1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008,2010 Intel Corporation 5 */ 6 7 #include <linux/intel-iommu.h> 8 #include <linux/dma-resv.h> 9 #include <linux/sync_file.h> 10 #include <linux/uaccess.h> 11 12 #include <drm/drm_syncobj.h> 13 14 #include "display/intel_frontbuffer.h" 15 16 #include "gem/i915_gem_ioctls.h" 17 #include "gt/intel_context.h" 18 #include "gt/intel_gpu_commands.h" 19 #include "gt/intel_gt.h" 20 #include "gt/intel_gt_buffer_pool.h" 21 #include "gt/intel_gt_pm.h" 22 #include "gt/intel_ring.h" 23 24 #include "pxp/intel_pxp.h" 25 26 #include "i915_cmd_parser.h" 27 #include "i915_drv.h" 28 #include "i915_file_private.h" 29 #include "i915_gem_clflush.h" 30 #include "i915_gem_context.h" 31 #include "i915_gem_evict.h" 32 #include "i915_gem_ioctls.h" 33 #include "i915_trace.h" 34 #include "i915_user_extensions.h" 35 36 struct eb_vma { 37 struct i915_vma *vma; 38 unsigned int flags; 39 40 /** This vma's place in the execbuf reservation list */ 41 struct drm_i915_gem_exec_object2 *exec; 42 struct list_head bind_link; 43 struct list_head reloc_link; 44 45 struct hlist_node node; 46 u32 handle; 47 }; 48 49 enum { 50 FORCE_CPU_RELOC = 1, 51 FORCE_GTT_RELOC, 52 FORCE_GPU_RELOC, 53 #define DBG_FORCE_RELOC 0 /* choose one of the above! */ 54 }; 55 56 /* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */ 57 #define __EXEC_OBJECT_HAS_PIN BIT(30) 58 #define __EXEC_OBJECT_HAS_FENCE BIT(29) 59 #define __EXEC_OBJECT_USERPTR_INIT BIT(28) 60 #define __EXEC_OBJECT_NEEDS_MAP BIT(27) 61 #define __EXEC_OBJECT_NEEDS_BIAS BIT(26) 62 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 26) /* all of the above + */ 63 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) 64 65 #define __EXEC_HAS_RELOC BIT(31) 66 #define __EXEC_ENGINE_PINNED BIT(30) 67 #define __EXEC_USERPTR_USED BIT(29) 68 #define __EXEC_INTERNAL_FLAGS (~0u << 29) 69 #define UPDATE PIN_OFFSET_FIXED 70 71 #define BATCH_OFFSET_BIAS (256*1024) 72 73 #define __I915_EXEC_ILLEGAL_FLAGS \ 74 (__I915_EXEC_UNKNOWN_FLAGS | \ 75 I915_EXEC_CONSTANTS_MASK | \ 76 I915_EXEC_RESOURCE_STREAMER) 77 78 /* Catch emission of unexpected errors for CI! */ 79 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 80 #undef EINVAL 81 #define EINVAL ({ \ 82 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 83 22; \ 84 }) 85 #endif 86 87 /** 88 * DOC: User command execution 89 * 90 * Userspace submits commands to be executed on the GPU as an instruction 91 * stream within a GEM object we call a batchbuffer. This instructions may 92 * refer to other GEM objects containing auxiliary state such as kernels, 93 * samplers, render targets and even secondary batchbuffers. Userspace does 94 * not know where in the GPU memory these objects reside and so before the 95 * batchbuffer is passed to the GPU for execution, those addresses in the 96 * batchbuffer and auxiliary objects are updated. This is known as relocation, 97 * or patching. To try and avoid having to relocate each object on the next 98 * execution, userspace is told the location of those objects in this pass, 99 * but this remains just a hint as the kernel may choose a new location for 100 * any object in the future. 101 * 102 * At the level of talking to the hardware, submitting a batchbuffer for the 103 * GPU to execute is to add content to a buffer from which the HW 104 * command streamer is reading. 105 * 106 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. 107 * Execlists, this command is not placed on the same buffer as the 108 * remaining items. 109 * 110 * 2. Add a command to invalidate caches to the buffer. 111 * 112 * 3. Add a batchbuffer start command to the buffer; the start command is 113 * essentially a token together with the GPU address of the batchbuffer 114 * to be executed. 115 * 116 * 4. Add a pipeline flush to the buffer. 117 * 118 * 5. Add a memory write command to the buffer to record when the GPU 119 * is done executing the batchbuffer. The memory write writes the 120 * global sequence number of the request, ``i915_request::global_seqno``; 121 * the i915 driver uses the current value in the register to determine 122 * if the GPU has completed the batchbuffer. 123 * 124 * 6. Add a user interrupt command to the buffer. This command instructs 125 * the GPU to issue an interrupt when the command, pipeline flush and 126 * memory write are completed. 127 * 128 * 7. Inform the hardware of the additional commands added to the buffer 129 * (by updating the tail pointer). 130 * 131 * Processing an execbuf ioctl is conceptually split up into a few phases. 132 * 133 * 1. Validation - Ensure all the pointers, handles and flags are valid. 134 * 2. Reservation - Assign GPU address space for every object 135 * 3. Relocation - Update any addresses to point to the final locations 136 * 4. Serialisation - Order the request with respect to its dependencies 137 * 5. Construction - Construct a request to execute the batchbuffer 138 * 6. Submission (at some point in the future execution) 139 * 140 * Reserving resources for the execbuf is the most complicated phase. We 141 * neither want to have to migrate the object in the address space, nor do 142 * we want to have to update any relocations pointing to this object. Ideally, 143 * we want to leave the object where it is and for all the existing relocations 144 * to match. If the object is given a new address, or if userspace thinks the 145 * object is elsewhere, we have to parse all the relocation entries and update 146 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that 147 * all the target addresses in all of its objects match the value in the 148 * relocation entries and that they all match the presumed offsets given by the 149 * list of execbuffer objects. Using this knowledge, we know that if we haven't 150 * moved any buffers, all the relocation entries are valid and we can skip 151 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 152 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 153 * 154 * The addresses written in the objects must match the corresponding 155 * reloc.presumed_offset which in turn must match the corresponding 156 * execobject.offset. 157 * 158 * Any render targets written to in the batch must be flagged with 159 * EXEC_OBJECT_WRITE. 160 * 161 * To avoid stalling, execobject.offset should match the current 162 * address of that object within the active context. 163 * 164 * The reservation is done is multiple phases. First we try and keep any 165 * object already bound in its current location - so as long as meets the 166 * constraints imposed by the new execbuffer. Any object left unbound after the 167 * first pass is then fitted into any available idle space. If an object does 168 * not fit, all objects are removed from the reservation and the process rerun 169 * after sorting the objects into a priority order (more difficult to fit 170 * objects are tried first). Failing that, the entire VM is cleared and we try 171 * to fit the execbuf once last time before concluding that it simply will not 172 * fit. 173 * 174 * A small complication to all of this is that we allow userspace not only to 175 * specify an alignment and a size for the object in the address space, but 176 * we also allow userspace to specify the exact offset. This objects are 177 * simpler to place (the location is known a priori) all we have to do is make 178 * sure the space is available. 179 * 180 * Once all the objects are in place, patching up the buried pointers to point 181 * to the final locations is a fairly simple job of walking over the relocation 182 * entry arrays, looking up the right address and rewriting the value into 183 * the object. Simple! ... The relocation entries are stored in user memory 184 * and so to access them we have to copy them into a local buffer. That copy 185 * has to avoid taking any pagefaults as they may lead back to a GEM object 186 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split 187 * the relocation into multiple passes. First we try to do everything within an 188 * atomic context (avoid the pagefaults) which requires that we never wait. If 189 * we detect that we may wait, or if we need to fault, then we have to fallback 190 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 191 * bells yet?) Dropping the mutex means that we lose all the state we have 192 * built up so far for the execbuf and we must reset any global data. However, 193 * we do leave the objects pinned in their final locations - which is a 194 * potential issue for concurrent execbufs. Once we have left the mutex, we can 195 * allocate and copy all the relocation entries into a large array at our 196 * leisure, reacquire the mutex, reclaim all the objects and other state and 197 * then proceed to update any incorrect addresses with the objects. 198 * 199 * As we process the relocation entries, we maintain a record of whether the 200 * object is being written to. Using NORELOC, we expect userspace to provide 201 * this information instead. We also check whether we can skip the relocation 202 * by comparing the expected value inside the relocation entry with the target's 203 * final address. If they differ, we have to map the current object and rewrite 204 * the 4 or 8 byte pointer within. 205 * 206 * Serialising an execbuf is quite simple according to the rules of the GEM 207 * ABI. Execution within each context is ordered by the order of submission. 208 * Writes to any GEM object are in order of submission and are exclusive. Reads 209 * from a GEM object are unordered with respect to other reads, but ordered by 210 * writes. A write submitted after a read cannot occur before the read, and 211 * similarly any read submitted after a write cannot occur before the write. 212 * Writes are ordered between engines such that only one write occurs at any 213 * time (completing any reads beforehand) - using semaphores where available 214 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 215 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 216 * reads before starting, and any read (either using set-domain or pread) must 217 * flush all GPU writes before starting. (Note we only employ a barrier before, 218 * we currently rely on userspace not concurrently starting a new execution 219 * whilst reading or writing to an object. This may be an advantage or not 220 * depending on how much you trust userspace not to shoot themselves in the 221 * foot.) Serialisation may just result in the request being inserted into 222 * a DAG awaiting its turn, but most simple is to wait on the CPU until 223 * all dependencies are resolved. 224 * 225 * After all of that, is just a matter of closing the request and handing it to 226 * the hardware (well, leaving it in a queue to be executed). However, we also 227 * offer the ability for batchbuffers to be run with elevated privileges so 228 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 229 * Before any batch is given extra privileges we first must check that it 230 * contains no nefarious instructions, we check that each instruction is from 231 * our whitelist and all registers are also from an allowed list. We first 232 * copy the user's batchbuffer to a shadow (so that the user doesn't have 233 * access to it, either by the CPU or GPU as we scan it) and then parse each 234 * instruction. If everything is ok, we set a flag telling the hardware to run 235 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 236 */ 237 238 struct eb_fence { 239 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */ 240 struct dma_fence *dma_fence; 241 u64 value; 242 struct dma_fence_chain *chain_fence; 243 }; 244 245 struct i915_execbuffer { 246 struct drm_i915_private *i915; /** i915 backpointer */ 247 struct drm_file *file; /** per-file lookup tables and limits */ 248 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 249 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 250 struct eb_vma *vma; 251 252 struct intel_gt *gt; /* gt for the execbuf */ 253 struct intel_context *context; /* logical state for the request */ 254 struct i915_gem_context *gem_context; /** caller's context */ 255 256 /** our requests to build */ 257 struct i915_request *requests[MAX_ENGINE_INSTANCE + 1]; 258 /** identity of the batch obj/vma */ 259 struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1]; 260 struct i915_vma *trampoline; /** trampoline used for chaining */ 261 262 /** used for excl fence in dma_resv objects when > 1 BB submitted */ 263 struct dma_fence *composite_fence; 264 265 /** actual size of execobj[] as we may extend it for the cmdparser */ 266 unsigned int buffer_count; 267 268 /* number of batches in execbuf IOCTL */ 269 unsigned int num_batches; 270 271 /** list of vma not yet bound during reservation phase */ 272 struct list_head unbound; 273 274 /** list of vma that have execobj.relocation_count */ 275 struct list_head relocs; 276 277 struct i915_gem_ww_ctx ww; 278 279 /** 280 * Track the most recently used object for relocations, as we 281 * frequently have to perform multiple relocations within the same 282 * obj/page 283 */ 284 struct reloc_cache { 285 struct drm_mm_node node; /** temporary GTT binding */ 286 unsigned long vaddr; /** Current kmap address */ 287 unsigned long page; /** Currently mapped page index */ 288 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */ 289 bool use_64bit_reloc : 1; 290 bool has_llc : 1; 291 bool has_fence : 1; 292 bool needs_unfenced : 1; 293 } reloc_cache; 294 295 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 296 297 /** Length of batch within object */ 298 u64 batch_len[MAX_ENGINE_INSTANCE + 1]; 299 u32 batch_start_offset; /** Location within object of batch */ 300 u32 batch_flags; /** Flags composed for emit_bb_start() */ 301 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */ 302 303 /** 304 * Indicate either the size of the hastable used to resolve 305 * relocation handles, or if negative that we are using a direct 306 * index into the execobj[]. 307 */ 308 int lut_size; 309 struct hlist_head *buckets; /** ht for relocation handles */ 310 311 struct eb_fence *fences; 312 unsigned long num_fences; 313 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 314 struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1]; 315 #endif 316 }; 317 318 static int eb_parse(struct i915_execbuffer *eb); 319 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle); 320 static void eb_unpin_engine(struct i915_execbuffer *eb); 321 static void eb_capture_release(struct i915_execbuffer *eb); 322 323 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) 324 { 325 return intel_engine_requires_cmd_parser(eb->context->engine) || 326 (intel_engine_using_cmd_parser(eb->context->engine) && 327 eb->args->batch_len); 328 } 329 330 static int eb_create(struct i915_execbuffer *eb) 331 { 332 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 333 unsigned int size = 1 + ilog2(eb->buffer_count); 334 335 /* 336 * Without a 1:1 association between relocation handles and 337 * the execobject[] index, we instead create a hashtable. 338 * We size it dynamically based on available memory, starting 339 * first with 1:1 assocative hash and scaling back until 340 * the allocation succeeds. 341 * 342 * Later on we use a positive lut_size to indicate we are 343 * using this hashtable, and a negative value to indicate a 344 * direct lookup. 345 */ 346 do { 347 gfp_t flags; 348 349 /* While we can still reduce the allocation size, don't 350 * raise a warning and allow the allocation to fail. 351 * On the last pass though, we want to try as hard 352 * as possible to perform the allocation and warn 353 * if it fails. 354 */ 355 flags = GFP_KERNEL; 356 if (size > 1) 357 flags |= __GFP_NORETRY | __GFP_NOWARN; 358 359 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 360 flags); 361 if (eb->buckets) 362 break; 363 } while (--size); 364 365 if (unlikely(!size)) 366 return -ENOMEM; 367 368 eb->lut_size = size; 369 } else { 370 eb->lut_size = -eb->buffer_count; 371 } 372 373 return 0; 374 } 375 376 static bool 377 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 378 const struct i915_vma *vma, 379 unsigned int flags) 380 { 381 if (vma->node.size < entry->pad_to_size) 382 return true; 383 384 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) 385 return true; 386 387 if (flags & EXEC_OBJECT_PINNED && 388 vma->node.start != entry->offset) 389 return true; 390 391 if (flags & __EXEC_OBJECT_NEEDS_BIAS && 392 vma->node.start < BATCH_OFFSET_BIAS) 393 return true; 394 395 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 396 (vma->node.start + vma->node.size + 4095) >> 32) 397 return true; 398 399 if (flags & __EXEC_OBJECT_NEEDS_MAP && 400 !i915_vma_is_map_and_fenceable(vma)) 401 return true; 402 403 return false; 404 } 405 406 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry, 407 unsigned int exec_flags) 408 { 409 u64 pin_flags = 0; 410 411 if (exec_flags & EXEC_OBJECT_NEEDS_GTT) 412 pin_flags |= PIN_GLOBAL; 413 414 /* 415 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 416 * limit address to the first 4GBs for unflagged objects. 417 */ 418 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 419 pin_flags |= PIN_ZONE_4G; 420 421 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) 422 pin_flags |= PIN_MAPPABLE; 423 424 if (exec_flags & EXEC_OBJECT_PINNED) 425 pin_flags |= entry->offset | PIN_OFFSET_FIXED; 426 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) 427 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 428 429 return pin_flags; 430 } 431 432 static inline int 433 eb_pin_vma(struct i915_execbuffer *eb, 434 const struct drm_i915_gem_exec_object2 *entry, 435 struct eb_vma *ev) 436 { 437 struct i915_vma *vma = ev->vma; 438 u64 pin_flags; 439 int err; 440 441 if (vma->node.size) 442 pin_flags = vma->node.start; 443 else 444 pin_flags = entry->offset & PIN_OFFSET_MASK; 445 446 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE; 447 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) 448 pin_flags |= PIN_GLOBAL; 449 450 /* Attempt to reuse the current location if available */ 451 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags); 452 if (err == -EDEADLK) 453 return err; 454 455 if (unlikely(err)) { 456 if (entry->flags & EXEC_OBJECT_PINNED) 457 return err; 458 459 /* Failing that pick any _free_ space if suitable */ 460 err = i915_vma_pin_ww(vma, &eb->ww, 461 entry->pad_to_size, 462 entry->alignment, 463 eb_pin_flags(entry, ev->flags) | 464 PIN_USER | PIN_NOEVICT | PIN_VALIDATE); 465 if (unlikely(err)) 466 return err; 467 } 468 469 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 470 err = i915_vma_pin_fence(vma); 471 if (unlikely(err)) 472 return err; 473 474 if (vma->fence) 475 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 476 } 477 478 ev->flags |= __EXEC_OBJECT_HAS_PIN; 479 if (eb_vma_misplaced(entry, vma, ev->flags)) 480 return -EBADSLT; 481 482 return 0; 483 } 484 485 static inline void 486 eb_unreserve_vma(struct eb_vma *ev) 487 { 488 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE)) 489 __i915_vma_unpin_fence(ev->vma); 490 491 ev->flags &= ~__EXEC_OBJECT_RESERVED; 492 } 493 494 static int 495 eb_validate_vma(struct i915_execbuffer *eb, 496 struct drm_i915_gem_exec_object2 *entry, 497 struct i915_vma *vma) 498 { 499 /* Relocations are disallowed for all platforms after TGL-LP. This 500 * also covers all platforms with local memory. 501 */ 502 if (entry->relocation_count && 503 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915)) 504 return -EINVAL; 505 506 if (unlikely(entry->flags & eb->invalid_flags)) 507 return -EINVAL; 508 509 if (unlikely(entry->alignment && 510 !is_power_of_2_u64(entry->alignment))) 511 return -EINVAL; 512 513 /* 514 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 515 * any non-page-aligned or non-canonical addresses. 516 */ 517 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 518 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) 519 return -EINVAL; 520 521 /* pad_to_size was once a reserved field, so sanitize it */ 522 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 523 if (unlikely(offset_in_page(entry->pad_to_size))) 524 return -EINVAL; 525 } else { 526 entry->pad_to_size = 0; 527 } 528 /* 529 * From drm_mm perspective address space is continuous, 530 * so from this point we're always using non-canonical 531 * form internally. 532 */ 533 entry->offset = gen8_noncanonical_addr(entry->offset); 534 535 if (!eb->reloc_cache.has_fence) { 536 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 537 } else { 538 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 539 eb->reloc_cache.needs_unfenced) && 540 i915_gem_object_is_tiled(vma->obj)) 541 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 542 } 543 544 return 0; 545 } 546 547 static inline bool 548 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx) 549 { 550 return eb->args->flags & I915_EXEC_BATCH_FIRST ? 551 buffer_idx < eb->num_batches : 552 buffer_idx >= eb->args->buffer_count - eb->num_batches; 553 } 554 555 static int 556 eb_add_vma(struct i915_execbuffer *eb, 557 unsigned int *current_batch, 558 unsigned int i, 559 struct i915_vma *vma) 560 { 561 struct drm_i915_private *i915 = eb->i915; 562 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 563 struct eb_vma *ev = &eb->vma[i]; 564 565 ev->vma = vma; 566 ev->exec = entry; 567 ev->flags = entry->flags; 568 569 if (eb->lut_size > 0) { 570 ev->handle = entry->handle; 571 hlist_add_head(&ev->node, 572 &eb->buckets[hash_32(entry->handle, 573 eb->lut_size)]); 574 } 575 576 if (entry->relocation_count) 577 list_add_tail(&ev->reloc_link, &eb->relocs); 578 579 /* 580 * SNA is doing fancy tricks with compressing batch buffers, which leads 581 * to negative relocation deltas. Usually that works out ok since the 582 * relocate address is still positive, except when the batch is placed 583 * very low in the GTT. Ensure this doesn't happen. 584 * 585 * Note that actual hangs have only been observed on gen7, but for 586 * paranoia do it everywhere. 587 */ 588 if (is_batch_buffer(eb, i)) { 589 if (entry->relocation_count && 590 !(ev->flags & EXEC_OBJECT_PINNED)) 591 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; 592 if (eb->reloc_cache.has_fence) 593 ev->flags |= EXEC_OBJECT_NEEDS_FENCE; 594 595 eb->batches[*current_batch] = ev; 596 597 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) { 598 drm_dbg(&i915->drm, 599 "Attempting to use self-modifying batch buffer\n"); 600 return -EINVAL; 601 } 602 603 if (range_overflows_t(u64, 604 eb->batch_start_offset, 605 eb->args->batch_len, 606 ev->vma->size)) { 607 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); 608 return -EINVAL; 609 } 610 611 if (eb->args->batch_len == 0) 612 eb->batch_len[*current_batch] = ev->vma->size - 613 eb->batch_start_offset; 614 else 615 eb->batch_len[*current_batch] = eb->args->batch_len; 616 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */ 617 drm_dbg(&i915->drm, "Invalid batch length\n"); 618 return -EINVAL; 619 } 620 621 ++*current_batch; 622 } 623 624 return 0; 625 } 626 627 static inline int use_cpu_reloc(const struct reloc_cache *cache, 628 const struct drm_i915_gem_object *obj) 629 { 630 if (!i915_gem_object_has_struct_page(obj)) 631 return false; 632 633 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 634 return true; 635 636 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 637 return false; 638 639 return (cache->has_llc || 640 obj->cache_dirty || 641 obj->cache_level != I915_CACHE_NONE); 642 } 643 644 static int eb_reserve_vma(struct i915_execbuffer *eb, 645 struct eb_vma *ev, 646 u64 pin_flags) 647 { 648 struct drm_i915_gem_exec_object2 *entry = ev->exec; 649 struct i915_vma *vma = ev->vma; 650 int err; 651 652 if (drm_mm_node_allocated(&vma->node) && 653 eb_vma_misplaced(entry, vma, ev->flags)) { 654 err = i915_vma_unbind(vma); 655 if (err) 656 return err; 657 } 658 659 err = i915_vma_pin_ww(vma, &eb->ww, 660 entry->pad_to_size, entry->alignment, 661 eb_pin_flags(entry, ev->flags) | pin_flags); 662 if (err) 663 return err; 664 665 if (entry->offset != vma->node.start) { 666 entry->offset = vma->node.start | UPDATE; 667 eb->args->flags |= __EXEC_HAS_RELOC; 668 } 669 670 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 671 err = i915_vma_pin_fence(vma); 672 if (unlikely(err)) 673 return err; 674 675 if (vma->fence) 676 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 677 } 678 679 ev->flags |= __EXEC_OBJECT_HAS_PIN; 680 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); 681 682 return 0; 683 } 684 685 static bool eb_unbind(struct i915_execbuffer *eb, bool force) 686 { 687 const unsigned int count = eb->buffer_count; 688 unsigned int i; 689 struct list_head last; 690 bool unpinned = false; 691 692 /* Resort *all* the objects into priority order */ 693 INIT_LIST_HEAD(&eb->unbound); 694 INIT_LIST_HEAD(&last); 695 696 for (i = 0; i < count; i++) { 697 struct eb_vma *ev = &eb->vma[i]; 698 unsigned int flags = ev->flags; 699 700 if (!force && flags & EXEC_OBJECT_PINNED && 701 flags & __EXEC_OBJECT_HAS_PIN) 702 continue; 703 704 unpinned = true; 705 eb_unreserve_vma(ev); 706 707 if (flags & EXEC_OBJECT_PINNED) 708 /* Pinned must have their slot */ 709 list_add(&ev->bind_link, &eb->unbound); 710 else if (flags & __EXEC_OBJECT_NEEDS_MAP) 711 /* Map require the lowest 256MiB (aperture) */ 712 list_add_tail(&ev->bind_link, &eb->unbound); 713 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 714 /* Prioritise 4GiB region for restricted bo */ 715 list_add(&ev->bind_link, &last); 716 else 717 list_add_tail(&ev->bind_link, &last); 718 } 719 720 list_splice_tail(&last, &eb->unbound); 721 return unpinned; 722 } 723 724 static int eb_reserve(struct i915_execbuffer *eb) 725 { 726 struct eb_vma *ev; 727 unsigned int pass; 728 int err = 0; 729 bool unpinned; 730 731 /* 732 * Attempt to pin all of the buffers into the GTT. 733 * This is done in 2 phases: 734 * 735 * 1. Unbind all objects that do not match the GTT constraints for 736 * the execbuffer (fenceable, mappable, alignment etc). 737 * 2. Bind new objects. 738 * 739 * This avoid unnecessary unbinding of later objects in order to make 740 * room for the earlier objects *unless* we need to defragment. 741 * 742 * Defragmenting is skipped if all objects are pinned at a fixed location. 743 */ 744 for (pass = 0; pass <= 2; pass++) { 745 int pin_flags = PIN_USER | PIN_VALIDATE; 746 747 if (pass == 0) 748 pin_flags |= PIN_NONBLOCK; 749 750 if (pass >= 1) 751 unpinned = eb_unbind(eb, pass == 2); 752 753 if (pass == 2) { 754 err = mutex_lock_interruptible(&eb->context->vm->mutex); 755 if (!err) { 756 err = i915_gem_evict_vm(eb->context->vm, &eb->ww); 757 mutex_unlock(&eb->context->vm->mutex); 758 } 759 if (err) 760 return err; 761 } 762 763 list_for_each_entry(ev, &eb->unbound, bind_link) { 764 err = eb_reserve_vma(eb, ev, pin_flags); 765 if (err) 766 break; 767 } 768 769 if (err != -ENOSPC) 770 break; 771 } 772 773 return err; 774 } 775 776 static int eb_select_context(struct i915_execbuffer *eb) 777 { 778 struct i915_gem_context *ctx; 779 780 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 781 if (unlikely(IS_ERR(ctx))) 782 return PTR_ERR(ctx); 783 784 eb->gem_context = ctx; 785 if (i915_gem_context_has_full_ppgtt(ctx)) 786 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 787 788 return 0; 789 } 790 791 static int __eb_add_lut(struct i915_execbuffer *eb, 792 u32 handle, struct i915_vma *vma) 793 { 794 struct i915_gem_context *ctx = eb->gem_context; 795 struct i915_lut_handle *lut; 796 int err; 797 798 lut = i915_lut_handle_alloc(); 799 if (unlikely(!lut)) 800 return -ENOMEM; 801 802 i915_vma_get(vma); 803 if (!atomic_fetch_inc(&vma->open_count)) 804 i915_vma_reopen(vma); 805 lut->handle = handle; 806 lut->ctx = ctx; 807 808 /* Check that the context hasn't been closed in the meantime */ 809 err = -EINTR; 810 if (!mutex_lock_interruptible(&ctx->lut_mutex)) { 811 if (likely(!i915_gem_context_is_closed(ctx))) 812 err = radix_tree_insert(&ctx->handles_vma, handle, vma); 813 else 814 err = -ENOENT; 815 if (err == 0) { /* And nor has this handle */ 816 struct drm_i915_gem_object *obj = vma->obj; 817 818 spin_lock(&obj->lut_lock); 819 if (idr_find(&eb->file->object_idr, handle) == obj) { 820 list_add(&lut->obj_link, &obj->lut_list); 821 } else { 822 radix_tree_delete(&ctx->handles_vma, handle); 823 err = -ENOENT; 824 } 825 spin_unlock(&obj->lut_lock); 826 } 827 mutex_unlock(&ctx->lut_mutex); 828 } 829 if (unlikely(err)) 830 goto err; 831 832 return 0; 833 834 err: 835 i915_vma_close(vma); 836 i915_vma_put(vma); 837 i915_lut_handle_free(lut); 838 return err; 839 } 840 841 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle) 842 { 843 struct i915_address_space *vm = eb->context->vm; 844 845 do { 846 struct drm_i915_gem_object *obj; 847 struct i915_vma *vma; 848 int err; 849 850 rcu_read_lock(); 851 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle); 852 if (likely(vma && vma->vm == vm)) 853 vma = i915_vma_tryget(vma); 854 rcu_read_unlock(); 855 if (likely(vma)) 856 return vma; 857 858 obj = i915_gem_object_lookup(eb->file, handle); 859 if (unlikely(!obj)) 860 return ERR_PTR(-ENOENT); 861 862 /* 863 * If the user has opted-in for protected-object tracking, make 864 * sure the object encryption can be used. 865 * We only need to do this when the object is first used with 866 * this context, because the context itself will be banned when 867 * the protected objects become invalid. 868 */ 869 if (i915_gem_context_uses_protected_content(eb->gem_context) && 870 i915_gem_object_is_protected(obj)) { 871 err = intel_pxp_key_check(&vm->gt->pxp, obj, true); 872 if (err) { 873 i915_gem_object_put(obj); 874 return ERR_PTR(err); 875 } 876 } 877 878 vma = i915_vma_instance(obj, vm, NULL); 879 if (IS_ERR(vma)) { 880 i915_gem_object_put(obj); 881 return vma; 882 } 883 884 err = __eb_add_lut(eb, handle, vma); 885 if (likely(!err)) 886 return vma; 887 888 i915_gem_object_put(obj); 889 if (err != -EEXIST) 890 return ERR_PTR(err); 891 } while (1); 892 } 893 894 static int eb_lookup_vmas(struct i915_execbuffer *eb) 895 { 896 unsigned int i, current_batch = 0; 897 int err = 0; 898 899 INIT_LIST_HEAD(&eb->relocs); 900 901 for (i = 0; i < eb->buffer_count; i++) { 902 struct i915_vma *vma; 903 904 vma = eb_lookup_vma(eb, eb->exec[i].handle); 905 if (IS_ERR(vma)) { 906 err = PTR_ERR(vma); 907 goto err; 908 } 909 910 err = eb_validate_vma(eb, &eb->exec[i], vma); 911 if (unlikely(err)) { 912 i915_vma_put(vma); 913 goto err; 914 } 915 916 err = eb_add_vma(eb, ¤t_batch, i, vma); 917 if (err) 918 return err; 919 920 if (i915_gem_object_is_userptr(vma->obj)) { 921 err = i915_gem_object_userptr_submit_init(vma->obj); 922 if (err) { 923 if (i + 1 < eb->buffer_count) { 924 /* 925 * Execbuffer code expects last vma entry to be NULL, 926 * since we already initialized this entry, 927 * set the next value to NULL or we mess up 928 * cleanup handling. 929 */ 930 eb->vma[i + 1].vma = NULL; 931 } 932 933 return err; 934 } 935 936 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT; 937 eb->args->flags |= __EXEC_USERPTR_USED; 938 } 939 } 940 941 return 0; 942 943 err: 944 eb->vma[i].vma = NULL; 945 return err; 946 } 947 948 static int eb_lock_vmas(struct i915_execbuffer *eb) 949 { 950 unsigned int i; 951 int err; 952 953 for (i = 0; i < eb->buffer_count; i++) { 954 struct eb_vma *ev = &eb->vma[i]; 955 struct i915_vma *vma = ev->vma; 956 957 err = i915_gem_object_lock(vma->obj, &eb->ww); 958 if (err) 959 return err; 960 } 961 962 return 0; 963 } 964 965 static int eb_validate_vmas(struct i915_execbuffer *eb) 966 { 967 unsigned int i; 968 int err; 969 970 INIT_LIST_HEAD(&eb->unbound); 971 972 err = eb_lock_vmas(eb); 973 if (err) 974 return err; 975 976 for (i = 0; i < eb->buffer_count; i++) { 977 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 978 struct eb_vma *ev = &eb->vma[i]; 979 struct i915_vma *vma = ev->vma; 980 981 err = eb_pin_vma(eb, entry, ev); 982 if (err == -EDEADLK) 983 return err; 984 985 if (!err) { 986 if (entry->offset != vma->node.start) { 987 entry->offset = vma->node.start | UPDATE; 988 eb->args->flags |= __EXEC_HAS_RELOC; 989 } 990 } else { 991 eb_unreserve_vma(ev); 992 993 list_add_tail(&ev->bind_link, &eb->unbound); 994 if (drm_mm_node_allocated(&vma->node)) { 995 err = i915_vma_unbind(vma); 996 if (err) 997 return err; 998 } 999 } 1000 1001 if (!(ev->flags & EXEC_OBJECT_WRITE)) { 1002 err = dma_resv_reserve_shared(vma->obj->base.resv, 1); 1003 if (err) 1004 return err; 1005 } 1006 1007 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && 1008 eb_vma_misplaced(&eb->exec[i], vma, ev->flags)); 1009 } 1010 1011 if (!list_empty(&eb->unbound)) 1012 return eb_reserve(eb); 1013 1014 return 0; 1015 } 1016 1017 static struct eb_vma * 1018 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 1019 { 1020 if (eb->lut_size < 0) { 1021 if (handle >= -eb->lut_size) 1022 return NULL; 1023 return &eb->vma[handle]; 1024 } else { 1025 struct hlist_head *head; 1026 struct eb_vma *ev; 1027 1028 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 1029 hlist_for_each_entry(ev, head, node) { 1030 if (ev->handle == handle) 1031 return ev; 1032 } 1033 return NULL; 1034 } 1035 } 1036 1037 static void eb_release_vmas(struct i915_execbuffer *eb, bool final) 1038 { 1039 const unsigned int count = eb->buffer_count; 1040 unsigned int i; 1041 1042 for (i = 0; i < count; i++) { 1043 struct eb_vma *ev = &eb->vma[i]; 1044 struct i915_vma *vma = ev->vma; 1045 1046 if (!vma) 1047 break; 1048 1049 eb_unreserve_vma(ev); 1050 1051 if (final) 1052 i915_vma_put(vma); 1053 } 1054 1055 eb_capture_release(eb); 1056 eb_unpin_engine(eb); 1057 } 1058 1059 static void eb_destroy(const struct i915_execbuffer *eb) 1060 { 1061 if (eb->lut_size > 0) 1062 kfree(eb->buckets); 1063 } 1064 1065 static inline u64 1066 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 1067 const struct i915_vma *target) 1068 { 1069 return gen8_canonical_addr((int)reloc->delta + target->node.start); 1070 } 1071 1072 static void reloc_cache_init(struct reloc_cache *cache, 1073 struct drm_i915_private *i915) 1074 { 1075 cache->page = -1; 1076 cache->vaddr = 0; 1077 /* Must be a variable in the struct to allow GCC to unroll. */ 1078 cache->graphics_ver = GRAPHICS_VER(i915); 1079 cache->has_llc = HAS_LLC(i915); 1080 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 1081 cache->has_fence = cache->graphics_ver < 4; 1082 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 1083 cache->node.flags = 0; 1084 } 1085 1086 static inline void *unmask_page(unsigned long p) 1087 { 1088 return (void *)(uintptr_t)(p & PAGE_MASK); 1089 } 1090 1091 static inline unsigned int unmask_flags(unsigned long p) 1092 { 1093 return p & ~PAGE_MASK; 1094 } 1095 1096 #define KMAP 0x4 /* after CLFLUSH_FLAGS */ 1097 1098 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 1099 { 1100 struct drm_i915_private *i915 = 1101 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 1102 return to_gt(i915)->ggtt; 1103 } 1104 1105 static void reloc_cache_unmap(struct reloc_cache *cache) 1106 { 1107 void *vaddr; 1108 1109 if (!cache->vaddr) 1110 return; 1111 1112 vaddr = unmask_page(cache->vaddr); 1113 if (cache->vaddr & KMAP) 1114 kunmap_atomic(vaddr); 1115 else 1116 io_mapping_unmap_atomic((void __iomem *)vaddr); 1117 } 1118 1119 static void reloc_cache_remap(struct reloc_cache *cache, 1120 struct drm_i915_gem_object *obj) 1121 { 1122 void *vaddr; 1123 1124 if (!cache->vaddr) 1125 return; 1126 1127 if (cache->vaddr & KMAP) { 1128 struct page *page = i915_gem_object_get_page(obj, cache->page); 1129 1130 vaddr = kmap_atomic(page); 1131 cache->vaddr = unmask_flags(cache->vaddr) | 1132 (unsigned long)vaddr; 1133 } else { 1134 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1135 unsigned long offset; 1136 1137 offset = cache->node.start; 1138 if (!drm_mm_node_allocated(&cache->node)) 1139 offset += cache->page << PAGE_SHIFT; 1140 1141 cache->vaddr = (unsigned long) 1142 io_mapping_map_atomic_wc(&ggtt->iomap, offset); 1143 } 1144 } 1145 1146 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb) 1147 { 1148 void *vaddr; 1149 1150 if (!cache->vaddr) 1151 return; 1152 1153 vaddr = unmask_page(cache->vaddr); 1154 if (cache->vaddr & KMAP) { 1155 struct drm_i915_gem_object *obj = 1156 (struct drm_i915_gem_object *)cache->node.mm; 1157 if (cache->vaddr & CLFLUSH_AFTER) 1158 mb(); 1159 1160 kunmap_atomic(vaddr); 1161 i915_gem_object_finish_access(obj); 1162 } else { 1163 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1164 1165 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1166 io_mapping_unmap_atomic((void __iomem *)vaddr); 1167 1168 if (drm_mm_node_allocated(&cache->node)) { 1169 ggtt->vm.clear_range(&ggtt->vm, 1170 cache->node.start, 1171 cache->node.size); 1172 mutex_lock(&ggtt->vm.mutex); 1173 drm_mm_remove_node(&cache->node); 1174 mutex_unlock(&ggtt->vm.mutex); 1175 } else { 1176 i915_vma_unpin((struct i915_vma *)cache->node.mm); 1177 } 1178 } 1179 1180 cache->vaddr = 0; 1181 cache->page = -1; 1182 } 1183 1184 static void *reloc_kmap(struct drm_i915_gem_object *obj, 1185 struct reloc_cache *cache, 1186 unsigned long pageno) 1187 { 1188 void *vaddr; 1189 struct page *page; 1190 1191 if (cache->vaddr) { 1192 kunmap_atomic(unmask_page(cache->vaddr)); 1193 } else { 1194 unsigned int flushes; 1195 int err; 1196 1197 err = i915_gem_object_prepare_write(obj, &flushes); 1198 if (err) 1199 return ERR_PTR(err); 1200 1201 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 1202 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); 1203 1204 cache->vaddr = flushes | KMAP; 1205 cache->node.mm = (void *)obj; 1206 if (flushes) 1207 mb(); 1208 } 1209 1210 page = i915_gem_object_get_page(obj, pageno); 1211 if (!obj->mm.dirty) 1212 set_page_dirty(page); 1213 1214 vaddr = kmap_atomic(page); 1215 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 1216 cache->page = pageno; 1217 1218 return vaddr; 1219 } 1220 1221 static void *reloc_iomap(struct i915_vma *batch, 1222 struct i915_execbuffer *eb, 1223 unsigned long page) 1224 { 1225 struct drm_i915_gem_object *obj = batch->obj; 1226 struct reloc_cache *cache = &eb->reloc_cache; 1227 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1228 unsigned long offset; 1229 void *vaddr; 1230 1231 if (cache->vaddr) { 1232 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1233 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1234 } else { 1235 struct i915_vma *vma = ERR_PTR(-ENODEV); 1236 int err; 1237 1238 if (i915_gem_object_is_tiled(obj)) 1239 return ERR_PTR(-EINVAL); 1240 1241 if (use_cpu_reloc(cache, obj)) 1242 return NULL; 1243 1244 err = i915_gem_object_set_to_gtt_domain(obj, true); 1245 if (err) 1246 return ERR_PTR(err); 1247 1248 /* 1249 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch 1250 * VMA from the object list because we no longer pin. 1251 * 1252 * Only attempt to pin the batch buffer to ggtt if the current batch 1253 * is not inside ggtt, or the batch buffer is not misplaced. 1254 */ 1255 if (!i915_is_ggtt(batch->vm)) { 1256 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0, 1257 PIN_MAPPABLE | 1258 PIN_NONBLOCK /* NOWARN */ | 1259 PIN_NOEVICT); 1260 } else if (i915_vma_is_map_and_fenceable(batch)) { 1261 __i915_vma_pin(batch); 1262 vma = batch; 1263 } 1264 1265 if (vma == ERR_PTR(-EDEADLK)) 1266 return vma; 1267 1268 if (IS_ERR(vma)) { 1269 memset(&cache->node, 0, sizeof(cache->node)); 1270 mutex_lock(&ggtt->vm.mutex); 1271 err = drm_mm_insert_node_in_range 1272 (&ggtt->vm.mm, &cache->node, 1273 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1274 0, ggtt->mappable_end, 1275 DRM_MM_INSERT_LOW); 1276 mutex_unlock(&ggtt->vm.mutex); 1277 if (err) /* no inactive aperture space, use cpu reloc */ 1278 return NULL; 1279 } else { 1280 cache->node.start = vma->node.start; 1281 cache->node.mm = (void *)vma; 1282 } 1283 } 1284 1285 offset = cache->node.start; 1286 if (drm_mm_node_allocated(&cache->node)) { 1287 ggtt->vm.insert_page(&ggtt->vm, 1288 i915_gem_object_get_dma_address(obj, page), 1289 offset, I915_CACHE_NONE, 0); 1290 } else { 1291 offset += page << PAGE_SHIFT; 1292 } 1293 1294 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, 1295 offset); 1296 cache->page = page; 1297 cache->vaddr = (unsigned long)vaddr; 1298 1299 return vaddr; 1300 } 1301 1302 static void *reloc_vaddr(struct i915_vma *vma, 1303 struct i915_execbuffer *eb, 1304 unsigned long page) 1305 { 1306 struct reloc_cache *cache = &eb->reloc_cache; 1307 void *vaddr; 1308 1309 if (cache->page == page) { 1310 vaddr = unmask_page(cache->vaddr); 1311 } else { 1312 vaddr = NULL; 1313 if ((cache->vaddr & KMAP) == 0) 1314 vaddr = reloc_iomap(vma, eb, page); 1315 if (!vaddr) 1316 vaddr = reloc_kmap(vma->obj, cache, page); 1317 } 1318 1319 return vaddr; 1320 } 1321 1322 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1323 { 1324 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1325 if (flushes & CLFLUSH_BEFORE) { 1326 clflushopt(addr); 1327 mb(); 1328 } 1329 1330 *addr = value; 1331 1332 /* 1333 * Writes to the same cacheline are serialised by the CPU 1334 * (including clflush). On the write path, we only require 1335 * that it hits memory in an orderly fashion and place 1336 * mb barriers at the start and end of the relocation phase 1337 * to ensure ordering of clflush wrt to the system. 1338 */ 1339 if (flushes & CLFLUSH_AFTER) 1340 clflushopt(addr); 1341 } else 1342 *addr = value; 1343 } 1344 1345 static u64 1346 relocate_entry(struct i915_vma *vma, 1347 const struct drm_i915_gem_relocation_entry *reloc, 1348 struct i915_execbuffer *eb, 1349 const struct i915_vma *target) 1350 { 1351 u64 target_addr = relocation_target(reloc, target); 1352 u64 offset = reloc->offset; 1353 bool wide = eb->reloc_cache.use_64bit_reloc; 1354 void *vaddr; 1355 1356 repeat: 1357 vaddr = reloc_vaddr(vma, eb, 1358 offset >> PAGE_SHIFT); 1359 if (IS_ERR(vaddr)) 1360 return PTR_ERR(vaddr); 1361 1362 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32))); 1363 clflush_write32(vaddr + offset_in_page(offset), 1364 lower_32_bits(target_addr), 1365 eb->reloc_cache.vaddr); 1366 1367 if (wide) { 1368 offset += sizeof(u32); 1369 target_addr >>= 32; 1370 wide = false; 1371 goto repeat; 1372 } 1373 1374 return target->node.start | UPDATE; 1375 } 1376 1377 static u64 1378 eb_relocate_entry(struct i915_execbuffer *eb, 1379 struct eb_vma *ev, 1380 const struct drm_i915_gem_relocation_entry *reloc) 1381 { 1382 struct drm_i915_private *i915 = eb->i915; 1383 struct eb_vma *target; 1384 int err; 1385 1386 /* we've already hold a reference to all valid objects */ 1387 target = eb_get_vma(eb, reloc->target_handle); 1388 if (unlikely(!target)) 1389 return -ENOENT; 1390 1391 /* Validate that the target is in a valid r/w GPU domain */ 1392 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1393 drm_dbg(&i915->drm, "reloc with multiple write domains: " 1394 "target %d offset %d " 1395 "read %08x write %08x", 1396 reloc->target_handle, 1397 (int) reloc->offset, 1398 reloc->read_domains, 1399 reloc->write_domain); 1400 return -EINVAL; 1401 } 1402 if (unlikely((reloc->write_domain | reloc->read_domains) 1403 & ~I915_GEM_GPU_DOMAINS)) { 1404 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " 1405 "target %d offset %d " 1406 "read %08x write %08x", 1407 reloc->target_handle, 1408 (int) reloc->offset, 1409 reloc->read_domains, 1410 reloc->write_domain); 1411 return -EINVAL; 1412 } 1413 1414 if (reloc->write_domain) { 1415 target->flags |= EXEC_OBJECT_WRITE; 1416 1417 /* 1418 * Sandybridge PPGTT errata: We need a global gtt mapping 1419 * for MI and pipe_control writes because the gpu doesn't 1420 * properly redirect them through the ppgtt for non_secure 1421 * batchbuffers. 1422 */ 1423 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1424 GRAPHICS_VER(eb->i915) == 6 && 1425 !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) { 1426 struct i915_vma *vma = target->vma; 1427 1428 reloc_cache_unmap(&eb->reloc_cache); 1429 mutex_lock(&vma->vm->mutex); 1430 err = i915_vma_bind(target->vma, 1431 target->vma->obj->cache_level, 1432 PIN_GLOBAL, NULL, NULL); 1433 mutex_unlock(&vma->vm->mutex); 1434 reloc_cache_remap(&eb->reloc_cache, ev->vma->obj); 1435 if (err) 1436 return err; 1437 } 1438 } 1439 1440 /* 1441 * If the relocation already has the right value in it, no 1442 * more work needs to be done. 1443 */ 1444 if (!DBG_FORCE_RELOC && 1445 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset) 1446 return 0; 1447 1448 /* Check that the relocation address is valid... */ 1449 if (unlikely(reloc->offset > 1450 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1451 drm_dbg(&i915->drm, "Relocation beyond object bounds: " 1452 "target %d offset %d size %d.\n", 1453 reloc->target_handle, 1454 (int)reloc->offset, 1455 (int)ev->vma->size); 1456 return -EINVAL; 1457 } 1458 if (unlikely(reloc->offset & 3)) { 1459 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " 1460 "target %d offset %d.\n", 1461 reloc->target_handle, 1462 (int)reloc->offset); 1463 return -EINVAL; 1464 } 1465 1466 /* 1467 * If we write into the object, we need to force the synchronisation 1468 * barrier, either with an asynchronous clflush or if we executed the 1469 * patching using the GPU (though that should be serialised by the 1470 * timeline). To be completely sure, and since we are required to 1471 * do relocations we are already stalling, disable the user's opt 1472 * out of our synchronisation. 1473 */ 1474 ev->flags &= ~EXEC_OBJECT_ASYNC; 1475 1476 /* and update the user's relocation entry */ 1477 return relocate_entry(ev->vma, reloc, eb, target->vma); 1478 } 1479 1480 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) 1481 { 1482 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1483 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1484 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1485 struct drm_i915_gem_relocation_entry __user *urelocs = 1486 u64_to_user_ptr(entry->relocs_ptr); 1487 unsigned long remain = entry->relocation_count; 1488 1489 if (unlikely(remain > N_RELOC(ULONG_MAX))) 1490 return -EINVAL; 1491 1492 /* 1493 * We must check that the entire relocation array is safe 1494 * to read. However, if the array is not writable the user loses 1495 * the updated relocation values. 1496 */ 1497 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs)))) 1498 return -EFAULT; 1499 1500 do { 1501 struct drm_i915_gem_relocation_entry *r = stack; 1502 unsigned int count = 1503 min_t(unsigned long, remain, ARRAY_SIZE(stack)); 1504 unsigned int copied; 1505 1506 /* 1507 * This is the fast path and we cannot handle a pagefault 1508 * whilst holding the struct mutex lest the user pass in the 1509 * relocations contained within a mmaped bo. For in such a case 1510 * we, the page fault handler would call i915_gem_fault() and 1511 * we would try to acquire the struct mutex again. Obviously 1512 * this is bad and so lockdep complains vehemently. 1513 */ 1514 pagefault_disable(); 1515 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); 1516 pagefault_enable(); 1517 if (unlikely(copied)) { 1518 remain = -EFAULT; 1519 goto out; 1520 } 1521 1522 remain -= count; 1523 do { 1524 u64 offset = eb_relocate_entry(eb, ev, r); 1525 1526 if (likely(offset == 0)) { 1527 } else if ((s64)offset < 0) { 1528 remain = (int)offset; 1529 goto out; 1530 } else { 1531 /* 1532 * Note that reporting an error now 1533 * leaves everything in an inconsistent 1534 * state as we have *already* changed 1535 * the relocation value inside the 1536 * object. As we have not changed the 1537 * reloc.presumed_offset or will not 1538 * change the execobject.offset, on the 1539 * call we may not rewrite the value 1540 * inside the object, leaving it 1541 * dangling and causing a GPU hang. Unless 1542 * userspace dynamically rebuilds the 1543 * relocations on each execbuf rather than 1544 * presume a static tree. 1545 * 1546 * We did previously check if the relocations 1547 * were writable (access_ok), an error now 1548 * would be a strange race with mprotect, 1549 * having already demonstrated that we 1550 * can read from this userspace address. 1551 */ 1552 offset = gen8_canonical_addr(offset & ~UPDATE); 1553 __put_user(offset, 1554 &urelocs[r - stack].presumed_offset); 1555 } 1556 } while (r++, --count); 1557 urelocs += ARRAY_SIZE(stack); 1558 } while (remain); 1559 out: 1560 reloc_cache_reset(&eb->reloc_cache, eb); 1561 return remain; 1562 } 1563 1564 static int 1565 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev) 1566 { 1567 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1568 struct drm_i915_gem_relocation_entry *relocs = 1569 u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1570 unsigned int i; 1571 int err; 1572 1573 for (i = 0; i < entry->relocation_count; i++) { 1574 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]); 1575 1576 if ((s64)offset < 0) { 1577 err = (int)offset; 1578 goto err; 1579 } 1580 } 1581 err = 0; 1582 err: 1583 reloc_cache_reset(&eb->reloc_cache, eb); 1584 return err; 1585 } 1586 1587 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) 1588 { 1589 const char __user *addr, *end; 1590 unsigned long size; 1591 char __maybe_unused c; 1592 1593 size = entry->relocation_count; 1594 if (size == 0) 1595 return 0; 1596 1597 if (size > N_RELOC(ULONG_MAX)) 1598 return -EINVAL; 1599 1600 addr = u64_to_user_ptr(entry->relocs_ptr); 1601 size *= sizeof(struct drm_i915_gem_relocation_entry); 1602 if (!access_ok(addr, size)) 1603 return -EFAULT; 1604 1605 end = addr + size; 1606 for (; addr < end; addr += PAGE_SIZE) { 1607 int err = __get_user(c, addr); 1608 if (err) 1609 return err; 1610 } 1611 return __get_user(c, end - 1); 1612 } 1613 1614 static int eb_copy_relocations(const struct i915_execbuffer *eb) 1615 { 1616 struct drm_i915_gem_relocation_entry *relocs; 1617 const unsigned int count = eb->buffer_count; 1618 unsigned int i; 1619 int err; 1620 1621 for (i = 0; i < count; i++) { 1622 const unsigned int nreloc = eb->exec[i].relocation_count; 1623 struct drm_i915_gem_relocation_entry __user *urelocs; 1624 unsigned long size; 1625 unsigned long copied; 1626 1627 if (nreloc == 0) 1628 continue; 1629 1630 err = check_relocations(&eb->exec[i]); 1631 if (err) 1632 goto err; 1633 1634 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); 1635 size = nreloc * sizeof(*relocs); 1636 1637 relocs = kvmalloc_array(size, 1, GFP_KERNEL); 1638 if (!relocs) { 1639 err = -ENOMEM; 1640 goto err; 1641 } 1642 1643 /* copy_from_user is limited to < 4GiB */ 1644 copied = 0; 1645 do { 1646 unsigned int len = 1647 min_t(u64, BIT_ULL(31), size - copied); 1648 1649 if (__copy_from_user((char *)relocs + copied, 1650 (char __user *)urelocs + copied, 1651 len)) 1652 goto end; 1653 1654 copied += len; 1655 } while (copied < size); 1656 1657 /* 1658 * As we do not update the known relocation offsets after 1659 * relocating (due to the complexities in lock handling), 1660 * we need to mark them as invalid now so that we force the 1661 * relocation processing next time. Just in case the target 1662 * object is evicted and then rebound into its old 1663 * presumed_offset before the next execbuffer - if that 1664 * happened we would make the mistake of assuming that the 1665 * relocations were valid. 1666 */ 1667 if (!user_access_begin(urelocs, size)) 1668 goto end; 1669 1670 for (copied = 0; copied < nreloc; copied++) 1671 unsafe_put_user(-1, 1672 &urelocs[copied].presumed_offset, 1673 end_user); 1674 user_access_end(); 1675 1676 eb->exec[i].relocs_ptr = (uintptr_t)relocs; 1677 } 1678 1679 return 0; 1680 1681 end_user: 1682 user_access_end(); 1683 end: 1684 kvfree(relocs); 1685 err = -EFAULT; 1686 err: 1687 while (i--) { 1688 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); 1689 if (eb->exec[i].relocation_count) 1690 kvfree(relocs); 1691 } 1692 return err; 1693 } 1694 1695 static int eb_prefault_relocations(const struct i915_execbuffer *eb) 1696 { 1697 const unsigned int count = eb->buffer_count; 1698 unsigned int i; 1699 1700 for (i = 0; i < count; i++) { 1701 int err; 1702 1703 err = check_relocations(&eb->exec[i]); 1704 if (err) 1705 return err; 1706 } 1707 1708 return 0; 1709 } 1710 1711 static int eb_reinit_userptr(struct i915_execbuffer *eb) 1712 { 1713 const unsigned int count = eb->buffer_count; 1714 unsigned int i; 1715 int ret; 1716 1717 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED))) 1718 return 0; 1719 1720 for (i = 0; i < count; i++) { 1721 struct eb_vma *ev = &eb->vma[i]; 1722 1723 if (!i915_gem_object_is_userptr(ev->vma->obj)) 1724 continue; 1725 1726 ret = i915_gem_object_userptr_submit_init(ev->vma->obj); 1727 if (ret) 1728 return ret; 1729 1730 ev->flags |= __EXEC_OBJECT_USERPTR_INIT; 1731 } 1732 1733 return 0; 1734 } 1735 1736 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb) 1737 { 1738 bool have_copy = false; 1739 struct eb_vma *ev; 1740 int err = 0; 1741 1742 repeat: 1743 if (signal_pending(current)) { 1744 err = -ERESTARTSYS; 1745 goto out; 1746 } 1747 1748 /* We may process another execbuffer during the unlock... */ 1749 eb_release_vmas(eb, false); 1750 i915_gem_ww_ctx_fini(&eb->ww); 1751 1752 /* 1753 * We take 3 passes through the slowpatch. 1754 * 1755 * 1 - we try to just prefault all the user relocation entries and 1756 * then attempt to reuse the atomic pagefault disabled fast path again. 1757 * 1758 * 2 - we copy the user entries to a local buffer here outside of the 1759 * local and allow ourselves to wait upon any rendering before 1760 * relocations 1761 * 1762 * 3 - we already have a local copy of the relocation entries, but 1763 * were interrupted (EAGAIN) whilst waiting for the objects, try again. 1764 */ 1765 if (!err) { 1766 err = eb_prefault_relocations(eb); 1767 } else if (!have_copy) { 1768 err = eb_copy_relocations(eb); 1769 have_copy = err == 0; 1770 } else { 1771 cond_resched(); 1772 err = 0; 1773 } 1774 1775 if (!err) 1776 err = eb_reinit_userptr(eb); 1777 1778 i915_gem_ww_ctx_init(&eb->ww, true); 1779 if (err) 1780 goto out; 1781 1782 /* reacquire the objects */ 1783 repeat_validate: 1784 err = eb_pin_engine(eb, false); 1785 if (err) 1786 goto err; 1787 1788 err = eb_validate_vmas(eb); 1789 if (err) 1790 goto err; 1791 1792 GEM_BUG_ON(!eb->batches[0]); 1793 1794 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1795 if (!have_copy) { 1796 err = eb_relocate_vma(eb, ev); 1797 if (err) 1798 break; 1799 } else { 1800 err = eb_relocate_vma_slow(eb, ev); 1801 if (err) 1802 break; 1803 } 1804 } 1805 1806 if (err == -EDEADLK) 1807 goto err; 1808 1809 if (err && !have_copy) 1810 goto repeat; 1811 1812 if (err) 1813 goto err; 1814 1815 /* as last step, parse the command buffer */ 1816 err = eb_parse(eb); 1817 if (err) 1818 goto err; 1819 1820 /* 1821 * Leave the user relocations as are, this is the painfully slow path, 1822 * and we want to avoid the complication of dropping the lock whilst 1823 * having buffers reserved in the aperture and so causing spurious 1824 * ENOSPC for random operations. 1825 */ 1826 1827 err: 1828 if (err == -EDEADLK) { 1829 eb_release_vmas(eb, false); 1830 err = i915_gem_ww_ctx_backoff(&eb->ww); 1831 if (!err) 1832 goto repeat_validate; 1833 } 1834 1835 if (err == -EAGAIN) 1836 goto repeat; 1837 1838 out: 1839 if (have_copy) { 1840 const unsigned int count = eb->buffer_count; 1841 unsigned int i; 1842 1843 for (i = 0; i < count; i++) { 1844 const struct drm_i915_gem_exec_object2 *entry = 1845 &eb->exec[i]; 1846 struct drm_i915_gem_relocation_entry *relocs; 1847 1848 if (!entry->relocation_count) 1849 continue; 1850 1851 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1852 kvfree(relocs); 1853 } 1854 } 1855 1856 return err; 1857 } 1858 1859 static int eb_relocate_parse(struct i915_execbuffer *eb) 1860 { 1861 int err; 1862 bool throttle = true; 1863 1864 retry: 1865 err = eb_pin_engine(eb, throttle); 1866 if (err) { 1867 if (err != -EDEADLK) 1868 return err; 1869 1870 goto err; 1871 } 1872 1873 /* only throttle once, even if we didn't need to throttle */ 1874 throttle = false; 1875 1876 err = eb_validate_vmas(eb); 1877 if (err == -EAGAIN) 1878 goto slow; 1879 else if (err) 1880 goto err; 1881 1882 /* The objects are in their final locations, apply the relocations. */ 1883 if (eb->args->flags & __EXEC_HAS_RELOC) { 1884 struct eb_vma *ev; 1885 1886 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1887 err = eb_relocate_vma(eb, ev); 1888 if (err) 1889 break; 1890 } 1891 1892 if (err == -EDEADLK) 1893 goto err; 1894 else if (err) 1895 goto slow; 1896 } 1897 1898 if (!err) 1899 err = eb_parse(eb); 1900 1901 err: 1902 if (err == -EDEADLK) { 1903 eb_release_vmas(eb, false); 1904 err = i915_gem_ww_ctx_backoff(&eb->ww); 1905 if (!err) 1906 goto retry; 1907 } 1908 1909 return err; 1910 1911 slow: 1912 err = eb_relocate_parse_slow(eb); 1913 if (err) 1914 /* 1915 * If the user expects the execobject.offset and 1916 * reloc.presumed_offset to be an exact match, 1917 * as for using NO_RELOC, then we cannot update 1918 * the execobject.offset until we have completed 1919 * relocation. 1920 */ 1921 eb->args->flags &= ~__EXEC_HAS_RELOC; 1922 1923 return err; 1924 } 1925 1926 /* 1927 * Using two helper loops for the order of which requests / batches are created 1928 * and added the to backend. Requests are created in order from the parent to 1929 * the last child. Requests are added in the reverse order, from the last child 1930 * to parent. This is done for locking reasons as the timeline lock is acquired 1931 * during request creation and released when the request is added to the 1932 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be 1933 * the ordering. 1934 */ 1935 #define for_each_batch_create_order(_eb, _i) \ 1936 for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i)) 1937 #define for_each_batch_add_order(_eb, _i) \ 1938 BUILD_BUG_ON(!typecheck(int, _i)); \ 1939 for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i)) 1940 1941 static struct i915_request * 1942 eb_find_first_request_added(struct i915_execbuffer *eb) 1943 { 1944 int i; 1945 1946 for_each_batch_add_order(eb, i) 1947 if (eb->requests[i]) 1948 return eb->requests[i]; 1949 1950 GEM_BUG_ON("Request not found"); 1951 1952 return NULL; 1953 } 1954 1955 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 1956 1957 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */ 1958 static void eb_capture_stage(struct i915_execbuffer *eb) 1959 { 1960 const unsigned int count = eb->buffer_count; 1961 unsigned int i = count, j; 1962 1963 while (i--) { 1964 struct eb_vma *ev = &eb->vma[i]; 1965 struct i915_vma *vma = ev->vma; 1966 unsigned int flags = ev->flags; 1967 1968 if (!(flags & EXEC_OBJECT_CAPTURE)) 1969 continue; 1970 1971 for_each_batch_create_order(eb, j) { 1972 struct i915_capture_list *capture; 1973 1974 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 1975 if (!capture) 1976 continue; 1977 1978 capture->next = eb->capture_lists[j]; 1979 capture->vma_res = i915_vma_resource_get(vma->resource); 1980 eb->capture_lists[j] = capture; 1981 } 1982 } 1983 } 1984 1985 /* Commit once we're in the critical path */ 1986 static void eb_capture_commit(struct i915_execbuffer *eb) 1987 { 1988 unsigned int j; 1989 1990 for_each_batch_create_order(eb, j) { 1991 struct i915_request *rq = eb->requests[j]; 1992 1993 if (!rq) 1994 break; 1995 1996 rq->capture_list = eb->capture_lists[j]; 1997 eb->capture_lists[j] = NULL; 1998 } 1999 } 2000 2001 /* 2002 * Release anything that didn't get committed due to errors. 2003 * The capture_list will otherwise be freed at request retire. 2004 */ 2005 static void eb_capture_release(struct i915_execbuffer *eb) 2006 { 2007 unsigned int j; 2008 2009 for_each_batch_create_order(eb, j) { 2010 if (eb->capture_lists[j]) { 2011 i915_request_free_capture_list(eb->capture_lists[j]); 2012 eb->capture_lists[j] = NULL; 2013 } 2014 } 2015 } 2016 2017 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2018 { 2019 memset(eb->capture_lists, 0, sizeof(eb->capture_lists)); 2020 } 2021 2022 #else 2023 2024 static void eb_capture_stage(struct i915_execbuffer *eb) 2025 { 2026 } 2027 2028 static void eb_capture_commit(struct i915_execbuffer *eb) 2029 { 2030 } 2031 2032 static void eb_capture_release(struct i915_execbuffer *eb) 2033 { 2034 } 2035 2036 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2037 { 2038 } 2039 2040 #endif 2041 2042 static int eb_move_to_gpu(struct i915_execbuffer *eb) 2043 { 2044 const unsigned int count = eb->buffer_count; 2045 unsigned int i = count; 2046 int err = 0, j; 2047 2048 while (i--) { 2049 struct eb_vma *ev = &eb->vma[i]; 2050 struct i915_vma *vma = ev->vma; 2051 unsigned int flags = ev->flags; 2052 struct drm_i915_gem_object *obj = vma->obj; 2053 2054 assert_vma_held(vma); 2055 2056 /* 2057 * If the GPU is not _reading_ through the CPU cache, we need 2058 * to make sure that any writes (both previous GPU writes from 2059 * before a change in snooping levels and normal CPU writes) 2060 * caught in that cache are flushed to main memory. 2061 * 2062 * We want to say 2063 * obj->cache_dirty && 2064 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) 2065 * but gcc's optimiser doesn't handle that as well and emits 2066 * two jumps instead of one. Maybe one day... 2067 * 2068 * FIXME: There is also sync flushing in set_pages(), which 2069 * serves a different purpose(some of the time at least). 2070 * 2071 * We should consider: 2072 * 2073 * 1. Rip out the async flush code. 2074 * 2075 * 2. Or make the sync flushing use the async clflush path 2076 * using mandatory fences underneath. Currently the below 2077 * async flush happens after we bind the object. 2078 */ 2079 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { 2080 if (i915_gem_clflush_object(obj, 0)) 2081 flags &= ~EXEC_OBJECT_ASYNC; 2082 } 2083 2084 /* We only need to await on the first request */ 2085 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { 2086 err = i915_request_await_object 2087 (eb_find_first_request_added(eb), obj, 2088 flags & EXEC_OBJECT_WRITE); 2089 } 2090 2091 for_each_batch_add_order(eb, j) { 2092 if (err) 2093 break; 2094 if (!eb->requests[j]) 2095 continue; 2096 2097 err = _i915_vma_move_to_active(vma, eb->requests[j], 2098 j ? NULL : 2099 eb->composite_fence ? 2100 eb->composite_fence : 2101 &eb->requests[j]->fence, 2102 flags | __EXEC_OBJECT_NO_RESERVE); 2103 } 2104 } 2105 2106 #ifdef CONFIG_MMU_NOTIFIER 2107 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) { 2108 read_lock(&eb->i915->mm.notifier_lock); 2109 2110 /* 2111 * count is always at least 1, otherwise __EXEC_USERPTR_USED 2112 * could not have been set 2113 */ 2114 for (i = 0; i < count; i++) { 2115 struct eb_vma *ev = &eb->vma[i]; 2116 struct drm_i915_gem_object *obj = ev->vma->obj; 2117 2118 if (!i915_gem_object_is_userptr(obj)) 2119 continue; 2120 2121 err = i915_gem_object_userptr_submit_done(obj); 2122 if (err) 2123 break; 2124 } 2125 2126 read_unlock(&eb->i915->mm.notifier_lock); 2127 } 2128 #endif 2129 2130 if (unlikely(err)) 2131 goto err_skip; 2132 2133 /* Unconditionally flush any chipset caches (for streaming writes). */ 2134 intel_gt_chipset_flush(eb->gt); 2135 eb_capture_commit(eb); 2136 2137 return 0; 2138 2139 err_skip: 2140 for_each_batch_create_order(eb, j) { 2141 if (!eb->requests[j]) 2142 break; 2143 2144 i915_request_set_error_once(eb->requests[j], err); 2145 } 2146 return err; 2147 } 2148 2149 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) 2150 { 2151 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 2152 return -EINVAL; 2153 2154 /* Kernel clipping was a DRI1 misfeature */ 2155 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY | 2156 I915_EXEC_USE_EXTENSIONS))) { 2157 if (exec->num_cliprects || exec->cliprects_ptr) 2158 return -EINVAL; 2159 } 2160 2161 if (exec->DR4 == 0xffffffff) { 2162 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); 2163 exec->DR4 = 0; 2164 } 2165 if (exec->DR1 || exec->DR4) 2166 return -EINVAL; 2167 2168 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 2169 return -EINVAL; 2170 2171 return 0; 2172 } 2173 2174 static int i915_reset_gen7_sol_offsets(struct i915_request *rq) 2175 { 2176 u32 *cs; 2177 int i; 2178 2179 if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) { 2180 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n"); 2181 return -EINVAL; 2182 } 2183 2184 cs = intel_ring_begin(rq, 4 * 2 + 2); 2185 if (IS_ERR(cs)) 2186 return PTR_ERR(cs); 2187 2188 *cs++ = MI_LOAD_REGISTER_IMM(4); 2189 for (i = 0; i < 4; i++) { 2190 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 2191 *cs++ = 0; 2192 } 2193 *cs++ = MI_NOOP; 2194 intel_ring_advance(rq, cs); 2195 2196 return 0; 2197 } 2198 2199 static struct i915_vma * 2200 shadow_batch_pin(struct i915_execbuffer *eb, 2201 struct drm_i915_gem_object *obj, 2202 struct i915_address_space *vm, 2203 unsigned int flags) 2204 { 2205 struct i915_vma *vma; 2206 int err; 2207 2208 vma = i915_vma_instance(obj, vm, NULL); 2209 if (IS_ERR(vma)) 2210 return vma; 2211 2212 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE); 2213 if (err) 2214 return ERR_PTR(err); 2215 2216 return vma; 2217 } 2218 2219 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma) 2220 { 2221 /* 2222 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2223 * batch" bit. Hence we need to pin secure batches into the global gtt. 2224 * hsw should have this fixed, but bdw mucks it up again. */ 2225 if (eb->batch_flags & I915_DISPATCH_SECURE) 2226 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE); 2227 2228 return NULL; 2229 } 2230 2231 static int eb_parse(struct i915_execbuffer *eb) 2232 { 2233 struct drm_i915_private *i915 = eb->i915; 2234 struct intel_gt_buffer_pool_node *pool = eb->batch_pool; 2235 struct i915_vma *shadow, *trampoline, *batch; 2236 unsigned long len; 2237 int err; 2238 2239 if (!eb_use_cmdparser(eb)) { 2240 batch = eb_dispatch_secure(eb, eb->batches[0]->vma); 2241 if (IS_ERR(batch)) 2242 return PTR_ERR(batch); 2243 2244 goto secure_batch; 2245 } 2246 2247 if (intel_context_is_parallel(eb->context)) 2248 return -EINVAL; 2249 2250 len = eb->batch_len[0]; 2251 if (!CMDPARSER_USES_GGTT(eb->i915)) { 2252 /* 2253 * ppGTT backed shadow buffers must be mapped RO, to prevent 2254 * post-scan tampering 2255 */ 2256 if (!eb->context->vm->has_read_only) { 2257 drm_dbg(&i915->drm, 2258 "Cannot prevent post-scan tampering without RO capable vm\n"); 2259 return -EINVAL; 2260 } 2261 } else { 2262 len += I915_CMD_PARSER_TRAMPOLINE_SIZE; 2263 } 2264 if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */ 2265 return -EINVAL; 2266 2267 if (!pool) { 2268 pool = intel_gt_get_buffer_pool(eb->gt, len, 2269 I915_MAP_WB); 2270 if (IS_ERR(pool)) 2271 return PTR_ERR(pool); 2272 eb->batch_pool = pool; 2273 } 2274 2275 err = i915_gem_object_lock(pool->obj, &eb->ww); 2276 if (err) 2277 return err; 2278 2279 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER); 2280 if (IS_ERR(shadow)) 2281 return PTR_ERR(shadow); 2282 2283 intel_gt_buffer_pool_mark_used(pool); 2284 i915_gem_object_set_readonly(shadow->obj); 2285 shadow->private = pool; 2286 2287 trampoline = NULL; 2288 if (CMDPARSER_USES_GGTT(eb->i915)) { 2289 trampoline = shadow; 2290 2291 shadow = shadow_batch_pin(eb, pool->obj, 2292 &eb->gt->ggtt->vm, 2293 PIN_GLOBAL); 2294 if (IS_ERR(shadow)) 2295 return PTR_ERR(shadow); 2296 2297 shadow->private = pool; 2298 2299 eb->batch_flags |= I915_DISPATCH_SECURE; 2300 } 2301 2302 batch = eb_dispatch_secure(eb, shadow); 2303 if (IS_ERR(batch)) 2304 return PTR_ERR(batch); 2305 2306 err = dma_resv_reserve_shared(shadow->obj->base.resv, 1); 2307 if (err) 2308 return err; 2309 2310 err = intel_engine_cmd_parser(eb->context->engine, 2311 eb->batches[0]->vma, 2312 eb->batch_start_offset, 2313 eb->batch_len[0], 2314 shadow, trampoline); 2315 if (err) 2316 return err; 2317 2318 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2319 eb->batches[0]->vma = i915_vma_get(shadow); 2320 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2321 2322 eb->trampoline = trampoline; 2323 eb->batch_start_offset = 0; 2324 2325 secure_batch: 2326 if (batch) { 2327 if (intel_context_is_parallel(eb->context)) 2328 return -EINVAL; 2329 2330 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2331 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2332 eb->batches[0]->vma = i915_vma_get(batch); 2333 } 2334 return 0; 2335 } 2336 2337 static int eb_request_submit(struct i915_execbuffer *eb, 2338 struct i915_request *rq, 2339 struct i915_vma *batch, 2340 u64 batch_len) 2341 { 2342 int err; 2343 2344 if (intel_context_nopreempt(rq->context)) 2345 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags); 2346 2347 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 2348 err = i915_reset_gen7_sol_offsets(rq); 2349 if (err) 2350 return err; 2351 } 2352 2353 /* 2354 * After we completed waiting for other engines (using HW semaphores) 2355 * then we can signal that this request/batch is ready to run. This 2356 * allows us to determine if the batch is still waiting on the GPU 2357 * or actually running by checking the breadcrumb. 2358 */ 2359 if (rq->context->engine->emit_init_breadcrumb) { 2360 err = rq->context->engine->emit_init_breadcrumb(rq); 2361 if (err) 2362 return err; 2363 } 2364 2365 err = rq->context->engine->emit_bb_start(rq, 2366 batch->node.start + 2367 eb->batch_start_offset, 2368 batch_len, 2369 eb->batch_flags); 2370 if (err) 2371 return err; 2372 2373 if (eb->trampoline) { 2374 GEM_BUG_ON(intel_context_is_parallel(rq->context)); 2375 GEM_BUG_ON(eb->batch_start_offset); 2376 err = rq->context->engine->emit_bb_start(rq, 2377 eb->trampoline->node.start + 2378 batch_len, 0, 0); 2379 if (err) 2380 return err; 2381 } 2382 2383 return 0; 2384 } 2385 2386 static int eb_submit(struct i915_execbuffer *eb) 2387 { 2388 unsigned int i; 2389 int err; 2390 2391 err = eb_move_to_gpu(eb); 2392 2393 for_each_batch_create_order(eb, i) { 2394 if (!eb->requests[i]) 2395 break; 2396 2397 trace_i915_request_queue(eb->requests[i], eb->batch_flags); 2398 if (!err) 2399 err = eb_request_submit(eb, eb->requests[i], 2400 eb->batches[i]->vma, 2401 eb->batch_len[i]); 2402 } 2403 2404 return err; 2405 } 2406 2407 static int num_vcs_engines(struct drm_i915_private *i915) 2408 { 2409 return hweight_long(VDBOX_MASK(to_gt(i915))); 2410 } 2411 2412 /* 2413 * Find one BSD ring to dispatch the corresponding BSD command. 2414 * The engine index is returned. 2415 */ 2416 static unsigned int 2417 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, 2418 struct drm_file *file) 2419 { 2420 struct drm_i915_file_private *file_priv = file->driver_priv; 2421 2422 /* Check whether the file_priv has already selected one ring. */ 2423 if ((int)file_priv->bsd_engine < 0) 2424 file_priv->bsd_engine = 2425 get_random_int() % num_vcs_engines(dev_priv); 2426 2427 return file_priv->bsd_engine; 2428 } 2429 2430 static const enum intel_engine_id user_ring_map[] = { 2431 [I915_EXEC_DEFAULT] = RCS0, 2432 [I915_EXEC_RENDER] = RCS0, 2433 [I915_EXEC_BLT] = BCS0, 2434 [I915_EXEC_BSD] = VCS0, 2435 [I915_EXEC_VEBOX] = VECS0 2436 }; 2437 2438 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce) 2439 { 2440 struct intel_ring *ring = ce->ring; 2441 struct intel_timeline *tl = ce->timeline; 2442 struct i915_request *rq; 2443 2444 /* 2445 * Completely unscientific finger-in-the-air estimates for suitable 2446 * maximum user request size (to avoid blocking) and then backoff. 2447 */ 2448 if (intel_ring_update_space(ring) >= PAGE_SIZE) 2449 return NULL; 2450 2451 /* 2452 * Find a request that after waiting upon, there will be at least half 2453 * the ring available. The hysteresis allows us to compete for the 2454 * shared ring and should mean that we sleep less often prior to 2455 * claiming our resources, but not so long that the ring completely 2456 * drains before we can submit our next request. 2457 */ 2458 list_for_each_entry(rq, &tl->requests, link) { 2459 if (rq->ring != ring) 2460 continue; 2461 2462 if (__intel_ring_space(rq->postfix, 2463 ring->emit, ring->size) > ring->size / 2) 2464 break; 2465 } 2466 if (&rq->link == &tl->requests) 2467 return NULL; /* weird, we will check again later for real */ 2468 2469 return i915_request_get(rq); 2470 } 2471 2472 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce, 2473 bool throttle) 2474 { 2475 struct intel_timeline *tl; 2476 struct i915_request *rq = NULL; 2477 2478 /* 2479 * Take a local wakeref for preparing to dispatch the execbuf as 2480 * we expect to access the hardware fairly frequently in the 2481 * process, and require the engine to be kept awake between accesses. 2482 * Upon dispatch, we acquire another prolonged wakeref that we hold 2483 * until the timeline is idle, which in turn releases the wakeref 2484 * taken on the engine, and the parent device. 2485 */ 2486 tl = intel_context_timeline_lock(ce); 2487 if (IS_ERR(tl)) 2488 return PTR_ERR(tl); 2489 2490 intel_context_enter(ce); 2491 if (throttle) 2492 rq = eb_throttle(eb, ce); 2493 intel_context_timeline_unlock(tl); 2494 2495 if (rq) { 2496 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; 2497 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT; 2498 2499 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 2500 timeout) < 0) { 2501 i915_request_put(rq); 2502 2503 /* 2504 * Error path, cannot use intel_context_timeline_lock as 2505 * that is user interruptable and this clean up step 2506 * must be done. 2507 */ 2508 mutex_lock(&ce->timeline->mutex); 2509 intel_context_exit(ce); 2510 mutex_unlock(&ce->timeline->mutex); 2511 2512 if (nonblock) 2513 return -EWOULDBLOCK; 2514 else 2515 return -EINTR; 2516 } 2517 i915_request_put(rq); 2518 } 2519 2520 return 0; 2521 } 2522 2523 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle) 2524 { 2525 struct intel_context *ce = eb->context, *child; 2526 int err; 2527 int i = 0, j = 0; 2528 2529 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED); 2530 2531 if (unlikely(intel_context_is_banned(ce))) 2532 return -EIO; 2533 2534 /* 2535 * Pinning the contexts may generate requests in order to acquire 2536 * GGTT space, so do this first before we reserve a seqno for 2537 * ourselves. 2538 */ 2539 err = intel_context_pin_ww(ce, &eb->ww); 2540 if (err) 2541 return err; 2542 for_each_child(ce, child) { 2543 err = intel_context_pin_ww(child, &eb->ww); 2544 GEM_BUG_ON(err); /* perma-pinned should incr a counter */ 2545 } 2546 2547 for_each_child(ce, child) { 2548 err = eb_pin_timeline(eb, child, throttle); 2549 if (err) 2550 goto unwind; 2551 ++i; 2552 } 2553 err = eb_pin_timeline(eb, ce, throttle); 2554 if (err) 2555 goto unwind; 2556 2557 eb->args->flags |= __EXEC_ENGINE_PINNED; 2558 return 0; 2559 2560 unwind: 2561 for_each_child(ce, child) { 2562 if (j++ < i) { 2563 mutex_lock(&child->timeline->mutex); 2564 intel_context_exit(child); 2565 mutex_unlock(&child->timeline->mutex); 2566 } 2567 } 2568 for_each_child(ce, child) 2569 intel_context_unpin(child); 2570 intel_context_unpin(ce); 2571 return err; 2572 } 2573 2574 static void eb_unpin_engine(struct i915_execbuffer *eb) 2575 { 2576 struct intel_context *ce = eb->context, *child; 2577 2578 if (!(eb->args->flags & __EXEC_ENGINE_PINNED)) 2579 return; 2580 2581 eb->args->flags &= ~__EXEC_ENGINE_PINNED; 2582 2583 for_each_child(ce, child) { 2584 mutex_lock(&child->timeline->mutex); 2585 intel_context_exit(child); 2586 mutex_unlock(&child->timeline->mutex); 2587 2588 intel_context_unpin(child); 2589 } 2590 2591 mutex_lock(&ce->timeline->mutex); 2592 intel_context_exit(ce); 2593 mutex_unlock(&ce->timeline->mutex); 2594 2595 intel_context_unpin(ce); 2596 } 2597 2598 static unsigned int 2599 eb_select_legacy_ring(struct i915_execbuffer *eb) 2600 { 2601 struct drm_i915_private *i915 = eb->i915; 2602 struct drm_i915_gem_execbuffer2 *args = eb->args; 2603 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2604 2605 if (user_ring_id != I915_EXEC_BSD && 2606 (args->flags & I915_EXEC_BSD_MASK)) { 2607 drm_dbg(&i915->drm, 2608 "execbuf with non bsd ring but with invalid " 2609 "bsd dispatch flags: %d\n", (int)(args->flags)); 2610 return -1; 2611 } 2612 2613 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) { 2614 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2615 2616 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2617 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file); 2618 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2619 bsd_idx <= I915_EXEC_BSD_RING2) { 2620 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2621 bsd_idx--; 2622 } else { 2623 drm_dbg(&i915->drm, 2624 "execbuf with unknown bsd ring: %u\n", 2625 bsd_idx); 2626 return -1; 2627 } 2628 2629 return _VCS(bsd_idx); 2630 } 2631 2632 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { 2633 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", 2634 user_ring_id); 2635 return -1; 2636 } 2637 2638 return user_ring_map[user_ring_id]; 2639 } 2640 2641 static int 2642 eb_select_engine(struct i915_execbuffer *eb) 2643 { 2644 struct intel_context *ce, *child; 2645 unsigned int idx; 2646 int err; 2647 2648 if (i915_gem_context_user_engines(eb->gem_context)) 2649 idx = eb->args->flags & I915_EXEC_RING_MASK; 2650 else 2651 idx = eb_select_legacy_ring(eb); 2652 2653 ce = i915_gem_context_get_engine(eb->gem_context, idx); 2654 if (IS_ERR(ce)) 2655 return PTR_ERR(ce); 2656 2657 if (intel_context_is_parallel(ce)) { 2658 if (eb->buffer_count < ce->parallel.number_children + 1) { 2659 intel_context_put(ce); 2660 return -EINVAL; 2661 } 2662 if (eb->batch_start_offset || eb->args->batch_len) { 2663 intel_context_put(ce); 2664 return -EINVAL; 2665 } 2666 } 2667 eb->num_batches = ce->parallel.number_children + 1; 2668 2669 for_each_child(ce, child) 2670 intel_context_get(child); 2671 intel_gt_pm_get(ce->engine->gt); 2672 2673 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) { 2674 err = intel_context_alloc_state(ce); 2675 if (err) 2676 goto err; 2677 } 2678 for_each_child(ce, child) { 2679 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) { 2680 err = intel_context_alloc_state(child); 2681 if (err) 2682 goto err; 2683 } 2684 } 2685 2686 /* 2687 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 2688 * EIO if the GPU is already wedged. 2689 */ 2690 err = intel_gt_terminally_wedged(ce->engine->gt); 2691 if (err) 2692 goto err; 2693 2694 eb->context = ce; 2695 eb->gt = ce->engine->gt; 2696 2697 /* 2698 * Make sure engine pool stays alive even if we call intel_context_put 2699 * during ww handling. The pool is destroyed when last pm reference 2700 * is dropped, which breaks our -EDEADLK handling. 2701 */ 2702 return err; 2703 2704 err: 2705 intel_gt_pm_put(ce->engine->gt); 2706 for_each_child(ce, child) 2707 intel_context_put(child); 2708 intel_context_put(ce); 2709 return err; 2710 } 2711 2712 static void 2713 eb_put_engine(struct i915_execbuffer *eb) 2714 { 2715 struct intel_context *child; 2716 2717 intel_gt_pm_put(eb->gt); 2718 for_each_child(eb->context, child) 2719 intel_context_put(child); 2720 intel_context_put(eb->context); 2721 } 2722 2723 static void 2724 __free_fence_array(struct eb_fence *fences, unsigned int n) 2725 { 2726 while (n--) { 2727 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2)); 2728 dma_fence_put(fences[n].dma_fence); 2729 dma_fence_chain_free(fences[n].chain_fence); 2730 } 2731 kvfree(fences); 2732 } 2733 2734 static int 2735 add_timeline_fence_array(struct i915_execbuffer *eb, 2736 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences) 2737 { 2738 struct drm_i915_gem_exec_fence __user *user_fences; 2739 u64 __user *user_values; 2740 struct eb_fence *f; 2741 u64 nfences; 2742 int err = 0; 2743 2744 nfences = timeline_fences->fence_count; 2745 if (!nfences) 2746 return 0; 2747 2748 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2749 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2750 if (nfences > min_t(unsigned long, 2751 ULONG_MAX / sizeof(*user_fences), 2752 SIZE_MAX / sizeof(*f)) - eb->num_fences) 2753 return -EINVAL; 2754 2755 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr); 2756 if (!access_ok(user_fences, nfences * sizeof(*user_fences))) 2757 return -EFAULT; 2758 2759 user_values = u64_to_user_ptr(timeline_fences->values_ptr); 2760 if (!access_ok(user_values, nfences * sizeof(*user_values))) 2761 return -EFAULT; 2762 2763 f = krealloc(eb->fences, 2764 (eb->num_fences + nfences) * sizeof(*f), 2765 __GFP_NOWARN | GFP_KERNEL); 2766 if (!f) 2767 return -ENOMEM; 2768 2769 eb->fences = f; 2770 f += eb->num_fences; 2771 2772 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2773 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2774 2775 while (nfences--) { 2776 struct drm_i915_gem_exec_fence user_fence; 2777 struct drm_syncobj *syncobj; 2778 struct dma_fence *fence = NULL; 2779 u64 point; 2780 2781 if (__copy_from_user(&user_fence, 2782 user_fences++, 2783 sizeof(user_fence))) 2784 return -EFAULT; 2785 2786 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2787 return -EINVAL; 2788 2789 if (__get_user(point, user_values++)) 2790 return -EFAULT; 2791 2792 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2793 if (!syncobj) { 2794 DRM_DEBUG("Invalid syncobj handle provided\n"); 2795 return -ENOENT; 2796 } 2797 2798 fence = drm_syncobj_fence_get(syncobj); 2799 2800 if (!fence && user_fence.flags && 2801 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2802 DRM_DEBUG("Syncobj handle has no fence\n"); 2803 drm_syncobj_put(syncobj); 2804 return -EINVAL; 2805 } 2806 2807 if (fence) 2808 err = dma_fence_chain_find_seqno(&fence, point); 2809 2810 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2811 DRM_DEBUG("Syncobj handle missing requested point %llu\n", point); 2812 dma_fence_put(fence); 2813 drm_syncobj_put(syncobj); 2814 return err; 2815 } 2816 2817 /* 2818 * A point might have been signaled already and 2819 * garbage collected from the timeline. In this case 2820 * just ignore the point and carry on. 2821 */ 2822 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2823 drm_syncobj_put(syncobj); 2824 continue; 2825 } 2826 2827 /* 2828 * For timeline syncobjs we need to preallocate chains for 2829 * later signaling. 2830 */ 2831 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) { 2832 /* 2833 * Waiting and signaling the same point (when point != 2834 * 0) would break the timeline. 2835 */ 2836 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2837 DRM_DEBUG("Trying to wait & signal the same timeline point.\n"); 2838 dma_fence_put(fence); 2839 drm_syncobj_put(syncobj); 2840 return -EINVAL; 2841 } 2842 2843 f->chain_fence = dma_fence_chain_alloc(); 2844 if (!f->chain_fence) { 2845 drm_syncobj_put(syncobj); 2846 dma_fence_put(fence); 2847 return -ENOMEM; 2848 } 2849 } else { 2850 f->chain_fence = NULL; 2851 } 2852 2853 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2854 f->dma_fence = fence; 2855 f->value = point; 2856 f++; 2857 eb->num_fences++; 2858 } 2859 2860 return 0; 2861 } 2862 2863 static int add_fence_array(struct i915_execbuffer *eb) 2864 { 2865 struct drm_i915_gem_execbuffer2 *args = eb->args; 2866 struct drm_i915_gem_exec_fence __user *user; 2867 unsigned long num_fences = args->num_cliprects; 2868 struct eb_fence *f; 2869 2870 if (!(args->flags & I915_EXEC_FENCE_ARRAY)) 2871 return 0; 2872 2873 if (!num_fences) 2874 return 0; 2875 2876 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2877 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2878 if (num_fences > min_t(unsigned long, 2879 ULONG_MAX / sizeof(*user), 2880 SIZE_MAX / sizeof(*f) - eb->num_fences)) 2881 return -EINVAL; 2882 2883 user = u64_to_user_ptr(args->cliprects_ptr); 2884 if (!access_ok(user, num_fences * sizeof(*user))) 2885 return -EFAULT; 2886 2887 f = krealloc(eb->fences, 2888 (eb->num_fences + num_fences) * sizeof(*f), 2889 __GFP_NOWARN | GFP_KERNEL); 2890 if (!f) 2891 return -ENOMEM; 2892 2893 eb->fences = f; 2894 f += eb->num_fences; 2895 while (num_fences--) { 2896 struct drm_i915_gem_exec_fence user_fence; 2897 struct drm_syncobj *syncobj; 2898 struct dma_fence *fence = NULL; 2899 2900 if (__copy_from_user(&user_fence, user++, sizeof(user_fence))) 2901 return -EFAULT; 2902 2903 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2904 return -EINVAL; 2905 2906 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2907 if (!syncobj) { 2908 DRM_DEBUG("Invalid syncobj handle provided\n"); 2909 return -ENOENT; 2910 } 2911 2912 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2913 fence = drm_syncobj_fence_get(syncobj); 2914 if (!fence) { 2915 DRM_DEBUG("Syncobj handle has no fence\n"); 2916 drm_syncobj_put(syncobj); 2917 return -EINVAL; 2918 } 2919 } 2920 2921 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2922 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2923 2924 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2925 f->dma_fence = fence; 2926 f->value = 0; 2927 f->chain_fence = NULL; 2928 f++; 2929 eb->num_fences++; 2930 } 2931 2932 return 0; 2933 } 2934 2935 static void put_fence_array(struct eb_fence *fences, int num_fences) 2936 { 2937 if (fences) 2938 __free_fence_array(fences, num_fences); 2939 } 2940 2941 static int 2942 await_fence_array(struct i915_execbuffer *eb, 2943 struct i915_request *rq) 2944 { 2945 unsigned int n; 2946 int err; 2947 2948 for (n = 0; n < eb->num_fences; n++) { 2949 struct drm_syncobj *syncobj; 2950 unsigned int flags; 2951 2952 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 2953 2954 if (!eb->fences[n].dma_fence) 2955 continue; 2956 2957 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence); 2958 if (err < 0) 2959 return err; 2960 } 2961 2962 return 0; 2963 } 2964 2965 static void signal_fence_array(const struct i915_execbuffer *eb, 2966 struct dma_fence * const fence) 2967 { 2968 unsigned int n; 2969 2970 for (n = 0; n < eb->num_fences; n++) { 2971 struct drm_syncobj *syncobj; 2972 unsigned int flags; 2973 2974 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 2975 if (!(flags & I915_EXEC_FENCE_SIGNAL)) 2976 continue; 2977 2978 if (eb->fences[n].chain_fence) { 2979 drm_syncobj_add_point(syncobj, 2980 eb->fences[n].chain_fence, 2981 fence, 2982 eb->fences[n].value); 2983 /* 2984 * The chain's ownership is transferred to the 2985 * timeline. 2986 */ 2987 eb->fences[n].chain_fence = NULL; 2988 } else { 2989 drm_syncobj_replace_fence(syncobj, fence); 2990 } 2991 } 2992 } 2993 2994 static int 2995 parse_timeline_fences(struct i915_user_extension __user *ext, void *data) 2996 { 2997 struct i915_execbuffer *eb = data; 2998 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences; 2999 3000 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences))) 3001 return -EFAULT; 3002 3003 return add_timeline_fence_array(eb, &timeline_fences); 3004 } 3005 3006 static void retire_requests(struct intel_timeline *tl, struct i915_request *end) 3007 { 3008 struct i915_request *rq, *rn; 3009 3010 list_for_each_entry_safe(rq, rn, &tl->requests, link) 3011 if (rq == end || !i915_request_retire(rq)) 3012 break; 3013 } 3014 3015 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq, 3016 int err, bool last_parallel) 3017 { 3018 struct intel_timeline * const tl = i915_request_timeline(rq); 3019 struct i915_sched_attr attr = {}; 3020 struct i915_request *prev; 3021 3022 lockdep_assert_held(&tl->mutex); 3023 lockdep_unpin_lock(&tl->mutex, rq->cookie); 3024 3025 trace_i915_request_add(rq); 3026 3027 prev = __i915_request_commit(rq); 3028 3029 /* Check that the context wasn't destroyed before submission */ 3030 if (likely(!intel_context_is_closed(eb->context))) { 3031 attr = eb->gem_context->sched; 3032 } else { 3033 /* Serialise with context_close via the add_to_timeline */ 3034 i915_request_set_error_once(rq, -ENOENT); 3035 __i915_request_skip(rq); 3036 err = -ENOENT; /* override any transient errors */ 3037 } 3038 3039 if (intel_context_is_parallel(eb->context)) { 3040 if (err) { 3041 __i915_request_skip(rq); 3042 set_bit(I915_FENCE_FLAG_SKIP_PARALLEL, 3043 &rq->fence.flags); 3044 } 3045 if (last_parallel) 3046 set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, 3047 &rq->fence.flags); 3048 } 3049 3050 __i915_request_queue(rq, &attr); 3051 3052 /* Try to clean up the client's timeline after submitting the request */ 3053 if (prev) 3054 retire_requests(tl, prev); 3055 3056 mutex_unlock(&tl->mutex); 3057 3058 return err; 3059 } 3060 3061 static int eb_requests_add(struct i915_execbuffer *eb, int err) 3062 { 3063 int i; 3064 3065 /* 3066 * We iterate in reverse order of creation to release timeline mutexes in 3067 * same order. 3068 */ 3069 for_each_batch_add_order(eb, i) { 3070 struct i915_request *rq = eb->requests[i]; 3071 3072 if (!rq) 3073 continue; 3074 err |= eb_request_add(eb, rq, err, i == 0); 3075 } 3076 3077 return err; 3078 } 3079 3080 static const i915_user_extension_fn execbuf_extensions[] = { 3081 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences, 3082 }; 3083 3084 static int 3085 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args, 3086 struct i915_execbuffer *eb) 3087 { 3088 if (!(args->flags & I915_EXEC_USE_EXTENSIONS)) 3089 return 0; 3090 3091 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot 3092 * have another flag also using it at the same time. 3093 */ 3094 if (eb->args->flags & I915_EXEC_FENCE_ARRAY) 3095 return -EINVAL; 3096 3097 if (args->num_cliprects != 0) 3098 return -EINVAL; 3099 3100 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr), 3101 execbuf_extensions, 3102 ARRAY_SIZE(execbuf_extensions), 3103 eb); 3104 } 3105 3106 static void eb_requests_get(struct i915_execbuffer *eb) 3107 { 3108 unsigned int i; 3109 3110 for_each_batch_create_order(eb, i) { 3111 if (!eb->requests[i]) 3112 break; 3113 3114 i915_request_get(eb->requests[i]); 3115 } 3116 } 3117 3118 static void eb_requests_put(struct i915_execbuffer *eb) 3119 { 3120 unsigned int i; 3121 3122 for_each_batch_create_order(eb, i) { 3123 if (!eb->requests[i]) 3124 break; 3125 3126 i915_request_put(eb->requests[i]); 3127 } 3128 } 3129 3130 static struct sync_file * 3131 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd) 3132 { 3133 struct sync_file *out_fence = NULL; 3134 struct dma_fence_array *fence_array; 3135 struct dma_fence **fences; 3136 unsigned int i; 3137 3138 GEM_BUG_ON(!intel_context_is_parent(eb->context)); 3139 3140 fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL); 3141 if (!fences) 3142 return ERR_PTR(-ENOMEM); 3143 3144 for_each_batch_create_order(eb, i) { 3145 fences[i] = &eb->requests[i]->fence; 3146 __set_bit(I915_FENCE_FLAG_COMPOSITE, 3147 &eb->requests[i]->fence.flags); 3148 } 3149 3150 fence_array = dma_fence_array_create(eb->num_batches, 3151 fences, 3152 eb->context->parallel.fence_context, 3153 eb->context->parallel.seqno++, 3154 false); 3155 if (!fence_array) { 3156 kfree(fences); 3157 return ERR_PTR(-ENOMEM); 3158 } 3159 3160 /* Move ownership to the dma_fence_array created above */ 3161 for_each_batch_create_order(eb, i) 3162 dma_fence_get(fences[i]); 3163 3164 if (out_fence_fd != -1) { 3165 out_fence = sync_file_create(&fence_array->base); 3166 /* sync_file now owns fence_arry, drop creation ref */ 3167 dma_fence_put(&fence_array->base); 3168 if (!out_fence) 3169 return ERR_PTR(-ENOMEM); 3170 } 3171 3172 eb->composite_fence = &fence_array->base; 3173 3174 return out_fence; 3175 } 3176 3177 static struct sync_file * 3178 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq, 3179 struct dma_fence *in_fence, int out_fence_fd) 3180 { 3181 struct sync_file *out_fence = NULL; 3182 int err; 3183 3184 if (unlikely(eb->gem_context->syncobj)) { 3185 struct dma_fence *fence; 3186 3187 fence = drm_syncobj_fence_get(eb->gem_context->syncobj); 3188 err = i915_request_await_dma_fence(rq, fence); 3189 dma_fence_put(fence); 3190 if (err) 3191 return ERR_PTR(err); 3192 } 3193 3194 if (in_fence) { 3195 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT) 3196 err = i915_request_await_execution(rq, in_fence); 3197 else 3198 err = i915_request_await_dma_fence(rq, in_fence); 3199 if (err < 0) 3200 return ERR_PTR(err); 3201 } 3202 3203 if (eb->fences) { 3204 err = await_fence_array(eb, rq); 3205 if (err) 3206 return ERR_PTR(err); 3207 } 3208 3209 if (intel_context_is_parallel(eb->context)) { 3210 out_fence = eb_composite_fence_create(eb, out_fence_fd); 3211 if (IS_ERR(out_fence)) 3212 return ERR_PTR(-ENOMEM); 3213 } else if (out_fence_fd != -1) { 3214 out_fence = sync_file_create(&rq->fence); 3215 if (!out_fence) 3216 return ERR_PTR(-ENOMEM); 3217 } 3218 3219 return out_fence; 3220 } 3221 3222 static struct intel_context * 3223 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number) 3224 { 3225 struct intel_context *child; 3226 3227 if (likely(context_number == 0)) 3228 return eb->context; 3229 3230 for_each_child(eb->context, child) 3231 if (!--context_number) 3232 return child; 3233 3234 GEM_BUG_ON("Context not found"); 3235 3236 return NULL; 3237 } 3238 3239 static struct sync_file * 3240 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence, 3241 int out_fence_fd) 3242 { 3243 struct sync_file *out_fence = NULL; 3244 unsigned int i; 3245 3246 for_each_batch_create_order(eb, i) { 3247 /* Allocate a request for this batch buffer nice and early. */ 3248 eb->requests[i] = i915_request_create(eb_find_context(eb, i)); 3249 if (IS_ERR(eb->requests[i])) { 3250 out_fence = ERR_CAST(eb->requests[i]); 3251 eb->requests[i] = NULL; 3252 return out_fence; 3253 } 3254 3255 /* 3256 * Only the first request added (committed to backend) has to 3257 * take the in fences into account as all subsequent requests 3258 * will have fences inserted inbetween them. 3259 */ 3260 if (i + 1 == eb->num_batches) { 3261 out_fence = eb_fences_add(eb, eb->requests[i], 3262 in_fence, out_fence_fd); 3263 if (IS_ERR(out_fence)) 3264 return out_fence; 3265 } 3266 3267 /* 3268 * Not really on stack, but we don't want to call 3269 * kfree on the batch_snapshot when we put it, so use the 3270 * _onstack interface. 3271 */ 3272 if (eb->batches[i]->vma) 3273 eb->requests[i]->batch_res = 3274 i915_vma_resource_get(eb->batches[i]->vma->resource); 3275 if (eb->batch_pool) { 3276 GEM_BUG_ON(intel_context_is_parallel(eb->context)); 3277 intel_gt_buffer_pool_mark_active(eb->batch_pool, 3278 eb->requests[i]); 3279 } 3280 } 3281 3282 return out_fence; 3283 } 3284 3285 static int 3286 i915_gem_do_execbuffer(struct drm_device *dev, 3287 struct drm_file *file, 3288 struct drm_i915_gem_execbuffer2 *args, 3289 struct drm_i915_gem_exec_object2 *exec) 3290 { 3291 struct drm_i915_private *i915 = to_i915(dev); 3292 struct i915_execbuffer eb; 3293 struct dma_fence *in_fence = NULL; 3294 struct sync_file *out_fence = NULL; 3295 int out_fence_fd = -1; 3296 int err; 3297 3298 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); 3299 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 3300 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 3301 3302 eb.i915 = i915; 3303 eb.file = file; 3304 eb.args = args; 3305 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 3306 args->flags |= __EXEC_HAS_RELOC; 3307 3308 eb.exec = exec; 3309 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1); 3310 eb.vma[0].vma = NULL; 3311 eb.batch_pool = NULL; 3312 3313 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 3314 reloc_cache_init(&eb.reloc_cache, eb.i915); 3315 3316 eb.buffer_count = args->buffer_count; 3317 eb.batch_start_offset = args->batch_start_offset; 3318 eb.trampoline = NULL; 3319 3320 eb.fences = NULL; 3321 eb.num_fences = 0; 3322 3323 eb_capture_list_clear(&eb); 3324 3325 memset(eb.requests, 0, sizeof(struct i915_request *) * 3326 ARRAY_SIZE(eb.requests)); 3327 eb.composite_fence = NULL; 3328 3329 eb.batch_flags = 0; 3330 if (args->flags & I915_EXEC_SECURE) { 3331 if (GRAPHICS_VER(i915) >= 11) 3332 return -ENODEV; 3333 3334 /* Return -EPERM to trigger fallback code on old binaries. */ 3335 if (!HAS_SECURE_BATCHES(i915)) 3336 return -EPERM; 3337 3338 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 3339 return -EPERM; 3340 3341 eb.batch_flags |= I915_DISPATCH_SECURE; 3342 } 3343 if (args->flags & I915_EXEC_IS_PINNED) 3344 eb.batch_flags |= I915_DISPATCH_PINNED; 3345 3346 err = parse_execbuf2_extensions(args, &eb); 3347 if (err) 3348 goto err_ext; 3349 3350 err = add_fence_array(&eb); 3351 if (err) 3352 goto err_ext; 3353 3354 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT) 3355 if (args->flags & IN_FENCES) { 3356 if ((args->flags & IN_FENCES) == IN_FENCES) 3357 return -EINVAL; 3358 3359 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 3360 if (!in_fence) { 3361 err = -EINVAL; 3362 goto err_ext; 3363 } 3364 } 3365 #undef IN_FENCES 3366 3367 if (args->flags & I915_EXEC_FENCE_OUT) { 3368 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 3369 if (out_fence_fd < 0) { 3370 err = out_fence_fd; 3371 goto err_in_fence; 3372 } 3373 } 3374 3375 err = eb_create(&eb); 3376 if (err) 3377 goto err_out_fence; 3378 3379 GEM_BUG_ON(!eb.lut_size); 3380 3381 err = eb_select_context(&eb); 3382 if (unlikely(err)) 3383 goto err_destroy; 3384 3385 err = eb_select_engine(&eb); 3386 if (unlikely(err)) 3387 goto err_context; 3388 3389 err = eb_lookup_vmas(&eb); 3390 if (err) { 3391 eb_release_vmas(&eb, true); 3392 goto err_engine; 3393 } 3394 3395 i915_gem_ww_ctx_init(&eb.ww, true); 3396 3397 err = eb_relocate_parse(&eb); 3398 if (err) { 3399 /* 3400 * If the user expects the execobject.offset and 3401 * reloc.presumed_offset to be an exact match, 3402 * as for using NO_RELOC, then we cannot update 3403 * the execobject.offset until we have completed 3404 * relocation. 3405 */ 3406 args->flags &= ~__EXEC_HAS_RELOC; 3407 goto err_vma; 3408 } 3409 3410 ww_acquire_done(&eb.ww.ctx); 3411 eb_capture_stage(&eb); 3412 3413 out_fence = eb_requests_create(&eb, in_fence, out_fence_fd); 3414 if (IS_ERR(out_fence)) { 3415 err = PTR_ERR(out_fence); 3416 out_fence = NULL; 3417 if (eb.requests[0]) 3418 goto err_request; 3419 else 3420 goto err_vma; 3421 } 3422 3423 err = eb_submit(&eb); 3424 3425 err_request: 3426 eb_requests_get(&eb); 3427 err = eb_requests_add(&eb, err); 3428 3429 if (eb.fences) 3430 signal_fence_array(&eb, eb.composite_fence ? 3431 eb.composite_fence : 3432 &eb.requests[0]->fence); 3433 3434 if (out_fence) { 3435 if (err == 0) { 3436 fd_install(out_fence_fd, out_fence->file); 3437 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ 3438 args->rsvd2 |= (u64)out_fence_fd << 32; 3439 out_fence_fd = -1; 3440 } else { 3441 fput(out_fence->file); 3442 } 3443 } 3444 3445 if (unlikely(eb.gem_context->syncobj)) { 3446 drm_syncobj_replace_fence(eb.gem_context->syncobj, 3447 eb.composite_fence ? 3448 eb.composite_fence : 3449 &eb.requests[0]->fence); 3450 } 3451 3452 if (!out_fence && eb.composite_fence) 3453 dma_fence_put(eb.composite_fence); 3454 3455 eb_requests_put(&eb); 3456 3457 err_vma: 3458 eb_release_vmas(&eb, true); 3459 WARN_ON(err == -EDEADLK); 3460 i915_gem_ww_ctx_fini(&eb.ww); 3461 3462 if (eb.batch_pool) 3463 intel_gt_buffer_pool_put(eb.batch_pool); 3464 err_engine: 3465 eb_put_engine(&eb); 3466 err_context: 3467 i915_gem_context_put(eb.gem_context); 3468 err_destroy: 3469 eb_destroy(&eb); 3470 err_out_fence: 3471 if (out_fence_fd != -1) 3472 put_unused_fd(out_fence_fd); 3473 err_in_fence: 3474 dma_fence_put(in_fence); 3475 err_ext: 3476 put_fence_array(eb.fences, eb.num_fences); 3477 return err; 3478 } 3479 3480 static size_t eb_element_size(void) 3481 { 3482 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma); 3483 } 3484 3485 static bool check_buffer_count(size_t count) 3486 { 3487 const size_t sz = eb_element_size(); 3488 3489 /* 3490 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup 3491 * array size (see eb_create()). Otherwise, we can accept an array as 3492 * large as can be addressed (though use large arrays at your peril)! 3493 */ 3494 3495 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); 3496 } 3497 3498 int 3499 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 3500 struct drm_file *file) 3501 { 3502 struct drm_i915_private *i915 = to_i915(dev); 3503 struct drm_i915_gem_execbuffer2 *args = data; 3504 struct drm_i915_gem_exec_object2 *exec2_list; 3505 const size_t count = args->buffer_count; 3506 int err; 3507 3508 if (!check_buffer_count(count)) { 3509 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 3510 return -EINVAL; 3511 } 3512 3513 err = i915_gem_check_execbuffer(args); 3514 if (err) 3515 return err; 3516 3517 /* Allocate extra slots for use by the command parser */ 3518 exec2_list = kvmalloc_array(count + 2, eb_element_size(), 3519 __GFP_NOWARN | GFP_KERNEL); 3520 if (exec2_list == NULL) { 3521 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", 3522 count); 3523 return -ENOMEM; 3524 } 3525 if (copy_from_user(exec2_list, 3526 u64_to_user_ptr(args->buffers_ptr), 3527 sizeof(*exec2_list) * count)) { 3528 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); 3529 kvfree(exec2_list); 3530 return -EFAULT; 3531 } 3532 3533 err = i915_gem_do_execbuffer(dev, file, args, exec2_list); 3534 3535 /* 3536 * Now that we have begun execution of the batchbuffer, we ignore 3537 * any new error after this point. Also given that we have already 3538 * updated the associated relocations, we try to write out the current 3539 * object locations irrespective of any error. 3540 */ 3541 if (args->flags & __EXEC_HAS_RELOC) { 3542 struct drm_i915_gem_exec_object2 __user *user_exec_list = 3543 u64_to_user_ptr(args->buffers_ptr); 3544 unsigned int i; 3545 3546 /* Copy the new buffer offsets back to the user's exec list. */ 3547 /* 3548 * Note: count * sizeof(*user_exec_list) does not overflow, 3549 * because we checked 'count' in check_buffer_count(). 3550 * 3551 * And this range already got effectively checked earlier 3552 * when we did the "copy_from_user()" above. 3553 */ 3554 if (!user_write_access_begin(user_exec_list, 3555 count * sizeof(*user_exec_list))) 3556 goto end; 3557 3558 for (i = 0; i < args->buffer_count; i++) { 3559 if (!(exec2_list[i].offset & UPDATE)) 3560 continue; 3561 3562 exec2_list[i].offset = 3563 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 3564 unsafe_put_user(exec2_list[i].offset, 3565 &user_exec_list[i].offset, 3566 end_user); 3567 } 3568 end_user: 3569 user_write_access_end(); 3570 end:; 3571 } 3572 3573 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 3574 kvfree(exec2_list); 3575 return err; 3576 } 3577