1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008,2010 Intel Corporation 5 */ 6 7 #include <linux/dma-resv.h> 8 #include <linux/highmem.h> 9 #include <linux/intel-iommu.h> 10 #include <linux/sync_file.h> 11 #include <linux/uaccess.h> 12 13 #include <drm/drm_syncobj.h> 14 15 #include "display/intel_frontbuffer.h" 16 17 #include "gem/i915_gem_ioctls.h" 18 #include "gt/intel_context.h" 19 #include "gt/intel_gpu_commands.h" 20 #include "gt/intel_gt.h" 21 #include "gt/intel_gt_buffer_pool.h" 22 #include "gt/intel_gt_pm.h" 23 #include "gt/intel_ring.h" 24 25 #include "pxp/intel_pxp.h" 26 27 #include "i915_cmd_parser.h" 28 #include "i915_drv.h" 29 #include "i915_file_private.h" 30 #include "i915_gem_clflush.h" 31 #include "i915_gem_context.h" 32 #include "i915_gem_evict.h" 33 #include "i915_gem_ioctls.h" 34 #include "i915_trace.h" 35 #include "i915_user_extensions.h" 36 37 struct eb_vma { 38 struct i915_vma *vma; 39 unsigned int flags; 40 41 /** This vma's place in the execbuf reservation list */ 42 struct drm_i915_gem_exec_object2 *exec; 43 struct list_head bind_link; 44 struct list_head reloc_link; 45 46 struct hlist_node node; 47 u32 handle; 48 }; 49 50 enum { 51 FORCE_CPU_RELOC = 1, 52 FORCE_GTT_RELOC, 53 FORCE_GPU_RELOC, 54 #define DBG_FORCE_RELOC 0 /* choose one of the above! */ 55 }; 56 57 /* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */ 58 #define __EXEC_OBJECT_HAS_PIN BIT(30) 59 #define __EXEC_OBJECT_HAS_FENCE BIT(29) 60 #define __EXEC_OBJECT_USERPTR_INIT BIT(28) 61 #define __EXEC_OBJECT_NEEDS_MAP BIT(27) 62 #define __EXEC_OBJECT_NEEDS_BIAS BIT(26) 63 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 26) /* all of the above + */ 64 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) 65 66 #define __EXEC_HAS_RELOC BIT(31) 67 #define __EXEC_ENGINE_PINNED BIT(30) 68 #define __EXEC_USERPTR_USED BIT(29) 69 #define __EXEC_INTERNAL_FLAGS (~0u << 29) 70 #define UPDATE PIN_OFFSET_FIXED 71 72 #define BATCH_OFFSET_BIAS (256*1024) 73 74 #define __I915_EXEC_ILLEGAL_FLAGS \ 75 (__I915_EXEC_UNKNOWN_FLAGS | \ 76 I915_EXEC_CONSTANTS_MASK | \ 77 I915_EXEC_RESOURCE_STREAMER) 78 79 /* Catch emission of unexpected errors for CI! */ 80 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 81 #undef EINVAL 82 #define EINVAL ({ \ 83 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 84 22; \ 85 }) 86 #endif 87 88 /** 89 * DOC: User command execution 90 * 91 * Userspace submits commands to be executed on the GPU as an instruction 92 * stream within a GEM object we call a batchbuffer. This instructions may 93 * refer to other GEM objects containing auxiliary state such as kernels, 94 * samplers, render targets and even secondary batchbuffers. Userspace does 95 * not know where in the GPU memory these objects reside and so before the 96 * batchbuffer is passed to the GPU for execution, those addresses in the 97 * batchbuffer and auxiliary objects are updated. This is known as relocation, 98 * or patching. To try and avoid having to relocate each object on the next 99 * execution, userspace is told the location of those objects in this pass, 100 * but this remains just a hint as the kernel may choose a new location for 101 * any object in the future. 102 * 103 * At the level of talking to the hardware, submitting a batchbuffer for the 104 * GPU to execute is to add content to a buffer from which the HW 105 * command streamer is reading. 106 * 107 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. 108 * Execlists, this command is not placed on the same buffer as the 109 * remaining items. 110 * 111 * 2. Add a command to invalidate caches to the buffer. 112 * 113 * 3. Add a batchbuffer start command to the buffer; the start command is 114 * essentially a token together with the GPU address of the batchbuffer 115 * to be executed. 116 * 117 * 4. Add a pipeline flush to the buffer. 118 * 119 * 5. Add a memory write command to the buffer to record when the GPU 120 * is done executing the batchbuffer. The memory write writes the 121 * global sequence number of the request, ``i915_request::global_seqno``; 122 * the i915 driver uses the current value in the register to determine 123 * if the GPU has completed the batchbuffer. 124 * 125 * 6. Add a user interrupt command to the buffer. This command instructs 126 * the GPU to issue an interrupt when the command, pipeline flush and 127 * memory write are completed. 128 * 129 * 7. Inform the hardware of the additional commands added to the buffer 130 * (by updating the tail pointer). 131 * 132 * Processing an execbuf ioctl is conceptually split up into a few phases. 133 * 134 * 1. Validation - Ensure all the pointers, handles and flags are valid. 135 * 2. Reservation - Assign GPU address space for every object 136 * 3. Relocation - Update any addresses to point to the final locations 137 * 4. Serialisation - Order the request with respect to its dependencies 138 * 5. Construction - Construct a request to execute the batchbuffer 139 * 6. Submission (at some point in the future execution) 140 * 141 * Reserving resources for the execbuf is the most complicated phase. We 142 * neither want to have to migrate the object in the address space, nor do 143 * we want to have to update any relocations pointing to this object. Ideally, 144 * we want to leave the object where it is and for all the existing relocations 145 * to match. If the object is given a new address, or if userspace thinks the 146 * object is elsewhere, we have to parse all the relocation entries and update 147 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that 148 * all the target addresses in all of its objects match the value in the 149 * relocation entries and that they all match the presumed offsets given by the 150 * list of execbuffer objects. Using this knowledge, we know that if we haven't 151 * moved any buffers, all the relocation entries are valid and we can skip 152 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 153 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 154 * 155 * The addresses written in the objects must match the corresponding 156 * reloc.presumed_offset which in turn must match the corresponding 157 * execobject.offset. 158 * 159 * Any render targets written to in the batch must be flagged with 160 * EXEC_OBJECT_WRITE. 161 * 162 * To avoid stalling, execobject.offset should match the current 163 * address of that object within the active context. 164 * 165 * The reservation is done is multiple phases. First we try and keep any 166 * object already bound in its current location - so as long as meets the 167 * constraints imposed by the new execbuffer. Any object left unbound after the 168 * first pass is then fitted into any available idle space. If an object does 169 * not fit, all objects are removed from the reservation and the process rerun 170 * after sorting the objects into a priority order (more difficult to fit 171 * objects are tried first). Failing that, the entire VM is cleared and we try 172 * to fit the execbuf once last time before concluding that it simply will not 173 * fit. 174 * 175 * A small complication to all of this is that we allow userspace not only to 176 * specify an alignment and a size for the object in the address space, but 177 * we also allow userspace to specify the exact offset. This objects are 178 * simpler to place (the location is known a priori) all we have to do is make 179 * sure the space is available. 180 * 181 * Once all the objects are in place, patching up the buried pointers to point 182 * to the final locations is a fairly simple job of walking over the relocation 183 * entry arrays, looking up the right address and rewriting the value into 184 * the object. Simple! ... The relocation entries are stored in user memory 185 * and so to access them we have to copy them into a local buffer. That copy 186 * has to avoid taking any pagefaults as they may lead back to a GEM object 187 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split 188 * the relocation into multiple passes. First we try to do everything within an 189 * atomic context (avoid the pagefaults) which requires that we never wait. If 190 * we detect that we may wait, or if we need to fault, then we have to fallback 191 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 192 * bells yet?) Dropping the mutex means that we lose all the state we have 193 * built up so far for the execbuf and we must reset any global data. However, 194 * we do leave the objects pinned in their final locations - which is a 195 * potential issue for concurrent execbufs. Once we have left the mutex, we can 196 * allocate and copy all the relocation entries into a large array at our 197 * leisure, reacquire the mutex, reclaim all the objects and other state and 198 * then proceed to update any incorrect addresses with the objects. 199 * 200 * As we process the relocation entries, we maintain a record of whether the 201 * object is being written to. Using NORELOC, we expect userspace to provide 202 * this information instead. We also check whether we can skip the relocation 203 * by comparing the expected value inside the relocation entry with the target's 204 * final address. If they differ, we have to map the current object and rewrite 205 * the 4 or 8 byte pointer within. 206 * 207 * Serialising an execbuf is quite simple according to the rules of the GEM 208 * ABI. Execution within each context is ordered by the order of submission. 209 * Writes to any GEM object are in order of submission and are exclusive. Reads 210 * from a GEM object are unordered with respect to other reads, but ordered by 211 * writes. A write submitted after a read cannot occur before the read, and 212 * similarly any read submitted after a write cannot occur before the write. 213 * Writes are ordered between engines such that only one write occurs at any 214 * time (completing any reads beforehand) - using semaphores where available 215 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 216 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 217 * reads before starting, and any read (either using set-domain or pread) must 218 * flush all GPU writes before starting. (Note we only employ a barrier before, 219 * we currently rely on userspace not concurrently starting a new execution 220 * whilst reading or writing to an object. This may be an advantage or not 221 * depending on how much you trust userspace not to shoot themselves in the 222 * foot.) Serialisation may just result in the request being inserted into 223 * a DAG awaiting its turn, but most simple is to wait on the CPU until 224 * all dependencies are resolved. 225 * 226 * After all of that, is just a matter of closing the request and handing it to 227 * the hardware (well, leaving it in a queue to be executed). However, we also 228 * offer the ability for batchbuffers to be run with elevated privileges so 229 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 230 * Before any batch is given extra privileges we first must check that it 231 * contains no nefarious instructions, we check that each instruction is from 232 * our whitelist and all registers are also from an allowed list. We first 233 * copy the user's batchbuffer to a shadow (so that the user doesn't have 234 * access to it, either by the CPU or GPU as we scan it) and then parse each 235 * instruction. If everything is ok, we set a flag telling the hardware to run 236 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 237 */ 238 239 struct eb_fence { 240 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */ 241 struct dma_fence *dma_fence; 242 u64 value; 243 struct dma_fence_chain *chain_fence; 244 }; 245 246 struct i915_execbuffer { 247 struct drm_i915_private *i915; /** i915 backpointer */ 248 struct drm_file *file; /** per-file lookup tables and limits */ 249 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 250 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 251 struct eb_vma *vma; 252 253 struct intel_gt *gt; /* gt for the execbuf */ 254 struct intel_context *context; /* logical state for the request */ 255 struct i915_gem_context *gem_context; /** caller's context */ 256 257 /** our requests to build */ 258 struct i915_request *requests[MAX_ENGINE_INSTANCE + 1]; 259 /** identity of the batch obj/vma */ 260 struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1]; 261 struct i915_vma *trampoline; /** trampoline used for chaining */ 262 263 /** used for excl fence in dma_resv objects when > 1 BB submitted */ 264 struct dma_fence *composite_fence; 265 266 /** actual size of execobj[] as we may extend it for the cmdparser */ 267 unsigned int buffer_count; 268 269 /* number of batches in execbuf IOCTL */ 270 unsigned int num_batches; 271 272 /** list of vma not yet bound during reservation phase */ 273 struct list_head unbound; 274 275 /** list of vma that have execobj.relocation_count */ 276 struct list_head relocs; 277 278 struct i915_gem_ww_ctx ww; 279 280 /** 281 * Track the most recently used object for relocations, as we 282 * frequently have to perform multiple relocations within the same 283 * obj/page 284 */ 285 struct reloc_cache { 286 struct drm_mm_node node; /** temporary GTT binding */ 287 unsigned long vaddr; /** Current kmap address */ 288 unsigned long page; /** Currently mapped page index */ 289 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */ 290 bool use_64bit_reloc : 1; 291 bool has_llc : 1; 292 bool has_fence : 1; 293 bool needs_unfenced : 1; 294 } reloc_cache; 295 296 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 297 298 /** Length of batch within object */ 299 u64 batch_len[MAX_ENGINE_INSTANCE + 1]; 300 u32 batch_start_offset; /** Location within object of batch */ 301 u32 batch_flags; /** Flags composed for emit_bb_start() */ 302 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */ 303 304 /** 305 * Indicate either the size of the hastable used to resolve 306 * relocation handles, or if negative that we are using a direct 307 * index into the execobj[]. 308 */ 309 int lut_size; 310 struct hlist_head *buckets; /** ht for relocation handles */ 311 312 struct eb_fence *fences; 313 unsigned long num_fences; 314 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 315 struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1]; 316 #endif 317 }; 318 319 static int eb_parse(struct i915_execbuffer *eb); 320 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle); 321 static void eb_unpin_engine(struct i915_execbuffer *eb); 322 static void eb_capture_release(struct i915_execbuffer *eb); 323 324 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) 325 { 326 return intel_engine_requires_cmd_parser(eb->context->engine) || 327 (intel_engine_using_cmd_parser(eb->context->engine) && 328 eb->args->batch_len); 329 } 330 331 static int eb_create(struct i915_execbuffer *eb) 332 { 333 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 334 unsigned int size = 1 + ilog2(eb->buffer_count); 335 336 /* 337 * Without a 1:1 association between relocation handles and 338 * the execobject[] index, we instead create a hashtable. 339 * We size it dynamically based on available memory, starting 340 * first with 1:1 assocative hash and scaling back until 341 * the allocation succeeds. 342 * 343 * Later on we use a positive lut_size to indicate we are 344 * using this hashtable, and a negative value to indicate a 345 * direct lookup. 346 */ 347 do { 348 gfp_t flags; 349 350 /* While we can still reduce the allocation size, don't 351 * raise a warning and allow the allocation to fail. 352 * On the last pass though, we want to try as hard 353 * as possible to perform the allocation and warn 354 * if it fails. 355 */ 356 flags = GFP_KERNEL; 357 if (size > 1) 358 flags |= __GFP_NORETRY | __GFP_NOWARN; 359 360 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 361 flags); 362 if (eb->buckets) 363 break; 364 } while (--size); 365 366 if (unlikely(!size)) 367 return -ENOMEM; 368 369 eb->lut_size = size; 370 } else { 371 eb->lut_size = -eb->buffer_count; 372 } 373 374 return 0; 375 } 376 377 static bool 378 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 379 const struct i915_vma *vma, 380 unsigned int flags) 381 { 382 if (vma->node.size < entry->pad_to_size) 383 return true; 384 385 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) 386 return true; 387 388 if (flags & EXEC_OBJECT_PINNED && 389 vma->node.start != entry->offset) 390 return true; 391 392 if (flags & __EXEC_OBJECT_NEEDS_BIAS && 393 vma->node.start < BATCH_OFFSET_BIAS) 394 return true; 395 396 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 397 (vma->node.start + vma->node.size + 4095) >> 32) 398 return true; 399 400 if (flags & __EXEC_OBJECT_NEEDS_MAP && 401 !i915_vma_is_map_and_fenceable(vma)) 402 return true; 403 404 return false; 405 } 406 407 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry, 408 unsigned int exec_flags) 409 { 410 u64 pin_flags = 0; 411 412 if (exec_flags & EXEC_OBJECT_NEEDS_GTT) 413 pin_flags |= PIN_GLOBAL; 414 415 /* 416 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 417 * limit address to the first 4GBs for unflagged objects. 418 */ 419 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 420 pin_flags |= PIN_ZONE_4G; 421 422 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) 423 pin_flags |= PIN_MAPPABLE; 424 425 if (exec_flags & EXEC_OBJECT_PINNED) 426 pin_flags |= entry->offset | PIN_OFFSET_FIXED; 427 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) 428 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 429 430 return pin_flags; 431 } 432 433 static inline int 434 eb_pin_vma(struct i915_execbuffer *eb, 435 const struct drm_i915_gem_exec_object2 *entry, 436 struct eb_vma *ev) 437 { 438 struct i915_vma *vma = ev->vma; 439 u64 pin_flags; 440 int err; 441 442 if (vma->node.size) 443 pin_flags = vma->node.start; 444 else 445 pin_flags = entry->offset & PIN_OFFSET_MASK; 446 447 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE; 448 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) 449 pin_flags |= PIN_GLOBAL; 450 451 /* Attempt to reuse the current location if available */ 452 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags); 453 if (err == -EDEADLK) 454 return err; 455 456 if (unlikely(err)) { 457 if (entry->flags & EXEC_OBJECT_PINNED) 458 return err; 459 460 /* Failing that pick any _free_ space if suitable */ 461 err = i915_vma_pin_ww(vma, &eb->ww, 462 entry->pad_to_size, 463 entry->alignment, 464 eb_pin_flags(entry, ev->flags) | 465 PIN_USER | PIN_NOEVICT | PIN_VALIDATE); 466 if (unlikely(err)) 467 return err; 468 } 469 470 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 471 err = i915_vma_pin_fence(vma); 472 if (unlikely(err)) 473 return err; 474 475 if (vma->fence) 476 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 477 } 478 479 ev->flags |= __EXEC_OBJECT_HAS_PIN; 480 if (eb_vma_misplaced(entry, vma, ev->flags)) 481 return -EBADSLT; 482 483 return 0; 484 } 485 486 static inline void 487 eb_unreserve_vma(struct eb_vma *ev) 488 { 489 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE)) 490 __i915_vma_unpin_fence(ev->vma); 491 492 ev->flags &= ~__EXEC_OBJECT_RESERVED; 493 } 494 495 static int 496 eb_validate_vma(struct i915_execbuffer *eb, 497 struct drm_i915_gem_exec_object2 *entry, 498 struct i915_vma *vma) 499 { 500 /* Relocations are disallowed for all platforms after TGL-LP. This 501 * also covers all platforms with local memory. 502 */ 503 if (entry->relocation_count && 504 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915)) 505 return -EINVAL; 506 507 if (unlikely(entry->flags & eb->invalid_flags)) 508 return -EINVAL; 509 510 if (unlikely(entry->alignment && 511 !is_power_of_2_u64(entry->alignment))) 512 return -EINVAL; 513 514 /* 515 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 516 * any non-page-aligned or non-canonical addresses. 517 */ 518 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 519 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) 520 return -EINVAL; 521 522 /* pad_to_size was once a reserved field, so sanitize it */ 523 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 524 if (unlikely(offset_in_page(entry->pad_to_size))) 525 return -EINVAL; 526 } else { 527 entry->pad_to_size = 0; 528 } 529 /* 530 * From drm_mm perspective address space is continuous, 531 * so from this point we're always using non-canonical 532 * form internally. 533 */ 534 entry->offset = gen8_noncanonical_addr(entry->offset); 535 536 if (!eb->reloc_cache.has_fence) { 537 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 538 } else { 539 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 540 eb->reloc_cache.needs_unfenced) && 541 i915_gem_object_is_tiled(vma->obj)) 542 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 543 } 544 545 return 0; 546 } 547 548 static inline bool 549 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx) 550 { 551 return eb->args->flags & I915_EXEC_BATCH_FIRST ? 552 buffer_idx < eb->num_batches : 553 buffer_idx >= eb->args->buffer_count - eb->num_batches; 554 } 555 556 static int 557 eb_add_vma(struct i915_execbuffer *eb, 558 unsigned int *current_batch, 559 unsigned int i, 560 struct i915_vma *vma) 561 { 562 struct drm_i915_private *i915 = eb->i915; 563 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 564 struct eb_vma *ev = &eb->vma[i]; 565 566 ev->vma = vma; 567 ev->exec = entry; 568 ev->flags = entry->flags; 569 570 if (eb->lut_size > 0) { 571 ev->handle = entry->handle; 572 hlist_add_head(&ev->node, 573 &eb->buckets[hash_32(entry->handle, 574 eb->lut_size)]); 575 } 576 577 if (entry->relocation_count) 578 list_add_tail(&ev->reloc_link, &eb->relocs); 579 580 /* 581 * SNA is doing fancy tricks with compressing batch buffers, which leads 582 * to negative relocation deltas. Usually that works out ok since the 583 * relocate address is still positive, except when the batch is placed 584 * very low in the GTT. Ensure this doesn't happen. 585 * 586 * Note that actual hangs have only been observed on gen7, but for 587 * paranoia do it everywhere. 588 */ 589 if (is_batch_buffer(eb, i)) { 590 if (entry->relocation_count && 591 !(ev->flags & EXEC_OBJECT_PINNED)) 592 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; 593 if (eb->reloc_cache.has_fence) 594 ev->flags |= EXEC_OBJECT_NEEDS_FENCE; 595 596 eb->batches[*current_batch] = ev; 597 598 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) { 599 drm_dbg(&i915->drm, 600 "Attempting to use self-modifying batch buffer\n"); 601 return -EINVAL; 602 } 603 604 if (range_overflows_t(u64, 605 eb->batch_start_offset, 606 eb->args->batch_len, 607 ev->vma->size)) { 608 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); 609 return -EINVAL; 610 } 611 612 if (eb->args->batch_len == 0) 613 eb->batch_len[*current_batch] = ev->vma->size - 614 eb->batch_start_offset; 615 else 616 eb->batch_len[*current_batch] = eb->args->batch_len; 617 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */ 618 drm_dbg(&i915->drm, "Invalid batch length\n"); 619 return -EINVAL; 620 } 621 622 ++*current_batch; 623 } 624 625 return 0; 626 } 627 628 static inline int use_cpu_reloc(const struct reloc_cache *cache, 629 const struct drm_i915_gem_object *obj) 630 { 631 if (!i915_gem_object_has_struct_page(obj)) 632 return false; 633 634 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 635 return true; 636 637 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 638 return false; 639 640 return (cache->has_llc || 641 obj->cache_dirty || 642 obj->cache_level != I915_CACHE_NONE); 643 } 644 645 static int eb_reserve_vma(struct i915_execbuffer *eb, 646 struct eb_vma *ev, 647 u64 pin_flags) 648 { 649 struct drm_i915_gem_exec_object2 *entry = ev->exec; 650 struct i915_vma *vma = ev->vma; 651 int err; 652 653 if (drm_mm_node_allocated(&vma->node) && 654 eb_vma_misplaced(entry, vma, ev->flags)) { 655 err = i915_vma_unbind(vma); 656 if (err) 657 return err; 658 } 659 660 err = i915_vma_pin_ww(vma, &eb->ww, 661 entry->pad_to_size, entry->alignment, 662 eb_pin_flags(entry, ev->flags) | pin_flags); 663 if (err) 664 return err; 665 666 if (entry->offset != vma->node.start) { 667 entry->offset = vma->node.start | UPDATE; 668 eb->args->flags |= __EXEC_HAS_RELOC; 669 } 670 671 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 672 err = i915_vma_pin_fence(vma); 673 if (unlikely(err)) 674 return err; 675 676 if (vma->fence) 677 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 678 } 679 680 ev->flags |= __EXEC_OBJECT_HAS_PIN; 681 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); 682 683 return 0; 684 } 685 686 static bool eb_unbind(struct i915_execbuffer *eb, bool force) 687 { 688 const unsigned int count = eb->buffer_count; 689 unsigned int i; 690 struct list_head last; 691 bool unpinned = false; 692 693 /* Resort *all* the objects into priority order */ 694 INIT_LIST_HEAD(&eb->unbound); 695 INIT_LIST_HEAD(&last); 696 697 for (i = 0; i < count; i++) { 698 struct eb_vma *ev = &eb->vma[i]; 699 unsigned int flags = ev->flags; 700 701 if (!force && flags & EXEC_OBJECT_PINNED && 702 flags & __EXEC_OBJECT_HAS_PIN) 703 continue; 704 705 unpinned = true; 706 eb_unreserve_vma(ev); 707 708 if (flags & EXEC_OBJECT_PINNED) 709 /* Pinned must have their slot */ 710 list_add(&ev->bind_link, &eb->unbound); 711 else if (flags & __EXEC_OBJECT_NEEDS_MAP) 712 /* Map require the lowest 256MiB (aperture) */ 713 list_add_tail(&ev->bind_link, &eb->unbound); 714 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 715 /* Prioritise 4GiB region for restricted bo */ 716 list_add(&ev->bind_link, &last); 717 else 718 list_add_tail(&ev->bind_link, &last); 719 } 720 721 list_splice_tail(&last, &eb->unbound); 722 return unpinned; 723 } 724 725 static int eb_reserve(struct i915_execbuffer *eb) 726 { 727 struct eb_vma *ev; 728 unsigned int pass; 729 int err = 0; 730 bool unpinned; 731 732 /* 733 * Attempt to pin all of the buffers into the GTT. 734 * This is done in 2 phases: 735 * 736 * 1. Unbind all objects that do not match the GTT constraints for 737 * the execbuffer (fenceable, mappable, alignment etc). 738 * 2. Bind new objects. 739 * 740 * This avoid unnecessary unbinding of later objects in order to make 741 * room for the earlier objects *unless* we need to defragment. 742 * 743 * Defragmenting is skipped if all objects are pinned at a fixed location. 744 */ 745 for (pass = 0; pass <= 2; pass++) { 746 int pin_flags = PIN_USER | PIN_VALIDATE; 747 748 if (pass == 0) 749 pin_flags |= PIN_NONBLOCK; 750 751 if (pass >= 1) 752 unpinned = eb_unbind(eb, pass == 2); 753 754 if (pass == 2) { 755 err = mutex_lock_interruptible(&eb->context->vm->mutex); 756 if (!err) { 757 err = i915_gem_evict_vm(eb->context->vm, &eb->ww); 758 mutex_unlock(&eb->context->vm->mutex); 759 } 760 if (err) 761 return err; 762 } 763 764 list_for_each_entry(ev, &eb->unbound, bind_link) { 765 err = eb_reserve_vma(eb, ev, pin_flags); 766 if (err) 767 break; 768 } 769 770 if (err != -ENOSPC) 771 break; 772 } 773 774 return err; 775 } 776 777 static int eb_select_context(struct i915_execbuffer *eb) 778 { 779 struct i915_gem_context *ctx; 780 781 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 782 if (unlikely(IS_ERR(ctx))) 783 return PTR_ERR(ctx); 784 785 eb->gem_context = ctx; 786 if (i915_gem_context_has_full_ppgtt(ctx)) 787 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 788 789 return 0; 790 } 791 792 static int __eb_add_lut(struct i915_execbuffer *eb, 793 u32 handle, struct i915_vma *vma) 794 { 795 struct i915_gem_context *ctx = eb->gem_context; 796 struct i915_lut_handle *lut; 797 int err; 798 799 lut = i915_lut_handle_alloc(); 800 if (unlikely(!lut)) 801 return -ENOMEM; 802 803 i915_vma_get(vma); 804 if (!atomic_fetch_inc(&vma->open_count)) 805 i915_vma_reopen(vma); 806 lut->handle = handle; 807 lut->ctx = ctx; 808 809 /* Check that the context hasn't been closed in the meantime */ 810 err = -EINTR; 811 if (!mutex_lock_interruptible(&ctx->lut_mutex)) { 812 if (likely(!i915_gem_context_is_closed(ctx))) 813 err = radix_tree_insert(&ctx->handles_vma, handle, vma); 814 else 815 err = -ENOENT; 816 if (err == 0) { /* And nor has this handle */ 817 struct drm_i915_gem_object *obj = vma->obj; 818 819 spin_lock(&obj->lut_lock); 820 if (idr_find(&eb->file->object_idr, handle) == obj) { 821 list_add(&lut->obj_link, &obj->lut_list); 822 } else { 823 radix_tree_delete(&ctx->handles_vma, handle); 824 err = -ENOENT; 825 } 826 spin_unlock(&obj->lut_lock); 827 } 828 mutex_unlock(&ctx->lut_mutex); 829 } 830 if (unlikely(err)) 831 goto err; 832 833 return 0; 834 835 err: 836 i915_vma_close(vma); 837 i915_vma_put(vma); 838 i915_lut_handle_free(lut); 839 return err; 840 } 841 842 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle) 843 { 844 struct i915_address_space *vm = eb->context->vm; 845 846 do { 847 struct drm_i915_gem_object *obj; 848 struct i915_vma *vma; 849 int err; 850 851 rcu_read_lock(); 852 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle); 853 if (likely(vma && vma->vm == vm)) 854 vma = i915_vma_tryget(vma); 855 rcu_read_unlock(); 856 if (likely(vma)) 857 return vma; 858 859 obj = i915_gem_object_lookup(eb->file, handle); 860 if (unlikely(!obj)) 861 return ERR_PTR(-ENOENT); 862 863 /* 864 * If the user has opted-in for protected-object tracking, make 865 * sure the object encryption can be used. 866 * We only need to do this when the object is first used with 867 * this context, because the context itself will be banned when 868 * the protected objects become invalid. 869 */ 870 if (i915_gem_context_uses_protected_content(eb->gem_context) && 871 i915_gem_object_is_protected(obj)) { 872 err = intel_pxp_key_check(&vm->gt->pxp, obj, true); 873 if (err) { 874 i915_gem_object_put(obj); 875 return ERR_PTR(err); 876 } 877 } 878 879 vma = i915_vma_instance(obj, vm, NULL); 880 if (IS_ERR(vma)) { 881 i915_gem_object_put(obj); 882 return vma; 883 } 884 885 err = __eb_add_lut(eb, handle, vma); 886 if (likely(!err)) 887 return vma; 888 889 i915_gem_object_put(obj); 890 if (err != -EEXIST) 891 return ERR_PTR(err); 892 } while (1); 893 } 894 895 static int eb_lookup_vmas(struct i915_execbuffer *eb) 896 { 897 unsigned int i, current_batch = 0; 898 int err = 0; 899 900 INIT_LIST_HEAD(&eb->relocs); 901 902 for (i = 0; i < eb->buffer_count; i++) { 903 struct i915_vma *vma; 904 905 vma = eb_lookup_vma(eb, eb->exec[i].handle); 906 if (IS_ERR(vma)) { 907 err = PTR_ERR(vma); 908 goto err; 909 } 910 911 err = eb_validate_vma(eb, &eb->exec[i], vma); 912 if (unlikely(err)) { 913 i915_vma_put(vma); 914 goto err; 915 } 916 917 err = eb_add_vma(eb, ¤t_batch, i, vma); 918 if (err) 919 return err; 920 921 if (i915_gem_object_is_userptr(vma->obj)) { 922 err = i915_gem_object_userptr_submit_init(vma->obj); 923 if (err) { 924 if (i + 1 < eb->buffer_count) { 925 /* 926 * Execbuffer code expects last vma entry to be NULL, 927 * since we already initialized this entry, 928 * set the next value to NULL or we mess up 929 * cleanup handling. 930 */ 931 eb->vma[i + 1].vma = NULL; 932 } 933 934 return err; 935 } 936 937 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT; 938 eb->args->flags |= __EXEC_USERPTR_USED; 939 } 940 } 941 942 return 0; 943 944 err: 945 eb->vma[i].vma = NULL; 946 return err; 947 } 948 949 static int eb_lock_vmas(struct i915_execbuffer *eb) 950 { 951 unsigned int i; 952 int err; 953 954 for (i = 0; i < eb->buffer_count; i++) { 955 struct eb_vma *ev = &eb->vma[i]; 956 struct i915_vma *vma = ev->vma; 957 958 err = i915_gem_object_lock(vma->obj, &eb->ww); 959 if (err) 960 return err; 961 } 962 963 return 0; 964 } 965 966 static int eb_validate_vmas(struct i915_execbuffer *eb) 967 { 968 unsigned int i; 969 int err; 970 971 INIT_LIST_HEAD(&eb->unbound); 972 973 err = eb_lock_vmas(eb); 974 if (err) 975 return err; 976 977 for (i = 0; i < eb->buffer_count; i++) { 978 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 979 struct eb_vma *ev = &eb->vma[i]; 980 struct i915_vma *vma = ev->vma; 981 982 err = eb_pin_vma(eb, entry, ev); 983 if (err == -EDEADLK) 984 return err; 985 986 if (!err) { 987 if (entry->offset != vma->node.start) { 988 entry->offset = vma->node.start | UPDATE; 989 eb->args->flags |= __EXEC_HAS_RELOC; 990 } 991 } else { 992 eb_unreserve_vma(ev); 993 994 list_add_tail(&ev->bind_link, &eb->unbound); 995 if (drm_mm_node_allocated(&vma->node)) { 996 err = i915_vma_unbind(vma); 997 if (err) 998 return err; 999 } 1000 } 1001 1002 err = dma_resv_reserve_fences(vma->obj->base.resv, 1); 1003 if (err) 1004 return err; 1005 1006 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && 1007 eb_vma_misplaced(&eb->exec[i], vma, ev->flags)); 1008 } 1009 1010 if (!list_empty(&eb->unbound)) 1011 return eb_reserve(eb); 1012 1013 return 0; 1014 } 1015 1016 static struct eb_vma * 1017 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 1018 { 1019 if (eb->lut_size < 0) { 1020 if (handle >= -eb->lut_size) 1021 return NULL; 1022 return &eb->vma[handle]; 1023 } else { 1024 struct hlist_head *head; 1025 struct eb_vma *ev; 1026 1027 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 1028 hlist_for_each_entry(ev, head, node) { 1029 if (ev->handle == handle) 1030 return ev; 1031 } 1032 return NULL; 1033 } 1034 } 1035 1036 static void eb_release_vmas(struct i915_execbuffer *eb, bool final) 1037 { 1038 const unsigned int count = eb->buffer_count; 1039 unsigned int i; 1040 1041 for (i = 0; i < count; i++) { 1042 struct eb_vma *ev = &eb->vma[i]; 1043 struct i915_vma *vma = ev->vma; 1044 1045 if (!vma) 1046 break; 1047 1048 eb_unreserve_vma(ev); 1049 1050 if (final) 1051 i915_vma_put(vma); 1052 } 1053 1054 eb_capture_release(eb); 1055 eb_unpin_engine(eb); 1056 } 1057 1058 static void eb_destroy(const struct i915_execbuffer *eb) 1059 { 1060 if (eb->lut_size > 0) 1061 kfree(eb->buckets); 1062 } 1063 1064 static inline u64 1065 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 1066 const struct i915_vma *target) 1067 { 1068 return gen8_canonical_addr((int)reloc->delta + target->node.start); 1069 } 1070 1071 static void reloc_cache_init(struct reloc_cache *cache, 1072 struct drm_i915_private *i915) 1073 { 1074 cache->page = -1; 1075 cache->vaddr = 0; 1076 /* Must be a variable in the struct to allow GCC to unroll. */ 1077 cache->graphics_ver = GRAPHICS_VER(i915); 1078 cache->has_llc = HAS_LLC(i915); 1079 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 1080 cache->has_fence = cache->graphics_ver < 4; 1081 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 1082 cache->node.flags = 0; 1083 } 1084 1085 static inline void *unmask_page(unsigned long p) 1086 { 1087 return (void *)(uintptr_t)(p & PAGE_MASK); 1088 } 1089 1090 static inline unsigned int unmask_flags(unsigned long p) 1091 { 1092 return p & ~PAGE_MASK; 1093 } 1094 1095 #define KMAP 0x4 /* after CLFLUSH_FLAGS */ 1096 1097 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 1098 { 1099 struct drm_i915_private *i915 = 1100 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 1101 return to_gt(i915)->ggtt; 1102 } 1103 1104 static void reloc_cache_unmap(struct reloc_cache *cache) 1105 { 1106 void *vaddr; 1107 1108 if (!cache->vaddr) 1109 return; 1110 1111 vaddr = unmask_page(cache->vaddr); 1112 if (cache->vaddr & KMAP) 1113 kunmap_atomic(vaddr); 1114 else 1115 io_mapping_unmap_atomic((void __iomem *)vaddr); 1116 } 1117 1118 static void reloc_cache_remap(struct reloc_cache *cache, 1119 struct drm_i915_gem_object *obj) 1120 { 1121 void *vaddr; 1122 1123 if (!cache->vaddr) 1124 return; 1125 1126 if (cache->vaddr & KMAP) { 1127 struct page *page = i915_gem_object_get_page(obj, cache->page); 1128 1129 vaddr = kmap_atomic(page); 1130 cache->vaddr = unmask_flags(cache->vaddr) | 1131 (unsigned long)vaddr; 1132 } else { 1133 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1134 unsigned long offset; 1135 1136 offset = cache->node.start; 1137 if (!drm_mm_node_allocated(&cache->node)) 1138 offset += cache->page << PAGE_SHIFT; 1139 1140 cache->vaddr = (unsigned long) 1141 io_mapping_map_atomic_wc(&ggtt->iomap, offset); 1142 } 1143 } 1144 1145 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb) 1146 { 1147 void *vaddr; 1148 1149 if (!cache->vaddr) 1150 return; 1151 1152 vaddr = unmask_page(cache->vaddr); 1153 if (cache->vaddr & KMAP) { 1154 struct drm_i915_gem_object *obj = 1155 (struct drm_i915_gem_object *)cache->node.mm; 1156 if (cache->vaddr & CLFLUSH_AFTER) 1157 mb(); 1158 1159 kunmap_atomic(vaddr); 1160 i915_gem_object_finish_access(obj); 1161 } else { 1162 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1163 1164 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1165 io_mapping_unmap_atomic((void __iomem *)vaddr); 1166 1167 if (drm_mm_node_allocated(&cache->node)) { 1168 ggtt->vm.clear_range(&ggtt->vm, 1169 cache->node.start, 1170 cache->node.size); 1171 mutex_lock(&ggtt->vm.mutex); 1172 drm_mm_remove_node(&cache->node); 1173 mutex_unlock(&ggtt->vm.mutex); 1174 } else { 1175 i915_vma_unpin((struct i915_vma *)cache->node.mm); 1176 } 1177 } 1178 1179 cache->vaddr = 0; 1180 cache->page = -1; 1181 } 1182 1183 static void *reloc_kmap(struct drm_i915_gem_object *obj, 1184 struct reloc_cache *cache, 1185 unsigned long pageno) 1186 { 1187 void *vaddr; 1188 struct page *page; 1189 1190 if (cache->vaddr) { 1191 kunmap_atomic(unmask_page(cache->vaddr)); 1192 } else { 1193 unsigned int flushes; 1194 int err; 1195 1196 err = i915_gem_object_prepare_write(obj, &flushes); 1197 if (err) 1198 return ERR_PTR(err); 1199 1200 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 1201 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); 1202 1203 cache->vaddr = flushes | KMAP; 1204 cache->node.mm = (void *)obj; 1205 if (flushes) 1206 mb(); 1207 } 1208 1209 page = i915_gem_object_get_page(obj, pageno); 1210 if (!obj->mm.dirty) 1211 set_page_dirty(page); 1212 1213 vaddr = kmap_atomic(page); 1214 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 1215 cache->page = pageno; 1216 1217 return vaddr; 1218 } 1219 1220 static void *reloc_iomap(struct i915_vma *batch, 1221 struct i915_execbuffer *eb, 1222 unsigned long page) 1223 { 1224 struct drm_i915_gem_object *obj = batch->obj; 1225 struct reloc_cache *cache = &eb->reloc_cache; 1226 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1227 unsigned long offset; 1228 void *vaddr; 1229 1230 if (cache->vaddr) { 1231 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1232 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1233 } else { 1234 struct i915_vma *vma = ERR_PTR(-ENODEV); 1235 int err; 1236 1237 if (i915_gem_object_is_tiled(obj)) 1238 return ERR_PTR(-EINVAL); 1239 1240 if (use_cpu_reloc(cache, obj)) 1241 return NULL; 1242 1243 err = i915_gem_object_set_to_gtt_domain(obj, true); 1244 if (err) 1245 return ERR_PTR(err); 1246 1247 /* 1248 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch 1249 * VMA from the object list because we no longer pin. 1250 * 1251 * Only attempt to pin the batch buffer to ggtt if the current batch 1252 * is not inside ggtt, or the batch buffer is not misplaced. 1253 */ 1254 if (!i915_is_ggtt(batch->vm) || 1255 !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) { 1256 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0, 1257 PIN_MAPPABLE | 1258 PIN_NONBLOCK /* NOWARN */ | 1259 PIN_NOEVICT); 1260 } 1261 1262 if (vma == ERR_PTR(-EDEADLK)) 1263 return vma; 1264 1265 if (IS_ERR(vma)) { 1266 memset(&cache->node, 0, sizeof(cache->node)); 1267 mutex_lock(&ggtt->vm.mutex); 1268 err = drm_mm_insert_node_in_range 1269 (&ggtt->vm.mm, &cache->node, 1270 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1271 0, ggtt->mappable_end, 1272 DRM_MM_INSERT_LOW); 1273 mutex_unlock(&ggtt->vm.mutex); 1274 if (err) /* no inactive aperture space, use cpu reloc */ 1275 return NULL; 1276 } else { 1277 cache->node.start = vma->node.start; 1278 cache->node.mm = (void *)vma; 1279 } 1280 } 1281 1282 offset = cache->node.start; 1283 if (drm_mm_node_allocated(&cache->node)) { 1284 ggtt->vm.insert_page(&ggtt->vm, 1285 i915_gem_object_get_dma_address(obj, page), 1286 offset, I915_CACHE_NONE, 0); 1287 } else { 1288 offset += page << PAGE_SHIFT; 1289 } 1290 1291 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, 1292 offset); 1293 cache->page = page; 1294 cache->vaddr = (unsigned long)vaddr; 1295 1296 return vaddr; 1297 } 1298 1299 static void *reloc_vaddr(struct i915_vma *vma, 1300 struct i915_execbuffer *eb, 1301 unsigned long page) 1302 { 1303 struct reloc_cache *cache = &eb->reloc_cache; 1304 void *vaddr; 1305 1306 if (cache->page == page) { 1307 vaddr = unmask_page(cache->vaddr); 1308 } else { 1309 vaddr = NULL; 1310 if ((cache->vaddr & KMAP) == 0) 1311 vaddr = reloc_iomap(vma, eb, page); 1312 if (!vaddr) 1313 vaddr = reloc_kmap(vma->obj, cache, page); 1314 } 1315 1316 return vaddr; 1317 } 1318 1319 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1320 { 1321 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1322 if (flushes & CLFLUSH_BEFORE) 1323 drm_clflush_virt_range(addr, sizeof(*addr)); 1324 1325 *addr = value; 1326 1327 /* 1328 * Writes to the same cacheline are serialised by the CPU 1329 * (including clflush). On the write path, we only require 1330 * that it hits memory in an orderly fashion and place 1331 * mb barriers at the start and end of the relocation phase 1332 * to ensure ordering of clflush wrt to the system. 1333 */ 1334 if (flushes & CLFLUSH_AFTER) 1335 drm_clflush_virt_range(addr, sizeof(*addr)); 1336 } else 1337 *addr = value; 1338 } 1339 1340 static u64 1341 relocate_entry(struct i915_vma *vma, 1342 const struct drm_i915_gem_relocation_entry *reloc, 1343 struct i915_execbuffer *eb, 1344 const struct i915_vma *target) 1345 { 1346 u64 target_addr = relocation_target(reloc, target); 1347 u64 offset = reloc->offset; 1348 bool wide = eb->reloc_cache.use_64bit_reloc; 1349 void *vaddr; 1350 1351 repeat: 1352 vaddr = reloc_vaddr(vma, eb, 1353 offset >> PAGE_SHIFT); 1354 if (IS_ERR(vaddr)) 1355 return PTR_ERR(vaddr); 1356 1357 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32))); 1358 clflush_write32(vaddr + offset_in_page(offset), 1359 lower_32_bits(target_addr), 1360 eb->reloc_cache.vaddr); 1361 1362 if (wide) { 1363 offset += sizeof(u32); 1364 target_addr >>= 32; 1365 wide = false; 1366 goto repeat; 1367 } 1368 1369 return target->node.start | UPDATE; 1370 } 1371 1372 static u64 1373 eb_relocate_entry(struct i915_execbuffer *eb, 1374 struct eb_vma *ev, 1375 const struct drm_i915_gem_relocation_entry *reloc) 1376 { 1377 struct drm_i915_private *i915 = eb->i915; 1378 struct eb_vma *target; 1379 int err; 1380 1381 /* we've already hold a reference to all valid objects */ 1382 target = eb_get_vma(eb, reloc->target_handle); 1383 if (unlikely(!target)) 1384 return -ENOENT; 1385 1386 /* Validate that the target is in a valid r/w GPU domain */ 1387 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1388 drm_dbg(&i915->drm, "reloc with multiple write domains: " 1389 "target %d offset %d " 1390 "read %08x write %08x", 1391 reloc->target_handle, 1392 (int) reloc->offset, 1393 reloc->read_domains, 1394 reloc->write_domain); 1395 return -EINVAL; 1396 } 1397 if (unlikely((reloc->write_domain | reloc->read_domains) 1398 & ~I915_GEM_GPU_DOMAINS)) { 1399 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " 1400 "target %d offset %d " 1401 "read %08x write %08x", 1402 reloc->target_handle, 1403 (int) reloc->offset, 1404 reloc->read_domains, 1405 reloc->write_domain); 1406 return -EINVAL; 1407 } 1408 1409 if (reloc->write_domain) { 1410 target->flags |= EXEC_OBJECT_WRITE; 1411 1412 /* 1413 * Sandybridge PPGTT errata: We need a global gtt mapping 1414 * for MI and pipe_control writes because the gpu doesn't 1415 * properly redirect them through the ppgtt for non_secure 1416 * batchbuffers. 1417 */ 1418 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1419 GRAPHICS_VER(eb->i915) == 6 && 1420 !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) { 1421 struct i915_vma *vma = target->vma; 1422 1423 reloc_cache_unmap(&eb->reloc_cache); 1424 mutex_lock(&vma->vm->mutex); 1425 err = i915_vma_bind(target->vma, 1426 target->vma->obj->cache_level, 1427 PIN_GLOBAL, NULL, NULL); 1428 mutex_unlock(&vma->vm->mutex); 1429 reloc_cache_remap(&eb->reloc_cache, ev->vma->obj); 1430 if (err) 1431 return err; 1432 } 1433 } 1434 1435 /* 1436 * If the relocation already has the right value in it, no 1437 * more work needs to be done. 1438 */ 1439 if (!DBG_FORCE_RELOC && 1440 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset) 1441 return 0; 1442 1443 /* Check that the relocation address is valid... */ 1444 if (unlikely(reloc->offset > 1445 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1446 drm_dbg(&i915->drm, "Relocation beyond object bounds: " 1447 "target %d offset %d size %d.\n", 1448 reloc->target_handle, 1449 (int)reloc->offset, 1450 (int)ev->vma->size); 1451 return -EINVAL; 1452 } 1453 if (unlikely(reloc->offset & 3)) { 1454 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " 1455 "target %d offset %d.\n", 1456 reloc->target_handle, 1457 (int)reloc->offset); 1458 return -EINVAL; 1459 } 1460 1461 /* 1462 * If we write into the object, we need to force the synchronisation 1463 * barrier, either with an asynchronous clflush or if we executed the 1464 * patching using the GPU (though that should be serialised by the 1465 * timeline). To be completely sure, and since we are required to 1466 * do relocations we are already stalling, disable the user's opt 1467 * out of our synchronisation. 1468 */ 1469 ev->flags &= ~EXEC_OBJECT_ASYNC; 1470 1471 /* and update the user's relocation entry */ 1472 return relocate_entry(ev->vma, reloc, eb, target->vma); 1473 } 1474 1475 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) 1476 { 1477 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1478 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1479 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1480 struct drm_i915_gem_relocation_entry __user *urelocs = 1481 u64_to_user_ptr(entry->relocs_ptr); 1482 unsigned long remain = entry->relocation_count; 1483 1484 if (unlikely(remain > N_RELOC(ULONG_MAX))) 1485 return -EINVAL; 1486 1487 /* 1488 * We must check that the entire relocation array is safe 1489 * to read. However, if the array is not writable the user loses 1490 * the updated relocation values. 1491 */ 1492 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs)))) 1493 return -EFAULT; 1494 1495 do { 1496 struct drm_i915_gem_relocation_entry *r = stack; 1497 unsigned int count = 1498 min_t(unsigned long, remain, ARRAY_SIZE(stack)); 1499 unsigned int copied; 1500 1501 /* 1502 * This is the fast path and we cannot handle a pagefault 1503 * whilst holding the struct mutex lest the user pass in the 1504 * relocations contained within a mmaped bo. For in such a case 1505 * we, the page fault handler would call i915_gem_fault() and 1506 * we would try to acquire the struct mutex again. Obviously 1507 * this is bad and so lockdep complains vehemently. 1508 */ 1509 pagefault_disable(); 1510 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); 1511 pagefault_enable(); 1512 if (unlikely(copied)) { 1513 remain = -EFAULT; 1514 goto out; 1515 } 1516 1517 remain -= count; 1518 do { 1519 u64 offset = eb_relocate_entry(eb, ev, r); 1520 1521 if (likely(offset == 0)) { 1522 } else if ((s64)offset < 0) { 1523 remain = (int)offset; 1524 goto out; 1525 } else { 1526 /* 1527 * Note that reporting an error now 1528 * leaves everything in an inconsistent 1529 * state as we have *already* changed 1530 * the relocation value inside the 1531 * object. As we have not changed the 1532 * reloc.presumed_offset or will not 1533 * change the execobject.offset, on the 1534 * call we may not rewrite the value 1535 * inside the object, leaving it 1536 * dangling and causing a GPU hang. Unless 1537 * userspace dynamically rebuilds the 1538 * relocations on each execbuf rather than 1539 * presume a static tree. 1540 * 1541 * We did previously check if the relocations 1542 * were writable (access_ok), an error now 1543 * would be a strange race with mprotect, 1544 * having already demonstrated that we 1545 * can read from this userspace address. 1546 */ 1547 offset = gen8_canonical_addr(offset & ~UPDATE); 1548 __put_user(offset, 1549 &urelocs[r - stack].presumed_offset); 1550 } 1551 } while (r++, --count); 1552 urelocs += ARRAY_SIZE(stack); 1553 } while (remain); 1554 out: 1555 reloc_cache_reset(&eb->reloc_cache, eb); 1556 return remain; 1557 } 1558 1559 static int 1560 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev) 1561 { 1562 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1563 struct drm_i915_gem_relocation_entry *relocs = 1564 u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1565 unsigned int i; 1566 int err; 1567 1568 for (i = 0; i < entry->relocation_count; i++) { 1569 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]); 1570 1571 if ((s64)offset < 0) { 1572 err = (int)offset; 1573 goto err; 1574 } 1575 } 1576 err = 0; 1577 err: 1578 reloc_cache_reset(&eb->reloc_cache, eb); 1579 return err; 1580 } 1581 1582 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) 1583 { 1584 const char __user *addr, *end; 1585 unsigned long size; 1586 char __maybe_unused c; 1587 1588 size = entry->relocation_count; 1589 if (size == 0) 1590 return 0; 1591 1592 if (size > N_RELOC(ULONG_MAX)) 1593 return -EINVAL; 1594 1595 addr = u64_to_user_ptr(entry->relocs_ptr); 1596 size *= sizeof(struct drm_i915_gem_relocation_entry); 1597 if (!access_ok(addr, size)) 1598 return -EFAULT; 1599 1600 end = addr + size; 1601 for (; addr < end; addr += PAGE_SIZE) { 1602 int err = __get_user(c, addr); 1603 if (err) 1604 return err; 1605 } 1606 return __get_user(c, end - 1); 1607 } 1608 1609 static int eb_copy_relocations(const struct i915_execbuffer *eb) 1610 { 1611 struct drm_i915_gem_relocation_entry *relocs; 1612 const unsigned int count = eb->buffer_count; 1613 unsigned int i; 1614 int err; 1615 1616 for (i = 0; i < count; i++) { 1617 const unsigned int nreloc = eb->exec[i].relocation_count; 1618 struct drm_i915_gem_relocation_entry __user *urelocs; 1619 unsigned long size; 1620 unsigned long copied; 1621 1622 if (nreloc == 0) 1623 continue; 1624 1625 err = check_relocations(&eb->exec[i]); 1626 if (err) 1627 goto err; 1628 1629 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); 1630 size = nreloc * sizeof(*relocs); 1631 1632 relocs = kvmalloc_array(size, 1, GFP_KERNEL); 1633 if (!relocs) { 1634 err = -ENOMEM; 1635 goto err; 1636 } 1637 1638 /* copy_from_user is limited to < 4GiB */ 1639 copied = 0; 1640 do { 1641 unsigned int len = 1642 min_t(u64, BIT_ULL(31), size - copied); 1643 1644 if (__copy_from_user((char *)relocs + copied, 1645 (char __user *)urelocs + copied, 1646 len)) 1647 goto end; 1648 1649 copied += len; 1650 } while (copied < size); 1651 1652 /* 1653 * As we do not update the known relocation offsets after 1654 * relocating (due to the complexities in lock handling), 1655 * we need to mark them as invalid now so that we force the 1656 * relocation processing next time. Just in case the target 1657 * object is evicted and then rebound into its old 1658 * presumed_offset before the next execbuffer - if that 1659 * happened we would make the mistake of assuming that the 1660 * relocations were valid. 1661 */ 1662 if (!user_access_begin(urelocs, size)) 1663 goto end; 1664 1665 for (copied = 0; copied < nreloc; copied++) 1666 unsafe_put_user(-1, 1667 &urelocs[copied].presumed_offset, 1668 end_user); 1669 user_access_end(); 1670 1671 eb->exec[i].relocs_ptr = (uintptr_t)relocs; 1672 } 1673 1674 return 0; 1675 1676 end_user: 1677 user_access_end(); 1678 end: 1679 kvfree(relocs); 1680 err = -EFAULT; 1681 err: 1682 while (i--) { 1683 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); 1684 if (eb->exec[i].relocation_count) 1685 kvfree(relocs); 1686 } 1687 return err; 1688 } 1689 1690 static int eb_prefault_relocations(const struct i915_execbuffer *eb) 1691 { 1692 const unsigned int count = eb->buffer_count; 1693 unsigned int i; 1694 1695 for (i = 0; i < count; i++) { 1696 int err; 1697 1698 err = check_relocations(&eb->exec[i]); 1699 if (err) 1700 return err; 1701 } 1702 1703 return 0; 1704 } 1705 1706 static int eb_reinit_userptr(struct i915_execbuffer *eb) 1707 { 1708 const unsigned int count = eb->buffer_count; 1709 unsigned int i; 1710 int ret; 1711 1712 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED))) 1713 return 0; 1714 1715 for (i = 0; i < count; i++) { 1716 struct eb_vma *ev = &eb->vma[i]; 1717 1718 if (!i915_gem_object_is_userptr(ev->vma->obj)) 1719 continue; 1720 1721 ret = i915_gem_object_userptr_submit_init(ev->vma->obj); 1722 if (ret) 1723 return ret; 1724 1725 ev->flags |= __EXEC_OBJECT_USERPTR_INIT; 1726 } 1727 1728 return 0; 1729 } 1730 1731 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb) 1732 { 1733 bool have_copy = false; 1734 struct eb_vma *ev; 1735 int err = 0; 1736 1737 repeat: 1738 if (signal_pending(current)) { 1739 err = -ERESTARTSYS; 1740 goto out; 1741 } 1742 1743 /* We may process another execbuffer during the unlock... */ 1744 eb_release_vmas(eb, false); 1745 i915_gem_ww_ctx_fini(&eb->ww); 1746 1747 /* 1748 * We take 3 passes through the slowpatch. 1749 * 1750 * 1 - we try to just prefault all the user relocation entries and 1751 * then attempt to reuse the atomic pagefault disabled fast path again. 1752 * 1753 * 2 - we copy the user entries to a local buffer here outside of the 1754 * local and allow ourselves to wait upon any rendering before 1755 * relocations 1756 * 1757 * 3 - we already have a local copy of the relocation entries, but 1758 * were interrupted (EAGAIN) whilst waiting for the objects, try again. 1759 */ 1760 if (!err) { 1761 err = eb_prefault_relocations(eb); 1762 } else if (!have_copy) { 1763 err = eb_copy_relocations(eb); 1764 have_copy = err == 0; 1765 } else { 1766 cond_resched(); 1767 err = 0; 1768 } 1769 1770 if (!err) 1771 err = eb_reinit_userptr(eb); 1772 1773 i915_gem_ww_ctx_init(&eb->ww, true); 1774 if (err) 1775 goto out; 1776 1777 /* reacquire the objects */ 1778 repeat_validate: 1779 err = eb_pin_engine(eb, false); 1780 if (err) 1781 goto err; 1782 1783 err = eb_validate_vmas(eb); 1784 if (err) 1785 goto err; 1786 1787 GEM_BUG_ON(!eb->batches[0]); 1788 1789 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1790 if (!have_copy) { 1791 err = eb_relocate_vma(eb, ev); 1792 if (err) 1793 break; 1794 } else { 1795 err = eb_relocate_vma_slow(eb, ev); 1796 if (err) 1797 break; 1798 } 1799 } 1800 1801 if (err == -EDEADLK) 1802 goto err; 1803 1804 if (err && !have_copy) 1805 goto repeat; 1806 1807 if (err) 1808 goto err; 1809 1810 /* as last step, parse the command buffer */ 1811 err = eb_parse(eb); 1812 if (err) 1813 goto err; 1814 1815 /* 1816 * Leave the user relocations as are, this is the painfully slow path, 1817 * and we want to avoid the complication of dropping the lock whilst 1818 * having buffers reserved in the aperture and so causing spurious 1819 * ENOSPC for random operations. 1820 */ 1821 1822 err: 1823 if (err == -EDEADLK) { 1824 eb_release_vmas(eb, false); 1825 err = i915_gem_ww_ctx_backoff(&eb->ww); 1826 if (!err) 1827 goto repeat_validate; 1828 } 1829 1830 if (err == -EAGAIN) 1831 goto repeat; 1832 1833 out: 1834 if (have_copy) { 1835 const unsigned int count = eb->buffer_count; 1836 unsigned int i; 1837 1838 for (i = 0; i < count; i++) { 1839 const struct drm_i915_gem_exec_object2 *entry = 1840 &eb->exec[i]; 1841 struct drm_i915_gem_relocation_entry *relocs; 1842 1843 if (!entry->relocation_count) 1844 continue; 1845 1846 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1847 kvfree(relocs); 1848 } 1849 } 1850 1851 return err; 1852 } 1853 1854 static int eb_relocate_parse(struct i915_execbuffer *eb) 1855 { 1856 int err; 1857 bool throttle = true; 1858 1859 retry: 1860 err = eb_pin_engine(eb, throttle); 1861 if (err) { 1862 if (err != -EDEADLK) 1863 return err; 1864 1865 goto err; 1866 } 1867 1868 /* only throttle once, even if we didn't need to throttle */ 1869 throttle = false; 1870 1871 err = eb_validate_vmas(eb); 1872 if (err == -EAGAIN) 1873 goto slow; 1874 else if (err) 1875 goto err; 1876 1877 /* The objects are in their final locations, apply the relocations. */ 1878 if (eb->args->flags & __EXEC_HAS_RELOC) { 1879 struct eb_vma *ev; 1880 1881 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1882 err = eb_relocate_vma(eb, ev); 1883 if (err) 1884 break; 1885 } 1886 1887 if (err == -EDEADLK) 1888 goto err; 1889 else if (err) 1890 goto slow; 1891 } 1892 1893 if (!err) 1894 err = eb_parse(eb); 1895 1896 err: 1897 if (err == -EDEADLK) { 1898 eb_release_vmas(eb, false); 1899 err = i915_gem_ww_ctx_backoff(&eb->ww); 1900 if (!err) 1901 goto retry; 1902 } 1903 1904 return err; 1905 1906 slow: 1907 err = eb_relocate_parse_slow(eb); 1908 if (err) 1909 /* 1910 * If the user expects the execobject.offset and 1911 * reloc.presumed_offset to be an exact match, 1912 * as for using NO_RELOC, then we cannot update 1913 * the execobject.offset until we have completed 1914 * relocation. 1915 */ 1916 eb->args->flags &= ~__EXEC_HAS_RELOC; 1917 1918 return err; 1919 } 1920 1921 /* 1922 * Using two helper loops for the order of which requests / batches are created 1923 * and added the to backend. Requests are created in order from the parent to 1924 * the last child. Requests are added in the reverse order, from the last child 1925 * to parent. This is done for locking reasons as the timeline lock is acquired 1926 * during request creation and released when the request is added to the 1927 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be 1928 * the ordering. 1929 */ 1930 #define for_each_batch_create_order(_eb, _i) \ 1931 for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i)) 1932 #define for_each_batch_add_order(_eb, _i) \ 1933 BUILD_BUG_ON(!typecheck(int, _i)); \ 1934 for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i)) 1935 1936 static struct i915_request * 1937 eb_find_first_request_added(struct i915_execbuffer *eb) 1938 { 1939 int i; 1940 1941 for_each_batch_add_order(eb, i) 1942 if (eb->requests[i]) 1943 return eb->requests[i]; 1944 1945 GEM_BUG_ON("Request not found"); 1946 1947 return NULL; 1948 } 1949 1950 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 1951 1952 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */ 1953 static void eb_capture_stage(struct i915_execbuffer *eb) 1954 { 1955 const unsigned int count = eb->buffer_count; 1956 unsigned int i = count, j; 1957 1958 while (i--) { 1959 struct eb_vma *ev = &eb->vma[i]; 1960 struct i915_vma *vma = ev->vma; 1961 unsigned int flags = ev->flags; 1962 1963 if (!(flags & EXEC_OBJECT_CAPTURE)) 1964 continue; 1965 1966 for_each_batch_create_order(eb, j) { 1967 struct i915_capture_list *capture; 1968 1969 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 1970 if (!capture) 1971 continue; 1972 1973 capture->next = eb->capture_lists[j]; 1974 capture->vma_res = i915_vma_resource_get(vma->resource); 1975 eb->capture_lists[j] = capture; 1976 } 1977 } 1978 } 1979 1980 /* Commit once we're in the critical path */ 1981 static void eb_capture_commit(struct i915_execbuffer *eb) 1982 { 1983 unsigned int j; 1984 1985 for_each_batch_create_order(eb, j) { 1986 struct i915_request *rq = eb->requests[j]; 1987 1988 if (!rq) 1989 break; 1990 1991 rq->capture_list = eb->capture_lists[j]; 1992 eb->capture_lists[j] = NULL; 1993 } 1994 } 1995 1996 /* 1997 * Release anything that didn't get committed due to errors. 1998 * The capture_list will otherwise be freed at request retire. 1999 */ 2000 static void eb_capture_release(struct i915_execbuffer *eb) 2001 { 2002 unsigned int j; 2003 2004 for_each_batch_create_order(eb, j) { 2005 if (eb->capture_lists[j]) { 2006 i915_request_free_capture_list(eb->capture_lists[j]); 2007 eb->capture_lists[j] = NULL; 2008 } 2009 } 2010 } 2011 2012 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2013 { 2014 memset(eb->capture_lists, 0, sizeof(eb->capture_lists)); 2015 } 2016 2017 #else 2018 2019 static void eb_capture_stage(struct i915_execbuffer *eb) 2020 { 2021 } 2022 2023 static void eb_capture_commit(struct i915_execbuffer *eb) 2024 { 2025 } 2026 2027 static void eb_capture_release(struct i915_execbuffer *eb) 2028 { 2029 } 2030 2031 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2032 { 2033 } 2034 2035 #endif 2036 2037 static int eb_move_to_gpu(struct i915_execbuffer *eb) 2038 { 2039 const unsigned int count = eb->buffer_count; 2040 unsigned int i = count; 2041 int err = 0, j; 2042 2043 while (i--) { 2044 struct eb_vma *ev = &eb->vma[i]; 2045 struct i915_vma *vma = ev->vma; 2046 unsigned int flags = ev->flags; 2047 struct drm_i915_gem_object *obj = vma->obj; 2048 2049 assert_vma_held(vma); 2050 2051 /* 2052 * If the GPU is not _reading_ through the CPU cache, we need 2053 * to make sure that any writes (both previous GPU writes from 2054 * before a change in snooping levels and normal CPU writes) 2055 * caught in that cache are flushed to main memory. 2056 * 2057 * We want to say 2058 * obj->cache_dirty && 2059 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) 2060 * but gcc's optimiser doesn't handle that as well and emits 2061 * two jumps instead of one. Maybe one day... 2062 * 2063 * FIXME: There is also sync flushing in set_pages(), which 2064 * serves a different purpose(some of the time at least). 2065 * 2066 * We should consider: 2067 * 2068 * 1. Rip out the async flush code. 2069 * 2070 * 2. Or make the sync flushing use the async clflush path 2071 * using mandatory fences underneath. Currently the below 2072 * async flush happens after we bind the object. 2073 */ 2074 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { 2075 if (i915_gem_clflush_object(obj, 0)) 2076 flags &= ~EXEC_OBJECT_ASYNC; 2077 } 2078 2079 /* We only need to await on the first request */ 2080 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { 2081 err = i915_request_await_object 2082 (eb_find_first_request_added(eb), obj, 2083 flags & EXEC_OBJECT_WRITE); 2084 } 2085 2086 for_each_batch_add_order(eb, j) { 2087 if (err) 2088 break; 2089 if (!eb->requests[j]) 2090 continue; 2091 2092 err = _i915_vma_move_to_active(vma, eb->requests[j], 2093 j ? NULL : 2094 eb->composite_fence ? 2095 eb->composite_fence : 2096 &eb->requests[j]->fence, 2097 flags | __EXEC_OBJECT_NO_RESERVE); 2098 } 2099 } 2100 2101 #ifdef CONFIG_MMU_NOTIFIER 2102 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) { 2103 read_lock(&eb->i915->mm.notifier_lock); 2104 2105 /* 2106 * count is always at least 1, otherwise __EXEC_USERPTR_USED 2107 * could not have been set 2108 */ 2109 for (i = 0; i < count; i++) { 2110 struct eb_vma *ev = &eb->vma[i]; 2111 struct drm_i915_gem_object *obj = ev->vma->obj; 2112 2113 if (!i915_gem_object_is_userptr(obj)) 2114 continue; 2115 2116 err = i915_gem_object_userptr_submit_done(obj); 2117 if (err) 2118 break; 2119 } 2120 2121 read_unlock(&eb->i915->mm.notifier_lock); 2122 } 2123 #endif 2124 2125 if (unlikely(err)) 2126 goto err_skip; 2127 2128 /* Unconditionally flush any chipset caches (for streaming writes). */ 2129 intel_gt_chipset_flush(eb->gt); 2130 eb_capture_commit(eb); 2131 2132 return 0; 2133 2134 err_skip: 2135 for_each_batch_create_order(eb, j) { 2136 if (!eb->requests[j]) 2137 break; 2138 2139 i915_request_set_error_once(eb->requests[j], err); 2140 } 2141 return err; 2142 } 2143 2144 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) 2145 { 2146 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 2147 return -EINVAL; 2148 2149 /* Kernel clipping was a DRI1 misfeature */ 2150 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY | 2151 I915_EXEC_USE_EXTENSIONS))) { 2152 if (exec->num_cliprects || exec->cliprects_ptr) 2153 return -EINVAL; 2154 } 2155 2156 if (exec->DR4 == 0xffffffff) { 2157 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); 2158 exec->DR4 = 0; 2159 } 2160 if (exec->DR1 || exec->DR4) 2161 return -EINVAL; 2162 2163 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 2164 return -EINVAL; 2165 2166 return 0; 2167 } 2168 2169 static int i915_reset_gen7_sol_offsets(struct i915_request *rq) 2170 { 2171 u32 *cs; 2172 int i; 2173 2174 if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) { 2175 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n"); 2176 return -EINVAL; 2177 } 2178 2179 cs = intel_ring_begin(rq, 4 * 2 + 2); 2180 if (IS_ERR(cs)) 2181 return PTR_ERR(cs); 2182 2183 *cs++ = MI_LOAD_REGISTER_IMM(4); 2184 for (i = 0; i < 4; i++) { 2185 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 2186 *cs++ = 0; 2187 } 2188 *cs++ = MI_NOOP; 2189 intel_ring_advance(rq, cs); 2190 2191 return 0; 2192 } 2193 2194 static struct i915_vma * 2195 shadow_batch_pin(struct i915_execbuffer *eb, 2196 struct drm_i915_gem_object *obj, 2197 struct i915_address_space *vm, 2198 unsigned int flags) 2199 { 2200 struct i915_vma *vma; 2201 int err; 2202 2203 vma = i915_vma_instance(obj, vm, NULL); 2204 if (IS_ERR(vma)) 2205 return vma; 2206 2207 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE); 2208 if (err) 2209 return ERR_PTR(err); 2210 2211 return vma; 2212 } 2213 2214 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma) 2215 { 2216 /* 2217 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2218 * batch" bit. Hence we need to pin secure batches into the global gtt. 2219 * hsw should have this fixed, but bdw mucks it up again. */ 2220 if (eb->batch_flags & I915_DISPATCH_SECURE) 2221 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE); 2222 2223 return NULL; 2224 } 2225 2226 static int eb_parse(struct i915_execbuffer *eb) 2227 { 2228 struct drm_i915_private *i915 = eb->i915; 2229 struct intel_gt_buffer_pool_node *pool = eb->batch_pool; 2230 struct i915_vma *shadow, *trampoline, *batch; 2231 unsigned long len; 2232 int err; 2233 2234 if (!eb_use_cmdparser(eb)) { 2235 batch = eb_dispatch_secure(eb, eb->batches[0]->vma); 2236 if (IS_ERR(batch)) 2237 return PTR_ERR(batch); 2238 2239 goto secure_batch; 2240 } 2241 2242 if (intel_context_is_parallel(eb->context)) 2243 return -EINVAL; 2244 2245 len = eb->batch_len[0]; 2246 if (!CMDPARSER_USES_GGTT(eb->i915)) { 2247 /* 2248 * ppGTT backed shadow buffers must be mapped RO, to prevent 2249 * post-scan tampering 2250 */ 2251 if (!eb->context->vm->has_read_only) { 2252 drm_dbg(&i915->drm, 2253 "Cannot prevent post-scan tampering without RO capable vm\n"); 2254 return -EINVAL; 2255 } 2256 } else { 2257 len += I915_CMD_PARSER_TRAMPOLINE_SIZE; 2258 } 2259 if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */ 2260 return -EINVAL; 2261 2262 if (!pool) { 2263 pool = intel_gt_get_buffer_pool(eb->gt, len, 2264 I915_MAP_WB); 2265 if (IS_ERR(pool)) 2266 return PTR_ERR(pool); 2267 eb->batch_pool = pool; 2268 } 2269 2270 err = i915_gem_object_lock(pool->obj, &eb->ww); 2271 if (err) 2272 return err; 2273 2274 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER); 2275 if (IS_ERR(shadow)) 2276 return PTR_ERR(shadow); 2277 2278 intel_gt_buffer_pool_mark_used(pool); 2279 i915_gem_object_set_readonly(shadow->obj); 2280 shadow->private = pool; 2281 2282 trampoline = NULL; 2283 if (CMDPARSER_USES_GGTT(eb->i915)) { 2284 trampoline = shadow; 2285 2286 shadow = shadow_batch_pin(eb, pool->obj, 2287 &eb->gt->ggtt->vm, 2288 PIN_GLOBAL); 2289 if (IS_ERR(shadow)) 2290 return PTR_ERR(shadow); 2291 2292 shadow->private = pool; 2293 2294 eb->batch_flags |= I915_DISPATCH_SECURE; 2295 } 2296 2297 batch = eb_dispatch_secure(eb, shadow); 2298 if (IS_ERR(batch)) 2299 return PTR_ERR(batch); 2300 2301 err = dma_resv_reserve_fences(shadow->obj->base.resv, 1); 2302 if (err) 2303 return err; 2304 2305 err = intel_engine_cmd_parser(eb->context->engine, 2306 eb->batches[0]->vma, 2307 eb->batch_start_offset, 2308 eb->batch_len[0], 2309 shadow, trampoline); 2310 if (err) 2311 return err; 2312 2313 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2314 eb->batches[0]->vma = i915_vma_get(shadow); 2315 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2316 2317 eb->trampoline = trampoline; 2318 eb->batch_start_offset = 0; 2319 2320 secure_batch: 2321 if (batch) { 2322 if (intel_context_is_parallel(eb->context)) 2323 return -EINVAL; 2324 2325 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2326 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2327 eb->batches[0]->vma = i915_vma_get(batch); 2328 } 2329 return 0; 2330 } 2331 2332 static int eb_request_submit(struct i915_execbuffer *eb, 2333 struct i915_request *rq, 2334 struct i915_vma *batch, 2335 u64 batch_len) 2336 { 2337 int err; 2338 2339 if (intel_context_nopreempt(rq->context)) 2340 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags); 2341 2342 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 2343 err = i915_reset_gen7_sol_offsets(rq); 2344 if (err) 2345 return err; 2346 } 2347 2348 /* 2349 * After we completed waiting for other engines (using HW semaphores) 2350 * then we can signal that this request/batch is ready to run. This 2351 * allows us to determine if the batch is still waiting on the GPU 2352 * or actually running by checking the breadcrumb. 2353 */ 2354 if (rq->context->engine->emit_init_breadcrumb) { 2355 err = rq->context->engine->emit_init_breadcrumb(rq); 2356 if (err) 2357 return err; 2358 } 2359 2360 err = rq->context->engine->emit_bb_start(rq, 2361 batch->node.start + 2362 eb->batch_start_offset, 2363 batch_len, 2364 eb->batch_flags); 2365 if (err) 2366 return err; 2367 2368 if (eb->trampoline) { 2369 GEM_BUG_ON(intel_context_is_parallel(rq->context)); 2370 GEM_BUG_ON(eb->batch_start_offset); 2371 err = rq->context->engine->emit_bb_start(rq, 2372 eb->trampoline->node.start + 2373 batch_len, 0, 0); 2374 if (err) 2375 return err; 2376 } 2377 2378 return 0; 2379 } 2380 2381 static int eb_submit(struct i915_execbuffer *eb) 2382 { 2383 unsigned int i; 2384 int err; 2385 2386 err = eb_move_to_gpu(eb); 2387 2388 for_each_batch_create_order(eb, i) { 2389 if (!eb->requests[i]) 2390 break; 2391 2392 trace_i915_request_queue(eb->requests[i], eb->batch_flags); 2393 if (!err) 2394 err = eb_request_submit(eb, eb->requests[i], 2395 eb->batches[i]->vma, 2396 eb->batch_len[i]); 2397 } 2398 2399 return err; 2400 } 2401 2402 static int num_vcs_engines(struct drm_i915_private *i915) 2403 { 2404 return hweight_long(VDBOX_MASK(to_gt(i915))); 2405 } 2406 2407 /* 2408 * Find one BSD ring to dispatch the corresponding BSD command. 2409 * The engine index is returned. 2410 */ 2411 static unsigned int 2412 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, 2413 struct drm_file *file) 2414 { 2415 struct drm_i915_file_private *file_priv = file->driver_priv; 2416 2417 /* Check whether the file_priv has already selected one ring. */ 2418 if ((int)file_priv->bsd_engine < 0) 2419 file_priv->bsd_engine = 2420 get_random_int() % num_vcs_engines(dev_priv); 2421 2422 return file_priv->bsd_engine; 2423 } 2424 2425 static const enum intel_engine_id user_ring_map[] = { 2426 [I915_EXEC_DEFAULT] = RCS0, 2427 [I915_EXEC_RENDER] = RCS0, 2428 [I915_EXEC_BLT] = BCS0, 2429 [I915_EXEC_BSD] = VCS0, 2430 [I915_EXEC_VEBOX] = VECS0 2431 }; 2432 2433 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce) 2434 { 2435 struct intel_ring *ring = ce->ring; 2436 struct intel_timeline *tl = ce->timeline; 2437 struct i915_request *rq; 2438 2439 /* 2440 * Completely unscientific finger-in-the-air estimates for suitable 2441 * maximum user request size (to avoid blocking) and then backoff. 2442 */ 2443 if (intel_ring_update_space(ring) >= PAGE_SIZE) 2444 return NULL; 2445 2446 /* 2447 * Find a request that after waiting upon, there will be at least half 2448 * the ring available. The hysteresis allows us to compete for the 2449 * shared ring and should mean that we sleep less often prior to 2450 * claiming our resources, but not so long that the ring completely 2451 * drains before we can submit our next request. 2452 */ 2453 list_for_each_entry(rq, &tl->requests, link) { 2454 if (rq->ring != ring) 2455 continue; 2456 2457 if (__intel_ring_space(rq->postfix, 2458 ring->emit, ring->size) > ring->size / 2) 2459 break; 2460 } 2461 if (&rq->link == &tl->requests) 2462 return NULL; /* weird, we will check again later for real */ 2463 2464 return i915_request_get(rq); 2465 } 2466 2467 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce, 2468 bool throttle) 2469 { 2470 struct intel_timeline *tl; 2471 struct i915_request *rq = NULL; 2472 2473 /* 2474 * Take a local wakeref for preparing to dispatch the execbuf as 2475 * we expect to access the hardware fairly frequently in the 2476 * process, and require the engine to be kept awake between accesses. 2477 * Upon dispatch, we acquire another prolonged wakeref that we hold 2478 * until the timeline is idle, which in turn releases the wakeref 2479 * taken on the engine, and the parent device. 2480 */ 2481 tl = intel_context_timeline_lock(ce); 2482 if (IS_ERR(tl)) 2483 return PTR_ERR(tl); 2484 2485 intel_context_enter(ce); 2486 if (throttle) 2487 rq = eb_throttle(eb, ce); 2488 intel_context_timeline_unlock(tl); 2489 2490 if (rq) { 2491 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; 2492 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT; 2493 2494 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 2495 timeout) < 0) { 2496 i915_request_put(rq); 2497 2498 /* 2499 * Error path, cannot use intel_context_timeline_lock as 2500 * that is user interruptable and this clean up step 2501 * must be done. 2502 */ 2503 mutex_lock(&ce->timeline->mutex); 2504 intel_context_exit(ce); 2505 mutex_unlock(&ce->timeline->mutex); 2506 2507 if (nonblock) 2508 return -EWOULDBLOCK; 2509 else 2510 return -EINTR; 2511 } 2512 i915_request_put(rq); 2513 } 2514 2515 return 0; 2516 } 2517 2518 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle) 2519 { 2520 struct intel_context *ce = eb->context, *child; 2521 int err; 2522 int i = 0, j = 0; 2523 2524 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED); 2525 2526 if (unlikely(intel_context_is_banned(ce))) 2527 return -EIO; 2528 2529 /* 2530 * Pinning the contexts may generate requests in order to acquire 2531 * GGTT space, so do this first before we reserve a seqno for 2532 * ourselves. 2533 */ 2534 err = intel_context_pin_ww(ce, &eb->ww); 2535 if (err) 2536 return err; 2537 for_each_child(ce, child) { 2538 err = intel_context_pin_ww(child, &eb->ww); 2539 GEM_BUG_ON(err); /* perma-pinned should incr a counter */ 2540 } 2541 2542 for_each_child(ce, child) { 2543 err = eb_pin_timeline(eb, child, throttle); 2544 if (err) 2545 goto unwind; 2546 ++i; 2547 } 2548 err = eb_pin_timeline(eb, ce, throttle); 2549 if (err) 2550 goto unwind; 2551 2552 eb->args->flags |= __EXEC_ENGINE_PINNED; 2553 return 0; 2554 2555 unwind: 2556 for_each_child(ce, child) { 2557 if (j++ < i) { 2558 mutex_lock(&child->timeline->mutex); 2559 intel_context_exit(child); 2560 mutex_unlock(&child->timeline->mutex); 2561 } 2562 } 2563 for_each_child(ce, child) 2564 intel_context_unpin(child); 2565 intel_context_unpin(ce); 2566 return err; 2567 } 2568 2569 static void eb_unpin_engine(struct i915_execbuffer *eb) 2570 { 2571 struct intel_context *ce = eb->context, *child; 2572 2573 if (!(eb->args->flags & __EXEC_ENGINE_PINNED)) 2574 return; 2575 2576 eb->args->flags &= ~__EXEC_ENGINE_PINNED; 2577 2578 for_each_child(ce, child) { 2579 mutex_lock(&child->timeline->mutex); 2580 intel_context_exit(child); 2581 mutex_unlock(&child->timeline->mutex); 2582 2583 intel_context_unpin(child); 2584 } 2585 2586 mutex_lock(&ce->timeline->mutex); 2587 intel_context_exit(ce); 2588 mutex_unlock(&ce->timeline->mutex); 2589 2590 intel_context_unpin(ce); 2591 } 2592 2593 static unsigned int 2594 eb_select_legacy_ring(struct i915_execbuffer *eb) 2595 { 2596 struct drm_i915_private *i915 = eb->i915; 2597 struct drm_i915_gem_execbuffer2 *args = eb->args; 2598 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2599 2600 if (user_ring_id != I915_EXEC_BSD && 2601 (args->flags & I915_EXEC_BSD_MASK)) { 2602 drm_dbg(&i915->drm, 2603 "execbuf with non bsd ring but with invalid " 2604 "bsd dispatch flags: %d\n", (int)(args->flags)); 2605 return -1; 2606 } 2607 2608 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) { 2609 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2610 2611 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2612 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file); 2613 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2614 bsd_idx <= I915_EXEC_BSD_RING2) { 2615 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2616 bsd_idx--; 2617 } else { 2618 drm_dbg(&i915->drm, 2619 "execbuf with unknown bsd ring: %u\n", 2620 bsd_idx); 2621 return -1; 2622 } 2623 2624 return _VCS(bsd_idx); 2625 } 2626 2627 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { 2628 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", 2629 user_ring_id); 2630 return -1; 2631 } 2632 2633 return user_ring_map[user_ring_id]; 2634 } 2635 2636 static int 2637 eb_select_engine(struct i915_execbuffer *eb) 2638 { 2639 struct intel_context *ce, *child; 2640 unsigned int idx; 2641 int err; 2642 2643 if (i915_gem_context_user_engines(eb->gem_context)) 2644 idx = eb->args->flags & I915_EXEC_RING_MASK; 2645 else 2646 idx = eb_select_legacy_ring(eb); 2647 2648 ce = i915_gem_context_get_engine(eb->gem_context, idx); 2649 if (IS_ERR(ce)) 2650 return PTR_ERR(ce); 2651 2652 if (intel_context_is_parallel(ce)) { 2653 if (eb->buffer_count < ce->parallel.number_children + 1) { 2654 intel_context_put(ce); 2655 return -EINVAL; 2656 } 2657 if (eb->batch_start_offset || eb->args->batch_len) { 2658 intel_context_put(ce); 2659 return -EINVAL; 2660 } 2661 } 2662 eb->num_batches = ce->parallel.number_children + 1; 2663 2664 for_each_child(ce, child) 2665 intel_context_get(child); 2666 intel_gt_pm_get(ce->engine->gt); 2667 2668 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) { 2669 err = intel_context_alloc_state(ce); 2670 if (err) 2671 goto err; 2672 } 2673 for_each_child(ce, child) { 2674 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) { 2675 err = intel_context_alloc_state(child); 2676 if (err) 2677 goto err; 2678 } 2679 } 2680 2681 /* 2682 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 2683 * EIO if the GPU is already wedged. 2684 */ 2685 err = intel_gt_terminally_wedged(ce->engine->gt); 2686 if (err) 2687 goto err; 2688 2689 if (!i915_vm_tryget(ce->vm)) { 2690 err = -ENOENT; 2691 goto err; 2692 } 2693 2694 eb->context = ce; 2695 eb->gt = ce->engine->gt; 2696 2697 /* 2698 * Make sure engine pool stays alive even if we call intel_context_put 2699 * during ww handling. The pool is destroyed when last pm reference 2700 * is dropped, which breaks our -EDEADLK handling. 2701 */ 2702 return err; 2703 2704 err: 2705 intel_gt_pm_put(ce->engine->gt); 2706 for_each_child(ce, child) 2707 intel_context_put(child); 2708 intel_context_put(ce); 2709 return err; 2710 } 2711 2712 static void 2713 eb_put_engine(struct i915_execbuffer *eb) 2714 { 2715 struct intel_context *child; 2716 2717 i915_vm_put(eb->context->vm); 2718 intel_gt_pm_put(eb->gt); 2719 for_each_child(eb->context, child) 2720 intel_context_put(child); 2721 intel_context_put(eb->context); 2722 } 2723 2724 static void 2725 __free_fence_array(struct eb_fence *fences, unsigned int n) 2726 { 2727 while (n--) { 2728 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2)); 2729 dma_fence_put(fences[n].dma_fence); 2730 dma_fence_chain_free(fences[n].chain_fence); 2731 } 2732 kvfree(fences); 2733 } 2734 2735 static int 2736 add_timeline_fence_array(struct i915_execbuffer *eb, 2737 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences) 2738 { 2739 struct drm_i915_gem_exec_fence __user *user_fences; 2740 u64 __user *user_values; 2741 struct eb_fence *f; 2742 u64 nfences; 2743 int err = 0; 2744 2745 nfences = timeline_fences->fence_count; 2746 if (!nfences) 2747 return 0; 2748 2749 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2750 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2751 if (nfences > min_t(unsigned long, 2752 ULONG_MAX / sizeof(*user_fences), 2753 SIZE_MAX / sizeof(*f)) - eb->num_fences) 2754 return -EINVAL; 2755 2756 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr); 2757 if (!access_ok(user_fences, nfences * sizeof(*user_fences))) 2758 return -EFAULT; 2759 2760 user_values = u64_to_user_ptr(timeline_fences->values_ptr); 2761 if (!access_ok(user_values, nfences * sizeof(*user_values))) 2762 return -EFAULT; 2763 2764 f = krealloc(eb->fences, 2765 (eb->num_fences + nfences) * sizeof(*f), 2766 __GFP_NOWARN | GFP_KERNEL); 2767 if (!f) 2768 return -ENOMEM; 2769 2770 eb->fences = f; 2771 f += eb->num_fences; 2772 2773 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2774 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2775 2776 while (nfences--) { 2777 struct drm_i915_gem_exec_fence user_fence; 2778 struct drm_syncobj *syncobj; 2779 struct dma_fence *fence = NULL; 2780 u64 point; 2781 2782 if (__copy_from_user(&user_fence, 2783 user_fences++, 2784 sizeof(user_fence))) 2785 return -EFAULT; 2786 2787 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2788 return -EINVAL; 2789 2790 if (__get_user(point, user_values++)) 2791 return -EFAULT; 2792 2793 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2794 if (!syncobj) { 2795 DRM_DEBUG("Invalid syncobj handle provided\n"); 2796 return -ENOENT; 2797 } 2798 2799 fence = drm_syncobj_fence_get(syncobj); 2800 2801 if (!fence && user_fence.flags && 2802 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2803 DRM_DEBUG("Syncobj handle has no fence\n"); 2804 drm_syncobj_put(syncobj); 2805 return -EINVAL; 2806 } 2807 2808 if (fence) 2809 err = dma_fence_chain_find_seqno(&fence, point); 2810 2811 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2812 DRM_DEBUG("Syncobj handle missing requested point %llu\n", point); 2813 dma_fence_put(fence); 2814 drm_syncobj_put(syncobj); 2815 return err; 2816 } 2817 2818 /* 2819 * A point might have been signaled already and 2820 * garbage collected from the timeline. In this case 2821 * just ignore the point and carry on. 2822 */ 2823 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2824 drm_syncobj_put(syncobj); 2825 continue; 2826 } 2827 2828 /* 2829 * For timeline syncobjs we need to preallocate chains for 2830 * later signaling. 2831 */ 2832 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) { 2833 /* 2834 * Waiting and signaling the same point (when point != 2835 * 0) would break the timeline. 2836 */ 2837 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2838 DRM_DEBUG("Trying to wait & signal the same timeline point.\n"); 2839 dma_fence_put(fence); 2840 drm_syncobj_put(syncobj); 2841 return -EINVAL; 2842 } 2843 2844 f->chain_fence = dma_fence_chain_alloc(); 2845 if (!f->chain_fence) { 2846 drm_syncobj_put(syncobj); 2847 dma_fence_put(fence); 2848 return -ENOMEM; 2849 } 2850 } else { 2851 f->chain_fence = NULL; 2852 } 2853 2854 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2855 f->dma_fence = fence; 2856 f->value = point; 2857 f++; 2858 eb->num_fences++; 2859 } 2860 2861 return 0; 2862 } 2863 2864 static int add_fence_array(struct i915_execbuffer *eb) 2865 { 2866 struct drm_i915_gem_execbuffer2 *args = eb->args; 2867 struct drm_i915_gem_exec_fence __user *user; 2868 unsigned long num_fences = args->num_cliprects; 2869 struct eb_fence *f; 2870 2871 if (!(args->flags & I915_EXEC_FENCE_ARRAY)) 2872 return 0; 2873 2874 if (!num_fences) 2875 return 0; 2876 2877 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2878 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2879 if (num_fences > min_t(unsigned long, 2880 ULONG_MAX / sizeof(*user), 2881 SIZE_MAX / sizeof(*f) - eb->num_fences)) 2882 return -EINVAL; 2883 2884 user = u64_to_user_ptr(args->cliprects_ptr); 2885 if (!access_ok(user, num_fences * sizeof(*user))) 2886 return -EFAULT; 2887 2888 f = krealloc(eb->fences, 2889 (eb->num_fences + num_fences) * sizeof(*f), 2890 __GFP_NOWARN | GFP_KERNEL); 2891 if (!f) 2892 return -ENOMEM; 2893 2894 eb->fences = f; 2895 f += eb->num_fences; 2896 while (num_fences--) { 2897 struct drm_i915_gem_exec_fence user_fence; 2898 struct drm_syncobj *syncobj; 2899 struct dma_fence *fence = NULL; 2900 2901 if (__copy_from_user(&user_fence, user++, sizeof(user_fence))) 2902 return -EFAULT; 2903 2904 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2905 return -EINVAL; 2906 2907 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2908 if (!syncobj) { 2909 DRM_DEBUG("Invalid syncobj handle provided\n"); 2910 return -ENOENT; 2911 } 2912 2913 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2914 fence = drm_syncobj_fence_get(syncobj); 2915 if (!fence) { 2916 DRM_DEBUG("Syncobj handle has no fence\n"); 2917 drm_syncobj_put(syncobj); 2918 return -EINVAL; 2919 } 2920 } 2921 2922 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2923 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2924 2925 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2926 f->dma_fence = fence; 2927 f->value = 0; 2928 f->chain_fence = NULL; 2929 f++; 2930 eb->num_fences++; 2931 } 2932 2933 return 0; 2934 } 2935 2936 static void put_fence_array(struct eb_fence *fences, int num_fences) 2937 { 2938 if (fences) 2939 __free_fence_array(fences, num_fences); 2940 } 2941 2942 static int 2943 await_fence_array(struct i915_execbuffer *eb, 2944 struct i915_request *rq) 2945 { 2946 unsigned int n; 2947 int err; 2948 2949 for (n = 0; n < eb->num_fences; n++) { 2950 struct drm_syncobj *syncobj; 2951 unsigned int flags; 2952 2953 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 2954 2955 if (!eb->fences[n].dma_fence) 2956 continue; 2957 2958 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence); 2959 if (err < 0) 2960 return err; 2961 } 2962 2963 return 0; 2964 } 2965 2966 static void signal_fence_array(const struct i915_execbuffer *eb, 2967 struct dma_fence * const fence) 2968 { 2969 unsigned int n; 2970 2971 for (n = 0; n < eb->num_fences; n++) { 2972 struct drm_syncobj *syncobj; 2973 unsigned int flags; 2974 2975 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 2976 if (!(flags & I915_EXEC_FENCE_SIGNAL)) 2977 continue; 2978 2979 if (eb->fences[n].chain_fence) { 2980 drm_syncobj_add_point(syncobj, 2981 eb->fences[n].chain_fence, 2982 fence, 2983 eb->fences[n].value); 2984 /* 2985 * The chain's ownership is transferred to the 2986 * timeline. 2987 */ 2988 eb->fences[n].chain_fence = NULL; 2989 } else { 2990 drm_syncobj_replace_fence(syncobj, fence); 2991 } 2992 } 2993 } 2994 2995 static int 2996 parse_timeline_fences(struct i915_user_extension __user *ext, void *data) 2997 { 2998 struct i915_execbuffer *eb = data; 2999 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences; 3000 3001 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences))) 3002 return -EFAULT; 3003 3004 return add_timeline_fence_array(eb, &timeline_fences); 3005 } 3006 3007 static void retire_requests(struct intel_timeline *tl, struct i915_request *end) 3008 { 3009 struct i915_request *rq, *rn; 3010 3011 list_for_each_entry_safe(rq, rn, &tl->requests, link) 3012 if (rq == end || !i915_request_retire(rq)) 3013 break; 3014 } 3015 3016 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq, 3017 int err, bool last_parallel) 3018 { 3019 struct intel_timeline * const tl = i915_request_timeline(rq); 3020 struct i915_sched_attr attr = {}; 3021 struct i915_request *prev; 3022 3023 lockdep_assert_held(&tl->mutex); 3024 lockdep_unpin_lock(&tl->mutex, rq->cookie); 3025 3026 trace_i915_request_add(rq); 3027 3028 prev = __i915_request_commit(rq); 3029 3030 /* Check that the context wasn't destroyed before submission */ 3031 if (likely(!intel_context_is_closed(eb->context))) { 3032 attr = eb->gem_context->sched; 3033 } else { 3034 /* Serialise with context_close via the add_to_timeline */ 3035 i915_request_set_error_once(rq, -ENOENT); 3036 __i915_request_skip(rq); 3037 err = -ENOENT; /* override any transient errors */ 3038 } 3039 3040 if (intel_context_is_parallel(eb->context)) { 3041 if (err) { 3042 __i915_request_skip(rq); 3043 set_bit(I915_FENCE_FLAG_SKIP_PARALLEL, 3044 &rq->fence.flags); 3045 } 3046 if (last_parallel) 3047 set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, 3048 &rq->fence.flags); 3049 } 3050 3051 __i915_request_queue(rq, &attr); 3052 3053 /* Try to clean up the client's timeline after submitting the request */ 3054 if (prev) 3055 retire_requests(tl, prev); 3056 3057 mutex_unlock(&tl->mutex); 3058 3059 return err; 3060 } 3061 3062 static int eb_requests_add(struct i915_execbuffer *eb, int err) 3063 { 3064 int i; 3065 3066 /* 3067 * We iterate in reverse order of creation to release timeline mutexes in 3068 * same order. 3069 */ 3070 for_each_batch_add_order(eb, i) { 3071 struct i915_request *rq = eb->requests[i]; 3072 3073 if (!rq) 3074 continue; 3075 err |= eb_request_add(eb, rq, err, i == 0); 3076 } 3077 3078 return err; 3079 } 3080 3081 static const i915_user_extension_fn execbuf_extensions[] = { 3082 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences, 3083 }; 3084 3085 static int 3086 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args, 3087 struct i915_execbuffer *eb) 3088 { 3089 if (!(args->flags & I915_EXEC_USE_EXTENSIONS)) 3090 return 0; 3091 3092 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot 3093 * have another flag also using it at the same time. 3094 */ 3095 if (eb->args->flags & I915_EXEC_FENCE_ARRAY) 3096 return -EINVAL; 3097 3098 if (args->num_cliprects != 0) 3099 return -EINVAL; 3100 3101 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr), 3102 execbuf_extensions, 3103 ARRAY_SIZE(execbuf_extensions), 3104 eb); 3105 } 3106 3107 static void eb_requests_get(struct i915_execbuffer *eb) 3108 { 3109 unsigned int i; 3110 3111 for_each_batch_create_order(eb, i) { 3112 if (!eb->requests[i]) 3113 break; 3114 3115 i915_request_get(eb->requests[i]); 3116 } 3117 } 3118 3119 static void eb_requests_put(struct i915_execbuffer *eb) 3120 { 3121 unsigned int i; 3122 3123 for_each_batch_create_order(eb, i) { 3124 if (!eb->requests[i]) 3125 break; 3126 3127 i915_request_put(eb->requests[i]); 3128 } 3129 } 3130 3131 static struct sync_file * 3132 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd) 3133 { 3134 struct sync_file *out_fence = NULL; 3135 struct dma_fence_array *fence_array; 3136 struct dma_fence **fences; 3137 unsigned int i; 3138 3139 GEM_BUG_ON(!intel_context_is_parent(eb->context)); 3140 3141 fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL); 3142 if (!fences) 3143 return ERR_PTR(-ENOMEM); 3144 3145 for_each_batch_create_order(eb, i) { 3146 fences[i] = &eb->requests[i]->fence; 3147 __set_bit(I915_FENCE_FLAG_COMPOSITE, 3148 &eb->requests[i]->fence.flags); 3149 } 3150 3151 fence_array = dma_fence_array_create(eb->num_batches, 3152 fences, 3153 eb->context->parallel.fence_context, 3154 eb->context->parallel.seqno++, 3155 false); 3156 if (!fence_array) { 3157 kfree(fences); 3158 return ERR_PTR(-ENOMEM); 3159 } 3160 3161 /* Move ownership to the dma_fence_array created above */ 3162 for_each_batch_create_order(eb, i) 3163 dma_fence_get(fences[i]); 3164 3165 if (out_fence_fd != -1) { 3166 out_fence = sync_file_create(&fence_array->base); 3167 /* sync_file now owns fence_arry, drop creation ref */ 3168 dma_fence_put(&fence_array->base); 3169 if (!out_fence) 3170 return ERR_PTR(-ENOMEM); 3171 } 3172 3173 eb->composite_fence = &fence_array->base; 3174 3175 return out_fence; 3176 } 3177 3178 static struct sync_file * 3179 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq, 3180 struct dma_fence *in_fence, int out_fence_fd) 3181 { 3182 struct sync_file *out_fence = NULL; 3183 int err; 3184 3185 if (unlikely(eb->gem_context->syncobj)) { 3186 struct dma_fence *fence; 3187 3188 fence = drm_syncobj_fence_get(eb->gem_context->syncobj); 3189 err = i915_request_await_dma_fence(rq, fence); 3190 dma_fence_put(fence); 3191 if (err) 3192 return ERR_PTR(err); 3193 } 3194 3195 if (in_fence) { 3196 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT) 3197 err = i915_request_await_execution(rq, in_fence); 3198 else 3199 err = i915_request_await_dma_fence(rq, in_fence); 3200 if (err < 0) 3201 return ERR_PTR(err); 3202 } 3203 3204 if (eb->fences) { 3205 err = await_fence_array(eb, rq); 3206 if (err) 3207 return ERR_PTR(err); 3208 } 3209 3210 if (intel_context_is_parallel(eb->context)) { 3211 out_fence = eb_composite_fence_create(eb, out_fence_fd); 3212 if (IS_ERR(out_fence)) 3213 return ERR_PTR(-ENOMEM); 3214 } else if (out_fence_fd != -1) { 3215 out_fence = sync_file_create(&rq->fence); 3216 if (!out_fence) 3217 return ERR_PTR(-ENOMEM); 3218 } 3219 3220 return out_fence; 3221 } 3222 3223 static struct intel_context * 3224 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number) 3225 { 3226 struct intel_context *child; 3227 3228 if (likely(context_number == 0)) 3229 return eb->context; 3230 3231 for_each_child(eb->context, child) 3232 if (!--context_number) 3233 return child; 3234 3235 GEM_BUG_ON("Context not found"); 3236 3237 return NULL; 3238 } 3239 3240 static struct sync_file * 3241 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence, 3242 int out_fence_fd) 3243 { 3244 struct sync_file *out_fence = NULL; 3245 unsigned int i; 3246 3247 for_each_batch_create_order(eb, i) { 3248 /* Allocate a request for this batch buffer nice and early. */ 3249 eb->requests[i] = i915_request_create(eb_find_context(eb, i)); 3250 if (IS_ERR(eb->requests[i])) { 3251 out_fence = ERR_CAST(eb->requests[i]); 3252 eb->requests[i] = NULL; 3253 return out_fence; 3254 } 3255 3256 /* 3257 * Only the first request added (committed to backend) has to 3258 * take the in fences into account as all subsequent requests 3259 * will have fences inserted inbetween them. 3260 */ 3261 if (i + 1 == eb->num_batches) { 3262 out_fence = eb_fences_add(eb, eb->requests[i], 3263 in_fence, out_fence_fd); 3264 if (IS_ERR(out_fence)) 3265 return out_fence; 3266 } 3267 3268 /* 3269 * Not really on stack, but we don't want to call 3270 * kfree on the batch_snapshot when we put it, so use the 3271 * _onstack interface. 3272 */ 3273 if (eb->batches[i]->vma) 3274 eb->requests[i]->batch_res = 3275 i915_vma_resource_get(eb->batches[i]->vma->resource); 3276 if (eb->batch_pool) { 3277 GEM_BUG_ON(intel_context_is_parallel(eb->context)); 3278 intel_gt_buffer_pool_mark_active(eb->batch_pool, 3279 eb->requests[i]); 3280 } 3281 } 3282 3283 return out_fence; 3284 } 3285 3286 static int 3287 i915_gem_do_execbuffer(struct drm_device *dev, 3288 struct drm_file *file, 3289 struct drm_i915_gem_execbuffer2 *args, 3290 struct drm_i915_gem_exec_object2 *exec) 3291 { 3292 struct drm_i915_private *i915 = to_i915(dev); 3293 struct i915_execbuffer eb; 3294 struct dma_fence *in_fence = NULL; 3295 struct sync_file *out_fence = NULL; 3296 int out_fence_fd = -1; 3297 int err; 3298 3299 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); 3300 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 3301 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 3302 3303 eb.i915 = i915; 3304 eb.file = file; 3305 eb.args = args; 3306 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 3307 args->flags |= __EXEC_HAS_RELOC; 3308 3309 eb.exec = exec; 3310 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1); 3311 eb.vma[0].vma = NULL; 3312 eb.batch_pool = NULL; 3313 3314 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 3315 reloc_cache_init(&eb.reloc_cache, eb.i915); 3316 3317 eb.buffer_count = args->buffer_count; 3318 eb.batch_start_offset = args->batch_start_offset; 3319 eb.trampoline = NULL; 3320 3321 eb.fences = NULL; 3322 eb.num_fences = 0; 3323 3324 eb_capture_list_clear(&eb); 3325 3326 memset(eb.requests, 0, sizeof(struct i915_request *) * 3327 ARRAY_SIZE(eb.requests)); 3328 eb.composite_fence = NULL; 3329 3330 eb.batch_flags = 0; 3331 if (args->flags & I915_EXEC_SECURE) { 3332 if (GRAPHICS_VER(i915) >= 11) 3333 return -ENODEV; 3334 3335 /* Return -EPERM to trigger fallback code on old binaries. */ 3336 if (!HAS_SECURE_BATCHES(i915)) 3337 return -EPERM; 3338 3339 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 3340 return -EPERM; 3341 3342 eb.batch_flags |= I915_DISPATCH_SECURE; 3343 } 3344 if (args->flags & I915_EXEC_IS_PINNED) 3345 eb.batch_flags |= I915_DISPATCH_PINNED; 3346 3347 err = parse_execbuf2_extensions(args, &eb); 3348 if (err) 3349 goto err_ext; 3350 3351 err = add_fence_array(&eb); 3352 if (err) 3353 goto err_ext; 3354 3355 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT) 3356 if (args->flags & IN_FENCES) { 3357 if ((args->flags & IN_FENCES) == IN_FENCES) 3358 return -EINVAL; 3359 3360 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 3361 if (!in_fence) { 3362 err = -EINVAL; 3363 goto err_ext; 3364 } 3365 } 3366 #undef IN_FENCES 3367 3368 if (args->flags & I915_EXEC_FENCE_OUT) { 3369 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 3370 if (out_fence_fd < 0) { 3371 err = out_fence_fd; 3372 goto err_in_fence; 3373 } 3374 } 3375 3376 err = eb_create(&eb); 3377 if (err) 3378 goto err_out_fence; 3379 3380 GEM_BUG_ON(!eb.lut_size); 3381 3382 err = eb_select_context(&eb); 3383 if (unlikely(err)) 3384 goto err_destroy; 3385 3386 err = eb_select_engine(&eb); 3387 if (unlikely(err)) 3388 goto err_context; 3389 3390 err = eb_lookup_vmas(&eb); 3391 if (err) { 3392 eb_release_vmas(&eb, true); 3393 goto err_engine; 3394 } 3395 3396 i915_gem_ww_ctx_init(&eb.ww, true); 3397 3398 err = eb_relocate_parse(&eb); 3399 if (err) { 3400 /* 3401 * If the user expects the execobject.offset and 3402 * reloc.presumed_offset to be an exact match, 3403 * as for using NO_RELOC, then we cannot update 3404 * the execobject.offset until we have completed 3405 * relocation. 3406 */ 3407 args->flags &= ~__EXEC_HAS_RELOC; 3408 goto err_vma; 3409 } 3410 3411 ww_acquire_done(&eb.ww.ctx); 3412 eb_capture_stage(&eb); 3413 3414 out_fence = eb_requests_create(&eb, in_fence, out_fence_fd); 3415 if (IS_ERR(out_fence)) { 3416 err = PTR_ERR(out_fence); 3417 out_fence = NULL; 3418 if (eb.requests[0]) 3419 goto err_request; 3420 else 3421 goto err_vma; 3422 } 3423 3424 err = eb_submit(&eb); 3425 3426 err_request: 3427 eb_requests_get(&eb); 3428 err = eb_requests_add(&eb, err); 3429 3430 if (eb.fences) 3431 signal_fence_array(&eb, eb.composite_fence ? 3432 eb.composite_fence : 3433 &eb.requests[0]->fence); 3434 3435 if (out_fence) { 3436 if (err == 0) { 3437 fd_install(out_fence_fd, out_fence->file); 3438 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ 3439 args->rsvd2 |= (u64)out_fence_fd << 32; 3440 out_fence_fd = -1; 3441 } else { 3442 fput(out_fence->file); 3443 } 3444 } 3445 3446 if (unlikely(eb.gem_context->syncobj)) { 3447 drm_syncobj_replace_fence(eb.gem_context->syncobj, 3448 eb.composite_fence ? 3449 eb.composite_fence : 3450 &eb.requests[0]->fence); 3451 } 3452 3453 if (!out_fence && eb.composite_fence) 3454 dma_fence_put(eb.composite_fence); 3455 3456 eb_requests_put(&eb); 3457 3458 err_vma: 3459 eb_release_vmas(&eb, true); 3460 WARN_ON(err == -EDEADLK); 3461 i915_gem_ww_ctx_fini(&eb.ww); 3462 3463 if (eb.batch_pool) 3464 intel_gt_buffer_pool_put(eb.batch_pool); 3465 err_engine: 3466 eb_put_engine(&eb); 3467 err_context: 3468 i915_gem_context_put(eb.gem_context); 3469 err_destroy: 3470 eb_destroy(&eb); 3471 err_out_fence: 3472 if (out_fence_fd != -1) 3473 put_unused_fd(out_fence_fd); 3474 err_in_fence: 3475 dma_fence_put(in_fence); 3476 err_ext: 3477 put_fence_array(eb.fences, eb.num_fences); 3478 return err; 3479 } 3480 3481 static size_t eb_element_size(void) 3482 { 3483 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma); 3484 } 3485 3486 static bool check_buffer_count(size_t count) 3487 { 3488 const size_t sz = eb_element_size(); 3489 3490 /* 3491 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup 3492 * array size (see eb_create()). Otherwise, we can accept an array as 3493 * large as can be addressed (though use large arrays at your peril)! 3494 */ 3495 3496 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); 3497 } 3498 3499 int 3500 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 3501 struct drm_file *file) 3502 { 3503 struct drm_i915_private *i915 = to_i915(dev); 3504 struct drm_i915_gem_execbuffer2 *args = data; 3505 struct drm_i915_gem_exec_object2 *exec2_list; 3506 const size_t count = args->buffer_count; 3507 int err; 3508 3509 if (!check_buffer_count(count)) { 3510 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 3511 return -EINVAL; 3512 } 3513 3514 err = i915_gem_check_execbuffer(args); 3515 if (err) 3516 return err; 3517 3518 /* Allocate extra slots for use by the command parser */ 3519 exec2_list = kvmalloc_array(count + 2, eb_element_size(), 3520 __GFP_NOWARN | GFP_KERNEL); 3521 if (exec2_list == NULL) { 3522 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", 3523 count); 3524 return -ENOMEM; 3525 } 3526 if (copy_from_user(exec2_list, 3527 u64_to_user_ptr(args->buffers_ptr), 3528 sizeof(*exec2_list) * count)) { 3529 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); 3530 kvfree(exec2_list); 3531 return -EFAULT; 3532 } 3533 3534 err = i915_gem_do_execbuffer(dev, file, args, exec2_list); 3535 3536 /* 3537 * Now that we have begun execution of the batchbuffer, we ignore 3538 * any new error after this point. Also given that we have already 3539 * updated the associated relocations, we try to write out the current 3540 * object locations irrespective of any error. 3541 */ 3542 if (args->flags & __EXEC_HAS_RELOC) { 3543 struct drm_i915_gem_exec_object2 __user *user_exec_list = 3544 u64_to_user_ptr(args->buffers_ptr); 3545 unsigned int i; 3546 3547 /* Copy the new buffer offsets back to the user's exec list. */ 3548 /* 3549 * Note: count * sizeof(*user_exec_list) does not overflow, 3550 * because we checked 'count' in check_buffer_count(). 3551 * 3552 * And this range already got effectively checked earlier 3553 * when we did the "copy_from_user()" above. 3554 */ 3555 if (!user_write_access_begin(user_exec_list, 3556 count * sizeof(*user_exec_list))) 3557 goto end; 3558 3559 for (i = 0; i < args->buffer_count; i++) { 3560 if (!(exec2_list[i].offset & UPDATE)) 3561 continue; 3562 3563 exec2_list[i].offset = 3564 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 3565 unsafe_put_user(exec2_list[i].offset, 3566 &user_exec_list[i].offset, 3567 end_user); 3568 } 3569 end_user: 3570 user_write_access_end(); 3571 end:; 3572 } 3573 3574 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 3575 kvfree(exec2_list); 3576 return err; 3577 } 3578