1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008,2010 Intel Corporation 5 */ 6 7 #include <linux/intel-iommu.h> 8 #include <linux/dma-resv.h> 9 #include <linux/sync_file.h> 10 #include <linux/uaccess.h> 11 12 #include <drm/drm_syncobj.h> 13 #include <drm/i915_drm.h> 14 15 #include "display/intel_frontbuffer.h" 16 17 #include "gem/i915_gem_ioctls.h" 18 #include "gt/intel_context.h" 19 #include "gt/intel_engine_pool.h" 20 #include "gt/intel_gt.h" 21 #include "gt/intel_gt_pm.h" 22 23 #include "i915_drv.h" 24 #include "i915_gem_clflush.h" 25 #include "i915_gem_context.h" 26 #include "i915_gem_ioctls.h" 27 #include "i915_trace.h" 28 29 enum { 30 FORCE_CPU_RELOC = 1, 31 FORCE_GTT_RELOC, 32 FORCE_GPU_RELOC, 33 #define DBG_FORCE_RELOC 0 /* choose one of the above! */ 34 }; 35 36 #define __EXEC_OBJECT_HAS_REF BIT(31) 37 #define __EXEC_OBJECT_HAS_PIN BIT(30) 38 #define __EXEC_OBJECT_HAS_FENCE BIT(29) 39 #define __EXEC_OBJECT_NEEDS_MAP BIT(28) 40 #define __EXEC_OBJECT_NEEDS_BIAS BIT(27) 41 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 27) /* all of the above */ 42 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) 43 44 #define __EXEC_HAS_RELOC BIT(31) 45 #define __EXEC_VALIDATED BIT(30) 46 #define __EXEC_INTERNAL_FLAGS (~0u << 30) 47 #define UPDATE PIN_OFFSET_FIXED 48 49 #define BATCH_OFFSET_BIAS (256*1024) 50 51 #define __I915_EXEC_ILLEGAL_FLAGS \ 52 (__I915_EXEC_UNKNOWN_FLAGS | \ 53 I915_EXEC_CONSTANTS_MASK | \ 54 I915_EXEC_RESOURCE_STREAMER) 55 56 /* Catch emission of unexpected errors for CI! */ 57 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 58 #undef EINVAL 59 #define EINVAL ({ \ 60 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 61 22; \ 62 }) 63 #endif 64 65 /** 66 * DOC: User command execution 67 * 68 * Userspace submits commands to be executed on the GPU as an instruction 69 * stream within a GEM object we call a batchbuffer. This instructions may 70 * refer to other GEM objects containing auxiliary state such as kernels, 71 * samplers, render targets and even secondary batchbuffers. Userspace does 72 * not know where in the GPU memory these objects reside and so before the 73 * batchbuffer is passed to the GPU for execution, those addresses in the 74 * batchbuffer and auxiliary objects are updated. This is known as relocation, 75 * or patching. To try and avoid having to relocate each object on the next 76 * execution, userspace is told the location of those objects in this pass, 77 * but this remains just a hint as the kernel may choose a new location for 78 * any object in the future. 79 * 80 * At the level of talking to the hardware, submitting a batchbuffer for the 81 * GPU to execute is to add content to a buffer from which the HW 82 * command streamer is reading. 83 * 84 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. 85 * Execlists, this command is not placed on the same buffer as the 86 * remaining items. 87 * 88 * 2. Add a command to invalidate caches to the buffer. 89 * 90 * 3. Add a batchbuffer start command to the buffer; the start command is 91 * essentially a token together with the GPU address of the batchbuffer 92 * to be executed. 93 * 94 * 4. Add a pipeline flush to the buffer. 95 * 96 * 5. Add a memory write command to the buffer to record when the GPU 97 * is done executing the batchbuffer. The memory write writes the 98 * global sequence number of the request, ``i915_request::global_seqno``; 99 * the i915 driver uses the current value in the register to determine 100 * if the GPU has completed the batchbuffer. 101 * 102 * 6. Add a user interrupt command to the buffer. This command instructs 103 * the GPU to issue an interrupt when the command, pipeline flush and 104 * memory write are completed. 105 * 106 * 7. Inform the hardware of the additional commands added to the buffer 107 * (by updating the tail pointer). 108 * 109 * Processing an execbuf ioctl is conceptually split up into a few phases. 110 * 111 * 1. Validation - Ensure all the pointers, handles and flags are valid. 112 * 2. Reservation - Assign GPU address space for every object 113 * 3. Relocation - Update any addresses to point to the final locations 114 * 4. Serialisation - Order the request with respect to its dependencies 115 * 5. Construction - Construct a request to execute the batchbuffer 116 * 6. Submission (at some point in the future execution) 117 * 118 * Reserving resources for the execbuf is the most complicated phase. We 119 * neither want to have to migrate the object in the address space, nor do 120 * we want to have to update any relocations pointing to this object. Ideally, 121 * we want to leave the object where it is and for all the existing relocations 122 * to match. If the object is given a new address, or if userspace thinks the 123 * object is elsewhere, we have to parse all the relocation entries and update 124 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that 125 * all the target addresses in all of its objects match the value in the 126 * relocation entries and that they all match the presumed offsets given by the 127 * list of execbuffer objects. Using this knowledge, we know that if we haven't 128 * moved any buffers, all the relocation entries are valid and we can skip 129 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 130 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 131 * 132 * The addresses written in the objects must match the corresponding 133 * reloc.presumed_offset which in turn must match the corresponding 134 * execobject.offset. 135 * 136 * Any render targets written to in the batch must be flagged with 137 * EXEC_OBJECT_WRITE. 138 * 139 * To avoid stalling, execobject.offset should match the current 140 * address of that object within the active context. 141 * 142 * The reservation is done is multiple phases. First we try and keep any 143 * object already bound in its current location - so as long as meets the 144 * constraints imposed by the new execbuffer. Any object left unbound after the 145 * first pass is then fitted into any available idle space. If an object does 146 * not fit, all objects are removed from the reservation and the process rerun 147 * after sorting the objects into a priority order (more difficult to fit 148 * objects are tried first). Failing that, the entire VM is cleared and we try 149 * to fit the execbuf once last time before concluding that it simply will not 150 * fit. 151 * 152 * A small complication to all of this is that we allow userspace not only to 153 * specify an alignment and a size for the object in the address space, but 154 * we also allow userspace to specify the exact offset. This objects are 155 * simpler to place (the location is known a priori) all we have to do is make 156 * sure the space is available. 157 * 158 * Once all the objects are in place, patching up the buried pointers to point 159 * to the final locations is a fairly simple job of walking over the relocation 160 * entry arrays, looking up the right address and rewriting the value into 161 * the object. Simple! ... The relocation entries are stored in user memory 162 * and so to access them we have to copy them into a local buffer. That copy 163 * has to avoid taking any pagefaults as they may lead back to a GEM object 164 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split 165 * the relocation into multiple passes. First we try to do everything within an 166 * atomic context (avoid the pagefaults) which requires that we never wait. If 167 * we detect that we may wait, or if we need to fault, then we have to fallback 168 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 169 * bells yet?) Dropping the mutex means that we lose all the state we have 170 * built up so far for the execbuf and we must reset any global data. However, 171 * we do leave the objects pinned in their final locations - which is a 172 * potential issue for concurrent execbufs. Once we have left the mutex, we can 173 * allocate and copy all the relocation entries into a large array at our 174 * leisure, reacquire the mutex, reclaim all the objects and other state and 175 * then proceed to update any incorrect addresses with the objects. 176 * 177 * As we process the relocation entries, we maintain a record of whether the 178 * object is being written to. Using NORELOC, we expect userspace to provide 179 * this information instead. We also check whether we can skip the relocation 180 * by comparing the expected value inside the relocation entry with the target's 181 * final address. If they differ, we have to map the current object and rewrite 182 * the 4 or 8 byte pointer within. 183 * 184 * Serialising an execbuf is quite simple according to the rules of the GEM 185 * ABI. Execution within each context is ordered by the order of submission. 186 * Writes to any GEM object are in order of submission and are exclusive. Reads 187 * from a GEM object are unordered with respect to other reads, but ordered by 188 * writes. A write submitted after a read cannot occur before the read, and 189 * similarly any read submitted after a write cannot occur before the write. 190 * Writes are ordered between engines such that only one write occurs at any 191 * time (completing any reads beforehand) - using semaphores where available 192 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 193 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 194 * reads before starting, and any read (either using set-domain or pread) must 195 * flush all GPU writes before starting. (Note we only employ a barrier before, 196 * we currently rely on userspace not concurrently starting a new execution 197 * whilst reading or writing to an object. This may be an advantage or not 198 * depending on how much you trust userspace not to shoot themselves in the 199 * foot.) Serialisation may just result in the request being inserted into 200 * a DAG awaiting its turn, but most simple is to wait on the CPU until 201 * all dependencies are resolved. 202 * 203 * After all of that, is just a matter of closing the request and handing it to 204 * the hardware (well, leaving it in a queue to be executed). However, we also 205 * offer the ability for batchbuffers to be run with elevated privileges so 206 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 207 * Before any batch is given extra privileges we first must check that it 208 * contains no nefarious instructions, we check that each instruction is from 209 * our whitelist and all registers are also from an allowed list. We first 210 * copy the user's batchbuffer to a shadow (so that the user doesn't have 211 * access to it, either by the CPU or GPU as we scan it) and then parse each 212 * instruction. If everything is ok, we set a flag telling the hardware to run 213 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 214 */ 215 216 struct i915_execbuffer { 217 struct drm_i915_private *i915; /** i915 backpointer */ 218 struct drm_file *file; /** per-file lookup tables and limits */ 219 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 220 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 221 struct i915_vma **vma; 222 unsigned int *flags; 223 224 struct intel_engine_cs *engine; /** engine to queue the request to */ 225 struct intel_context *context; /* logical state for the request */ 226 struct i915_gem_context *gem_context; /** caller's context */ 227 228 struct i915_request *request; /** our request to build */ 229 struct i915_vma *batch; /** identity of the batch obj/vma */ 230 231 /** actual size of execobj[] as we may extend it for the cmdparser */ 232 unsigned int buffer_count; 233 234 /** list of vma not yet bound during reservation phase */ 235 struct list_head unbound; 236 237 /** list of vma that have execobj.relocation_count */ 238 struct list_head relocs; 239 240 /** 241 * Track the most recently used object for relocations, as we 242 * frequently have to perform multiple relocations within the same 243 * obj/page 244 */ 245 struct reloc_cache { 246 struct drm_mm_node node; /** temporary GTT binding */ 247 unsigned long vaddr; /** Current kmap address */ 248 unsigned long page; /** Currently mapped page index */ 249 unsigned int gen; /** Cached value of INTEL_GEN */ 250 bool use_64bit_reloc : 1; 251 bool has_llc : 1; 252 bool has_fence : 1; 253 bool needs_unfenced : 1; 254 255 struct i915_request *rq; 256 u32 *rq_cmd; 257 unsigned int rq_size; 258 } reloc_cache; 259 260 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 261 u32 context_flags; /** Set of execobj.flags to insert from the ctx */ 262 263 u32 batch_start_offset; /** Location within object of batch */ 264 u32 batch_len; /** Length of batch within object */ 265 u32 batch_flags; /** Flags composed for emit_bb_start() */ 266 267 /** 268 * Indicate either the size of the hastable used to resolve 269 * relocation handles, or if negative that we are using a direct 270 * index into the execobj[]. 271 */ 272 int lut_size; 273 struct hlist_head *buckets; /** ht for relocation handles */ 274 }; 275 276 #define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags]) 277 278 /* 279 * Used to convert any address to canonical form. 280 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS, 281 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the 282 * addresses to be in a canonical form: 283 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct 284 * canonical form [63:48] == [47]." 285 */ 286 #define GEN8_HIGH_ADDRESS_BIT 47 287 static inline u64 gen8_canonical_addr(u64 address) 288 { 289 return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT); 290 } 291 292 static inline u64 gen8_noncanonical_addr(u64 address) 293 { 294 return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0); 295 } 296 297 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) 298 { 299 return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len; 300 } 301 302 static int eb_create(struct i915_execbuffer *eb) 303 { 304 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 305 unsigned int size = 1 + ilog2(eb->buffer_count); 306 307 /* 308 * Without a 1:1 association between relocation handles and 309 * the execobject[] index, we instead create a hashtable. 310 * We size it dynamically based on available memory, starting 311 * first with 1:1 assocative hash and scaling back until 312 * the allocation succeeds. 313 * 314 * Later on we use a positive lut_size to indicate we are 315 * using this hashtable, and a negative value to indicate a 316 * direct lookup. 317 */ 318 do { 319 gfp_t flags; 320 321 /* While we can still reduce the allocation size, don't 322 * raise a warning and allow the allocation to fail. 323 * On the last pass though, we want to try as hard 324 * as possible to perform the allocation and warn 325 * if it fails. 326 */ 327 flags = GFP_KERNEL; 328 if (size > 1) 329 flags |= __GFP_NORETRY | __GFP_NOWARN; 330 331 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 332 flags); 333 if (eb->buckets) 334 break; 335 } while (--size); 336 337 if (unlikely(!size)) 338 return -ENOMEM; 339 340 eb->lut_size = size; 341 } else { 342 eb->lut_size = -eb->buffer_count; 343 } 344 345 return 0; 346 } 347 348 static bool 349 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 350 const struct i915_vma *vma, 351 unsigned int flags) 352 { 353 if (vma->node.size < entry->pad_to_size) 354 return true; 355 356 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) 357 return true; 358 359 if (flags & EXEC_OBJECT_PINNED && 360 vma->node.start != entry->offset) 361 return true; 362 363 if (flags & __EXEC_OBJECT_NEEDS_BIAS && 364 vma->node.start < BATCH_OFFSET_BIAS) 365 return true; 366 367 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 368 (vma->node.start + vma->node.size - 1) >> 32) 369 return true; 370 371 if (flags & __EXEC_OBJECT_NEEDS_MAP && 372 !i915_vma_is_map_and_fenceable(vma)) 373 return true; 374 375 return false; 376 } 377 378 static inline bool 379 eb_pin_vma(struct i915_execbuffer *eb, 380 const struct drm_i915_gem_exec_object2 *entry, 381 struct i915_vma *vma) 382 { 383 unsigned int exec_flags = *vma->exec_flags; 384 u64 pin_flags; 385 386 if (vma->node.size) 387 pin_flags = vma->node.start; 388 else 389 pin_flags = entry->offset & PIN_OFFSET_MASK; 390 391 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED; 392 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT)) 393 pin_flags |= PIN_GLOBAL; 394 395 if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags))) 396 return false; 397 398 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) { 399 if (unlikely(i915_vma_pin_fence(vma))) { 400 i915_vma_unpin(vma); 401 return false; 402 } 403 404 if (vma->fence) 405 exec_flags |= __EXEC_OBJECT_HAS_FENCE; 406 } 407 408 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN; 409 return !eb_vma_misplaced(entry, vma, exec_flags); 410 } 411 412 static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags) 413 { 414 GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN)); 415 416 if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE)) 417 __i915_vma_unpin_fence(vma); 418 419 __i915_vma_unpin(vma); 420 } 421 422 static inline void 423 eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags) 424 { 425 if (!(*flags & __EXEC_OBJECT_HAS_PIN)) 426 return; 427 428 __eb_unreserve_vma(vma, *flags); 429 *flags &= ~__EXEC_OBJECT_RESERVED; 430 } 431 432 static int 433 eb_validate_vma(struct i915_execbuffer *eb, 434 struct drm_i915_gem_exec_object2 *entry, 435 struct i915_vma *vma) 436 { 437 if (unlikely(entry->flags & eb->invalid_flags)) 438 return -EINVAL; 439 440 if (unlikely(entry->alignment && !is_power_of_2(entry->alignment))) 441 return -EINVAL; 442 443 /* 444 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 445 * any non-page-aligned or non-canonical addresses. 446 */ 447 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 448 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) 449 return -EINVAL; 450 451 /* pad_to_size was once a reserved field, so sanitize it */ 452 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 453 if (unlikely(offset_in_page(entry->pad_to_size))) 454 return -EINVAL; 455 } else { 456 entry->pad_to_size = 0; 457 } 458 459 if (unlikely(vma->exec_flags)) { 460 DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n", 461 entry->handle, (int)(entry - eb->exec)); 462 return -EINVAL; 463 } 464 465 /* 466 * From drm_mm perspective address space is continuous, 467 * so from this point we're always using non-canonical 468 * form internally. 469 */ 470 entry->offset = gen8_noncanonical_addr(entry->offset); 471 472 if (!eb->reloc_cache.has_fence) { 473 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 474 } else { 475 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 476 eb->reloc_cache.needs_unfenced) && 477 i915_gem_object_is_tiled(vma->obj)) 478 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 479 } 480 481 if (!(entry->flags & EXEC_OBJECT_PINNED)) 482 entry->flags |= eb->context_flags; 483 484 return 0; 485 } 486 487 static int 488 eb_add_vma(struct i915_execbuffer *eb, 489 unsigned int i, unsigned batch_idx, 490 struct i915_vma *vma) 491 { 492 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 493 int err; 494 495 GEM_BUG_ON(i915_vma_is_closed(vma)); 496 497 if (!(eb->args->flags & __EXEC_VALIDATED)) { 498 err = eb_validate_vma(eb, entry, vma); 499 if (unlikely(err)) 500 return err; 501 } 502 503 if (eb->lut_size > 0) { 504 vma->exec_handle = entry->handle; 505 hlist_add_head(&vma->exec_node, 506 &eb->buckets[hash_32(entry->handle, 507 eb->lut_size)]); 508 } 509 510 if (entry->relocation_count) 511 list_add_tail(&vma->reloc_link, &eb->relocs); 512 513 /* 514 * Stash a pointer from the vma to execobj, so we can query its flags, 515 * size, alignment etc as provided by the user. Also we stash a pointer 516 * to the vma inside the execobj so that we can use a direct lookup 517 * to find the right target VMA when doing relocations. 518 */ 519 eb->vma[i] = vma; 520 eb->flags[i] = entry->flags; 521 vma->exec_flags = &eb->flags[i]; 522 523 /* 524 * SNA is doing fancy tricks with compressing batch buffers, which leads 525 * to negative relocation deltas. Usually that works out ok since the 526 * relocate address is still positive, except when the batch is placed 527 * very low in the GTT. Ensure this doesn't happen. 528 * 529 * Note that actual hangs have only been observed on gen7, but for 530 * paranoia do it everywhere. 531 */ 532 if (i == batch_idx) { 533 if (entry->relocation_count && 534 !(eb->flags[i] & EXEC_OBJECT_PINNED)) 535 eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS; 536 if (eb->reloc_cache.has_fence) 537 eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE; 538 539 eb->batch = vma; 540 } 541 542 err = 0; 543 if (eb_pin_vma(eb, entry, vma)) { 544 if (entry->offset != vma->node.start) { 545 entry->offset = vma->node.start | UPDATE; 546 eb->args->flags |= __EXEC_HAS_RELOC; 547 } 548 } else { 549 eb_unreserve_vma(vma, vma->exec_flags); 550 551 list_add_tail(&vma->exec_link, &eb->unbound); 552 if (drm_mm_node_allocated(&vma->node)) 553 err = i915_vma_unbind(vma); 554 if (unlikely(err)) 555 vma->exec_flags = NULL; 556 } 557 return err; 558 } 559 560 static inline int use_cpu_reloc(const struct reloc_cache *cache, 561 const struct drm_i915_gem_object *obj) 562 { 563 if (!i915_gem_object_has_struct_page(obj)) 564 return false; 565 566 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 567 return true; 568 569 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 570 return false; 571 572 return (cache->has_llc || 573 obj->cache_dirty || 574 obj->cache_level != I915_CACHE_NONE); 575 } 576 577 static int eb_reserve_vma(const struct i915_execbuffer *eb, 578 struct i915_vma *vma) 579 { 580 struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma); 581 unsigned int exec_flags = *vma->exec_flags; 582 u64 pin_flags; 583 int err; 584 585 pin_flags = PIN_USER | PIN_NONBLOCK; 586 if (exec_flags & EXEC_OBJECT_NEEDS_GTT) 587 pin_flags |= PIN_GLOBAL; 588 589 /* 590 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 591 * limit address to the first 4GBs for unflagged objects. 592 */ 593 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 594 pin_flags |= PIN_ZONE_4G; 595 596 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) 597 pin_flags |= PIN_MAPPABLE; 598 599 if (exec_flags & EXEC_OBJECT_PINNED) { 600 pin_flags |= entry->offset | PIN_OFFSET_FIXED; 601 pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */ 602 } else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) { 603 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 604 } 605 606 err = i915_vma_pin(vma, 607 entry->pad_to_size, entry->alignment, 608 pin_flags); 609 if (err) 610 return err; 611 612 if (entry->offset != vma->node.start) { 613 entry->offset = vma->node.start | UPDATE; 614 eb->args->flags |= __EXEC_HAS_RELOC; 615 } 616 617 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) { 618 err = i915_vma_pin_fence(vma); 619 if (unlikely(err)) { 620 i915_vma_unpin(vma); 621 return err; 622 } 623 624 if (vma->fence) 625 exec_flags |= __EXEC_OBJECT_HAS_FENCE; 626 } 627 628 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN; 629 GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags)); 630 631 return 0; 632 } 633 634 static int eb_reserve(struct i915_execbuffer *eb) 635 { 636 const unsigned int count = eb->buffer_count; 637 struct list_head last; 638 struct i915_vma *vma; 639 unsigned int i, pass; 640 int err; 641 642 /* 643 * Attempt to pin all of the buffers into the GTT. 644 * This is done in 3 phases: 645 * 646 * 1a. Unbind all objects that do not match the GTT constraints for 647 * the execbuffer (fenceable, mappable, alignment etc). 648 * 1b. Increment pin count for already bound objects. 649 * 2. Bind new objects. 650 * 3. Decrement pin count. 651 * 652 * This avoid unnecessary unbinding of later objects in order to make 653 * room for the earlier objects *unless* we need to defragment. 654 */ 655 656 pass = 0; 657 err = 0; 658 do { 659 list_for_each_entry(vma, &eb->unbound, exec_link) { 660 err = eb_reserve_vma(eb, vma); 661 if (err) 662 break; 663 } 664 if (err != -ENOSPC) 665 return err; 666 667 /* Resort *all* the objects into priority order */ 668 INIT_LIST_HEAD(&eb->unbound); 669 INIT_LIST_HEAD(&last); 670 for (i = 0; i < count; i++) { 671 unsigned int flags = eb->flags[i]; 672 struct i915_vma *vma = eb->vma[i]; 673 674 if (flags & EXEC_OBJECT_PINNED && 675 flags & __EXEC_OBJECT_HAS_PIN) 676 continue; 677 678 eb_unreserve_vma(vma, &eb->flags[i]); 679 680 if (flags & EXEC_OBJECT_PINNED) 681 /* Pinned must have their slot */ 682 list_add(&vma->exec_link, &eb->unbound); 683 else if (flags & __EXEC_OBJECT_NEEDS_MAP) 684 /* Map require the lowest 256MiB (aperture) */ 685 list_add_tail(&vma->exec_link, &eb->unbound); 686 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 687 /* Prioritise 4GiB region for restricted bo */ 688 list_add(&vma->exec_link, &last); 689 else 690 list_add_tail(&vma->exec_link, &last); 691 } 692 list_splice_tail(&last, &eb->unbound); 693 694 switch (pass++) { 695 case 0: 696 break; 697 698 case 1: 699 /* Too fragmented, unbind everything and retry */ 700 err = i915_gem_evict_vm(eb->context->vm); 701 if (err) 702 return err; 703 break; 704 705 default: 706 return -ENOSPC; 707 } 708 } while (1); 709 } 710 711 static unsigned int eb_batch_index(const struct i915_execbuffer *eb) 712 { 713 if (eb->args->flags & I915_EXEC_BATCH_FIRST) 714 return 0; 715 else 716 return eb->buffer_count - 1; 717 } 718 719 static int eb_select_context(struct i915_execbuffer *eb) 720 { 721 struct i915_gem_context *ctx; 722 723 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 724 if (unlikely(!ctx)) 725 return -ENOENT; 726 727 eb->gem_context = ctx; 728 if (ctx->vm) 729 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 730 731 eb->context_flags = 0; 732 if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags)) 733 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS; 734 735 return 0; 736 } 737 738 static int eb_lookup_vmas(struct i915_execbuffer *eb) 739 { 740 struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma; 741 struct drm_i915_gem_object *obj; 742 unsigned int i, batch; 743 int err; 744 745 if (unlikely(i915_gem_context_is_banned(eb->gem_context))) 746 return -EIO; 747 748 INIT_LIST_HEAD(&eb->relocs); 749 INIT_LIST_HEAD(&eb->unbound); 750 751 batch = eb_batch_index(eb); 752 753 mutex_lock(&eb->gem_context->mutex); 754 if (unlikely(i915_gem_context_is_closed(eb->gem_context))) { 755 err = -ENOENT; 756 goto err_ctx; 757 } 758 759 for (i = 0; i < eb->buffer_count; i++) { 760 u32 handle = eb->exec[i].handle; 761 struct i915_lut_handle *lut; 762 struct i915_vma *vma; 763 764 vma = radix_tree_lookup(handles_vma, handle); 765 if (likely(vma)) 766 goto add_vma; 767 768 obj = i915_gem_object_lookup(eb->file, handle); 769 if (unlikely(!obj)) { 770 err = -ENOENT; 771 goto err_vma; 772 } 773 774 vma = i915_vma_instance(obj, eb->context->vm, NULL); 775 if (IS_ERR(vma)) { 776 err = PTR_ERR(vma); 777 goto err_obj; 778 } 779 780 lut = i915_lut_handle_alloc(); 781 if (unlikely(!lut)) { 782 err = -ENOMEM; 783 goto err_obj; 784 } 785 786 err = radix_tree_insert(handles_vma, handle, vma); 787 if (unlikely(err)) { 788 i915_lut_handle_free(lut); 789 goto err_obj; 790 } 791 792 /* transfer ref to lut */ 793 if (!atomic_fetch_inc(&vma->open_count)) 794 i915_vma_reopen(vma); 795 lut->handle = handle; 796 lut->ctx = eb->gem_context; 797 798 i915_gem_object_lock(obj); 799 list_add(&lut->obj_link, &obj->lut_list); 800 i915_gem_object_unlock(obj); 801 802 add_vma: 803 err = eb_add_vma(eb, i, batch, vma); 804 if (unlikely(err)) 805 goto err_vma; 806 807 GEM_BUG_ON(vma != eb->vma[i]); 808 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]); 809 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && 810 eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i])); 811 } 812 813 mutex_unlock(&eb->gem_context->mutex); 814 815 eb->args->flags |= __EXEC_VALIDATED; 816 return eb_reserve(eb); 817 818 err_obj: 819 i915_gem_object_put(obj); 820 err_vma: 821 eb->vma[i] = NULL; 822 err_ctx: 823 mutex_unlock(&eb->gem_context->mutex); 824 return err; 825 } 826 827 static struct i915_vma * 828 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 829 { 830 if (eb->lut_size < 0) { 831 if (handle >= -eb->lut_size) 832 return NULL; 833 return eb->vma[handle]; 834 } else { 835 struct hlist_head *head; 836 struct i915_vma *vma; 837 838 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 839 hlist_for_each_entry(vma, head, exec_node) { 840 if (vma->exec_handle == handle) 841 return vma; 842 } 843 return NULL; 844 } 845 } 846 847 static void eb_release_vmas(const struct i915_execbuffer *eb) 848 { 849 const unsigned int count = eb->buffer_count; 850 unsigned int i; 851 852 for (i = 0; i < count; i++) { 853 struct i915_vma *vma = eb->vma[i]; 854 unsigned int flags = eb->flags[i]; 855 856 if (!vma) 857 break; 858 859 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]); 860 vma->exec_flags = NULL; 861 eb->vma[i] = NULL; 862 863 if (flags & __EXEC_OBJECT_HAS_PIN) 864 __eb_unreserve_vma(vma, flags); 865 866 if (flags & __EXEC_OBJECT_HAS_REF) 867 i915_vma_put(vma); 868 } 869 } 870 871 static void eb_reset_vmas(const struct i915_execbuffer *eb) 872 { 873 eb_release_vmas(eb); 874 if (eb->lut_size > 0) 875 memset(eb->buckets, 0, 876 sizeof(struct hlist_head) << eb->lut_size); 877 } 878 879 static void eb_destroy(const struct i915_execbuffer *eb) 880 { 881 GEM_BUG_ON(eb->reloc_cache.rq); 882 883 if (eb->lut_size > 0) 884 kfree(eb->buckets); 885 } 886 887 static inline u64 888 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 889 const struct i915_vma *target) 890 { 891 return gen8_canonical_addr((int)reloc->delta + target->node.start); 892 } 893 894 static void reloc_cache_init(struct reloc_cache *cache, 895 struct drm_i915_private *i915) 896 { 897 cache->page = -1; 898 cache->vaddr = 0; 899 /* Must be a variable in the struct to allow GCC to unroll. */ 900 cache->gen = INTEL_GEN(i915); 901 cache->has_llc = HAS_LLC(i915); 902 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 903 cache->has_fence = cache->gen < 4; 904 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 905 cache->node.allocated = false; 906 cache->rq = NULL; 907 cache->rq_size = 0; 908 } 909 910 static inline void *unmask_page(unsigned long p) 911 { 912 return (void *)(uintptr_t)(p & PAGE_MASK); 913 } 914 915 static inline unsigned int unmask_flags(unsigned long p) 916 { 917 return p & ~PAGE_MASK; 918 } 919 920 #define KMAP 0x4 /* after CLFLUSH_FLAGS */ 921 922 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 923 { 924 struct drm_i915_private *i915 = 925 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 926 return &i915->ggtt; 927 } 928 929 static void reloc_gpu_flush(struct reloc_cache *cache) 930 { 931 GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32)); 932 cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END; 933 934 __i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size); 935 i915_gem_object_unpin_map(cache->rq->batch->obj); 936 937 intel_gt_chipset_flush(cache->rq->engine->gt); 938 939 i915_request_add(cache->rq); 940 cache->rq = NULL; 941 } 942 943 static void reloc_cache_reset(struct reloc_cache *cache) 944 { 945 void *vaddr; 946 947 if (cache->rq) 948 reloc_gpu_flush(cache); 949 950 if (!cache->vaddr) 951 return; 952 953 vaddr = unmask_page(cache->vaddr); 954 if (cache->vaddr & KMAP) { 955 if (cache->vaddr & CLFLUSH_AFTER) 956 mb(); 957 958 kunmap_atomic(vaddr); 959 i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm); 960 } else { 961 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 962 963 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 964 io_mapping_unmap_atomic((void __iomem *)vaddr); 965 966 if (cache->node.allocated) { 967 ggtt->vm.clear_range(&ggtt->vm, 968 cache->node.start, 969 cache->node.size); 970 drm_mm_remove_node(&cache->node); 971 } else { 972 i915_vma_unpin((struct i915_vma *)cache->node.mm); 973 } 974 } 975 976 cache->vaddr = 0; 977 cache->page = -1; 978 } 979 980 static void *reloc_kmap(struct drm_i915_gem_object *obj, 981 struct reloc_cache *cache, 982 unsigned long page) 983 { 984 void *vaddr; 985 986 if (cache->vaddr) { 987 kunmap_atomic(unmask_page(cache->vaddr)); 988 } else { 989 unsigned int flushes; 990 int err; 991 992 err = i915_gem_object_prepare_write(obj, &flushes); 993 if (err) 994 return ERR_PTR(err); 995 996 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 997 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); 998 999 cache->vaddr = flushes | KMAP; 1000 cache->node.mm = (void *)obj; 1001 if (flushes) 1002 mb(); 1003 } 1004 1005 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page)); 1006 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 1007 cache->page = page; 1008 1009 return vaddr; 1010 } 1011 1012 static void *reloc_iomap(struct drm_i915_gem_object *obj, 1013 struct reloc_cache *cache, 1014 unsigned long page) 1015 { 1016 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1017 unsigned long offset; 1018 void *vaddr; 1019 1020 if (cache->vaddr) { 1021 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1022 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1023 } else { 1024 struct i915_vma *vma; 1025 int err; 1026 1027 if (i915_gem_object_is_tiled(obj)) 1028 return ERR_PTR(-EINVAL); 1029 1030 if (use_cpu_reloc(cache, obj)) 1031 return NULL; 1032 1033 i915_gem_object_lock(obj); 1034 err = i915_gem_object_set_to_gtt_domain(obj, true); 1035 i915_gem_object_unlock(obj); 1036 if (err) 1037 return ERR_PTR(err); 1038 1039 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 1040 PIN_MAPPABLE | 1041 PIN_NONBLOCK /* NOWARN */ | 1042 PIN_NOEVICT); 1043 if (IS_ERR(vma)) { 1044 memset(&cache->node, 0, sizeof(cache->node)); 1045 err = drm_mm_insert_node_in_range 1046 (&ggtt->vm.mm, &cache->node, 1047 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1048 0, ggtt->mappable_end, 1049 DRM_MM_INSERT_LOW); 1050 if (err) /* no inactive aperture space, use cpu reloc */ 1051 return NULL; 1052 } else { 1053 cache->node.start = vma->node.start; 1054 cache->node.mm = (void *)vma; 1055 } 1056 } 1057 1058 offset = cache->node.start; 1059 if (cache->node.allocated) { 1060 ggtt->vm.insert_page(&ggtt->vm, 1061 i915_gem_object_get_dma_address(obj, page), 1062 offset, I915_CACHE_NONE, 0); 1063 } else { 1064 offset += page << PAGE_SHIFT; 1065 } 1066 1067 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, 1068 offset); 1069 cache->page = page; 1070 cache->vaddr = (unsigned long)vaddr; 1071 1072 return vaddr; 1073 } 1074 1075 static void *reloc_vaddr(struct drm_i915_gem_object *obj, 1076 struct reloc_cache *cache, 1077 unsigned long page) 1078 { 1079 void *vaddr; 1080 1081 if (cache->page == page) { 1082 vaddr = unmask_page(cache->vaddr); 1083 } else { 1084 vaddr = NULL; 1085 if ((cache->vaddr & KMAP) == 0) 1086 vaddr = reloc_iomap(obj, cache, page); 1087 if (!vaddr) 1088 vaddr = reloc_kmap(obj, cache, page); 1089 } 1090 1091 return vaddr; 1092 } 1093 1094 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1095 { 1096 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1097 if (flushes & CLFLUSH_BEFORE) { 1098 clflushopt(addr); 1099 mb(); 1100 } 1101 1102 *addr = value; 1103 1104 /* 1105 * Writes to the same cacheline are serialised by the CPU 1106 * (including clflush). On the write path, we only require 1107 * that it hits memory in an orderly fashion and place 1108 * mb barriers at the start and end of the relocation phase 1109 * to ensure ordering of clflush wrt to the system. 1110 */ 1111 if (flushes & CLFLUSH_AFTER) 1112 clflushopt(addr); 1113 } else 1114 *addr = value; 1115 } 1116 1117 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma) 1118 { 1119 struct drm_i915_gem_object *obj = vma->obj; 1120 int err; 1121 1122 i915_vma_lock(vma); 1123 1124 if (obj->cache_dirty & ~obj->cache_coherent) 1125 i915_gem_clflush_object(obj, 0); 1126 obj->write_domain = 0; 1127 1128 err = i915_request_await_object(rq, vma->obj, true); 1129 if (err == 0) 1130 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE); 1131 1132 i915_vma_unlock(vma); 1133 1134 return err; 1135 } 1136 1137 static int __reloc_gpu_alloc(struct i915_execbuffer *eb, 1138 struct i915_vma *vma, 1139 unsigned int len) 1140 { 1141 struct reloc_cache *cache = &eb->reloc_cache; 1142 struct intel_engine_pool_node *pool; 1143 struct i915_request *rq; 1144 struct i915_vma *batch; 1145 u32 *cmd; 1146 int err; 1147 1148 pool = intel_engine_pool_get(&eb->engine->pool, PAGE_SIZE); 1149 if (IS_ERR(pool)) 1150 return PTR_ERR(pool); 1151 1152 cmd = i915_gem_object_pin_map(pool->obj, 1153 cache->has_llc ? 1154 I915_MAP_FORCE_WB : 1155 I915_MAP_FORCE_WC); 1156 if (IS_ERR(cmd)) { 1157 err = PTR_ERR(cmd); 1158 goto out_pool; 1159 } 1160 1161 batch = i915_vma_instance(pool->obj, vma->vm, NULL); 1162 if (IS_ERR(batch)) { 1163 err = PTR_ERR(batch); 1164 goto err_unmap; 1165 } 1166 1167 err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK); 1168 if (err) 1169 goto err_unmap; 1170 1171 rq = i915_request_create(eb->context); 1172 if (IS_ERR(rq)) { 1173 err = PTR_ERR(rq); 1174 goto err_unpin; 1175 } 1176 1177 err = intel_engine_pool_mark_active(pool, rq); 1178 if (err) 1179 goto err_request; 1180 1181 err = reloc_move_to_gpu(rq, vma); 1182 if (err) 1183 goto err_request; 1184 1185 err = eb->engine->emit_bb_start(rq, 1186 batch->node.start, PAGE_SIZE, 1187 cache->gen > 5 ? 0 : I915_DISPATCH_SECURE); 1188 if (err) 1189 goto skip_request; 1190 1191 i915_vma_lock(batch); 1192 err = i915_request_await_object(rq, batch->obj, false); 1193 if (err == 0) 1194 err = i915_vma_move_to_active(batch, rq, 0); 1195 i915_vma_unlock(batch); 1196 if (err) 1197 goto skip_request; 1198 1199 rq->batch = batch; 1200 i915_vma_unpin(batch); 1201 1202 cache->rq = rq; 1203 cache->rq_cmd = cmd; 1204 cache->rq_size = 0; 1205 1206 /* Return with batch mapping (cmd) still pinned */ 1207 goto out_pool; 1208 1209 skip_request: 1210 i915_request_skip(rq, err); 1211 err_request: 1212 i915_request_add(rq); 1213 err_unpin: 1214 i915_vma_unpin(batch); 1215 err_unmap: 1216 i915_gem_object_unpin_map(pool->obj); 1217 out_pool: 1218 intel_engine_pool_put(pool); 1219 return err; 1220 } 1221 1222 static u32 *reloc_gpu(struct i915_execbuffer *eb, 1223 struct i915_vma *vma, 1224 unsigned int len) 1225 { 1226 struct reloc_cache *cache = &eb->reloc_cache; 1227 u32 *cmd; 1228 1229 if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1)) 1230 reloc_gpu_flush(cache); 1231 1232 if (unlikely(!cache->rq)) { 1233 int err; 1234 1235 /* If we need to copy for the cmdparser, we will stall anyway */ 1236 if (eb_use_cmdparser(eb)) 1237 return ERR_PTR(-EWOULDBLOCK); 1238 1239 if (!intel_engine_can_store_dword(eb->engine)) 1240 return ERR_PTR(-ENODEV); 1241 1242 err = __reloc_gpu_alloc(eb, vma, len); 1243 if (unlikely(err)) 1244 return ERR_PTR(err); 1245 } 1246 1247 cmd = cache->rq_cmd + cache->rq_size; 1248 cache->rq_size += len; 1249 1250 return cmd; 1251 } 1252 1253 static u64 1254 relocate_entry(struct i915_vma *vma, 1255 const struct drm_i915_gem_relocation_entry *reloc, 1256 struct i915_execbuffer *eb, 1257 const struct i915_vma *target) 1258 { 1259 u64 offset = reloc->offset; 1260 u64 target_offset = relocation_target(reloc, target); 1261 bool wide = eb->reloc_cache.use_64bit_reloc; 1262 void *vaddr; 1263 1264 if (!eb->reloc_cache.vaddr && 1265 (DBG_FORCE_RELOC == FORCE_GPU_RELOC || 1266 !dma_resv_test_signaled_rcu(vma->resv, true))) { 1267 const unsigned int gen = eb->reloc_cache.gen; 1268 unsigned int len; 1269 u32 *batch; 1270 u64 addr; 1271 1272 if (wide) 1273 len = offset & 7 ? 8 : 5; 1274 else if (gen >= 4) 1275 len = 4; 1276 else 1277 len = 3; 1278 1279 batch = reloc_gpu(eb, vma, len); 1280 if (IS_ERR(batch)) 1281 goto repeat; 1282 1283 addr = gen8_canonical_addr(vma->node.start + offset); 1284 if (wide) { 1285 if (offset & 7) { 1286 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1287 *batch++ = lower_32_bits(addr); 1288 *batch++ = upper_32_bits(addr); 1289 *batch++ = lower_32_bits(target_offset); 1290 1291 addr = gen8_canonical_addr(addr + 4); 1292 1293 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1294 *batch++ = lower_32_bits(addr); 1295 *batch++ = upper_32_bits(addr); 1296 *batch++ = upper_32_bits(target_offset); 1297 } else { 1298 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1; 1299 *batch++ = lower_32_bits(addr); 1300 *batch++ = upper_32_bits(addr); 1301 *batch++ = lower_32_bits(target_offset); 1302 *batch++ = upper_32_bits(target_offset); 1303 } 1304 } else if (gen >= 6) { 1305 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1306 *batch++ = 0; 1307 *batch++ = addr; 1308 *batch++ = target_offset; 1309 } else if (gen >= 4) { 1310 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 1311 *batch++ = 0; 1312 *batch++ = addr; 1313 *batch++ = target_offset; 1314 } else { 1315 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL; 1316 *batch++ = addr; 1317 *batch++ = target_offset; 1318 } 1319 1320 goto out; 1321 } 1322 1323 repeat: 1324 vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT); 1325 if (IS_ERR(vaddr)) 1326 return PTR_ERR(vaddr); 1327 1328 clflush_write32(vaddr + offset_in_page(offset), 1329 lower_32_bits(target_offset), 1330 eb->reloc_cache.vaddr); 1331 1332 if (wide) { 1333 offset += sizeof(u32); 1334 target_offset >>= 32; 1335 wide = false; 1336 goto repeat; 1337 } 1338 1339 out: 1340 return target->node.start | UPDATE; 1341 } 1342 1343 static u64 1344 eb_relocate_entry(struct i915_execbuffer *eb, 1345 struct i915_vma *vma, 1346 const struct drm_i915_gem_relocation_entry *reloc) 1347 { 1348 struct i915_vma *target; 1349 int err; 1350 1351 /* we've already hold a reference to all valid objects */ 1352 target = eb_get_vma(eb, reloc->target_handle); 1353 if (unlikely(!target)) 1354 return -ENOENT; 1355 1356 /* Validate that the target is in a valid r/w GPU domain */ 1357 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1358 DRM_DEBUG("reloc with multiple write domains: " 1359 "target %d offset %d " 1360 "read %08x write %08x", 1361 reloc->target_handle, 1362 (int) reloc->offset, 1363 reloc->read_domains, 1364 reloc->write_domain); 1365 return -EINVAL; 1366 } 1367 if (unlikely((reloc->write_domain | reloc->read_domains) 1368 & ~I915_GEM_GPU_DOMAINS)) { 1369 DRM_DEBUG("reloc with read/write non-GPU domains: " 1370 "target %d offset %d " 1371 "read %08x write %08x", 1372 reloc->target_handle, 1373 (int) reloc->offset, 1374 reloc->read_domains, 1375 reloc->write_domain); 1376 return -EINVAL; 1377 } 1378 1379 if (reloc->write_domain) { 1380 *target->exec_flags |= EXEC_OBJECT_WRITE; 1381 1382 /* 1383 * Sandybridge PPGTT errata: We need a global gtt mapping 1384 * for MI and pipe_control writes because the gpu doesn't 1385 * properly redirect them through the ppgtt for non_secure 1386 * batchbuffers. 1387 */ 1388 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1389 IS_GEN(eb->i915, 6)) { 1390 err = i915_vma_bind(target, target->obj->cache_level, 1391 PIN_GLOBAL); 1392 if (WARN_ONCE(err, 1393 "Unexpected failure to bind target VMA!")) 1394 return err; 1395 } 1396 } 1397 1398 /* 1399 * If the relocation already has the right value in it, no 1400 * more work needs to be done. 1401 */ 1402 if (!DBG_FORCE_RELOC && 1403 gen8_canonical_addr(target->node.start) == reloc->presumed_offset) 1404 return 0; 1405 1406 /* Check that the relocation address is valid... */ 1407 if (unlikely(reloc->offset > 1408 vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1409 DRM_DEBUG("Relocation beyond object bounds: " 1410 "target %d offset %d size %d.\n", 1411 reloc->target_handle, 1412 (int)reloc->offset, 1413 (int)vma->size); 1414 return -EINVAL; 1415 } 1416 if (unlikely(reloc->offset & 3)) { 1417 DRM_DEBUG("Relocation not 4-byte aligned: " 1418 "target %d offset %d.\n", 1419 reloc->target_handle, 1420 (int)reloc->offset); 1421 return -EINVAL; 1422 } 1423 1424 /* 1425 * If we write into the object, we need to force the synchronisation 1426 * barrier, either with an asynchronous clflush or if we executed the 1427 * patching using the GPU (though that should be serialised by the 1428 * timeline). To be completely sure, and since we are required to 1429 * do relocations we are already stalling, disable the user's opt 1430 * out of our synchronisation. 1431 */ 1432 *vma->exec_flags &= ~EXEC_OBJECT_ASYNC; 1433 1434 /* and update the user's relocation entry */ 1435 return relocate_entry(vma, reloc, eb, target); 1436 } 1437 1438 static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma) 1439 { 1440 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1441 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1442 struct drm_i915_gem_relocation_entry __user *urelocs; 1443 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma); 1444 unsigned int remain; 1445 1446 urelocs = u64_to_user_ptr(entry->relocs_ptr); 1447 remain = entry->relocation_count; 1448 if (unlikely(remain > N_RELOC(ULONG_MAX))) 1449 return -EINVAL; 1450 1451 /* 1452 * We must check that the entire relocation array is safe 1453 * to read. However, if the array is not writable the user loses 1454 * the updated relocation values. 1455 */ 1456 if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs)))) 1457 return -EFAULT; 1458 1459 do { 1460 struct drm_i915_gem_relocation_entry *r = stack; 1461 unsigned int count = 1462 min_t(unsigned int, remain, ARRAY_SIZE(stack)); 1463 unsigned int copied; 1464 1465 /* 1466 * This is the fast path and we cannot handle a pagefault 1467 * whilst holding the struct mutex lest the user pass in the 1468 * relocations contained within a mmaped bo. For in such a case 1469 * we, the page fault handler would call i915_gem_fault() and 1470 * we would try to acquire the struct mutex again. Obviously 1471 * this is bad and so lockdep complains vehemently. 1472 */ 1473 pagefault_disable(); 1474 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); 1475 pagefault_enable(); 1476 if (unlikely(copied)) { 1477 remain = -EFAULT; 1478 goto out; 1479 } 1480 1481 remain -= count; 1482 do { 1483 u64 offset = eb_relocate_entry(eb, vma, r); 1484 1485 if (likely(offset == 0)) { 1486 } else if ((s64)offset < 0) { 1487 remain = (int)offset; 1488 goto out; 1489 } else { 1490 /* 1491 * Note that reporting an error now 1492 * leaves everything in an inconsistent 1493 * state as we have *already* changed 1494 * the relocation value inside the 1495 * object. As we have not changed the 1496 * reloc.presumed_offset or will not 1497 * change the execobject.offset, on the 1498 * call we may not rewrite the value 1499 * inside the object, leaving it 1500 * dangling and causing a GPU hang. Unless 1501 * userspace dynamically rebuilds the 1502 * relocations on each execbuf rather than 1503 * presume a static tree. 1504 * 1505 * We did previously check if the relocations 1506 * were writable (access_ok), an error now 1507 * would be a strange race with mprotect, 1508 * having already demonstrated that we 1509 * can read from this userspace address. 1510 */ 1511 offset = gen8_canonical_addr(offset & ~UPDATE); 1512 if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) { 1513 remain = -EFAULT; 1514 goto out; 1515 } 1516 } 1517 } while (r++, --count); 1518 urelocs += ARRAY_SIZE(stack); 1519 } while (remain); 1520 out: 1521 reloc_cache_reset(&eb->reloc_cache); 1522 return remain; 1523 } 1524 1525 static int 1526 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma) 1527 { 1528 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma); 1529 struct drm_i915_gem_relocation_entry *relocs = 1530 u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1531 unsigned int i; 1532 int err; 1533 1534 for (i = 0; i < entry->relocation_count; i++) { 1535 u64 offset = eb_relocate_entry(eb, vma, &relocs[i]); 1536 1537 if ((s64)offset < 0) { 1538 err = (int)offset; 1539 goto err; 1540 } 1541 } 1542 err = 0; 1543 err: 1544 reloc_cache_reset(&eb->reloc_cache); 1545 return err; 1546 } 1547 1548 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) 1549 { 1550 const char __user *addr, *end; 1551 unsigned long size; 1552 char __maybe_unused c; 1553 1554 size = entry->relocation_count; 1555 if (size == 0) 1556 return 0; 1557 1558 if (size > N_RELOC(ULONG_MAX)) 1559 return -EINVAL; 1560 1561 addr = u64_to_user_ptr(entry->relocs_ptr); 1562 size *= sizeof(struct drm_i915_gem_relocation_entry); 1563 if (!access_ok(addr, size)) 1564 return -EFAULT; 1565 1566 end = addr + size; 1567 for (; addr < end; addr += PAGE_SIZE) { 1568 int err = __get_user(c, addr); 1569 if (err) 1570 return err; 1571 } 1572 return __get_user(c, end - 1); 1573 } 1574 1575 static int eb_copy_relocations(const struct i915_execbuffer *eb) 1576 { 1577 const unsigned int count = eb->buffer_count; 1578 unsigned int i; 1579 int err; 1580 1581 for (i = 0; i < count; i++) { 1582 const unsigned int nreloc = eb->exec[i].relocation_count; 1583 struct drm_i915_gem_relocation_entry __user *urelocs; 1584 struct drm_i915_gem_relocation_entry *relocs; 1585 unsigned long size; 1586 unsigned long copied; 1587 1588 if (nreloc == 0) 1589 continue; 1590 1591 err = check_relocations(&eb->exec[i]); 1592 if (err) 1593 goto err; 1594 1595 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); 1596 size = nreloc * sizeof(*relocs); 1597 1598 relocs = kvmalloc_array(size, 1, GFP_KERNEL); 1599 if (!relocs) { 1600 err = -ENOMEM; 1601 goto err; 1602 } 1603 1604 /* copy_from_user is limited to < 4GiB */ 1605 copied = 0; 1606 do { 1607 unsigned int len = 1608 min_t(u64, BIT_ULL(31), size - copied); 1609 1610 if (__copy_from_user((char *)relocs + copied, 1611 (char __user *)urelocs + copied, 1612 len)) { 1613 end_user: 1614 user_access_end(); 1615 end: 1616 kvfree(relocs); 1617 err = -EFAULT; 1618 goto err; 1619 } 1620 1621 copied += len; 1622 } while (copied < size); 1623 1624 /* 1625 * As we do not update the known relocation offsets after 1626 * relocating (due to the complexities in lock handling), 1627 * we need to mark them as invalid now so that we force the 1628 * relocation processing next time. Just in case the target 1629 * object is evicted and then rebound into its old 1630 * presumed_offset before the next execbuffer - if that 1631 * happened we would make the mistake of assuming that the 1632 * relocations were valid. 1633 */ 1634 if (!user_access_begin(urelocs, size)) 1635 goto end; 1636 1637 for (copied = 0; copied < nreloc; copied++) 1638 unsafe_put_user(-1, 1639 &urelocs[copied].presumed_offset, 1640 end_user); 1641 user_access_end(); 1642 1643 eb->exec[i].relocs_ptr = (uintptr_t)relocs; 1644 } 1645 1646 return 0; 1647 1648 err: 1649 while (i--) { 1650 struct drm_i915_gem_relocation_entry *relocs = 1651 u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); 1652 if (eb->exec[i].relocation_count) 1653 kvfree(relocs); 1654 } 1655 return err; 1656 } 1657 1658 static int eb_prefault_relocations(const struct i915_execbuffer *eb) 1659 { 1660 const unsigned int count = eb->buffer_count; 1661 unsigned int i; 1662 1663 if (unlikely(i915_modparams.prefault_disable)) 1664 return 0; 1665 1666 for (i = 0; i < count; i++) { 1667 int err; 1668 1669 err = check_relocations(&eb->exec[i]); 1670 if (err) 1671 return err; 1672 } 1673 1674 return 0; 1675 } 1676 1677 static noinline int eb_relocate_slow(struct i915_execbuffer *eb) 1678 { 1679 struct drm_device *dev = &eb->i915->drm; 1680 bool have_copy = false; 1681 struct i915_vma *vma; 1682 int err = 0; 1683 1684 repeat: 1685 if (signal_pending(current)) { 1686 err = -ERESTARTSYS; 1687 goto out; 1688 } 1689 1690 /* We may process another execbuffer during the unlock... */ 1691 eb_reset_vmas(eb); 1692 mutex_unlock(&dev->struct_mutex); 1693 1694 /* 1695 * We take 3 passes through the slowpatch. 1696 * 1697 * 1 - we try to just prefault all the user relocation entries and 1698 * then attempt to reuse the atomic pagefault disabled fast path again. 1699 * 1700 * 2 - we copy the user entries to a local buffer here outside of the 1701 * local and allow ourselves to wait upon any rendering before 1702 * relocations 1703 * 1704 * 3 - we already have a local copy of the relocation entries, but 1705 * were interrupted (EAGAIN) whilst waiting for the objects, try again. 1706 */ 1707 if (!err) { 1708 err = eb_prefault_relocations(eb); 1709 } else if (!have_copy) { 1710 err = eb_copy_relocations(eb); 1711 have_copy = err == 0; 1712 } else { 1713 cond_resched(); 1714 err = 0; 1715 } 1716 if (err) { 1717 mutex_lock(&dev->struct_mutex); 1718 goto out; 1719 } 1720 1721 /* A frequent cause for EAGAIN are currently unavailable client pages */ 1722 flush_workqueue(eb->i915->mm.userptr_wq); 1723 1724 err = i915_mutex_lock_interruptible(dev); 1725 if (err) { 1726 mutex_lock(&dev->struct_mutex); 1727 goto out; 1728 } 1729 1730 /* reacquire the objects */ 1731 err = eb_lookup_vmas(eb); 1732 if (err) 1733 goto err; 1734 1735 GEM_BUG_ON(!eb->batch); 1736 1737 list_for_each_entry(vma, &eb->relocs, reloc_link) { 1738 if (!have_copy) { 1739 pagefault_disable(); 1740 err = eb_relocate_vma(eb, vma); 1741 pagefault_enable(); 1742 if (err) 1743 goto repeat; 1744 } else { 1745 err = eb_relocate_vma_slow(eb, vma); 1746 if (err) 1747 goto err; 1748 } 1749 } 1750 1751 /* 1752 * Leave the user relocations as are, this is the painfully slow path, 1753 * and we want to avoid the complication of dropping the lock whilst 1754 * having buffers reserved in the aperture and so causing spurious 1755 * ENOSPC for random operations. 1756 */ 1757 1758 err: 1759 if (err == -EAGAIN) 1760 goto repeat; 1761 1762 out: 1763 if (have_copy) { 1764 const unsigned int count = eb->buffer_count; 1765 unsigned int i; 1766 1767 for (i = 0; i < count; i++) { 1768 const struct drm_i915_gem_exec_object2 *entry = 1769 &eb->exec[i]; 1770 struct drm_i915_gem_relocation_entry *relocs; 1771 1772 if (!entry->relocation_count) 1773 continue; 1774 1775 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1776 kvfree(relocs); 1777 } 1778 } 1779 1780 return err; 1781 } 1782 1783 static int eb_relocate(struct i915_execbuffer *eb) 1784 { 1785 if (eb_lookup_vmas(eb)) 1786 goto slow; 1787 1788 /* The objects are in their final locations, apply the relocations. */ 1789 if (eb->args->flags & __EXEC_HAS_RELOC) { 1790 struct i915_vma *vma; 1791 1792 list_for_each_entry(vma, &eb->relocs, reloc_link) { 1793 if (eb_relocate_vma(eb, vma)) 1794 goto slow; 1795 } 1796 } 1797 1798 return 0; 1799 1800 slow: 1801 return eb_relocate_slow(eb); 1802 } 1803 1804 static int eb_move_to_gpu(struct i915_execbuffer *eb) 1805 { 1806 const unsigned int count = eb->buffer_count; 1807 struct ww_acquire_ctx acquire; 1808 unsigned int i; 1809 int err = 0; 1810 1811 ww_acquire_init(&acquire, &reservation_ww_class); 1812 1813 for (i = 0; i < count; i++) { 1814 struct i915_vma *vma = eb->vma[i]; 1815 1816 err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire); 1817 if (!err) 1818 continue; 1819 1820 GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */ 1821 1822 if (err == -EDEADLK) { 1823 GEM_BUG_ON(i == 0); 1824 do { 1825 int j = i - 1; 1826 1827 ww_mutex_unlock(&eb->vma[j]->resv->lock); 1828 1829 swap(eb->flags[i], eb->flags[j]); 1830 swap(eb->vma[i], eb->vma[j]); 1831 eb->vma[i]->exec_flags = &eb->flags[i]; 1832 } while (--i); 1833 GEM_BUG_ON(vma != eb->vma[0]); 1834 vma->exec_flags = &eb->flags[0]; 1835 1836 err = ww_mutex_lock_slow_interruptible(&vma->resv->lock, 1837 &acquire); 1838 } 1839 if (err) 1840 break; 1841 } 1842 ww_acquire_done(&acquire); 1843 1844 while (i--) { 1845 unsigned int flags = eb->flags[i]; 1846 struct i915_vma *vma = eb->vma[i]; 1847 struct drm_i915_gem_object *obj = vma->obj; 1848 1849 assert_vma_held(vma); 1850 1851 if (flags & EXEC_OBJECT_CAPTURE) { 1852 struct i915_capture_list *capture; 1853 1854 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 1855 if (capture) { 1856 capture->next = eb->request->capture_list; 1857 capture->vma = vma; 1858 eb->request->capture_list = capture; 1859 } 1860 } 1861 1862 /* 1863 * If the GPU is not _reading_ through the CPU cache, we need 1864 * to make sure that any writes (both previous GPU writes from 1865 * before a change in snooping levels and normal CPU writes) 1866 * caught in that cache are flushed to main memory. 1867 * 1868 * We want to say 1869 * obj->cache_dirty && 1870 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) 1871 * but gcc's optimiser doesn't handle that as well and emits 1872 * two jumps instead of one. Maybe one day... 1873 */ 1874 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { 1875 if (i915_gem_clflush_object(obj, 0)) 1876 flags &= ~EXEC_OBJECT_ASYNC; 1877 } 1878 1879 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { 1880 err = i915_request_await_object 1881 (eb->request, obj, flags & EXEC_OBJECT_WRITE); 1882 } 1883 1884 if (err == 0) 1885 err = i915_vma_move_to_active(vma, eb->request, flags); 1886 1887 i915_vma_unlock(vma); 1888 1889 __eb_unreserve_vma(vma, flags); 1890 vma->exec_flags = NULL; 1891 1892 if (unlikely(flags & __EXEC_OBJECT_HAS_REF)) 1893 i915_vma_put(vma); 1894 } 1895 ww_acquire_fini(&acquire); 1896 1897 if (unlikely(err)) 1898 goto err_skip; 1899 1900 eb->exec = NULL; 1901 1902 /* Unconditionally flush any chipset caches (for streaming writes). */ 1903 intel_gt_chipset_flush(eb->engine->gt); 1904 return 0; 1905 1906 err_skip: 1907 i915_request_skip(eb->request, err); 1908 return err; 1909 } 1910 1911 static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) 1912 { 1913 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 1914 return false; 1915 1916 /* Kernel clipping was a DRI1 misfeature */ 1917 if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) { 1918 if (exec->num_cliprects || exec->cliprects_ptr) 1919 return false; 1920 } 1921 1922 if (exec->DR4 == 0xffffffff) { 1923 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); 1924 exec->DR4 = 0; 1925 } 1926 if (exec->DR1 || exec->DR4) 1927 return false; 1928 1929 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 1930 return false; 1931 1932 return true; 1933 } 1934 1935 static int i915_reset_gen7_sol_offsets(struct i915_request *rq) 1936 { 1937 u32 *cs; 1938 int i; 1939 1940 if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) { 1941 DRM_DEBUG("sol reset is gen7/rcs only\n"); 1942 return -EINVAL; 1943 } 1944 1945 cs = intel_ring_begin(rq, 4 * 2 + 2); 1946 if (IS_ERR(cs)) 1947 return PTR_ERR(cs); 1948 1949 *cs++ = MI_LOAD_REGISTER_IMM(4); 1950 for (i = 0; i < 4; i++) { 1951 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 1952 *cs++ = 0; 1953 } 1954 *cs++ = MI_NOOP; 1955 intel_ring_advance(rq, cs); 1956 1957 return 0; 1958 } 1959 1960 static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master) 1961 { 1962 struct intel_engine_pool_node *pool; 1963 struct i915_vma *vma; 1964 int err; 1965 1966 pool = intel_engine_pool_get(&eb->engine->pool, eb->batch_len); 1967 if (IS_ERR(pool)) 1968 return ERR_CAST(pool); 1969 1970 err = intel_engine_cmd_parser(eb->engine, 1971 eb->batch->obj, 1972 pool->obj, 1973 eb->batch_start_offset, 1974 eb->batch_len, 1975 is_master); 1976 if (err) { 1977 if (err == -EACCES) /* unhandled chained batch */ 1978 vma = NULL; 1979 else 1980 vma = ERR_PTR(err); 1981 goto err; 1982 } 1983 1984 vma = i915_gem_object_ggtt_pin(pool->obj, NULL, 0, 0, 0); 1985 if (IS_ERR(vma)) 1986 goto err; 1987 1988 eb->vma[eb->buffer_count] = i915_vma_get(vma); 1989 eb->flags[eb->buffer_count] = 1990 __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF; 1991 vma->exec_flags = &eb->flags[eb->buffer_count]; 1992 eb->buffer_count++; 1993 1994 vma->private = pool; 1995 return vma; 1996 1997 err: 1998 intel_engine_pool_put(pool); 1999 return vma; 2000 } 2001 2002 static void 2003 add_to_client(struct i915_request *rq, struct drm_file *file) 2004 { 2005 struct drm_i915_file_private *file_priv = file->driver_priv; 2006 2007 rq->file_priv = file_priv; 2008 2009 spin_lock(&file_priv->mm.lock); 2010 list_add_tail(&rq->client_link, &file_priv->mm.request_list); 2011 spin_unlock(&file_priv->mm.lock); 2012 } 2013 2014 static int eb_submit(struct i915_execbuffer *eb) 2015 { 2016 int err; 2017 2018 err = eb_move_to_gpu(eb); 2019 if (err) 2020 return err; 2021 2022 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 2023 err = i915_reset_gen7_sol_offsets(eb->request); 2024 if (err) 2025 return err; 2026 } 2027 2028 /* 2029 * After we completed waiting for other engines (using HW semaphores) 2030 * then we can signal that this request/batch is ready to run. This 2031 * allows us to determine if the batch is still waiting on the GPU 2032 * or actually running by checking the breadcrumb. 2033 */ 2034 if (eb->engine->emit_init_breadcrumb) { 2035 err = eb->engine->emit_init_breadcrumb(eb->request); 2036 if (err) 2037 return err; 2038 } 2039 2040 err = eb->engine->emit_bb_start(eb->request, 2041 eb->batch->node.start + 2042 eb->batch_start_offset, 2043 eb->batch_len, 2044 eb->batch_flags); 2045 if (err) 2046 return err; 2047 2048 return 0; 2049 } 2050 2051 static int num_vcs_engines(const struct drm_i915_private *i915) 2052 { 2053 return hweight64(INTEL_INFO(i915)->engine_mask & 2054 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0)); 2055 } 2056 2057 /* 2058 * Find one BSD ring to dispatch the corresponding BSD command. 2059 * The engine index is returned. 2060 */ 2061 static unsigned int 2062 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, 2063 struct drm_file *file) 2064 { 2065 struct drm_i915_file_private *file_priv = file->driver_priv; 2066 2067 /* Check whether the file_priv has already selected one ring. */ 2068 if ((int)file_priv->bsd_engine < 0) 2069 file_priv->bsd_engine = 2070 get_random_int() % num_vcs_engines(dev_priv); 2071 2072 return file_priv->bsd_engine; 2073 } 2074 2075 static const enum intel_engine_id user_ring_map[] = { 2076 [I915_EXEC_DEFAULT] = RCS0, 2077 [I915_EXEC_RENDER] = RCS0, 2078 [I915_EXEC_BLT] = BCS0, 2079 [I915_EXEC_BSD] = VCS0, 2080 [I915_EXEC_VEBOX] = VECS0 2081 }; 2082 2083 static struct i915_request *eb_throttle(struct intel_context *ce) 2084 { 2085 struct intel_ring *ring = ce->ring; 2086 struct intel_timeline *tl = ce->timeline; 2087 struct i915_request *rq; 2088 2089 /* 2090 * Completely unscientific finger-in-the-air estimates for suitable 2091 * maximum user request size (to avoid blocking) and then backoff. 2092 */ 2093 if (intel_ring_update_space(ring) >= PAGE_SIZE) 2094 return NULL; 2095 2096 /* 2097 * Find a request that after waiting upon, there will be at least half 2098 * the ring available. The hysteresis allows us to compete for the 2099 * shared ring and should mean that we sleep less often prior to 2100 * claiming our resources, but not so long that the ring completely 2101 * drains before we can submit our next request. 2102 */ 2103 list_for_each_entry(rq, &tl->requests, link) { 2104 if (rq->ring != ring) 2105 continue; 2106 2107 if (__intel_ring_space(rq->postfix, 2108 ring->emit, ring->size) > ring->size / 2) 2109 break; 2110 } 2111 if (&rq->link == &tl->requests) 2112 return NULL; /* weird, we will check again later for real */ 2113 2114 return i915_request_get(rq); 2115 } 2116 2117 static int 2118 __eb_pin_context(struct i915_execbuffer *eb, struct intel_context *ce) 2119 { 2120 int err; 2121 2122 if (likely(atomic_inc_not_zero(&ce->pin_count))) 2123 return 0; 2124 2125 err = mutex_lock_interruptible(&eb->i915->drm.struct_mutex); 2126 if (err) 2127 return err; 2128 2129 err = __intel_context_do_pin(ce); 2130 mutex_unlock(&eb->i915->drm.struct_mutex); 2131 2132 return err; 2133 } 2134 2135 static void 2136 __eb_unpin_context(struct i915_execbuffer *eb, struct intel_context *ce) 2137 { 2138 if (likely(atomic_add_unless(&ce->pin_count, -1, 1))) 2139 return; 2140 2141 mutex_lock(&eb->i915->drm.struct_mutex); 2142 intel_context_unpin(ce); 2143 mutex_unlock(&eb->i915->drm.struct_mutex); 2144 } 2145 2146 static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce) 2147 { 2148 struct intel_timeline *tl; 2149 struct i915_request *rq; 2150 int err; 2151 2152 /* 2153 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 2154 * EIO if the GPU is already wedged. 2155 */ 2156 err = intel_gt_terminally_wedged(ce->engine->gt); 2157 if (err) 2158 return err; 2159 2160 /* 2161 * Pinning the contexts may generate requests in order to acquire 2162 * GGTT space, so do this first before we reserve a seqno for 2163 * ourselves. 2164 */ 2165 err = __eb_pin_context(eb, ce); 2166 if (err) 2167 return err; 2168 2169 /* 2170 * Take a local wakeref for preparing to dispatch the execbuf as 2171 * we expect to access the hardware fairly frequently in the 2172 * process, and require the engine to be kept awake between accesses. 2173 * Upon dispatch, we acquire another prolonged wakeref that we hold 2174 * until the timeline is idle, which in turn releases the wakeref 2175 * taken on the engine, and the parent device. 2176 */ 2177 tl = intel_context_timeline_lock(ce); 2178 if (IS_ERR(tl)) { 2179 err = PTR_ERR(tl); 2180 goto err_unpin; 2181 } 2182 2183 intel_context_enter(ce); 2184 rq = eb_throttle(ce); 2185 2186 intel_context_timeline_unlock(tl); 2187 2188 if (rq) { 2189 if (i915_request_wait(rq, 2190 I915_WAIT_INTERRUPTIBLE, 2191 MAX_SCHEDULE_TIMEOUT) < 0) { 2192 i915_request_put(rq); 2193 err = -EINTR; 2194 goto err_exit; 2195 } 2196 2197 i915_request_put(rq); 2198 } 2199 2200 eb->engine = ce->engine; 2201 eb->context = ce; 2202 return 0; 2203 2204 err_exit: 2205 mutex_lock(&tl->mutex); 2206 intel_context_exit(ce); 2207 intel_context_timeline_unlock(tl); 2208 err_unpin: 2209 __eb_unpin_context(eb, ce); 2210 return err; 2211 } 2212 2213 static void eb_unpin_engine(struct i915_execbuffer *eb) 2214 { 2215 struct intel_context *ce = eb->context; 2216 struct intel_timeline *tl = ce->timeline; 2217 2218 mutex_lock(&tl->mutex); 2219 intel_context_exit(ce); 2220 mutex_unlock(&tl->mutex); 2221 2222 __eb_unpin_context(eb, ce); 2223 } 2224 2225 static unsigned int 2226 eb_select_legacy_ring(struct i915_execbuffer *eb, 2227 struct drm_file *file, 2228 struct drm_i915_gem_execbuffer2 *args) 2229 { 2230 struct drm_i915_private *i915 = eb->i915; 2231 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2232 2233 if (user_ring_id != I915_EXEC_BSD && 2234 (args->flags & I915_EXEC_BSD_MASK)) { 2235 DRM_DEBUG("execbuf with non bsd ring but with invalid " 2236 "bsd dispatch flags: %d\n", (int)(args->flags)); 2237 return -1; 2238 } 2239 2240 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) { 2241 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2242 2243 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2244 bsd_idx = gen8_dispatch_bsd_engine(i915, file); 2245 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2246 bsd_idx <= I915_EXEC_BSD_RING2) { 2247 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2248 bsd_idx--; 2249 } else { 2250 DRM_DEBUG("execbuf with unknown bsd ring: %u\n", 2251 bsd_idx); 2252 return -1; 2253 } 2254 2255 return _VCS(bsd_idx); 2256 } 2257 2258 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { 2259 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id); 2260 return -1; 2261 } 2262 2263 return user_ring_map[user_ring_id]; 2264 } 2265 2266 static int 2267 eb_pin_engine(struct i915_execbuffer *eb, 2268 struct drm_file *file, 2269 struct drm_i915_gem_execbuffer2 *args) 2270 { 2271 struct intel_context *ce; 2272 unsigned int idx; 2273 int err; 2274 2275 if (i915_gem_context_user_engines(eb->gem_context)) 2276 idx = args->flags & I915_EXEC_RING_MASK; 2277 else 2278 idx = eb_select_legacy_ring(eb, file, args); 2279 2280 ce = i915_gem_context_get_engine(eb->gem_context, idx); 2281 if (IS_ERR(ce)) 2282 return PTR_ERR(ce); 2283 2284 err = __eb_pin_engine(eb, ce); 2285 intel_context_put(ce); 2286 2287 return err; 2288 } 2289 2290 static void 2291 __free_fence_array(struct drm_syncobj **fences, unsigned int n) 2292 { 2293 while (n--) 2294 drm_syncobj_put(ptr_mask_bits(fences[n], 2)); 2295 kvfree(fences); 2296 } 2297 2298 static struct drm_syncobj ** 2299 get_fence_array(struct drm_i915_gem_execbuffer2 *args, 2300 struct drm_file *file) 2301 { 2302 const unsigned long nfences = args->num_cliprects; 2303 struct drm_i915_gem_exec_fence __user *user; 2304 struct drm_syncobj **fences; 2305 unsigned long n; 2306 int err; 2307 2308 if (!(args->flags & I915_EXEC_FENCE_ARRAY)) 2309 return NULL; 2310 2311 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2312 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2313 if (nfences > min_t(unsigned long, 2314 ULONG_MAX / sizeof(*user), 2315 SIZE_MAX / sizeof(*fences))) 2316 return ERR_PTR(-EINVAL); 2317 2318 user = u64_to_user_ptr(args->cliprects_ptr); 2319 if (!access_ok(user, nfences * sizeof(*user))) 2320 return ERR_PTR(-EFAULT); 2321 2322 fences = kvmalloc_array(nfences, sizeof(*fences), 2323 __GFP_NOWARN | GFP_KERNEL); 2324 if (!fences) 2325 return ERR_PTR(-ENOMEM); 2326 2327 for (n = 0; n < nfences; n++) { 2328 struct drm_i915_gem_exec_fence fence; 2329 struct drm_syncobj *syncobj; 2330 2331 if (__copy_from_user(&fence, user++, sizeof(fence))) { 2332 err = -EFAULT; 2333 goto err; 2334 } 2335 2336 if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) { 2337 err = -EINVAL; 2338 goto err; 2339 } 2340 2341 syncobj = drm_syncobj_find(file, fence.handle); 2342 if (!syncobj) { 2343 DRM_DEBUG("Invalid syncobj handle provided\n"); 2344 err = -ENOENT; 2345 goto err; 2346 } 2347 2348 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2349 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2350 2351 fences[n] = ptr_pack_bits(syncobj, fence.flags, 2); 2352 } 2353 2354 return fences; 2355 2356 err: 2357 __free_fence_array(fences, n); 2358 return ERR_PTR(err); 2359 } 2360 2361 static void 2362 put_fence_array(struct drm_i915_gem_execbuffer2 *args, 2363 struct drm_syncobj **fences) 2364 { 2365 if (fences) 2366 __free_fence_array(fences, args->num_cliprects); 2367 } 2368 2369 static int 2370 await_fence_array(struct i915_execbuffer *eb, 2371 struct drm_syncobj **fences) 2372 { 2373 const unsigned int nfences = eb->args->num_cliprects; 2374 unsigned int n; 2375 int err; 2376 2377 for (n = 0; n < nfences; n++) { 2378 struct drm_syncobj *syncobj; 2379 struct dma_fence *fence; 2380 unsigned int flags; 2381 2382 syncobj = ptr_unpack_bits(fences[n], &flags, 2); 2383 if (!(flags & I915_EXEC_FENCE_WAIT)) 2384 continue; 2385 2386 fence = drm_syncobj_fence_get(syncobj); 2387 if (!fence) 2388 return -EINVAL; 2389 2390 err = i915_request_await_dma_fence(eb->request, fence); 2391 dma_fence_put(fence); 2392 if (err < 0) 2393 return err; 2394 } 2395 2396 return 0; 2397 } 2398 2399 static void 2400 signal_fence_array(struct i915_execbuffer *eb, 2401 struct drm_syncobj **fences) 2402 { 2403 const unsigned int nfences = eb->args->num_cliprects; 2404 struct dma_fence * const fence = &eb->request->fence; 2405 unsigned int n; 2406 2407 for (n = 0; n < nfences; n++) { 2408 struct drm_syncobj *syncobj; 2409 unsigned int flags; 2410 2411 syncobj = ptr_unpack_bits(fences[n], &flags, 2); 2412 if (!(flags & I915_EXEC_FENCE_SIGNAL)) 2413 continue; 2414 2415 drm_syncobj_replace_fence(syncobj, fence); 2416 } 2417 } 2418 2419 static int 2420 i915_gem_do_execbuffer(struct drm_device *dev, 2421 struct drm_file *file, 2422 struct drm_i915_gem_execbuffer2 *args, 2423 struct drm_i915_gem_exec_object2 *exec, 2424 struct drm_syncobj **fences) 2425 { 2426 struct i915_execbuffer eb; 2427 struct dma_fence *in_fence = NULL; 2428 struct dma_fence *exec_fence = NULL; 2429 struct sync_file *out_fence = NULL; 2430 int out_fence_fd = -1; 2431 int err; 2432 2433 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); 2434 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 2435 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 2436 2437 eb.i915 = to_i915(dev); 2438 eb.file = file; 2439 eb.args = args; 2440 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 2441 args->flags |= __EXEC_HAS_RELOC; 2442 2443 eb.exec = exec; 2444 eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1); 2445 eb.vma[0] = NULL; 2446 eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1); 2447 2448 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 2449 reloc_cache_init(&eb.reloc_cache, eb.i915); 2450 2451 eb.buffer_count = args->buffer_count; 2452 eb.batch_start_offset = args->batch_start_offset; 2453 eb.batch_len = args->batch_len; 2454 2455 eb.batch_flags = 0; 2456 if (args->flags & I915_EXEC_SECURE) { 2457 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 2458 return -EPERM; 2459 2460 eb.batch_flags |= I915_DISPATCH_SECURE; 2461 } 2462 if (args->flags & I915_EXEC_IS_PINNED) 2463 eb.batch_flags |= I915_DISPATCH_PINNED; 2464 2465 if (args->flags & I915_EXEC_FENCE_IN) { 2466 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 2467 if (!in_fence) 2468 return -EINVAL; 2469 } 2470 2471 if (args->flags & I915_EXEC_FENCE_SUBMIT) { 2472 if (in_fence) { 2473 err = -EINVAL; 2474 goto err_in_fence; 2475 } 2476 2477 exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 2478 if (!exec_fence) { 2479 err = -EINVAL; 2480 goto err_in_fence; 2481 } 2482 } 2483 2484 if (args->flags & I915_EXEC_FENCE_OUT) { 2485 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 2486 if (out_fence_fd < 0) { 2487 err = out_fence_fd; 2488 goto err_exec_fence; 2489 } 2490 } 2491 2492 err = eb_create(&eb); 2493 if (err) 2494 goto err_out_fence; 2495 2496 GEM_BUG_ON(!eb.lut_size); 2497 2498 err = eb_select_context(&eb); 2499 if (unlikely(err)) 2500 goto err_destroy; 2501 2502 err = eb_pin_engine(&eb, file, args); 2503 if (unlikely(err)) 2504 goto err_context; 2505 2506 err = i915_mutex_lock_interruptible(dev); 2507 if (err) 2508 goto err_engine; 2509 2510 err = eb_relocate(&eb); 2511 if (err) { 2512 /* 2513 * If the user expects the execobject.offset and 2514 * reloc.presumed_offset to be an exact match, 2515 * as for using NO_RELOC, then we cannot update 2516 * the execobject.offset until we have completed 2517 * relocation. 2518 */ 2519 args->flags &= ~__EXEC_HAS_RELOC; 2520 goto err_vma; 2521 } 2522 2523 if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) { 2524 DRM_DEBUG("Attempting to use self-modifying batch buffer\n"); 2525 err = -EINVAL; 2526 goto err_vma; 2527 } 2528 if (eb.batch_start_offset > eb.batch->size || 2529 eb.batch_len > eb.batch->size - eb.batch_start_offset) { 2530 DRM_DEBUG("Attempting to use out-of-bounds batch\n"); 2531 err = -EINVAL; 2532 goto err_vma; 2533 } 2534 2535 if (eb_use_cmdparser(&eb)) { 2536 struct i915_vma *vma; 2537 2538 vma = eb_parse(&eb, drm_is_current_master(file)); 2539 if (IS_ERR(vma)) { 2540 err = PTR_ERR(vma); 2541 goto err_vma; 2542 } 2543 2544 if (vma) { 2545 /* 2546 * Batch parsed and accepted: 2547 * 2548 * Set the DISPATCH_SECURE bit to remove the NON_SECURE 2549 * bit from MI_BATCH_BUFFER_START commands issued in 2550 * the dispatch_execbuffer implementations. We 2551 * specifically don't want that set on batches the 2552 * command parser has accepted. 2553 */ 2554 eb.batch_flags |= I915_DISPATCH_SECURE; 2555 eb.batch_start_offset = 0; 2556 eb.batch = vma; 2557 } 2558 } 2559 2560 if (eb.batch_len == 0) 2561 eb.batch_len = eb.batch->size - eb.batch_start_offset; 2562 2563 /* 2564 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2565 * batch" bit. Hence we need to pin secure batches into the global gtt. 2566 * hsw should have this fixed, but bdw mucks it up again. */ 2567 if (eb.batch_flags & I915_DISPATCH_SECURE) { 2568 struct i915_vma *vma; 2569 2570 /* 2571 * So on first glance it looks freaky that we pin the batch here 2572 * outside of the reservation loop. But: 2573 * - The batch is already pinned into the relevant ppgtt, so we 2574 * already have the backing storage fully allocated. 2575 * - No other BO uses the global gtt (well contexts, but meh), 2576 * so we don't really have issues with multiple objects not 2577 * fitting due to fragmentation. 2578 * So this is actually safe. 2579 */ 2580 vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0); 2581 if (IS_ERR(vma)) { 2582 err = PTR_ERR(vma); 2583 goto err_vma; 2584 } 2585 2586 eb.batch = vma; 2587 } 2588 2589 /* All GPU relocation batches must be submitted prior to the user rq */ 2590 GEM_BUG_ON(eb.reloc_cache.rq); 2591 2592 /* Allocate a request for this batch buffer nice and early. */ 2593 eb.request = i915_request_create(eb.context); 2594 if (IS_ERR(eb.request)) { 2595 err = PTR_ERR(eb.request); 2596 goto err_batch_unpin; 2597 } 2598 2599 if (in_fence) { 2600 err = i915_request_await_dma_fence(eb.request, in_fence); 2601 if (err < 0) 2602 goto err_request; 2603 } 2604 2605 if (exec_fence) { 2606 err = i915_request_await_execution(eb.request, exec_fence, 2607 eb.engine->bond_execute); 2608 if (err < 0) 2609 goto err_request; 2610 } 2611 2612 if (fences) { 2613 err = await_fence_array(&eb, fences); 2614 if (err) 2615 goto err_request; 2616 } 2617 2618 if (out_fence_fd != -1) { 2619 out_fence = sync_file_create(&eb.request->fence); 2620 if (!out_fence) { 2621 err = -ENOMEM; 2622 goto err_request; 2623 } 2624 } 2625 2626 /* 2627 * Whilst this request exists, batch_obj will be on the 2628 * active_list, and so will hold the active reference. Only when this 2629 * request is retired will the the batch_obj be moved onto the 2630 * inactive_list and lose its active reference. Hence we do not need 2631 * to explicitly hold another reference here. 2632 */ 2633 eb.request->batch = eb.batch; 2634 if (eb.batch->private) 2635 intel_engine_pool_mark_active(eb.batch->private, eb.request); 2636 2637 trace_i915_request_queue(eb.request, eb.batch_flags); 2638 err = eb_submit(&eb); 2639 err_request: 2640 add_to_client(eb.request, file); 2641 i915_request_add(eb.request); 2642 2643 if (fences) 2644 signal_fence_array(&eb, fences); 2645 2646 if (out_fence) { 2647 if (err == 0) { 2648 fd_install(out_fence_fd, out_fence->file); 2649 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ 2650 args->rsvd2 |= (u64)out_fence_fd << 32; 2651 out_fence_fd = -1; 2652 } else { 2653 fput(out_fence->file); 2654 } 2655 } 2656 2657 err_batch_unpin: 2658 if (eb.batch_flags & I915_DISPATCH_SECURE) 2659 i915_vma_unpin(eb.batch); 2660 if (eb.batch->private) 2661 intel_engine_pool_put(eb.batch->private); 2662 err_vma: 2663 if (eb.exec) 2664 eb_release_vmas(&eb); 2665 mutex_unlock(&dev->struct_mutex); 2666 err_engine: 2667 eb_unpin_engine(&eb); 2668 err_context: 2669 i915_gem_context_put(eb.gem_context); 2670 err_destroy: 2671 eb_destroy(&eb); 2672 err_out_fence: 2673 if (out_fence_fd != -1) 2674 put_unused_fd(out_fence_fd); 2675 err_exec_fence: 2676 dma_fence_put(exec_fence); 2677 err_in_fence: 2678 dma_fence_put(in_fence); 2679 return err; 2680 } 2681 2682 static size_t eb_element_size(void) 2683 { 2684 return (sizeof(struct drm_i915_gem_exec_object2) + 2685 sizeof(struct i915_vma *) + 2686 sizeof(unsigned int)); 2687 } 2688 2689 static bool check_buffer_count(size_t count) 2690 { 2691 const size_t sz = eb_element_size(); 2692 2693 /* 2694 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup 2695 * array size (see eb_create()). Otherwise, we can accept an array as 2696 * large as can be addressed (though use large arrays at your peril)! 2697 */ 2698 2699 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); 2700 } 2701 2702 /* 2703 * Legacy execbuffer just creates an exec2 list from the original exec object 2704 * list array and passes it to the real function. 2705 */ 2706 int 2707 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data, 2708 struct drm_file *file) 2709 { 2710 struct drm_i915_gem_execbuffer *args = data; 2711 struct drm_i915_gem_execbuffer2 exec2; 2712 struct drm_i915_gem_exec_object *exec_list = NULL; 2713 struct drm_i915_gem_exec_object2 *exec2_list = NULL; 2714 const size_t count = args->buffer_count; 2715 unsigned int i; 2716 int err; 2717 2718 if (!check_buffer_count(count)) { 2719 DRM_DEBUG("execbuf2 with %zd buffers\n", count); 2720 return -EINVAL; 2721 } 2722 2723 exec2.buffers_ptr = args->buffers_ptr; 2724 exec2.buffer_count = args->buffer_count; 2725 exec2.batch_start_offset = args->batch_start_offset; 2726 exec2.batch_len = args->batch_len; 2727 exec2.DR1 = args->DR1; 2728 exec2.DR4 = args->DR4; 2729 exec2.num_cliprects = args->num_cliprects; 2730 exec2.cliprects_ptr = args->cliprects_ptr; 2731 exec2.flags = I915_EXEC_RENDER; 2732 i915_execbuffer2_set_context_id(exec2, 0); 2733 2734 if (!i915_gem_check_execbuffer(&exec2)) 2735 return -EINVAL; 2736 2737 /* Copy in the exec list from userland */ 2738 exec_list = kvmalloc_array(count, sizeof(*exec_list), 2739 __GFP_NOWARN | GFP_KERNEL); 2740 exec2_list = kvmalloc_array(count + 1, eb_element_size(), 2741 __GFP_NOWARN | GFP_KERNEL); 2742 if (exec_list == NULL || exec2_list == NULL) { 2743 DRM_DEBUG("Failed to allocate exec list for %d buffers\n", 2744 args->buffer_count); 2745 kvfree(exec_list); 2746 kvfree(exec2_list); 2747 return -ENOMEM; 2748 } 2749 err = copy_from_user(exec_list, 2750 u64_to_user_ptr(args->buffers_ptr), 2751 sizeof(*exec_list) * count); 2752 if (err) { 2753 DRM_DEBUG("copy %d exec entries failed %d\n", 2754 args->buffer_count, err); 2755 kvfree(exec_list); 2756 kvfree(exec2_list); 2757 return -EFAULT; 2758 } 2759 2760 for (i = 0; i < args->buffer_count; i++) { 2761 exec2_list[i].handle = exec_list[i].handle; 2762 exec2_list[i].relocation_count = exec_list[i].relocation_count; 2763 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr; 2764 exec2_list[i].alignment = exec_list[i].alignment; 2765 exec2_list[i].offset = exec_list[i].offset; 2766 if (INTEL_GEN(to_i915(dev)) < 4) 2767 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE; 2768 else 2769 exec2_list[i].flags = 0; 2770 } 2771 2772 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL); 2773 if (exec2.flags & __EXEC_HAS_RELOC) { 2774 struct drm_i915_gem_exec_object __user *user_exec_list = 2775 u64_to_user_ptr(args->buffers_ptr); 2776 2777 /* Copy the new buffer offsets back to the user's exec list. */ 2778 for (i = 0; i < args->buffer_count; i++) { 2779 if (!(exec2_list[i].offset & UPDATE)) 2780 continue; 2781 2782 exec2_list[i].offset = 2783 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 2784 exec2_list[i].offset &= PIN_OFFSET_MASK; 2785 if (__copy_to_user(&user_exec_list[i].offset, 2786 &exec2_list[i].offset, 2787 sizeof(user_exec_list[i].offset))) 2788 break; 2789 } 2790 } 2791 2792 kvfree(exec_list); 2793 kvfree(exec2_list); 2794 return err; 2795 } 2796 2797 int 2798 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 2799 struct drm_file *file) 2800 { 2801 struct drm_i915_gem_execbuffer2 *args = data; 2802 struct drm_i915_gem_exec_object2 *exec2_list; 2803 struct drm_syncobj **fences = NULL; 2804 const size_t count = args->buffer_count; 2805 int err; 2806 2807 if (!check_buffer_count(count)) { 2808 DRM_DEBUG("execbuf2 with %zd buffers\n", count); 2809 return -EINVAL; 2810 } 2811 2812 if (!i915_gem_check_execbuffer(args)) 2813 return -EINVAL; 2814 2815 /* Allocate an extra slot for use by the command parser */ 2816 exec2_list = kvmalloc_array(count + 1, eb_element_size(), 2817 __GFP_NOWARN | GFP_KERNEL); 2818 if (exec2_list == NULL) { 2819 DRM_DEBUG("Failed to allocate exec list for %zd buffers\n", 2820 count); 2821 return -ENOMEM; 2822 } 2823 if (copy_from_user(exec2_list, 2824 u64_to_user_ptr(args->buffers_ptr), 2825 sizeof(*exec2_list) * count)) { 2826 DRM_DEBUG("copy %zd exec entries failed\n", count); 2827 kvfree(exec2_list); 2828 return -EFAULT; 2829 } 2830 2831 if (args->flags & I915_EXEC_FENCE_ARRAY) { 2832 fences = get_fence_array(args, file); 2833 if (IS_ERR(fences)) { 2834 kvfree(exec2_list); 2835 return PTR_ERR(fences); 2836 } 2837 } 2838 2839 err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences); 2840 2841 /* 2842 * Now that we have begun execution of the batchbuffer, we ignore 2843 * any new error after this point. Also given that we have already 2844 * updated the associated relocations, we try to write out the current 2845 * object locations irrespective of any error. 2846 */ 2847 if (args->flags & __EXEC_HAS_RELOC) { 2848 struct drm_i915_gem_exec_object2 __user *user_exec_list = 2849 u64_to_user_ptr(args->buffers_ptr); 2850 unsigned int i; 2851 2852 /* Copy the new buffer offsets back to the user's exec list. */ 2853 /* 2854 * Note: count * sizeof(*user_exec_list) does not overflow, 2855 * because we checked 'count' in check_buffer_count(). 2856 * 2857 * And this range already got effectively checked earlier 2858 * when we did the "copy_from_user()" above. 2859 */ 2860 if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list))) 2861 goto end; 2862 2863 for (i = 0; i < args->buffer_count; i++) { 2864 if (!(exec2_list[i].offset & UPDATE)) 2865 continue; 2866 2867 exec2_list[i].offset = 2868 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 2869 unsafe_put_user(exec2_list[i].offset, 2870 &user_exec_list[i].offset, 2871 end_user); 2872 } 2873 end_user: 2874 user_access_end(); 2875 end:; 2876 } 2877 2878 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 2879 put_fence_array(args, fences); 2880 kvfree(exec2_list); 2881 return err; 2882 } 2883