].flags = 0; 2768 } 2769 2770 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL); 2771 if (exec2.flags & __EXEC_HAS_RELOC) { 2772 struct drm_i915_gem_exec_object __user *user_exec_list = 2773 u64_to_user_ptr(args->buffers_ptr); 2774 2775 /* Copy the new buffer offsets back to the user's exec list. */ 2776 for (i = 0; i < args->buffer_count; i++) { 2777 if (!(exec2_list[i].offset & UPDATE)) 2778 continue; 2779 2780 exec2_list[i].offset = 2781 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 2782 exec2_list[i].offset &= PIN_OFFSET_MASK; 2783 if (__copy_to_user(&user_exec_list[i].offset, 2784 &exec2_list[i].offset, 2785 sizeof(user_exec_list[i].offset))) 2786 break; 2787 } 2788 } 2789 2790 kvfree(exec_list); 2791 kvfree(exec2_list); 2792 return err; 2793 } 2794 2795 int 2796 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 2797 struct drm_file *file) 2798 { 2799 struct drm_i915_gem_execbuffer2 *args = data; 2800 struct drm_i915_gem_exec_object2 *exec2_list; 2801 struct drm_syncobj **fences = NULL; 2802 const size_t count = args->buffer_count; 2803 int err; 2804 2805 if (!check_buffer_count(count)) { 2806 DRM_DEBUG("execbuf2 with %zd buffers\n", count); 2807 return -EINVAL; 2808 } 2809 2810 if (!i915_gem_check_execbuffer(args)) 2811 return -EINVAL; 2812 2813 /* Allocate an extra slot for use by the command parser */ 2814 exec2_list = kvmalloc_array(count + 1, eb_element_size(), 2815 __GFP_NOWARN | GFP_KERNEL); 2816 if (exec2_list == NULL) { 2817 DRM_DEBUG("Failed to allocate exec list for %zd buffers\n", 2818 count); 2819 return -ENOMEM; 2820 } 2821 if (copy_from_user(exec2_list, 2822 u64_to_user_ptr(args->buffers_ptr), 2823 sizeof(*exec2_list) * count)) { 2824 DRM_DEBUG("copy %zd exec entries failed\n", count); 2825 kvfree(exec2_list); 2826 return -EFAULT; 2827 } 2828 2829 if (args->flags & I915_EXEC_FENCE_ARRAY) { 2830 fences = get_fence_array(args, file); 2831 if (IS_ERR(fences)) { 2832 kvfree(exec2_list); 2833 return PTR_ERR(fences); 2834 } 2835 } 2836 2837 err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences); 2838 2839 /* 2840 * Now that we have begun execution of the batchbuffer, we ignore 2841 * any new error after this point. Also given that we have already 2842 * updated the associated relocations, we try to write out the current 2843 * object locations irrespective of any error. 2844 */ 2845 if (args->flags & __EXEC_HAS_RELOC) { 2846 struct drm_i915_gem_exec_object2 __user *user_exec_list = 2847 u64_to_user_ptr(args->buffers_ptr); 2848 unsigned int i; 2849 2850 /* Copy the new buffer offsets back to the user's exec list. */ 2851 /* 2852 * Note: count * sizeof(*user_exec_list) does not overflow, 2853 * because we checked 'count' in check_buffer_count(). 2854 * 2855 * And this range already got effectively checked earlier 2856 * when we did the "copy_from_user()" above. 2857 */ 2858 if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list))) 2859 goto end; 2860 2861 for (i = 0; i < args->buffer_count; i++) { 2862 if (!(exec2_list[i].offset & UPDATE)) 2863 continue; 2864 2865 exec2_list[i].offset = 2866 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 2867 unsafe_put_user(exec2_list[i].offset, 2868 &user_exec_list[i].offset, 2869 end_user); 2870 } 2871 end_user: 2872 user_access_end(); 2873 end:; 2874 } 2875 2876 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 2877 put_fence_array(args, fences); 2878 kvfree(exec2_list); 2879 return err; 2880 } 2881