1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6 
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11 
12 #include <drm/drm_syncobj.h>
13 
14 #include "display/intel_frontbuffer.h"
15 
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gpu_commands.h"
19 #include "gt/intel_gt.h"
20 #include "gt/intel_gt_buffer_pool.h"
21 #include "gt/intel_gt_pm.h"
22 #include "gt/intel_ring.h"
23 
24 #include "i915_drv.h"
25 #include "i915_gem_clflush.h"
26 #include "i915_gem_context.h"
27 #include "i915_gem_ioctls.h"
28 #include "i915_sw_fence_work.h"
29 #include "i915_trace.h"
30 #include "i915_user_extensions.h"
31 #include "i915_memcpy.h"
32 
33 struct eb_vma {
34 	struct i915_vma *vma;
35 	unsigned int flags;
36 
37 	/** This vma's place in the execbuf reservation list */
38 	struct drm_i915_gem_exec_object2 *exec;
39 	struct list_head bind_link;
40 	struct list_head reloc_link;
41 
42 	struct hlist_node node;
43 	u32 handle;
44 };
45 
46 enum {
47 	FORCE_CPU_RELOC = 1,
48 	FORCE_GTT_RELOC,
49 	FORCE_GPU_RELOC,
50 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
51 };
52 
53 /* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */
54 #define __EXEC_OBJECT_HAS_PIN		BIT(30)
55 #define __EXEC_OBJECT_HAS_FENCE		BIT(29)
56 #define __EXEC_OBJECT_USERPTR_INIT	BIT(28)
57 #define __EXEC_OBJECT_NEEDS_MAP		BIT(27)
58 #define __EXEC_OBJECT_NEEDS_BIAS	BIT(26)
59 #define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 26) /* all of the above + */
60 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
61 
62 #define __EXEC_HAS_RELOC	BIT(31)
63 #define __EXEC_ENGINE_PINNED	BIT(30)
64 #define __EXEC_USERPTR_USED	BIT(29)
65 #define __EXEC_INTERNAL_FLAGS	(~0u << 29)
66 #define UPDATE			PIN_OFFSET_FIXED
67 
68 #define BATCH_OFFSET_BIAS (256*1024)
69 
70 #define __I915_EXEC_ILLEGAL_FLAGS \
71 	(__I915_EXEC_UNKNOWN_FLAGS | \
72 	 I915_EXEC_CONSTANTS_MASK  | \
73 	 I915_EXEC_RESOURCE_STREAMER)
74 
75 /* Catch emission of unexpected errors for CI! */
76 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
77 #undef EINVAL
78 #define EINVAL ({ \
79 	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
80 	22; \
81 })
82 #endif
83 
84 /**
85  * DOC: User command execution
86  *
87  * Userspace submits commands to be executed on the GPU as an instruction
88  * stream within a GEM object we call a batchbuffer. This instructions may
89  * refer to other GEM objects containing auxiliary state such as kernels,
90  * samplers, render targets and even secondary batchbuffers. Userspace does
91  * not know where in the GPU memory these objects reside and so before the
92  * batchbuffer is passed to the GPU for execution, those addresses in the
93  * batchbuffer and auxiliary objects are updated. This is known as relocation,
94  * or patching. To try and avoid having to relocate each object on the next
95  * execution, userspace is told the location of those objects in this pass,
96  * but this remains just a hint as the kernel may choose a new location for
97  * any object in the future.
98  *
99  * At the level of talking to the hardware, submitting a batchbuffer for the
100  * GPU to execute is to add content to a buffer from which the HW
101  * command streamer is reading.
102  *
103  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
104  *    Execlists, this command is not placed on the same buffer as the
105  *    remaining items.
106  *
107  * 2. Add a command to invalidate caches to the buffer.
108  *
109  * 3. Add a batchbuffer start command to the buffer; the start command is
110  *    essentially a token together with the GPU address of the batchbuffer
111  *    to be executed.
112  *
113  * 4. Add a pipeline flush to the buffer.
114  *
115  * 5. Add a memory write command to the buffer to record when the GPU
116  *    is done executing the batchbuffer. The memory write writes the
117  *    global sequence number of the request, ``i915_request::global_seqno``;
118  *    the i915 driver uses the current value in the register to determine
119  *    if the GPU has completed the batchbuffer.
120  *
121  * 6. Add a user interrupt command to the buffer. This command instructs
122  *    the GPU to issue an interrupt when the command, pipeline flush and
123  *    memory write are completed.
124  *
125  * 7. Inform the hardware of the additional commands added to the buffer
126  *    (by updating the tail pointer).
127  *
128  * Processing an execbuf ioctl is conceptually split up into a few phases.
129  *
130  * 1. Validation - Ensure all the pointers, handles and flags are valid.
131  * 2. Reservation - Assign GPU address space for every object
132  * 3. Relocation - Update any addresses to point to the final locations
133  * 4. Serialisation - Order the request with respect to its dependencies
134  * 5. Construction - Construct a request to execute the batchbuffer
135  * 6. Submission (at some point in the future execution)
136  *
137  * Reserving resources for the execbuf is the most complicated phase. We
138  * neither want to have to migrate the object in the address space, nor do
139  * we want to have to update any relocations pointing to this object. Ideally,
140  * we want to leave the object where it is and for all the existing relocations
141  * to match. If the object is given a new address, or if userspace thinks the
142  * object is elsewhere, we have to parse all the relocation entries and update
143  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
144  * all the target addresses in all of its objects match the value in the
145  * relocation entries and that they all match the presumed offsets given by the
146  * list of execbuffer objects. Using this knowledge, we know that if we haven't
147  * moved any buffers, all the relocation entries are valid and we can skip
148  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
149  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
150  *
151  *      The addresses written in the objects must match the corresponding
152  *      reloc.presumed_offset which in turn must match the corresponding
153  *      execobject.offset.
154  *
155  *      Any render targets written to in the batch must be flagged with
156  *      EXEC_OBJECT_WRITE.
157  *
158  *      To avoid stalling, execobject.offset should match the current
159  *      address of that object within the active context.
160  *
161  * The reservation is done is multiple phases. First we try and keep any
162  * object already bound in its current location - so as long as meets the
163  * constraints imposed by the new execbuffer. Any object left unbound after the
164  * first pass is then fitted into any available idle space. If an object does
165  * not fit, all objects are removed from the reservation and the process rerun
166  * after sorting the objects into a priority order (more difficult to fit
167  * objects are tried first). Failing that, the entire VM is cleared and we try
168  * to fit the execbuf once last time before concluding that it simply will not
169  * fit.
170  *
171  * A small complication to all of this is that we allow userspace not only to
172  * specify an alignment and a size for the object in the address space, but
173  * we also allow userspace to specify the exact offset. This objects are
174  * simpler to place (the location is known a priori) all we have to do is make
175  * sure the space is available.
176  *
177  * Once all the objects are in place, patching up the buried pointers to point
178  * to the final locations is a fairly simple job of walking over the relocation
179  * entry arrays, looking up the right address and rewriting the value into
180  * the object. Simple! ... The relocation entries are stored in user memory
181  * and so to access them we have to copy them into a local buffer. That copy
182  * has to avoid taking any pagefaults as they may lead back to a GEM object
183  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
184  * the relocation into multiple passes. First we try to do everything within an
185  * atomic context (avoid the pagefaults) which requires that we never wait. If
186  * we detect that we may wait, or if we need to fault, then we have to fallback
187  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
188  * bells yet?) Dropping the mutex means that we lose all the state we have
189  * built up so far for the execbuf and we must reset any global data. However,
190  * we do leave the objects pinned in their final locations - which is a
191  * potential issue for concurrent execbufs. Once we have left the mutex, we can
192  * allocate and copy all the relocation entries into a large array at our
193  * leisure, reacquire the mutex, reclaim all the objects and other state and
194  * then proceed to update any incorrect addresses with the objects.
195  *
196  * As we process the relocation entries, we maintain a record of whether the
197  * object is being written to. Using NORELOC, we expect userspace to provide
198  * this information instead. We also check whether we can skip the relocation
199  * by comparing the expected value inside the relocation entry with the target's
200  * final address. If they differ, we have to map the current object and rewrite
201  * the 4 or 8 byte pointer within.
202  *
203  * Serialising an execbuf is quite simple according to the rules of the GEM
204  * ABI. Execution within each context is ordered by the order of submission.
205  * Writes to any GEM object are in order of submission and are exclusive. Reads
206  * from a GEM object are unordered with respect to other reads, but ordered by
207  * writes. A write submitted after a read cannot occur before the read, and
208  * similarly any read submitted after a write cannot occur before the write.
209  * Writes are ordered between engines such that only one write occurs at any
210  * time (completing any reads beforehand) - using semaphores where available
211  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
212  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
213  * reads before starting, and any read (either using set-domain or pread) must
214  * flush all GPU writes before starting. (Note we only employ a barrier before,
215  * we currently rely on userspace not concurrently starting a new execution
216  * whilst reading or writing to an object. This may be an advantage or not
217  * depending on how much you trust userspace not to shoot themselves in the
218  * foot.) Serialisation may just result in the request being inserted into
219  * a DAG awaiting its turn, but most simple is to wait on the CPU until
220  * all dependencies are resolved.
221  *
222  * After all of that, is just a matter of closing the request and handing it to
223  * the hardware (well, leaving it in a queue to be executed). However, we also
224  * offer the ability for batchbuffers to be run with elevated privileges so
225  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
226  * Before any batch is given extra privileges we first must check that it
227  * contains no nefarious instructions, we check that each instruction is from
228  * our whitelist and all registers are also from an allowed list. We first
229  * copy the user's batchbuffer to a shadow (so that the user doesn't have
230  * access to it, either by the CPU or GPU as we scan it) and then parse each
231  * instruction. If everything is ok, we set a flag telling the hardware to run
232  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
233  */
234 
235 struct eb_fence {
236 	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
237 	struct dma_fence *dma_fence;
238 	u64 value;
239 	struct dma_fence_chain *chain_fence;
240 };
241 
242 struct i915_execbuffer {
243 	struct drm_i915_private *i915; /** i915 backpointer */
244 	struct drm_file *file; /** per-file lookup tables and limits */
245 	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
246 	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
247 	struct eb_vma *vma;
248 
249 	struct intel_engine_cs *engine; /** engine to queue the request to */
250 	struct intel_context *context; /* logical state for the request */
251 	struct i915_gem_context *gem_context; /** caller's context */
252 
253 	struct i915_request *request; /** our request to build */
254 	struct eb_vma *batch; /** identity of the batch obj/vma */
255 	struct i915_vma *trampoline; /** trampoline used for chaining */
256 
257 	/** actual size of execobj[] as we may extend it for the cmdparser */
258 	unsigned int buffer_count;
259 
260 	/** list of vma not yet bound during reservation phase */
261 	struct list_head unbound;
262 
263 	/** list of vma that have execobj.relocation_count */
264 	struct list_head relocs;
265 
266 	struct i915_gem_ww_ctx ww;
267 
268 	/**
269 	 * Track the most recently used object for relocations, as we
270 	 * frequently have to perform multiple relocations within the same
271 	 * obj/page
272 	 */
273 	struct reloc_cache {
274 		struct drm_mm_node node; /** temporary GTT binding */
275 		unsigned long vaddr; /** Current kmap address */
276 		unsigned long page; /** Currently mapped page index */
277 		unsigned int gen; /** Cached value of INTEL_GEN */
278 		bool use_64bit_reloc : 1;
279 		bool has_llc : 1;
280 		bool has_fence : 1;
281 		bool needs_unfenced : 1;
282 
283 		struct i915_request *rq;
284 		u32 *rq_cmd;
285 		unsigned int rq_size;
286 		struct intel_gt_buffer_pool_node *pool;
287 	} reloc_cache;
288 
289 	struct intel_gt_buffer_pool_node *reloc_pool; /** relocation pool for -EDEADLK handling */
290 	struct intel_context *reloc_context;
291 
292 	u64 invalid_flags; /** Set of execobj.flags that are invalid */
293 	u32 context_flags; /** Set of execobj.flags to insert from the ctx */
294 
295 	u64 batch_len; /** Length of batch within object */
296 	u32 batch_start_offset; /** Location within object of batch */
297 	u32 batch_flags; /** Flags composed for emit_bb_start() */
298 	struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
299 
300 	/**
301 	 * Indicate either the size of the hastable used to resolve
302 	 * relocation handles, or if negative that we are using a direct
303 	 * index into the execobj[].
304 	 */
305 	int lut_size;
306 	struct hlist_head *buckets; /** ht for relocation handles */
307 
308 	struct eb_fence *fences;
309 	unsigned long num_fences;
310 };
311 
312 static int eb_parse(struct i915_execbuffer *eb);
313 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb,
314 					  bool throttle);
315 static void eb_unpin_engine(struct i915_execbuffer *eb);
316 
317 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
318 {
319 	return intel_engine_requires_cmd_parser(eb->engine) ||
320 		(intel_engine_using_cmd_parser(eb->engine) &&
321 		 eb->args->batch_len);
322 }
323 
324 static int eb_create(struct i915_execbuffer *eb)
325 {
326 	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
327 		unsigned int size = 1 + ilog2(eb->buffer_count);
328 
329 		/*
330 		 * Without a 1:1 association between relocation handles and
331 		 * the execobject[] index, we instead create a hashtable.
332 		 * We size it dynamically based on available memory, starting
333 		 * first with 1:1 assocative hash and scaling back until
334 		 * the allocation succeeds.
335 		 *
336 		 * Later on we use a positive lut_size to indicate we are
337 		 * using this hashtable, and a negative value to indicate a
338 		 * direct lookup.
339 		 */
340 		do {
341 			gfp_t flags;
342 
343 			/* While we can still reduce the allocation size, don't
344 			 * raise a warning and allow the allocation to fail.
345 			 * On the last pass though, we want to try as hard
346 			 * as possible to perform the allocation and warn
347 			 * if it fails.
348 			 */
349 			flags = GFP_KERNEL;
350 			if (size > 1)
351 				flags |= __GFP_NORETRY | __GFP_NOWARN;
352 
353 			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
354 					      flags);
355 			if (eb->buckets)
356 				break;
357 		} while (--size);
358 
359 		if (unlikely(!size))
360 			return -ENOMEM;
361 
362 		eb->lut_size = size;
363 	} else {
364 		eb->lut_size = -eb->buffer_count;
365 	}
366 
367 	return 0;
368 }
369 
370 static bool
371 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
372 		 const struct i915_vma *vma,
373 		 unsigned int flags)
374 {
375 	if (vma->node.size < entry->pad_to_size)
376 		return true;
377 
378 	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
379 		return true;
380 
381 	if (flags & EXEC_OBJECT_PINNED &&
382 	    vma->node.start != entry->offset)
383 		return true;
384 
385 	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
386 	    vma->node.start < BATCH_OFFSET_BIAS)
387 		return true;
388 
389 	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
390 	    (vma->node.start + vma->node.size + 4095) >> 32)
391 		return true;
392 
393 	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
394 	    !i915_vma_is_map_and_fenceable(vma))
395 		return true;
396 
397 	return false;
398 }
399 
400 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
401 			unsigned int exec_flags)
402 {
403 	u64 pin_flags = 0;
404 
405 	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
406 		pin_flags |= PIN_GLOBAL;
407 
408 	/*
409 	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
410 	 * limit address to the first 4GBs for unflagged objects.
411 	 */
412 	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
413 		pin_flags |= PIN_ZONE_4G;
414 
415 	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
416 		pin_flags |= PIN_MAPPABLE;
417 
418 	if (exec_flags & EXEC_OBJECT_PINNED)
419 		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
420 	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
421 		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
422 
423 	return pin_flags;
424 }
425 
426 static inline int
427 eb_pin_vma(struct i915_execbuffer *eb,
428 	   const struct drm_i915_gem_exec_object2 *entry,
429 	   struct eb_vma *ev)
430 {
431 	struct i915_vma *vma = ev->vma;
432 	u64 pin_flags;
433 	int err;
434 
435 	if (vma->node.size)
436 		pin_flags = vma->node.start;
437 	else
438 		pin_flags = entry->offset & PIN_OFFSET_MASK;
439 
440 	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
441 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
442 		pin_flags |= PIN_GLOBAL;
443 
444 	/* Attempt to reuse the current location if available */
445 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
446 	if (err == -EDEADLK)
447 		return err;
448 
449 	if (unlikely(err)) {
450 		if (entry->flags & EXEC_OBJECT_PINNED)
451 			return err;
452 
453 		/* Failing that pick any _free_ space if suitable */
454 		err = i915_vma_pin_ww(vma, &eb->ww,
455 					     entry->pad_to_size,
456 					     entry->alignment,
457 					     eb_pin_flags(entry, ev->flags) |
458 					     PIN_USER | PIN_NOEVICT);
459 		if (unlikely(err))
460 			return err;
461 	}
462 
463 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
464 		err = i915_vma_pin_fence(vma);
465 		if (unlikely(err)) {
466 			i915_vma_unpin(vma);
467 			return err;
468 		}
469 
470 		if (vma->fence)
471 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
472 	}
473 
474 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
475 	if (eb_vma_misplaced(entry, vma, ev->flags))
476 		return -EBADSLT;
477 
478 	return 0;
479 }
480 
481 static inline void
482 eb_unreserve_vma(struct eb_vma *ev)
483 {
484 	if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
485 		return;
486 
487 	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
488 		__i915_vma_unpin_fence(ev->vma);
489 
490 	__i915_vma_unpin(ev->vma);
491 	ev->flags &= ~__EXEC_OBJECT_RESERVED;
492 }
493 
494 static int
495 eb_validate_vma(struct i915_execbuffer *eb,
496 		struct drm_i915_gem_exec_object2 *entry,
497 		struct i915_vma *vma)
498 {
499 	/* Relocations are disallowed for all platforms after TGL-LP.  This
500 	 * also covers all platforms with local memory.
501 	 */
502 	if (entry->relocation_count &&
503 	    INTEL_GEN(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
504 		return -EINVAL;
505 
506 	if (unlikely(entry->flags & eb->invalid_flags))
507 		return -EINVAL;
508 
509 	if (unlikely(entry->alignment &&
510 		     !is_power_of_2_u64(entry->alignment)))
511 		return -EINVAL;
512 
513 	/*
514 	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
515 	 * any non-page-aligned or non-canonical addresses.
516 	 */
517 	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
518 		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
519 		return -EINVAL;
520 
521 	/* pad_to_size was once a reserved field, so sanitize it */
522 	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
523 		if (unlikely(offset_in_page(entry->pad_to_size)))
524 			return -EINVAL;
525 	} else {
526 		entry->pad_to_size = 0;
527 	}
528 	/*
529 	 * From drm_mm perspective address space is continuous,
530 	 * so from this point we're always using non-canonical
531 	 * form internally.
532 	 */
533 	entry->offset = gen8_noncanonical_addr(entry->offset);
534 
535 	if (!eb->reloc_cache.has_fence) {
536 		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
537 	} else {
538 		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
539 		     eb->reloc_cache.needs_unfenced) &&
540 		    i915_gem_object_is_tiled(vma->obj))
541 			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
542 	}
543 
544 	if (!(entry->flags & EXEC_OBJECT_PINNED))
545 		entry->flags |= eb->context_flags;
546 
547 	return 0;
548 }
549 
550 static void
551 eb_add_vma(struct i915_execbuffer *eb,
552 	   unsigned int i, unsigned batch_idx,
553 	   struct i915_vma *vma)
554 {
555 	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
556 	struct eb_vma *ev = &eb->vma[i];
557 
558 	ev->vma = vma;
559 	ev->exec = entry;
560 	ev->flags = entry->flags;
561 
562 	if (eb->lut_size > 0) {
563 		ev->handle = entry->handle;
564 		hlist_add_head(&ev->node,
565 			       &eb->buckets[hash_32(entry->handle,
566 						    eb->lut_size)]);
567 	}
568 
569 	if (entry->relocation_count)
570 		list_add_tail(&ev->reloc_link, &eb->relocs);
571 
572 	/*
573 	 * SNA is doing fancy tricks with compressing batch buffers, which leads
574 	 * to negative relocation deltas. Usually that works out ok since the
575 	 * relocate address is still positive, except when the batch is placed
576 	 * very low in the GTT. Ensure this doesn't happen.
577 	 *
578 	 * Note that actual hangs have only been observed on gen7, but for
579 	 * paranoia do it everywhere.
580 	 */
581 	if (i == batch_idx) {
582 		if (entry->relocation_count &&
583 		    !(ev->flags & EXEC_OBJECT_PINNED))
584 			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
585 		if (eb->reloc_cache.has_fence)
586 			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
587 
588 		eb->batch = ev;
589 	}
590 }
591 
592 static inline int use_cpu_reloc(const struct reloc_cache *cache,
593 				const struct drm_i915_gem_object *obj)
594 {
595 	if (!i915_gem_object_has_struct_page(obj))
596 		return false;
597 
598 	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
599 		return true;
600 
601 	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
602 		return false;
603 
604 	return (cache->has_llc ||
605 		obj->cache_dirty ||
606 		obj->cache_level != I915_CACHE_NONE);
607 }
608 
609 static int eb_reserve_vma(struct i915_execbuffer *eb,
610 			  struct eb_vma *ev,
611 			  u64 pin_flags)
612 {
613 	struct drm_i915_gem_exec_object2 *entry = ev->exec;
614 	struct i915_vma *vma = ev->vma;
615 	int err;
616 
617 	if (drm_mm_node_allocated(&vma->node) &&
618 	    eb_vma_misplaced(entry, vma, ev->flags)) {
619 		err = i915_vma_unbind(vma);
620 		if (err)
621 			return err;
622 	}
623 
624 	err = i915_vma_pin_ww(vma, &eb->ww,
625 			   entry->pad_to_size, entry->alignment,
626 			   eb_pin_flags(entry, ev->flags) | pin_flags);
627 	if (err)
628 		return err;
629 
630 	if (entry->offset != vma->node.start) {
631 		entry->offset = vma->node.start | UPDATE;
632 		eb->args->flags |= __EXEC_HAS_RELOC;
633 	}
634 
635 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
636 		err = i915_vma_pin_fence(vma);
637 		if (unlikely(err)) {
638 			i915_vma_unpin(vma);
639 			return err;
640 		}
641 
642 		if (vma->fence)
643 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
644 	}
645 
646 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
647 	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
648 
649 	return 0;
650 }
651 
652 static int eb_reserve(struct i915_execbuffer *eb)
653 {
654 	const unsigned int count = eb->buffer_count;
655 	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
656 	struct list_head last;
657 	struct eb_vma *ev;
658 	unsigned int i, pass;
659 	int err = 0;
660 
661 	/*
662 	 * Attempt to pin all of the buffers into the GTT.
663 	 * This is done in 3 phases:
664 	 *
665 	 * 1a. Unbind all objects that do not match the GTT constraints for
666 	 *     the execbuffer (fenceable, mappable, alignment etc).
667 	 * 1b. Increment pin count for already bound objects.
668 	 * 2.  Bind new objects.
669 	 * 3.  Decrement pin count.
670 	 *
671 	 * This avoid unnecessary unbinding of later objects in order to make
672 	 * room for the earlier objects *unless* we need to defragment.
673 	 */
674 	pass = 0;
675 	do {
676 		list_for_each_entry(ev, &eb->unbound, bind_link) {
677 			err = eb_reserve_vma(eb, ev, pin_flags);
678 			if (err)
679 				break;
680 		}
681 		if (err != -ENOSPC)
682 			return err;
683 
684 		/* Resort *all* the objects into priority order */
685 		INIT_LIST_HEAD(&eb->unbound);
686 		INIT_LIST_HEAD(&last);
687 		for (i = 0; i < count; i++) {
688 			unsigned int flags;
689 
690 			ev = &eb->vma[i];
691 			flags = ev->flags;
692 			if (flags & EXEC_OBJECT_PINNED &&
693 			    flags & __EXEC_OBJECT_HAS_PIN)
694 				continue;
695 
696 			eb_unreserve_vma(ev);
697 
698 			if (flags & EXEC_OBJECT_PINNED)
699 				/* Pinned must have their slot */
700 				list_add(&ev->bind_link, &eb->unbound);
701 			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
702 				/* Map require the lowest 256MiB (aperture) */
703 				list_add_tail(&ev->bind_link, &eb->unbound);
704 			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
705 				/* Prioritise 4GiB region for restricted bo */
706 				list_add(&ev->bind_link, &last);
707 			else
708 				list_add_tail(&ev->bind_link, &last);
709 		}
710 		list_splice_tail(&last, &eb->unbound);
711 
712 		switch (pass++) {
713 		case 0:
714 			break;
715 
716 		case 1:
717 			/* Too fragmented, unbind everything and retry */
718 			mutex_lock(&eb->context->vm->mutex);
719 			err = i915_gem_evict_vm(eb->context->vm);
720 			mutex_unlock(&eb->context->vm->mutex);
721 			if (err)
722 				return err;
723 			break;
724 
725 		default:
726 			return -ENOSPC;
727 		}
728 
729 		pin_flags = PIN_USER;
730 	} while (1);
731 }
732 
733 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
734 {
735 	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
736 		return 0;
737 	else
738 		return eb->buffer_count - 1;
739 }
740 
741 static int eb_select_context(struct i915_execbuffer *eb)
742 {
743 	struct i915_gem_context *ctx;
744 
745 	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
746 	if (unlikely(!ctx))
747 		return -ENOENT;
748 
749 	eb->gem_context = ctx;
750 	if (rcu_access_pointer(ctx->vm))
751 		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
752 
753 	eb->context_flags = 0;
754 	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
755 		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
756 
757 	return 0;
758 }
759 
760 static int __eb_add_lut(struct i915_execbuffer *eb,
761 			u32 handle, struct i915_vma *vma)
762 {
763 	struct i915_gem_context *ctx = eb->gem_context;
764 	struct i915_lut_handle *lut;
765 	int err;
766 
767 	lut = i915_lut_handle_alloc();
768 	if (unlikely(!lut))
769 		return -ENOMEM;
770 
771 	i915_vma_get(vma);
772 	if (!atomic_fetch_inc(&vma->open_count))
773 		i915_vma_reopen(vma);
774 	lut->handle = handle;
775 	lut->ctx = ctx;
776 
777 	/* Check that the context hasn't been closed in the meantime */
778 	err = -EINTR;
779 	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
780 		struct i915_address_space *vm = rcu_access_pointer(ctx->vm);
781 
782 		if (unlikely(vm && vma->vm != vm))
783 			err = -EAGAIN; /* user racing with ctx set-vm */
784 		else if (likely(!i915_gem_context_is_closed(ctx)))
785 			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
786 		else
787 			err = -ENOENT;
788 		if (err == 0) { /* And nor has this handle */
789 			struct drm_i915_gem_object *obj = vma->obj;
790 
791 			spin_lock(&obj->lut_lock);
792 			if (idr_find(&eb->file->object_idr, handle) == obj) {
793 				list_add(&lut->obj_link, &obj->lut_list);
794 			} else {
795 				radix_tree_delete(&ctx->handles_vma, handle);
796 				err = -ENOENT;
797 			}
798 			spin_unlock(&obj->lut_lock);
799 		}
800 		mutex_unlock(&ctx->lut_mutex);
801 	}
802 	if (unlikely(err))
803 		goto err;
804 
805 	return 0;
806 
807 err:
808 	i915_vma_close(vma);
809 	i915_vma_put(vma);
810 	i915_lut_handle_free(lut);
811 	return err;
812 }
813 
814 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
815 {
816 	struct i915_address_space *vm = eb->context->vm;
817 
818 	do {
819 		struct drm_i915_gem_object *obj;
820 		struct i915_vma *vma;
821 		int err;
822 
823 		rcu_read_lock();
824 		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
825 		if (likely(vma && vma->vm == vm))
826 			vma = i915_vma_tryget(vma);
827 		rcu_read_unlock();
828 		if (likely(vma))
829 			return vma;
830 
831 		obj = i915_gem_object_lookup(eb->file, handle);
832 		if (unlikely(!obj))
833 			return ERR_PTR(-ENOENT);
834 
835 		vma = i915_vma_instance(obj, vm, NULL);
836 		if (IS_ERR(vma)) {
837 			i915_gem_object_put(obj);
838 			return vma;
839 		}
840 
841 		err = __eb_add_lut(eb, handle, vma);
842 		if (likely(!err))
843 			return vma;
844 
845 		i915_gem_object_put(obj);
846 		if (err != -EEXIST)
847 			return ERR_PTR(err);
848 	} while (1);
849 }
850 
851 static int eb_lookup_vmas(struct i915_execbuffer *eb)
852 {
853 	struct drm_i915_private *i915 = eb->i915;
854 	unsigned int batch = eb_batch_index(eb);
855 	unsigned int i;
856 	int err = 0;
857 
858 	INIT_LIST_HEAD(&eb->relocs);
859 
860 	for (i = 0; i < eb->buffer_count; i++) {
861 		struct i915_vma *vma;
862 
863 		vma = eb_lookup_vma(eb, eb->exec[i].handle);
864 		if (IS_ERR(vma)) {
865 			err = PTR_ERR(vma);
866 			goto err;
867 		}
868 
869 		err = eb_validate_vma(eb, &eb->exec[i], vma);
870 		if (unlikely(err)) {
871 			i915_vma_put(vma);
872 			goto err;
873 		}
874 
875 		eb_add_vma(eb, i, batch, vma);
876 
877 		if (i915_gem_object_is_userptr(vma->obj)) {
878 			err = i915_gem_object_userptr_submit_init(vma->obj);
879 			if (err) {
880 				if (i + 1 < eb->buffer_count) {
881 					/*
882 					 * Execbuffer code expects last vma entry to be NULL,
883 					 * since we already initialized this entry,
884 					 * set the next value to NULL or we mess up
885 					 * cleanup handling.
886 					 */
887 					eb->vma[i + 1].vma = NULL;
888 				}
889 
890 				return err;
891 			}
892 
893 			eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
894 			eb->args->flags |= __EXEC_USERPTR_USED;
895 		}
896 	}
897 
898 	if (unlikely(eb->batch->flags & EXEC_OBJECT_WRITE)) {
899 		drm_dbg(&i915->drm,
900 			"Attempting to use self-modifying batch buffer\n");
901 		return -EINVAL;
902 	}
903 
904 	if (range_overflows_t(u64,
905 			      eb->batch_start_offset, eb->batch_len,
906 			      eb->batch->vma->size)) {
907 		drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
908 		return -EINVAL;
909 	}
910 
911 	if (eb->batch_len == 0)
912 		eb->batch_len = eb->batch->vma->size - eb->batch_start_offset;
913 	if (unlikely(eb->batch_len == 0)) { /* impossible! */
914 		drm_dbg(&i915->drm, "Invalid batch length\n");
915 		return -EINVAL;
916 	}
917 
918 	return 0;
919 
920 err:
921 	eb->vma[i].vma = NULL;
922 	return err;
923 }
924 
925 static int eb_validate_vmas(struct i915_execbuffer *eb)
926 {
927 	unsigned int i;
928 	int err;
929 
930 	INIT_LIST_HEAD(&eb->unbound);
931 
932 	for (i = 0; i < eb->buffer_count; i++) {
933 		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
934 		struct eb_vma *ev = &eb->vma[i];
935 		struct i915_vma *vma = ev->vma;
936 
937 		err = i915_gem_object_lock(vma->obj, &eb->ww);
938 		if (err)
939 			return err;
940 
941 		err = eb_pin_vma(eb, entry, ev);
942 		if (err == -EDEADLK)
943 			return err;
944 
945 		if (!err) {
946 			if (entry->offset != vma->node.start) {
947 				entry->offset = vma->node.start | UPDATE;
948 				eb->args->flags |= __EXEC_HAS_RELOC;
949 			}
950 		} else {
951 			eb_unreserve_vma(ev);
952 
953 			list_add_tail(&ev->bind_link, &eb->unbound);
954 			if (drm_mm_node_allocated(&vma->node)) {
955 				err = i915_vma_unbind(vma);
956 				if (err)
957 					return err;
958 			}
959 		}
960 
961 		if (!(ev->flags & EXEC_OBJECT_WRITE)) {
962 			err = dma_resv_reserve_shared(vma->resv, 1);
963 			if (err)
964 				return err;
965 		}
966 
967 		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
968 			   eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
969 	}
970 
971 	if (!list_empty(&eb->unbound))
972 		return eb_reserve(eb);
973 
974 	return 0;
975 }
976 
977 static struct eb_vma *
978 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
979 {
980 	if (eb->lut_size < 0) {
981 		if (handle >= -eb->lut_size)
982 			return NULL;
983 		return &eb->vma[handle];
984 	} else {
985 		struct hlist_head *head;
986 		struct eb_vma *ev;
987 
988 		head = &eb->buckets[hash_32(handle, eb->lut_size)];
989 		hlist_for_each_entry(ev, head, node) {
990 			if (ev->handle == handle)
991 				return ev;
992 		}
993 		return NULL;
994 	}
995 }
996 
997 static void eb_release_vmas(struct i915_execbuffer *eb, bool final, bool release_userptr)
998 {
999 	const unsigned int count = eb->buffer_count;
1000 	unsigned int i;
1001 
1002 	for (i = 0; i < count; i++) {
1003 		struct eb_vma *ev = &eb->vma[i];
1004 		struct i915_vma *vma = ev->vma;
1005 
1006 		if (!vma)
1007 			break;
1008 
1009 		eb_unreserve_vma(ev);
1010 
1011 		if (release_userptr && ev->flags & __EXEC_OBJECT_USERPTR_INIT) {
1012 			ev->flags &= ~__EXEC_OBJECT_USERPTR_INIT;
1013 			i915_gem_object_userptr_submit_fini(vma->obj);
1014 		}
1015 
1016 		if (final)
1017 			i915_vma_put(vma);
1018 	}
1019 
1020 	eb_unpin_engine(eb);
1021 }
1022 
1023 static void eb_destroy(const struct i915_execbuffer *eb)
1024 {
1025 	GEM_BUG_ON(eb->reloc_cache.rq);
1026 
1027 	if (eb->lut_size > 0)
1028 		kfree(eb->buckets);
1029 }
1030 
1031 static inline u64
1032 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1033 		  const struct i915_vma *target)
1034 {
1035 	return gen8_canonical_addr((int)reloc->delta + target->node.start);
1036 }
1037 
1038 static void reloc_cache_clear(struct reloc_cache *cache)
1039 {
1040 	cache->rq = NULL;
1041 	cache->rq_cmd = NULL;
1042 	cache->pool = NULL;
1043 	cache->rq_size = 0;
1044 }
1045 
1046 static void reloc_cache_init(struct reloc_cache *cache,
1047 			     struct drm_i915_private *i915)
1048 {
1049 	cache->page = -1;
1050 	cache->vaddr = 0;
1051 	/* Must be a variable in the struct to allow GCC to unroll. */
1052 	cache->gen = INTEL_GEN(i915);
1053 	cache->has_llc = HAS_LLC(i915);
1054 	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1055 	cache->has_fence = cache->gen < 4;
1056 	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1057 	cache->node.flags = 0;
1058 	reloc_cache_clear(cache);
1059 }
1060 
1061 static inline void *unmask_page(unsigned long p)
1062 {
1063 	return (void *)(uintptr_t)(p & PAGE_MASK);
1064 }
1065 
1066 static inline unsigned int unmask_flags(unsigned long p)
1067 {
1068 	return p & ~PAGE_MASK;
1069 }
1070 
1071 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1072 
1073 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1074 {
1075 	struct drm_i915_private *i915 =
1076 		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1077 	return &i915->ggtt;
1078 }
1079 
1080 static void reloc_cache_put_pool(struct i915_execbuffer *eb, struct reloc_cache *cache)
1081 {
1082 	if (!cache->pool)
1083 		return;
1084 
1085 	/*
1086 	 * This is a bit nasty, normally we keep objects locked until the end
1087 	 * of execbuffer, but we already submit this, and have to unlock before
1088 	 * dropping the reference. Fortunately we can only hold 1 pool node at
1089 	 * a time, so this should be harmless.
1090 	 */
1091 	i915_gem_ww_unlock_single(cache->pool->obj);
1092 	intel_gt_buffer_pool_put(cache->pool);
1093 	cache->pool = NULL;
1094 }
1095 
1096 static void reloc_gpu_flush(struct i915_execbuffer *eb, struct reloc_cache *cache)
1097 {
1098 	struct drm_i915_gem_object *obj = cache->rq->batch->obj;
1099 
1100 	GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
1101 	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
1102 
1103 	i915_gem_object_flush_map(obj);
1104 	i915_gem_object_unpin_map(obj);
1105 
1106 	intel_gt_chipset_flush(cache->rq->engine->gt);
1107 
1108 	i915_request_add(cache->rq);
1109 	reloc_cache_put_pool(eb, cache);
1110 	reloc_cache_clear(cache);
1111 
1112 	eb->reloc_pool = NULL;
1113 }
1114 
1115 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1116 {
1117 	void *vaddr;
1118 
1119 	if (cache->rq)
1120 		reloc_gpu_flush(eb, cache);
1121 
1122 	if (!cache->vaddr)
1123 		return;
1124 
1125 	vaddr = unmask_page(cache->vaddr);
1126 	if (cache->vaddr & KMAP) {
1127 		struct drm_i915_gem_object *obj =
1128 			(struct drm_i915_gem_object *)cache->node.mm;
1129 		if (cache->vaddr & CLFLUSH_AFTER)
1130 			mb();
1131 
1132 		kunmap_atomic(vaddr);
1133 		i915_gem_object_finish_access(obj);
1134 	} else {
1135 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1136 
1137 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1138 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1139 
1140 		if (drm_mm_node_allocated(&cache->node)) {
1141 			ggtt->vm.clear_range(&ggtt->vm,
1142 					     cache->node.start,
1143 					     cache->node.size);
1144 			mutex_lock(&ggtt->vm.mutex);
1145 			drm_mm_remove_node(&cache->node);
1146 			mutex_unlock(&ggtt->vm.mutex);
1147 		} else {
1148 			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1149 		}
1150 	}
1151 
1152 	cache->vaddr = 0;
1153 	cache->page = -1;
1154 }
1155 
1156 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1157 			struct reloc_cache *cache,
1158 			unsigned long pageno)
1159 {
1160 	void *vaddr;
1161 	struct page *page;
1162 
1163 	if (cache->vaddr) {
1164 		kunmap_atomic(unmask_page(cache->vaddr));
1165 	} else {
1166 		unsigned int flushes;
1167 		int err;
1168 
1169 		err = i915_gem_object_prepare_write(obj, &flushes);
1170 		if (err)
1171 			return ERR_PTR(err);
1172 
1173 		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1174 		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1175 
1176 		cache->vaddr = flushes | KMAP;
1177 		cache->node.mm = (void *)obj;
1178 		if (flushes)
1179 			mb();
1180 	}
1181 
1182 	page = i915_gem_object_get_page(obj, pageno);
1183 	if (!obj->mm.dirty)
1184 		set_page_dirty(page);
1185 
1186 	vaddr = kmap_atomic(page);
1187 	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1188 	cache->page = pageno;
1189 
1190 	return vaddr;
1191 }
1192 
1193 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1194 			 struct i915_execbuffer *eb,
1195 			 unsigned long page)
1196 {
1197 	struct reloc_cache *cache = &eb->reloc_cache;
1198 	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1199 	unsigned long offset;
1200 	void *vaddr;
1201 
1202 	if (cache->vaddr) {
1203 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1204 		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1205 	} else {
1206 		struct i915_vma *vma;
1207 		int err;
1208 
1209 		if (i915_gem_object_is_tiled(obj))
1210 			return ERR_PTR(-EINVAL);
1211 
1212 		if (use_cpu_reloc(cache, obj))
1213 			return NULL;
1214 
1215 		err = i915_gem_object_set_to_gtt_domain(obj, true);
1216 		if (err)
1217 			return ERR_PTR(err);
1218 
1219 		vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1220 						  PIN_MAPPABLE |
1221 						  PIN_NONBLOCK /* NOWARN */ |
1222 						  PIN_NOEVICT);
1223 		if (vma == ERR_PTR(-EDEADLK))
1224 			return vma;
1225 
1226 		if (IS_ERR(vma)) {
1227 			memset(&cache->node, 0, sizeof(cache->node));
1228 			mutex_lock(&ggtt->vm.mutex);
1229 			err = drm_mm_insert_node_in_range
1230 				(&ggtt->vm.mm, &cache->node,
1231 				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1232 				 0, ggtt->mappable_end,
1233 				 DRM_MM_INSERT_LOW);
1234 			mutex_unlock(&ggtt->vm.mutex);
1235 			if (err) /* no inactive aperture space, use cpu reloc */
1236 				return NULL;
1237 		} else {
1238 			cache->node.start = vma->node.start;
1239 			cache->node.mm = (void *)vma;
1240 		}
1241 	}
1242 
1243 	offset = cache->node.start;
1244 	if (drm_mm_node_allocated(&cache->node)) {
1245 		ggtt->vm.insert_page(&ggtt->vm,
1246 				     i915_gem_object_get_dma_address(obj, page),
1247 				     offset, I915_CACHE_NONE, 0);
1248 	} else {
1249 		offset += page << PAGE_SHIFT;
1250 	}
1251 
1252 	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1253 							 offset);
1254 	cache->page = page;
1255 	cache->vaddr = (unsigned long)vaddr;
1256 
1257 	return vaddr;
1258 }
1259 
1260 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1261 			 struct i915_execbuffer *eb,
1262 			 unsigned long page)
1263 {
1264 	struct reloc_cache *cache = &eb->reloc_cache;
1265 	void *vaddr;
1266 
1267 	if (cache->page == page) {
1268 		vaddr = unmask_page(cache->vaddr);
1269 	} else {
1270 		vaddr = NULL;
1271 		if ((cache->vaddr & KMAP) == 0)
1272 			vaddr = reloc_iomap(obj, eb, page);
1273 		if (!vaddr)
1274 			vaddr = reloc_kmap(obj, cache, page);
1275 	}
1276 
1277 	return vaddr;
1278 }
1279 
1280 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1281 {
1282 	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1283 		if (flushes & CLFLUSH_BEFORE) {
1284 			clflushopt(addr);
1285 			mb();
1286 		}
1287 
1288 		*addr = value;
1289 
1290 		/*
1291 		 * Writes to the same cacheline are serialised by the CPU
1292 		 * (including clflush). On the write path, we only require
1293 		 * that it hits memory in an orderly fashion and place
1294 		 * mb barriers at the start and end of the relocation phase
1295 		 * to ensure ordering of clflush wrt to the system.
1296 		 */
1297 		if (flushes & CLFLUSH_AFTER)
1298 			clflushopt(addr);
1299 	} else
1300 		*addr = value;
1301 }
1302 
1303 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1304 {
1305 	struct drm_i915_gem_object *obj = vma->obj;
1306 	int err;
1307 
1308 	assert_vma_held(vma);
1309 
1310 	if (obj->cache_dirty & ~obj->cache_coherent)
1311 		i915_gem_clflush_object(obj, 0);
1312 	obj->write_domain = 0;
1313 
1314 	err = i915_request_await_object(rq, vma->obj, true);
1315 	if (err == 0)
1316 		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1317 
1318 	return err;
1319 }
1320 
1321 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1322 			     struct intel_engine_cs *engine,
1323 			     struct i915_vma *vma,
1324 			     unsigned int len)
1325 {
1326 	struct reloc_cache *cache = &eb->reloc_cache;
1327 	struct intel_gt_buffer_pool_node *pool = eb->reloc_pool;
1328 	struct i915_request *rq;
1329 	struct i915_vma *batch;
1330 	u32 *cmd;
1331 	int err;
1332 
1333 	if (!pool) {
1334 		pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE,
1335 						cache->has_llc ?
1336 						I915_MAP_WB :
1337 						I915_MAP_WC);
1338 		if (IS_ERR(pool))
1339 			return PTR_ERR(pool);
1340 	}
1341 	eb->reloc_pool = NULL;
1342 
1343 	err = i915_gem_object_lock(pool->obj, &eb->ww);
1344 	if (err)
1345 		goto err_pool;
1346 
1347 	cmd = i915_gem_object_pin_map(pool->obj, pool->type);
1348 	if (IS_ERR(cmd)) {
1349 		err = PTR_ERR(cmd);
1350 		goto err_pool;
1351 	}
1352 	intel_gt_buffer_pool_mark_used(pool);
1353 
1354 	memset32(cmd, 0, pool->obj->base.size / sizeof(u32));
1355 
1356 	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1357 	if (IS_ERR(batch)) {
1358 		err = PTR_ERR(batch);
1359 		goto err_unmap;
1360 	}
1361 
1362 	err = i915_vma_pin_ww(batch, &eb->ww, 0, 0, PIN_USER | PIN_NONBLOCK);
1363 	if (err)
1364 		goto err_unmap;
1365 
1366 	if (engine == eb->context->engine) {
1367 		rq = i915_request_create(eb->context);
1368 	} else {
1369 		struct intel_context *ce = eb->reloc_context;
1370 
1371 		if (!ce) {
1372 			ce = intel_context_create(engine);
1373 			if (IS_ERR(ce)) {
1374 				err = PTR_ERR(ce);
1375 				goto err_unpin;
1376 			}
1377 
1378 			i915_vm_put(ce->vm);
1379 			ce->vm = i915_vm_get(eb->context->vm);
1380 			eb->reloc_context = ce;
1381 		}
1382 
1383 		err = intel_context_pin_ww(ce, &eb->ww);
1384 		if (err)
1385 			goto err_unpin;
1386 
1387 		rq = i915_request_create(ce);
1388 		intel_context_unpin(ce);
1389 	}
1390 	if (IS_ERR(rq)) {
1391 		err = PTR_ERR(rq);
1392 		goto err_unpin;
1393 	}
1394 
1395 	err = intel_gt_buffer_pool_mark_active(pool, rq);
1396 	if (err)
1397 		goto err_request;
1398 
1399 	err = reloc_move_to_gpu(rq, vma);
1400 	if (err)
1401 		goto err_request;
1402 
1403 	err = eb->engine->emit_bb_start(rq,
1404 					batch->node.start, PAGE_SIZE,
1405 					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1406 	if (err)
1407 		goto skip_request;
1408 
1409 	assert_vma_held(batch);
1410 	err = i915_request_await_object(rq, batch->obj, false);
1411 	if (err == 0)
1412 		err = i915_vma_move_to_active(batch, rq, 0);
1413 	if (err)
1414 		goto skip_request;
1415 
1416 	rq->batch = batch;
1417 	i915_vma_unpin(batch);
1418 
1419 	cache->rq = rq;
1420 	cache->rq_cmd = cmd;
1421 	cache->rq_size = 0;
1422 	cache->pool = pool;
1423 
1424 	/* Return with batch mapping (cmd) still pinned */
1425 	return 0;
1426 
1427 skip_request:
1428 	i915_request_set_error_once(rq, err);
1429 err_request:
1430 	i915_request_add(rq);
1431 err_unpin:
1432 	i915_vma_unpin(batch);
1433 err_unmap:
1434 	i915_gem_object_unpin_map(pool->obj);
1435 err_pool:
1436 	eb->reloc_pool = pool;
1437 	return err;
1438 }
1439 
1440 static bool reloc_can_use_engine(const struct intel_engine_cs *engine)
1441 {
1442 	return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6);
1443 }
1444 
1445 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1446 		      struct i915_vma *vma,
1447 		      unsigned int len)
1448 {
1449 	struct reloc_cache *cache = &eb->reloc_cache;
1450 	u32 *cmd;
1451 
1452 	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1453 		reloc_gpu_flush(eb, cache);
1454 
1455 	if (unlikely(!cache->rq)) {
1456 		int err;
1457 		struct intel_engine_cs *engine = eb->engine;
1458 
1459 		if (!reloc_can_use_engine(engine)) {
1460 			engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0];
1461 			if (!engine)
1462 				return ERR_PTR(-ENODEV);
1463 		}
1464 
1465 		err = __reloc_gpu_alloc(eb, engine, vma, len);
1466 		if (unlikely(err))
1467 			return ERR_PTR(err);
1468 	}
1469 
1470 	cmd = cache->rq_cmd + cache->rq_size;
1471 	cache->rq_size += len;
1472 
1473 	return cmd;
1474 }
1475 
1476 static inline bool use_reloc_gpu(struct i915_vma *vma)
1477 {
1478 	if (DBG_FORCE_RELOC == FORCE_GPU_RELOC)
1479 		return true;
1480 
1481 	if (DBG_FORCE_RELOC)
1482 		return false;
1483 
1484 	return !dma_resv_test_signaled_rcu(vma->resv, true);
1485 }
1486 
1487 static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset)
1488 {
1489 	struct page *page;
1490 	unsigned long addr;
1491 
1492 	GEM_BUG_ON(vma->pages != vma->obj->mm.pages);
1493 
1494 	page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT);
1495 	addr = PFN_PHYS(page_to_pfn(page));
1496 	GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */
1497 
1498 	return addr + offset_in_page(offset);
1499 }
1500 
1501 static int __reloc_entry_gpu(struct i915_execbuffer *eb,
1502 			      struct i915_vma *vma,
1503 			      u64 offset,
1504 			      u64 target_addr)
1505 {
1506 	const unsigned int gen = eb->reloc_cache.gen;
1507 	unsigned int len;
1508 	u32 *batch;
1509 	u64 addr;
1510 
1511 	if (gen >= 8)
1512 		len = offset & 7 ? 8 : 5;
1513 	else if (gen >= 4)
1514 		len = 4;
1515 	else
1516 		len = 3;
1517 
1518 	batch = reloc_gpu(eb, vma, len);
1519 	if (batch == ERR_PTR(-EDEADLK))
1520 		return -EDEADLK;
1521 	else if (IS_ERR(batch))
1522 		return false;
1523 
1524 	addr = gen8_canonical_addr(vma->node.start + offset);
1525 	if (gen >= 8) {
1526 		if (offset & 7) {
1527 			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1528 			*batch++ = lower_32_bits(addr);
1529 			*batch++ = upper_32_bits(addr);
1530 			*batch++ = lower_32_bits(target_addr);
1531 
1532 			addr = gen8_canonical_addr(addr + 4);
1533 
1534 			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1535 			*batch++ = lower_32_bits(addr);
1536 			*batch++ = upper_32_bits(addr);
1537 			*batch++ = upper_32_bits(target_addr);
1538 		} else {
1539 			*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1540 			*batch++ = lower_32_bits(addr);
1541 			*batch++ = upper_32_bits(addr);
1542 			*batch++ = lower_32_bits(target_addr);
1543 			*batch++ = upper_32_bits(target_addr);
1544 		}
1545 	} else if (gen >= 6) {
1546 		*batch++ = MI_STORE_DWORD_IMM_GEN4;
1547 		*batch++ = 0;
1548 		*batch++ = addr;
1549 		*batch++ = target_addr;
1550 	} else if (IS_I965G(eb->i915)) {
1551 		*batch++ = MI_STORE_DWORD_IMM_GEN4;
1552 		*batch++ = 0;
1553 		*batch++ = vma_phys_addr(vma, offset);
1554 		*batch++ = target_addr;
1555 	} else if (gen >= 4) {
1556 		*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1557 		*batch++ = 0;
1558 		*batch++ = addr;
1559 		*batch++ = target_addr;
1560 	} else if (gen >= 3 &&
1561 		   !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) {
1562 		*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1563 		*batch++ = addr;
1564 		*batch++ = target_addr;
1565 	} else {
1566 		*batch++ = MI_STORE_DWORD_IMM;
1567 		*batch++ = vma_phys_addr(vma, offset);
1568 		*batch++ = target_addr;
1569 	}
1570 
1571 	return true;
1572 }
1573 
1574 static int reloc_entry_gpu(struct i915_execbuffer *eb,
1575 			    struct i915_vma *vma,
1576 			    u64 offset,
1577 			    u64 target_addr)
1578 {
1579 	if (eb->reloc_cache.vaddr)
1580 		return false;
1581 
1582 	if (!use_reloc_gpu(vma))
1583 		return false;
1584 
1585 	return __reloc_entry_gpu(eb, vma, offset, target_addr);
1586 }
1587 
1588 static u64
1589 relocate_entry(struct i915_vma *vma,
1590 	       const struct drm_i915_gem_relocation_entry *reloc,
1591 	       struct i915_execbuffer *eb,
1592 	       const struct i915_vma *target)
1593 {
1594 	u64 target_addr = relocation_target(reloc, target);
1595 	u64 offset = reloc->offset;
1596 	int reloc_gpu = reloc_entry_gpu(eb, vma, offset, target_addr);
1597 
1598 	if (reloc_gpu < 0)
1599 		return reloc_gpu;
1600 
1601 	if (!reloc_gpu) {
1602 		bool wide = eb->reloc_cache.use_64bit_reloc;
1603 		void *vaddr;
1604 
1605 repeat:
1606 		vaddr = reloc_vaddr(vma->obj, eb,
1607 				    offset >> PAGE_SHIFT);
1608 		if (IS_ERR(vaddr))
1609 			return PTR_ERR(vaddr);
1610 
1611 		GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1612 		clflush_write32(vaddr + offset_in_page(offset),
1613 				lower_32_bits(target_addr),
1614 				eb->reloc_cache.vaddr);
1615 
1616 		if (wide) {
1617 			offset += sizeof(u32);
1618 			target_addr >>= 32;
1619 			wide = false;
1620 			goto repeat;
1621 		}
1622 	}
1623 
1624 	return target->node.start | UPDATE;
1625 }
1626 
1627 static u64
1628 eb_relocate_entry(struct i915_execbuffer *eb,
1629 		  struct eb_vma *ev,
1630 		  const struct drm_i915_gem_relocation_entry *reloc)
1631 {
1632 	struct drm_i915_private *i915 = eb->i915;
1633 	struct eb_vma *target;
1634 	int err;
1635 
1636 	/* we've already hold a reference to all valid objects */
1637 	target = eb_get_vma(eb, reloc->target_handle);
1638 	if (unlikely(!target))
1639 		return -ENOENT;
1640 
1641 	/* Validate that the target is in a valid r/w GPU domain */
1642 	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1643 		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1644 			  "target %d offset %d "
1645 			  "read %08x write %08x",
1646 			  reloc->target_handle,
1647 			  (int) reloc->offset,
1648 			  reloc->read_domains,
1649 			  reloc->write_domain);
1650 		return -EINVAL;
1651 	}
1652 	if (unlikely((reloc->write_domain | reloc->read_domains)
1653 		     & ~I915_GEM_GPU_DOMAINS)) {
1654 		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1655 			  "target %d offset %d "
1656 			  "read %08x write %08x",
1657 			  reloc->target_handle,
1658 			  (int) reloc->offset,
1659 			  reloc->read_domains,
1660 			  reloc->write_domain);
1661 		return -EINVAL;
1662 	}
1663 
1664 	if (reloc->write_domain) {
1665 		target->flags |= EXEC_OBJECT_WRITE;
1666 
1667 		/*
1668 		 * Sandybridge PPGTT errata: We need a global gtt mapping
1669 		 * for MI and pipe_control writes because the gpu doesn't
1670 		 * properly redirect them through the ppgtt for non_secure
1671 		 * batchbuffers.
1672 		 */
1673 		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1674 		    IS_GEN(eb->i915, 6)) {
1675 			err = i915_vma_bind(target->vma,
1676 					    target->vma->obj->cache_level,
1677 					    PIN_GLOBAL, NULL);
1678 			if (err)
1679 				return err;
1680 		}
1681 	}
1682 
1683 	/*
1684 	 * If the relocation already has the right value in it, no
1685 	 * more work needs to be done.
1686 	 */
1687 	if (!DBG_FORCE_RELOC &&
1688 	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1689 		return 0;
1690 
1691 	/* Check that the relocation address is valid... */
1692 	if (unlikely(reloc->offset >
1693 		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1694 		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1695 			  "target %d offset %d size %d.\n",
1696 			  reloc->target_handle,
1697 			  (int)reloc->offset,
1698 			  (int)ev->vma->size);
1699 		return -EINVAL;
1700 	}
1701 	if (unlikely(reloc->offset & 3)) {
1702 		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1703 			  "target %d offset %d.\n",
1704 			  reloc->target_handle,
1705 			  (int)reloc->offset);
1706 		return -EINVAL;
1707 	}
1708 
1709 	/*
1710 	 * If we write into the object, we need to force the synchronisation
1711 	 * barrier, either with an asynchronous clflush or if we executed the
1712 	 * patching using the GPU (though that should be serialised by the
1713 	 * timeline). To be completely sure, and since we are required to
1714 	 * do relocations we are already stalling, disable the user's opt
1715 	 * out of our synchronisation.
1716 	 */
1717 	ev->flags &= ~EXEC_OBJECT_ASYNC;
1718 
1719 	/* and update the user's relocation entry */
1720 	return relocate_entry(ev->vma, reloc, eb, target->vma);
1721 }
1722 
1723 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1724 {
1725 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1726 	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1727 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1728 	struct drm_i915_gem_relocation_entry __user *urelocs =
1729 		u64_to_user_ptr(entry->relocs_ptr);
1730 	unsigned long remain = entry->relocation_count;
1731 
1732 	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1733 		return -EINVAL;
1734 
1735 	/*
1736 	 * We must check that the entire relocation array is safe
1737 	 * to read. However, if the array is not writable the user loses
1738 	 * the updated relocation values.
1739 	 */
1740 	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1741 		return -EFAULT;
1742 
1743 	do {
1744 		struct drm_i915_gem_relocation_entry *r = stack;
1745 		unsigned int count =
1746 			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1747 		unsigned int copied;
1748 
1749 		/*
1750 		 * This is the fast path and we cannot handle a pagefault
1751 		 * whilst holding the struct mutex lest the user pass in the
1752 		 * relocations contained within a mmaped bo. For in such a case
1753 		 * we, the page fault handler would call i915_gem_fault() and
1754 		 * we would try to acquire the struct mutex again. Obviously
1755 		 * this is bad and so lockdep complains vehemently.
1756 		 */
1757 		pagefault_disable();
1758 		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1759 		pagefault_enable();
1760 		if (unlikely(copied)) {
1761 			remain = -EFAULT;
1762 			goto out;
1763 		}
1764 
1765 		remain -= count;
1766 		do {
1767 			u64 offset = eb_relocate_entry(eb, ev, r);
1768 
1769 			if (likely(offset == 0)) {
1770 			} else if ((s64)offset < 0) {
1771 				remain = (int)offset;
1772 				goto out;
1773 			} else {
1774 				/*
1775 				 * Note that reporting an error now
1776 				 * leaves everything in an inconsistent
1777 				 * state as we have *already* changed
1778 				 * the relocation value inside the
1779 				 * object. As we have not changed the
1780 				 * reloc.presumed_offset or will not
1781 				 * change the execobject.offset, on the
1782 				 * call we may not rewrite the value
1783 				 * inside the object, leaving it
1784 				 * dangling and causing a GPU hang. Unless
1785 				 * userspace dynamically rebuilds the
1786 				 * relocations on each execbuf rather than
1787 				 * presume a static tree.
1788 				 *
1789 				 * We did previously check if the relocations
1790 				 * were writable (access_ok), an error now
1791 				 * would be a strange race with mprotect,
1792 				 * having already demonstrated that we
1793 				 * can read from this userspace address.
1794 				 */
1795 				offset = gen8_canonical_addr(offset & ~UPDATE);
1796 				__put_user(offset,
1797 					   &urelocs[r - stack].presumed_offset);
1798 			}
1799 		} while (r++, --count);
1800 		urelocs += ARRAY_SIZE(stack);
1801 	} while (remain);
1802 out:
1803 	reloc_cache_reset(&eb->reloc_cache, eb);
1804 	return remain;
1805 }
1806 
1807 static int
1808 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1809 {
1810 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1811 	struct drm_i915_gem_relocation_entry *relocs =
1812 		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1813 	unsigned int i;
1814 	int err;
1815 
1816 	for (i = 0; i < entry->relocation_count; i++) {
1817 		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1818 
1819 		if ((s64)offset < 0) {
1820 			err = (int)offset;
1821 			goto err;
1822 		}
1823 	}
1824 	err = 0;
1825 err:
1826 	reloc_cache_reset(&eb->reloc_cache, eb);
1827 	return err;
1828 }
1829 
1830 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1831 {
1832 	const char __user *addr, *end;
1833 	unsigned long size;
1834 	char __maybe_unused c;
1835 
1836 	size = entry->relocation_count;
1837 	if (size == 0)
1838 		return 0;
1839 
1840 	if (size > N_RELOC(ULONG_MAX))
1841 		return -EINVAL;
1842 
1843 	addr = u64_to_user_ptr(entry->relocs_ptr);
1844 	size *= sizeof(struct drm_i915_gem_relocation_entry);
1845 	if (!access_ok(addr, size))
1846 		return -EFAULT;
1847 
1848 	end = addr + size;
1849 	for (; addr < end; addr += PAGE_SIZE) {
1850 		int err = __get_user(c, addr);
1851 		if (err)
1852 			return err;
1853 	}
1854 	return __get_user(c, end - 1);
1855 }
1856 
1857 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1858 {
1859 	struct drm_i915_gem_relocation_entry *relocs;
1860 	const unsigned int count = eb->buffer_count;
1861 	unsigned int i;
1862 	int err;
1863 
1864 	for (i = 0; i < count; i++) {
1865 		const unsigned int nreloc = eb->exec[i].relocation_count;
1866 		struct drm_i915_gem_relocation_entry __user *urelocs;
1867 		unsigned long size;
1868 		unsigned long copied;
1869 
1870 		if (nreloc == 0)
1871 			continue;
1872 
1873 		err = check_relocations(&eb->exec[i]);
1874 		if (err)
1875 			goto err;
1876 
1877 		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1878 		size = nreloc * sizeof(*relocs);
1879 
1880 		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1881 		if (!relocs) {
1882 			err = -ENOMEM;
1883 			goto err;
1884 		}
1885 
1886 		/* copy_from_user is limited to < 4GiB */
1887 		copied = 0;
1888 		do {
1889 			unsigned int len =
1890 				min_t(u64, BIT_ULL(31), size - copied);
1891 
1892 			if (__copy_from_user((char *)relocs + copied,
1893 					     (char __user *)urelocs + copied,
1894 					     len))
1895 				goto end;
1896 
1897 			copied += len;
1898 		} while (copied < size);
1899 
1900 		/*
1901 		 * As we do not update the known relocation offsets after
1902 		 * relocating (due to the complexities in lock handling),
1903 		 * we need to mark them as invalid now so that we force the
1904 		 * relocation processing next time. Just in case the target
1905 		 * object is evicted and then rebound into its old
1906 		 * presumed_offset before the next execbuffer - if that
1907 		 * happened we would make the mistake of assuming that the
1908 		 * relocations were valid.
1909 		 */
1910 		if (!user_access_begin(urelocs, size))
1911 			goto end;
1912 
1913 		for (copied = 0; copied < nreloc; copied++)
1914 			unsafe_put_user(-1,
1915 					&urelocs[copied].presumed_offset,
1916 					end_user);
1917 		user_access_end();
1918 
1919 		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1920 	}
1921 
1922 	return 0;
1923 
1924 end_user:
1925 	user_access_end();
1926 end:
1927 	kvfree(relocs);
1928 	err = -EFAULT;
1929 err:
1930 	while (i--) {
1931 		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1932 		if (eb->exec[i].relocation_count)
1933 			kvfree(relocs);
1934 	}
1935 	return err;
1936 }
1937 
1938 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1939 {
1940 	const unsigned int count = eb->buffer_count;
1941 	unsigned int i;
1942 
1943 	for (i = 0; i < count; i++) {
1944 		int err;
1945 
1946 		err = check_relocations(&eb->exec[i]);
1947 		if (err)
1948 			return err;
1949 	}
1950 
1951 	return 0;
1952 }
1953 
1954 static int eb_reinit_userptr(struct i915_execbuffer *eb)
1955 {
1956 	const unsigned int count = eb->buffer_count;
1957 	unsigned int i;
1958 	int ret;
1959 
1960 	if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1961 		return 0;
1962 
1963 	for (i = 0; i < count; i++) {
1964 		struct eb_vma *ev = &eb->vma[i];
1965 
1966 		if (!i915_gem_object_is_userptr(ev->vma->obj))
1967 			continue;
1968 
1969 		ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1970 		if (ret)
1971 			return ret;
1972 
1973 		ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1974 	}
1975 
1976 	return 0;
1977 }
1978 
1979 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb,
1980 					   struct i915_request *rq)
1981 {
1982 	bool have_copy = false;
1983 	struct eb_vma *ev;
1984 	int err = 0;
1985 
1986 repeat:
1987 	if (signal_pending(current)) {
1988 		err = -ERESTARTSYS;
1989 		goto out;
1990 	}
1991 
1992 	/* We may process another execbuffer during the unlock... */
1993 	eb_release_vmas(eb, false, true);
1994 	i915_gem_ww_ctx_fini(&eb->ww);
1995 
1996 	if (rq) {
1997 		/* nonblocking is always false */
1998 		if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
1999 				      MAX_SCHEDULE_TIMEOUT) < 0) {
2000 			i915_request_put(rq);
2001 			rq = NULL;
2002 
2003 			err = -EINTR;
2004 			goto err_relock;
2005 		}
2006 
2007 		i915_request_put(rq);
2008 		rq = NULL;
2009 	}
2010 
2011 	/*
2012 	 * We take 3 passes through the slowpatch.
2013 	 *
2014 	 * 1 - we try to just prefault all the user relocation entries and
2015 	 * then attempt to reuse the atomic pagefault disabled fast path again.
2016 	 *
2017 	 * 2 - we copy the user entries to a local buffer here outside of the
2018 	 * local and allow ourselves to wait upon any rendering before
2019 	 * relocations
2020 	 *
2021 	 * 3 - we already have a local copy of the relocation entries, but
2022 	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
2023 	 */
2024 	if (!err) {
2025 		err = eb_prefault_relocations(eb);
2026 	} else if (!have_copy) {
2027 		err = eb_copy_relocations(eb);
2028 		have_copy = err == 0;
2029 	} else {
2030 		cond_resched();
2031 		err = 0;
2032 	}
2033 
2034 	if (!err)
2035 		err = eb_reinit_userptr(eb);
2036 
2037 err_relock:
2038 	i915_gem_ww_ctx_init(&eb->ww, true);
2039 	if (err)
2040 		goto out;
2041 
2042 	/* reacquire the objects */
2043 repeat_validate:
2044 	rq = eb_pin_engine(eb, false);
2045 	if (IS_ERR(rq)) {
2046 		err = PTR_ERR(rq);
2047 		rq = NULL;
2048 		goto err;
2049 	}
2050 
2051 	/* We didn't throttle, should be NULL */
2052 	GEM_WARN_ON(rq);
2053 
2054 	err = eb_validate_vmas(eb);
2055 	if (err)
2056 		goto err;
2057 
2058 	GEM_BUG_ON(!eb->batch);
2059 
2060 	list_for_each_entry(ev, &eb->relocs, reloc_link) {
2061 		if (!have_copy) {
2062 			pagefault_disable();
2063 			err = eb_relocate_vma(eb, ev);
2064 			pagefault_enable();
2065 			if (err)
2066 				break;
2067 		} else {
2068 			err = eb_relocate_vma_slow(eb, ev);
2069 			if (err)
2070 				break;
2071 		}
2072 	}
2073 
2074 	if (err == -EDEADLK)
2075 		goto err;
2076 
2077 	if (err && !have_copy)
2078 		goto repeat;
2079 
2080 	if (err)
2081 		goto err;
2082 
2083 	/* as last step, parse the command buffer */
2084 	err = eb_parse(eb);
2085 	if (err)
2086 		goto err;
2087 
2088 	/*
2089 	 * Leave the user relocations as are, this is the painfully slow path,
2090 	 * and we want to avoid the complication of dropping the lock whilst
2091 	 * having buffers reserved in the aperture and so causing spurious
2092 	 * ENOSPC for random operations.
2093 	 */
2094 
2095 err:
2096 	if (err == -EDEADLK) {
2097 		eb_release_vmas(eb, false, false);
2098 		err = i915_gem_ww_ctx_backoff(&eb->ww);
2099 		if (!err)
2100 			goto repeat_validate;
2101 	}
2102 
2103 	if (err == -EAGAIN)
2104 		goto repeat;
2105 
2106 out:
2107 	if (have_copy) {
2108 		const unsigned int count = eb->buffer_count;
2109 		unsigned int i;
2110 
2111 		for (i = 0; i < count; i++) {
2112 			const struct drm_i915_gem_exec_object2 *entry =
2113 				&eb->exec[i];
2114 			struct drm_i915_gem_relocation_entry *relocs;
2115 
2116 			if (!entry->relocation_count)
2117 				continue;
2118 
2119 			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
2120 			kvfree(relocs);
2121 		}
2122 	}
2123 
2124 	if (rq)
2125 		i915_request_put(rq);
2126 
2127 	return err;
2128 }
2129 
2130 static int eb_relocate_parse(struct i915_execbuffer *eb)
2131 {
2132 	int err;
2133 	struct i915_request *rq = NULL;
2134 	bool throttle = true;
2135 
2136 retry:
2137 	rq = eb_pin_engine(eb, throttle);
2138 	if (IS_ERR(rq)) {
2139 		err = PTR_ERR(rq);
2140 		rq = NULL;
2141 		if (err != -EDEADLK)
2142 			return err;
2143 
2144 		goto err;
2145 	}
2146 
2147 	if (rq) {
2148 		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2149 
2150 		/* Need to drop all locks now for throttling, take slowpath */
2151 		err = i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 0);
2152 		if (err == -ETIME) {
2153 			if (nonblock) {
2154 				err = -EWOULDBLOCK;
2155 				i915_request_put(rq);
2156 				goto err;
2157 			}
2158 			goto slow;
2159 		}
2160 		i915_request_put(rq);
2161 		rq = NULL;
2162 	}
2163 
2164 	/* only throttle once, even if we didn't need to throttle */
2165 	throttle = false;
2166 
2167 	err = eb_validate_vmas(eb);
2168 	if (err == -EAGAIN)
2169 		goto slow;
2170 	else if (err)
2171 		goto err;
2172 
2173 	/* The objects are in their final locations, apply the relocations. */
2174 	if (eb->args->flags & __EXEC_HAS_RELOC) {
2175 		struct eb_vma *ev;
2176 
2177 		list_for_each_entry(ev, &eb->relocs, reloc_link) {
2178 			err = eb_relocate_vma(eb, ev);
2179 			if (err)
2180 				break;
2181 		}
2182 
2183 		if (err == -EDEADLK)
2184 			goto err;
2185 		else if (err)
2186 			goto slow;
2187 	}
2188 
2189 	if (!err)
2190 		err = eb_parse(eb);
2191 
2192 err:
2193 	if (err == -EDEADLK) {
2194 		eb_release_vmas(eb, false, false);
2195 		err = i915_gem_ww_ctx_backoff(&eb->ww);
2196 		if (!err)
2197 			goto retry;
2198 	}
2199 
2200 	return err;
2201 
2202 slow:
2203 	err = eb_relocate_parse_slow(eb, rq);
2204 	if (err)
2205 		/*
2206 		 * If the user expects the execobject.offset and
2207 		 * reloc.presumed_offset to be an exact match,
2208 		 * as for using NO_RELOC, then we cannot update
2209 		 * the execobject.offset until we have completed
2210 		 * relocation.
2211 		 */
2212 		eb->args->flags &= ~__EXEC_HAS_RELOC;
2213 
2214 	return err;
2215 }
2216 
2217 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2218 {
2219 	const unsigned int count = eb->buffer_count;
2220 	unsigned int i = count;
2221 	int err = 0;
2222 
2223 	while (i--) {
2224 		struct eb_vma *ev = &eb->vma[i];
2225 		struct i915_vma *vma = ev->vma;
2226 		unsigned int flags = ev->flags;
2227 		struct drm_i915_gem_object *obj = vma->obj;
2228 
2229 		assert_vma_held(vma);
2230 
2231 		if (flags & EXEC_OBJECT_CAPTURE) {
2232 			struct i915_capture_list *capture;
2233 
2234 			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2235 			if (capture) {
2236 				capture->next = eb->request->capture_list;
2237 				capture->vma = vma;
2238 				eb->request->capture_list = capture;
2239 			}
2240 		}
2241 
2242 		/*
2243 		 * If the GPU is not _reading_ through the CPU cache, we need
2244 		 * to make sure that any writes (both previous GPU writes from
2245 		 * before a change in snooping levels and normal CPU writes)
2246 		 * caught in that cache are flushed to main memory.
2247 		 *
2248 		 * We want to say
2249 		 *   obj->cache_dirty &&
2250 		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2251 		 * but gcc's optimiser doesn't handle that as well and emits
2252 		 * two jumps instead of one. Maybe one day...
2253 		 */
2254 		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2255 			if (i915_gem_clflush_object(obj, 0))
2256 				flags &= ~EXEC_OBJECT_ASYNC;
2257 		}
2258 
2259 		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2260 			err = i915_request_await_object
2261 				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
2262 		}
2263 
2264 		if (err == 0)
2265 			err = i915_vma_move_to_active(vma, eb->request,
2266 						      flags | __EXEC_OBJECT_NO_RESERVE);
2267 	}
2268 
2269 #ifdef CONFIG_MMU_NOTIFIER
2270 	if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2271 		spin_lock(&eb->i915->mm.notifier_lock);
2272 
2273 		/*
2274 		 * count is always at least 1, otherwise __EXEC_USERPTR_USED
2275 		 * could not have been set
2276 		 */
2277 		for (i = 0; i < count; i++) {
2278 			struct eb_vma *ev = &eb->vma[i];
2279 			struct drm_i915_gem_object *obj = ev->vma->obj;
2280 
2281 			if (!i915_gem_object_is_userptr(obj))
2282 				continue;
2283 
2284 			err = i915_gem_object_userptr_submit_done(obj);
2285 			if (err)
2286 				break;
2287 		}
2288 
2289 		spin_unlock(&eb->i915->mm.notifier_lock);
2290 	}
2291 #endif
2292 
2293 	if (unlikely(err))
2294 		goto err_skip;
2295 
2296 	/* Unconditionally flush any chipset caches (for streaming writes). */
2297 	intel_gt_chipset_flush(eb->engine->gt);
2298 	return 0;
2299 
2300 err_skip:
2301 	i915_request_set_error_once(eb->request, err);
2302 	return err;
2303 }
2304 
2305 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2306 {
2307 	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2308 		return -EINVAL;
2309 
2310 	/* Kernel clipping was a DRI1 misfeature */
2311 	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2312 			     I915_EXEC_USE_EXTENSIONS))) {
2313 		if (exec->num_cliprects || exec->cliprects_ptr)
2314 			return -EINVAL;
2315 	}
2316 
2317 	if (exec->DR4 == 0xffffffff) {
2318 		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2319 		exec->DR4 = 0;
2320 	}
2321 	if (exec->DR1 || exec->DR4)
2322 		return -EINVAL;
2323 
2324 	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2325 		return -EINVAL;
2326 
2327 	return 0;
2328 }
2329 
2330 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2331 {
2332 	u32 *cs;
2333 	int i;
2334 
2335 	if (!IS_GEN(rq->engine->i915, 7) || rq->engine->id != RCS0) {
2336 		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2337 		return -EINVAL;
2338 	}
2339 
2340 	cs = intel_ring_begin(rq, 4 * 2 + 2);
2341 	if (IS_ERR(cs))
2342 		return PTR_ERR(cs);
2343 
2344 	*cs++ = MI_LOAD_REGISTER_IMM(4);
2345 	for (i = 0; i < 4; i++) {
2346 		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2347 		*cs++ = 0;
2348 	}
2349 	*cs++ = MI_NOOP;
2350 	intel_ring_advance(rq, cs);
2351 
2352 	return 0;
2353 }
2354 
2355 static struct i915_vma *
2356 shadow_batch_pin(struct i915_execbuffer *eb,
2357 		 struct drm_i915_gem_object *obj,
2358 		 struct i915_address_space *vm,
2359 		 unsigned int flags)
2360 {
2361 	struct i915_vma *vma;
2362 	int err;
2363 
2364 	vma = i915_vma_instance(obj, vm, NULL);
2365 	if (IS_ERR(vma))
2366 		return vma;
2367 
2368 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags);
2369 	if (err)
2370 		return ERR_PTR(err);
2371 
2372 	return vma;
2373 }
2374 
2375 struct eb_parse_work {
2376 	struct dma_fence_work base;
2377 	struct intel_engine_cs *engine;
2378 	struct i915_vma *batch;
2379 	struct i915_vma *shadow;
2380 	struct i915_vma *trampoline;
2381 	unsigned long batch_offset;
2382 	unsigned long batch_length;
2383 	unsigned long *jump_whitelist;
2384 	const void *batch_map;
2385 	void *shadow_map;
2386 };
2387 
2388 static int __eb_parse(struct dma_fence_work *work)
2389 {
2390 	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
2391 	int ret;
2392 	bool cookie;
2393 
2394 	cookie = dma_fence_begin_signalling();
2395 	ret = intel_engine_cmd_parser(pw->engine,
2396 				      pw->batch,
2397 				      pw->batch_offset,
2398 				      pw->batch_length,
2399 				      pw->shadow,
2400 				      pw->jump_whitelist,
2401 				      pw->shadow_map,
2402 				      pw->batch_map);
2403 	dma_fence_end_signalling(cookie);
2404 
2405 	return ret;
2406 }
2407 
2408 static void __eb_parse_release(struct dma_fence_work *work)
2409 {
2410 	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
2411 
2412 	if (!IS_ERR_OR_NULL(pw->jump_whitelist))
2413 		kfree(pw->jump_whitelist);
2414 
2415 	if (pw->batch_map)
2416 		i915_gem_object_unpin_map(pw->batch->obj);
2417 	else
2418 		i915_gem_object_unpin_pages(pw->batch->obj);
2419 
2420 	i915_gem_object_unpin_map(pw->shadow->obj);
2421 
2422 	if (pw->trampoline)
2423 		i915_active_release(&pw->trampoline->active);
2424 	i915_active_release(&pw->shadow->active);
2425 	i915_active_release(&pw->batch->active);
2426 }
2427 
2428 static const struct dma_fence_work_ops eb_parse_ops = {
2429 	.name = "eb_parse",
2430 	.work = __eb_parse,
2431 	.release = __eb_parse_release,
2432 };
2433 
2434 static inline int
2435 __parser_mark_active(struct i915_vma *vma,
2436 		     struct intel_timeline *tl,
2437 		     struct dma_fence *fence)
2438 {
2439 	struct intel_gt_buffer_pool_node *node = vma->private;
2440 
2441 	return i915_active_ref(&node->active, tl->fence_context, fence);
2442 }
2443 
2444 static int
2445 parser_mark_active(struct eb_parse_work *pw, struct intel_timeline *tl)
2446 {
2447 	int err;
2448 
2449 	mutex_lock(&tl->mutex);
2450 
2451 	err = __parser_mark_active(pw->shadow, tl, &pw->base.dma);
2452 	if (err)
2453 		goto unlock;
2454 
2455 	if (pw->trampoline) {
2456 		err = __parser_mark_active(pw->trampoline, tl, &pw->base.dma);
2457 		if (err)
2458 			goto unlock;
2459 	}
2460 
2461 unlock:
2462 	mutex_unlock(&tl->mutex);
2463 	return err;
2464 }
2465 
2466 static int eb_parse_pipeline(struct i915_execbuffer *eb,
2467 			     struct i915_vma *shadow,
2468 			     struct i915_vma *trampoline)
2469 {
2470 	struct eb_parse_work *pw;
2471 	struct drm_i915_gem_object *batch = eb->batch->vma->obj;
2472 	bool needs_clflush;
2473 	int err;
2474 
2475 	GEM_BUG_ON(overflows_type(eb->batch_start_offset, pw->batch_offset));
2476 	GEM_BUG_ON(overflows_type(eb->batch_len, pw->batch_length));
2477 
2478 	pw = kzalloc(sizeof(*pw), GFP_KERNEL);
2479 	if (!pw)
2480 		return -ENOMEM;
2481 
2482 	err = i915_active_acquire(&eb->batch->vma->active);
2483 	if (err)
2484 		goto err_free;
2485 
2486 	err = i915_active_acquire(&shadow->active);
2487 	if (err)
2488 		goto err_batch;
2489 
2490 	if (trampoline) {
2491 		err = i915_active_acquire(&trampoline->active);
2492 		if (err)
2493 			goto err_shadow;
2494 	}
2495 
2496 	pw->shadow_map = i915_gem_object_pin_map(shadow->obj, I915_MAP_WB);
2497 	if (IS_ERR(pw->shadow_map)) {
2498 		err = PTR_ERR(pw->shadow_map);
2499 		goto err_trampoline;
2500 	}
2501 
2502 	needs_clflush =
2503 		!(batch->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ);
2504 
2505 	pw->batch_map = ERR_PTR(-ENODEV);
2506 	if (needs_clflush && i915_has_memcpy_from_wc())
2507 		pw->batch_map = i915_gem_object_pin_map(batch, I915_MAP_WC);
2508 
2509 	if (IS_ERR(pw->batch_map)) {
2510 		err = i915_gem_object_pin_pages(batch);
2511 		if (err)
2512 			goto err_unmap_shadow;
2513 		pw->batch_map = NULL;
2514 	}
2515 
2516 	pw->jump_whitelist =
2517 		intel_engine_cmd_parser_alloc_jump_whitelist(eb->batch_len,
2518 							     trampoline);
2519 	if (IS_ERR(pw->jump_whitelist)) {
2520 		err = PTR_ERR(pw->jump_whitelist);
2521 		goto err_unmap_batch;
2522 	}
2523 
2524 	dma_fence_work_init(&pw->base, &eb_parse_ops);
2525 
2526 	pw->engine = eb->engine;
2527 	pw->batch = eb->batch->vma;
2528 	pw->batch_offset = eb->batch_start_offset;
2529 	pw->batch_length = eb->batch_len;
2530 	pw->shadow = shadow;
2531 	pw->trampoline = trampoline;
2532 
2533 	/* Mark active refs early for this worker, in case we get interrupted */
2534 	err = parser_mark_active(pw, eb->context->timeline);
2535 	if (err)
2536 		goto err_commit;
2537 
2538 	err = dma_resv_reserve_shared(pw->batch->resv, 1);
2539 	if (err)
2540 		goto err_commit;
2541 
2542 	err = dma_resv_reserve_shared(shadow->resv, 1);
2543 	if (err)
2544 		goto err_commit;
2545 
2546 	/* Wait for all writes (and relocs) into the batch to complete */
2547 	err = i915_sw_fence_await_reservation(&pw->base.chain,
2548 					      pw->batch->resv, NULL, false,
2549 					      0, I915_FENCE_GFP);
2550 	if (err < 0)
2551 		goto err_commit;
2552 
2553 	/* Keep the batch alive and unwritten as we parse */
2554 	dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);
2555 
2556 	/* Force execution to wait for completion of the parser */
2557 	dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
2558 
2559 	dma_fence_work_commit_imm(&pw->base);
2560 	return 0;
2561 
2562 err_commit:
2563 	i915_sw_fence_set_error_once(&pw->base.chain, err);
2564 	dma_fence_work_commit_imm(&pw->base);
2565 	return err;
2566 
2567 err_unmap_batch:
2568 	if (pw->batch_map)
2569 		i915_gem_object_unpin_map(batch);
2570 	else
2571 		i915_gem_object_unpin_pages(batch);
2572 err_unmap_shadow:
2573 	i915_gem_object_unpin_map(shadow->obj);
2574 err_trampoline:
2575 	if (trampoline)
2576 		i915_active_release(&trampoline->active);
2577 err_shadow:
2578 	i915_active_release(&shadow->active);
2579 err_batch:
2580 	i915_active_release(&eb->batch->vma->active);
2581 err_free:
2582 	kfree(pw);
2583 	return err;
2584 }
2585 
2586 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2587 {
2588 	/*
2589 	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2590 	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2591 	 * hsw should have this fixed, but bdw mucks it up again. */
2592 	if (eb->batch_flags & I915_DISPATCH_SECURE)
2593 		return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0);
2594 
2595 	return NULL;
2596 }
2597 
2598 static int eb_parse(struct i915_execbuffer *eb)
2599 {
2600 	struct drm_i915_private *i915 = eb->i915;
2601 	struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2602 	struct i915_vma *shadow, *trampoline, *batch;
2603 	unsigned long len;
2604 	int err;
2605 
2606 	if (!eb_use_cmdparser(eb)) {
2607 		batch = eb_dispatch_secure(eb, eb->batch->vma);
2608 		if (IS_ERR(batch))
2609 			return PTR_ERR(batch);
2610 
2611 		goto secure_batch;
2612 	}
2613 
2614 	len = eb->batch_len;
2615 	if (!CMDPARSER_USES_GGTT(eb->i915)) {
2616 		/*
2617 		 * ppGTT backed shadow buffers must be mapped RO, to prevent
2618 		 * post-scan tampering
2619 		 */
2620 		if (!eb->context->vm->has_read_only) {
2621 			drm_dbg(&i915->drm,
2622 				"Cannot prevent post-scan tampering without RO capable vm\n");
2623 			return -EINVAL;
2624 		}
2625 	} else {
2626 		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2627 	}
2628 	if (unlikely(len < eb->batch_len)) /* last paranoid check of overflow */
2629 		return -EINVAL;
2630 
2631 	if (!pool) {
2632 		pool = intel_gt_get_buffer_pool(eb->engine->gt, len,
2633 						I915_MAP_WB);
2634 		if (IS_ERR(pool))
2635 			return PTR_ERR(pool);
2636 		eb->batch_pool = pool;
2637 	}
2638 
2639 	err = i915_gem_object_lock(pool->obj, &eb->ww);
2640 	if (err)
2641 		goto err;
2642 
2643 	shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2644 	if (IS_ERR(shadow)) {
2645 		err = PTR_ERR(shadow);
2646 		goto err;
2647 	}
2648 	intel_gt_buffer_pool_mark_used(pool);
2649 	i915_gem_object_set_readonly(shadow->obj);
2650 	shadow->private = pool;
2651 
2652 	trampoline = NULL;
2653 	if (CMDPARSER_USES_GGTT(eb->i915)) {
2654 		trampoline = shadow;
2655 
2656 		shadow = shadow_batch_pin(eb, pool->obj,
2657 					  &eb->engine->gt->ggtt->vm,
2658 					  PIN_GLOBAL);
2659 		if (IS_ERR(shadow)) {
2660 			err = PTR_ERR(shadow);
2661 			shadow = trampoline;
2662 			goto err_shadow;
2663 		}
2664 		shadow->private = pool;
2665 
2666 		eb->batch_flags |= I915_DISPATCH_SECURE;
2667 	}
2668 
2669 	batch = eb_dispatch_secure(eb, shadow);
2670 	if (IS_ERR(batch)) {
2671 		err = PTR_ERR(batch);
2672 		goto err_trampoline;
2673 	}
2674 
2675 	err = eb_parse_pipeline(eb, shadow, trampoline);
2676 	if (err)
2677 		goto err_unpin_batch;
2678 
2679 	eb->batch = &eb->vma[eb->buffer_count++];
2680 	eb->batch->vma = i915_vma_get(shadow);
2681 	eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
2682 
2683 	eb->trampoline = trampoline;
2684 	eb->batch_start_offset = 0;
2685 
2686 secure_batch:
2687 	if (batch) {
2688 		eb->batch = &eb->vma[eb->buffer_count++];
2689 		eb->batch->flags = __EXEC_OBJECT_HAS_PIN;
2690 		eb->batch->vma = i915_vma_get(batch);
2691 	}
2692 	return 0;
2693 
2694 err_unpin_batch:
2695 	if (batch)
2696 		i915_vma_unpin(batch);
2697 err_trampoline:
2698 	if (trampoline)
2699 		i915_vma_unpin(trampoline);
2700 err_shadow:
2701 	i915_vma_unpin(shadow);
2702 err:
2703 	return err;
2704 }
2705 
2706 static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
2707 {
2708 	int err;
2709 
2710 	if (intel_context_nopreempt(eb->context))
2711 		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2712 
2713 	err = eb_move_to_gpu(eb);
2714 	if (err)
2715 		return err;
2716 
2717 	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2718 		err = i915_reset_gen7_sol_offsets(eb->request);
2719 		if (err)
2720 			return err;
2721 	}
2722 
2723 	/*
2724 	 * After we completed waiting for other engines (using HW semaphores)
2725 	 * then we can signal that this request/batch is ready to run. This
2726 	 * allows us to determine if the batch is still waiting on the GPU
2727 	 * or actually running by checking the breadcrumb.
2728 	 */
2729 	if (eb->engine->emit_init_breadcrumb) {
2730 		err = eb->engine->emit_init_breadcrumb(eb->request);
2731 		if (err)
2732 			return err;
2733 	}
2734 
2735 	err = eb->engine->emit_bb_start(eb->request,
2736 					batch->node.start +
2737 					eb->batch_start_offset,
2738 					eb->batch_len,
2739 					eb->batch_flags);
2740 	if (err)
2741 		return err;
2742 
2743 	if (eb->trampoline) {
2744 		GEM_BUG_ON(eb->batch_start_offset);
2745 		err = eb->engine->emit_bb_start(eb->request,
2746 						eb->trampoline->node.start +
2747 						eb->batch_len,
2748 						0, 0);
2749 		if (err)
2750 			return err;
2751 	}
2752 
2753 	return 0;
2754 }
2755 
2756 static int num_vcs_engines(const struct drm_i915_private *i915)
2757 {
2758 	return hweight_long(VDBOX_MASK(&i915->gt));
2759 }
2760 
2761 /*
2762  * Find one BSD ring to dispatch the corresponding BSD command.
2763  * The engine index is returned.
2764  */
2765 static unsigned int
2766 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2767 			 struct drm_file *file)
2768 {
2769 	struct drm_i915_file_private *file_priv = file->driver_priv;
2770 
2771 	/* Check whether the file_priv has already selected one ring. */
2772 	if ((int)file_priv->bsd_engine < 0)
2773 		file_priv->bsd_engine =
2774 			get_random_int() % num_vcs_engines(dev_priv);
2775 
2776 	return file_priv->bsd_engine;
2777 }
2778 
2779 static const enum intel_engine_id user_ring_map[] = {
2780 	[I915_EXEC_DEFAULT]	= RCS0,
2781 	[I915_EXEC_RENDER]	= RCS0,
2782 	[I915_EXEC_BLT]		= BCS0,
2783 	[I915_EXEC_BSD]		= VCS0,
2784 	[I915_EXEC_VEBOX]	= VECS0
2785 };
2786 
2787 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2788 {
2789 	struct intel_ring *ring = ce->ring;
2790 	struct intel_timeline *tl = ce->timeline;
2791 	struct i915_request *rq;
2792 
2793 	/*
2794 	 * Completely unscientific finger-in-the-air estimates for suitable
2795 	 * maximum user request size (to avoid blocking) and then backoff.
2796 	 */
2797 	if (intel_ring_update_space(ring) >= PAGE_SIZE)
2798 		return NULL;
2799 
2800 	/*
2801 	 * Find a request that after waiting upon, there will be at least half
2802 	 * the ring available. The hysteresis allows us to compete for the
2803 	 * shared ring and should mean that we sleep less often prior to
2804 	 * claiming our resources, but not so long that the ring completely
2805 	 * drains before we can submit our next request.
2806 	 */
2807 	list_for_each_entry(rq, &tl->requests, link) {
2808 		if (rq->ring != ring)
2809 			continue;
2810 
2811 		if (__intel_ring_space(rq->postfix,
2812 				       ring->emit, ring->size) > ring->size / 2)
2813 			break;
2814 	}
2815 	if (&rq->link == &tl->requests)
2816 		return NULL; /* weird, we will check again later for real */
2817 
2818 	return i915_request_get(rq);
2819 }
2820 
2821 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2822 {
2823 	struct intel_context *ce = eb->context;
2824 	struct intel_timeline *tl;
2825 	struct i915_request *rq = NULL;
2826 	int err;
2827 
2828 	GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2829 
2830 	if (unlikely(intel_context_is_banned(ce)))
2831 		return ERR_PTR(-EIO);
2832 
2833 	/*
2834 	 * Pinning the contexts may generate requests in order to acquire
2835 	 * GGTT space, so do this first before we reserve a seqno for
2836 	 * ourselves.
2837 	 */
2838 	err = intel_context_pin_ww(ce, &eb->ww);
2839 	if (err)
2840 		return ERR_PTR(err);
2841 
2842 	/*
2843 	 * Take a local wakeref for preparing to dispatch the execbuf as
2844 	 * we expect to access the hardware fairly frequently in the
2845 	 * process, and require the engine to be kept awake between accesses.
2846 	 * Upon dispatch, we acquire another prolonged wakeref that we hold
2847 	 * until the timeline is idle, which in turn releases the wakeref
2848 	 * taken on the engine, and the parent device.
2849 	 */
2850 	tl = intel_context_timeline_lock(ce);
2851 	if (IS_ERR(tl)) {
2852 		intel_context_unpin(ce);
2853 		return ERR_CAST(tl);
2854 	}
2855 
2856 	intel_context_enter(ce);
2857 	if (throttle)
2858 		rq = eb_throttle(eb, ce);
2859 	intel_context_timeline_unlock(tl);
2860 
2861 	eb->args->flags |= __EXEC_ENGINE_PINNED;
2862 	return rq;
2863 }
2864 
2865 static void eb_unpin_engine(struct i915_execbuffer *eb)
2866 {
2867 	struct intel_context *ce = eb->context;
2868 	struct intel_timeline *tl = ce->timeline;
2869 
2870 	if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2871 		return;
2872 
2873 	eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2874 
2875 	mutex_lock(&tl->mutex);
2876 	intel_context_exit(ce);
2877 	mutex_unlock(&tl->mutex);
2878 
2879 	intel_context_unpin(ce);
2880 }
2881 
2882 static unsigned int
2883 eb_select_legacy_ring(struct i915_execbuffer *eb)
2884 {
2885 	struct drm_i915_private *i915 = eb->i915;
2886 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2887 	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2888 
2889 	if (user_ring_id != I915_EXEC_BSD &&
2890 	    (args->flags & I915_EXEC_BSD_MASK)) {
2891 		drm_dbg(&i915->drm,
2892 			"execbuf with non bsd ring but with invalid "
2893 			"bsd dispatch flags: %d\n", (int)(args->flags));
2894 		return -1;
2895 	}
2896 
2897 	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2898 		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2899 
2900 		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2901 			bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2902 		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2903 			   bsd_idx <= I915_EXEC_BSD_RING2) {
2904 			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2905 			bsd_idx--;
2906 		} else {
2907 			drm_dbg(&i915->drm,
2908 				"execbuf with unknown bsd ring: %u\n",
2909 				bsd_idx);
2910 			return -1;
2911 		}
2912 
2913 		return _VCS(bsd_idx);
2914 	}
2915 
2916 	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2917 		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2918 			user_ring_id);
2919 		return -1;
2920 	}
2921 
2922 	return user_ring_map[user_ring_id];
2923 }
2924 
2925 static int
2926 eb_select_engine(struct i915_execbuffer *eb)
2927 {
2928 	struct intel_context *ce;
2929 	unsigned int idx;
2930 	int err;
2931 
2932 	if (i915_gem_context_user_engines(eb->gem_context))
2933 		idx = eb->args->flags & I915_EXEC_RING_MASK;
2934 	else
2935 		idx = eb_select_legacy_ring(eb);
2936 
2937 	ce = i915_gem_context_get_engine(eb->gem_context, idx);
2938 	if (IS_ERR(ce))
2939 		return PTR_ERR(ce);
2940 
2941 	intel_gt_pm_get(ce->engine->gt);
2942 
2943 	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2944 		err = intel_context_alloc_state(ce);
2945 		if (err)
2946 			goto err;
2947 	}
2948 
2949 	/*
2950 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2951 	 * EIO if the GPU is already wedged.
2952 	 */
2953 	err = intel_gt_terminally_wedged(ce->engine->gt);
2954 	if (err)
2955 		goto err;
2956 
2957 	eb->context = ce;
2958 	eb->engine = ce->engine;
2959 
2960 	/*
2961 	 * Make sure engine pool stays alive even if we call intel_context_put
2962 	 * during ww handling. The pool is destroyed when last pm reference
2963 	 * is dropped, which breaks our -EDEADLK handling.
2964 	 */
2965 	return err;
2966 
2967 err:
2968 	intel_gt_pm_put(ce->engine->gt);
2969 	intel_context_put(ce);
2970 	return err;
2971 }
2972 
2973 static void
2974 eb_put_engine(struct i915_execbuffer *eb)
2975 {
2976 	intel_gt_pm_put(eb->engine->gt);
2977 	intel_context_put(eb->context);
2978 }
2979 
2980 static void
2981 __free_fence_array(struct eb_fence *fences, unsigned int n)
2982 {
2983 	while (n--) {
2984 		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2985 		dma_fence_put(fences[n].dma_fence);
2986 		kfree(fences[n].chain_fence);
2987 	}
2988 	kvfree(fences);
2989 }
2990 
2991 static int
2992 add_timeline_fence_array(struct i915_execbuffer *eb,
2993 			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2994 {
2995 	struct drm_i915_gem_exec_fence __user *user_fences;
2996 	u64 __user *user_values;
2997 	struct eb_fence *f;
2998 	u64 nfences;
2999 	int err = 0;
3000 
3001 	nfences = timeline_fences->fence_count;
3002 	if (!nfences)
3003 		return 0;
3004 
3005 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
3006 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
3007 	if (nfences > min_t(unsigned long,
3008 			    ULONG_MAX / sizeof(*user_fences),
3009 			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
3010 		return -EINVAL;
3011 
3012 	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
3013 	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
3014 		return -EFAULT;
3015 
3016 	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
3017 	if (!access_ok(user_values, nfences * sizeof(*user_values)))
3018 		return -EFAULT;
3019 
3020 	f = krealloc(eb->fences,
3021 		     (eb->num_fences + nfences) * sizeof(*f),
3022 		     __GFP_NOWARN | GFP_KERNEL);
3023 	if (!f)
3024 		return -ENOMEM;
3025 
3026 	eb->fences = f;
3027 	f += eb->num_fences;
3028 
3029 	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
3030 		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
3031 
3032 	while (nfences--) {
3033 		struct drm_i915_gem_exec_fence user_fence;
3034 		struct drm_syncobj *syncobj;
3035 		struct dma_fence *fence = NULL;
3036 		u64 point;
3037 
3038 		if (__copy_from_user(&user_fence,
3039 				     user_fences++,
3040 				     sizeof(user_fence)))
3041 			return -EFAULT;
3042 
3043 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
3044 			return -EINVAL;
3045 
3046 		if (__get_user(point, user_values++))
3047 			return -EFAULT;
3048 
3049 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
3050 		if (!syncobj) {
3051 			DRM_DEBUG("Invalid syncobj handle provided\n");
3052 			return -ENOENT;
3053 		}
3054 
3055 		fence = drm_syncobj_fence_get(syncobj);
3056 
3057 		if (!fence && user_fence.flags &&
3058 		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
3059 			DRM_DEBUG("Syncobj handle has no fence\n");
3060 			drm_syncobj_put(syncobj);
3061 			return -EINVAL;
3062 		}
3063 
3064 		if (fence)
3065 			err = dma_fence_chain_find_seqno(&fence, point);
3066 
3067 		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
3068 			DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
3069 			dma_fence_put(fence);
3070 			drm_syncobj_put(syncobj);
3071 			return err;
3072 		}
3073 
3074 		/*
3075 		 * A point might have been signaled already and
3076 		 * garbage collected from the timeline. In this case
3077 		 * just ignore the point and carry on.
3078 		 */
3079 		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
3080 			drm_syncobj_put(syncobj);
3081 			continue;
3082 		}
3083 
3084 		/*
3085 		 * For timeline syncobjs we need to preallocate chains for
3086 		 * later signaling.
3087 		 */
3088 		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
3089 			/*
3090 			 * Waiting and signaling the same point (when point !=
3091 			 * 0) would break the timeline.
3092 			 */
3093 			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
3094 				DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
3095 				dma_fence_put(fence);
3096 				drm_syncobj_put(syncobj);
3097 				return -EINVAL;
3098 			}
3099 
3100 			f->chain_fence =
3101 				kmalloc(sizeof(*f->chain_fence),
3102 					GFP_KERNEL);
3103 			if (!f->chain_fence) {
3104 				drm_syncobj_put(syncobj);
3105 				dma_fence_put(fence);
3106 				return -ENOMEM;
3107 			}
3108 		} else {
3109 			f->chain_fence = NULL;
3110 		}
3111 
3112 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
3113 		f->dma_fence = fence;
3114 		f->value = point;
3115 		f++;
3116 		eb->num_fences++;
3117 	}
3118 
3119 	return 0;
3120 }
3121 
3122 static int add_fence_array(struct i915_execbuffer *eb)
3123 {
3124 	struct drm_i915_gem_execbuffer2 *args = eb->args;
3125 	struct drm_i915_gem_exec_fence __user *user;
3126 	unsigned long num_fences = args->num_cliprects;
3127 	struct eb_fence *f;
3128 
3129 	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
3130 		return 0;
3131 
3132 	if (!num_fences)
3133 		return 0;
3134 
3135 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
3136 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
3137 	if (num_fences > min_t(unsigned long,
3138 			       ULONG_MAX / sizeof(*user),
3139 			       SIZE_MAX / sizeof(*f) - eb->num_fences))
3140 		return -EINVAL;
3141 
3142 	user = u64_to_user_ptr(args->cliprects_ptr);
3143 	if (!access_ok(user, num_fences * sizeof(*user)))
3144 		return -EFAULT;
3145 
3146 	f = krealloc(eb->fences,
3147 		     (eb->num_fences + num_fences) * sizeof(*f),
3148 		     __GFP_NOWARN | GFP_KERNEL);
3149 	if (!f)
3150 		return -ENOMEM;
3151 
3152 	eb->fences = f;
3153 	f += eb->num_fences;
3154 	while (num_fences--) {
3155 		struct drm_i915_gem_exec_fence user_fence;
3156 		struct drm_syncobj *syncobj;
3157 		struct dma_fence *fence = NULL;
3158 
3159 		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
3160 			return -EFAULT;
3161 
3162 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
3163 			return -EINVAL;
3164 
3165 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
3166 		if (!syncobj) {
3167 			DRM_DEBUG("Invalid syncobj handle provided\n");
3168 			return -ENOENT;
3169 		}
3170 
3171 		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
3172 			fence = drm_syncobj_fence_get(syncobj);
3173 			if (!fence) {
3174 				DRM_DEBUG("Syncobj handle has no fence\n");
3175 				drm_syncobj_put(syncobj);
3176 				return -EINVAL;
3177 			}
3178 		}
3179 
3180 		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
3181 			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
3182 
3183 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
3184 		f->dma_fence = fence;
3185 		f->value = 0;
3186 		f->chain_fence = NULL;
3187 		f++;
3188 		eb->num_fences++;
3189 	}
3190 
3191 	return 0;
3192 }
3193 
3194 static void put_fence_array(struct eb_fence *fences, int num_fences)
3195 {
3196 	if (fences)
3197 		__free_fence_array(fences, num_fences);
3198 }
3199 
3200 static int
3201 await_fence_array(struct i915_execbuffer *eb)
3202 {
3203 	unsigned int n;
3204 	int err;
3205 
3206 	for (n = 0; n < eb->num_fences; n++) {
3207 		struct drm_syncobj *syncobj;
3208 		unsigned int flags;
3209 
3210 		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3211 
3212 		if (!eb->fences[n].dma_fence)
3213 			continue;
3214 
3215 		err = i915_request_await_dma_fence(eb->request,
3216 						   eb->fences[n].dma_fence);
3217 		if (err < 0)
3218 			return err;
3219 	}
3220 
3221 	return 0;
3222 }
3223 
3224 static void signal_fence_array(const struct i915_execbuffer *eb)
3225 {
3226 	struct dma_fence * const fence = &eb->request->fence;
3227 	unsigned int n;
3228 
3229 	for (n = 0; n < eb->num_fences; n++) {
3230 		struct drm_syncobj *syncobj;
3231 		unsigned int flags;
3232 
3233 		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3234 		if (!(flags & I915_EXEC_FENCE_SIGNAL))
3235 			continue;
3236 
3237 		if (eb->fences[n].chain_fence) {
3238 			drm_syncobj_add_point(syncobj,
3239 					      eb->fences[n].chain_fence,
3240 					      fence,
3241 					      eb->fences[n].value);
3242 			/*
3243 			 * The chain's ownership is transferred to the
3244 			 * timeline.
3245 			 */
3246 			eb->fences[n].chain_fence = NULL;
3247 		} else {
3248 			drm_syncobj_replace_fence(syncobj, fence);
3249 		}
3250 	}
3251 }
3252 
3253 static int
3254 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3255 {
3256 	struct i915_execbuffer *eb = data;
3257 	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3258 
3259 	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3260 		return -EFAULT;
3261 
3262 	return add_timeline_fence_array(eb, &timeline_fences);
3263 }
3264 
3265 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3266 {
3267 	struct i915_request *rq, *rn;
3268 
3269 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
3270 		if (rq == end || !i915_request_retire(rq))
3271 			break;
3272 }
3273 
3274 static int eb_request_add(struct i915_execbuffer *eb, int err)
3275 {
3276 	struct i915_request *rq = eb->request;
3277 	struct intel_timeline * const tl = i915_request_timeline(rq);
3278 	struct i915_sched_attr attr = {};
3279 	struct i915_request *prev;
3280 
3281 	lockdep_assert_held(&tl->mutex);
3282 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
3283 
3284 	trace_i915_request_add(rq);
3285 
3286 	prev = __i915_request_commit(rq);
3287 
3288 	/* Check that the context wasn't destroyed before submission */
3289 	if (likely(!intel_context_is_closed(eb->context))) {
3290 		attr = eb->gem_context->sched;
3291 	} else {
3292 		/* Serialise with context_close via the add_to_timeline */
3293 		i915_request_set_error_once(rq, -ENOENT);
3294 		__i915_request_skip(rq);
3295 		err = -ENOENT; /* override any transient errors */
3296 	}
3297 
3298 	__i915_request_queue(rq, &attr);
3299 
3300 	/* Try to clean up the client's timeline after submitting the request */
3301 	if (prev)
3302 		retire_requests(tl, prev);
3303 
3304 	mutex_unlock(&tl->mutex);
3305 
3306 	return err;
3307 }
3308 
3309 static const i915_user_extension_fn execbuf_extensions[] = {
3310 	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3311 };
3312 
3313 static int
3314 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3315 			  struct i915_execbuffer *eb)
3316 {
3317 	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3318 		return 0;
3319 
3320 	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3321 	 * have another flag also using it at the same time.
3322 	 */
3323 	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3324 		return -EINVAL;
3325 
3326 	if (args->num_cliprects != 0)
3327 		return -EINVAL;
3328 
3329 	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3330 				    execbuf_extensions,
3331 				    ARRAY_SIZE(execbuf_extensions),
3332 				    eb);
3333 }
3334 
3335 static int
3336 i915_gem_do_execbuffer(struct drm_device *dev,
3337 		       struct drm_file *file,
3338 		       struct drm_i915_gem_execbuffer2 *args,
3339 		       struct drm_i915_gem_exec_object2 *exec)
3340 {
3341 	struct drm_i915_private *i915 = to_i915(dev);
3342 	struct i915_execbuffer eb;
3343 	struct dma_fence *in_fence = NULL;
3344 	struct sync_file *out_fence = NULL;
3345 	struct i915_vma *batch;
3346 	int out_fence_fd = -1;
3347 	int err;
3348 
3349 	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3350 	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3351 		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3352 
3353 	eb.i915 = i915;
3354 	eb.file = file;
3355 	eb.args = args;
3356 	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3357 		args->flags |= __EXEC_HAS_RELOC;
3358 
3359 	eb.exec = exec;
3360 	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3361 	eb.vma[0].vma = NULL;
3362 	eb.reloc_pool = eb.batch_pool = NULL;
3363 	eb.reloc_context = NULL;
3364 
3365 	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3366 	reloc_cache_init(&eb.reloc_cache, eb.i915);
3367 
3368 	eb.buffer_count = args->buffer_count;
3369 	eb.batch_start_offset = args->batch_start_offset;
3370 	eb.batch_len = args->batch_len;
3371 	eb.trampoline = NULL;
3372 
3373 	eb.fences = NULL;
3374 	eb.num_fences = 0;
3375 
3376 	eb.batch_flags = 0;
3377 	if (args->flags & I915_EXEC_SECURE) {
3378 		if (INTEL_GEN(i915) >= 11)
3379 			return -ENODEV;
3380 
3381 		/* Return -EPERM to trigger fallback code on old binaries. */
3382 		if (!HAS_SECURE_BATCHES(i915))
3383 			return -EPERM;
3384 
3385 		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3386 			return -EPERM;
3387 
3388 		eb.batch_flags |= I915_DISPATCH_SECURE;
3389 	}
3390 	if (args->flags & I915_EXEC_IS_PINNED)
3391 		eb.batch_flags |= I915_DISPATCH_PINNED;
3392 
3393 	err = parse_execbuf2_extensions(args, &eb);
3394 	if (err)
3395 		goto err_ext;
3396 
3397 	err = add_fence_array(&eb);
3398 	if (err)
3399 		goto err_ext;
3400 
3401 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3402 	if (args->flags & IN_FENCES) {
3403 		if ((args->flags & IN_FENCES) == IN_FENCES)
3404 			return -EINVAL;
3405 
3406 		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3407 		if (!in_fence) {
3408 			err = -EINVAL;
3409 			goto err_ext;
3410 		}
3411 	}
3412 #undef IN_FENCES
3413 
3414 	if (args->flags & I915_EXEC_FENCE_OUT) {
3415 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3416 		if (out_fence_fd < 0) {
3417 			err = out_fence_fd;
3418 			goto err_in_fence;
3419 		}
3420 	}
3421 
3422 	err = eb_create(&eb);
3423 	if (err)
3424 		goto err_out_fence;
3425 
3426 	GEM_BUG_ON(!eb.lut_size);
3427 
3428 	err = eb_select_context(&eb);
3429 	if (unlikely(err))
3430 		goto err_destroy;
3431 
3432 	err = eb_select_engine(&eb);
3433 	if (unlikely(err))
3434 		goto err_context;
3435 
3436 	err = eb_lookup_vmas(&eb);
3437 	if (err) {
3438 		eb_release_vmas(&eb, true, true);
3439 		goto err_engine;
3440 	}
3441 
3442 	i915_gem_ww_ctx_init(&eb.ww, true);
3443 
3444 	err = eb_relocate_parse(&eb);
3445 	if (err) {
3446 		/*
3447 		 * If the user expects the execobject.offset and
3448 		 * reloc.presumed_offset to be an exact match,
3449 		 * as for using NO_RELOC, then we cannot update
3450 		 * the execobject.offset until we have completed
3451 		 * relocation.
3452 		 */
3453 		args->flags &= ~__EXEC_HAS_RELOC;
3454 		goto err_vma;
3455 	}
3456 
3457 	ww_acquire_done(&eb.ww.ctx);
3458 
3459 	batch = eb.batch->vma;
3460 
3461 	/* All GPU relocation batches must be submitted prior to the user rq */
3462 	GEM_BUG_ON(eb.reloc_cache.rq);
3463 
3464 	/* Allocate a request for this batch buffer nice and early. */
3465 	eb.request = i915_request_create(eb.context);
3466 	if (IS_ERR(eb.request)) {
3467 		err = PTR_ERR(eb.request);
3468 		goto err_vma;
3469 	}
3470 
3471 	if (in_fence) {
3472 		if (args->flags & I915_EXEC_FENCE_SUBMIT)
3473 			err = i915_request_await_execution(eb.request,
3474 							   in_fence,
3475 							   eb.engine->bond_execute);
3476 		else
3477 			err = i915_request_await_dma_fence(eb.request,
3478 							   in_fence);
3479 		if (err < 0)
3480 			goto err_request;
3481 	}
3482 
3483 	if (eb.fences) {
3484 		err = await_fence_array(&eb);
3485 		if (err)
3486 			goto err_request;
3487 	}
3488 
3489 	if (out_fence_fd != -1) {
3490 		out_fence = sync_file_create(&eb.request->fence);
3491 		if (!out_fence) {
3492 			err = -ENOMEM;
3493 			goto err_request;
3494 		}
3495 	}
3496 
3497 	/*
3498 	 * Whilst this request exists, batch_obj will be on the
3499 	 * active_list, and so will hold the active reference. Only when this
3500 	 * request is retired will the the batch_obj be moved onto the
3501 	 * inactive_list and lose its active reference. Hence we do not need
3502 	 * to explicitly hold another reference here.
3503 	 */
3504 	eb.request->batch = batch;
3505 	if (eb.batch_pool)
3506 		intel_gt_buffer_pool_mark_active(eb.batch_pool, eb.request);
3507 
3508 	trace_i915_request_queue(eb.request, eb.batch_flags);
3509 	err = eb_submit(&eb, batch);
3510 
3511 err_request:
3512 	i915_request_get(eb.request);
3513 	err = eb_request_add(&eb, err);
3514 
3515 	if (eb.fences)
3516 		signal_fence_array(&eb);
3517 
3518 	if (out_fence) {
3519 		if (err == 0) {
3520 			fd_install(out_fence_fd, out_fence->file);
3521 			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3522 			args->rsvd2 |= (u64)out_fence_fd << 32;
3523 			out_fence_fd = -1;
3524 		} else {
3525 			fput(out_fence->file);
3526 		}
3527 	}
3528 	i915_request_put(eb.request);
3529 
3530 err_vma:
3531 	eb_release_vmas(&eb, true, true);
3532 	if (eb.trampoline)
3533 		i915_vma_unpin(eb.trampoline);
3534 	WARN_ON(err == -EDEADLK);
3535 	i915_gem_ww_ctx_fini(&eb.ww);
3536 
3537 	if (eb.batch_pool)
3538 		intel_gt_buffer_pool_put(eb.batch_pool);
3539 	if (eb.reloc_pool)
3540 		intel_gt_buffer_pool_put(eb.reloc_pool);
3541 	if (eb.reloc_context)
3542 		intel_context_put(eb.reloc_context);
3543 err_engine:
3544 	eb_put_engine(&eb);
3545 err_context:
3546 	i915_gem_context_put(eb.gem_context);
3547 err_destroy:
3548 	eb_destroy(&eb);
3549 err_out_fence:
3550 	if (out_fence_fd != -1)
3551 		put_unused_fd(out_fence_fd);
3552 err_in_fence:
3553 	dma_fence_put(in_fence);
3554 err_ext:
3555 	put_fence_array(eb.fences, eb.num_fences);
3556 	return err;
3557 }
3558 
3559 static size_t eb_element_size(void)
3560 {
3561 	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3562 }
3563 
3564 static bool check_buffer_count(size_t count)
3565 {
3566 	const size_t sz = eb_element_size();
3567 
3568 	/*
3569 	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3570 	 * array size (see eb_create()). Otherwise, we can accept an array as
3571 	 * large as can be addressed (though use large arrays at your peril)!
3572 	 */
3573 
3574 	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3575 }
3576 
3577 int
3578 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3579 			   struct drm_file *file)
3580 {
3581 	struct drm_i915_private *i915 = to_i915(dev);
3582 	struct drm_i915_gem_execbuffer2 *args = data;
3583 	struct drm_i915_gem_exec_object2 *exec2_list;
3584 	const size_t count = args->buffer_count;
3585 	int err;
3586 
3587 	if (!check_buffer_count(count)) {
3588 		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3589 		return -EINVAL;
3590 	}
3591 
3592 	err = i915_gem_check_execbuffer(args);
3593 	if (err)
3594 		return err;
3595 
3596 	/* Allocate extra slots for use by the command parser */
3597 	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3598 				    __GFP_NOWARN | GFP_KERNEL);
3599 	if (exec2_list == NULL) {
3600 		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3601 			count);
3602 		return -ENOMEM;
3603 	}
3604 	if (copy_from_user(exec2_list,
3605 			   u64_to_user_ptr(args->buffers_ptr),
3606 			   sizeof(*exec2_list) * count)) {
3607 		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3608 		kvfree(exec2_list);
3609 		return -EFAULT;
3610 	}
3611 
3612 	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3613 
3614 	/*
3615 	 * Now that we have begun execution of the batchbuffer, we ignore
3616 	 * any new error after this point. Also given that we have already
3617 	 * updated the associated relocations, we try to write out the current
3618 	 * object locations irrespective of any error.
3619 	 */
3620 	if (args->flags & __EXEC_HAS_RELOC) {
3621 		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3622 			u64_to_user_ptr(args->buffers_ptr);
3623 		unsigned int i;
3624 
3625 		/* Copy the new buffer offsets back to the user's exec list. */
3626 		/*
3627 		 * Note: count * sizeof(*user_exec_list) does not overflow,
3628 		 * because we checked 'count' in check_buffer_count().
3629 		 *
3630 		 * And this range already got effectively checked earlier
3631 		 * when we did the "copy_from_user()" above.
3632 		 */
3633 		if (!user_write_access_begin(user_exec_list,
3634 					     count * sizeof(*user_exec_list)))
3635 			goto end;
3636 
3637 		for (i = 0; i < args->buffer_count; i++) {
3638 			if (!(exec2_list[i].offset & UPDATE))
3639 				continue;
3640 
3641 			exec2_list[i].offset =
3642 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3643 			unsafe_put_user(exec2_list[i].offset,
3644 					&user_exec_list[i].offset,
3645 					end_user);
3646 		}
3647 end_user:
3648 		user_write_access_end();
3649 end:;
3650 	}
3651 
3652 	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3653 	kvfree(exec2_list);
3654 	return err;
3655 }
3656 
3657 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3658 #include "selftests/i915_gem_execbuffer.c"
3659 #endif
3660