1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008,2010 Intel Corporation 5 */ 6 7 #include <linux/dma-resv.h> 8 #include <linux/highmem.h> 9 #include <linux/intel-iommu.h> 10 #include <linux/sync_file.h> 11 #include <linux/uaccess.h> 12 13 #include <drm/drm_syncobj.h> 14 15 #include "display/intel_frontbuffer.h" 16 17 #include "gem/i915_gem_ioctls.h" 18 #include "gt/intel_context.h" 19 #include "gt/intel_gpu_commands.h" 20 #include "gt/intel_gt.h" 21 #include "gt/intel_gt_buffer_pool.h" 22 #include "gt/intel_gt_pm.h" 23 #include "gt/intel_ring.h" 24 25 #include "pxp/intel_pxp.h" 26 27 #include "i915_cmd_parser.h" 28 #include "i915_drv.h" 29 #include "i915_file_private.h" 30 #include "i915_gem_clflush.h" 31 #include "i915_gem_context.h" 32 #include "i915_gem_evict.h" 33 #include "i915_gem_ioctls.h" 34 #include "i915_trace.h" 35 #include "i915_user_extensions.h" 36 37 struct eb_vma { 38 struct i915_vma *vma; 39 unsigned int flags; 40 41 /** This vma's place in the execbuf reservation list */ 42 struct drm_i915_gem_exec_object2 *exec; 43 struct list_head bind_link; 44 struct list_head reloc_link; 45 46 struct hlist_node node; 47 u32 handle; 48 }; 49 50 enum { 51 FORCE_CPU_RELOC = 1, 52 FORCE_GTT_RELOC, 53 FORCE_GPU_RELOC, 54 #define DBG_FORCE_RELOC 0 /* choose one of the above! */ 55 }; 56 57 /* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */ 58 #define __EXEC_OBJECT_HAS_PIN BIT(30) 59 #define __EXEC_OBJECT_HAS_FENCE BIT(29) 60 #define __EXEC_OBJECT_USERPTR_INIT BIT(28) 61 #define __EXEC_OBJECT_NEEDS_MAP BIT(27) 62 #define __EXEC_OBJECT_NEEDS_BIAS BIT(26) 63 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 26) /* all of the above + */ 64 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) 65 66 #define __EXEC_HAS_RELOC BIT(31) 67 #define __EXEC_ENGINE_PINNED BIT(30) 68 #define __EXEC_USERPTR_USED BIT(29) 69 #define __EXEC_INTERNAL_FLAGS (~0u << 29) 70 #define UPDATE PIN_OFFSET_FIXED 71 72 #define BATCH_OFFSET_BIAS (256*1024) 73 74 #define __I915_EXEC_ILLEGAL_FLAGS \ 75 (__I915_EXEC_UNKNOWN_FLAGS | \ 76 I915_EXEC_CONSTANTS_MASK | \ 77 I915_EXEC_RESOURCE_STREAMER) 78 79 /* Catch emission of unexpected errors for CI! */ 80 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 81 #undef EINVAL 82 #define EINVAL ({ \ 83 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 84 22; \ 85 }) 86 #endif 87 88 /** 89 * DOC: User command execution 90 * 91 * Userspace submits commands to be executed on the GPU as an instruction 92 * stream within a GEM object we call a batchbuffer. This instructions may 93 * refer to other GEM objects containing auxiliary state such as kernels, 94 * samplers, render targets and even secondary batchbuffers. Userspace does 95 * not know where in the GPU memory these objects reside and so before the 96 * batchbuffer is passed to the GPU for execution, those addresses in the 97 * batchbuffer and auxiliary objects are updated. This is known as relocation, 98 * or patching. To try and avoid having to relocate each object on the next 99 * execution, userspace is told the location of those objects in this pass, 100 * but this remains just a hint as the kernel may choose a new location for 101 * any object in the future. 102 * 103 * At the level of talking to the hardware, submitting a batchbuffer for the 104 * GPU to execute is to add content to a buffer from which the HW 105 * command streamer is reading. 106 * 107 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. 108 * Execlists, this command is not placed on the same buffer as the 109 * remaining items. 110 * 111 * 2. Add a command to invalidate caches to the buffer. 112 * 113 * 3. Add a batchbuffer start command to the buffer; the start command is 114 * essentially a token together with the GPU address of the batchbuffer 115 * to be executed. 116 * 117 * 4. Add a pipeline flush to the buffer. 118 * 119 * 5. Add a memory write command to the buffer to record when the GPU 120 * is done executing the batchbuffer. The memory write writes the 121 * global sequence number of the request, ``i915_request::global_seqno``; 122 * the i915 driver uses the current value in the register to determine 123 * if the GPU has completed the batchbuffer. 124 * 125 * 6. Add a user interrupt command to the buffer. This command instructs 126 * the GPU to issue an interrupt when the command, pipeline flush and 127 * memory write are completed. 128 * 129 * 7. Inform the hardware of the additional commands added to the buffer 130 * (by updating the tail pointer). 131 * 132 * Processing an execbuf ioctl is conceptually split up into a few phases. 133 * 134 * 1. Validation - Ensure all the pointers, handles and flags are valid. 135 * 2. Reservation - Assign GPU address space for every object 136 * 3. Relocation - Update any addresses to point to the final locations 137 * 4. Serialisation - Order the request with respect to its dependencies 138 * 5. Construction - Construct a request to execute the batchbuffer 139 * 6. Submission (at some point in the future execution) 140 * 141 * Reserving resources for the execbuf is the most complicated phase. We 142 * neither want to have to migrate the object in the address space, nor do 143 * we want to have to update any relocations pointing to this object. Ideally, 144 * we want to leave the object where it is and for all the existing relocations 145 * to match. If the object is given a new address, or if userspace thinks the 146 * object is elsewhere, we have to parse all the relocation entries and update 147 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that 148 * all the target addresses in all of its objects match the value in the 149 * relocation entries and that they all match the presumed offsets given by the 150 * list of execbuffer objects. Using this knowledge, we know that if we haven't 151 * moved any buffers, all the relocation entries are valid and we can skip 152 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 153 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 154 * 155 * The addresses written in the objects must match the corresponding 156 * reloc.presumed_offset which in turn must match the corresponding 157 * execobject.offset. 158 * 159 * Any render targets written to in the batch must be flagged with 160 * EXEC_OBJECT_WRITE. 161 * 162 * To avoid stalling, execobject.offset should match the current 163 * address of that object within the active context. 164 * 165 * The reservation is done is multiple phases. First we try and keep any 166 * object already bound in its current location - so as long as meets the 167 * constraints imposed by the new execbuffer. Any object left unbound after the 168 * first pass is then fitted into any available idle space. If an object does 169 * not fit, all objects are removed from the reservation and the process rerun 170 * after sorting the objects into a priority order (more difficult to fit 171 * objects are tried first). Failing that, the entire VM is cleared and we try 172 * to fit the execbuf once last time before concluding that it simply will not 173 * fit. 174 * 175 * A small complication to all of this is that we allow userspace not only to 176 * specify an alignment and a size for the object in the address space, but 177 * we also allow userspace to specify the exact offset. This objects are 178 * simpler to place (the location is known a priori) all we have to do is make 179 * sure the space is available. 180 * 181 * Once all the objects are in place, patching up the buried pointers to point 182 * to the final locations is a fairly simple job of walking over the relocation 183 * entry arrays, looking up the right address and rewriting the value into 184 * the object. Simple! ... The relocation entries are stored in user memory 185 * and so to access them we have to copy them into a local buffer. That copy 186 * has to avoid taking any pagefaults as they may lead back to a GEM object 187 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split 188 * the relocation into multiple passes. First we try to do everything within an 189 * atomic context (avoid the pagefaults) which requires that we never wait. If 190 * we detect that we may wait, or if we need to fault, then we have to fallback 191 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 192 * bells yet?) Dropping the mutex means that we lose all the state we have 193 * built up so far for the execbuf and we must reset any global data. However, 194 * we do leave the objects pinned in their final locations - which is a 195 * potential issue for concurrent execbufs. Once we have left the mutex, we can 196 * allocate and copy all the relocation entries into a large array at our 197 * leisure, reacquire the mutex, reclaim all the objects and other state and 198 * then proceed to update any incorrect addresses with the objects. 199 * 200 * As we process the relocation entries, we maintain a record of whether the 201 * object is being written to. Using NORELOC, we expect userspace to provide 202 * this information instead. We also check whether we can skip the relocation 203 * by comparing the expected value inside the relocation entry with the target's 204 * final address. If they differ, we have to map the current object and rewrite 205 * the 4 or 8 byte pointer within. 206 * 207 * Serialising an execbuf is quite simple according to the rules of the GEM 208 * ABI. Execution within each context is ordered by the order of submission. 209 * Writes to any GEM object are in order of submission and are exclusive. Reads 210 * from a GEM object are unordered with respect to other reads, but ordered by 211 * writes. A write submitted after a read cannot occur before the read, and 212 * similarly any read submitted after a write cannot occur before the write. 213 * Writes are ordered between engines such that only one write occurs at any 214 * time (completing any reads beforehand) - using semaphores where available 215 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 216 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 217 * reads before starting, and any read (either using set-domain or pread) must 218 * flush all GPU writes before starting. (Note we only employ a barrier before, 219 * we currently rely on userspace not concurrently starting a new execution 220 * whilst reading or writing to an object. This may be an advantage or not 221 * depending on how much you trust userspace not to shoot themselves in the 222 * foot.) Serialisation may just result in the request being inserted into 223 * a DAG awaiting its turn, but most simple is to wait on the CPU until 224 * all dependencies are resolved. 225 * 226 * After all of that, is just a matter of closing the request and handing it to 227 * the hardware (well, leaving it in a queue to be executed). However, we also 228 * offer the ability for batchbuffers to be run with elevated privileges so 229 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 230 * Before any batch is given extra privileges we first must check that it 231 * contains no nefarious instructions, we check that each instruction is from 232 * our whitelist and all registers are also from an allowed list. We first 233 * copy the user's batchbuffer to a shadow (so that the user doesn't have 234 * access to it, either by the CPU or GPU as we scan it) and then parse each 235 * instruction. If everything is ok, we set a flag telling the hardware to run 236 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 237 */ 238 239 struct eb_fence { 240 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */ 241 struct dma_fence *dma_fence; 242 u64 value; 243 struct dma_fence_chain *chain_fence; 244 }; 245 246 struct i915_execbuffer { 247 struct drm_i915_private *i915; /** i915 backpointer */ 248 struct drm_file *file; /** per-file lookup tables and limits */ 249 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 250 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 251 struct eb_vma *vma; 252 253 struct intel_gt *gt; /* gt for the execbuf */ 254 struct intel_context *context; /* logical state for the request */ 255 struct i915_gem_context *gem_context; /** caller's context */ 256 257 /** our requests to build */ 258 struct i915_request *requests[MAX_ENGINE_INSTANCE + 1]; 259 /** identity of the batch obj/vma */ 260 struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1]; 261 struct i915_vma *trampoline; /** trampoline used for chaining */ 262 263 /** used for excl fence in dma_resv objects when > 1 BB submitted */ 264 struct dma_fence *composite_fence; 265 266 /** actual size of execobj[] as we may extend it for the cmdparser */ 267 unsigned int buffer_count; 268 269 /* number of batches in execbuf IOCTL */ 270 unsigned int num_batches; 271 272 /** list of vma not yet bound during reservation phase */ 273 struct list_head unbound; 274 275 /** list of vma that have execobj.relocation_count */ 276 struct list_head relocs; 277 278 struct i915_gem_ww_ctx ww; 279 280 /** 281 * Track the most recently used object for relocations, as we 282 * frequently have to perform multiple relocations within the same 283 * obj/page 284 */ 285 struct reloc_cache { 286 struct drm_mm_node node; /** temporary GTT binding */ 287 unsigned long vaddr; /** Current kmap address */ 288 unsigned long page; /** Currently mapped page index */ 289 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */ 290 bool use_64bit_reloc : 1; 291 bool has_llc : 1; 292 bool has_fence : 1; 293 bool needs_unfenced : 1; 294 } reloc_cache; 295 296 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 297 298 /** Length of batch within object */ 299 u64 batch_len[MAX_ENGINE_INSTANCE + 1]; 300 u32 batch_start_offset; /** Location within object of batch */ 301 u32 batch_flags; /** Flags composed for emit_bb_start() */ 302 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */ 303 304 /** 305 * Indicate either the size of the hastable used to resolve 306 * relocation handles, or if negative that we are using a direct 307 * index into the execobj[]. 308 */ 309 int lut_size; 310 struct hlist_head *buckets; /** ht for relocation handles */ 311 312 struct eb_fence *fences; 313 unsigned long num_fences; 314 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 315 struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1]; 316 #endif 317 }; 318 319 static int eb_parse(struct i915_execbuffer *eb); 320 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle); 321 static void eb_unpin_engine(struct i915_execbuffer *eb); 322 static void eb_capture_release(struct i915_execbuffer *eb); 323 324 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) 325 { 326 return intel_engine_requires_cmd_parser(eb->context->engine) || 327 (intel_engine_using_cmd_parser(eb->context->engine) && 328 eb->args->batch_len); 329 } 330 331 static int eb_create(struct i915_execbuffer *eb) 332 { 333 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 334 unsigned int size = 1 + ilog2(eb->buffer_count); 335 336 /* 337 * Without a 1:1 association between relocation handles and 338 * the execobject[] index, we instead create a hashtable. 339 * We size it dynamically based on available memory, starting 340 * first with 1:1 assocative hash and scaling back until 341 * the allocation succeeds. 342 * 343 * Later on we use a positive lut_size to indicate we are 344 * using this hashtable, and a negative value to indicate a 345 * direct lookup. 346 */ 347 do { 348 gfp_t flags; 349 350 /* While we can still reduce the allocation size, don't 351 * raise a warning and allow the allocation to fail. 352 * On the last pass though, we want to try as hard 353 * as possible to perform the allocation and warn 354 * if it fails. 355 */ 356 flags = GFP_KERNEL; 357 if (size > 1) 358 flags |= __GFP_NORETRY | __GFP_NOWARN; 359 360 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 361 flags); 362 if (eb->buckets) 363 break; 364 } while (--size); 365 366 if (unlikely(!size)) 367 return -ENOMEM; 368 369 eb->lut_size = size; 370 } else { 371 eb->lut_size = -eb->buffer_count; 372 } 373 374 return 0; 375 } 376 377 static bool 378 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 379 const struct i915_vma *vma, 380 unsigned int flags) 381 { 382 if (vma->node.size < entry->pad_to_size) 383 return true; 384 385 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) 386 return true; 387 388 if (flags & EXEC_OBJECT_PINNED && 389 vma->node.start != entry->offset) 390 return true; 391 392 if (flags & __EXEC_OBJECT_NEEDS_BIAS && 393 vma->node.start < BATCH_OFFSET_BIAS) 394 return true; 395 396 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 397 (vma->node.start + vma->node.size + 4095) >> 32) 398 return true; 399 400 if (flags & __EXEC_OBJECT_NEEDS_MAP && 401 !i915_vma_is_map_and_fenceable(vma)) 402 return true; 403 404 return false; 405 } 406 407 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry, 408 unsigned int exec_flags) 409 { 410 u64 pin_flags = 0; 411 412 if (exec_flags & EXEC_OBJECT_NEEDS_GTT) 413 pin_flags |= PIN_GLOBAL; 414 415 /* 416 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 417 * limit address to the first 4GBs for unflagged objects. 418 */ 419 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 420 pin_flags |= PIN_ZONE_4G; 421 422 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) 423 pin_flags |= PIN_MAPPABLE; 424 425 if (exec_flags & EXEC_OBJECT_PINNED) 426 pin_flags |= entry->offset | PIN_OFFSET_FIXED; 427 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) 428 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 429 430 return pin_flags; 431 } 432 433 static inline int 434 eb_pin_vma(struct i915_execbuffer *eb, 435 const struct drm_i915_gem_exec_object2 *entry, 436 struct eb_vma *ev) 437 { 438 struct i915_vma *vma = ev->vma; 439 u64 pin_flags; 440 int err; 441 442 if (vma->node.size) 443 pin_flags = vma->node.start; 444 else 445 pin_flags = entry->offset & PIN_OFFSET_MASK; 446 447 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE; 448 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) 449 pin_flags |= PIN_GLOBAL; 450 451 /* Attempt to reuse the current location if available */ 452 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags); 453 if (err == -EDEADLK) 454 return err; 455 456 if (unlikely(err)) { 457 if (entry->flags & EXEC_OBJECT_PINNED) 458 return err; 459 460 /* Failing that pick any _free_ space if suitable */ 461 err = i915_vma_pin_ww(vma, &eb->ww, 462 entry->pad_to_size, 463 entry->alignment, 464 eb_pin_flags(entry, ev->flags) | 465 PIN_USER | PIN_NOEVICT | PIN_VALIDATE); 466 if (unlikely(err)) 467 return err; 468 } 469 470 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 471 err = i915_vma_pin_fence(vma); 472 if (unlikely(err)) 473 return err; 474 475 if (vma->fence) 476 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 477 } 478 479 ev->flags |= __EXEC_OBJECT_HAS_PIN; 480 if (eb_vma_misplaced(entry, vma, ev->flags)) 481 return -EBADSLT; 482 483 return 0; 484 } 485 486 static inline void 487 eb_unreserve_vma(struct eb_vma *ev) 488 { 489 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE)) 490 __i915_vma_unpin_fence(ev->vma); 491 492 ev->flags &= ~__EXEC_OBJECT_RESERVED; 493 } 494 495 static int 496 eb_validate_vma(struct i915_execbuffer *eb, 497 struct drm_i915_gem_exec_object2 *entry, 498 struct i915_vma *vma) 499 { 500 /* Relocations are disallowed for all platforms after TGL-LP. This 501 * also covers all platforms with local memory. 502 */ 503 if (entry->relocation_count && 504 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915)) 505 return -EINVAL; 506 507 if (unlikely(entry->flags & eb->invalid_flags)) 508 return -EINVAL; 509 510 if (unlikely(entry->alignment && 511 !is_power_of_2_u64(entry->alignment))) 512 return -EINVAL; 513 514 /* 515 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 516 * any non-page-aligned or non-canonical addresses. 517 */ 518 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 519 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) 520 return -EINVAL; 521 522 /* pad_to_size was once a reserved field, so sanitize it */ 523 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 524 if (unlikely(offset_in_page(entry->pad_to_size))) 525 return -EINVAL; 526 } else { 527 entry->pad_to_size = 0; 528 } 529 /* 530 * From drm_mm perspective address space is continuous, 531 * so from this point we're always using non-canonical 532 * form internally. 533 */ 534 entry->offset = gen8_noncanonical_addr(entry->offset); 535 536 if (!eb->reloc_cache.has_fence) { 537 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 538 } else { 539 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 540 eb->reloc_cache.needs_unfenced) && 541 i915_gem_object_is_tiled(vma->obj)) 542 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 543 } 544 545 return 0; 546 } 547 548 static inline bool 549 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx) 550 { 551 return eb->args->flags & I915_EXEC_BATCH_FIRST ? 552 buffer_idx < eb->num_batches : 553 buffer_idx >= eb->args->buffer_count - eb->num_batches; 554 } 555 556 static int 557 eb_add_vma(struct i915_execbuffer *eb, 558 unsigned int *current_batch, 559 unsigned int i, 560 struct i915_vma *vma) 561 { 562 struct drm_i915_private *i915 = eb->i915; 563 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 564 struct eb_vma *ev = &eb->vma[i]; 565 566 ev->vma = vma; 567 ev->exec = entry; 568 ev->flags = entry->flags; 569 570 if (eb->lut_size > 0) { 571 ev->handle = entry->handle; 572 hlist_add_head(&ev->node, 573 &eb->buckets[hash_32(entry->handle, 574 eb->lut_size)]); 575 } 576 577 if (entry->relocation_count) 578 list_add_tail(&ev->reloc_link, &eb->relocs); 579 580 /* 581 * SNA is doing fancy tricks with compressing batch buffers, which leads 582 * to negative relocation deltas. Usually that works out ok since the 583 * relocate address is still positive, except when the batch is placed 584 * very low in the GTT. Ensure this doesn't happen. 585 * 586 * Note that actual hangs have only been observed on gen7, but for 587 * paranoia do it everywhere. 588 */ 589 if (is_batch_buffer(eb, i)) { 590 if (entry->relocation_count && 591 !(ev->flags & EXEC_OBJECT_PINNED)) 592 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; 593 if (eb->reloc_cache.has_fence) 594 ev->flags |= EXEC_OBJECT_NEEDS_FENCE; 595 596 eb->batches[*current_batch] = ev; 597 598 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) { 599 drm_dbg(&i915->drm, 600 "Attempting to use self-modifying batch buffer\n"); 601 return -EINVAL; 602 } 603 604 if (range_overflows_t(u64, 605 eb->batch_start_offset, 606 eb->args->batch_len, 607 ev->vma->size)) { 608 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); 609 return -EINVAL; 610 } 611 612 if (eb->args->batch_len == 0) 613 eb->batch_len[*current_batch] = ev->vma->size - 614 eb->batch_start_offset; 615 else 616 eb->batch_len[*current_batch] = eb->args->batch_len; 617 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */ 618 drm_dbg(&i915->drm, "Invalid batch length\n"); 619 return -EINVAL; 620 } 621 622 ++*current_batch; 623 } 624 625 return 0; 626 } 627 628 static inline int use_cpu_reloc(const struct reloc_cache *cache, 629 const struct drm_i915_gem_object *obj) 630 { 631 if (!i915_gem_object_has_struct_page(obj)) 632 return false; 633 634 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 635 return true; 636 637 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 638 return false; 639 640 return (cache->has_llc || 641 obj->cache_dirty || 642 obj->cache_level != I915_CACHE_NONE); 643 } 644 645 static int eb_reserve_vma(struct i915_execbuffer *eb, 646 struct eb_vma *ev, 647 u64 pin_flags) 648 { 649 struct drm_i915_gem_exec_object2 *entry = ev->exec; 650 struct i915_vma *vma = ev->vma; 651 int err; 652 653 if (drm_mm_node_allocated(&vma->node) && 654 eb_vma_misplaced(entry, vma, ev->flags)) { 655 err = i915_vma_unbind(vma); 656 if (err) 657 return err; 658 } 659 660 err = i915_vma_pin_ww(vma, &eb->ww, 661 entry->pad_to_size, entry->alignment, 662 eb_pin_flags(entry, ev->flags) | pin_flags); 663 if (err) 664 return err; 665 666 if (entry->offset != vma->node.start) { 667 entry->offset = vma->node.start | UPDATE; 668 eb->args->flags |= __EXEC_HAS_RELOC; 669 } 670 671 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 672 err = i915_vma_pin_fence(vma); 673 if (unlikely(err)) 674 return err; 675 676 if (vma->fence) 677 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 678 } 679 680 ev->flags |= __EXEC_OBJECT_HAS_PIN; 681 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); 682 683 return 0; 684 } 685 686 static bool eb_unbind(struct i915_execbuffer *eb, bool force) 687 { 688 const unsigned int count = eb->buffer_count; 689 unsigned int i; 690 struct list_head last; 691 bool unpinned = false; 692 693 /* Resort *all* the objects into priority order */ 694 INIT_LIST_HEAD(&eb->unbound); 695 INIT_LIST_HEAD(&last); 696 697 for (i = 0; i < count; i++) { 698 struct eb_vma *ev = &eb->vma[i]; 699 unsigned int flags = ev->flags; 700 701 if (!force && flags & EXEC_OBJECT_PINNED && 702 flags & __EXEC_OBJECT_HAS_PIN) 703 continue; 704 705 unpinned = true; 706 eb_unreserve_vma(ev); 707 708 if (flags & EXEC_OBJECT_PINNED) 709 /* Pinned must have their slot */ 710 list_add(&ev->bind_link, &eb->unbound); 711 else if (flags & __EXEC_OBJECT_NEEDS_MAP) 712 /* Map require the lowest 256MiB (aperture) */ 713 list_add_tail(&ev->bind_link, &eb->unbound); 714 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 715 /* Prioritise 4GiB region for restricted bo */ 716 list_add(&ev->bind_link, &last); 717 else 718 list_add_tail(&ev->bind_link, &last); 719 } 720 721 list_splice_tail(&last, &eb->unbound); 722 return unpinned; 723 } 724 725 static int eb_reserve(struct i915_execbuffer *eb) 726 { 727 struct eb_vma *ev; 728 unsigned int pass; 729 int err = 0; 730 bool unpinned; 731 732 /* 733 * Attempt to pin all of the buffers into the GTT. 734 * This is done in 2 phases: 735 * 736 * 1. Unbind all objects that do not match the GTT constraints for 737 * the execbuffer (fenceable, mappable, alignment etc). 738 * 2. Bind new objects. 739 * 740 * This avoid unnecessary unbinding of later objects in order to make 741 * room for the earlier objects *unless* we need to defragment. 742 * 743 * Defragmenting is skipped if all objects are pinned at a fixed location. 744 */ 745 for (pass = 0; pass <= 2; pass++) { 746 int pin_flags = PIN_USER | PIN_VALIDATE; 747 748 if (pass == 0) 749 pin_flags |= PIN_NONBLOCK; 750 751 if (pass >= 1) 752 unpinned = eb_unbind(eb, pass == 2); 753 754 if (pass == 2) { 755 err = mutex_lock_interruptible(&eb->context->vm->mutex); 756 if (!err) { 757 err = i915_gem_evict_vm(eb->context->vm, &eb->ww); 758 mutex_unlock(&eb->context->vm->mutex); 759 } 760 if (err) 761 return err; 762 } 763 764 list_for_each_entry(ev, &eb->unbound, bind_link) { 765 err = eb_reserve_vma(eb, ev, pin_flags); 766 if (err) 767 break; 768 } 769 770 if (err != -ENOSPC) 771 break; 772 } 773 774 return err; 775 } 776 777 static int eb_select_context(struct i915_execbuffer *eb) 778 { 779 struct i915_gem_context *ctx; 780 781 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 782 if (unlikely(IS_ERR(ctx))) 783 return PTR_ERR(ctx); 784 785 eb->gem_context = ctx; 786 if (i915_gem_context_has_full_ppgtt(ctx)) 787 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 788 789 return 0; 790 } 791 792 static int __eb_add_lut(struct i915_execbuffer *eb, 793 u32 handle, struct i915_vma *vma) 794 { 795 struct i915_gem_context *ctx = eb->gem_context; 796 struct i915_lut_handle *lut; 797 int err; 798 799 lut = i915_lut_handle_alloc(); 800 if (unlikely(!lut)) 801 return -ENOMEM; 802 803 i915_vma_get(vma); 804 if (!atomic_fetch_inc(&vma->open_count)) 805 i915_vma_reopen(vma); 806 lut->handle = handle; 807 lut->ctx = ctx; 808 809 /* Check that the context hasn't been closed in the meantime */ 810 err = -EINTR; 811 if (!mutex_lock_interruptible(&ctx->lut_mutex)) { 812 if (likely(!i915_gem_context_is_closed(ctx))) 813 err = radix_tree_insert(&ctx->handles_vma, handle, vma); 814 else 815 err = -ENOENT; 816 if (err == 0) { /* And nor has this handle */ 817 struct drm_i915_gem_object *obj = vma->obj; 818 819 spin_lock(&obj->lut_lock); 820 if (idr_find(&eb->file->object_idr, handle) == obj) { 821 list_add(&lut->obj_link, &obj->lut_list); 822 } else { 823 radix_tree_delete(&ctx->handles_vma, handle); 824 err = -ENOENT; 825 } 826 spin_unlock(&obj->lut_lock); 827 } 828 mutex_unlock(&ctx->lut_mutex); 829 } 830 if (unlikely(err)) 831 goto err; 832 833 return 0; 834 835 err: 836 i915_vma_close(vma); 837 i915_vma_put(vma); 838 i915_lut_handle_free(lut); 839 return err; 840 } 841 842 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle) 843 { 844 struct i915_address_space *vm = eb->context->vm; 845 846 do { 847 struct drm_i915_gem_object *obj; 848 struct i915_vma *vma; 849 int err; 850 851 rcu_read_lock(); 852 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle); 853 if (likely(vma && vma->vm == vm)) 854 vma = i915_vma_tryget(vma); 855 rcu_read_unlock(); 856 if (likely(vma)) 857 return vma; 858 859 obj = i915_gem_object_lookup(eb->file, handle); 860 if (unlikely(!obj)) 861 return ERR_PTR(-ENOENT); 862 863 /* 864 * If the user has opted-in for protected-object tracking, make 865 * sure the object encryption can be used. 866 * We only need to do this when the object is first used with 867 * this context, because the context itself will be banned when 868 * the protected objects become invalid. 869 */ 870 if (i915_gem_context_uses_protected_content(eb->gem_context) && 871 i915_gem_object_is_protected(obj)) { 872 err = intel_pxp_key_check(&vm->gt->pxp, obj, true); 873 if (err) { 874 i915_gem_object_put(obj); 875 return ERR_PTR(err); 876 } 877 } 878 879 vma = i915_vma_instance(obj, vm, NULL); 880 if (IS_ERR(vma)) { 881 i915_gem_object_put(obj); 882 return vma; 883 } 884 885 err = __eb_add_lut(eb, handle, vma); 886 if (likely(!err)) 887 return vma; 888 889 i915_gem_object_put(obj); 890 if (err != -EEXIST) 891 return ERR_PTR(err); 892 } while (1); 893 } 894 895 static int eb_lookup_vmas(struct i915_execbuffer *eb) 896 { 897 unsigned int i, current_batch = 0; 898 int err = 0; 899 900 INIT_LIST_HEAD(&eb->relocs); 901 902 for (i = 0; i < eb->buffer_count; i++) { 903 struct i915_vma *vma; 904 905 vma = eb_lookup_vma(eb, eb->exec[i].handle); 906 if (IS_ERR(vma)) { 907 err = PTR_ERR(vma); 908 goto err; 909 } 910 911 err = eb_validate_vma(eb, &eb->exec[i], vma); 912 if (unlikely(err)) { 913 i915_vma_put(vma); 914 goto err; 915 } 916 917 err = eb_add_vma(eb, ¤t_batch, i, vma); 918 if (err) 919 return err; 920 921 if (i915_gem_object_is_userptr(vma->obj)) { 922 err = i915_gem_object_userptr_submit_init(vma->obj); 923 if (err) { 924 if (i + 1 < eb->buffer_count) { 925 /* 926 * Execbuffer code expects last vma entry to be NULL, 927 * since we already initialized this entry, 928 * set the next value to NULL or we mess up 929 * cleanup handling. 930 */ 931 eb->vma[i + 1].vma = NULL; 932 } 933 934 return err; 935 } 936 937 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT; 938 eb->args->flags |= __EXEC_USERPTR_USED; 939 } 940 } 941 942 return 0; 943 944 err: 945 eb->vma[i].vma = NULL; 946 return err; 947 } 948 949 static int eb_lock_vmas(struct i915_execbuffer *eb) 950 { 951 unsigned int i; 952 int err; 953 954 for (i = 0; i < eb->buffer_count; i++) { 955 struct eb_vma *ev = &eb->vma[i]; 956 struct i915_vma *vma = ev->vma; 957 958 err = i915_gem_object_lock(vma->obj, &eb->ww); 959 if (err) 960 return err; 961 } 962 963 return 0; 964 } 965 966 static int eb_validate_vmas(struct i915_execbuffer *eb) 967 { 968 unsigned int i; 969 int err; 970 971 INIT_LIST_HEAD(&eb->unbound); 972 973 err = eb_lock_vmas(eb); 974 if (err) 975 return err; 976 977 for (i = 0; i < eb->buffer_count; i++) { 978 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 979 struct eb_vma *ev = &eb->vma[i]; 980 struct i915_vma *vma = ev->vma; 981 982 err = eb_pin_vma(eb, entry, ev); 983 if (err == -EDEADLK) 984 return err; 985 986 if (!err) { 987 if (entry->offset != vma->node.start) { 988 entry->offset = vma->node.start | UPDATE; 989 eb->args->flags |= __EXEC_HAS_RELOC; 990 } 991 } else { 992 eb_unreserve_vma(ev); 993 994 list_add_tail(&ev->bind_link, &eb->unbound); 995 if (drm_mm_node_allocated(&vma->node)) { 996 err = i915_vma_unbind(vma); 997 if (err) 998 return err; 999 } 1000 } 1001 1002 err = dma_resv_reserve_fences(vma->obj->base.resv, 1); 1003 if (err) 1004 return err; 1005 1006 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && 1007 eb_vma_misplaced(&eb->exec[i], vma, ev->flags)); 1008 } 1009 1010 if (!list_empty(&eb->unbound)) 1011 return eb_reserve(eb); 1012 1013 return 0; 1014 } 1015 1016 static struct eb_vma * 1017 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 1018 { 1019 if (eb->lut_size < 0) { 1020 if (handle >= -eb->lut_size) 1021 return NULL; 1022 return &eb->vma[handle]; 1023 } else { 1024 struct hlist_head *head; 1025 struct eb_vma *ev; 1026 1027 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 1028 hlist_for_each_entry(ev, head, node) { 1029 if (ev->handle == handle) 1030 return ev; 1031 } 1032 return NULL; 1033 } 1034 } 1035 1036 static void eb_release_vmas(struct i915_execbuffer *eb, bool final) 1037 { 1038 const unsigned int count = eb->buffer_count; 1039 unsigned int i; 1040 1041 for (i = 0; i < count; i++) { 1042 struct eb_vma *ev = &eb->vma[i]; 1043 struct i915_vma *vma = ev->vma; 1044 1045 if (!vma) 1046 break; 1047 1048 eb_unreserve_vma(ev); 1049 1050 if (final) 1051 i915_vma_put(vma); 1052 } 1053 1054 eb_capture_release(eb); 1055 eb_unpin_engine(eb); 1056 } 1057 1058 static void eb_destroy(const struct i915_execbuffer *eb) 1059 { 1060 if (eb->lut_size > 0) 1061 kfree(eb->buckets); 1062 } 1063 1064 static inline u64 1065 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 1066 const struct i915_vma *target) 1067 { 1068 return gen8_canonical_addr((int)reloc->delta + target->node.start); 1069 } 1070 1071 static void reloc_cache_init(struct reloc_cache *cache, 1072 struct drm_i915_private *i915) 1073 { 1074 cache->page = -1; 1075 cache->vaddr = 0; 1076 /* Must be a variable in the struct to allow GCC to unroll. */ 1077 cache->graphics_ver = GRAPHICS_VER(i915); 1078 cache->has_llc = HAS_LLC(i915); 1079 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 1080 cache->has_fence = cache->graphics_ver < 4; 1081 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 1082 cache->node.flags = 0; 1083 } 1084 1085 static inline void *unmask_page(unsigned long p) 1086 { 1087 return (void *)(uintptr_t)(p & PAGE_MASK); 1088 } 1089 1090 static inline unsigned int unmask_flags(unsigned long p) 1091 { 1092 return p & ~PAGE_MASK; 1093 } 1094 1095 #define KMAP 0x4 /* after CLFLUSH_FLAGS */ 1096 1097 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 1098 { 1099 struct drm_i915_private *i915 = 1100 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 1101 return to_gt(i915)->ggtt; 1102 } 1103 1104 static void reloc_cache_unmap(struct reloc_cache *cache) 1105 { 1106 void *vaddr; 1107 1108 if (!cache->vaddr) 1109 return; 1110 1111 vaddr = unmask_page(cache->vaddr); 1112 if (cache->vaddr & KMAP) 1113 kunmap_atomic(vaddr); 1114 else 1115 io_mapping_unmap_atomic((void __iomem *)vaddr); 1116 } 1117 1118 static void reloc_cache_remap(struct reloc_cache *cache, 1119 struct drm_i915_gem_object *obj) 1120 { 1121 void *vaddr; 1122 1123 if (!cache->vaddr) 1124 return; 1125 1126 if (cache->vaddr & KMAP) { 1127 struct page *page = i915_gem_object_get_page(obj, cache->page); 1128 1129 vaddr = kmap_atomic(page); 1130 cache->vaddr = unmask_flags(cache->vaddr) | 1131 (unsigned long)vaddr; 1132 } else { 1133 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1134 unsigned long offset; 1135 1136 offset = cache->node.start; 1137 if (!drm_mm_node_allocated(&cache->node)) 1138 offset += cache->page << PAGE_SHIFT; 1139 1140 cache->vaddr = (unsigned long) 1141 io_mapping_map_atomic_wc(&ggtt->iomap, offset); 1142 } 1143 } 1144 1145 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb) 1146 { 1147 void *vaddr; 1148 1149 if (!cache->vaddr) 1150 return; 1151 1152 vaddr = unmask_page(cache->vaddr); 1153 if (cache->vaddr & KMAP) { 1154 struct drm_i915_gem_object *obj = 1155 (struct drm_i915_gem_object *)cache->node.mm; 1156 if (cache->vaddr & CLFLUSH_AFTER) 1157 mb(); 1158 1159 kunmap_atomic(vaddr); 1160 i915_gem_object_finish_access(obj); 1161 } else { 1162 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1163 1164 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1165 io_mapping_unmap_atomic((void __iomem *)vaddr); 1166 1167 if (drm_mm_node_allocated(&cache->node)) { 1168 ggtt->vm.clear_range(&ggtt->vm, 1169 cache->node.start, 1170 cache->node.size); 1171 mutex_lock(&ggtt->vm.mutex); 1172 drm_mm_remove_node(&cache->node); 1173 mutex_unlock(&ggtt->vm.mutex); 1174 } else { 1175 i915_vma_unpin((struct i915_vma *)cache->node.mm); 1176 } 1177 } 1178 1179 cache->vaddr = 0; 1180 cache->page = -1; 1181 } 1182 1183 static void *reloc_kmap(struct drm_i915_gem_object *obj, 1184 struct reloc_cache *cache, 1185 unsigned long pageno) 1186 { 1187 void *vaddr; 1188 struct page *page; 1189 1190 if (cache->vaddr) { 1191 kunmap_atomic(unmask_page(cache->vaddr)); 1192 } else { 1193 unsigned int flushes; 1194 int err; 1195 1196 err = i915_gem_object_prepare_write(obj, &flushes); 1197 if (err) 1198 return ERR_PTR(err); 1199 1200 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 1201 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); 1202 1203 cache->vaddr = flushes | KMAP; 1204 cache->node.mm = (void *)obj; 1205 if (flushes) 1206 mb(); 1207 } 1208 1209 page = i915_gem_object_get_page(obj, pageno); 1210 if (!obj->mm.dirty) 1211 set_page_dirty(page); 1212 1213 vaddr = kmap_atomic(page); 1214 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 1215 cache->page = pageno; 1216 1217 return vaddr; 1218 } 1219 1220 static void *reloc_iomap(struct i915_vma *batch, 1221 struct i915_execbuffer *eb, 1222 unsigned long page) 1223 { 1224 struct drm_i915_gem_object *obj = batch->obj; 1225 struct reloc_cache *cache = &eb->reloc_cache; 1226 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1227 unsigned long offset; 1228 void *vaddr; 1229 1230 if (cache->vaddr) { 1231 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1232 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1233 } else { 1234 struct i915_vma *vma = ERR_PTR(-ENODEV); 1235 int err; 1236 1237 if (i915_gem_object_is_tiled(obj)) 1238 return ERR_PTR(-EINVAL); 1239 1240 if (use_cpu_reloc(cache, obj)) 1241 return NULL; 1242 1243 err = i915_gem_object_set_to_gtt_domain(obj, true); 1244 if (err) 1245 return ERR_PTR(err); 1246 1247 /* 1248 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch 1249 * VMA from the object list because we no longer pin. 1250 * 1251 * Only attempt to pin the batch buffer to ggtt if the current batch 1252 * is not inside ggtt, or the batch buffer is not misplaced. 1253 */ 1254 if (!i915_is_ggtt(batch->vm)) { 1255 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0, 1256 PIN_MAPPABLE | 1257 PIN_NONBLOCK /* NOWARN */ | 1258 PIN_NOEVICT); 1259 } else if (i915_vma_is_map_and_fenceable(batch)) { 1260 __i915_vma_pin(batch); 1261 vma = batch; 1262 } 1263 1264 if (vma == ERR_PTR(-EDEADLK)) 1265 return vma; 1266 1267 if (IS_ERR(vma)) { 1268 memset(&cache->node, 0, sizeof(cache->node)); 1269 mutex_lock(&ggtt->vm.mutex); 1270 err = drm_mm_insert_node_in_range 1271 (&ggtt->vm.mm, &cache->node, 1272 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1273 0, ggtt->mappable_end, 1274 DRM_MM_INSERT_LOW); 1275 mutex_unlock(&ggtt->vm.mutex); 1276 if (err) /* no inactive aperture space, use cpu reloc */ 1277 return NULL; 1278 } else { 1279 cache->node.start = vma->node.start; 1280 cache->node.mm = (void *)vma; 1281 } 1282 } 1283 1284 offset = cache->node.start; 1285 if (drm_mm_node_allocated(&cache->node)) { 1286 ggtt->vm.insert_page(&ggtt->vm, 1287 i915_gem_object_get_dma_address(obj, page), 1288 offset, I915_CACHE_NONE, 0); 1289 } else { 1290 offset += page << PAGE_SHIFT; 1291 } 1292 1293 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, 1294 offset); 1295 cache->page = page; 1296 cache->vaddr = (unsigned long)vaddr; 1297 1298 return vaddr; 1299 } 1300 1301 static void *reloc_vaddr(struct i915_vma *vma, 1302 struct i915_execbuffer *eb, 1303 unsigned long page) 1304 { 1305 struct reloc_cache *cache = &eb->reloc_cache; 1306 void *vaddr; 1307 1308 if (cache->page == page) { 1309 vaddr = unmask_page(cache->vaddr); 1310 } else { 1311 vaddr = NULL; 1312 if ((cache->vaddr & KMAP) == 0) 1313 vaddr = reloc_iomap(vma, eb, page); 1314 if (!vaddr) 1315 vaddr = reloc_kmap(vma->obj, cache, page); 1316 } 1317 1318 return vaddr; 1319 } 1320 1321 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1322 { 1323 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1324 if (flushes & CLFLUSH_BEFORE) 1325 drm_clflush_virt_range(addr, sizeof(*addr)); 1326 1327 *addr = value; 1328 1329 /* 1330 * Writes to the same cacheline are serialised by the CPU 1331 * (including clflush). On the write path, we only require 1332 * that it hits memory in an orderly fashion and place 1333 * mb barriers at the start and end of the relocation phase 1334 * to ensure ordering of clflush wrt to the system. 1335 */ 1336 if (flushes & CLFLUSH_AFTER) 1337 drm_clflush_virt_range(addr, sizeof(*addr)); 1338 } else 1339 *addr = value; 1340 } 1341 1342 static u64 1343 relocate_entry(struct i915_vma *vma, 1344 const struct drm_i915_gem_relocation_entry *reloc, 1345 struct i915_execbuffer *eb, 1346 const struct i915_vma *target) 1347 { 1348 u64 target_addr = relocation_target(reloc, target); 1349 u64 offset = reloc->offset; 1350 bool wide = eb->reloc_cache.use_64bit_reloc; 1351 void *vaddr; 1352 1353 repeat: 1354 vaddr = reloc_vaddr(vma, eb, 1355 offset >> PAGE_SHIFT); 1356 if (IS_ERR(vaddr)) 1357 return PTR_ERR(vaddr); 1358 1359 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32))); 1360 clflush_write32(vaddr + offset_in_page(offset), 1361 lower_32_bits(target_addr), 1362 eb->reloc_cache.vaddr); 1363 1364 if (wide) { 1365 offset += sizeof(u32); 1366 target_addr >>= 32; 1367 wide = false; 1368 goto repeat; 1369 } 1370 1371 return target->node.start | UPDATE; 1372 } 1373 1374 static u64 1375 eb_relocate_entry(struct i915_execbuffer *eb, 1376 struct eb_vma *ev, 1377 const struct drm_i915_gem_relocation_entry *reloc) 1378 { 1379 struct drm_i915_private *i915 = eb->i915; 1380 struct eb_vma *target; 1381 int err; 1382 1383 /* we've already hold a reference to all valid objects */ 1384 target = eb_get_vma(eb, reloc->target_handle); 1385 if (unlikely(!target)) 1386 return -ENOENT; 1387 1388 /* Validate that the target is in a valid r/w GPU domain */ 1389 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1390 drm_dbg(&i915->drm, "reloc with multiple write domains: " 1391 "target %d offset %d " 1392 "read %08x write %08x", 1393 reloc->target_handle, 1394 (int) reloc->offset, 1395 reloc->read_domains, 1396 reloc->write_domain); 1397 return -EINVAL; 1398 } 1399 if (unlikely((reloc->write_domain | reloc->read_domains) 1400 & ~I915_GEM_GPU_DOMAINS)) { 1401 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " 1402 "target %d offset %d " 1403 "read %08x write %08x", 1404 reloc->target_handle, 1405 (int) reloc->offset, 1406 reloc->read_domains, 1407 reloc->write_domain); 1408 return -EINVAL; 1409 } 1410 1411 if (reloc->write_domain) { 1412 target->flags |= EXEC_OBJECT_WRITE; 1413 1414 /* 1415 * Sandybridge PPGTT errata: We need a global gtt mapping 1416 * for MI and pipe_control writes because the gpu doesn't 1417 * properly redirect them through the ppgtt for non_secure 1418 * batchbuffers. 1419 */ 1420 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1421 GRAPHICS_VER(eb->i915) == 6 && 1422 !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) { 1423 struct i915_vma *vma = target->vma; 1424 1425 reloc_cache_unmap(&eb->reloc_cache); 1426 mutex_lock(&vma->vm->mutex); 1427 err = i915_vma_bind(target->vma, 1428 target->vma->obj->cache_level, 1429 PIN_GLOBAL, NULL, NULL); 1430 mutex_unlock(&vma->vm->mutex); 1431 reloc_cache_remap(&eb->reloc_cache, ev->vma->obj); 1432 if (err) 1433 return err; 1434 } 1435 } 1436 1437 /* 1438 * If the relocation already has the right value in it, no 1439 * more work needs to be done. 1440 */ 1441 if (!DBG_FORCE_RELOC && 1442 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset) 1443 return 0; 1444 1445 /* Check that the relocation address is valid... */ 1446 if (unlikely(reloc->offset > 1447 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1448 drm_dbg(&i915->drm, "Relocation beyond object bounds: " 1449 "target %d offset %d size %d.\n", 1450 reloc->target_handle, 1451 (int)reloc->offset, 1452 (int)ev->vma->size); 1453 return -EINVAL; 1454 } 1455 if (unlikely(reloc->offset & 3)) { 1456 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " 1457 "target %d offset %d.\n", 1458 reloc->target_handle, 1459 (int)reloc->offset); 1460 return -EINVAL; 1461 } 1462 1463 /* 1464 * If we write into the object, we need to force the synchronisation 1465 * barrier, either with an asynchronous clflush or if we executed the 1466 * patching using the GPU (though that should be serialised by the 1467 * timeline). To be completely sure, and since we are required to 1468 * do relocations we are already stalling, disable the user's opt 1469 * out of our synchronisation. 1470 */ 1471 ev->flags &= ~EXEC_OBJECT_ASYNC; 1472 1473 /* and update the user's relocation entry */ 1474 return relocate_entry(ev->vma, reloc, eb, target->vma); 1475 } 1476 1477 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) 1478 { 1479 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1480 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1481 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1482 struct drm_i915_gem_relocation_entry __user *urelocs = 1483 u64_to_user_ptr(entry->relocs_ptr); 1484 unsigned long remain = entry->relocation_count; 1485 1486 if (unlikely(remain > N_RELOC(ULONG_MAX))) 1487 return -EINVAL; 1488 1489 /* 1490 * We must check that the entire relocation array is safe 1491 * to read. However, if the array is not writable the user loses 1492 * the updated relocation values. 1493 */ 1494 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs)))) 1495 return -EFAULT; 1496 1497 do { 1498 struct drm_i915_gem_relocation_entry *r = stack; 1499 unsigned int count = 1500 min_t(unsigned long, remain, ARRAY_SIZE(stack)); 1501 unsigned int copied; 1502 1503 /* 1504 * This is the fast path and we cannot handle a pagefault 1505 * whilst holding the struct mutex lest the user pass in the 1506 * relocations contained within a mmaped bo. For in such a case 1507 * we, the page fault handler would call i915_gem_fault() and 1508 * we would try to acquire the struct mutex again. Obviously 1509 * this is bad and so lockdep complains vehemently. 1510 */ 1511 pagefault_disable(); 1512 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); 1513 pagefault_enable(); 1514 if (unlikely(copied)) { 1515 remain = -EFAULT; 1516 goto out; 1517 } 1518 1519 remain -= count; 1520 do { 1521 u64 offset = eb_relocate_entry(eb, ev, r); 1522 1523 if (likely(offset == 0)) { 1524 } else if ((s64)offset < 0) { 1525 remain = (int)offset; 1526 goto out; 1527 } else { 1528 /* 1529 * Note that reporting an error now 1530 * leaves everything in an inconsistent 1531 * state as we have *already* changed 1532 * the relocation value inside the 1533 * object. As we have not changed the 1534 * reloc.presumed_offset or will not 1535 * change the execobject.offset, on the 1536 * call we may not rewrite the value 1537 * inside the object, leaving it 1538 * dangling and causing a GPU hang. Unless 1539 * userspace dynamically rebuilds the 1540 * relocations on each execbuf rather than 1541 * presume a static tree. 1542 * 1543 * We did previously check if the relocations 1544 * were writable (access_ok), an error now 1545 * would be a strange race with mprotect, 1546 * having already demonstrated that we 1547 * can read from this userspace address. 1548 */ 1549 offset = gen8_canonical_addr(offset & ~UPDATE); 1550 __put_user(offset, 1551 &urelocs[r - stack].presumed_offset); 1552 } 1553 } while (r++, --count); 1554 urelocs += ARRAY_SIZE(stack); 1555 } while (remain); 1556 out: 1557 reloc_cache_reset(&eb->reloc_cache, eb); 1558 return remain; 1559 } 1560 1561 static int 1562 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev) 1563 { 1564 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1565 struct drm_i915_gem_relocation_entry *relocs = 1566 u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1567 unsigned int i; 1568 int err; 1569 1570 for (i = 0; i < entry->relocation_count; i++) { 1571 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]); 1572 1573 if ((s64)offset < 0) { 1574 err = (int)offset; 1575 goto err; 1576 } 1577 } 1578 err = 0; 1579 err: 1580 reloc_cache_reset(&eb->reloc_cache, eb); 1581 return err; 1582 } 1583 1584 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) 1585 { 1586 const char __user *addr, *end; 1587 unsigned long size; 1588 char __maybe_unused c; 1589 1590 size = entry->relocation_count; 1591 if (size == 0) 1592 return 0; 1593 1594 if (size > N_RELOC(ULONG_MAX)) 1595 return -EINVAL; 1596 1597 addr = u64_to_user_ptr(entry->relocs_ptr); 1598 size *= sizeof(struct drm_i915_gem_relocation_entry); 1599 if (!access_ok(addr, size)) 1600 return -EFAULT; 1601 1602 end = addr + size; 1603 for (; addr < end; addr += PAGE_SIZE) { 1604 int err = __get_user(c, addr); 1605 if (err) 1606 return err; 1607 } 1608 return __get_user(c, end - 1); 1609 } 1610 1611 static int eb_copy_relocations(const struct i915_execbuffer *eb) 1612 { 1613 struct drm_i915_gem_relocation_entry *relocs; 1614 const unsigned int count = eb->buffer_count; 1615 unsigned int i; 1616 int err; 1617 1618 for (i = 0; i < count; i++) { 1619 const unsigned int nreloc = eb->exec[i].relocation_count; 1620 struct drm_i915_gem_relocation_entry __user *urelocs; 1621 unsigned long size; 1622 unsigned long copied; 1623 1624 if (nreloc == 0) 1625 continue; 1626 1627 err = check_relocations(&eb->exec[i]); 1628 if (err) 1629 goto err; 1630 1631 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); 1632 size = nreloc * sizeof(*relocs); 1633 1634 relocs = kvmalloc_array(size, 1, GFP_KERNEL); 1635 if (!relocs) { 1636 err = -ENOMEM; 1637 goto err; 1638 } 1639 1640 /* copy_from_user is limited to < 4GiB */ 1641 copied = 0; 1642 do { 1643 unsigned int len = 1644 min_t(u64, BIT_ULL(31), size - copied); 1645 1646 if (__copy_from_user((char *)relocs + copied, 1647 (char __user *)urelocs + copied, 1648 len)) 1649 goto end; 1650 1651 copied += len; 1652 } while (copied < size); 1653 1654 /* 1655 * As we do not update the known relocation offsets after 1656 * relocating (due to the complexities in lock handling), 1657 * we need to mark them as invalid now so that we force the 1658 * relocation processing next time. Just in case the target 1659 * object is evicted and then rebound into its old 1660 * presumed_offset before the next execbuffer - if that 1661 * happened we would make the mistake of assuming that the 1662 * relocations were valid. 1663 */ 1664 if (!user_access_begin(urelocs, size)) 1665 goto end; 1666 1667 for (copied = 0; copied < nreloc; copied++) 1668 unsafe_put_user(-1, 1669 &urelocs[copied].presumed_offset, 1670 end_user); 1671 user_access_end(); 1672 1673 eb->exec[i].relocs_ptr = (uintptr_t)relocs; 1674 } 1675 1676 return 0; 1677 1678 end_user: 1679 user_access_end(); 1680 end: 1681 kvfree(relocs); 1682 err = -EFAULT; 1683 err: 1684 while (i--) { 1685 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); 1686 if (eb->exec[i].relocation_count) 1687 kvfree(relocs); 1688 } 1689 return err; 1690 } 1691 1692 static int eb_prefault_relocations(const struct i915_execbuffer *eb) 1693 { 1694 const unsigned int count = eb->buffer_count; 1695 unsigned int i; 1696 1697 for (i = 0; i < count; i++) { 1698 int err; 1699 1700 err = check_relocations(&eb->exec[i]); 1701 if (err) 1702 return err; 1703 } 1704 1705 return 0; 1706 } 1707 1708 static int eb_reinit_userptr(struct i915_execbuffer *eb) 1709 { 1710 const unsigned int count = eb->buffer_count; 1711 unsigned int i; 1712 int ret; 1713 1714 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED))) 1715 return 0; 1716 1717 for (i = 0; i < count; i++) { 1718 struct eb_vma *ev = &eb->vma[i]; 1719 1720 if (!i915_gem_object_is_userptr(ev->vma->obj)) 1721 continue; 1722 1723 ret = i915_gem_object_userptr_submit_init(ev->vma->obj); 1724 if (ret) 1725 return ret; 1726 1727 ev->flags |= __EXEC_OBJECT_USERPTR_INIT; 1728 } 1729 1730 return 0; 1731 } 1732 1733 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb) 1734 { 1735 bool have_copy = false; 1736 struct eb_vma *ev; 1737 int err = 0; 1738 1739 repeat: 1740 if (signal_pending(current)) { 1741 err = -ERESTARTSYS; 1742 goto out; 1743 } 1744 1745 /* We may process another execbuffer during the unlock... */ 1746 eb_release_vmas(eb, false); 1747 i915_gem_ww_ctx_fini(&eb->ww); 1748 1749 /* 1750 * We take 3 passes through the slowpatch. 1751 * 1752 * 1 - we try to just prefault all the user relocation entries and 1753 * then attempt to reuse the atomic pagefault disabled fast path again. 1754 * 1755 * 2 - we copy the user entries to a local buffer here outside of the 1756 * local and allow ourselves to wait upon any rendering before 1757 * relocations 1758 * 1759 * 3 - we already have a local copy of the relocation entries, but 1760 * were interrupted (EAGAIN) whilst waiting for the objects, try again. 1761 */ 1762 if (!err) { 1763 err = eb_prefault_relocations(eb); 1764 } else if (!have_copy) { 1765 err = eb_copy_relocations(eb); 1766 have_copy = err == 0; 1767 } else { 1768 cond_resched(); 1769 err = 0; 1770 } 1771 1772 if (!err) 1773 err = eb_reinit_userptr(eb); 1774 1775 i915_gem_ww_ctx_init(&eb->ww, true); 1776 if (err) 1777 goto out; 1778 1779 /* reacquire the objects */ 1780 repeat_validate: 1781 err = eb_pin_engine(eb, false); 1782 if (err) 1783 goto err; 1784 1785 err = eb_validate_vmas(eb); 1786 if (err) 1787 goto err; 1788 1789 GEM_BUG_ON(!eb->batches[0]); 1790 1791 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1792 if (!have_copy) { 1793 err = eb_relocate_vma(eb, ev); 1794 if (err) 1795 break; 1796 } else { 1797 err = eb_relocate_vma_slow(eb, ev); 1798 if (err) 1799 break; 1800 } 1801 } 1802 1803 if (err == -EDEADLK) 1804 goto err; 1805 1806 if (err && !have_copy) 1807 goto repeat; 1808 1809 if (err) 1810 goto err; 1811 1812 /* as last step, parse the command buffer */ 1813 err = eb_parse(eb); 1814 if (err) 1815 goto err; 1816 1817 /* 1818 * Leave the user relocations as are, this is the painfully slow path, 1819 * and we want to avoid the complication of dropping the lock whilst 1820 * having buffers reserved in the aperture and so causing spurious 1821 * ENOSPC for random operations. 1822 */ 1823 1824 err: 1825 if (err == -EDEADLK) { 1826 eb_release_vmas(eb, false); 1827 err = i915_gem_ww_ctx_backoff(&eb->ww); 1828 if (!err) 1829 goto repeat_validate; 1830 } 1831 1832 if (err == -EAGAIN) 1833 goto repeat; 1834 1835 out: 1836 if (have_copy) { 1837 const unsigned int count = eb->buffer_count; 1838 unsigned int i; 1839 1840 for (i = 0; i < count; i++) { 1841 const struct drm_i915_gem_exec_object2 *entry = 1842 &eb->exec[i]; 1843 struct drm_i915_gem_relocation_entry *relocs; 1844 1845 if (!entry->relocation_count) 1846 continue; 1847 1848 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1849 kvfree(relocs); 1850 } 1851 } 1852 1853 return err; 1854 } 1855 1856 static int eb_relocate_parse(struct i915_execbuffer *eb) 1857 { 1858 int err; 1859 bool throttle = true; 1860 1861 retry: 1862 err = eb_pin_engine(eb, throttle); 1863 if (err) { 1864 if (err != -EDEADLK) 1865 return err; 1866 1867 goto err; 1868 } 1869 1870 /* only throttle once, even if we didn't need to throttle */ 1871 throttle = false; 1872 1873 err = eb_validate_vmas(eb); 1874 if (err == -EAGAIN) 1875 goto slow; 1876 else if (err) 1877 goto err; 1878 1879 /* The objects are in their final locations, apply the relocations. */ 1880 if (eb->args->flags & __EXEC_HAS_RELOC) { 1881 struct eb_vma *ev; 1882 1883 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1884 err = eb_relocate_vma(eb, ev); 1885 if (err) 1886 break; 1887 } 1888 1889 if (err == -EDEADLK) 1890 goto err; 1891 else if (err) 1892 goto slow; 1893 } 1894 1895 if (!err) 1896 err = eb_parse(eb); 1897 1898 err: 1899 if (err == -EDEADLK) { 1900 eb_release_vmas(eb, false); 1901 err = i915_gem_ww_ctx_backoff(&eb->ww); 1902 if (!err) 1903 goto retry; 1904 } 1905 1906 return err; 1907 1908 slow: 1909 err = eb_relocate_parse_slow(eb); 1910 if (err) 1911 /* 1912 * If the user expects the execobject.offset and 1913 * reloc.presumed_offset to be an exact match, 1914 * as for using NO_RELOC, then we cannot update 1915 * the execobject.offset until we have completed 1916 * relocation. 1917 */ 1918 eb->args->flags &= ~__EXEC_HAS_RELOC; 1919 1920 return err; 1921 } 1922 1923 /* 1924 * Using two helper loops for the order of which requests / batches are created 1925 * and added the to backend. Requests are created in order from the parent to 1926 * the last child. Requests are added in the reverse order, from the last child 1927 * to parent. This is done for locking reasons as the timeline lock is acquired 1928 * during request creation and released when the request is added to the 1929 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be 1930 * the ordering. 1931 */ 1932 #define for_each_batch_create_order(_eb, _i) \ 1933 for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i)) 1934 #define for_each_batch_add_order(_eb, _i) \ 1935 BUILD_BUG_ON(!typecheck(int, _i)); \ 1936 for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i)) 1937 1938 static struct i915_request * 1939 eb_find_first_request_added(struct i915_execbuffer *eb) 1940 { 1941 int i; 1942 1943 for_each_batch_add_order(eb, i) 1944 if (eb->requests[i]) 1945 return eb->requests[i]; 1946 1947 GEM_BUG_ON("Request not found"); 1948 1949 return NULL; 1950 } 1951 1952 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 1953 1954 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */ 1955 static void eb_capture_stage(struct i915_execbuffer *eb) 1956 { 1957 const unsigned int count = eb->buffer_count; 1958 unsigned int i = count, j; 1959 1960 while (i--) { 1961 struct eb_vma *ev = &eb->vma[i]; 1962 struct i915_vma *vma = ev->vma; 1963 unsigned int flags = ev->flags; 1964 1965 if (!(flags & EXEC_OBJECT_CAPTURE)) 1966 continue; 1967 1968 for_each_batch_create_order(eb, j) { 1969 struct i915_capture_list *capture; 1970 1971 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 1972 if (!capture) 1973 continue; 1974 1975 capture->next = eb->capture_lists[j]; 1976 capture->vma_res = i915_vma_resource_get(vma->resource); 1977 eb->capture_lists[j] = capture; 1978 } 1979 } 1980 } 1981 1982 /* Commit once we're in the critical path */ 1983 static void eb_capture_commit(struct i915_execbuffer *eb) 1984 { 1985 unsigned int j; 1986 1987 for_each_batch_create_order(eb, j) { 1988 struct i915_request *rq = eb->requests[j]; 1989 1990 if (!rq) 1991 break; 1992 1993 rq->capture_list = eb->capture_lists[j]; 1994 eb->capture_lists[j] = NULL; 1995 } 1996 } 1997 1998 /* 1999 * Release anything that didn't get committed due to errors. 2000 * The capture_list will otherwise be freed at request retire. 2001 */ 2002 static void eb_capture_release(struct i915_execbuffer *eb) 2003 { 2004 unsigned int j; 2005 2006 for_each_batch_create_order(eb, j) { 2007 if (eb->capture_lists[j]) { 2008 i915_request_free_capture_list(eb->capture_lists[j]); 2009 eb->capture_lists[j] = NULL; 2010 } 2011 } 2012 } 2013 2014 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2015 { 2016 memset(eb->capture_lists, 0, sizeof(eb->capture_lists)); 2017 } 2018 2019 #else 2020 2021 static void eb_capture_stage(struct i915_execbuffer *eb) 2022 { 2023 } 2024 2025 static void eb_capture_commit(struct i915_execbuffer *eb) 2026 { 2027 } 2028 2029 static void eb_capture_release(struct i915_execbuffer *eb) 2030 { 2031 } 2032 2033 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2034 { 2035 } 2036 2037 #endif 2038 2039 static int eb_move_to_gpu(struct i915_execbuffer *eb) 2040 { 2041 const unsigned int count = eb->buffer_count; 2042 unsigned int i = count; 2043 int err = 0, j; 2044 2045 while (i--) { 2046 struct eb_vma *ev = &eb->vma[i]; 2047 struct i915_vma *vma = ev->vma; 2048 unsigned int flags = ev->flags; 2049 struct drm_i915_gem_object *obj = vma->obj; 2050 2051 assert_vma_held(vma); 2052 2053 /* 2054 * If the GPU is not _reading_ through the CPU cache, we need 2055 * to make sure that any writes (both previous GPU writes from 2056 * before a change in snooping levels and normal CPU writes) 2057 * caught in that cache are flushed to main memory. 2058 * 2059 * We want to say 2060 * obj->cache_dirty && 2061 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) 2062 * but gcc's optimiser doesn't handle that as well and emits 2063 * two jumps instead of one. Maybe one day... 2064 * 2065 * FIXME: There is also sync flushing in set_pages(), which 2066 * serves a different purpose(some of the time at least). 2067 * 2068 * We should consider: 2069 * 2070 * 1. Rip out the async flush code. 2071 * 2072 * 2. Or make the sync flushing use the async clflush path 2073 * using mandatory fences underneath. Currently the below 2074 * async flush happens after we bind the object. 2075 */ 2076 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { 2077 if (i915_gem_clflush_object(obj, 0)) 2078 flags &= ~EXEC_OBJECT_ASYNC; 2079 } 2080 2081 /* We only need to await on the first request */ 2082 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { 2083 err = i915_request_await_object 2084 (eb_find_first_request_added(eb), obj, 2085 flags & EXEC_OBJECT_WRITE); 2086 } 2087 2088 for_each_batch_add_order(eb, j) { 2089 if (err) 2090 break; 2091 if (!eb->requests[j]) 2092 continue; 2093 2094 err = _i915_vma_move_to_active(vma, eb->requests[j], 2095 j ? NULL : 2096 eb->composite_fence ? 2097 eb->composite_fence : 2098 &eb->requests[j]->fence, 2099 flags | __EXEC_OBJECT_NO_RESERVE); 2100 } 2101 } 2102 2103 #ifdef CONFIG_MMU_NOTIFIER 2104 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) { 2105 read_lock(&eb->i915->mm.notifier_lock); 2106 2107 /* 2108 * count is always at least 1, otherwise __EXEC_USERPTR_USED 2109 * could not have been set 2110 */ 2111 for (i = 0; i < count; i++) { 2112 struct eb_vma *ev = &eb->vma[i]; 2113 struct drm_i915_gem_object *obj = ev->vma->obj; 2114 2115 if (!i915_gem_object_is_userptr(obj)) 2116 continue; 2117 2118 err = i915_gem_object_userptr_submit_done(obj); 2119 if (err) 2120 break; 2121 } 2122 2123 read_unlock(&eb->i915->mm.notifier_lock); 2124 } 2125 #endif 2126 2127 if (unlikely(err)) 2128 goto err_skip; 2129 2130 /* Unconditionally flush any chipset caches (for streaming writes). */ 2131 intel_gt_chipset_flush(eb->gt); 2132 eb_capture_commit(eb); 2133 2134 return 0; 2135 2136 err_skip: 2137 for_each_batch_create_order(eb, j) { 2138 if (!eb->requests[j]) 2139 break; 2140 2141 i915_request_set_error_once(eb->requests[j], err); 2142 } 2143 return err; 2144 } 2145 2146 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) 2147 { 2148 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 2149 return -EINVAL; 2150 2151 /* Kernel clipping was a DRI1 misfeature */ 2152 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY | 2153 I915_EXEC_USE_EXTENSIONS))) { 2154 if (exec->num_cliprects || exec->cliprects_ptr) 2155 return -EINVAL; 2156 } 2157 2158 if (exec->DR4 == 0xffffffff) { 2159 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); 2160 exec->DR4 = 0; 2161 } 2162 if (exec->DR1 || exec->DR4) 2163 return -EINVAL; 2164 2165 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 2166 return -EINVAL; 2167 2168 return 0; 2169 } 2170 2171 static int i915_reset_gen7_sol_offsets(struct i915_request *rq) 2172 { 2173 u32 *cs; 2174 int i; 2175 2176 if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) { 2177 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n"); 2178 return -EINVAL; 2179 } 2180 2181 cs = intel_ring_begin(rq, 4 * 2 + 2); 2182 if (IS_ERR(cs)) 2183 return PTR_ERR(cs); 2184 2185 *cs++ = MI_LOAD_REGISTER_IMM(4); 2186 for (i = 0; i < 4; i++) { 2187 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 2188 *cs++ = 0; 2189 } 2190 *cs++ = MI_NOOP; 2191 intel_ring_advance(rq, cs); 2192 2193 return 0; 2194 } 2195 2196 static struct i915_vma * 2197 shadow_batch_pin(struct i915_execbuffer *eb, 2198 struct drm_i915_gem_object *obj, 2199 struct i915_address_space *vm, 2200 unsigned int flags) 2201 { 2202 struct i915_vma *vma; 2203 int err; 2204 2205 vma = i915_vma_instance(obj, vm, NULL); 2206 if (IS_ERR(vma)) 2207 return vma; 2208 2209 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE); 2210 if (err) 2211 return ERR_PTR(err); 2212 2213 return vma; 2214 } 2215 2216 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma) 2217 { 2218 /* 2219 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2220 * batch" bit. Hence we need to pin secure batches into the global gtt. 2221 * hsw should have this fixed, but bdw mucks it up again. */ 2222 if (eb->batch_flags & I915_DISPATCH_SECURE) 2223 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE); 2224 2225 return NULL; 2226 } 2227 2228 static int eb_parse(struct i915_execbuffer *eb) 2229 { 2230 struct drm_i915_private *i915 = eb->i915; 2231 struct intel_gt_buffer_pool_node *pool = eb->batch_pool; 2232 struct i915_vma *shadow, *trampoline, *batch; 2233 unsigned long len; 2234 int err; 2235 2236 if (!eb_use_cmdparser(eb)) { 2237 batch = eb_dispatch_secure(eb, eb->batches[0]->vma); 2238 if (IS_ERR(batch)) 2239 return PTR_ERR(batch); 2240 2241 goto secure_batch; 2242 } 2243 2244 if (intel_context_is_parallel(eb->context)) 2245 return -EINVAL; 2246 2247 len = eb->batch_len[0]; 2248 if (!CMDPARSER_USES_GGTT(eb->i915)) { 2249 /* 2250 * ppGTT backed shadow buffers must be mapped RO, to prevent 2251 * post-scan tampering 2252 */ 2253 if (!eb->context->vm->has_read_only) { 2254 drm_dbg(&i915->drm, 2255 "Cannot prevent post-scan tampering without RO capable vm\n"); 2256 return -EINVAL; 2257 } 2258 } else { 2259 len += I915_CMD_PARSER_TRAMPOLINE_SIZE; 2260 } 2261 if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */ 2262 return -EINVAL; 2263 2264 if (!pool) { 2265 pool = intel_gt_get_buffer_pool(eb->gt, len, 2266 I915_MAP_WB); 2267 if (IS_ERR(pool)) 2268 return PTR_ERR(pool); 2269 eb->batch_pool = pool; 2270 } 2271 2272 err = i915_gem_object_lock(pool->obj, &eb->ww); 2273 if (err) 2274 return err; 2275 2276 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER); 2277 if (IS_ERR(shadow)) 2278 return PTR_ERR(shadow); 2279 2280 intel_gt_buffer_pool_mark_used(pool); 2281 i915_gem_object_set_readonly(shadow->obj); 2282 shadow->private = pool; 2283 2284 trampoline = NULL; 2285 if (CMDPARSER_USES_GGTT(eb->i915)) { 2286 trampoline = shadow; 2287 2288 shadow = shadow_batch_pin(eb, pool->obj, 2289 &eb->gt->ggtt->vm, 2290 PIN_GLOBAL); 2291 if (IS_ERR(shadow)) 2292 return PTR_ERR(shadow); 2293 2294 shadow->private = pool; 2295 2296 eb->batch_flags |= I915_DISPATCH_SECURE; 2297 } 2298 2299 batch = eb_dispatch_secure(eb, shadow); 2300 if (IS_ERR(batch)) 2301 return PTR_ERR(batch); 2302 2303 err = dma_resv_reserve_fences(shadow->obj->base.resv, 1); 2304 if (err) 2305 return err; 2306 2307 err = intel_engine_cmd_parser(eb->context->engine, 2308 eb->batches[0]->vma, 2309 eb->batch_start_offset, 2310 eb->batch_len[0], 2311 shadow, trampoline); 2312 if (err) 2313 return err; 2314 2315 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2316 eb->batches[0]->vma = i915_vma_get(shadow); 2317 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2318 2319 eb->trampoline = trampoline; 2320 eb->batch_start_offset = 0; 2321 2322 secure_batch: 2323 if (batch) { 2324 if (intel_context_is_parallel(eb->context)) 2325 return -EINVAL; 2326 2327 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2328 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2329 eb->batches[0]->vma = i915_vma_get(batch); 2330 } 2331 return 0; 2332 } 2333 2334 static int eb_request_submit(struct i915_execbuffer *eb, 2335 struct i915_request *rq, 2336 struct i915_vma *batch, 2337 u64 batch_len) 2338 { 2339 int err; 2340 2341 if (intel_context_nopreempt(rq->context)) 2342 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags); 2343 2344 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 2345 err = i915_reset_gen7_sol_offsets(rq); 2346 if (err) 2347 return err; 2348 } 2349 2350 /* 2351 * After we completed waiting for other engines (using HW semaphores) 2352 * then we can signal that this request/batch is ready to run. This 2353 * allows us to determine if the batch is still waiting on the GPU 2354 * or actually running by checking the breadcrumb. 2355 */ 2356 if (rq->context->engine->emit_init_breadcrumb) { 2357 err = rq->context->engine->emit_init_breadcrumb(rq); 2358 if (err) 2359 return err; 2360 } 2361 2362 err = rq->context->engine->emit_bb_start(rq, 2363 batch->node.start + 2364 eb->batch_start_offset, 2365 batch_len, 2366 eb->batch_flags); 2367 if (err) 2368 return err; 2369 2370 if (eb->trampoline) { 2371 GEM_BUG_ON(intel_context_is_parallel(rq->context)); 2372 GEM_BUG_ON(eb->batch_start_offset); 2373 err = rq->context->engine->emit_bb_start(rq, 2374 eb->trampoline->node.start + 2375 batch_len, 0, 0); 2376 if (err) 2377 return err; 2378 } 2379 2380 return 0; 2381 } 2382 2383 static int eb_submit(struct i915_execbuffer *eb) 2384 { 2385 unsigned int i; 2386 int err; 2387 2388 err = eb_move_to_gpu(eb); 2389 2390 for_each_batch_create_order(eb, i) { 2391 if (!eb->requests[i]) 2392 break; 2393 2394 trace_i915_request_queue(eb->requests[i], eb->batch_flags); 2395 if (!err) 2396 err = eb_request_submit(eb, eb->requests[i], 2397 eb->batches[i]->vma, 2398 eb->batch_len[i]); 2399 } 2400 2401 return err; 2402 } 2403 2404 static int num_vcs_engines(struct drm_i915_private *i915) 2405 { 2406 return hweight_long(VDBOX_MASK(to_gt(i915))); 2407 } 2408 2409 /* 2410 * Find one BSD ring to dispatch the corresponding BSD command. 2411 * The engine index is returned. 2412 */ 2413 static unsigned int 2414 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, 2415 struct drm_file *file) 2416 { 2417 struct drm_i915_file_private *file_priv = file->driver_priv; 2418 2419 /* Check whether the file_priv has already selected one ring. */ 2420 if ((int)file_priv->bsd_engine < 0) 2421 file_priv->bsd_engine = 2422 get_random_int() % num_vcs_engines(dev_priv); 2423 2424 return file_priv->bsd_engine; 2425 } 2426 2427 static const enum intel_engine_id user_ring_map[] = { 2428 [I915_EXEC_DEFAULT] = RCS0, 2429 [I915_EXEC_RENDER] = RCS0, 2430 [I915_EXEC_BLT] = BCS0, 2431 [I915_EXEC_BSD] = VCS0, 2432 [I915_EXEC_VEBOX] = VECS0 2433 }; 2434 2435 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce) 2436 { 2437 struct intel_ring *ring = ce->ring; 2438 struct intel_timeline *tl = ce->timeline; 2439 struct i915_request *rq; 2440 2441 /* 2442 * Completely unscientific finger-in-the-air estimates for suitable 2443 * maximum user request size (to avoid blocking) and then backoff. 2444 */ 2445 if (intel_ring_update_space(ring) >= PAGE_SIZE) 2446 return NULL; 2447 2448 /* 2449 * Find a request that after waiting upon, there will be at least half 2450 * the ring available. The hysteresis allows us to compete for the 2451 * shared ring and should mean that we sleep less often prior to 2452 * claiming our resources, but not so long that the ring completely 2453 * drains before we can submit our next request. 2454 */ 2455 list_for_each_entry(rq, &tl->requests, link) { 2456 if (rq->ring != ring) 2457 continue; 2458 2459 if (__intel_ring_space(rq->postfix, 2460 ring->emit, ring->size) > ring->size / 2) 2461 break; 2462 } 2463 if (&rq->link == &tl->requests) 2464 return NULL; /* weird, we will check again later for real */ 2465 2466 return i915_request_get(rq); 2467 } 2468 2469 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce, 2470 bool throttle) 2471 { 2472 struct intel_timeline *tl; 2473 struct i915_request *rq = NULL; 2474 2475 /* 2476 * Take a local wakeref for preparing to dispatch the execbuf as 2477 * we expect to access the hardware fairly frequently in the 2478 * process, and require the engine to be kept awake between accesses. 2479 * Upon dispatch, we acquire another prolonged wakeref that we hold 2480 * until the timeline is idle, which in turn releases the wakeref 2481 * taken on the engine, and the parent device. 2482 */ 2483 tl = intel_context_timeline_lock(ce); 2484 if (IS_ERR(tl)) 2485 return PTR_ERR(tl); 2486 2487 intel_context_enter(ce); 2488 if (throttle) 2489 rq = eb_throttle(eb, ce); 2490 intel_context_timeline_unlock(tl); 2491 2492 if (rq) { 2493 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; 2494 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT; 2495 2496 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 2497 timeout) < 0) { 2498 i915_request_put(rq); 2499 2500 /* 2501 * Error path, cannot use intel_context_timeline_lock as 2502 * that is user interruptable and this clean up step 2503 * must be done. 2504 */ 2505 mutex_lock(&ce->timeline->mutex); 2506 intel_context_exit(ce); 2507 mutex_unlock(&ce->timeline->mutex); 2508 2509 if (nonblock) 2510 return -EWOULDBLOCK; 2511 else 2512 return -EINTR; 2513 } 2514 i915_request_put(rq); 2515 } 2516 2517 return 0; 2518 } 2519 2520 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle) 2521 { 2522 struct intel_context *ce = eb->context, *child; 2523 int err; 2524 int i = 0, j = 0; 2525 2526 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED); 2527 2528 if (unlikely(intel_context_is_banned(ce))) 2529 return -EIO; 2530 2531 /* 2532 * Pinning the contexts may generate requests in order to acquire 2533 * GGTT space, so do this first before we reserve a seqno for 2534 * ourselves. 2535 */ 2536 err = intel_context_pin_ww(ce, &eb->ww); 2537 if (err) 2538 return err; 2539 for_each_child(ce, child) { 2540 err = intel_context_pin_ww(child, &eb->ww); 2541 GEM_BUG_ON(err); /* perma-pinned should incr a counter */ 2542 } 2543 2544 for_each_child(ce, child) { 2545 err = eb_pin_timeline(eb, child, throttle); 2546 if (err) 2547 goto unwind; 2548 ++i; 2549 } 2550 err = eb_pin_timeline(eb, ce, throttle); 2551 if (err) 2552 goto unwind; 2553 2554 eb->args->flags |= __EXEC_ENGINE_PINNED; 2555 return 0; 2556 2557 unwind: 2558 for_each_child(ce, child) { 2559 if (j++ < i) { 2560 mutex_lock(&child->timeline->mutex); 2561 intel_context_exit(child); 2562 mutex_unlock(&child->timeline->mutex); 2563 } 2564 } 2565 for_each_child(ce, child) 2566 intel_context_unpin(child); 2567 intel_context_unpin(ce); 2568 return err; 2569 } 2570 2571 static void eb_unpin_engine(struct i915_execbuffer *eb) 2572 { 2573 struct intel_context *ce = eb->context, *child; 2574 2575 if (!(eb->args->flags & __EXEC_ENGINE_PINNED)) 2576 return; 2577 2578 eb->args->flags &= ~__EXEC_ENGINE_PINNED; 2579 2580 for_each_child(ce, child) { 2581 mutex_lock(&child->timeline->mutex); 2582 intel_context_exit(child); 2583 mutex_unlock(&child->timeline->mutex); 2584 2585 intel_context_unpin(child); 2586 } 2587 2588 mutex_lock(&ce->timeline->mutex); 2589 intel_context_exit(ce); 2590 mutex_unlock(&ce->timeline->mutex); 2591 2592 intel_context_unpin(ce); 2593 } 2594 2595 static unsigned int 2596 eb_select_legacy_ring(struct i915_execbuffer *eb) 2597 { 2598 struct drm_i915_private *i915 = eb->i915; 2599 struct drm_i915_gem_execbuffer2 *args = eb->args; 2600 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2601 2602 if (user_ring_id != I915_EXEC_BSD && 2603 (args->flags & I915_EXEC_BSD_MASK)) { 2604 drm_dbg(&i915->drm, 2605 "execbuf with non bsd ring but with invalid " 2606 "bsd dispatch flags: %d\n", (int)(args->flags)); 2607 return -1; 2608 } 2609 2610 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) { 2611 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2612 2613 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2614 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file); 2615 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2616 bsd_idx <= I915_EXEC_BSD_RING2) { 2617 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2618 bsd_idx--; 2619 } else { 2620 drm_dbg(&i915->drm, 2621 "execbuf with unknown bsd ring: %u\n", 2622 bsd_idx); 2623 return -1; 2624 } 2625 2626 return _VCS(bsd_idx); 2627 } 2628 2629 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { 2630 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", 2631 user_ring_id); 2632 return -1; 2633 } 2634 2635 return user_ring_map[user_ring_id]; 2636 } 2637 2638 static int 2639 eb_select_engine(struct i915_execbuffer *eb) 2640 { 2641 struct intel_context *ce, *child; 2642 unsigned int idx; 2643 int err; 2644 2645 if (i915_gem_context_user_engines(eb->gem_context)) 2646 idx = eb->args->flags & I915_EXEC_RING_MASK; 2647 else 2648 idx = eb_select_legacy_ring(eb); 2649 2650 ce = i915_gem_context_get_engine(eb->gem_context, idx); 2651 if (IS_ERR(ce)) 2652 return PTR_ERR(ce); 2653 2654 if (intel_context_is_parallel(ce)) { 2655 if (eb->buffer_count < ce->parallel.number_children + 1) { 2656 intel_context_put(ce); 2657 return -EINVAL; 2658 } 2659 if (eb->batch_start_offset || eb->args->batch_len) { 2660 intel_context_put(ce); 2661 return -EINVAL; 2662 } 2663 } 2664 eb->num_batches = ce->parallel.number_children + 1; 2665 2666 for_each_child(ce, child) 2667 intel_context_get(child); 2668 intel_gt_pm_get(ce->engine->gt); 2669 2670 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) { 2671 err = intel_context_alloc_state(ce); 2672 if (err) 2673 goto err; 2674 } 2675 for_each_child(ce, child) { 2676 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) { 2677 err = intel_context_alloc_state(child); 2678 if (err) 2679 goto err; 2680 } 2681 } 2682 2683 /* 2684 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 2685 * EIO if the GPU is already wedged. 2686 */ 2687 err = intel_gt_terminally_wedged(ce->engine->gt); 2688 if (err) 2689 goto err; 2690 2691 if (!i915_vm_tryget(ce->vm)) { 2692 err = -ENOENT; 2693 goto err; 2694 } 2695 2696 eb->context = ce; 2697 eb->gt = ce->engine->gt; 2698 2699 /* 2700 * Make sure engine pool stays alive even if we call intel_context_put 2701 * during ww handling. The pool is destroyed when last pm reference 2702 * is dropped, which breaks our -EDEADLK handling. 2703 */ 2704 return err; 2705 2706 err: 2707 intel_gt_pm_put(ce->engine->gt); 2708 for_each_child(ce, child) 2709 intel_context_put(child); 2710 intel_context_put(ce); 2711 return err; 2712 } 2713 2714 static void 2715 eb_put_engine(struct i915_execbuffer *eb) 2716 { 2717 struct intel_context *child; 2718 2719 i915_vm_put(eb->context->vm); 2720 intel_gt_pm_put(eb->gt); 2721 for_each_child(eb->context, child) 2722 intel_context_put(child); 2723 intel_context_put(eb->context); 2724 } 2725 2726 static void 2727 __free_fence_array(struct eb_fence *fences, unsigned int n) 2728 { 2729 while (n--) { 2730 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2)); 2731 dma_fence_put(fences[n].dma_fence); 2732 dma_fence_chain_free(fences[n].chain_fence); 2733 } 2734 kvfree(fences); 2735 } 2736 2737 static int 2738 add_timeline_fence_array(struct i915_execbuffer *eb, 2739 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences) 2740 { 2741 struct drm_i915_gem_exec_fence __user *user_fences; 2742 u64 __user *user_values; 2743 struct eb_fence *f; 2744 u64 nfences; 2745 int err = 0; 2746 2747 nfences = timeline_fences->fence_count; 2748 if (!nfences) 2749 return 0; 2750 2751 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2752 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2753 if (nfences > min_t(unsigned long, 2754 ULONG_MAX / sizeof(*user_fences), 2755 SIZE_MAX / sizeof(*f)) - eb->num_fences) 2756 return -EINVAL; 2757 2758 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr); 2759 if (!access_ok(user_fences, nfences * sizeof(*user_fences))) 2760 return -EFAULT; 2761 2762 user_values = u64_to_user_ptr(timeline_fences->values_ptr); 2763 if (!access_ok(user_values, nfences * sizeof(*user_values))) 2764 return -EFAULT; 2765 2766 f = krealloc(eb->fences, 2767 (eb->num_fences + nfences) * sizeof(*f), 2768 __GFP_NOWARN | GFP_KERNEL); 2769 if (!f) 2770 return -ENOMEM; 2771 2772 eb->fences = f; 2773 f += eb->num_fences; 2774 2775 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2776 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2777 2778 while (nfences--) { 2779 struct drm_i915_gem_exec_fence user_fence; 2780 struct drm_syncobj *syncobj; 2781 struct dma_fence *fence = NULL; 2782 u64 point; 2783 2784 if (__copy_from_user(&user_fence, 2785 user_fences++, 2786 sizeof(user_fence))) 2787 return -EFAULT; 2788 2789 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2790 return -EINVAL; 2791 2792 if (__get_user(point, user_values++)) 2793 return -EFAULT; 2794 2795 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2796 if (!syncobj) { 2797 DRM_DEBUG("Invalid syncobj handle provided\n"); 2798 return -ENOENT; 2799 } 2800 2801 fence = drm_syncobj_fence_get(syncobj); 2802 2803 if (!fence && user_fence.flags && 2804 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2805 DRM_DEBUG("Syncobj handle has no fence\n"); 2806 drm_syncobj_put(syncobj); 2807 return -EINVAL; 2808 } 2809 2810 if (fence) 2811 err = dma_fence_chain_find_seqno(&fence, point); 2812 2813 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2814 DRM_DEBUG("Syncobj handle missing requested point %llu\n", point); 2815 dma_fence_put(fence); 2816 drm_syncobj_put(syncobj); 2817 return err; 2818 } 2819 2820 /* 2821 * A point might have been signaled already and 2822 * garbage collected from the timeline. In this case 2823 * just ignore the point and carry on. 2824 */ 2825 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2826 drm_syncobj_put(syncobj); 2827 continue; 2828 } 2829 2830 /* 2831 * For timeline syncobjs we need to preallocate chains for 2832 * later signaling. 2833 */ 2834 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) { 2835 /* 2836 * Waiting and signaling the same point (when point != 2837 * 0) would break the timeline. 2838 */ 2839 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2840 DRM_DEBUG("Trying to wait & signal the same timeline point.\n"); 2841 dma_fence_put(fence); 2842 drm_syncobj_put(syncobj); 2843 return -EINVAL; 2844 } 2845 2846 f->chain_fence = dma_fence_chain_alloc(); 2847 if (!f->chain_fence) { 2848 drm_syncobj_put(syncobj); 2849 dma_fence_put(fence); 2850 return -ENOMEM; 2851 } 2852 } else { 2853 f->chain_fence = NULL; 2854 } 2855 2856 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2857 f->dma_fence = fence; 2858 f->value = point; 2859 f++; 2860 eb->num_fences++; 2861 } 2862 2863 return 0; 2864 } 2865 2866 static int add_fence_array(struct i915_execbuffer *eb) 2867 { 2868 struct drm_i915_gem_execbuffer2 *args = eb->args; 2869 struct drm_i915_gem_exec_fence __user *user; 2870 unsigned long num_fences = args->num_cliprects; 2871 struct eb_fence *f; 2872 2873 if (!(args->flags & I915_EXEC_FENCE_ARRAY)) 2874 return 0; 2875 2876 if (!num_fences) 2877 return 0; 2878 2879 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2880 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2881 if (num_fences > min_t(unsigned long, 2882 ULONG_MAX / sizeof(*user), 2883 SIZE_MAX / sizeof(*f) - eb->num_fences)) 2884 return -EINVAL; 2885 2886 user = u64_to_user_ptr(args->cliprects_ptr); 2887 if (!access_ok(user, num_fences * sizeof(*user))) 2888 return -EFAULT; 2889 2890 f = krealloc(eb->fences, 2891 (eb->num_fences + num_fences) * sizeof(*f), 2892 __GFP_NOWARN | GFP_KERNEL); 2893 if (!f) 2894 return -ENOMEM; 2895 2896 eb->fences = f; 2897 f += eb->num_fences; 2898 while (num_fences--) { 2899 struct drm_i915_gem_exec_fence user_fence; 2900 struct drm_syncobj *syncobj; 2901 struct dma_fence *fence = NULL; 2902 2903 if (__copy_from_user(&user_fence, user++, sizeof(user_fence))) 2904 return -EFAULT; 2905 2906 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2907 return -EINVAL; 2908 2909 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2910 if (!syncobj) { 2911 DRM_DEBUG("Invalid syncobj handle provided\n"); 2912 return -ENOENT; 2913 } 2914 2915 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2916 fence = drm_syncobj_fence_get(syncobj); 2917 if (!fence) { 2918 DRM_DEBUG("Syncobj handle has no fence\n"); 2919 drm_syncobj_put(syncobj); 2920 return -EINVAL; 2921 } 2922 } 2923 2924 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2925 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2926 2927 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2928 f->dma_fence = fence; 2929 f->value = 0; 2930 f->chain_fence = NULL; 2931 f++; 2932 eb->num_fences++; 2933 } 2934 2935 return 0; 2936 } 2937 2938 static void put_fence_array(struct eb_fence *fences, int num_fences) 2939 { 2940 if (fences) 2941 __free_fence_array(fences, num_fences); 2942 } 2943 2944 static int 2945 await_fence_array(struct i915_execbuffer *eb, 2946 struct i915_request *rq) 2947 { 2948 unsigned int n; 2949 int err; 2950 2951 for (n = 0; n < eb->num_fences; n++) { 2952 struct drm_syncobj *syncobj; 2953 unsigned int flags; 2954 2955 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 2956 2957 if (!eb->fences[n].dma_fence) 2958 continue; 2959 2960 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence); 2961 if (err < 0) 2962 return err; 2963 } 2964 2965 return 0; 2966 } 2967 2968 static void signal_fence_array(const struct i915_execbuffer *eb, 2969 struct dma_fence * const fence) 2970 { 2971 unsigned int n; 2972 2973 for (n = 0; n < eb->num_fences; n++) { 2974 struct drm_syncobj *syncobj; 2975 unsigned int flags; 2976 2977 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 2978 if (!(flags & I915_EXEC_FENCE_SIGNAL)) 2979 continue; 2980 2981 if (eb->fences[n].chain_fence) { 2982 drm_syncobj_add_point(syncobj, 2983 eb->fences[n].chain_fence, 2984 fence, 2985 eb->fences[n].value); 2986 /* 2987 * The chain's ownership is transferred to the 2988 * timeline. 2989 */ 2990 eb->fences[n].chain_fence = NULL; 2991 } else { 2992 drm_syncobj_replace_fence(syncobj, fence); 2993 } 2994 } 2995 } 2996 2997 static int 2998 parse_timeline_fences(struct i915_user_extension __user *ext, void *data) 2999 { 3000 struct i915_execbuffer *eb = data; 3001 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences; 3002 3003 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences))) 3004 return -EFAULT; 3005 3006 return add_timeline_fence_array(eb, &timeline_fences); 3007 } 3008 3009 static void retire_requests(struct intel_timeline *tl, struct i915_request *end) 3010 { 3011 struct i915_request *rq, *rn; 3012 3013 list_for_each_entry_safe(rq, rn, &tl->requests, link) 3014 if (rq == end || !i915_request_retire(rq)) 3015 break; 3016 } 3017 3018 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq, 3019 int err, bool last_parallel) 3020 { 3021 struct intel_timeline * const tl = i915_request_timeline(rq); 3022 struct i915_sched_attr attr = {}; 3023 struct i915_request *prev; 3024 3025 lockdep_assert_held(&tl->mutex); 3026 lockdep_unpin_lock(&tl->mutex, rq->cookie); 3027 3028 trace_i915_request_add(rq); 3029 3030 prev = __i915_request_commit(rq); 3031 3032 /* Check that the context wasn't destroyed before submission */ 3033 if (likely(!intel_context_is_closed(eb->context))) { 3034 attr = eb->gem_context->sched; 3035 } else { 3036 /* Serialise with context_close via the add_to_timeline */ 3037 i915_request_set_error_once(rq, -ENOENT); 3038 __i915_request_skip(rq); 3039 err = -ENOENT; /* override any transient errors */ 3040 } 3041 3042 if (intel_context_is_parallel(eb->context)) { 3043 if (err) { 3044 __i915_request_skip(rq); 3045 set_bit(I915_FENCE_FLAG_SKIP_PARALLEL, 3046 &rq->fence.flags); 3047 } 3048 if (last_parallel) 3049 set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, 3050 &rq->fence.flags); 3051 } 3052 3053 __i915_request_queue(rq, &attr); 3054 3055 /* Try to clean up the client's timeline after submitting the request */ 3056 if (prev) 3057 retire_requests(tl, prev); 3058 3059 mutex_unlock(&tl->mutex); 3060 3061 return err; 3062 } 3063 3064 static int eb_requests_add(struct i915_execbuffer *eb, int err) 3065 { 3066 int i; 3067 3068 /* 3069 * We iterate in reverse order of creation to release timeline mutexes in 3070 * same order. 3071 */ 3072 for_each_batch_add_order(eb, i) { 3073 struct i915_request *rq = eb->requests[i]; 3074 3075 if (!rq) 3076 continue; 3077 err |= eb_request_add(eb, rq, err, i == 0); 3078 } 3079 3080 return err; 3081 } 3082 3083 static const i915_user_extension_fn execbuf_extensions[] = { 3084 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences, 3085 }; 3086 3087 static int 3088 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args, 3089 struct i915_execbuffer *eb) 3090 { 3091 if (!(args->flags & I915_EXEC_USE_EXTENSIONS)) 3092 return 0; 3093 3094 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot 3095 * have another flag also using it at the same time. 3096 */ 3097 if (eb->args->flags & I915_EXEC_FENCE_ARRAY) 3098 return -EINVAL; 3099 3100 if (args->num_cliprects != 0) 3101 return -EINVAL; 3102 3103 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr), 3104 execbuf_extensions, 3105 ARRAY_SIZE(execbuf_extensions), 3106 eb); 3107 } 3108 3109 static void eb_requests_get(struct i915_execbuffer *eb) 3110 { 3111 unsigned int i; 3112 3113 for_each_batch_create_order(eb, i) { 3114 if (!eb->requests[i]) 3115 break; 3116 3117 i915_request_get(eb->requests[i]); 3118 } 3119 } 3120 3121 static void eb_requests_put(struct i915_execbuffer *eb) 3122 { 3123 unsigned int i; 3124 3125 for_each_batch_create_order(eb, i) { 3126 if (!eb->requests[i]) 3127 break; 3128 3129 i915_request_put(eb->requests[i]); 3130 } 3131 } 3132 3133 static struct sync_file * 3134 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd) 3135 { 3136 struct sync_file *out_fence = NULL; 3137 struct dma_fence_array *fence_array; 3138 struct dma_fence **fences; 3139 unsigned int i; 3140 3141 GEM_BUG_ON(!intel_context_is_parent(eb->context)); 3142 3143 fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL); 3144 if (!fences) 3145 return ERR_PTR(-ENOMEM); 3146 3147 for_each_batch_create_order(eb, i) { 3148 fences[i] = &eb->requests[i]->fence; 3149 __set_bit(I915_FENCE_FLAG_COMPOSITE, 3150 &eb->requests[i]->fence.flags); 3151 } 3152 3153 fence_array = dma_fence_array_create(eb->num_batches, 3154 fences, 3155 eb->context->parallel.fence_context, 3156 eb->context->parallel.seqno++, 3157 false); 3158 if (!fence_array) { 3159 kfree(fences); 3160 return ERR_PTR(-ENOMEM); 3161 } 3162 3163 /* Move ownership to the dma_fence_array created above */ 3164 for_each_batch_create_order(eb, i) 3165 dma_fence_get(fences[i]); 3166 3167 if (out_fence_fd != -1) { 3168 out_fence = sync_file_create(&fence_array->base); 3169 /* sync_file now owns fence_arry, drop creation ref */ 3170 dma_fence_put(&fence_array->base); 3171 if (!out_fence) 3172 return ERR_PTR(-ENOMEM); 3173 } 3174 3175 eb->composite_fence = &fence_array->base; 3176 3177 return out_fence; 3178 } 3179 3180 static struct sync_file * 3181 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq, 3182 struct dma_fence *in_fence, int out_fence_fd) 3183 { 3184 struct sync_file *out_fence = NULL; 3185 int err; 3186 3187 if (unlikely(eb->gem_context->syncobj)) { 3188 struct dma_fence *fence; 3189 3190 fence = drm_syncobj_fence_get(eb->gem_context->syncobj); 3191 err = i915_request_await_dma_fence(rq, fence); 3192 dma_fence_put(fence); 3193 if (err) 3194 return ERR_PTR(err); 3195 } 3196 3197 if (in_fence) { 3198 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT) 3199 err = i915_request_await_execution(rq, in_fence); 3200 else 3201 err = i915_request_await_dma_fence(rq, in_fence); 3202 if (err < 0) 3203 return ERR_PTR(err); 3204 } 3205 3206 if (eb->fences) { 3207 err = await_fence_array(eb, rq); 3208 if (err) 3209 return ERR_PTR(err); 3210 } 3211 3212 if (intel_context_is_parallel(eb->context)) { 3213 out_fence = eb_composite_fence_create(eb, out_fence_fd); 3214 if (IS_ERR(out_fence)) 3215 return ERR_PTR(-ENOMEM); 3216 } else if (out_fence_fd != -1) { 3217 out_fence = sync_file_create(&rq->fence); 3218 if (!out_fence) 3219 return ERR_PTR(-ENOMEM); 3220 } 3221 3222 return out_fence; 3223 } 3224 3225 static struct intel_context * 3226 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number) 3227 { 3228 struct intel_context *child; 3229 3230 if (likely(context_number == 0)) 3231 return eb->context; 3232 3233 for_each_child(eb->context, child) 3234 if (!--context_number) 3235 return child; 3236 3237 GEM_BUG_ON("Context not found"); 3238 3239 return NULL; 3240 } 3241 3242 static struct sync_file * 3243 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence, 3244 int out_fence_fd) 3245 { 3246 struct sync_file *out_fence = NULL; 3247 unsigned int i; 3248 3249 for_each_batch_create_order(eb, i) { 3250 /* Allocate a request for this batch buffer nice and early. */ 3251 eb->requests[i] = i915_request_create(eb_find_context(eb, i)); 3252 if (IS_ERR(eb->requests[i])) { 3253 out_fence = ERR_CAST(eb->requests[i]); 3254 eb->requests[i] = NULL; 3255 return out_fence; 3256 } 3257 3258 /* 3259 * Only the first request added (committed to backend) has to 3260 * take the in fences into account as all subsequent requests 3261 * will have fences inserted inbetween them. 3262 */ 3263 if (i + 1 == eb->num_batches) { 3264 out_fence = eb_fences_add(eb, eb->requests[i], 3265 in_fence, out_fence_fd); 3266 if (IS_ERR(out_fence)) 3267 return out_fence; 3268 } 3269 3270 /* 3271 * Not really on stack, but we don't want to call 3272 * kfree on the batch_snapshot when we put it, so use the 3273 * _onstack interface. 3274 */ 3275 if (eb->batches[i]->vma) 3276 eb->requests[i]->batch_res = 3277 i915_vma_resource_get(eb->batches[i]->vma->resource); 3278 if (eb->batch_pool) { 3279 GEM_BUG_ON(intel_context_is_parallel(eb->context)); 3280 intel_gt_buffer_pool_mark_active(eb->batch_pool, 3281 eb->requests[i]); 3282 } 3283 } 3284 3285 return out_fence; 3286 } 3287 3288 static int 3289 i915_gem_do_execbuffer(struct drm_device *dev, 3290 struct drm_file *file, 3291 struct drm_i915_gem_execbuffer2 *args, 3292 struct drm_i915_gem_exec_object2 *exec) 3293 { 3294 struct drm_i915_private *i915 = to_i915(dev); 3295 struct i915_execbuffer eb; 3296 struct dma_fence *in_fence = NULL; 3297 struct sync_file *out_fence = NULL; 3298 int out_fence_fd = -1; 3299 int err; 3300 3301 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); 3302 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 3303 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 3304 3305 eb.i915 = i915; 3306 eb.file = file; 3307 eb.args = args; 3308 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 3309 args->flags |= __EXEC_HAS_RELOC; 3310 3311 eb.exec = exec; 3312 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1); 3313 eb.vma[0].vma = NULL; 3314 eb.batch_pool = NULL; 3315 3316 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 3317 reloc_cache_init(&eb.reloc_cache, eb.i915); 3318 3319 eb.buffer_count = args->buffer_count; 3320 eb.batch_start_offset = args->batch_start_offset; 3321 eb.trampoline = NULL; 3322 3323 eb.fences = NULL; 3324 eb.num_fences = 0; 3325 3326 eb_capture_list_clear(&eb); 3327 3328 memset(eb.requests, 0, sizeof(struct i915_request *) * 3329 ARRAY_SIZE(eb.requests)); 3330 eb.composite_fence = NULL; 3331 3332 eb.batch_flags = 0; 3333 if (args->flags & I915_EXEC_SECURE) { 3334 if (GRAPHICS_VER(i915) >= 11) 3335 return -ENODEV; 3336 3337 /* Return -EPERM to trigger fallback code on old binaries. */ 3338 if (!HAS_SECURE_BATCHES(i915)) 3339 return -EPERM; 3340 3341 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 3342 return -EPERM; 3343 3344 eb.batch_flags |= I915_DISPATCH_SECURE; 3345 } 3346 if (args->flags & I915_EXEC_IS_PINNED) 3347 eb.batch_flags |= I915_DISPATCH_PINNED; 3348 3349 err = parse_execbuf2_extensions(args, &eb); 3350 if (err) 3351 goto err_ext; 3352 3353 err = add_fence_array(&eb); 3354 if (err) 3355 goto err_ext; 3356 3357 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT) 3358 if (args->flags & IN_FENCES) { 3359 if ((args->flags & IN_FENCES) == IN_FENCES) 3360 return -EINVAL; 3361 3362 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 3363 if (!in_fence) { 3364 err = -EINVAL; 3365 goto err_ext; 3366 } 3367 } 3368 #undef IN_FENCES 3369 3370 if (args->flags & I915_EXEC_FENCE_OUT) { 3371 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 3372 if (out_fence_fd < 0) { 3373 err = out_fence_fd; 3374 goto err_in_fence; 3375 } 3376 } 3377 3378 err = eb_create(&eb); 3379 if (err) 3380 goto err_out_fence; 3381 3382 GEM_BUG_ON(!eb.lut_size); 3383 3384 err = eb_select_context(&eb); 3385 if (unlikely(err)) 3386 goto err_destroy; 3387 3388 err = eb_select_engine(&eb); 3389 if (unlikely(err)) 3390 goto err_context; 3391 3392 err = eb_lookup_vmas(&eb); 3393 if (err) { 3394 eb_release_vmas(&eb, true); 3395 goto err_engine; 3396 } 3397 3398 i915_gem_ww_ctx_init(&eb.ww, true); 3399 3400 err = eb_relocate_parse(&eb); 3401 if (err) { 3402 /* 3403 * If the user expects the execobject.offset and 3404 * reloc.presumed_offset to be an exact match, 3405 * as for using NO_RELOC, then we cannot update 3406 * the execobject.offset until we have completed 3407 * relocation. 3408 */ 3409 args->flags &= ~__EXEC_HAS_RELOC; 3410 goto err_vma; 3411 } 3412 3413 ww_acquire_done(&eb.ww.ctx); 3414 eb_capture_stage(&eb); 3415 3416 out_fence = eb_requests_create(&eb, in_fence, out_fence_fd); 3417 if (IS_ERR(out_fence)) { 3418 err = PTR_ERR(out_fence); 3419 out_fence = NULL; 3420 if (eb.requests[0]) 3421 goto err_request; 3422 else 3423 goto err_vma; 3424 } 3425 3426 err = eb_submit(&eb); 3427 3428 err_request: 3429 eb_requests_get(&eb); 3430 err = eb_requests_add(&eb, err); 3431 3432 if (eb.fences) 3433 signal_fence_array(&eb, eb.composite_fence ? 3434 eb.composite_fence : 3435 &eb.requests[0]->fence); 3436 3437 if (out_fence) { 3438 if (err == 0) { 3439 fd_install(out_fence_fd, out_fence->file); 3440 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ 3441 args->rsvd2 |= (u64)out_fence_fd << 32; 3442 out_fence_fd = -1; 3443 } else { 3444 fput(out_fence->file); 3445 } 3446 } 3447 3448 if (unlikely(eb.gem_context->syncobj)) { 3449 drm_syncobj_replace_fence(eb.gem_context->syncobj, 3450 eb.composite_fence ? 3451 eb.composite_fence : 3452 &eb.requests[0]->fence); 3453 } 3454 3455 if (!out_fence && eb.composite_fence) 3456 dma_fence_put(eb.composite_fence); 3457 3458 eb_requests_put(&eb); 3459 3460 err_vma: 3461 eb_release_vmas(&eb, true); 3462 WARN_ON(err == -EDEADLK); 3463 i915_gem_ww_ctx_fini(&eb.ww); 3464 3465 if (eb.batch_pool) 3466 intel_gt_buffer_pool_put(eb.batch_pool); 3467 err_engine: 3468 eb_put_engine(&eb); 3469 err_context: 3470 i915_gem_context_put(eb.gem_context); 3471 err_destroy: 3472 eb_destroy(&eb); 3473 err_out_fence: 3474 if (out_fence_fd != -1) 3475 put_unused_fd(out_fence_fd); 3476 err_in_fence: 3477 dma_fence_put(in_fence); 3478 err_ext: 3479 put_fence_array(eb.fences, eb.num_fences); 3480 return err; 3481 } 3482 3483 static size_t eb_element_size(void) 3484 { 3485 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma); 3486 } 3487 3488 static bool check_buffer_count(size_t count) 3489 { 3490 const size_t sz = eb_element_size(); 3491 3492 /* 3493 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup 3494 * array size (see eb_create()). Otherwise, we can accept an array as 3495 * large as can be addressed (though use large arrays at your peril)! 3496 */ 3497 3498 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); 3499 } 3500 3501 int 3502 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 3503 struct drm_file *file) 3504 { 3505 struct drm_i915_private *i915 = to_i915(dev); 3506 struct drm_i915_gem_execbuffer2 *args = data; 3507 struct drm_i915_gem_exec_object2 *exec2_list; 3508 const size_t count = args->buffer_count; 3509 int err; 3510 3511 if (!check_buffer_count(count)) { 3512 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 3513 return -EINVAL; 3514 } 3515 3516 err = i915_gem_check_execbuffer(args); 3517 if (err) 3518 return err; 3519 3520 /* Allocate extra slots for use by the command parser */ 3521 exec2_list = kvmalloc_array(count + 2, eb_element_size(), 3522 __GFP_NOWARN | GFP_KERNEL); 3523 if (exec2_list == NULL) { 3524 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", 3525 count); 3526 return -ENOMEM; 3527 } 3528 if (copy_from_user(exec2_list, 3529 u64_to_user_ptr(args->buffers_ptr), 3530 sizeof(*exec2_list) * count)) { 3531 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); 3532 kvfree(exec2_list); 3533 return -EFAULT; 3534 } 3535 3536 err = i915_gem_do_execbuffer(dev, file, args, exec2_list); 3537 3538 /* 3539 * Now that we have begun execution of the batchbuffer, we ignore 3540 * any new error after this point. Also given that we have already 3541 * updated the associated relocations, we try to write out the current 3542 * object locations irrespective of any error. 3543 */ 3544 if (args->flags & __EXEC_HAS_RELOC) { 3545 struct drm_i915_gem_exec_object2 __user *user_exec_list = 3546 u64_to_user_ptr(args->buffers_ptr); 3547 unsigned int i; 3548 3549 /* Copy the new buffer offsets back to the user's exec list. */ 3550 /* 3551 * Note: count * sizeof(*user_exec_list) does not overflow, 3552 * because we checked 'count' in check_buffer_count(). 3553 * 3554 * And this range already got effectively checked earlier 3555 * when we did the "copy_from_user()" above. 3556 */ 3557 if (!user_write_access_begin(user_exec_list, 3558 count * sizeof(*user_exec_list))) 3559 goto end; 3560 3561 for (i = 0; i < args->buffer_count; i++) { 3562 if (!(exec2_list[i].offset & UPDATE)) 3563 continue; 3564 3565 exec2_list[i].offset = 3566 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 3567 unsafe_put_user(exec2_list[i].offset, 3568 &user_exec_list[i].offset, 3569 end_user); 3570 } 3571 end_user: 3572 user_write_access_end(); 3573 end:; 3574 } 3575 3576 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 3577 kvfree(exec2_list); 3578 return err; 3579 } 3580