1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008,2010 Intel Corporation 5 */ 6 7 #include <linux/intel-iommu.h> 8 #include <linux/dma-resv.h> 9 #include <linux/sync_file.h> 10 #include <linux/uaccess.h> 11 12 #include <drm/drm_syncobj.h> 13 14 #include "display/intel_frontbuffer.h" 15 16 #include "gem/i915_gem_ioctls.h" 17 #include "gt/intel_context.h" 18 #include "gt/intel_gpu_commands.h" 19 #include "gt/intel_gt.h" 20 #include "gt/intel_gt_buffer_pool.h" 21 #include "gt/intel_gt_pm.h" 22 #include "gt/intel_ring.h" 23 24 #include "i915_drv.h" 25 #include "i915_gem_clflush.h" 26 #include "i915_gem_context.h" 27 #include "i915_gem_ioctls.h" 28 #include "i915_sw_fence_work.h" 29 #include "i915_trace.h" 30 #include "i915_user_extensions.h" 31 32 struct eb_vma { 33 struct i915_vma *vma; 34 unsigned int flags; 35 36 /** This vma's place in the execbuf reservation list */ 37 struct drm_i915_gem_exec_object2 *exec; 38 struct list_head bind_link; 39 struct list_head reloc_link; 40 41 struct hlist_node node; 42 u32 handle; 43 }; 44 45 enum { 46 FORCE_CPU_RELOC = 1, 47 FORCE_GTT_RELOC, 48 FORCE_GPU_RELOC, 49 #define DBG_FORCE_RELOC 0 /* choose one of the above! */ 50 }; 51 52 #define __EXEC_OBJECT_HAS_PIN BIT(31) 53 #define __EXEC_OBJECT_HAS_FENCE BIT(30) 54 #define __EXEC_OBJECT_NEEDS_MAP BIT(29) 55 #define __EXEC_OBJECT_NEEDS_BIAS BIT(28) 56 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 28) /* all of the above */ 57 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) 58 59 #define __EXEC_HAS_RELOC BIT(31) 60 #define __EXEC_ENGINE_PINNED BIT(30) 61 #define __EXEC_INTERNAL_FLAGS (~0u << 30) 62 #define UPDATE PIN_OFFSET_FIXED 63 64 #define BATCH_OFFSET_BIAS (256*1024) 65 66 #define __I915_EXEC_ILLEGAL_FLAGS \ 67 (__I915_EXEC_UNKNOWN_FLAGS | \ 68 I915_EXEC_CONSTANTS_MASK | \ 69 I915_EXEC_RESOURCE_STREAMER) 70 71 /* Catch emission of unexpected errors for CI! */ 72 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 73 #undef EINVAL 74 #define EINVAL ({ \ 75 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 76 22; \ 77 }) 78 #endif 79 80 /** 81 * DOC: User command execution 82 * 83 * Userspace submits commands to be executed on the GPU as an instruction 84 * stream within a GEM object we call a batchbuffer. This instructions may 85 * refer to other GEM objects containing auxiliary state such as kernels, 86 * samplers, render targets and even secondary batchbuffers. Userspace does 87 * not know where in the GPU memory these objects reside and so before the 88 * batchbuffer is passed to the GPU for execution, those addresses in the 89 * batchbuffer and auxiliary objects are updated. This is known as relocation, 90 * or patching. To try and avoid having to relocate each object on the next 91 * execution, userspace is told the location of those objects in this pass, 92 * but this remains just a hint as the kernel may choose a new location for 93 * any object in the future. 94 * 95 * At the level of talking to the hardware, submitting a batchbuffer for the 96 * GPU to execute is to add content to a buffer from which the HW 97 * command streamer is reading. 98 * 99 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. 100 * Execlists, this command is not placed on the same buffer as the 101 * remaining items. 102 * 103 * 2. Add a command to invalidate caches to the buffer. 104 * 105 * 3. Add a batchbuffer start command to the buffer; the start command is 106 * essentially a token together with the GPU address of the batchbuffer 107 * to be executed. 108 * 109 * 4. Add a pipeline flush to the buffer. 110 * 111 * 5. Add a memory write command to the buffer to record when the GPU 112 * is done executing the batchbuffer. The memory write writes the 113 * global sequence number of the request, ``i915_request::global_seqno``; 114 * the i915 driver uses the current value in the register to determine 115 * if the GPU has completed the batchbuffer. 116 * 117 * 6. Add a user interrupt command to the buffer. This command instructs 118 * the GPU to issue an interrupt when the command, pipeline flush and 119 * memory write are completed. 120 * 121 * 7. Inform the hardware of the additional commands added to the buffer 122 * (by updating the tail pointer). 123 * 124 * Processing an execbuf ioctl is conceptually split up into a few phases. 125 * 126 * 1. Validation - Ensure all the pointers, handles and flags are valid. 127 * 2. Reservation - Assign GPU address space for every object 128 * 3. Relocation - Update any addresses to point to the final locations 129 * 4. Serialisation - Order the request with respect to its dependencies 130 * 5. Construction - Construct a request to execute the batchbuffer 131 * 6. Submission (at some point in the future execution) 132 * 133 * Reserving resources for the execbuf is the most complicated phase. We 134 * neither want to have to migrate the object in the address space, nor do 135 * we want to have to update any relocations pointing to this object. Ideally, 136 * we want to leave the object where it is and for all the existing relocations 137 * to match. If the object is given a new address, or if userspace thinks the 138 * object is elsewhere, we have to parse all the relocation entries and update 139 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that 140 * all the target addresses in all of its objects match the value in the 141 * relocation entries and that they all match the presumed offsets given by the 142 * list of execbuffer objects. Using this knowledge, we know that if we haven't 143 * moved any buffers, all the relocation entries are valid and we can skip 144 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 145 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 146 * 147 * The addresses written in the objects must match the corresponding 148 * reloc.presumed_offset which in turn must match the corresponding 149 * execobject.offset. 150 * 151 * Any render targets written to in the batch must be flagged with 152 * EXEC_OBJECT_WRITE. 153 * 154 * To avoid stalling, execobject.offset should match the current 155 * address of that object within the active context. 156 * 157 * The reservation is done is multiple phases. First we try and keep any 158 * object already bound in its current location - so as long as meets the 159 * constraints imposed by the new execbuffer. Any object left unbound after the 160 * first pass is then fitted into any available idle space. If an object does 161 * not fit, all objects are removed from the reservation and the process rerun 162 * after sorting the objects into a priority order (more difficult to fit 163 * objects are tried first). Failing that, the entire VM is cleared and we try 164 * to fit the execbuf once last time before concluding that it simply will not 165 * fit. 166 * 167 * A small complication to all of this is that we allow userspace not only to 168 * specify an alignment and a size for the object in the address space, but 169 * we also allow userspace to specify the exact offset. This objects are 170 * simpler to place (the location is known a priori) all we have to do is make 171 * sure the space is available. 172 * 173 * Once all the objects are in place, patching up the buried pointers to point 174 * to the final locations is a fairly simple job of walking over the relocation 175 * entry arrays, looking up the right address and rewriting the value into 176 * the object. Simple! ... The relocation entries are stored in user memory 177 * and so to access them we have to copy them into a local buffer. That copy 178 * has to avoid taking any pagefaults as they may lead back to a GEM object 179 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split 180 * the relocation into multiple passes. First we try to do everything within an 181 * atomic context (avoid the pagefaults) which requires that we never wait. If 182 * we detect that we may wait, or if we need to fault, then we have to fallback 183 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 184 * bells yet?) Dropping the mutex means that we lose all the state we have 185 * built up so far for the execbuf and we must reset any global data. However, 186 * we do leave the objects pinned in their final locations - which is a 187 * potential issue for concurrent execbufs. Once we have left the mutex, we can 188 * allocate and copy all the relocation entries into a large array at our 189 * leisure, reacquire the mutex, reclaim all the objects and other state and 190 * then proceed to update any incorrect addresses with the objects. 191 * 192 * As we process the relocation entries, we maintain a record of whether the 193 * object is being written to. Using NORELOC, we expect userspace to provide 194 * this information instead. We also check whether we can skip the relocation 195 * by comparing the expected value inside the relocation entry with the target's 196 * final address. If they differ, we have to map the current object and rewrite 197 * the 4 or 8 byte pointer within. 198 * 199 * Serialising an execbuf is quite simple according to the rules of the GEM 200 * ABI. Execution within each context is ordered by the order of submission. 201 * Writes to any GEM object are in order of submission and are exclusive. Reads 202 * from a GEM object are unordered with respect to other reads, but ordered by 203 * writes. A write submitted after a read cannot occur before the read, and 204 * similarly any read submitted after a write cannot occur before the write. 205 * Writes are ordered between engines such that only one write occurs at any 206 * time (completing any reads beforehand) - using semaphores where available 207 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 208 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 209 * reads before starting, and any read (either using set-domain or pread) must 210 * flush all GPU writes before starting. (Note we only employ a barrier before, 211 * we currently rely on userspace not concurrently starting a new execution 212 * whilst reading or writing to an object. This may be an advantage or not 213 * depending on how much you trust userspace not to shoot themselves in the 214 * foot.) Serialisation may just result in the request being inserted into 215 * a DAG awaiting its turn, but most simple is to wait on the CPU until 216 * all dependencies are resolved. 217 * 218 * After all of that, is just a matter of closing the request and handing it to 219 * the hardware (well, leaving it in a queue to be executed). However, we also 220 * offer the ability for batchbuffers to be run with elevated privileges so 221 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 222 * Before any batch is given extra privileges we first must check that it 223 * contains no nefarious instructions, we check that each instruction is from 224 * our whitelist and all registers are also from an allowed list. We first 225 * copy the user's batchbuffer to a shadow (so that the user doesn't have 226 * access to it, either by the CPU or GPU as we scan it) and then parse each 227 * instruction. If everything is ok, we set a flag telling the hardware to run 228 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 229 */ 230 231 struct eb_fence { 232 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */ 233 struct dma_fence *dma_fence; 234 u64 value; 235 struct dma_fence_chain *chain_fence; 236 }; 237 238 struct i915_execbuffer { 239 struct drm_i915_private *i915; /** i915 backpointer */ 240 struct drm_file *file; /** per-file lookup tables and limits */ 241 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 242 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 243 struct eb_vma *vma; 244 245 struct intel_engine_cs *engine; /** engine to queue the request to */ 246 struct intel_context *context; /* logical state for the request */ 247 struct i915_gem_context *gem_context; /** caller's context */ 248 249 struct i915_request *request; /** our request to build */ 250 struct eb_vma *batch; /** identity of the batch obj/vma */ 251 struct i915_vma *trampoline; /** trampoline used for chaining */ 252 253 /** actual size of execobj[] as we may extend it for the cmdparser */ 254 unsigned int buffer_count; 255 256 /** list of vma not yet bound during reservation phase */ 257 struct list_head unbound; 258 259 /** list of vma that have execobj.relocation_count */ 260 struct list_head relocs; 261 262 struct i915_gem_ww_ctx ww; 263 264 /** 265 * Track the most recently used object for relocations, as we 266 * frequently have to perform multiple relocations within the same 267 * obj/page 268 */ 269 struct reloc_cache { 270 struct drm_mm_node node; /** temporary GTT binding */ 271 unsigned long vaddr; /** Current kmap address */ 272 unsigned long page; /** Currently mapped page index */ 273 unsigned int gen; /** Cached value of INTEL_GEN */ 274 bool use_64bit_reloc : 1; 275 bool has_llc : 1; 276 bool has_fence : 1; 277 bool needs_unfenced : 1; 278 279 struct i915_request *rq; 280 u32 *rq_cmd; 281 unsigned int rq_size; 282 struct intel_gt_buffer_pool_node *pool; 283 } reloc_cache; 284 285 struct intel_gt_buffer_pool_node *reloc_pool; /** relocation pool for -EDEADLK handling */ 286 struct intel_context *reloc_context; 287 288 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 289 u32 context_flags; /** Set of execobj.flags to insert from the ctx */ 290 291 u64 batch_len; /** Length of batch within object */ 292 u32 batch_start_offset; /** Location within object of batch */ 293 u32 batch_flags; /** Flags composed for emit_bb_start() */ 294 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */ 295 296 /** 297 * Indicate either the size of the hastable used to resolve 298 * relocation handles, or if negative that we are using a direct 299 * index into the execobj[]. 300 */ 301 int lut_size; 302 struct hlist_head *buckets; /** ht for relocation handles */ 303 304 struct eb_fence *fences; 305 unsigned long num_fences; 306 }; 307 308 static int eb_parse(struct i915_execbuffer *eb); 309 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb, 310 bool throttle); 311 static void eb_unpin_engine(struct i915_execbuffer *eb); 312 313 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) 314 { 315 return intel_engine_requires_cmd_parser(eb->engine) || 316 (intel_engine_using_cmd_parser(eb->engine) && 317 eb->args->batch_len); 318 } 319 320 static int eb_create(struct i915_execbuffer *eb) 321 { 322 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 323 unsigned int size = 1 + ilog2(eb->buffer_count); 324 325 /* 326 * Without a 1:1 association between relocation handles and 327 * the execobject[] index, we instead create a hashtable. 328 * We size it dynamically based on available memory, starting 329 * first with 1:1 assocative hash and scaling back until 330 * the allocation succeeds. 331 * 332 * Later on we use a positive lut_size to indicate we are 333 * using this hashtable, and a negative value to indicate a 334 * direct lookup. 335 */ 336 do { 337 gfp_t flags; 338 339 /* While we can still reduce the allocation size, don't 340 * raise a warning and allow the allocation to fail. 341 * On the last pass though, we want to try as hard 342 * as possible to perform the allocation and warn 343 * if it fails. 344 */ 345 flags = GFP_KERNEL; 346 if (size > 1) 347 flags |= __GFP_NORETRY | __GFP_NOWARN; 348 349 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 350 flags); 351 if (eb->buckets) 352 break; 353 } while (--size); 354 355 if (unlikely(!size)) 356 return -ENOMEM; 357 358 eb->lut_size = size; 359 } else { 360 eb->lut_size = -eb->buffer_count; 361 } 362 363 return 0; 364 } 365 366 static bool 367 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 368 const struct i915_vma *vma, 369 unsigned int flags) 370 { 371 if (vma->node.size < entry->pad_to_size) 372 return true; 373 374 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) 375 return true; 376 377 if (flags & EXEC_OBJECT_PINNED && 378 vma->node.start != entry->offset) 379 return true; 380 381 if (flags & __EXEC_OBJECT_NEEDS_BIAS && 382 vma->node.start < BATCH_OFFSET_BIAS) 383 return true; 384 385 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 386 (vma->node.start + vma->node.size + 4095) >> 32) 387 return true; 388 389 if (flags & __EXEC_OBJECT_NEEDS_MAP && 390 !i915_vma_is_map_and_fenceable(vma)) 391 return true; 392 393 return false; 394 } 395 396 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry, 397 unsigned int exec_flags) 398 { 399 u64 pin_flags = 0; 400 401 if (exec_flags & EXEC_OBJECT_NEEDS_GTT) 402 pin_flags |= PIN_GLOBAL; 403 404 /* 405 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 406 * limit address to the first 4GBs for unflagged objects. 407 */ 408 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 409 pin_flags |= PIN_ZONE_4G; 410 411 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) 412 pin_flags |= PIN_MAPPABLE; 413 414 if (exec_flags & EXEC_OBJECT_PINNED) 415 pin_flags |= entry->offset | PIN_OFFSET_FIXED; 416 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) 417 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 418 419 return pin_flags; 420 } 421 422 static inline bool 423 eb_pin_vma(struct i915_execbuffer *eb, 424 const struct drm_i915_gem_exec_object2 *entry, 425 struct eb_vma *ev) 426 { 427 struct i915_vma *vma = ev->vma; 428 u64 pin_flags; 429 430 if (vma->node.size) 431 pin_flags = vma->node.start; 432 else 433 pin_flags = entry->offset & PIN_OFFSET_MASK; 434 435 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED; 436 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) 437 pin_flags |= PIN_GLOBAL; 438 439 /* Attempt to reuse the current location if available */ 440 /* TODO: Add -EDEADLK handling here */ 441 if (unlikely(i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags))) { 442 if (entry->flags & EXEC_OBJECT_PINNED) 443 return false; 444 445 /* Failing that pick any _free_ space if suitable */ 446 if (unlikely(i915_vma_pin_ww(vma, &eb->ww, 447 entry->pad_to_size, 448 entry->alignment, 449 eb_pin_flags(entry, ev->flags) | 450 PIN_USER | PIN_NOEVICT))) 451 return false; 452 } 453 454 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 455 if (unlikely(i915_vma_pin_fence(vma))) { 456 i915_vma_unpin(vma); 457 return false; 458 } 459 460 if (vma->fence) 461 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 462 } 463 464 ev->flags |= __EXEC_OBJECT_HAS_PIN; 465 return !eb_vma_misplaced(entry, vma, ev->flags); 466 } 467 468 static inline void 469 eb_unreserve_vma(struct eb_vma *ev) 470 { 471 if (!(ev->flags & __EXEC_OBJECT_HAS_PIN)) 472 return; 473 474 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE)) 475 __i915_vma_unpin_fence(ev->vma); 476 477 __i915_vma_unpin(ev->vma); 478 ev->flags &= ~__EXEC_OBJECT_RESERVED; 479 } 480 481 static int 482 eb_validate_vma(struct i915_execbuffer *eb, 483 struct drm_i915_gem_exec_object2 *entry, 484 struct i915_vma *vma) 485 { 486 if (unlikely(entry->flags & eb->invalid_flags)) 487 return -EINVAL; 488 489 if (unlikely(entry->alignment && 490 !is_power_of_2_u64(entry->alignment))) 491 return -EINVAL; 492 493 /* 494 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 495 * any non-page-aligned or non-canonical addresses. 496 */ 497 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 498 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) 499 return -EINVAL; 500 501 /* pad_to_size was once a reserved field, so sanitize it */ 502 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 503 if (unlikely(offset_in_page(entry->pad_to_size))) 504 return -EINVAL; 505 } else { 506 entry->pad_to_size = 0; 507 } 508 /* 509 * From drm_mm perspective address space is continuous, 510 * so from this point we're always using non-canonical 511 * form internally. 512 */ 513 entry->offset = gen8_noncanonical_addr(entry->offset); 514 515 if (!eb->reloc_cache.has_fence) { 516 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 517 } else { 518 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 519 eb->reloc_cache.needs_unfenced) && 520 i915_gem_object_is_tiled(vma->obj)) 521 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 522 } 523 524 if (!(entry->flags & EXEC_OBJECT_PINNED)) 525 entry->flags |= eb->context_flags; 526 527 return 0; 528 } 529 530 static void 531 eb_add_vma(struct i915_execbuffer *eb, 532 unsigned int i, unsigned batch_idx, 533 struct i915_vma *vma) 534 { 535 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 536 struct eb_vma *ev = &eb->vma[i]; 537 538 ev->vma = vma; 539 ev->exec = entry; 540 ev->flags = entry->flags; 541 542 if (eb->lut_size > 0) { 543 ev->handle = entry->handle; 544 hlist_add_head(&ev->node, 545 &eb->buckets[hash_32(entry->handle, 546 eb->lut_size)]); 547 } 548 549 if (entry->relocation_count) 550 list_add_tail(&ev->reloc_link, &eb->relocs); 551 552 /* 553 * SNA is doing fancy tricks with compressing batch buffers, which leads 554 * to negative relocation deltas. Usually that works out ok since the 555 * relocate address is still positive, except when the batch is placed 556 * very low in the GTT. Ensure this doesn't happen. 557 * 558 * Note that actual hangs have only been observed on gen7, but for 559 * paranoia do it everywhere. 560 */ 561 if (i == batch_idx) { 562 if (entry->relocation_count && 563 !(ev->flags & EXEC_OBJECT_PINNED)) 564 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; 565 if (eb->reloc_cache.has_fence) 566 ev->flags |= EXEC_OBJECT_NEEDS_FENCE; 567 568 eb->batch = ev; 569 } 570 } 571 572 static inline int use_cpu_reloc(const struct reloc_cache *cache, 573 const struct drm_i915_gem_object *obj) 574 { 575 if (!i915_gem_object_has_struct_page(obj)) 576 return false; 577 578 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 579 return true; 580 581 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 582 return false; 583 584 return (cache->has_llc || 585 obj->cache_dirty || 586 obj->cache_level != I915_CACHE_NONE); 587 } 588 589 static int eb_reserve_vma(struct i915_execbuffer *eb, 590 struct eb_vma *ev, 591 u64 pin_flags) 592 { 593 struct drm_i915_gem_exec_object2 *entry = ev->exec; 594 struct i915_vma *vma = ev->vma; 595 int err; 596 597 if (drm_mm_node_allocated(&vma->node) && 598 eb_vma_misplaced(entry, vma, ev->flags)) { 599 err = i915_vma_unbind(vma); 600 if (err) 601 return err; 602 } 603 604 err = i915_vma_pin_ww(vma, &eb->ww, 605 entry->pad_to_size, entry->alignment, 606 eb_pin_flags(entry, ev->flags) | pin_flags); 607 if (err) 608 return err; 609 610 if (entry->offset != vma->node.start) { 611 entry->offset = vma->node.start | UPDATE; 612 eb->args->flags |= __EXEC_HAS_RELOC; 613 } 614 615 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 616 err = i915_vma_pin_fence(vma); 617 if (unlikely(err)) { 618 i915_vma_unpin(vma); 619 return err; 620 } 621 622 if (vma->fence) 623 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 624 } 625 626 ev->flags |= __EXEC_OBJECT_HAS_PIN; 627 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); 628 629 return 0; 630 } 631 632 static int eb_reserve(struct i915_execbuffer *eb) 633 { 634 const unsigned int count = eb->buffer_count; 635 unsigned int pin_flags = PIN_USER | PIN_NONBLOCK; 636 struct list_head last; 637 struct eb_vma *ev; 638 unsigned int i, pass; 639 int err = 0; 640 641 /* 642 * Attempt to pin all of the buffers into the GTT. 643 * This is done in 3 phases: 644 * 645 * 1a. Unbind all objects that do not match the GTT constraints for 646 * the execbuffer (fenceable, mappable, alignment etc). 647 * 1b. Increment pin count for already bound objects. 648 * 2. Bind new objects. 649 * 3. Decrement pin count. 650 * 651 * This avoid unnecessary unbinding of later objects in order to make 652 * room for the earlier objects *unless* we need to defragment. 653 */ 654 pass = 0; 655 do { 656 list_for_each_entry(ev, &eb->unbound, bind_link) { 657 err = eb_reserve_vma(eb, ev, pin_flags); 658 if (err) 659 break; 660 } 661 if (err != -ENOSPC) 662 return err; 663 664 /* Resort *all* the objects into priority order */ 665 INIT_LIST_HEAD(&eb->unbound); 666 INIT_LIST_HEAD(&last); 667 for (i = 0; i < count; i++) { 668 unsigned int flags; 669 670 ev = &eb->vma[i]; 671 flags = ev->flags; 672 if (flags & EXEC_OBJECT_PINNED && 673 flags & __EXEC_OBJECT_HAS_PIN) 674 continue; 675 676 eb_unreserve_vma(ev); 677 678 if (flags & EXEC_OBJECT_PINNED) 679 /* Pinned must have their slot */ 680 list_add(&ev->bind_link, &eb->unbound); 681 else if (flags & __EXEC_OBJECT_NEEDS_MAP) 682 /* Map require the lowest 256MiB (aperture) */ 683 list_add_tail(&ev->bind_link, &eb->unbound); 684 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 685 /* Prioritise 4GiB region for restricted bo */ 686 list_add(&ev->bind_link, &last); 687 else 688 list_add_tail(&ev->bind_link, &last); 689 } 690 list_splice_tail(&last, &eb->unbound); 691 692 switch (pass++) { 693 case 0: 694 break; 695 696 case 1: 697 /* Too fragmented, unbind everything and retry */ 698 mutex_lock(&eb->context->vm->mutex); 699 err = i915_gem_evict_vm(eb->context->vm); 700 mutex_unlock(&eb->context->vm->mutex); 701 if (err) 702 return err; 703 break; 704 705 default: 706 return -ENOSPC; 707 } 708 709 pin_flags = PIN_USER; 710 } while (1); 711 } 712 713 static unsigned int eb_batch_index(const struct i915_execbuffer *eb) 714 { 715 if (eb->args->flags & I915_EXEC_BATCH_FIRST) 716 return 0; 717 else 718 return eb->buffer_count - 1; 719 } 720 721 static int eb_select_context(struct i915_execbuffer *eb) 722 { 723 struct i915_gem_context *ctx; 724 725 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 726 if (unlikely(!ctx)) 727 return -ENOENT; 728 729 eb->gem_context = ctx; 730 if (rcu_access_pointer(ctx->vm)) 731 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 732 733 eb->context_flags = 0; 734 if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags)) 735 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS; 736 737 return 0; 738 } 739 740 static int __eb_add_lut(struct i915_execbuffer *eb, 741 u32 handle, struct i915_vma *vma) 742 { 743 struct i915_gem_context *ctx = eb->gem_context; 744 struct i915_lut_handle *lut; 745 int err; 746 747 lut = i915_lut_handle_alloc(); 748 if (unlikely(!lut)) 749 return -ENOMEM; 750 751 i915_vma_get(vma); 752 if (!atomic_fetch_inc(&vma->open_count)) 753 i915_vma_reopen(vma); 754 lut->handle = handle; 755 lut->ctx = ctx; 756 757 /* Check that the context hasn't been closed in the meantime */ 758 err = -EINTR; 759 if (!mutex_lock_interruptible(&ctx->lut_mutex)) { 760 struct i915_address_space *vm = rcu_access_pointer(ctx->vm); 761 762 if (unlikely(vm && vma->vm != vm)) 763 err = -EAGAIN; /* user racing with ctx set-vm */ 764 else if (likely(!i915_gem_context_is_closed(ctx))) 765 err = radix_tree_insert(&ctx->handles_vma, handle, vma); 766 else 767 err = -ENOENT; 768 if (err == 0) { /* And nor has this handle */ 769 struct drm_i915_gem_object *obj = vma->obj; 770 771 spin_lock(&obj->lut_lock); 772 if (idr_find(&eb->file->object_idr, handle) == obj) { 773 list_add(&lut->obj_link, &obj->lut_list); 774 } else { 775 radix_tree_delete(&ctx->handles_vma, handle); 776 err = -ENOENT; 777 } 778 spin_unlock(&obj->lut_lock); 779 } 780 mutex_unlock(&ctx->lut_mutex); 781 } 782 if (unlikely(err)) 783 goto err; 784 785 return 0; 786 787 err: 788 i915_vma_close(vma); 789 i915_vma_put(vma); 790 i915_lut_handle_free(lut); 791 return err; 792 } 793 794 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle) 795 { 796 struct i915_address_space *vm = eb->context->vm; 797 798 do { 799 struct drm_i915_gem_object *obj; 800 struct i915_vma *vma; 801 int err; 802 803 rcu_read_lock(); 804 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle); 805 if (likely(vma && vma->vm == vm)) 806 vma = i915_vma_tryget(vma); 807 rcu_read_unlock(); 808 if (likely(vma)) 809 return vma; 810 811 obj = i915_gem_object_lookup(eb->file, handle); 812 if (unlikely(!obj)) 813 return ERR_PTR(-ENOENT); 814 815 vma = i915_vma_instance(obj, vm, NULL); 816 if (IS_ERR(vma)) { 817 i915_gem_object_put(obj); 818 return vma; 819 } 820 821 err = __eb_add_lut(eb, handle, vma); 822 if (likely(!err)) 823 return vma; 824 825 i915_gem_object_put(obj); 826 if (err != -EEXIST) 827 return ERR_PTR(err); 828 } while (1); 829 } 830 831 static int eb_lookup_vmas(struct i915_execbuffer *eb) 832 { 833 struct drm_i915_private *i915 = eb->i915; 834 unsigned int batch = eb_batch_index(eb); 835 unsigned int i; 836 int err = 0; 837 838 INIT_LIST_HEAD(&eb->relocs); 839 840 for (i = 0; i < eb->buffer_count; i++) { 841 struct i915_vma *vma; 842 843 vma = eb_lookup_vma(eb, eb->exec[i].handle); 844 if (IS_ERR(vma)) { 845 err = PTR_ERR(vma); 846 goto err; 847 } 848 849 err = eb_validate_vma(eb, &eb->exec[i], vma); 850 if (unlikely(err)) { 851 i915_vma_put(vma); 852 goto err; 853 } 854 855 eb_add_vma(eb, i, batch, vma); 856 } 857 858 if (unlikely(eb->batch->flags & EXEC_OBJECT_WRITE)) { 859 drm_dbg(&i915->drm, 860 "Attempting to use self-modifying batch buffer\n"); 861 return -EINVAL; 862 } 863 864 if (range_overflows_t(u64, 865 eb->batch_start_offset, eb->batch_len, 866 eb->batch->vma->size)) { 867 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); 868 return -EINVAL; 869 } 870 871 if (eb->batch_len == 0) 872 eb->batch_len = eb->batch->vma->size - eb->batch_start_offset; 873 if (unlikely(eb->batch_len == 0)) { /* impossible! */ 874 drm_dbg(&i915->drm, "Invalid batch length\n"); 875 return -EINVAL; 876 } 877 878 return 0; 879 880 err: 881 eb->vma[i].vma = NULL; 882 return err; 883 } 884 885 static int eb_validate_vmas(struct i915_execbuffer *eb) 886 { 887 unsigned int i; 888 int err; 889 890 INIT_LIST_HEAD(&eb->unbound); 891 892 for (i = 0; i < eb->buffer_count; i++) { 893 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 894 struct eb_vma *ev = &eb->vma[i]; 895 struct i915_vma *vma = ev->vma; 896 897 err = i915_gem_object_lock(vma->obj, &eb->ww); 898 if (err) 899 return err; 900 901 if (eb_pin_vma(eb, entry, ev)) { 902 if (entry->offset != vma->node.start) { 903 entry->offset = vma->node.start | UPDATE; 904 eb->args->flags |= __EXEC_HAS_RELOC; 905 } 906 } else { 907 eb_unreserve_vma(ev); 908 909 list_add_tail(&ev->bind_link, &eb->unbound); 910 if (drm_mm_node_allocated(&vma->node)) { 911 err = i915_vma_unbind(vma); 912 if (err) 913 return err; 914 } 915 } 916 917 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && 918 eb_vma_misplaced(&eb->exec[i], vma, ev->flags)); 919 } 920 921 if (!list_empty(&eb->unbound)) 922 return eb_reserve(eb); 923 924 return 0; 925 } 926 927 static struct eb_vma * 928 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 929 { 930 if (eb->lut_size < 0) { 931 if (handle >= -eb->lut_size) 932 return NULL; 933 return &eb->vma[handle]; 934 } else { 935 struct hlist_head *head; 936 struct eb_vma *ev; 937 938 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 939 hlist_for_each_entry(ev, head, node) { 940 if (ev->handle == handle) 941 return ev; 942 } 943 return NULL; 944 } 945 } 946 947 static void eb_release_vmas(struct i915_execbuffer *eb, bool final) 948 { 949 const unsigned int count = eb->buffer_count; 950 unsigned int i; 951 952 for (i = 0; i < count; i++) { 953 struct eb_vma *ev = &eb->vma[i]; 954 struct i915_vma *vma = ev->vma; 955 956 if (!vma) 957 break; 958 959 eb_unreserve_vma(ev); 960 961 if (final) 962 i915_vma_put(vma); 963 } 964 965 eb_unpin_engine(eb); 966 } 967 968 static void eb_destroy(const struct i915_execbuffer *eb) 969 { 970 GEM_BUG_ON(eb->reloc_cache.rq); 971 972 if (eb->lut_size > 0) 973 kfree(eb->buckets); 974 } 975 976 static inline u64 977 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 978 const struct i915_vma *target) 979 { 980 return gen8_canonical_addr((int)reloc->delta + target->node.start); 981 } 982 983 static void reloc_cache_clear(struct reloc_cache *cache) 984 { 985 cache->rq = NULL; 986 cache->rq_cmd = NULL; 987 cache->pool = NULL; 988 cache->rq_size = 0; 989 } 990 991 static void reloc_cache_init(struct reloc_cache *cache, 992 struct drm_i915_private *i915) 993 { 994 cache->page = -1; 995 cache->vaddr = 0; 996 /* Must be a variable in the struct to allow GCC to unroll. */ 997 cache->gen = INTEL_GEN(i915); 998 cache->has_llc = HAS_LLC(i915); 999 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 1000 cache->has_fence = cache->gen < 4; 1001 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 1002 cache->node.flags = 0; 1003 reloc_cache_clear(cache); 1004 } 1005 1006 static inline void *unmask_page(unsigned long p) 1007 { 1008 return (void *)(uintptr_t)(p & PAGE_MASK); 1009 } 1010 1011 static inline unsigned int unmask_flags(unsigned long p) 1012 { 1013 return p & ~PAGE_MASK; 1014 } 1015 1016 #define KMAP 0x4 /* after CLFLUSH_FLAGS */ 1017 1018 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 1019 { 1020 struct drm_i915_private *i915 = 1021 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 1022 return &i915->ggtt; 1023 } 1024 1025 static void reloc_cache_put_pool(struct i915_execbuffer *eb, struct reloc_cache *cache) 1026 { 1027 if (!cache->pool) 1028 return; 1029 1030 /* 1031 * This is a bit nasty, normally we keep objects locked until the end 1032 * of execbuffer, but we already submit this, and have to unlock before 1033 * dropping the reference. Fortunately we can only hold 1 pool node at 1034 * a time, so this should be harmless. 1035 */ 1036 i915_gem_ww_unlock_single(cache->pool->obj); 1037 intel_gt_buffer_pool_put(cache->pool); 1038 cache->pool = NULL; 1039 } 1040 1041 static void reloc_gpu_flush(struct i915_execbuffer *eb, struct reloc_cache *cache) 1042 { 1043 struct drm_i915_gem_object *obj = cache->rq->batch->obj; 1044 1045 GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32)); 1046 cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END; 1047 1048 i915_gem_object_flush_map(obj); 1049 i915_gem_object_unpin_map(obj); 1050 1051 intel_gt_chipset_flush(cache->rq->engine->gt); 1052 1053 i915_request_add(cache->rq); 1054 reloc_cache_put_pool(eb, cache); 1055 reloc_cache_clear(cache); 1056 1057 eb->reloc_pool = NULL; 1058 } 1059 1060 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb) 1061 { 1062 void *vaddr; 1063 1064 if (cache->rq) 1065 reloc_gpu_flush(eb, cache); 1066 1067 if (!cache->vaddr) 1068 return; 1069 1070 vaddr = unmask_page(cache->vaddr); 1071 if (cache->vaddr & KMAP) { 1072 struct drm_i915_gem_object *obj = 1073 (struct drm_i915_gem_object *)cache->node.mm; 1074 if (cache->vaddr & CLFLUSH_AFTER) 1075 mb(); 1076 1077 kunmap_atomic(vaddr); 1078 i915_gem_object_finish_access(obj); 1079 } else { 1080 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1081 1082 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1083 io_mapping_unmap_atomic((void __iomem *)vaddr); 1084 1085 if (drm_mm_node_allocated(&cache->node)) { 1086 ggtt->vm.clear_range(&ggtt->vm, 1087 cache->node.start, 1088 cache->node.size); 1089 mutex_lock(&ggtt->vm.mutex); 1090 drm_mm_remove_node(&cache->node); 1091 mutex_unlock(&ggtt->vm.mutex); 1092 } else { 1093 i915_vma_unpin((struct i915_vma *)cache->node.mm); 1094 } 1095 } 1096 1097 cache->vaddr = 0; 1098 cache->page = -1; 1099 } 1100 1101 static void *reloc_kmap(struct drm_i915_gem_object *obj, 1102 struct reloc_cache *cache, 1103 unsigned long pageno) 1104 { 1105 void *vaddr; 1106 struct page *page; 1107 1108 if (cache->vaddr) { 1109 kunmap_atomic(unmask_page(cache->vaddr)); 1110 } else { 1111 unsigned int flushes; 1112 int err; 1113 1114 err = i915_gem_object_prepare_write(obj, &flushes); 1115 if (err) 1116 return ERR_PTR(err); 1117 1118 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 1119 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); 1120 1121 cache->vaddr = flushes | KMAP; 1122 cache->node.mm = (void *)obj; 1123 if (flushes) 1124 mb(); 1125 } 1126 1127 page = i915_gem_object_get_page(obj, pageno); 1128 if (!obj->mm.dirty) 1129 set_page_dirty(page); 1130 1131 vaddr = kmap_atomic(page); 1132 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 1133 cache->page = pageno; 1134 1135 return vaddr; 1136 } 1137 1138 static void *reloc_iomap(struct drm_i915_gem_object *obj, 1139 struct i915_execbuffer *eb, 1140 unsigned long page) 1141 { 1142 struct reloc_cache *cache = &eb->reloc_cache; 1143 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1144 unsigned long offset; 1145 void *vaddr; 1146 1147 if (cache->vaddr) { 1148 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1149 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1150 } else { 1151 struct i915_vma *vma; 1152 int err; 1153 1154 if (i915_gem_object_is_tiled(obj)) 1155 return ERR_PTR(-EINVAL); 1156 1157 if (use_cpu_reloc(cache, obj)) 1158 return NULL; 1159 1160 err = i915_gem_object_set_to_gtt_domain(obj, true); 1161 if (err) 1162 return ERR_PTR(err); 1163 1164 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0, 1165 PIN_MAPPABLE | 1166 PIN_NONBLOCK /* NOWARN */ | 1167 PIN_NOEVICT); 1168 if (vma == ERR_PTR(-EDEADLK)) 1169 return vma; 1170 1171 if (IS_ERR(vma)) { 1172 memset(&cache->node, 0, sizeof(cache->node)); 1173 mutex_lock(&ggtt->vm.mutex); 1174 err = drm_mm_insert_node_in_range 1175 (&ggtt->vm.mm, &cache->node, 1176 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1177 0, ggtt->mappable_end, 1178 DRM_MM_INSERT_LOW); 1179 mutex_unlock(&ggtt->vm.mutex); 1180 if (err) /* no inactive aperture space, use cpu reloc */ 1181 return NULL; 1182 } else { 1183 cache->node.start = vma->node.start; 1184 cache->node.mm = (void *)vma; 1185 } 1186 } 1187 1188 offset = cache->node.start; 1189 if (drm_mm_node_allocated(&cache->node)) { 1190 ggtt->vm.insert_page(&ggtt->vm, 1191 i915_gem_object_get_dma_address(obj, page), 1192 offset, I915_CACHE_NONE, 0); 1193 } else { 1194 offset += page << PAGE_SHIFT; 1195 } 1196 1197 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, 1198 offset); 1199 cache->page = page; 1200 cache->vaddr = (unsigned long)vaddr; 1201 1202 return vaddr; 1203 } 1204 1205 static void *reloc_vaddr(struct drm_i915_gem_object *obj, 1206 struct i915_execbuffer *eb, 1207 unsigned long page) 1208 { 1209 struct reloc_cache *cache = &eb->reloc_cache; 1210 void *vaddr; 1211 1212 if (cache->page == page) { 1213 vaddr = unmask_page(cache->vaddr); 1214 } else { 1215 vaddr = NULL; 1216 if ((cache->vaddr & KMAP) == 0) 1217 vaddr = reloc_iomap(obj, eb, page); 1218 if (!vaddr) 1219 vaddr = reloc_kmap(obj, cache, page); 1220 } 1221 1222 return vaddr; 1223 } 1224 1225 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1226 { 1227 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1228 if (flushes & CLFLUSH_BEFORE) { 1229 clflushopt(addr); 1230 mb(); 1231 } 1232 1233 *addr = value; 1234 1235 /* 1236 * Writes to the same cacheline are serialised by the CPU 1237 * (including clflush). On the write path, we only require 1238 * that it hits memory in an orderly fashion and place 1239 * mb barriers at the start and end of the relocation phase 1240 * to ensure ordering of clflush wrt to the system. 1241 */ 1242 if (flushes & CLFLUSH_AFTER) 1243 clflushopt(addr); 1244 } else 1245 *addr = value; 1246 } 1247 1248 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma) 1249 { 1250 struct drm_i915_gem_object *obj = vma->obj; 1251 int err; 1252 1253 assert_vma_held(vma); 1254 1255 if (obj->cache_dirty & ~obj->cache_coherent) 1256 i915_gem_clflush_object(obj, 0); 1257 obj->write_domain = 0; 1258 1259 err = i915_request_await_object(rq, vma->obj, true); 1260 if (err == 0) 1261 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE); 1262 1263 return err; 1264 } 1265 1266 static int __reloc_gpu_alloc(struct i915_execbuffer *eb, 1267 struct intel_engine_cs *engine, 1268 struct i915_vma *vma, 1269 unsigned int len) 1270 { 1271 struct reloc_cache *cache = &eb->reloc_cache; 1272 struct intel_gt_buffer_pool_node *pool = eb->reloc_pool; 1273 struct i915_request *rq; 1274 struct i915_vma *batch; 1275 u32 *cmd; 1276 int err; 1277 1278 if (!pool) { 1279 pool = intel_gt_get_buffer_pool(engine->gt, PAGE_SIZE, 1280 cache->has_llc ? 1281 I915_MAP_WB : 1282 I915_MAP_WC); 1283 if (IS_ERR(pool)) 1284 return PTR_ERR(pool); 1285 } 1286 eb->reloc_pool = NULL; 1287 1288 err = i915_gem_object_lock(pool->obj, &eb->ww); 1289 if (err) 1290 goto err_pool; 1291 1292 cmd = i915_gem_object_pin_map(pool->obj, pool->type); 1293 if (IS_ERR(cmd)) { 1294 err = PTR_ERR(cmd); 1295 goto err_pool; 1296 } 1297 1298 memset32(cmd, 0, pool->obj->base.size / sizeof(u32)); 1299 1300 batch = i915_vma_instance(pool->obj, vma->vm, NULL); 1301 if (IS_ERR(batch)) { 1302 err = PTR_ERR(batch); 1303 goto err_unmap; 1304 } 1305 1306 err = i915_vma_pin_ww(batch, &eb->ww, 0, 0, PIN_USER | PIN_NONBLOCK); 1307 if (err) 1308 goto err_unmap; 1309 1310 if (engine == eb->context->engine) { 1311 rq = i915_request_create(eb->context); 1312 } else { 1313 struct intel_context *ce = eb->reloc_context; 1314 1315 if (!ce) { 1316 ce = intel_context_create(engine); 1317 if (IS_ERR(ce)) { 1318 err = PTR_ERR(ce); 1319 goto err_unpin; 1320 } 1321 1322 i915_vm_put(ce->vm); 1323 ce->vm = i915_vm_get(eb->context->vm); 1324 eb->reloc_context = ce; 1325 } 1326 1327 err = intel_context_pin_ww(ce, &eb->ww); 1328 if (err) 1329 goto err_unpin; 1330 1331 rq = i915_request_create(ce); 1332 intel_context_unpin(ce); 1333 } 1334 if (IS_ERR(rq)) { 1335 err = PTR_ERR(rq); 1336 goto err_unpin; 1337 } 1338 1339 err = intel_gt_buffer_pool_mark_active(pool, rq); 1340 if (err) 1341 goto err_request; 1342 1343 err = reloc_move_to_gpu(rq, vma); 1344 if (err) 1345 goto err_request; 1346 1347 err = eb->engine->emit_bb_start(rq, 1348 batch->node.start, PAGE_SIZE, 1349 cache->gen > 5 ? 0 : I915_DISPATCH_SECURE); 1350 if (err) 1351 goto skip_request; 1352 1353 assert_vma_held(batch); 1354 err = i915_request_await_object(rq, batch->obj, false); 1355 if (err == 0) 1356 err = i915_vma_move_to_active(batch, rq, 0); 1357 if (err) 1358 goto skip_request; 1359 1360 rq->batch = batch; 1361 i915_vma_unpin(batch); 1362 1363 cache->rq = rq; 1364 cache->rq_cmd = cmd; 1365 cache->rq_size = 0; 1366 cache->pool = pool; 1367 1368 /* Return with batch mapping (cmd) still pinned */ 1369 return 0; 1370 1371 skip_request: 1372 i915_request_set_error_once(rq, err); 1373 err_request: 1374 i915_request_add(rq); 1375 err_unpin: 1376 i915_vma_unpin(batch); 1377 err_unmap: 1378 i915_gem_object_unpin_map(pool->obj); 1379 err_pool: 1380 eb->reloc_pool = pool; 1381 return err; 1382 } 1383 1384 static bool reloc_can_use_engine(const struct intel_engine_cs *engine) 1385 { 1386 return engine->class != VIDEO_DECODE_CLASS || !IS_GEN(engine->i915, 6); 1387 } 1388 1389 static u32 *reloc_gpu(struct i915_execbuffer *eb, 1390 struct i915_vma *vma, 1391 unsigned int len) 1392 { 1393 struct reloc_cache *cache = &eb->reloc_cache; 1394 u32 *cmd; 1395 1396 if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1)) 1397 reloc_gpu_flush(eb, cache); 1398 1399 if (unlikely(!cache->rq)) { 1400 int err; 1401 struct intel_engine_cs *engine = eb->engine; 1402 1403 if (!reloc_can_use_engine(engine)) { 1404 engine = engine->gt->engine_class[COPY_ENGINE_CLASS][0]; 1405 if (!engine) 1406 return ERR_PTR(-ENODEV); 1407 } 1408 1409 err = __reloc_gpu_alloc(eb, engine, vma, len); 1410 if (unlikely(err)) 1411 return ERR_PTR(err); 1412 } 1413 1414 cmd = cache->rq_cmd + cache->rq_size; 1415 cache->rq_size += len; 1416 1417 return cmd; 1418 } 1419 1420 static inline bool use_reloc_gpu(struct i915_vma *vma) 1421 { 1422 if (DBG_FORCE_RELOC == FORCE_GPU_RELOC) 1423 return true; 1424 1425 if (DBG_FORCE_RELOC) 1426 return false; 1427 1428 return !dma_resv_test_signaled_rcu(vma->resv, true); 1429 } 1430 1431 static unsigned long vma_phys_addr(struct i915_vma *vma, u32 offset) 1432 { 1433 struct page *page; 1434 unsigned long addr; 1435 1436 GEM_BUG_ON(vma->pages != vma->obj->mm.pages); 1437 1438 page = i915_gem_object_get_page(vma->obj, offset >> PAGE_SHIFT); 1439 addr = PFN_PHYS(page_to_pfn(page)); 1440 GEM_BUG_ON(overflows_type(addr, u32)); /* expected dma32 */ 1441 1442 return addr + offset_in_page(offset); 1443 } 1444 1445 static int __reloc_entry_gpu(struct i915_execbuffer *eb, 1446 struct i915_vma *vma, 1447 u64 offset, 1448 u64 target_addr) 1449 { 1450 const unsigned int gen = eb->reloc_cache.gen; 1451 unsigned int len; 1452 u32 *batch; 1453 u64 addr; 1454 1455 if (gen >= 8) 1456 len = offset & 7 ? 8 : 5; 1457 else if (gen >= 4) 1458 len = 4; 1459 else 1460 len = 3; 1461 1462 batch = reloc_gpu(eb, vma, len); 1463 if (batch == ERR_PTR(-EDEADLK)) 1464 return -EDEADLK; 1465 else if (IS_ERR(batch)) 1466 return false; 1467 1468 addr = gen8_canonical_addr(vma->node.start + offset); 1469 if (gen >= 8) { 1470 if (offset & 7) { 1471 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1472 *batch++ = lower_32_bits(addr); 1473 *batch++ = upper_32_bits(addr); 1474 *batch++ = lower_32_bits(target_addr); 1475 1476 addr = gen8_canonical_addr(addr + 4); 1477 1478 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1479 *batch++ = lower_32_bits(addr); 1480 *batch++ = upper_32_bits(addr); 1481 *batch++ = upper_32_bits(target_addr); 1482 } else { 1483 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1; 1484 *batch++ = lower_32_bits(addr); 1485 *batch++ = upper_32_bits(addr); 1486 *batch++ = lower_32_bits(target_addr); 1487 *batch++ = upper_32_bits(target_addr); 1488 } 1489 } else if (gen >= 6) { 1490 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1491 *batch++ = 0; 1492 *batch++ = addr; 1493 *batch++ = target_addr; 1494 } else if (IS_I965G(eb->i915)) { 1495 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1496 *batch++ = 0; 1497 *batch++ = vma_phys_addr(vma, offset); 1498 *batch++ = target_addr; 1499 } else if (gen >= 4) { 1500 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 1501 *batch++ = 0; 1502 *batch++ = addr; 1503 *batch++ = target_addr; 1504 } else if (gen >= 3 && 1505 !(IS_I915G(eb->i915) || IS_I915GM(eb->i915))) { 1506 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL; 1507 *batch++ = addr; 1508 *batch++ = target_addr; 1509 } else { 1510 *batch++ = MI_STORE_DWORD_IMM; 1511 *batch++ = vma_phys_addr(vma, offset); 1512 *batch++ = target_addr; 1513 } 1514 1515 return true; 1516 } 1517 1518 static int reloc_entry_gpu(struct i915_execbuffer *eb, 1519 struct i915_vma *vma, 1520 u64 offset, 1521 u64 target_addr) 1522 { 1523 if (eb->reloc_cache.vaddr) 1524 return false; 1525 1526 if (!use_reloc_gpu(vma)) 1527 return false; 1528 1529 return __reloc_entry_gpu(eb, vma, offset, target_addr); 1530 } 1531 1532 static u64 1533 relocate_entry(struct i915_vma *vma, 1534 const struct drm_i915_gem_relocation_entry *reloc, 1535 struct i915_execbuffer *eb, 1536 const struct i915_vma *target) 1537 { 1538 u64 target_addr = relocation_target(reloc, target); 1539 u64 offset = reloc->offset; 1540 int reloc_gpu = reloc_entry_gpu(eb, vma, offset, target_addr); 1541 1542 if (reloc_gpu < 0) 1543 return reloc_gpu; 1544 1545 if (!reloc_gpu) { 1546 bool wide = eb->reloc_cache.use_64bit_reloc; 1547 void *vaddr; 1548 1549 repeat: 1550 vaddr = reloc_vaddr(vma->obj, eb, 1551 offset >> PAGE_SHIFT); 1552 if (IS_ERR(vaddr)) 1553 return PTR_ERR(vaddr); 1554 1555 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32))); 1556 clflush_write32(vaddr + offset_in_page(offset), 1557 lower_32_bits(target_addr), 1558 eb->reloc_cache.vaddr); 1559 1560 if (wide) { 1561 offset += sizeof(u32); 1562 target_addr >>= 32; 1563 wide = false; 1564 goto repeat; 1565 } 1566 } 1567 1568 return target->node.start | UPDATE; 1569 } 1570 1571 static u64 1572 eb_relocate_entry(struct i915_execbuffer *eb, 1573 struct eb_vma *ev, 1574 const struct drm_i915_gem_relocation_entry *reloc) 1575 { 1576 struct drm_i915_private *i915 = eb->i915; 1577 struct eb_vma *target; 1578 int err; 1579 1580 /* we've already hold a reference to all valid objects */ 1581 target = eb_get_vma(eb, reloc->target_handle); 1582 if (unlikely(!target)) 1583 return -ENOENT; 1584 1585 /* Validate that the target is in a valid r/w GPU domain */ 1586 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1587 drm_dbg(&i915->drm, "reloc with multiple write domains: " 1588 "target %d offset %d " 1589 "read %08x write %08x", 1590 reloc->target_handle, 1591 (int) reloc->offset, 1592 reloc->read_domains, 1593 reloc->write_domain); 1594 return -EINVAL; 1595 } 1596 if (unlikely((reloc->write_domain | reloc->read_domains) 1597 & ~I915_GEM_GPU_DOMAINS)) { 1598 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " 1599 "target %d offset %d " 1600 "read %08x write %08x", 1601 reloc->target_handle, 1602 (int) reloc->offset, 1603 reloc->read_domains, 1604 reloc->write_domain); 1605 return -EINVAL; 1606 } 1607 1608 if (reloc->write_domain) { 1609 target->flags |= EXEC_OBJECT_WRITE; 1610 1611 /* 1612 * Sandybridge PPGTT errata: We need a global gtt mapping 1613 * for MI and pipe_control writes because the gpu doesn't 1614 * properly redirect them through the ppgtt for non_secure 1615 * batchbuffers. 1616 */ 1617 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1618 IS_GEN(eb->i915, 6)) { 1619 err = i915_vma_bind(target->vma, 1620 target->vma->obj->cache_level, 1621 PIN_GLOBAL, NULL); 1622 if (err) 1623 return err; 1624 } 1625 } 1626 1627 /* 1628 * If the relocation already has the right value in it, no 1629 * more work needs to be done. 1630 */ 1631 if (!DBG_FORCE_RELOC && 1632 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset) 1633 return 0; 1634 1635 /* Check that the relocation address is valid... */ 1636 if (unlikely(reloc->offset > 1637 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1638 drm_dbg(&i915->drm, "Relocation beyond object bounds: " 1639 "target %d offset %d size %d.\n", 1640 reloc->target_handle, 1641 (int)reloc->offset, 1642 (int)ev->vma->size); 1643 return -EINVAL; 1644 } 1645 if (unlikely(reloc->offset & 3)) { 1646 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " 1647 "target %d offset %d.\n", 1648 reloc->target_handle, 1649 (int)reloc->offset); 1650 return -EINVAL; 1651 } 1652 1653 /* 1654 * If we write into the object, we need to force the synchronisation 1655 * barrier, either with an asynchronous clflush or if we executed the 1656 * patching using the GPU (though that should be serialised by the 1657 * timeline). To be completely sure, and since we are required to 1658 * do relocations we are already stalling, disable the user's opt 1659 * out of our synchronisation. 1660 */ 1661 ev->flags &= ~EXEC_OBJECT_ASYNC; 1662 1663 /* and update the user's relocation entry */ 1664 return relocate_entry(ev->vma, reloc, eb, target->vma); 1665 } 1666 1667 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) 1668 { 1669 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1670 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1671 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1672 struct drm_i915_gem_relocation_entry __user *urelocs = 1673 u64_to_user_ptr(entry->relocs_ptr); 1674 unsigned long remain = entry->relocation_count; 1675 1676 if (unlikely(remain > N_RELOC(ULONG_MAX))) 1677 return -EINVAL; 1678 1679 /* 1680 * We must check that the entire relocation array is safe 1681 * to read. However, if the array is not writable the user loses 1682 * the updated relocation values. 1683 */ 1684 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs)))) 1685 return -EFAULT; 1686 1687 do { 1688 struct drm_i915_gem_relocation_entry *r = stack; 1689 unsigned int count = 1690 min_t(unsigned long, remain, ARRAY_SIZE(stack)); 1691 unsigned int copied; 1692 1693 /* 1694 * This is the fast path and we cannot handle a pagefault 1695 * whilst holding the struct mutex lest the user pass in the 1696 * relocations contained within a mmaped bo. For in such a case 1697 * we, the page fault handler would call i915_gem_fault() and 1698 * we would try to acquire the struct mutex again. Obviously 1699 * this is bad and so lockdep complains vehemently. 1700 */ 1701 pagefault_disable(); 1702 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); 1703 pagefault_enable(); 1704 if (unlikely(copied)) { 1705 remain = -EFAULT; 1706 goto out; 1707 } 1708 1709 remain -= count; 1710 do { 1711 u64 offset = eb_relocate_entry(eb, ev, r); 1712 1713 if (likely(offset == 0)) { 1714 } else if ((s64)offset < 0) { 1715 remain = (int)offset; 1716 goto out; 1717 } else { 1718 /* 1719 * Note that reporting an error now 1720 * leaves everything in an inconsistent 1721 * state as we have *already* changed 1722 * the relocation value inside the 1723 * object. As we have not changed the 1724 * reloc.presumed_offset or will not 1725 * change the execobject.offset, on the 1726 * call we may not rewrite the value 1727 * inside the object, leaving it 1728 * dangling and causing a GPU hang. Unless 1729 * userspace dynamically rebuilds the 1730 * relocations on each execbuf rather than 1731 * presume a static tree. 1732 * 1733 * We did previously check if the relocations 1734 * were writable (access_ok), an error now 1735 * would be a strange race with mprotect, 1736 * having already demonstrated that we 1737 * can read from this userspace address. 1738 */ 1739 offset = gen8_canonical_addr(offset & ~UPDATE); 1740 __put_user(offset, 1741 &urelocs[r - stack].presumed_offset); 1742 } 1743 } while (r++, --count); 1744 urelocs += ARRAY_SIZE(stack); 1745 } while (remain); 1746 out: 1747 reloc_cache_reset(&eb->reloc_cache, eb); 1748 return remain; 1749 } 1750 1751 static int 1752 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev) 1753 { 1754 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1755 struct drm_i915_gem_relocation_entry *relocs = 1756 u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1757 unsigned int i; 1758 int err; 1759 1760 for (i = 0; i < entry->relocation_count; i++) { 1761 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]); 1762 1763 if ((s64)offset < 0) { 1764 err = (int)offset; 1765 goto err; 1766 } 1767 } 1768 err = 0; 1769 err: 1770 reloc_cache_reset(&eb->reloc_cache, eb); 1771 return err; 1772 } 1773 1774 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) 1775 { 1776 const char __user *addr, *end; 1777 unsigned long size; 1778 char __maybe_unused c; 1779 1780 size = entry->relocation_count; 1781 if (size == 0) 1782 return 0; 1783 1784 if (size > N_RELOC(ULONG_MAX)) 1785 return -EINVAL; 1786 1787 addr = u64_to_user_ptr(entry->relocs_ptr); 1788 size *= sizeof(struct drm_i915_gem_relocation_entry); 1789 if (!access_ok(addr, size)) 1790 return -EFAULT; 1791 1792 end = addr + size; 1793 for (; addr < end; addr += PAGE_SIZE) { 1794 int err = __get_user(c, addr); 1795 if (err) 1796 return err; 1797 } 1798 return __get_user(c, end - 1); 1799 } 1800 1801 static int eb_copy_relocations(const struct i915_execbuffer *eb) 1802 { 1803 struct drm_i915_gem_relocation_entry *relocs; 1804 const unsigned int count = eb->buffer_count; 1805 unsigned int i; 1806 int err; 1807 1808 for (i = 0; i < count; i++) { 1809 const unsigned int nreloc = eb->exec[i].relocation_count; 1810 struct drm_i915_gem_relocation_entry __user *urelocs; 1811 unsigned long size; 1812 unsigned long copied; 1813 1814 if (nreloc == 0) 1815 continue; 1816 1817 err = check_relocations(&eb->exec[i]); 1818 if (err) 1819 goto err; 1820 1821 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); 1822 size = nreloc * sizeof(*relocs); 1823 1824 relocs = kvmalloc_array(size, 1, GFP_KERNEL); 1825 if (!relocs) { 1826 err = -ENOMEM; 1827 goto err; 1828 } 1829 1830 /* copy_from_user is limited to < 4GiB */ 1831 copied = 0; 1832 do { 1833 unsigned int len = 1834 min_t(u64, BIT_ULL(31), size - copied); 1835 1836 if (__copy_from_user((char *)relocs + copied, 1837 (char __user *)urelocs + copied, 1838 len)) 1839 goto end; 1840 1841 copied += len; 1842 } while (copied < size); 1843 1844 /* 1845 * As we do not update the known relocation offsets after 1846 * relocating (due to the complexities in lock handling), 1847 * we need to mark them as invalid now so that we force the 1848 * relocation processing next time. Just in case the target 1849 * object is evicted and then rebound into its old 1850 * presumed_offset before the next execbuffer - if that 1851 * happened we would make the mistake of assuming that the 1852 * relocations were valid. 1853 */ 1854 if (!user_access_begin(urelocs, size)) 1855 goto end; 1856 1857 for (copied = 0; copied < nreloc; copied++) 1858 unsafe_put_user(-1, 1859 &urelocs[copied].presumed_offset, 1860 end_user); 1861 user_access_end(); 1862 1863 eb->exec[i].relocs_ptr = (uintptr_t)relocs; 1864 } 1865 1866 return 0; 1867 1868 end_user: 1869 user_access_end(); 1870 end: 1871 kvfree(relocs); 1872 err = -EFAULT; 1873 err: 1874 while (i--) { 1875 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); 1876 if (eb->exec[i].relocation_count) 1877 kvfree(relocs); 1878 } 1879 return err; 1880 } 1881 1882 static int eb_prefault_relocations(const struct i915_execbuffer *eb) 1883 { 1884 const unsigned int count = eb->buffer_count; 1885 unsigned int i; 1886 1887 for (i = 0; i < count; i++) { 1888 int err; 1889 1890 err = check_relocations(&eb->exec[i]); 1891 if (err) 1892 return err; 1893 } 1894 1895 return 0; 1896 } 1897 1898 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb, 1899 struct i915_request *rq) 1900 { 1901 bool have_copy = false; 1902 struct eb_vma *ev; 1903 int err = 0; 1904 1905 repeat: 1906 if (signal_pending(current)) { 1907 err = -ERESTARTSYS; 1908 goto out; 1909 } 1910 1911 /* We may process another execbuffer during the unlock... */ 1912 eb_release_vmas(eb, false); 1913 i915_gem_ww_ctx_fini(&eb->ww); 1914 1915 if (rq) { 1916 /* nonblocking is always false */ 1917 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 1918 MAX_SCHEDULE_TIMEOUT) < 0) { 1919 i915_request_put(rq); 1920 rq = NULL; 1921 1922 err = -EINTR; 1923 goto err_relock; 1924 } 1925 1926 i915_request_put(rq); 1927 rq = NULL; 1928 } 1929 1930 /* 1931 * We take 3 passes through the slowpatch. 1932 * 1933 * 1 - we try to just prefault all the user relocation entries and 1934 * then attempt to reuse the atomic pagefault disabled fast path again. 1935 * 1936 * 2 - we copy the user entries to a local buffer here outside of the 1937 * local and allow ourselves to wait upon any rendering before 1938 * relocations 1939 * 1940 * 3 - we already have a local copy of the relocation entries, but 1941 * were interrupted (EAGAIN) whilst waiting for the objects, try again. 1942 */ 1943 if (!err) { 1944 err = eb_prefault_relocations(eb); 1945 } else if (!have_copy) { 1946 err = eb_copy_relocations(eb); 1947 have_copy = err == 0; 1948 } else { 1949 cond_resched(); 1950 err = 0; 1951 } 1952 1953 if (!err) 1954 flush_workqueue(eb->i915->mm.userptr_wq); 1955 1956 err_relock: 1957 i915_gem_ww_ctx_init(&eb->ww, true); 1958 if (err) 1959 goto out; 1960 1961 /* reacquire the objects */ 1962 repeat_validate: 1963 rq = eb_pin_engine(eb, false); 1964 if (IS_ERR(rq)) { 1965 err = PTR_ERR(rq); 1966 rq = NULL; 1967 goto err; 1968 } 1969 1970 /* We didn't throttle, should be NULL */ 1971 GEM_WARN_ON(rq); 1972 1973 err = eb_validate_vmas(eb); 1974 if (err) 1975 goto err; 1976 1977 GEM_BUG_ON(!eb->batch); 1978 1979 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1980 if (!have_copy) { 1981 pagefault_disable(); 1982 err = eb_relocate_vma(eb, ev); 1983 pagefault_enable(); 1984 if (err) 1985 break; 1986 } else { 1987 err = eb_relocate_vma_slow(eb, ev); 1988 if (err) 1989 break; 1990 } 1991 } 1992 1993 if (err == -EDEADLK) 1994 goto err; 1995 1996 if (err && !have_copy) 1997 goto repeat; 1998 1999 if (err) 2000 goto err; 2001 2002 /* as last step, parse the command buffer */ 2003 err = eb_parse(eb); 2004 if (err) 2005 goto err; 2006 2007 /* 2008 * Leave the user relocations as are, this is the painfully slow path, 2009 * and we want to avoid the complication of dropping the lock whilst 2010 * having buffers reserved in the aperture and so causing spurious 2011 * ENOSPC for random operations. 2012 */ 2013 2014 err: 2015 if (err == -EDEADLK) { 2016 eb_release_vmas(eb, false); 2017 err = i915_gem_ww_ctx_backoff(&eb->ww); 2018 if (!err) 2019 goto repeat_validate; 2020 } 2021 2022 if (err == -EAGAIN) 2023 goto repeat; 2024 2025 out: 2026 if (have_copy) { 2027 const unsigned int count = eb->buffer_count; 2028 unsigned int i; 2029 2030 for (i = 0; i < count; i++) { 2031 const struct drm_i915_gem_exec_object2 *entry = 2032 &eb->exec[i]; 2033 struct drm_i915_gem_relocation_entry *relocs; 2034 2035 if (!entry->relocation_count) 2036 continue; 2037 2038 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 2039 kvfree(relocs); 2040 } 2041 } 2042 2043 if (rq) 2044 i915_request_put(rq); 2045 2046 return err; 2047 } 2048 2049 static int eb_relocate_parse(struct i915_execbuffer *eb) 2050 { 2051 int err; 2052 struct i915_request *rq = NULL; 2053 bool throttle = true; 2054 2055 retry: 2056 rq = eb_pin_engine(eb, throttle); 2057 if (IS_ERR(rq)) { 2058 err = PTR_ERR(rq); 2059 rq = NULL; 2060 if (err != -EDEADLK) 2061 return err; 2062 2063 goto err; 2064 } 2065 2066 if (rq) { 2067 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; 2068 2069 /* Need to drop all locks now for throttling, take slowpath */ 2070 err = i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 0); 2071 if (err == -ETIME) { 2072 if (nonblock) { 2073 err = -EWOULDBLOCK; 2074 i915_request_put(rq); 2075 goto err; 2076 } 2077 goto slow; 2078 } 2079 i915_request_put(rq); 2080 rq = NULL; 2081 } 2082 2083 /* only throttle once, even if we didn't need to throttle */ 2084 throttle = false; 2085 2086 err = eb_validate_vmas(eb); 2087 if (err == -EAGAIN) 2088 goto slow; 2089 else if (err) 2090 goto err; 2091 2092 /* The objects are in their final locations, apply the relocations. */ 2093 if (eb->args->flags & __EXEC_HAS_RELOC) { 2094 struct eb_vma *ev; 2095 2096 list_for_each_entry(ev, &eb->relocs, reloc_link) { 2097 err = eb_relocate_vma(eb, ev); 2098 if (err) 2099 break; 2100 } 2101 2102 if (err == -EDEADLK) 2103 goto err; 2104 else if (err) 2105 goto slow; 2106 } 2107 2108 if (!err) 2109 err = eb_parse(eb); 2110 2111 err: 2112 if (err == -EDEADLK) { 2113 eb_release_vmas(eb, false); 2114 err = i915_gem_ww_ctx_backoff(&eb->ww); 2115 if (!err) 2116 goto retry; 2117 } 2118 2119 return err; 2120 2121 slow: 2122 err = eb_relocate_parse_slow(eb, rq); 2123 if (err) 2124 /* 2125 * If the user expects the execobject.offset and 2126 * reloc.presumed_offset to be an exact match, 2127 * as for using NO_RELOC, then we cannot update 2128 * the execobject.offset until we have completed 2129 * relocation. 2130 */ 2131 eb->args->flags &= ~__EXEC_HAS_RELOC; 2132 2133 return err; 2134 } 2135 2136 static int eb_move_to_gpu(struct i915_execbuffer *eb) 2137 { 2138 const unsigned int count = eb->buffer_count; 2139 unsigned int i = count; 2140 int err = 0; 2141 2142 while (i--) { 2143 struct eb_vma *ev = &eb->vma[i]; 2144 struct i915_vma *vma = ev->vma; 2145 unsigned int flags = ev->flags; 2146 struct drm_i915_gem_object *obj = vma->obj; 2147 2148 assert_vma_held(vma); 2149 2150 if (flags & EXEC_OBJECT_CAPTURE) { 2151 struct i915_capture_list *capture; 2152 2153 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 2154 if (capture) { 2155 capture->next = eb->request->capture_list; 2156 capture->vma = vma; 2157 eb->request->capture_list = capture; 2158 } 2159 } 2160 2161 /* 2162 * If the GPU is not _reading_ through the CPU cache, we need 2163 * to make sure that any writes (both previous GPU writes from 2164 * before a change in snooping levels and normal CPU writes) 2165 * caught in that cache are flushed to main memory. 2166 * 2167 * We want to say 2168 * obj->cache_dirty && 2169 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) 2170 * but gcc's optimiser doesn't handle that as well and emits 2171 * two jumps instead of one. Maybe one day... 2172 */ 2173 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { 2174 if (i915_gem_clflush_object(obj, 0)) 2175 flags &= ~EXEC_OBJECT_ASYNC; 2176 } 2177 2178 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { 2179 err = i915_request_await_object 2180 (eb->request, obj, flags & EXEC_OBJECT_WRITE); 2181 } 2182 2183 if (err == 0) 2184 err = i915_vma_move_to_active(vma, eb->request, flags); 2185 } 2186 2187 if (unlikely(err)) 2188 goto err_skip; 2189 2190 /* Unconditionally flush any chipset caches (for streaming writes). */ 2191 intel_gt_chipset_flush(eb->engine->gt); 2192 return 0; 2193 2194 err_skip: 2195 i915_request_set_error_once(eb->request, err); 2196 return err; 2197 } 2198 2199 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) 2200 { 2201 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 2202 return -EINVAL; 2203 2204 /* Kernel clipping was a DRI1 misfeature */ 2205 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY | 2206 I915_EXEC_USE_EXTENSIONS))) { 2207 if (exec->num_cliprects || exec->cliprects_ptr) 2208 return -EINVAL; 2209 } 2210 2211 if (exec->DR4 == 0xffffffff) { 2212 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); 2213 exec->DR4 = 0; 2214 } 2215 if (exec->DR1 || exec->DR4) 2216 return -EINVAL; 2217 2218 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 2219 return -EINVAL; 2220 2221 return 0; 2222 } 2223 2224 static int i915_reset_gen7_sol_offsets(struct i915_request *rq) 2225 { 2226 u32 *cs; 2227 int i; 2228 2229 if (!IS_GEN(rq->engine->i915, 7) || rq->engine->id != RCS0) { 2230 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n"); 2231 return -EINVAL; 2232 } 2233 2234 cs = intel_ring_begin(rq, 4 * 2 + 2); 2235 if (IS_ERR(cs)) 2236 return PTR_ERR(cs); 2237 2238 *cs++ = MI_LOAD_REGISTER_IMM(4); 2239 for (i = 0; i < 4; i++) { 2240 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 2241 *cs++ = 0; 2242 } 2243 *cs++ = MI_NOOP; 2244 intel_ring_advance(rq, cs); 2245 2246 return 0; 2247 } 2248 2249 static struct i915_vma * 2250 shadow_batch_pin(struct i915_execbuffer *eb, 2251 struct drm_i915_gem_object *obj, 2252 struct i915_address_space *vm, 2253 unsigned int flags) 2254 { 2255 struct i915_vma *vma; 2256 int err; 2257 2258 vma = i915_vma_instance(obj, vm, NULL); 2259 if (IS_ERR(vma)) 2260 return vma; 2261 2262 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags); 2263 if (err) 2264 return ERR_PTR(err); 2265 2266 return vma; 2267 } 2268 2269 struct eb_parse_work { 2270 struct dma_fence_work base; 2271 struct intel_engine_cs *engine; 2272 struct i915_vma *batch; 2273 struct i915_vma *shadow; 2274 struct i915_vma *trampoline; 2275 unsigned long batch_offset; 2276 unsigned long batch_length; 2277 }; 2278 2279 static int __eb_parse(struct dma_fence_work *work) 2280 { 2281 struct eb_parse_work *pw = container_of(work, typeof(*pw), base); 2282 2283 return intel_engine_cmd_parser(pw->engine, 2284 pw->batch, 2285 pw->batch_offset, 2286 pw->batch_length, 2287 pw->shadow, 2288 pw->trampoline); 2289 } 2290 2291 static void __eb_parse_release(struct dma_fence_work *work) 2292 { 2293 struct eb_parse_work *pw = container_of(work, typeof(*pw), base); 2294 2295 if (pw->trampoline) 2296 i915_active_release(&pw->trampoline->active); 2297 i915_active_release(&pw->shadow->active); 2298 i915_active_release(&pw->batch->active); 2299 } 2300 2301 static const struct dma_fence_work_ops eb_parse_ops = { 2302 .name = "eb_parse", 2303 .work = __eb_parse, 2304 .release = __eb_parse_release, 2305 }; 2306 2307 static inline int 2308 __parser_mark_active(struct i915_vma *vma, 2309 struct intel_timeline *tl, 2310 struct dma_fence *fence) 2311 { 2312 struct intel_gt_buffer_pool_node *node = vma->private; 2313 2314 return i915_active_ref(&node->active, tl->fence_context, fence); 2315 } 2316 2317 static int 2318 parser_mark_active(struct eb_parse_work *pw, struct intel_timeline *tl) 2319 { 2320 int err; 2321 2322 mutex_lock(&tl->mutex); 2323 2324 err = __parser_mark_active(pw->shadow, tl, &pw->base.dma); 2325 if (err) 2326 goto unlock; 2327 2328 if (pw->trampoline) { 2329 err = __parser_mark_active(pw->trampoline, tl, &pw->base.dma); 2330 if (err) 2331 goto unlock; 2332 } 2333 2334 unlock: 2335 mutex_unlock(&tl->mutex); 2336 return err; 2337 } 2338 2339 static int eb_parse_pipeline(struct i915_execbuffer *eb, 2340 struct i915_vma *shadow, 2341 struct i915_vma *trampoline) 2342 { 2343 struct eb_parse_work *pw; 2344 int err; 2345 2346 GEM_BUG_ON(overflows_type(eb->batch_start_offset, pw->batch_offset)); 2347 GEM_BUG_ON(overflows_type(eb->batch_len, pw->batch_length)); 2348 2349 pw = kzalloc(sizeof(*pw), GFP_KERNEL); 2350 if (!pw) 2351 return -ENOMEM; 2352 2353 err = i915_active_acquire(&eb->batch->vma->active); 2354 if (err) 2355 goto err_free; 2356 2357 err = i915_active_acquire(&shadow->active); 2358 if (err) 2359 goto err_batch; 2360 2361 if (trampoline) { 2362 err = i915_active_acquire(&trampoline->active); 2363 if (err) 2364 goto err_shadow; 2365 } 2366 2367 dma_fence_work_init(&pw->base, &eb_parse_ops); 2368 2369 pw->engine = eb->engine; 2370 pw->batch = eb->batch->vma; 2371 pw->batch_offset = eb->batch_start_offset; 2372 pw->batch_length = eb->batch_len; 2373 pw->shadow = shadow; 2374 pw->trampoline = trampoline; 2375 2376 /* Mark active refs early for this worker, in case we get interrupted */ 2377 err = parser_mark_active(pw, eb->context->timeline); 2378 if (err) 2379 goto err_commit; 2380 2381 err = dma_resv_reserve_shared(pw->batch->resv, 1); 2382 if (err) 2383 goto err_commit; 2384 2385 /* Wait for all writes (and relocs) into the batch to complete */ 2386 err = i915_sw_fence_await_reservation(&pw->base.chain, 2387 pw->batch->resv, NULL, false, 2388 0, I915_FENCE_GFP); 2389 if (err < 0) 2390 goto err_commit; 2391 2392 /* Keep the batch alive and unwritten as we parse */ 2393 dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma); 2394 2395 /* Force execution to wait for completion of the parser */ 2396 dma_resv_add_excl_fence(shadow->resv, &pw->base.dma); 2397 2398 dma_fence_work_commit_imm(&pw->base); 2399 return 0; 2400 2401 err_commit: 2402 i915_sw_fence_set_error_once(&pw->base.chain, err); 2403 dma_fence_work_commit_imm(&pw->base); 2404 return err; 2405 2406 err_shadow: 2407 i915_active_release(&shadow->active); 2408 err_batch: 2409 i915_active_release(&eb->batch->vma->active); 2410 err_free: 2411 kfree(pw); 2412 return err; 2413 } 2414 2415 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma) 2416 { 2417 /* 2418 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2419 * batch" bit. Hence we need to pin secure batches into the global gtt. 2420 * hsw should have this fixed, but bdw mucks it up again. */ 2421 if (eb->batch_flags & I915_DISPATCH_SECURE) 2422 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0); 2423 2424 return NULL; 2425 } 2426 2427 static int eb_parse(struct i915_execbuffer *eb) 2428 { 2429 struct drm_i915_private *i915 = eb->i915; 2430 struct intel_gt_buffer_pool_node *pool = eb->batch_pool; 2431 struct i915_vma *shadow, *trampoline, *batch; 2432 unsigned long len; 2433 int err; 2434 2435 if (!eb_use_cmdparser(eb)) { 2436 batch = eb_dispatch_secure(eb, eb->batch->vma); 2437 if (IS_ERR(batch)) 2438 return PTR_ERR(batch); 2439 2440 goto secure_batch; 2441 } 2442 2443 len = eb->batch_len; 2444 if (!CMDPARSER_USES_GGTT(eb->i915)) { 2445 /* 2446 * ppGTT backed shadow buffers must be mapped RO, to prevent 2447 * post-scan tampering 2448 */ 2449 if (!eb->context->vm->has_read_only) { 2450 drm_dbg(&i915->drm, 2451 "Cannot prevent post-scan tampering without RO capable vm\n"); 2452 return -EINVAL; 2453 } 2454 } else { 2455 len += I915_CMD_PARSER_TRAMPOLINE_SIZE; 2456 } 2457 if (unlikely(len < eb->batch_len)) /* last paranoid check of overflow */ 2458 return -EINVAL; 2459 2460 if (!pool) { 2461 pool = intel_gt_get_buffer_pool(eb->engine->gt, len, 2462 I915_MAP_WB); 2463 if (IS_ERR(pool)) 2464 return PTR_ERR(pool); 2465 eb->batch_pool = pool; 2466 } 2467 2468 err = i915_gem_object_lock(pool->obj, &eb->ww); 2469 if (err) 2470 goto err; 2471 2472 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER); 2473 if (IS_ERR(shadow)) { 2474 err = PTR_ERR(shadow); 2475 goto err; 2476 } 2477 i915_gem_object_set_readonly(shadow->obj); 2478 shadow->private = pool; 2479 2480 trampoline = NULL; 2481 if (CMDPARSER_USES_GGTT(eb->i915)) { 2482 trampoline = shadow; 2483 2484 shadow = shadow_batch_pin(eb, pool->obj, 2485 &eb->engine->gt->ggtt->vm, 2486 PIN_GLOBAL); 2487 if (IS_ERR(shadow)) { 2488 err = PTR_ERR(shadow); 2489 shadow = trampoline; 2490 goto err_shadow; 2491 } 2492 shadow->private = pool; 2493 2494 eb->batch_flags |= I915_DISPATCH_SECURE; 2495 } 2496 2497 batch = eb_dispatch_secure(eb, shadow); 2498 if (IS_ERR(batch)) { 2499 err = PTR_ERR(batch); 2500 goto err_trampoline; 2501 } 2502 2503 err = eb_parse_pipeline(eb, shadow, trampoline); 2504 if (err) 2505 goto err_unpin_batch; 2506 2507 eb->batch = &eb->vma[eb->buffer_count++]; 2508 eb->batch->vma = i915_vma_get(shadow); 2509 eb->batch->flags = __EXEC_OBJECT_HAS_PIN; 2510 2511 eb->trampoline = trampoline; 2512 eb->batch_start_offset = 0; 2513 2514 secure_batch: 2515 if (batch) { 2516 eb->batch = &eb->vma[eb->buffer_count++]; 2517 eb->batch->flags = __EXEC_OBJECT_HAS_PIN; 2518 eb->batch->vma = i915_vma_get(batch); 2519 } 2520 return 0; 2521 2522 err_unpin_batch: 2523 if (batch) 2524 i915_vma_unpin(batch); 2525 err_trampoline: 2526 if (trampoline) 2527 i915_vma_unpin(trampoline); 2528 err_shadow: 2529 i915_vma_unpin(shadow); 2530 err: 2531 return err; 2532 } 2533 2534 static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch) 2535 { 2536 int err; 2537 2538 if (intel_context_nopreempt(eb->context)) 2539 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags); 2540 2541 err = eb_move_to_gpu(eb); 2542 if (err) 2543 return err; 2544 2545 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 2546 err = i915_reset_gen7_sol_offsets(eb->request); 2547 if (err) 2548 return err; 2549 } 2550 2551 /* 2552 * After we completed waiting for other engines (using HW semaphores) 2553 * then we can signal that this request/batch is ready to run. This 2554 * allows us to determine if the batch is still waiting on the GPU 2555 * or actually running by checking the breadcrumb. 2556 */ 2557 if (eb->engine->emit_init_breadcrumb) { 2558 err = eb->engine->emit_init_breadcrumb(eb->request); 2559 if (err) 2560 return err; 2561 } 2562 2563 err = eb->engine->emit_bb_start(eb->request, 2564 batch->node.start + 2565 eb->batch_start_offset, 2566 eb->batch_len, 2567 eb->batch_flags); 2568 if (err) 2569 return err; 2570 2571 if (eb->trampoline) { 2572 GEM_BUG_ON(eb->batch_start_offset); 2573 err = eb->engine->emit_bb_start(eb->request, 2574 eb->trampoline->node.start + 2575 eb->batch_len, 2576 0, 0); 2577 if (err) 2578 return err; 2579 } 2580 2581 return 0; 2582 } 2583 2584 static int num_vcs_engines(const struct drm_i915_private *i915) 2585 { 2586 return hweight_long(VDBOX_MASK(&i915->gt)); 2587 } 2588 2589 /* 2590 * Find one BSD ring to dispatch the corresponding BSD command. 2591 * The engine index is returned. 2592 */ 2593 static unsigned int 2594 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, 2595 struct drm_file *file) 2596 { 2597 struct drm_i915_file_private *file_priv = file->driver_priv; 2598 2599 /* Check whether the file_priv has already selected one ring. */ 2600 if ((int)file_priv->bsd_engine < 0) 2601 file_priv->bsd_engine = 2602 get_random_int() % num_vcs_engines(dev_priv); 2603 2604 return file_priv->bsd_engine; 2605 } 2606 2607 static const enum intel_engine_id user_ring_map[] = { 2608 [I915_EXEC_DEFAULT] = RCS0, 2609 [I915_EXEC_RENDER] = RCS0, 2610 [I915_EXEC_BLT] = BCS0, 2611 [I915_EXEC_BSD] = VCS0, 2612 [I915_EXEC_VEBOX] = VECS0 2613 }; 2614 2615 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce) 2616 { 2617 struct intel_ring *ring = ce->ring; 2618 struct intel_timeline *tl = ce->timeline; 2619 struct i915_request *rq; 2620 2621 /* 2622 * Completely unscientific finger-in-the-air estimates for suitable 2623 * maximum user request size (to avoid blocking) and then backoff. 2624 */ 2625 if (intel_ring_update_space(ring) >= PAGE_SIZE) 2626 return NULL; 2627 2628 /* 2629 * Find a request that after waiting upon, there will be at least half 2630 * the ring available. The hysteresis allows us to compete for the 2631 * shared ring and should mean that we sleep less often prior to 2632 * claiming our resources, but not so long that the ring completely 2633 * drains before we can submit our next request. 2634 */ 2635 list_for_each_entry(rq, &tl->requests, link) { 2636 if (rq->ring != ring) 2637 continue; 2638 2639 if (__intel_ring_space(rq->postfix, 2640 ring->emit, ring->size) > ring->size / 2) 2641 break; 2642 } 2643 if (&rq->link == &tl->requests) 2644 return NULL; /* weird, we will check again later for real */ 2645 2646 return i915_request_get(rq); 2647 } 2648 2649 static struct i915_request *eb_pin_engine(struct i915_execbuffer *eb, bool throttle) 2650 { 2651 struct intel_context *ce = eb->context; 2652 struct intel_timeline *tl; 2653 struct i915_request *rq = NULL; 2654 int err; 2655 2656 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED); 2657 2658 if (unlikely(intel_context_is_banned(ce))) 2659 return ERR_PTR(-EIO); 2660 2661 /* 2662 * Pinning the contexts may generate requests in order to acquire 2663 * GGTT space, so do this first before we reserve a seqno for 2664 * ourselves. 2665 */ 2666 err = intel_context_pin_ww(ce, &eb->ww); 2667 if (err) 2668 return ERR_PTR(err); 2669 2670 /* 2671 * Take a local wakeref for preparing to dispatch the execbuf as 2672 * we expect to access the hardware fairly frequently in the 2673 * process, and require the engine to be kept awake between accesses. 2674 * Upon dispatch, we acquire another prolonged wakeref that we hold 2675 * until the timeline is idle, which in turn releases the wakeref 2676 * taken on the engine, and the parent device. 2677 */ 2678 tl = intel_context_timeline_lock(ce); 2679 if (IS_ERR(tl)) { 2680 intel_context_unpin(ce); 2681 return ERR_CAST(tl); 2682 } 2683 2684 intel_context_enter(ce); 2685 if (throttle) 2686 rq = eb_throttle(eb, ce); 2687 intel_context_timeline_unlock(tl); 2688 2689 eb->args->flags |= __EXEC_ENGINE_PINNED; 2690 return rq; 2691 } 2692 2693 static void eb_unpin_engine(struct i915_execbuffer *eb) 2694 { 2695 struct intel_context *ce = eb->context; 2696 struct intel_timeline *tl = ce->timeline; 2697 2698 if (!(eb->args->flags & __EXEC_ENGINE_PINNED)) 2699 return; 2700 2701 eb->args->flags &= ~__EXEC_ENGINE_PINNED; 2702 2703 mutex_lock(&tl->mutex); 2704 intel_context_exit(ce); 2705 mutex_unlock(&tl->mutex); 2706 2707 intel_context_unpin(ce); 2708 } 2709 2710 static unsigned int 2711 eb_select_legacy_ring(struct i915_execbuffer *eb) 2712 { 2713 struct drm_i915_private *i915 = eb->i915; 2714 struct drm_i915_gem_execbuffer2 *args = eb->args; 2715 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2716 2717 if (user_ring_id != I915_EXEC_BSD && 2718 (args->flags & I915_EXEC_BSD_MASK)) { 2719 drm_dbg(&i915->drm, 2720 "execbuf with non bsd ring but with invalid " 2721 "bsd dispatch flags: %d\n", (int)(args->flags)); 2722 return -1; 2723 } 2724 2725 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) { 2726 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2727 2728 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2729 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file); 2730 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2731 bsd_idx <= I915_EXEC_BSD_RING2) { 2732 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2733 bsd_idx--; 2734 } else { 2735 drm_dbg(&i915->drm, 2736 "execbuf with unknown bsd ring: %u\n", 2737 bsd_idx); 2738 return -1; 2739 } 2740 2741 return _VCS(bsd_idx); 2742 } 2743 2744 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { 2745 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", 2746 user_ring_id); 2747 return -1; 2748 } 2749 2750 return user_ring_map[user_ring_id]; 2751 } 2752 2753 static int 2754 eb_select_engine(struct i915_execbuffer *eb) 2755 { 2756 struct intel_context *ce; 2757 unsigned int idx; 2758 int err; 2759 2760 if (i915_gem_context_user_engines(eb->gem_context)) 2761 idx = eb->args->flags & I915_EXEC_RING_MASK; 2762 else 2763 idx = eb_select_legacy_ring(eb); 2764 2765 ce = i915_gem_context_get_engine(eb->gem_context, idx); 2766 if (IS_ERR(ce)) 2767 return PTR_ERR(ce); 2768 2769 intel_gt_pm_get(ce->engine->gt); 2770 2771 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) { 2772 err = intel_context_alloc_state(ce); 2773 if (err) 2774 goto err; 2775 } 2776 2777 /* 2778 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 2779 * EIO if the GPU is already wedged. 2780 */ 2781 err = intel_gt_terminally_wedged(ce->engine->gt); 2782 if (err) 2783 goto err; 2784 2785 eb->context = ce; 2786 eb->engine = ce->engine; 2787 2788 /* 2789 * Make sure engine pool stays alive even if we call intel_context_put 2790 * during ww handling. The pool is destroyed when last pm reference 2791 * is dropped, which breaks our -EDEADLK handling. 2792 */ 2793 return err; 2794 2795 err: 2796 intel_gt_pm_put(ce->engine->gt); 2797 intel_context_put(ce); 2798 return err; 2799 } 2800 2801 static void 2802 eb_put_engine(struct i915_execbuffer *eb) 2803 { 2804 intel_gt_pm_put(eb->engine->gt); 2805 intel_context_put(eb->context); 2806 } 2807 2808 static void 2809 __free_fence_array(struct eb_fence *fences, unsigned int n) 2810 { 2811 while (n--) { 2812 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2)); 2813 dma_fence_put(fences[n].dma_fence); 2814 kfree(fences[n].chain_fence); 2815 } 2816 kvfree(fences); 2817 } 2818 2819 static int 2820 add_timeline_fence_array(struct i915_execbuffer *eb, 2821 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences) 2822 { 2823 struct drm_i915_gem_exec_fence __user *user_fences; 2824 u64 __user *user_values; 2825 struct eb_fence *f; 2826 u64 nfences; 2827 int err = 0; 2828 2829 nfences = timeline_fences->fence_count; 2830 if (!nfences) 2831 return 0; 2832 2833 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2834 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2835 if (nfences > min_t(unsigned long, 2836 ULONG_MAX / sizeof(*user_fences), 2837 SIZE_MAX / sizeof(*f)) - eb->num_fences) 2838 return -EINVAL; 2839 2840 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr); 2841 if (!access_ok(user_fences, nfences * sizeof(*user_fences))) 2842 return -EFAULT; 2843 2844 user_values = u64_to_user_ptr(timeline_fences->values_ptr); 2845 if (!access_ok(user_values, nfences * sizeof(*user_values))) 2846 return -EFAULT; 2847 2848 f = krealloc(eb->fences, 2849 (eb->num_fences + nfences) * sizeof(*f), 2850 __GFP_NOWARN | GFP_KERNEL); 2851 if (!f) 2852 return -ENOMEM; 2853 2854 eb->fences = f; 2855 f += eb->num_fences; 2856 2857 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2858 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2859 2860 while (nfences--) { 2861 struct drm_i915_gem_exec_fence user_fence; 2862 struct drm_syncobj *syncobj; 2863 struct dma_fence *fence = NULL; 2864 u64 point; 2865 2866 if (__copy_from_user(&user_fence, 2867 user_fences++, 2868 sizeof(user_fence))) 2869 return -EFAULT; 2870 2871 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2872 return -EINVAL; 2873 2874 if (__get_user(point, user_values++)) 2875 return -EFAULT; 2876 2877 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2878 if (!syncobj) { 2879 DRM_DEBUG("Invalid syncobj handle provided\n"); 2880 return -ENOENT; 2881 } 2882 2883 fence = drm_syncobj_fence_get(syncobj); 2884 2885 if (!fence && user_fence.flags && 2886 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2887 DRM_DEBUG("Syncobj handle has no fence\n"); 2888 drm_syncobj_put(syncobj); 2889 return -EINVAL; 2890 } 2891 2892 if (fence) 2893 err = dma_fence_chain_find_seqno(&fence, point); 2894 2895 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2896 DRM_DEBUG("Syncobj handle missing requested point %llu\n", point); 2897 dma_fence_put(fence); 2898 drm_syncobj_put(syncobj); 2899 return err; 2900 } 2901 2902 /* 2903 * A point might have been signaled already and 2904 * garbage collected from the timeline. In this case 2905 * just ignore the point and carry on. 2906 */ 2907 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2908 drm_syncobj_put(syncobj); 2909 continue; 2910 } 2911 2912 /* 2913 * For timeline syncobjs we need to preallocate chains for 2914 * later signaling. 2915 */ 2916 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) { 2917 /* 2918 * Waiting and signaling the same point (when point != 2919 * 0) would break the timeline. 2920 */ 2921 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2922 DRM_DEBUG("Trying to wait & signal the same timeline point.\n"); 2923 dma_fence_put(fence); 2924 drm_syncobj_put(syncobj); 2925 return -EINVAL; 2926 } 2927 2928 f->chain_fence = 2929 kmalloc(sizeof(*f->chain_fence), 2930 GFP_KERNEL); 2931 if (!f->chain_fence) { 2932 drm_syncobj_put(syncobj); 2933 dma_fence_put(fence); 2934 return -ENOMEM; 2935 } 2936 } else { 2937 f->chain_fence = NULL; 2938 } 2939 2940 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2941 f->dma_fence = fence; 2942 f->value = point; 2943 f++; 2944 eb->num_fences++; 2945 } 2946 2947 return 0; 2948 } 2949 2950 static int add_fence_array(struct i915_execbuffer *eb) 2951 { 2952 struct drm_i915_gem_execbuffer2 *args = eb->args; 2953 struct drm_i915_gem_exec_fence __user *user; 2954 unsigned long num_fences = args->num_cliprects; 2955 struct eb_fence *f; 2956 2957 if (!(args->flags & I915_EXEC_FENCE_ARRAY)) 2958 return 0; 2959 2960 if (!num_fences) 2961 return 0; 2962 2963 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2964 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2965 if (num_fences > min_t(unsigned long, 2966 ULONG_MAX / sizeof(*user), 2967 SIZE_MAX / sizeof(*f) - eb->num_fences)) 2968 return -EINVAL; 2969 2970 user = u64_to_user_ptr(args->cliprects_ptr); 2971 if (!access_ok(user, num_fences * sizeof(*user))) 2972 return -EFAULT; 2973 2974 f = krealloc(eb->fences, 2975 (eb->num_fences + num_fences) * sizeof(*f), 2976 __GFP_NOWARN | GFP_KERNEL); 2977 if (!f) 2978 return -ENOMEM; 2979 2980 eb->fences = f; 2981 f += eb->num_fences; 2982 while (num_fences--) { 2983 struct drm_i915_gem_exec_fence user_fence; 2984 struct drm_syncobj *syncobj; 2985 struct dma_fence *fence = NULL; 2986 2987 if (__copy_from_user(&user_fence, user++, sizeof(user_fence))) 2988 return -EFAULT; 2989 2990 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2991 return -EINVAL; 2992 2993 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2994 if (!syncobj) { 2995 DRM_DEBUG("Invalid syncobj handle provided\n"); 2996 return -ENOENT; 2997 } 2998 2999 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 3000 fence = drm_syncobj_fence_get(syncobj); 3001 if (!fence) { 3002 DRM_DEBUG("Syncobj handle has no fence\n"); 3003 drm_syncobj_put(syncobj); 3004 return -EINVAL; 3005 } 3006 } 3007 3008 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 3009 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 3010 3011 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 3012 f->dma_fence = fence; 3013 f->value = 0; 3014 f->chain_fence = NULL; 3015 f++; 3016 eb->num_fences++; 3017 } 3018 3019 return 0; 3020 } 3021 3022 static void put_fence_array(struct eb_fence *fences, int num_fences) 3023 { 3024 if (fences) 3025 __free_fence_array(fences, num_fences); 3026 } 3027 3028 static int 3029 await_fence_array(struct i915_execbuffer *eb) 3030 { 3031 unsigned int n; 3032 int err; 3033 3034 for (n = 0; n < eb->num_fences; n++) { 3035 struct drm_syncobj *syncobj; 3036 unsigned int flags; 3037 3038 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 3039 3040 if (!eb->fences[n].dma_fence) 3041 continue; 3042 3043 err = i915_request_await_dma_fence(eb->request, 3044 eb->fences[n].dma_fence); 3045 if (err < 0) 3046 return err; 3047 } 3048 3049 return 0; 3050 } 3051 3052 static void signal_fence_array(const struct i915_execbuffer *eb) 3053 { 3054 struct dma_fence * const fence = &eb->request->fence; 3055 unsigned int n; 3056 3057 for (n = 0; n < eb->num_fences; n++) { 3058 struct drm_syncobj *syncobj; 3059 unsigned int flags; 3060 3061 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 3062 if (!(flags & I915_EXEC_FENCE_SIGNAL)) 3063 continue; 3064 3065 if (eb->fences[n].chain_fence) { 3066 drm_syncobj_add_point(syncobj, 3067 eb->fences[n].chain_fence, 3068 fence, 3069 eb->fences[n].value); 3070 /* 3071 * The chain's ownership is transferred to the 3072 * timeline. 3073 */ 3074 eb->fences[n].chain_fence = NULL; 3075 } else { 3076 drm_syncobj_replace_fence(syncobj, fence); 3077 } 3078 } 3079 } 3080 3081 static int 3082 parse_timeline_fences(struct i915_user_extension __user *ext, void *data) 3083 { 3084 struct i915_execbuffer *eb = data; 3085 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences; 3086 3087 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences))) 3088 return -EFAULT; 3089 3090 return add_timeline_fence_array(eb, &timeline_fences); 3091 } 3092 3093 static void retire_requests(struct intel_timeline *tl, struct i915_request *end) 3094 { 3095 struct i915_request *rq, *rn; 3096 3097 list_for_each_entry_safe(rq, rn, &tl->requests, link) 3098 if (rq == end || !i915_request_retire(rq)) 3099 break; 3100 } 3101 3102 static int eb_request_add(struct i915_execbuffer *eb, int err) 3103 { 3104 struct i915_request *rq = eb->request; 3105 struct intel_timeline * const tl = i915_request_timeline(rq); 3106 struct i915_sched_attr attr = {}; 3107 struct i915_request *prev; 3108 3109 lockdep_assert_held(&tl->mutex); 3110 lockdep_unpin_lock(&tl->mutex, rq->cookie); 3111 3112 trace_i915_request_add(rq); 3113 3114 prev = __i915_request_commit(rq); 3115 3116 /* Check that the context wasn't destroyed before submission */ 3117 if (likely(!intel_context_is_closed(eb->context))) { 3118 attr = eb->gem_context->sched; 3119 } else { 3120 /* Serialise with context_close via the add_to_timeline */ 3121 i915_request_set_error_once(rq, -ENOENT); 3122 __i915_request_skip(rq); 3123 err = -ENOENT; /* override any transient errors */ 3124 } 3125 3126 __i915_request_queue(rq, &attr); 3127 3128 /* Try to clean up the client's timeline after submitting the request */ 3129 if (prev) 3130 retire_requests(tl, prev); 3131 3132 mutex_unlock(&tl->mutex); 3133 3134 return err; 3135 } 3136 3137 static const i915_user_extension_fn execbuf_extensions[] = { 3138 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences, 3139 }; 3140 3141 static int 3142 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args, 3143 struct i915_execbuffer *eb) 3144 { 3145 if (!(args->flags & I915_EXEC_USE_EXTENSIONS)) 3146 return 0; 3147 3148 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot 3149 * have another flag also using it at the same time. 3150 */ 3151 if (eb->args->flags & I915_EXEC_FENCE_ARRAY) 3152 return -EINVAL; 3153 3154 if (args->num_cliprects != 0) 3155 return -EINVAL; 3156 3157 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr), 3158 execbuf_extensions, 3159 ARRAY_SIZE(execbuf_extensions), 3160 eb); 3161 } 3162 3163 static int 3164 i915_gem_do_execbuffer(struct drm_device *dev, 3165 struct drm_file *file, 3166 struct drm_i915_gem_execbuffer2 *args, 3167 struct drm_i915_gem_exec_object2 *exec) 3168 { 3169 struct drm_i915_private *i915 = to_i915(dev); 3170 struct i915_execbuffer eb; 3171 struct dma_fence *in_fence = NULL; 3172 struct sync_file *out_fence = NULL; 3173 struct i915_vma *batch; 3174 int out_fence_fd = -1; 3175 int err; 3176 3177 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); 3178 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 3179 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 3180 3181 eb.i915 = i915; 3182 eb.file = file; 3183 eb.args = args; 3184 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 3185 args->flags |= __EXEC_HAS_RELOC; 3186 3187 eb.exec = exec; 3188 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1); 3189 eb.vma[0].vma = NULL; 3190 eb.reloc_pool = eb.batch_pool = NULL; 3191 eb.reloc_context = NULL; 3192 3193 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 3194 reloc_cache_init(&eb.reloc_cache, eb.i915); 3195 3196 eb.buffer_count = args->buffer_count; 3197 eb.batch_start_offset = args->batch_start_offset; 3198 eb.batch_len = args->batch_len; 3199 eb.trampoline = NULL; 3200 3201 eb.fences = NULL; 3202 eb.num_fences = 0; 3203 3204 eb.batch_flags = 0; 3205 if (args->flags & I915_EXEC_SECURE) { 3206 if (INTEL_GEN(i915) >= 11) 3207 return -ENODEV; 3208 3209 /* Return -EPERM to trigger fallback code on old binaries. */ 3210 if (!HAS_SECURE_BATCHES(i915)) 3211 return -EPERM; 3212 3213 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 3214 return -EPERM; 3215 3216 eb.batch_flags |= I915_DISPATCH_SECURE; 3217 } 3218 if (args->flags & I915_EXEC_IS_PINNED) 3219 eb.batch_flags |= I915_DISPATCH_PINNED; 3220 3221 err = parse_execbuf2_extensions(args, &eb); 3222 if (err) 3223 goto err_ext; 3224 3225 err = add_fence_array(&eb); 3226 if (err) 3227 goto err_ext; 3228 3229 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT) 3230 if (args->flags & IN_FENCES) { 3231 if ((args->flags & IN_FENCES) == IN_FENCES) 3232 return -EINVAL; 3233 3234 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 3235 if (!in_fence) { 3236 err = -EINVAL; 3237 goto err_ext; 3238 } 3239 } 3240 #undef IN_FENCES 3241 3242 if (args->flags & I915_EXEC_FENCE_OUT) { 3243 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 3244 if (out_fence_fd < 0) { 3245 err = out_fence_fd; 3246 goto err_in_fence; 3247 } 3248 } 3249 3250 err = eb_create(&eb); 3251 if (err) 3252 goto err_out_fence; 3253 3254 GEM_BUG_ON(!eb.lut_size); 3255 3256 err = eb_select_context(&eb); 3257 if (unlikely(err)) 3258 goto err_destroy; 3259 3260 err = eb_select_engine(&eb); 3261 if (unlikely(err)) 3262 goto err_context; 3263 3264 err = eb_lookup_vmas(&eb); 3265 if (err) { 3266 eb_release_vmas(&eb, true); 3267 goto err_engine; 3268 } 3269 3270 i915_gem_ww_ctx_init(&eb.ww, true); 3271 3272 err = eb_relocate_parse(&eb); 3273 if (err) { 3274 /* 3275 * If the user expects the execobject.offset and 3276 * reloc.presumed_offset to be an exact match, 3277 * as for using NO_RELOC, then we cannot update 3278 * the execobject.offset until we have completed 3279 * relocation. 3280 */ 3281 args->flags &= ~__EXEC_HAS_RELOC; 3282 goto err_vma; 3283 } 3284 3285 ww_acquire_done(&eb.ww.ctx); 3286 3287 batch = eb.batch->vma; 3288 3289 /* All GPU relocation batches must be submitted prior to the user rq */ 3290 GEM_BUG_ON(eb.reloc_cache.rq); 3291 3292 /* Allocate a request for this batch buffer nice and early. */ 3293 eb.request = i915_request_create(eb.context); 3294 if (IS_ERR(eb.request)) { 3295 err = PTR_ERR(eb.request); 3296 goto err_vma; 3297 } 3298 3299 if (in_fence) { 3300 if (args->flags & I915_EXEC_FENCE_SUBMIT) 3301 err = i915_request_await_execution(eb.request, 3302 in_fence, 3303 eb.engine->bond_execute); 3304 else 3305 err = i915_request_await_dma_fence(eb.request, 3306 in_fence); 3307 if (err < 0) 3308 goto err_request; 3309 } 3310 3311 if (eb.fences) { 3312 err = await_fence_array(&eb); 3313 if (err) 3314 goto err_request; 3315 } 3316 3317 if (out_fence_fd != -1) { 3318 out_fence = sync_file_create(&eb.request->fence); 3319 if (!out_fence) { 3320 err = -ENOMEM; 3321 goto err_request; 3322 } 3323 } 3324 3325 /* 3326 * Whilst this request exists, batch_obj will be on the 3327 * active_list, and so will hold the active reference. Only when this 3328 * request is retired will the the batch_obj be moved onto the 3329 * inactive_list and lose its active reference. Hence we do not need 3330 * to explicitly hold another reference here. 3331 */ 3332 eb.request->batch = batch; 3333 if (eb.batch_pool) 3334 intel_gt_buffer_pool_mark_active(eb.batch_pool, eb.request); 3335 3336 trace_i915_request_queue(eb.request, eb.batch_flags); 3337 err = eb_submit(&eb, batch); 3338 err_request: 3339 i915_request_get(eb.request); 3340 err = eb_request_add(&eb, err); 3341 3342 if (eb.fences) 3343 signal_fence_array(&eb); 3344 3345 if (out_fence) { 3346 if (err == 0) { 3347 fd_install(out_fence_fd, out_fence->file); 3348 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ 3349 args->rsvd2 |= (u64)out_fence_fd << 32; 3350 out_fence_fd = -1; 3351 } else { 3352 fput(out_fence->file); 3353 } 3354 } 3355 i915_request_put(eb.request); 3356 3357 err_vma: 3358 eb_release_vmas(&eb, true); 3359 if (eb.trampoline) 3360 i915_vma_unpin(eb.trampoline); 3361 WARN_ON(err == -EDEADLK); 3362 i915_gem_ww_ctx_fini(&eb.ww); 3363 3364 if (eb.batch_pool) 3365 intel_gt_buffer_pool_put(eb.batch_pool); 3366 if (eb.reloc_pool) 3367 intel_gt_buffer_pool_put(eb.reloc_pool); 3368 if (eb.reloc_context) 3369 intel_context_put(eb.reloc_context); 3370 err_engine: 3371 eb_put_engine(&eb); 3372 err_context: 3373 i915_gem_context_put(eb.gem_context); 3374 err_destroy: 3375 eb_destroy(&eb); 3376 err_out_fence: 3377 if (out_fence_fd != -1) 3378 put_unused_fd(out_fence_fd); 3379 err_in_fence: 3380 dma_fence_put(in_fence); 3381 err_ext: 3382 put_fence_array(eb.fences, eb.num_fences); 3383 return err; 3384 } 3385 3386 static size_t eb_element_size(void) 3387 { 3388 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma); 3389 } 3390 3391 static bool check_buffer_count(size_t count) 3392 { 3393 const size_t sz = eb_element_size(); 3394 3395 /* 3396 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup 3397 * array size (see eb_create()). Otherwise, we can accept an array as 3398 * large as can be addressed (though use large arrays at your peril)! 3399 */ 3400 3401 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); 3402 } 3403 3404 /* 3405 * Legacy execbuffer just creates an exec2 list from the original exec object 3406 * list array and passes it to the real function. 3407 */ 3408 int 3409 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data, 3410 struct drm_file *file) 3411 { 3412 struct drm_i915_private *i915 = to_i915(dev); 3413 struct drm_i915_gem_execbuffer *args = data; 3414 struct drm_i915_gem_execbuffer2 exec2; 3415 struct drm_i915_gem_exec_object *exec_list = NULL; 3416 struct drm_i915_gem_exec_object2 *exec2_list = NULL; 3417 const size_t count = args->buffer_count; 3418 unsigned int i; 3419 int err; 3420 3421 if (!check_buffer_count(count)) { 3422 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 3423 return -EINVAL; 3424 } 3425 3426 exec2.buffers_ptr = args->buffers_ptr; 3427 exec2.buffer_count = args->buffer_count; 3428 exec2.batch_start_offset = args->batch_start_offset; 3429 exec2.batch_len = args->batch_len; 3430 exec2.DR1 = args->DR1; 3431 exec2.DR4 = args->DR4; 3432 exec2.num_cliprects = args->num_cliprects; 3433 exec2.cliprects_ptr = args->cliprects_ptr; 3434 exec2.flags = I915_EXEC_RENDER; 3435 i915_execbuffer2_set_context_id(exec2, 0); 3436 3437 err = i915_gem_check_execbuffer(&exec2); 3438 if (err) 3439 return err; 3440 3441 /* Copy in the exec list from userland */ 3442 exec_list = kvmalloc_array(count, sizeof(*exec_list), 3443 __GFP_NOWARN | GFP_KERNEL); 3444 3445 /* Allocate extra slots for use by the command parser */ 3446 exec2_list = kvmalloc_array(count + 2, eb_element_size(), 3447 __GFP_NOWARN | GFP_KERNEL); 3448 if (exec_list == NULL || exec2_list == NULL) { 3449 drm_dbg(&i915->drm, 3450 "Failed to allocate exec list for %d buffers\n", 3451 args->buffer_count); 3452 kvfree(exec_list); 3453 kvfree(exec2_list); 3454 return -ENOMEM; 3455 } 3456 err = copy_from_user(exec_list, 3457 u64_to_user_ptr(args->buffers_ptr), 3458 sizeof(*exec_list) * count); 3459 if (err) { 3460 drm_dbg(&i915->drm, "copy %d exec entries failed %d\n", 3461 args->buffer_count, err); 3462 kvfree(exec_list); 3463 kvfree(exec2_list); 3464 return -EFAULT; 3465 } 3466 3467 for (i = 0; i < args->buffer_count; i++) { 3468 exec2_list[i].handle = exec_list[i].handle; 3469 exec2_list[i].relocation_count = exec_list[i].relocation_count; 3470 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr; 3471 exec2_list[i].alignment = exec_list[i].alignment; 3472 exec2_list[i].offset = exec_list[i].offset; 3473 if (INTEL_GEN(to_i915(dev)) < 4) 3474 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE; 3475 else 3476 exec2_list[i].flags = 0; 3477 } 3478 3479 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list); 3480 if (exec2.flags & __EXEC_HAS_RELOC) { 3481 struct drm_i915_gem_exec_object __user *user_exec_list = 3482 u64_to_user_ptr(args->buffers_ptr); 3483 3484 /* Copy the new buffer offsets back to the user's exec list. */ 3485 for (i = 0; i < args->buffer_count; i++) { 3486 if (!(exec2_list[i].offset & UPDATE)) 3487 continue; 3488 3489 exec2_list[i].offset = 3490 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 3491 exec2_list[i].offset &= PIN_OFFSET_MASK; 3492 if (__copy_to_user(&user_exec_list[i].offset, 3493 &exec2_list[i].offset, 3494 sizeof(user_exec_list[i].offset))) 3495 break; 3496 } 3497 } 3498 3499 kvfree(exec_list); 3500 kvfree(exec2_list); 3501 return err; 3502 } 3503 3504 int 3505 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 3506 struct drm_file *file) 3507 { 3508 struct drm_i915_private *i915 = to_i915(dev); 3509 struct drm_i915_gem_execbuffer2 *args = data; 3510 struct drm_i915_gem_exec_object2 *exec2_list; 3511 const size_t count = args->buffer_count; 3512 int err; 3513 3514 if (!check_buffer_count(count)) { 3515 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 3516 return -EINVAL; 3517 } 3518 3519 err = i915_gem_check_execbuffer(args); 3520 if (err) 3521 return err; 3522 3523 /* Allocate extra slots for use by the command parser */ 3524 exec2_list = kvmalloc_array(count + 2, eb_element_size(), 3525 __GFP_NOWARN | GFP_KERNEL); 3526 if (exec2_list == NULL) { 3527 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", 3528 count); 3529 return -ENOMEM; 3530 } 3531 if (copy_from_user(exec2_list, 3532 u64_to_user_ptr(args->buffers_ptr), 3533 sizeof(*exec2_list) * count)) { 3534 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); 3535 kvfree(exec2_list); 3536 return -EFAULT; 3537 } 3538 3539 err = i915_gem_do_execbuffer(dev, file, args, exec2_list); 3540 3541 /* 3542 * Now that we have begun execution of the batchbuffer, we ignore 3543 * any new error after this point. Also given that we have already 3544 * updated the associated relocations, we try to write out the current 3545 * object locations irrespective of any error. 3546 */ 3547 if (args->flags & __EXEC_HAS_RELOC) { 3548 struct drm_i915_gem_exec_object2 __user *user_exec_list = 3549 u64_to_user_ptr(args->buffers_ptr); 3550 unsigned int i; 3551 3552 /* Copy the new buffer offsets back to the user's exec list. */ 3553 /* 3554 * Note: count * sizeof(*user_exec_list) does not overflow, 3555 * because we checked 'count' in check_buffer_count(). 3556 * 3557 * And this range already got effectively checked earlier 3558 * when we did the "copy_from_user()" above. 3559 */ 3560 if (!user_write_access_begin(user_exec_list, 3561 count * sizeof(*user_exec_list))) 3562 goto end; 3563 3564 for (i = 0; i < args->buffer_count; i++) { 3565 if (!(exec2_list[i].offset & UPDATE)) 3566 continue; 3567 3568 exec2_list[i].offset = 3569 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 3570 unsafe_put_user(exec2_list[i].offset, 3571 &user_exec_list[i].offset, 3572 end_user); 3573 } 3574 end_user: 3575 user_write_access_end(); 3576 end:; 3577 } 3578 3579 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 3580 kvfree(exec2_list); 3581 return err; 3582 } 3583 3584 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 3585 #include "selftests/i915_gem_execbuffer.c" 3586 #endif 3587