1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6 
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11 
12 #include <drm/drm_syncobj.h>
13 #include <drm/i915_drm.h>
14 
15 #include "display/intel_frontbuffer.h"
16 
17 #include "gem/i915_gem_ioctls.h"
18 #include "gt/intel_context.h"
19 #include "gt/intel_engine_pool.h"
20 #include "gt/intel_gt.h"
21 #include "gt/intel_gt_pm.h"
22 
23 #include "i915_drv.h"
24 #include "i915_gem_clflush.h"
25 #include "i915_gem_context.h"
26 #include "i915_gem_ioctls.h"
27 #include "i915_trace.h"
28 
29 enum {
30 	FORCE_CPU_RELOC = 1,
31 	FORCE_GTT_RELOC,
32 	FORCE_GPU_RELOC,
33 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
34 };
35 
36 #define __EXEC_OBJECT_HAS_REF		BIT(31)
37 #define __EXEC_OBJECT_HAS_PIN		BIT(30)
38 #define __EXEC_OBJECT_HAS_FENCE		BIT(29)
39 #define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
40 #define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
41 #define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
42 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
43 
44 #define __EXEC_HAS_RELOC	BIT(31)
45 #define __EXEC_VALIDATED	BIT(30)
46 #define __EXEC_INTERNAL_FLAGS	(~0u << 30)
47 #define UPDATE			PIN_OFFSET_FIXED
48 
49 #define BATCH_OFFSET_BIAS (256*1024)
50 
51 #define __I915_EXEC_ILLEGAL_FLAGS \
52 	(__I915_EXEC_UNKNOWN_FLAGS | \
53 	 I915_EXEC_CONSTANTS_MASK  | \
54 	 I915_EXEC_RESOURCE_STREAMER)
55 
56 /* Catch emission of unexpected errors for CI! */
57 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
58 #undef EINVAL
59 #define EINVAL ({ \
60 	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
61 	22; \
62 })
63 #endif
64 
65 /**
66  * DOC: User command execution
67  *
68  * Userspace submits commands to be executed on the GPU as an instruction
69  * stream within a GEM object we call a batchbuffer. This instructions may
70  * refer to other GEM objects containing auxiliary state such as kernels,
71  * samplers, render targets and even secondary batchbuffers. Userspace does
72  * not know where in the GPU memory these objects reside and so before the
73  * batchbuffer is passed to the GPU for execution, those addresses in the
74  * batchbuffer and auxiliary objects are updated. This is known as relocation,
75  * or patching. To try and avoid having to relocate each object on the next
76  * execution, userspace is told the location of those objects in this pass,
77  * but this remains just a hint as the kernel may choose a new location for
78  * any object in the future.
79  *
80  * At the level of talking to the hardware, submitting a batchbuffer for the
81  * GPU to execute is to add content to a buffer from which the HW
82  * command streamer is reading.
83  *
84  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
85  *    Execlists, this command is not placed on the same buffer as the
86  *    remaining items.
87  *
88  * 2. Add a command to invalidate caches to the buffer.
89  *
90  * 3. Add a batchbuffer start command to the buffer; the start command is
91  *    essentially a token together with the GPU address of the batchbuffer
92  *    to be executed.
93  *
94  * 4. Add a pipeline flush to the buffer.
95  *
96  * 5. Add a memory write command to the buffer to record when the GPU
97  *    is done executing the batchbuffer. The memory write writes the
98  *    global sequence number of the request, ``i915_request::global_seqno``;
99  *    the i915 driver uses the current value in the register to determine
100  *    if the GPU has completed the batchbuffer.
101  *
102  * 6. Add a user interrupt command to the buffer. This command instructs
103  *    the GPU to issue an interrupt when the command, pipeline flush and
104  *    memory write are completed.
105  *
106  * 7. Inform the hardware of the additional commands added to the buffer
107  *    (by updating the tail pointer).
108  *
109  * Processing an execbuf ioctl is conceptually split up into a few phases.
110  *
111  * 1. Validation - Ensure all the pointers, handles and flags are valid.
112  * 2. Reservation - Assign GPU address space for every object
113  * 3. Relocation - Update any addresses to point to the final locations
114  * 4. Serialisation - Order the request with respect to its dependencies
115  * 5. Construction - Construct a request to execute the batchbuffer
116  * 6. Submission (at some point in the future execution)
117  *
118  * Reserving resources for the execbuf is the most complicated phase. We
119  * neither want to have to migrate the object in the address space, nor do
120  * we want to have to update any relocations pointing to this object. Ideally,
121  * we want to leave the object where it is and for all the existing relocations
122  * to match. If the object is given a new address, or if userspace thinks the
123  * object is elsewhere, we have to parse all the relocation entries and update
124  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
125  * all the target addresses in all of its objects match the value in the
126  * relocation entries and that they all match the presumed offsets given by the
127  * list of execbuffer objects. Using this knowledge, we know that if we haven't
128  * moved any buffers, all the relocation entries are valid and we can skip
129  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
130  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
131  *
132  *      The addresses written in the objects must match the corresponding
133  *      reloc.presumed_offset which in turn must match the corresponding
134  *      execobject.offset.
135  *
136  *      Any render targets written to in the batch must be flagged with
137  *      EXEC_OBJECT_WRITE.
138  *
139  *      To avoid stalling, execobject.offset should match the current
140  *      address of that object within the active context.
141  *
142  * The reservation is done is multiple phases. First we try and keep any
143  * object already bound in its current location - so as long as meets the
144  * constraints imposed by the new execbuffer. Any object left unbound after the
145  * first pass is then fitted into any available idle space. If an object does
146  * not fit, all objects are removed from the reservation and the process rerun
147  * after sorting the objects into a priority order (more difficult to fit
148  * objects are tried first). Failing that, the entire VM is cleared and we try
149  * to fit the execbuf once last time before concluding that it simply will not
150  * fit.
151  *
152  * A small complication to all of this is that we allow userspace not only to
153  * specify an alignment and a size for the object in the address space, but
154  * we also allow userspace to specify the exact offset. This objects are
155  * simpler to place (the location is known a priori) all we have to do is make
156  * sure the space is available.
157  *
158  * Once all the objects are in place, patching up the buried pointers to point
159  * to the final locations is a fairly simple job of walking over the relocation
160  * entry arrays, looking up the right address and rewriting the value into
161  * the object. Simple! ... The relocation entries are stored in user memory
162  * and so to access them we have to copy them into a local buffer. That copy
163  * has to avoid taking any pagefaults as they may lead back to a GEM object
164  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
165  * the relocation into multiple passes. First we try to do everything within an
166  * atomic context (avoid the pagefaults) which requires that we never wait. If
167  * we detect that we may wait, or if we need to fault, then we have to fallback
168  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
169  * bells yet?) Dropping the mutex means that we lose all the state we have
170  * built up so far for the execbuf and we must reset any global data. However,
171  * we do leave the objects pinned in their final locations - which is a
172  * potential issue for concurrent execbufs. Once we have left the mutex, we can
173  * allocate and copy all the relocation entries into a large array at our
174  * leisure, reacquire the mutex, reclaim all the objects and other state and
175  * then proceed to update any incorrect addresses with the objects.
176  *
177  * As we process the relocation entries, we maintain a record of whether the
178  * object is being written to. Using NORELOC, we expect userspace to provide
179  * this information instead. We also check whether we can skip the relocation
180  * by comparing the expected value inside the relocation entry with the target's
181  * final address. If they differ, we have to map the current object and rewrite
182  * the 4 or 8 byte pointer within.
183  *
184  * Serialising an execbuf is quite simple according to the rules of the GEM
185  * ABI. Execution within each context is ordered by the order of submission.
186  * Writes to any GEM object are in order of submission and are exclusive. Reads
187  * from a GEM object are unordered with respect to other reads, but ordered by
188  * writes. A write submitted after a read cannot occur before the read, and
189  * similarly any read submitted after a write cannot occur before the write.
190  * Writes are ordered between engines such that only one write occurs at any
191  * time (completing any reads beforehand) - using semaphores where available
192  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
193  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
194  * reads before starting, and any read (either using set-domain or pread) must
195  * flush all GPU writes before starting. (Note we only employ a barrier before,
196  * we currently rely on userspace not concurrently starting a new execution
197  * whilst reading or writing to an object. This may be an advantage or not
198  * depending on how much you trust userspace not to shoot themselves in the
199  * foot.) Serialisation may just result in the request being inserted into
200  * a DAG awaiting its turn, but most simple is to wait on the CPU until
201  * all dependencies are resolved.
202  *
203  * After all of that, is just a matter of closing the request and handing it to
204  * the hardware (well, leaving it in a queue to be executed). However, we also
205  * offer the ability for batchbuffers to be run with elevated privileges so
206  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
207  * Before any batch is given extra privileges we first must check that it
208  * contains no nefarious instructions, we check that each instruction is from
209  * our whitelist and all registers are also from an allowed list. We first
210  * copy the user's batchbuffer to a shadow (so that the user doesn't have
211  * access to it, either by the CPU or GPU as we scan it) and then parse each
212  * instruction. If everything is ok, we set a flag telling the hardware to run
213  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
214  */
215 
216 struct i915_execbuffer {
217 	struct drm_i915_private *i915; /** i915 backpointer */
218 	struct drm_file *file; /** per-file lookup tables and limits */
219 	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
220 	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
221 	struct i915_vma **vma;
222 	unsigned int *flags;
223 
224 	struct intel_engine_cs *engine; /** engine to queue the request to */
225 	struct intel_context *context; /* logical state for the request */
226 	struct i915_gem_context *gem_context; /** caller's context */
227 
228 	struct i915_request *request; /** our request to build */
229 	struct i915_vma *batch; /** identity of the batch obj/vma */
230 
231 	/** actual size of execobj[] as we may extend it for the cmdparser */
232 	unsigned int buffer_count;
233 
234 	/** list of vma not yet bound during reservation phase */
235 	struct list_head unbound;
236 
237 	/** list of vma that have execobj.relocation_count */
238 	struct list_head relocs;
239 
240 	/**
241 	 * Track the most recently used object for relocations, as we
242 	 * frequently have to perform multiple relocations within the same
243 	 * obj/page
244 	 */
245 	struct reloc_cache {
246 		struct drm_mm_node node; /** temporary GTT binding */
247 		unsigned long vaddr; /** Current kmap address */
248 		unsigned long page; /** Currently mapped page index */
249 		unsigned int gen; /** Cached value of INTEL_GEN */
250 		bool use_64bit_reloc : 1;
251 		bool has_llc : 1;
252 		bool has_fence : 1;
253 		bool needs_unfenced : 1;
254 
255 		struct i915_request *rq;
256 		u32 *rq_cmd;
257 		unsigned int rq_size;
258 	} reloc_cache;
259 
260 	u64 invalid_flags; /** Set of execobj.flags that are invalid */
261 	u32 context_flags; /** Set of execobj.flags to insert from the ctx */
262 
263 	u32 batch_start_offset; /** Location within object of batch */
264 	u32 batch_len; /** Length of batch within object */
265 	u32 batch_flags; /** Flags composed for emit_bb_start() */
266 
267 	/**
268 	 * Indicate either the size of the hastable used to resolve
269 	 * relocation handles, or if negative that we are using a direct
270 	 * index into the execobj[].
271 	 */
272 	int lut_size;
273 	struct hlist_head *buckets; /** ht for relocation handles */
274 };
275 
276 #define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
277 
278 /*
279  * Used to convert any address to canonical form.
280  * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
281  * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
282  * addresses to be in a canonical form:
283  * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
284  * canonical form [63:48] == [47]."
285  */
286 #define GEN8_HIGH_ADDRESS_BIT 47
287 static inline u64 gen8_canonical_addr(u64 address)
288 {
289 	return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
290 }
291 
292 static inline u64 gen8_noncanonical_addr(u64 address)
293 {
294 	return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
295 }
296 
297 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
298 {
299 	return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
300 }
301 
302 static int eb_create(struct i915_execbuffer *eb)
303 {
304 	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
305 		unsigned int size = 1 + ilog2(eb->buffer_count);
306 
307 		/*
308 		 * Without a 1:1 association between relocation handles and
309 		 * the execobject[] index, we instead create a hashtable.
310 		 * We size it dynamically based on available memory, starting
311 		 * first with 1:1 assocative hash and scaling back until
312 		 * the allocation succeeds.
313 		 *
314 		 * Later on we use a positive lut_size to indicate we are
315 		 * using this hashtable, and a negative value to indicate a
316 		 * direct lookup.
317 		 */
318 		do {
319 			gfp_t flags;
320 
321 			/* While we can still reduce the allocation size, don't
322 			 * raise a warning and allow the allocation to fail.
323 			 * On the last pass though, we want to try as hard
324 			 * as possible to perform the allocation and warn
325 			 * if it fails.
326 			 */
327 			flags = GFP_KERNEL;
328 			if (size > 1)
329 				flags |= __GFP_NORETRY | __GFP_NOWARN;
330 
331 			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
332 					      flags);
333 			if (eb->buckets)
334 				break;
335 		} while (--size);
336 
337 		if (unlikely(!size))
338 			return -ENOMEM;
339 
340 		eb->lut_size = size;
341 	} else {
342 		eb->lut_size = -eb->buffer_count;
343 	}
344 
345 	return 0;
346 }
347 
348 static bool
349 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
350 		 const struct i915_vma *vma,
351 		 unsigned int flags)
352 {
353 	if (vma->node.size < entry->pad_to_size)
354 		return true;
355 
356 	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
357 		return true;
358 
359 	if (flags & EXEC_OBJECT_PINNED &&
360 	    vma->node.start != entry->offset)
361 		return true;
362 
363 	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
364 	    vma->node.start < BATCH_OFFSET_BIAS)
365 		return true;
366 
367 	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
368 	    (vma->node.start + vma->node.size - 1) >> 32)
369 		return true;
370 
371 	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
372 	    !i915_vma_is_map_and_fenceable(vma))
373 		return true;
374 
375 	return false;
376 }
377 
378 static inline bool
379 eb_pin_vma(struct i915_execbuffer *eb,
380 	   const struct drm_i915_gem_exec_object2 *entry,
381 	   struct i915_vma *vma)
382 {
383 	unsigned int exec_flags = *vma->exec_flags;
384 	u64 pin_flags;
385 
386 	if (vma->node.size)
387 		pin_flags = vma->node.start;
388 	else
389 		pin_flags = entry->offset & PIN_OFFSET_MASK;
390 
391 	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
392 	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
393 		pin_flags |= PIN_GLOBAL;
394 
395 	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
396 		return false;
397 
398 	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
399 		if (unlikely(i915_vma_pin_fence(vma))) {
400 			i915_vma_unpin(vma);
401 			return false;
402 		}
403 
404 		if (vma->fence)
405 			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
406 	}
407 
408 	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
409 	return !eb_vma_misplaced(entry, vma, exec_flags);
410 }
411 
412 static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
413 {
414 	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
415 
416 	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
417 		__i915_vma_unpin_fence(vma);
418 
419 	__i915_vma_unpin(vma);
420 }
421 
422 static inline void
423 eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
424 {
425 	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
426 		return;
427 
428 	__eb_unreserve_vma(vma, *flags);
429 	*flags &= ~__EXEC_OBJECT_RESERVED;
430 }
431 
432 static int
433 eb_validate_vma(struct i915_execbuffer *eb,
434 		struct drm_i915_gem_exec_object2 *entry,
435 		struct i915_vma *vma)
436 {
437 	if (unlikely(entry->flags & eb->invalid_flags))
438 		return -EINVAL;
439 
440 	if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
441 		return -EINVAL;
442 
443 	/*
444 	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
445 	 * any non-page-aligned or non-canonical addresses.
446 	 */
447 	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
448 		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
449 		return -EINVAL;
450 
451 	/* pad_to_size was once a reserved field, so sanitize it */
452 	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
453 		if (unlikely(offset_in_page(entry->pad_to_size)))
454 			return -EINVAL;
455 	} else {
456 		entry->pad_to_size = 0;
457 	}
458 
459 	if (unlikely(vma->exec_flags)) {
460 		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
461 			  entry->handle, (int)(entry - eb->exec));
462 		return -EINVAL;
463 	}
464 
465 	/*
466 	 * From drm_mm perspective address space is continuous,
467 	 * so from this point we're always using non-canonical
468 	 * form internally.
469 	 */
470 	entry->offset = gen8_noncanonical_addr(entry->offset);
471 
472 	if (!eb->reloc_cache.has_fence) {
473 		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
474 	} else {
475 		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
476 		     eb->reloc_cache.needs_unfenced) &&
477 		    i915_gem_object_is_tiled(vma->obj))
478 			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
479 	}
480 
481 	if (!(entry->flags & EXEC_OBJECT_PINNED))
482 		entry->flags |= eb->context_flags;
483 
484 	return 0;
485 }
486 
487 static int
488 eb_add_vma(struct i915_execbuffer *eb,
489 	   unsigned int i, unsigned batch_idx,
490 	   struct i915_vma *vma)
491 {
492 	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
493 	int err;
494 
495 	GEM_BUG_ON(i915_vma_is_closed(vma));
496 
497 	if (!(eb->args->flags & __EXEC_VALIDATED)) {
498 		err = eb_validate_vma(eb, entry, vma);
499 		if (unlikely(err))
500 			return err;
501 	}
502 
503 	if (eb->lut_size > 0) {
504 		vma->exec_handle = entry->handle;
505 		hlist_add_head(&vma->exec_node,
506 			       &eb->buckets[hash_32(entry->handle,
507 						    eb->lut_size)]);
508 	}
509 
510 	if (entry->relocation_count)
511 		list_add_tail(&vma->reloc_link, &eb->relocs);
512 
513 	/*
514 	 * Stash a pointer from the vma to execobj, so we can query its flags,
515 	 * size, alignment etc as provided by the user. Also we stash a pointer
516 	 * to the vma inside the execobj so that we can use a direct lookup
517 	 * to find the right target VMA when doing relocations.
518 	 */
519 	eb->vma[i] = vma;
520 	eb->flags[i] = entry->flags;
521 	vma->exec_flags = &eb->flags[i];
522 
523 	/*
524 	 * SNA is doing fancy tricks with compressing batch buffers, which leads
525 	 * to negative relocation deltas. Usually that works out ok since the
526 	 * relocate address is still positive, except when the batch is placed
527 	 * very low in the GTT. Ensure this doesn't happen.
528 	 *
529 	 * Note that actual hangs have only been observed on gen7, but for
530 	 * paranoia do it everywhere.
531 	 */
532 	if (i == batch_idx) {
533 		if (entry->relocation_count &&
534 		    !(eb->flags[i] & EXEC_OBJECT_PINNED))
535 			eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
536 		if (eb->reloc_cache.has_fence)
537 			eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
538 
539 		eb->batch = vma;
540 	}
541 
542 	err = 0;
543 	if (eb_pin_vma(eb, entry, vma)) {
544 		if (entry->offset != vma->node.start) {
545 			entry->offset = vma->node.start | UPDATE;
546 			eb->args->flags |= __EXEC_HAS_RELOC;
547 		}
548 	} else {
549 		eb_unreserve_vma(vma, vma->exec_flags);
550 
551 		list_add_tail(&vma->exec_link, &eb->unbound);
552 		if (drm_mm_node_allocated(&vma->node))
553 			err = i915_vma_unbind(vma);
554 		if (unlikely(err))
555 			vma->exec_flags = NULL;
556 	}
557 	return err;
558 }
559 
560 static inline int use_cpu_reloc(const struct reloc_cache *cache,
561 				const struct drm_i915_gem_object *obj)
562 {
563 	if (!i915_gem_object_has_struct_page(obj))
564 		return false;
565 
566 	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
567 		return true;
568 
569 	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
570 		return false;
571 
572 	return (cache->has_llc ||
573 		obj->cache_dirty ||
574 		obj->cache_level != I915_CACHE_NONE);
575 }
576 
577 static int eb_reserve_vma(const struct i915_execbuffer *eb,
578 			  struct i915_vma *vma)
579 {
580 	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
581 	unsigned int exec_flags = *vma->exec_flags;
582 	u64 pin_flags;
583 	int err;
584 
585 	pin_flags = PIN_USER | PIN_NONBLOCK;
586 	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
587 		pin_flags |= PIN_GLOBAL;
588 
589 	/*
590 	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
591 	 * limit address to the first 4GBs for unflagged objects.
592 	 */
593 	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
594 		pin_flags |= PIN_ZONE_4G;
595 
596 	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
597 		pin_flags |= PIN_MAPPABLE;
598 
599 	if (exec_flags & EXEC_OBJECT_PINNED) {
600 		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
601 		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
602 	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
603 		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
604 	}
605 
606 	err = i915_vma_pin(vma,
607 			   entry->pad_to_size, entry->alignment,
608 			   pin_flags);
609 	if (err)
610 		return err;
611 
612 	if (entry->offset != vma->node.start) {
613 		entry->offset = vma->node.start | UPDATE;
614 		eb->args->flags |= __EXEC_HAS_RELOC;
615 	}
616 
617 	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
618 		err = i915_vma_pin_fence(vma);
619 		if (unlikely(err)) {
620 			i915_vma_unpin(vma);
621 			return err;
622 		}
623 
624 		if (vma->fence)
625 			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
626 	}
627 
628 	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
629 	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
630 
631 	return 0;
632 }
633 
634 static int eb_reserve(struct i915_execbuffer *eb)
635 {
636 	const unsigned int count = eb->buffer_count;
637 	struct list_head last;
638 	struct i915_vma *vma;
639 	unsigned int i, pass;
640 	int err;
641 
642 	/*
643 	 * Attempt to pin all of the buffers into the GTT.
644 	 * This is done in 3 phases:
645 	 *
646 	 * 1a. Unbind all objects that do not match the GTT constraints for
647 	 *     the execbuffer (fenceable, mappable, alignment etc).
648 	 * 1b. Increment pin count for already bound objects.
649 	 * 2.  Bind new objects.
650 	 * 3.  Decrement pin count.
651 	 *
652 	 * This avoid unnecessary unbinding of later objects in order to make
653 	 * room for the earlier objects *unless* we need to defragment.
654 	 */
655 
656 	pass = 0;
657 	err = 0;
658 	do {
659 		list_for_each_entry(vma, &eb->unbound, exec_link) {
660 			err = eb_reserve_vma(eb, vma);
661 			if (err)
662 				break;
663 		}
664 		if (err != -ENOSPC)
665 			return err;
666 
667 		/* Resort *all* the objects into priority order */
668 		INIT_LIST_HEAD(&eb->unbound);
669 		INIT_LIST_HEAD(&last);
670 		for (i = 0; i < count; i++) {
671 			unsigned int flags = eb->flags[i];
672 			struct i915_vma *vma = eb->vma[i];
673 
674 			if (flags & EXEC_OBJECT_PINNED &&
675 			    flags & __EXEC_OBJECT_HAS_PIN)
676 				continue;
677 
678 			eb_unreserve_vma(vma, &eb->flags[i]);
679 
680 			if (flags & EXEC_OBJECT_PINNED)
681 				/* Pinned must have their slot */
682 				list_add(&vma->exec_link, &eb->unbound);
683 			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
684 				/* Map require the lowest 256MiB (aperture) */
685 				list_add_tail(&vma->exec_link, &eb->unbound);
686 			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
687 				/* Prioritise 4GiB region for restricted bo */
688 				list_add(&vma->exec_link, &last);
689 			else
690 				list_add_tail(&vma->exec_link, &last);
691 		}
692 		list_splice_tail(&last, &eb->unbound);
693 
694 		switch (pass++) {
695 		case 0:
696 			break;
697 
698 		case 1:
699 			/* Too fragmented, unbind everything and retry */
700 			err = i915_gem_evict_vm(eb->context->vm);
701 			if (err)
702 				return err;
703 			break;
704 
705 		default:
706 			return -ENOSPC;
707 		}
708 	} while (1);
709 }
710 
711 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
712 {
713 	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
714 		return 0;
715 	else
716 		return eb->buffer_count - 1;
717 }
718 
719 static int eb_select_context(struct i915_execbuffer *eb)
720 {
721 	struct i915_gem_context *ctx;
722 
723 	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
724 	if (unlikely(!ctx))
725 		return -ENOENT;
726 
727 	eb->gem_context = ctx;
728 	if (ctx->vm)
729 		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
730 
731 	eb->context_flags = 0;
732 	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
733 		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
734 
735 	return 0;
736 }
737 
738 static int eb_lookup_vmas(struct i915_execbuffer *eb)
739 {
740 	struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
741 	struct drm_i915_gem_object *obj;
742 	unsigned int i, batch;
743 	int err;
744 
745 	if (unlikely(i915_gem_context_is_banned(eb->gem_context)))
746 		return -EIO;
747 
748 	INIT_LIST_HEAD(&eb->relocs);
749 	INIT_LIST_HEAD(&eb->unbound);
750 
751 	batch = eb_batch_index(eb);
752 
753 	mutex_lock(&eb->gem_context->mutex);
754 	if (unlikely(i915_gem_context_is_closed(eb->gem_context))) {
755 		err = -ENOENT;
756 		goto err_ctx;
757 	}
758 
759 	for (i = 0; i < eb->buffer_count; i++) {
760 		u32 handle = eb->exec[i].handle;
761 		struct i915_lut_handle *lut;
762 		struct i915_vma *vma;
763 
764 		vma = radix_tree_lookup(handles_vma, handle);
765 		if (likely(vma))
766 			goto add_vma;
767 
768 		obj = i915_gem_object_lookup(eb->file, handle);
769 		if (unlikely(!obj)) {
770 			err = -ENOENT;
771 			goto err_vma;
772 		}
773 
774 		vma = i915_vma_instance(obj, eb->context->vm, NULL);
775 		if (IS_ERR(vma)) {
776 			err = PTR_ERR(vma);
777 			goto err_obj;
778 		}
779 
780 		lut = i915_lut_handle_alloc();
781 		if (unlikely(!lut)) {
782 			err = -ENOMEM;
783 			goto err_obj;
784 		}
785 
786 		err = radix_tree_insert(handles_vma, handle, vma);
787 		if (unlikely(err)) {
788 			i915_lut_handle_free(lut);
789 			goto err_obj;
790 		}
791 
792 		/* transfer ref to lut */
793 		if (!atomic_fetch_inc(&vma->open_count))
794 			i915_vma_reopen(vma);
795 		lut->handle = handle;
796 		lut->ctx = eb->gem_context;
797 
798 		i915_gem_object_lock(obj);
799 		list_add(&lut->obj_link, &obj->lut_list);
800 		i915_gem_object_unlock(obj);
801 
802 add_vma:
803 		err = eb_add_vma(eb, i, batch, vma);
804 		if (unlikely(err))
805 			goto err_vma;
806 
807 		GEM_BUG_ON(vma != eb->vma[i]);
808 		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
809 		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
810 			   eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
811 	}
812 
813 	mutex_unlock(&eb->gem_context->mutex);
814 
815 	eb->args->flags |= __EXEC_VALIDATED;
816 	return eb_reserve(eb);
817 
818 err_obj:
819 	i915_gem_object_put(obj);
820 err_vma:
821 	eb->vma[i] = NULL;
822 err_ctx:
823 	mutex_unlock(&eb->gem_context->mutex);
824 	return err;
825 }
826 
827 static struct i915_vma *
828 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
829 {
830 	if (eb->lut_size < 0) {
831 		if (handle >= -eb->lut_size)
832 			return NULL;
833 		return eb->vma[handle];
834 	} else {
835 		struct hlist_head *head;
836 		struct i915_vma *vma;
837 
838 		head = &eb->buckets[hash_32(handle, eb->lut_size)];
839 		hlist_for_each_entry(vma, head, exec_node) {
840 			if (vma->exec_handle == handle)
841 				return vma;
842 		}
843 		return NULL;
844 	}
845 }
846 
847 static void eb_release_vmas(const struct i915_execbuffer *eb)
848 {
849 	const unsigned int count = eb->buffer_count;
850 	unsigned int i;
851 
852 	for (i = 0; i < count; i++) {
853 		struct i915_vma *vma = eb->vma[i];
854 		unsigned int flags = eb->flags[i];
855 
856 		if (!vma)
857 			break;
858 
859 		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
860 		vma->exec_flags = NULL;
861 		eb->vma[i] = NULL;
862 
863 		if (flags & __EXEC_OBJECT_HAS_PIN)
864 			__eb_unreserve_vma(vma, flags);
865 
866 		if (flags & __EXEC_OBJECT_HAS_REF)
867 			i915_vma_put(vma);
868 	}
869 }
870 
871 static void eb_reset_vmas(const struct i915_execbuffer *eb)
872 {
873 	eb_release_vmas(eb);
874 	if (eb->lut_size > 0)
875 		memset(eb->buckets, 0,
876 		       sizeof(struct hlist_head) << eb->lut_size);
877 }
878 
879 static void eb_destroy(const struct i915_execbuffer *eb)
880 {
881 	GEM_BUG_ON(eb->reloc_cache.rq);
882 
883 	if (eb->lut_size > 0)
884 		kfree(eb->buckets);
885 }
886 
887 static inline u64
888 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
889 		  const struct i915_vma *target)
890 {
891 	return gen8_canonical_addr((int)reloc->delta + target->node.start);
892 }
893 
894 static void reloc_cache_init(struct reloc_cache *cache,
895 			     struct drm_i915_private *i915)
896 {
897 	cache->page = -1;
898 	cache->vaddr = 0;
899 	/* Must be a variable in the struct to allow GCC to unroll. */
900 	cache->gen = INTEL_GEN(i915);
901 	cache->has_llc = HAS_LLC(i915);
902 	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
903 	cache->has_fence = cache->gen < 4;
904 	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
905 	cache->node.allocated = false;
906 	cache->rq = NULL;
907 	cache->rq_size = 0;
908 }
909 
910 static inline void *unmask_page(unsigned long p)
911 {
912 	return (void *)(uintptr_t)(p & PAGE_MASK);
913 }
914 
915 static inline unsigned int unmask_flags(unsigned long p)
916 {
917 	return p & ~PAGE_MASK;
918 }
919 
920 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
921 
922 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
923 {
924 	struct drm_i915_private *i915 =
925 		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
926 	return &i915->ggtt;
927 }
928 
929 static void reloc_gpu_flush(struct reloc_cache *cache)
930 {
931 	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
932 	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
933 
934 	__i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
935 	i915_gem_object_unpin_map(cache->rq->batch->obj);
936 
937 	intel_gt_chipset_flush(cache->rq->engine->gt);
938 
939 	i915_request_add(cache->rq);
940 	cache->rq = NULL;
941 }
942 
943 static void reloc_cache_reset(struct reloc_cache *cache)
944 {
945 	void *vaddr;
946 
947 	if (cache->rq)
948 		reloc_gpu_flush(cache);
949 
950 	if (!cache->vaddr)
951 		return;
952 
953 	vaddr = unmask_page(cache->vaddr);
954 	if (cache->vaddr & KMAP) {
955 		if (cache->vaddr & CLFLUSH_AFTER)
956 			mb();
957 
958 		kunmap_atomic(vaddr);
959 		i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
960 	} else {
961 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
962 
963 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
964 		io_mapping_unmap_atomic((void __iomem *)vaddr);
965 
966 		if (cache->node.allocated) {
967 			ggtt->vm.clear_range(&ggtt->vm,
968 					     cache->node.start,
969 					     cache->node.size);
970 			drm_mm_remove_node(&cache->node);
971 		} else {
972 			i915_vma_unpin((struct i915_vma *)cache->node.mm);
973 		}
974 	}
975 
976 	cache->vaddr = 0;
977 	cache->page = -1;
978 }
979 
980 static void *reloc_kmap(struct drm_i915_gem_object *obj,
981 			struct reloc_cache *cache,
982 			unsigned long page)
983 {
984 	void *vaddr;
985 
986 	if (cache->vaddr) {
987 		kunmap_atomic(unmask_page(cache->vaddr));
988 	} else {
989 		unsigned int flushes;
990 		int err;
991 
992 		err = i915_gem_object_prepare_write(obj, &flushes);
993 		if (err)
994 			return ERR_PTR(err);
995 
996 		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
997 		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
998 
999 		cache->vaddr = flushes | KMAP;
1000 		cache->node.mm = (void *)obj;
1001 		if (flushes)
1002 			mb();
1003 	}
1004 
1005 	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
1006 	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1007 	cache->page = page;
1008 
1009 	return vaddr;
1010 }
1011 
1012 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1013 			 struct reloc_cache *cache,
1014 			 unsigned long page)
1015 {
1016 	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1017 	unsigned long offset;
1018 	void *vaddr;
1019 
1020 	if (cache->vaddr) {
1021 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1022 		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1023 	} else {
1024 		struct i915_vma *vma;
1025 		int err;
1026 
1027 		if (i915_gem_object_is_tiled(obj))
1028 			return ERR_PTR(-EINVAL);
1029 
1030 		if (use_cpu_reloc(cache, obj))
1031 			return NULL;
1032 
1033 		i915_gem_object_lock(obj);
1034 		err = i915_gem_object_set_to_gtt_domain(obj, true);
1035 		i915_gem_object_unlock(obj);
1036 		if (err)
1037 			return ERR_PTR(err);
1038 
1039 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1040 					       PIN_MAPPABLE |
1041 					       PIN_NONBLOCK /* NOWARN */ |
1042 					       PIN_NOEVICT);
1043 		if (IS_ERR(vma)) {
1044 			memset(&cache->node, 0, sizeof(cache->node));
1045 			err = drm_mm_insert_node_in_range
1046 				(&ggtt->vm.mm, &cache->node,
1047 				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1048 				 0, ggtt->mappable_end,
1049 				 DRM_MM_INSERT_LOW);
1050 			if (err) /* no inactive aperture space, use cpu reloc */
1051 				return NULL;
1052 		} else {
1053 			cache->node.start = vma->node.start;
1054 			cache->node.mm = (void *)vma;
1055 		}
1056 	}
1057 
1058 	offset = cache->node.start;
1059 	if (cache->node.allocated) {
1060 		ggtt->vm.insert_page(&ggtt->vm,
1061 				     i915_gem_object_get_dma_address(obj, page),
1062 				     offset, I915_CACHE_NONE, 0);
1063 	} else {
1064 		offset += page << PAGE_SHIFT;
1065 	}
1066 
1067 	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1068 							 offset);
1069 	cache->page = page;
1070 	cache->vaddr = (unsigned long)vaddr;
1071 
1072 	return vaddr;
1073 }
1074 
1075 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1076 			 struct reloc_cache *cache,
1077 			 unsigned long page)
1078 {
1079 	void *vaddr;
1080 
1081 	if (cache->page == page) {
1082 		vaddr = unmask_page(cache->vaddr);
1083 	} else {
1084 		vaddr = NULL;
1085 		if ((cache->vaddr & KMAP) == 0)
1086 			vaddr = reloc_iomap(obj, cache, page);
1087 		if (!vaddr)
1088 			vaddr = reloc_kmap(obj, cache, page);
1089 	}
1090 
1091 	return vaddr;
1092 }
1093 
1094 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1095 {
1096 	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1097 		if (flushes & CLFLUSH_BEFORE) {
1098 			clflushopt(addr);
1099 			mb();
1100 		}
1101 
1102 		*addr = value;
1103 
1104 		/*
1105 		 * Writes to the same cacheline are serialised by the CPU
1106 		 * (including clflush). On the write path, we only require
1107 		 * that it hits memory in an orderly fashion and place
1108 		 * mb barriers at the start and end of the relocation phase
1109 		 * to ensure ordering of clflush wrt to the system.
1110 		 */
1111 		if (flushes & CLFLUSH_AFTER)
1112 			clflushopt(addr);
1113 	} else
1114 		*addr = value;
1115 }
1116 
1117 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1118 {
1119 	struct drm_i915_gem_object *obj = vma->obj;
1120 	int err;
1121 
1122 	i915_vma_lock(vma);
1123 
1124 	if (obj->cache_dirty & ~obj->cache_coherent)
1125 		i915_gem_clflush_object(obj, 0);
1126 	obj->write_domain = 0;
1127 
1128 	err = i915_request_await_object(rq, vma->obj, true);
1129 	if (err == 0)
1130 		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1131 
1132 	i915_vma_unlock(vma);
1133 
1134 	return err;
1135 }
1136 
1137 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1138 			     struct i915_vma *vma,
1139 			     unsigned int len)
1140 {
1141 	struct reloc_cache *cache = &eb->reloc_cache;
1142 	struct intel_engine_pool_node *pool;
1143 	struct i915_request *rq;
1144 	struct i915_vma *batch;
1145 	u32 *cmd;
1146 	int err;
1147 
1148 	pool = intel_engine_pool_get(&eb->engine->pool, PAGE_SIZE);
1149 	if (IS_ERR(pool))
1150 		return PTR_ERR(pool);
1151 
1152 	cmd = i915_gem_object_pin_map(pool->obj,
1153 				      cache->has_llc ?
1154 				      I915_MAP_FORCE_WB :
1155 				      I915_MAP_FORCE_WC);
1156 	if (IS_ERR(cmd)) {
1157 		err = PTR_ERR(cmd);
1158 		goto out_pool;
1159 	}
1160 
1161 	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1162 	if (IS_ERR(batch)) {
1163 		err = PTR_ERR(batch);
1164 		goto err_unmap;
1165 	}
1166 
1167 	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1168 	if (err)
1169 		goto err_unmap;
1170 
1171 	rq = i915_request_create(eb->context);
1172 	if (IS_ERR(rq)) {
1173 		err = PTR_ERR(rq);
1174 		goto err_unpin;
1175 	}
1176 
1177 	err = intel_engine_pool_mark_active(pool, rq);
1178 	if (err)
1179 		goto err_request;
1180 
1181 	err = reloc_move_to_gpu(rq, vma);
1182 	if (err)
1183 		goto err_request;
1184 
1185 	err = eb->engine->emit_bb_start(rq,
1186 					batch->node.start, PAGE_SIZE,
1187 					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1188 	if (err)
1189 		goto skip_request;
1190 
1191 	i915_vma_lock(batch);
1192 	err = i915_request_await_object(rq, batch->obj, false);
1193 	if (err == 0)
1194 		err = i915_vma_move_to_active(batch, rq, 0);
1195 	i915_vma_unlock(batch);
1196 	if (err)
1197 		goto skip_request;
1198 
1199 	rq->batch = batch;
1200 	i915_vma_unpin(batch);
1201 
1202 	cache->rq = rq;
1203 	cache->rq_cmd = cmd;
1204 	cache->rq_size = 0;
1205 
1206 	/* Return with batch mapping (cmd) still pinned */
1207 	goto out_pool;
1208 
1209 skip_request:
1210 	i915_request_skip(rq, err);
1211 err_request:
1212 	i915_request_add(rq);
1213 err_unpin:
1214 	i915_vma_unpin(batch);
1215 err_unmap:
1216 	i915_gem_object_unpin_map(pool->obj);
1217 out_pool:
1218 	intel_engine_pool_put(pool);
1219 	return err;
1220 }
1221 
1222 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1223 		      struct i915_vma *vma,
1224 		      unsigned int len)
1225 {
1226 	struct reloc_cache *cache = &eb->reloc_cache;
1227 	u32 *cmd;
1228 
1229 	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1230 		reloc_gpu_flush(cache);
1231 
1232 	if (unlikely(!cache->rq)) {
1233 		int err;
1234 
1235 		/* If we need to copy for the cmdparser, we will stall anyway */
1236 		if (eb_use_cmdparser(eb))
1237 			return ERR_PTR(-EWOULDBLOCK);
1238 
1239 		if (!intel_engine_can_store_dword(eb->engine))
1240 			return ERR_PTR(-ENODEV);
1241 
1242 		err = __reloc_gpu_alloc(eb, vma, len);
1243 		if (unlikely(err))
1244 			return ERR_PTR(err);
1245 	}
1246 
1247 	cmd = cache->rq_cmd + cache->rq_size;
1248 	cache->rq_size += len;
1249 
1250 	return cmd;
1251 }
1252 
1253 static u64
1254 relocate_entry(struct i915_vma *vma,
1255 	       const struct drm_i915_gem_relocation_entry *reloc,
1256 	       struct i915_execbuffer *eb,
1257 	       const struct i915_vma *target)
1258 {
1259 	u64 offset = reloc->offset;
1260 	u64 target_offset = relocation_target(reloc, target);
1261 	bool wide = eb->reloc_cache.use_64bit_reloc;
1262 	void *vaddr;
1263 
1264 	if (!eb->reloc_cache.vaddr &&
1265 	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1266 	     !dma_resv_test_signaled_rcu(vma->resv, true))) {
1267 		const unsigned int gen = eb->reloc_cache.gen;
1268 		unsigned int len;
1269 		u32 *batch;
1270 		u64 addr;
1271 
1272 		if (wide)
1273 			len = offset & 7 ? 8 : 5;
1274 		else if (gen >= 4)
1275 			len = 4;
1276 		else
1277 			len = 3;
1278 
1279 		batch = reloc_gpu(eb, vma, len);
1280 		if (IS_ERR(batch))
1281 			goto repeat;
1282 
1283 		addr = gen8_canonical_addr(vma->node.start + offset);
1284 		if (wide) {
1285 			if (offset & 7) {
1286 				*batch++ = MI_STORE_DWORD_IMM_GEN4;
1287 				*batch++ = lower_32_bits(addr);
1288 				*batch++ = upper_32_bits(addr);
1289 				*batch++ = lower_32_bits(target_offset);
1290 
1291 				addr = gen8_canonical_addr(addr + 4);
1292 
1293 				*batch++ = MI_STORE_DWORD_IMM_GEN4;
1294 				*batch++ = lower_32_bits(addr);
1295 				*batch++ = upper_32_bits(addr);
1296 				*batch++ = upper_32_bits(target_offset);
1297 			} else {
1298 				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1299 				*batch++ = lower_32_bits(addr);
1300 				*batch++ = upper_32_bits(addr);
1301 				*batch++ = lower_32_bits(target_offset);
1302 				*batch++ = upper_32_bits(target_offset);
1303 			}
1304 		} else if (gen >= 6) {
1305 			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1306 			*batch++ = 0;
1307 			*batch++ = addr;
1308 			*batch++ = target_offset;
1309 		} else if (gen >= 4) {
1310 			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1311 			*batch++ = 0;
1312 			*batch++ = addr;
1313 			*batch++ = target_offset;
1314 		} else {
1315 			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1316 			*batch++ = addr;
1317 			*batch++ = target_offset;
1318 		}
1319 
1320 		goto out;
1321 	}
1322 
1323 repeat:
1324 	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1325 	if (IS_ERR(vaddr))
1326 		return PTR_ERR(vaddr);
1327 
1328 	clflush_write32(vaddr + offset_in_page(offset),
1329 			lower_32_bits(target_offset),
1330 			eb->reloc_cache.vaddr);
1331 
1332 	if (wide) {
1333 		offset += sizeof(u32);
1334 		target_offset >>= 32;
1335 		wide = false;
1336 		goto repeat;
1337 	}
1338 
1339 out:
1340 	return target->node.start | UPDATE;
1341 }
1342 
1343 static u64
1344 eb_relocate_entry(struct i915_execbuffer *eb,
1345 		  struct i915_vma *vma,
1346 		  const struct drm_i915_gem_relocation_entry *reloc)
1347 {
1348 	struct i915_vma *target;
1349 	int err;
1350 
1351 	/* we've already hold a reference to all valid objects */
1352 	target = eb_get_vma(eb, reloc->target_handle);
1353 	if (unlikely(!target))
1354 		return -ENOENT;
1355 
1356 	/* Validate that the target is in a valid r/w GPU domain */
1357 	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1358 		DRM_DEBUG("reloc with multiple write domains: "
1359 			  "target %d offset %d "
1360 			  "read %08x write %08x",
1361 			  reloc->target_handle,
1362 			  (int) reloc->offset,
1363 			  reloc->read_domains,
1364 			  reloc->write_domain);
1365 		return -EINVAL;
1366 	}
1367 	if (unlikely((reloc->write_domain | reloc->read_domains)
1368 		     & ~I915_GEM_GPU_DOMAINS)) {
1369 		DRM_DEBUG("reloc with read/write non-GPU domains: "
1370 			  "target %d offset %d "
1371 			  "read %08x write %08x",
1372 			  reloc->target_handle,
1373 			  (int) reloc->offset,
1374 			  reloc->read_domains,
1375 			  reloc->write_domain);
1376 		return -EINVAL;
1377 	}
1378 
1379 	if (reloc->write_domain) {
1380 		*target->exec_flags |= EXEC_OBJECT_WRITE;
1381 
1382 		/*
1383 		 * Sandybridge PPGTT errata: We need a global gtt mapping
1384 		 * for MI and pipe_control writes because the gpu doesn't
1385 		 * properly redirect them through the ppgtt for non_secure
1386 		 * batchbuffers.
1387 		 */
1388 		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1389 		    IS_GEN(eb->i915, 6)) {
1390 			err = i915_vma_bind(target, target->obj->cache_level,
1391 					    PIN_GLOBAL);
1392 			if (WARN_ONCE(err,
1393 				      "Unexpected failure to bind target VMA!"))
1394 				return err;
1395 		}
1396 	}
1397 
1398 	/*
1399 	 * If the relocation already has the right value in it, no
1400 	 * more work needs to be done.
1401 	 */
1402 	if (!DBG_FORCE_RELOC &&
1403 	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1404 		return 0;
1405 
1406 	/* Check that the relocation address is valid... */
1407 	if (unlikely(reloc->offset >
1408 		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1409 		DRM_DEBUG("Relocation beyond object bounds: "
1410 			  "target %d offset %d size %d.\n",
1411 			  reloc->target_handle,
1412 			  (int)reloc->offset,
1413 			  (int)vma->size);
1414 		return -EINVAL;
1415 	}
1416 	if (unlikely(reloc->offset & 3)) {
1417 		DRM_DEBUG("Relocation not 4-byte aligned: "
1418 			  "target %d offset %d.\n",
1419 			  reloc->target_handle,
1420 			  (int)reloc->offset);
1421 		return -EINVAL;
1422 	}
1423 
1424 	/*
1425 	 * If we write into the object, we need to force the synchronisation
1426 	 * barrier, either with an asynchronous clflush or if we executed the
1427 	 * patching using the GPU (though that should be serialised by the
1428 	 * timeline). To be completely sure, and since we are required to
1429 	 * do relocations we are already stalling, disable the user's opt
1430 	 * out of our synchronisation.
1431 	 */
1432 	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1433 
1434 	/* and update the user's relocation entry */
1435 	return relocate_entry(vma, reloc, eb, target);
1436 }
1437 
1438 static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1439 {
1440 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1441 	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1442 	struct drm_i915_gem_relocation_entry __user *urelocs;
1443 	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1444 	unsigned int remain;
1445 
1446 	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1447 	remain = entry->relocation_count;
1448 	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1449 		return -EINVAL;
1450 
1451 	/*
1452 	 * We must check that the entire relocation array is safe
1453 	 * to read. However, if the array is not writable the user loses
1454 	 * the updated relocation values.
1455 	 */
1456 	if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1457 		return -EFAULT;
1458 
1459 	do {
1460 		struct drm_i915_gem_relocation_entry *r = stack;
1461 		unsigned int count =
1462 			min_t(unsigned int, remain, ARRAY_SIZE(stack));
1463 		unsigned int copied;
1464 
1465 		/*
1466 		 * This is the fast path and we cannot handle a pagefault
1467 		 * whilst holding the struct mutex lest the user pass in the
1468 		 * relocations contained within a mmaped bo. For in such a case
1469 		 * we, the page fault handler would call i915_gem_fault() and
1470 		 * we would try to acquire the struct mutex again. Obviously
1471 		 * this is bad and so lockdep complains vehemently.
1472 		 */
1473 		pagefault_disable();
1474 		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1475 		pagefault_enable();
1476 		if (unlikely(copied)) {
1477 			remain = -EFAULT;
1478 			goto out;
1479 		}
1480 
1481 		remain -= count;
1482 		do {
1483 			u64 offset = eb_relocate_entry(eb, vma, r);
1484 
1485 			if (likely(offset == 0)) {
1486 			} else if ((s64)offset < 0) {
1487 				remain = (int)offset;
1488 				goto out;
1489 			} else {
1490 				/*
1491 				 * Note that reporting an error now
1492 				 * leaves everything in an inconsistent
1493 				 * state as we have *already* changed
1494 				 * the relocation value inside the
1495 				 * object. As we have not changed the
1496 				 * reloc.presumed_offset or will not
1497 				 * change the execobject.offset, on the
1498 				 * call we may not rewrite the value
1499 				 * inside the object, leaving it
1500 				 * dangling and causing a GPU hang. Unless
1501 				 * userspace dynamically rebuilds the
1502 				 * relocations on each execbuf rather than
1503 				 * presume a static tree.
1504 				 *
1505 				 * We did previously check if the relocations
1506 				 * were writable (access_ok), an error now
1507 				 * would be a strange race with mprotect,
1508 				 * having already demonstrated that we
1509 				 * can read from this userspace address.
1510 				 */
1511 				offset = gen8_canonical_addr(offset & ~UPDATE);
1512 				if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
1513 					remain = -EFAULT;
1514 					goto out;
1515 				}
1516 			}
1517 		} while (r++, --count);
1518 		urelocs += ARRAY_SIZE(stack);
1519 	} while (remain);
1520 out:
1521 	reloc_cache_reset(&eb->reloc_cache);
1522 	return remain;
1523 }
1524 
1525 static int
1526 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1527 {
1528 	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1529 	struct drm_i915_gem_relocation_entry *relocs =
1530 		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1531 	unsigned int i;
1532 	int err;
1533 
1534 	for (i = 0; i < entry->relocation_count; i++) {
1535 		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1536 
1537 		if ((s64)offset < 0) {
1538 			err = (int)offset;
1539 			goto err;
1540 		}
1541 	}
1542 	err = 0;
1543 err:
1544 	reloc_cache_reset(&eb->reloc_cache);
1545 	return err;
1546 }
1547 
1548 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1549 {
1550 	const char __user *addr, *end;
1551 	unsigned long size;
1552 	char __maybe_unused c;
1553 
1554 	size = entry->relocation_count;
1555 	if (size == 0)
1556 		return 0;
1557 
1558 	if (size > N_RELOC(ULONG_MAX))
1559 		return -EINVAL;
1560 
1561 	addr = u64_to_user_ptr(entry->relocs_ptr);
1562 	size *= sizeof(struct drm_i915_gem_relocation_entry);
1563 	if (!access_ok(addr, size))
1564 		return -EFAULT;
1565 
1566 	end = addr + size;
1567 	for (; addr < end; addr += PAGE_SIZE) {
1568 		int err = __get_user(c, addr);
1569 		if (err)
1570 			return err;
1571 	}
1572 	return __get_user(c, end - 1);
1573 }
1574 
1575 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1576 {
1577 	const unsigned int count = eb->buffer_count;
1578 	unsigned int i;
1579 	int err;
1580 
1581 	for (i = 0; i < count; i++) {
1582 		const unsigned int nreloc = eb->exec[i].relocation_count;
1583 		struct drm_i915_gem_relocation_entry __user *urelocs;
1584 		struct drm_i915_gem_relocation_entry *relocs;
1585 		unsigned long size;
1586 		unsigned long copied;
1587 
1588 		if (nreloc == 0)
1589 			continue;
1590 
1591 		err = check_relocations(&eb->exec[i]);
1592 		if (err)
1593 			goto err;
1594 
1595 		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1596 		size = nreloc * sizeof(*relocs);
1597 
1598 		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1599 		if (!relocs) {
1600 			err = -ENOMEM;
1601 			goto err;
1602 		}
1603 
1604 		/* copy_from_user is limited to < 4GiB */
1605 		copied = 0;
1606 		do {
1607 			unsigned int len =
1608 				min_t(u64, BIT_ULL(31), size - copied);
1609 
1610 			if (__copy_from_user((char *)relocs + copied,
1611 					     (char __user *)urelocs + copied,
1612 					     len)) {
1613 end_user:
1614 				user_access_end();
1615 end:
1616 				kvfree(relocs);
1617 				err = -EFAULT;
1618 				goto err;
1619 			}
1620 
1621 			copied += len;
1622 		} while (copied < size);
1623 
1624 		/*
1625 		 * As we do not update the known relocation offsets after
1626 		 * relocating (due to the complexities in lock handling),
1627 		 * we need to mark them as invalid now so that we force the
1628 		 * relocation processing next time. Just in case the target
1629 		 * object is evicted and then rebound into its old
1630 		 * presumed_offset before the next execbuffer - if that
1631 		 * happened we would make the mistake of assuming that the
1632 		 * relocations were valid.
1633 		 */
1634 		if (!user_access_begin(urelocs, size))
1635 			goto end;
1636 
1637 		for (copied = 0; copied < nreloc; copied++)
1638 			unsafe_put_user(-1,
1639 					&urelocs[copied].presumed_offset,
1640 					end_user);
1641 		user_access_end();
1642 
1643 		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1644 	}
1645 
1646 	return 0;
1647 
1648 err:
1649 	while (i--) {
1650 		struct drm_i915_gem_relocation_entry *relocs =
1651 			u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1652 		if (eb->exec[i].relocation_count)
1653 			kvfree(relocs);
1654 	}
1655 	return err;
1656 }
1657 
1658 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1659 {
1660 	const unsigned int count = eb->buffer_count;
1661 	unsigned int i;
1662 
1663 	if (unlikely(i915_modparams.prefault_disable))
1664 		return 0;
1665 
1666 	for (i = 0; i < count; i++) {
1667 		int err;
1668 
1669 		err = check_relocations(&eb->exec[i]);
1670 		if (err)
1671 			return err;
1672 	}
1673 
1674 	return 0;
1675 }
1676 
1677 static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1678 {
1679 	struct drm_device *dev = &eb->i915->drm;
1680 	bool have_copy = false;
1681 	struct i915_vma *vma;
1682 	int err = 0;
1683 
1684 repeat:
1685 	if (signal_pending(current)) {
1686 		err = -ERESTARTSYS;
1687 		goto out;
1688 	}
1689 
1690 	/* We may process another execbuffer during the unlock... */
1691 	eb_reset_vmas(eb);
1692 	mutex_unlock(&dev->struct_mutex);
1693 
1694 	/*
1695 	 * We take 3 passes through the slowpatch.
1696 	 *
1697 	 * 1 - we try to just prefault all the user relocation entries and
1698 	 * then attempt to reuse the atomic pagefault disabled fast path again.
1699 	 *
1700 	 * 2 - we copy the user entries to a local buffer here outside of the
1701 	 * local and allow ourselves to wait upon any rendering before
1702 	 * relocations
1703 	 *
1704 	 * 3 - we already have a local copy of the relocation entries, but
1705 	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1706 	 */
1707 	if (!err) {
1708 		err = eb_prefault_relocations(eb);
1709 	} else if (!have_copy) {
1710 		err = eb_copy_relocations(eb);
1711 		have_copy = err == 0;
1712 	} else {
1713 		cond_resched();
1714 		err = 0;
1715 	}
1716 	if (err) {
1717 		mutex_lock(&dev->struct_mutex);
1718 		goto out;
1719 	}
1720 
1721 	/* A frequent cause for EAGAIN are currently unavailable client pages */
1722 	flush_workqueue(eb->i915->mm.userptr_wq);
1723 
1724 	err = i915_mutex_lock_interruptible(dev);
1725 	if (err) {
1726 		mutex_lock(&dev->struct_mutex);
1727 		goto out;
1728 	}
1729 
1730 	/* reacquire the objects */
1731 	err = eb_lookup_vmas(eb);
1732 	if (err)
1733 		goto err;
1734 
1735 	GEM_BUG_ON(!eb->batch);
1736 
1737 	list_for_each_entry(vma, &eb->relocs, reloc_link) {
1738 		if (!have_copy) {
1739 			pagefault_disable();
1740 			err = eb_relocate_vma(eb, vma);
1741 			pagefault_enable();
1742 			if (err)
1743 				goto repeat;
1744 		} else {
1745 			err = eb_relocate_vma_slow(eb, vma);
1746 			if (err)
1747 				goto err;
1748 		}
1749 	}
1750 
1751 	/*
1752 	 * Leave the user relocations as are, this is the painfully slow path,
1753 	 * and we want to avoid the complication of dropping the lock whilst
1754 	 * having buffers reserved in the aperture and so causing spurious
1755 	 * ENOSPC for random operations.
1756 	 */
1757 
1758 err:
1759 	if (err == -EAGAIN)
1760 		goto repeat;
1761 
1762 out:
1763 	if (have_copy) {
1764 		const unsigned int count = eb->buffer_count;
1765 		unsigned int i;
1766 
1767 		for (i = 0; i < count; i++) {
1768 			const struct drm_i915_gem_exec_object2 *entry =
1769 				&eb->exec[i];
1770 			struct drm_i915_gem_relocation_entry *relocs;
1771 
1772 			if (!entry->relocation_count)
1773 				continue;
1774 
1775 			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1776 			kvfree(relocs);
1777 		}
1778 	}
1779 
1780 	return err;
1781 }
1782 
1783 static int eb_relocate(struct i915_execbuffer *eb)
1784 {
1785 	if (eb_lookup_vmas(eb))
1786 		goto slow;
1787 
1788 	/* The objects are in their final locations, apply the relocations. */
1789 	if (eb->args->flags & __EXEC_HAS_RELOC) {
1790 		struct i915_vma *vma;
1791 
1792 		list_for_each_entry(vma, &eb->relocs, reloc_link) {
1793 			if (eb_relocate_vma(eb, vma))
1794 				goto slow;
1795 		}
1796 	}
1797 
1798 	return 0;
1799 
1800 slow:
1801 	return eb_relocate_slow(eb);
1802 }
1803 
1804 static int eb_move_to_gpu(struct i915_execbuffer *eb)
1805 {
1806 	const unsigned int count = eb->buffer_count;
1807 	struct ww_acquire_ctx acquire;
1808 	unsigned int i;
1809 	int err = 0;
1810 
1811 	ww_acquire_init(&acquire, &reservation_ww_class);
1812 
1813 	for (i = 0; i < count; i++) {
1814 		struct i915_vma *vma = eb->vma[i];
1815 
1816 		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
1817 		if (!err)
1818 			continue;
1819 
1820 		GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */
1821 
1822 		if (err == -EDEADLK) {
1823 			GEM_BUG_ON(i == 0);
1824 			do {
1825 				int j = i - 1;
1826 
1827 				ww_mutex_unlock(&eb->vma[j]->resv->lock);
1828 
1829 				swap(eb->flags[i], eb->flags[j]);
1830 				swap(eb->vma[i],  eb->vma[j]);
1831 				eb->vma[i]->exec_flags = &eb->flags[i];
1832 			} while (--i);
1833 			GEM_BUG_ON(vma != eb->vma[0]);
1834 			vma->exec_flags = &eb->flags[0];
1835 
1836 			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
1837 							       &acquire);
1838 		}
1839 		if (err)
1840 			break;
1841 	}
1842 	ww_acquire_done(&acquire);
1843 
1844 	while (i--) {
1845 		unsigned int flags = eb->flags[i];
1846 		struct i915_vma *vma = eb->vma[i];
1847 		struct drm_i915_gem_object *obj = vma->obj;
1848 
1849 		assert_vma_held(vma);
1850 
1851 		if (flags & EXEC_OBJECT_CAPTURE) {
1852 			struct i915_capture_list *capture;
1853 
1854 			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1855 			if (capture) {
1856 				capture->next = eb->request->capture_list;
1857 				capture->vma = vma;
1858 				eb->request->capture_list = capture;
1859 			}
1860 		}
1861 
1862 		/*
1863 		 * If the GPU is not _reading_ through the CPU cache, we need
1864 		 * to make sure that any writes (both previous GPU writes from
1865 		 * before a change in snooping levels and normal CPU writes)
1866 		 * caught in that cache are flushed to main memory.
1867 		 *
1868 		 * We want to say
1869 		 *   obj->cache_dirty &&
1870 		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1871 		 * but gcc's optimiser doesn't handle that as well and emits
1872 		 * two jumps instead of one. Maybe one day...
1873 		 */
1874 		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1875 			if (i915_gem_clflush_object(obj, 0))
1876 				flags &= ~EXEC_OBJECT_ASYNC;
1877 		}
1878 
1879 		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
1880 			err = i915_request_await_object
1881 				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
1882 		}
1883 
1884 		if (err == 0)
1885 			err = i915_vma_move_to_active(vma, eb->request, flags);
1886 
1887 		i915_vma_unlock(vma);
1888 
1889 		__eb_unreserve_vma(vma, flags);
1890 		vma->exec_flags = NULL;
1891 
1892 		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1893 			i915_vma_put(vma);
1894 	}
1895 	ww_acquire_fini(&acquire);
1896 
1897 	if (unlikely(err))
1898 		goto err_skip;
1899 
1900 	eb->exec = NULL;
1901 
1902 	/* Unconditionally flush any chipset caches (for streaming writes). */
1903 	intel_gt_chipset_flush(eb->engine->gt);
1904 	return 0;
1905 
1906 err_skip:
1907 	i915_request_skip(eb->request, err);
1908 	return err;
1909 }
1910 
1911 static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1912 {
1913 	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1914 		return false;
1915 
1916 	/* Kernel clipping was a DRI1 misfeature */
1917 	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1918 		if (exec->num_cliprects || exec->cliprects_ptr)
1919 			return false;
1920 	}
1921 
1922 	if (exec->DR4 == 0xffffffff) {
1923 		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1924 		exec->DR4 = 0;
1925 	}
1926 	if (exec->DR1 || exec->DR4)
1927 		return false;
1928 
1929 	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1930 		return false;
1931 
1932 	return true;
1933 }
1934 
1935 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1936 {
1937 	u32 *cs;
1938 	int i;
1939 
1940 	if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1941 		DRM_DEBUG("sol reset is gen7/rcs only\n");
1942 		return -EINVAL;
1943 	}
1944 
1945 	cs = intel_ring_begin(rq, 4 * 2 + 2);
1946 	if (IS_ERR(cs))
1947 		return PTR_ERR(cs);
1948 
1949 	*cs++ = MI_LOAD_REGISTER_IMM(4);
1950 	for (i = 0; i < 4; i++) {
1951 		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1952 		*cs++ = 0;
1953 	}
1954 	*cs++ = MI_NOOP;
1955 	intel_ring_advance(rq, cs);
1956 
1957 	return 0;
1958 }
1959 
1960 static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1961 {
1962 	struct intel_engine_pool_node *pool;
1963 	struct i915_vma *vma;
1964 	int err;
1965 
1966 	pool = intel_engine_pool_get(&eb->engine->pool, eb->batch_len);
1967 	if (IS_ERR(pool))
1968 		return ERR_CAST(pool);
1969 
1970 	err = intel_engine_cmd_parser(eb->engine,
1971 				      eb->batch->obj,
1972 				      pool->obj,
1973 				      eb->batch_start_offset,
1974 				      eb->batch_len,
1975 				      is_master);
1976 	if (err) {
1977 		if (err == -EACCES) /* unhandled chained batch */
1978 			vma = NULL;
1979 		else
1980 			vma = ERR_PTR(err);
1981 		goto err;
1982 	}
1983 
1984 	vma = i915_gem_object_ggtt_pin(pool->obj, NULL, 0, 0, 0);
1985 	if (IS_ERR(vma))
1986 		goto err;
1987 
1988 	eb->vma[eb->buffer_count] = i915_vma_get(vma);
1989 	eb->flags[eb->buffer_count] =
1990 		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
1991 	vma->exec_flags = &eb->flags[eb->buffer_count];
1992 	eb->buffer_count++;
1993 
1994 	vma->private = pool;
1995 	return vma;
1996 
1997 err:
1998 	intel_engine_pool_put(pool);
1999 	return vma;
2000 }
2001 
2002 static void
2003 add_to_client(struct i915_request *rq, struct drm_file *file)
2004 {
2005 	struct drm_i915_file_private *file_priv = file->driver_priv;
2006 
2007 	rq->file_priv = file_priv;
2008 
2009 	spin_lock(&file_priv->mm.lock);
2010 	list_add_tail(&rq->client_link, &file_priv->mm.request_list);
2011 	spin_unlock(&file_priv->mm.lock);
2012 }
2013 
2014 static int eb_submit(struct i915_execbuffer *eb)
2015 {
2016 	int err;
2017 
2018 	err = eb_move_to_gpu(eb);
2019 	if (err)
2020 		return err;
2021 
2022 	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2023 		err = i915_reset_gen7_sol_offsets(eb->request);
2024 		if (err)
2025 			return err;
2026 	}
2027 
2028 	/*
2029 	 * After we completed waiting for other engines (using HW semaphores)
2030 	 * then we can signal that this request/batch is ready to run. This
2031 	 * allows us to determine if the batch is still waiting on the GPU
2032 	 * or actually running by checking the breadcrumb.
2033 	 */
2034 	if (eb->engine->emit_init_breadcrumb) {
2035 		err = eb->engine->emit_init_breadcrumb(eb->request);
2036 		if (err)
2037 			return err;
2038 	}
2039 
2040 	err = eb->engine->emit_bb_start(eb->request,
2041 					eb->batch->node.start +
2042 					eb->batch_start_offset,
2043 					eb->batch_len,
2044 					eb->batch_flags);
2045 	if (err)
2046 		return err;
2047 
2048 	return 0;
2049 }
2050 
2051 static int num_vcs_engines(const struct drm_i915_private *i915)
2052 {
2053 	return hweight64(INTEL_INFO(i915)->engine_mask &
2054 			 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
2055 }
2056 
2057 /*
2058  * Find one BSD ring to dispatch the corresponding BSD command.
2059  * The engine index is returned.
2060  */
2061 static unsigned int
2062 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2063 			 struct drm_file *file)
2064 {
2065 	struct drm_i915_file_private *file_priv = file->driver_priv;
2066 
2067 	/* Check whether the file_priv has already selected one ring. */
2068 	if ((int)file_priv->bsd_engine < 0)
2069 		file_priv->bsd_engine =
2070 			get_random_int() % num_vcs_engines(dev_priv);
2071 
2072 	return file_priv->bsd_engine;
2073 }
2074 
2075 static const enum intel_engine_id user_ring_map[] = {
2076 	[I915_EXEC_DEFAULT]	= RCS0,
2077 	[I915_EXEC_RENDER]	= RCS0,
2078 	[I915_EXEC_BLT]		= BCS0,
2079 	[I915_EXEC_BSD]		= VCS0,
2080 	[I915_EXEC_VEBOX]	= VECS0
2081 };
2082 
2083 static struct i915_request *eb_throttle(struct intel_context *ce)
2084 {
2085 	struct intel_ring *ring = ce->ring;
2086 	struct intel_timeline *tl = ce->timeline;
2087 	struct i915_request *rq;
2088 
2089 	/*
2090 	 * Completely unscientific finger-in-the-air estimates for suitable
2091 	 * maximum user request size (to avoid blocking) and then backoff.
2092 	 */
2093 	if (intel_ring_update_space(ring) >= PAGE_SIZE)
2094 		return NULL;
2095 
2096 	/*
2097 	 * Find a request that after waiting upon, there will be at least half
2098 	 * the ring available. The hysteresis allows us to compete for the
2099 	 * shared ring and should mean that we sleep less often prior to
2100 	 * claiming our resources, but not so long that the ring completely
2101 	 * drains before we can submit our next request.
2102 	 */
2103 	list_for_each_entry(rq, &tl->requests, link) {
2104 		if (rq->ring != ring)
2105 			continue;
2106 
2107 		if (__intel_ring_space(rq->postfix,
2108 				       ring->emit, ring->size) > ring->size / 2)
2109 			break;
2110 	}
2111 	if (&rq->link == &tl->requests)
2112 		return NULL; /* weird, we will check again later for real */
2113 
2114 	return i915_request_get(rq);
2115 }
2116 
2117 static int
2118 __eb_pin_context(struct i915_execbuffer *eb, struct intel_context *ce)
2119 {
2120 	int err;
2121 
2122 	if (likely(atomic_inc_not_zero(&ce->pin_count)))
2123 		return 0;
2124 
2125 	err = mutex_lock_interruptible(&eb->i915->drm.struct_mutex);
2126 	if (err)
2127 		return err;
2128 
2129 	err = __intel_context_do_pin(ce);
2130 	mutex_unlock(&eb->i915->drm.struct_mutex);
2131 
2132 	return err;
2133 }
2134 
2135 static void
2136 __eb_unpin_context(struct i915_execbuffer *eb, struct intel_context *ce)
2137 {
2138 	if (likely(atomic_add_unless(&ce->pin_count, -1, 1)))
2139 		return;
2140 
2141 	mutex_lock(&eb->i915->drm.struct_mutex);
2142 	intel_context_unpin(ce);
2143 	mutex_unlock(&eb->i915->drm.struct_mutex);
2144 }
2145 
2146 static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
2147 {
2148 	struct intel_timeline *tl;
2149 	struct i915_request *rq;
2150 	int err;
2151 
2152 	/*
2153 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2154 	 * EIO if the GPU is already wedged.
2155 	 */
2156 	err = intel_gt_terminally_wedged(ce->engine->gt);
2157 	if (err)
2158 		return err;
2159 
2160 	/*
2161 	 * Pinning the contexts may generate requests in order to acquire
2162 	 * GGTT space, so do this first before we reserve a seqno for
2163 	 * ourselves.
2164 	 */
2165 	err = __eb_pin_context(eb, ce);
2166 	if (err)
2167 		return err;
2168 
2169 	/*
2170 	 * Take a local wakeref for preparing to dispatch the execbuf as
2171 	 * we expect to access the hardware fairly frequently in the
2172 	 * process, and require the engine to be kept awake between accesses.
2173 	 * Upon dispatch, we acquire another prolonged wakeref that we hold
2174 	 * until the timeline is idle, which in turn releases the wakeref
2175 	 * taken on the engine, and the parent device.
2176 	 */
2177 	tl = intel_context_timeline_lock(ce);
2178 	if (IS_ERR(tl)) {
2179 		err = PTR_ERR(tl);
2180 		goto err_unpin;
2181 	}
2182 
2183 	intel_context_enter(ce);
2184 	rq = eb_throttle(ce);
2185 
2186 	intel_context_timeline_unlock(tl);
2187 
2188 	if (rq) {
2189 		if (i915_request_wait(rq,
2190 				      I915_WAIT_INTERRUPTIBLE,
2191 				      MAX_SCHEDULE_TIMEOUT) < 0) {
2192 			i915_request_put(rq);
2193 			err = -EINTR;
2194 			goto err_exit;
2195 		}
2196 
2197 		i915_request_put(rq);
2198 	}
2199 
2200 	eb->engine = ce->engine;
2201 	eb->context = ce;
2202 	return 0;
2203 
2204 err_exit:
2205 	mutex_lock(&tl->mutex);
2206 	intel_context_exit(ce);
2207 	intel_context_timeline_unlock(tl);
2208 err_unpin:
2209 	__eb_unpin_context(eb, ce);
2210 	return err;
2211 }
2212 
2213 static void eb_unpin_engine(struct i915_execbuffer *eb)
2214 {
2215 	struct intel_context *ce = eb->context;
2216 	struct intel_timeline *tl = ce->timeline;
2217 
2218 	mutex_lock(&tl->mutex);
2219 	intel_context_exit(ce);
2220 	mutex_unlock(&tl->mutex);
2221 
2222 	__eb_unpin_context(eb, ce);
2223 }
2224 
2225 static unsigned int
2226 eb_select_legacy_ring(struct i915_execbuffer *eb,
2227 		      struct drm_file *file,
2228 		      struct drm_i915_gem_execbuffer2 *args)
2229 {
2230 	struct drm_i915_private *i915 = eb->i915;
2231 	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2232 
2233 	if (user_ring_id != I915_EXEC_BSD &&
2234 	    (args->flags & I915_EXEC_BSD_MASK)) {
2235 		DRM_DEBUG("execbuf with non bsd ring but with invalid "
2236 			  "bsd dispatch flags: %d\n", (int)(args->flags));
2237 		return -1;
2238 	}
2239 
2240 	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2241 		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2242 
2243 		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2244 			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2245 		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2246 			   bsd_idx <= I915_EXEC_BSD_RING2) {
2247 			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2248 			bsd_idx--;
2249 		} else {
2250 			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
2251 				  bsd_idx);
2252 			return -1;
2253 		}
2254 
2255 		return _VCS(bsd_idx);
2256 	}
2257 
2258 	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2259 		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2260 		return -1;
2261 	}
2262 
2263 	return user_ring_map[user_ring_id];
2264 }
2265 
2266 static int
2267 eb_pin_engine(struct i915_execbuffer *eb,
2268 	      struct drm_file *file,
2269 	      struct drm_i915_gem_execbuffer2 *args)
2270 {
2271 	struct intel_context *ce;
2272 	unsigned int idx;
2273 	int err;
2274 
2275 	if (i915_gem_context_user_engines(eb->gem_context))
2276 		idx = args->flags & I915_EXEC_RING_MASK;
2277 	else
2278 		idx = eb_select_legacy_ring(eb, file, args);
2279 
2280 	ce = i915_gem_context_get_engine(eb->gem_context, idx);
2281 	if (IS_ERR(ce))
2282 		return PTR_ERR(ce);
2283 
2284 	err = __eb_pin_engine(eb, ce);
2285 	intel_context_put(ce);
2286 
2287 	return err;
2288 }
2289 
2290 static void
2291 __free_fence_array(struct drm_syncobj **fences, unsigned int n)
2292 {
2293 	while (n--)
2294 		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2295 	kvfree(fences);
2296 }
2297 
2298 static struct drm_syncobj **
2299 get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2300 		struct drm_file *file)
2301 {
2302 	const unsigned long nfences = args->num_cliprects;
2303 	struct drm_i915_gem_exec_fence __user *user;
2304 	struct drm_syncobj **fences;
2305 	unsigned long n;
2306 	int err;
2307 
2308 	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2309 		return NULL;
2310 
2311 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2312 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2313 	if (nfences > min_t(unsigned long,
2314 			    ULONG_MAX / sizeof(*user),
2315 			    SIZE_MAX / sizeof(*fences)))
2316 		return ERR_PTR(-EINVAL);
2317 
2318 	user = u64_to_user_ptr(args->cliprects_ptr);
2319 	if (!access_ok(user, nfences * sizeof(*user)))
2320 		return ERR_PTR(-EFAULT);
2321 
2322 	fences = kvmalloc_array(nfences, sizeof(*fences),
2323 				__GFP_NOWARN | GFP_KERNEL);
2324 	if (!fences)
2325 		return ERR_PTR(-ENOMEM);
2326 
2327 	for (n = 0; n < nfences; n++) {
2328 		struct drm_i915_gem_exec_fence fence;
2329 		struct drm_syncobj *syncobj;
2330 
2331 		if (__copy_from_user(&fence, user++, sizeof(fence))) {
2332 			err = -EFAULT;
2333 			goto err;
2334 		}
2335 
2336 		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2337 			err = -EINVAL;
2338 			goto err;
2339 		}
2340 
2341 		syncobj = drm_syncobj_find(file, fence.handle);
2342 		if (!syncobj) {
2343 			DRM_DEBUG("Invalid syncobj handle provided\n");
2344 			err = -ENOENT;
2345 			goto err;
2346 		}
2347 
2348 		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2349 			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2350 
2351 		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2352 	}
2353 
2354 	return fences;
2355 
2356 err:
2357 	__free_fence_array(fences, n);
2358 	return ERR_PTR(err);
2359 }
2360 
2361 static void
2362 put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2363 		struct drm_syncobj **fences)
2364 {
2365 	if (fences)
2366 		__free_fence_array(fences, args->num_cliprects);
2367 }
2368 
2369 static int
2370 await_fence_array(struct i915_execbuffer *eb,
2371 		  struct drm_syncobj **fences)
2372 {
2373 	const unsigned int nfences = eb->args->num_cliprects;
2374 	unsigned int n;
2375 	int err;
2376 
2377 	for (n = 0; n < nfences; n++) {
2378 		struct drm_syncobj *syncobj;
2379 		struct dma_fence *fence;
2380 		unsigned int flags;
2381 
2382 		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2383 		if (!(flags & I915_EXEC_FENCE_WAIT))
2384 			continue;
2385 
2386 		fence = drm_syncobj_fence_get(syncobj);
2387 		if (!fence)
2388 			return -EINVAL;
2389 
2390 		err = i915_request_await_dma_fence(eb->request, fence);
2391 		dma_fence_put(fence);
2392 		if (err < 0)
2393 			return err;
2394 	}
2395 
2396 	return 0;
2397 }
2398 
2399 static void
2400 signal_fence_array(struct i915_execbuffer *eb,
2401 		   struct drm_syncobj **fences)
2402 {
2403 	const unsigned int nfences = eb->args->num_cliprects;
2404 	struct dma_fence * const fence = &eb->request->fence;
2405 	unsigned int n;
2406 
2407 	for (n = 0; n < nfences; n++) {
2408 		struct drm_syncobj *syncobj;
2409 		unsigned int flags;
2410 
2411 		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2412 		if (!(flags & I915_EXEC_FENCE_SIGNAL))
2413 			continue;
2414 
2415 		drm_syncobj_replace_fence(syncobj, fence);
2416 	}
2417 }
2418 
2419 static int
2420 i915_gem_do_execbuffer(struct drm_device *dev,
2421 		       struct drm_file *file,
2422 		       struct drm_i915_gem_execbuffer2 *args,
2423 		       struct drm_i915_gem_exec_object2 *exec,
2424 		       struct drm_syncobj **fences)
2425 {
2426 	struct i915_execbuffer eb;
2427 	struct dma_fence *in_fence = NULL;
2428 	struct dma_fence *exec_fence = NULL;
2429 	struct sync_file *out_fence = NULL;
2430 	int out_fence_fd = -1;
2431 	int err;
2432 
2433 	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2434 	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2435 		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2436 
2437 	eb.i915 = to_i915(dev);
2438 	eb.file = file;
2439 	eb.args = args;
2440 	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2441 		args->flags |= __EXEC_HAS_RELOC;
2442 
2443 	eb.exec = exec;
2444 	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
2445 	eb.vma[0] = NULL;
2446 	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);
2447 
2448 	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2449 	reloc_cache_init(&eb.reloc_cache, eb.i915);
2450 
2451 	eb.buffer_count = args->buffer_count;
2452 	eb.batch_start_offset = args->batch_start_offset;
2453 	eb.batch_len = args->batch_len;
2454 
2455 	eb.batch_flags = 0;
2456 	if (args->flags & I915_EXEC_SECURE) {
2457 		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2458 		    return -EPERM;
2459 
2460 		eb.batch_flags |= I915_DISPATCH_SECURE;
2461 	}
2462 	if (args->flags & I915_EXEC_IS_PINNED)
2463 		eb.batch_flags |= I915_DISPATCH_PINNED;
2464 
2465 	if (args->flags & I915_EXEC_FENCE_IN) {
2466 		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2467 		if (!in_fence)
2468 			return -EINVAL;
2469 	}
2470 
2471 	if (args->flags & I915_EXEC_FENCE_SUBMIT) {
2472 		if (in_fence) {
2473 			err = -EINVAL;
2474 			goto err_in_fence;
2475 		}
2476 
2477 		exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2478 		if (!exec_fence) {
2479 			err = -EINVAL;
2480 			goto err_in_fence;
2481 		}
2482 	}
2483 
2484 	if (args->flags & I915_EXEC_FENCE_OUT) {
2485 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2486 		if (out_fence_fd < 0) {
2487 			err = out_fence_fd;
2488 			goto err_exec_fence;
2489 		}
2490 	}
2491 
2492 	err = eb_create(&eb);
2493 	if (err)
2494 		goto err_out_fence;
2495 
2496 	GEM_BUG_ON(!eb.lut_size);
2497 
2498 	err = eb_select_context(&eb);
2499 	if (unlikely(err))
2500 		goto err_destroy;
2501 
2502 	err = eb_pin_engine(&eb, file, args);
2503 	if (unlikely(err))
2504 		goto err_context;
2505 
2506 	err = i915_mutex_lock_interruptible(dev);
2507 	if (err)
2508 		goto err_engine;
2509 
2510 	err = eb_relocate(&eb);
2511 	if (err) {
2512 		/*
2513 		 * If the user expects the execobject.offset and
2514 		 * reloc.presumed_offset to be an exact match,
2515 		 * as for using NO_RELOC, then we cannot update
2516 		 * the execobject.offset until we have completed
2517 		 * relocation.
2518 		 */
2519 		args->flags &= ~__EXEC_HAS_RELOC;
2520 		goto err_vma;
2521 	}
2522 
2523 	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2524 		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2525 		err = -EINVAL;
2526 		goto err_vma;
2527 	}
2528 	if (eb.batch_start_offset > eb.batch->size ||
2529 	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2530 		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2531 		err = -EINVAL;
2532 		goto err_vma;
2533 	}
2534 
2535 	if (eb_use_cmdparser(&eb)) {
2536 		struct i915_vma *vma;
2537 
2538 		vma = eb_parse(&eb, drm_is_current_master(file));
2539 		if (IS_ERR(vma)) {
2540 			err = PTR_ERR(vma);
2541 			goto err_vma;
2542 		}
2543 
2544 		if (vma) {
2545 			/*
2546 			 * Batch parsed and accepted:
2547 			 *
2548 			 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
2549 			 * bit from MI_BATCH_BUFFER_START commands issued in
2550 			 * the dispatch_execbuffer implementations. We
2551 			 * specifically don't want that set on batches the
2552 			 * command parser has accepted.
2553 			 */
2554 			eb.batch_flags |= I915_DISPATCH_SECURE;
2555 			eb.batch_start_offset = 0;
2556 			eb.batch = vma;
2557 		}
2558 	}
2559 
2560 	if (eb.batch_len == 0)
2561 		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2562 
2563 	/*
2564 	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2565 	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2566 	 * hsw should have this fixed, but bdw mucks it up again. */
2567 	if (eb.batch_flags & I915_DISPATCH_SECURE) {
2568 		struct i915_vma *vma;
2569 
2570 		/*
2571 		 * So on first glance it looks freaky that we pin the batch here
2572 		 * outside of the reservation loop. But:
2573 		 * - The batch is already pinned into the relevant ppgtt, so we
2574 		 *   already have the backing storage fully allocated.
2575 		 * - No other BO uses the global gtt (well contexts, but meh),
2576 		 *   so we don't really have issues with multiple objects not
2577 		 *   fitting due to fragmentation.
2578 		 * So this is actually safe.
2579 		 */
2580 		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
2581 		if (IS_ERR(vma)) {
2582 			err = PTR_ERR(vma);
2583 			goto err_vma;
2584 		}
2585 
2586 		eb.batch = vma;
2587 	}
2588 
2589 	/* All GPU relocation batches must be submitted prior to the user rq */
2590 	GEM_BUG_ON(eb.reloc_cache.rq);
2591 
2592 	/* Allocate a request for this batch buffer nice and early. */
2593 	eb.request = i915_request_create(eb.context);
2594 	if (IS_ERR(eb.request)) {
2595 		err = PTR_ERR(eb.request);
2596 		goto err_batch_unpin;
2597 	}
2598 
2599 	if (in_fence) {
2600 		err = i915_request_await_dma_fence(eb.request, in_fence);
2601 		if (err < 0)
2602 			goto err_request;
2603 	}
2604 
2605 	if (exec_fence) {
2606 		err = i915_request_await_execution(eb.request, exec_fence,
2607 						   eb.engine->bond_execute);
2608 		if (err < 0)
2609 			goto err_request;
2610 	}
2611 
2612 	if (fences) {
2613 		err = await_fence_array(&eb, fences);
2614 		if (err)
2615 			goto err_request;
2616 	}
2617 
2618 	if (out_fence_fd != -1) {
2619 		out_fence = sync_file_create(&eb.request->fence);
2620 		if (!out_fence) {
2621 			err = -ENOMEM;
2622 			goto err_request;
2623 		}
2624 	}
2625 
2626 	/*
2627 	 * Whilst this request exists, batch_obj will be on the
2628 	 * active_list, and so will hold the active reference. Only when this
2629 	 * request is retired will the the batch_obj be moved onto the
2630 	 * inactive_list and lose its active reference. Hence we do not need
2631 	 * to explicitly hold another reference here.
2632 	 */
2633 	eb.request->batch = eb.batch;
2634 	if (eb.batch->private)
2635 		intel_engine_pool_mark_active(eb.batch->private, eb.request);
2636 
2637 	trace_i915_request_queue(eb.request, eb.batch_flags);
2638 	err = eb_submit(&eb);
2639 err_request:
2640 	add_to_client(eb.request, file);
2641 	i915_request_add(eb.request);
2642 
2643 	if (fences)
2644 		signal_fence_array(&eb, fences);
2645 
2646 	if (out_fence) {
2647 		if (err == 0) {
2648 			fd_install(out_fence_fd, out_fence->file);
2649 			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2650 			args->rsvd2 |= (u64)out_fence_fd << 32;
2651 			out_fence_fd = -1;
2652 		} else {
2653 			fput(out_fence->file);
2654 		}
2655 	}
2656 
2657 err_batch_unpin:
2658 	if (eb.batch_flags & I915_DISPATCH_SECURE)
2659 		i915_vma_unpin(eb.batch);
2660 	if (eb.batch->private)
2661 		intel_engine_pool_put(eb.batch->private);
2662 err_vma:
2663 	if (eb.exec)
2664 		eb_release_vmas(&eb);
2665 	mutex_unlock(&dev->struct_mutex);
2666 err_engine:
2667 	eb_unpin_engine(&eb);
2668 err_context:
2669 	i915_gem_context_put(eb.gem_context);
2670 err_destroy:
2671 	eb_destroy(&eb);
2672 err_out_fence:
2673 	if (out_fence_fd != -1)
2674 		put_unused_fd(out_fence_fd);
2675 err_exec_fence:
2676 	dma_fence_put(exec_fence);
2677 err_in_fence:
2678 	dma_fence_put(in_fence);
2679 	return err;
2680 }
2681 
2682 static size_t eb_element_size(void)
2683 {
2684 	return (sizeof(struct drm_i915_gem_exec_object2) +
2685 		sizeof(struct i915_vma *) +
2686 		sizeof(unsigned int));
2687 }
2688 
2689 static bool check_buffer_count(size_t count)
2690 {
2691 	const size_t sz = eb_element_size();
2692 
2693 	/*
2694 	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2695 	 * array size (see eb_create()). Otherwise, we can accept an array as
2696 	 * large as can be addressed (though use large arrays at your peril)!
2697 	 */
2698 
2699 	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
2700 }
2701 
2702 /*
2703  * Legacy execbuffer just creates an exec2 list from the original exec object
2704  * list array and passes it to the real function.
2705  */
2706 int
2707 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2708 			  struct drm_file *file)
2709 {
2710 	struct drm_i915_gem_execbuffer *args = data;
2711 	struct drm_i915_gem_execbuffer2 exec2;
2712 	struct drm_i915_gem_exec_object *exec_list = NULL;
2713 	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2714 	const size_t count = args->buffer_count;
2715 	unsigned int i;
2716 	int err;
2717 
2718 	if (!check_buffer_count(count)) {
2719 		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2720 		return -EINVAL;
2721 	}
2722 
2723 	exec2.buffers_ptr = args->buffers_ptr;
2724 	exec2.buffer_count = args->buffer_count;
2725 	exec2.batch_start_offset = args->batch_start_offset;
2726 	exec2.batch_len = args->batch_len;
2727 	exec2.DR1 = args->DR1;
2728 	exec2.DR4 = args->DR4;
2729 	exec2.num_cliprects = args->num_cliprects;
2730 	exec2.cliprects_ptr = args->cliprects_ptr;
2731 	exec2.flags = I915_EXEC_RENDER;
2732 	i915_execbuffer2_set_context_id(exec2, 0);
2733 
2734 	if (!i915_gem_check_execbuffer(&exec2))
2735 		return -EINVAL;
2736 
2737 	/* Copy in the exec list from userland */
2738 	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2739 				   __GFP_NOWARN | GFP_KERNEL);
2740 	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2741 				    __GFP_NOWARN | GFP_KERNEL);
2742 	if (exec_list == NULL || exec2_list == NULL) {
2743 		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2744 			  args->buffer_count);
2745 		kvfree(exec_list);
2746 		kvfree(exec2_list);
2747 		return -ENOMEM;
2748 	}
2749 	err = copy_from_user(exec_list,
2750 			     u64_to_user_ptr(args->buffers_ptr),
2751 			     sizeof(*exec_list) * count);
2752 	if (err) {
2753 		DRM_DEBUG("copy %d exec entries failed %d\n",
2754 			  args->buffer_count, err);
2755 		kvfree(exec_list);
2756 		kvfree(exec2_list);
2757 		return -EFAULT;
2758 	}
2759 
2760 	for (i = 0; i < args->buffer_count; i++) {
2761 		exec2_list[i].handle = exec_list[i].handle;
2762 		exec2_list[i].relocation_count = exec_list[i].relocation_count;
2763 		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2764 		exec2_list[i].alignment = exec_list[i].alignment;
2765 		exec2_list[i].offset = exec_list[i].offset;
2766 		if (INTEL_GEN(to_i915(dev)) < 4)
2767 			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2768 		else
2769 			exec2_list[i].flags = 0;
2770 	}
2771 
2772 	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2773 	if (exec2.flags & __EXEC_HAS_RELOC) {
2774 		struct drm_i915_gem_exec_object __user *user_exec_list =
2775 			u64_to_user_ptr(args->buffers_ptr);
2776 
2777 		/* Copy the new buffer offsets back to the user's exec list. */
2778 		for (i = 0; i < args->buffer_count; i++) {
2779 			if (!(exec2_list[i].offset & UPDATE))
2780 				continue;
2781 
2782 			exec2_list[i].offset =
2783 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2784 			exec2_list[i].offset &= PIN_OFFSET_MASK;
2785 			if (__copy_to_user(&user_exec_list[i].offset,
2786 					   &exec2_list[i].offset,
2787 					   sizeof(user_exec_list[i].offset)))
2788 				break;
2789 		}
2790 	}
2791 
2792 	kvfree(exec_list);
2793 	kvfree(exec2_list);
2794 	return err;
2795 }
2796 
2797 int
2798 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2799 			   struct drm_file *file)
2800 {
2801 	struct drm_i915_gem_execbuffer2 *args = data;
2802 	struct drm_i915_gem_exec_object2 *exec2_list;
2803 	struct drm_syncobj **fences = NULL;
2804 	const size_t count = args->buffer_count;
2805 	int err;
2806 
2807 	if (!check_buffer_count(count)) {
2808 		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2809 		return -EINVAL;
2810 	}
2811 
2812 	if (!i915_gem_check_execbuffer(args))
2813 		return -EINVAL;
2814 
2815 	/* Allocate an extra slot for use by the command parser */
2816 	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2817 				    __GFP_NOWARN | GFP_KERNEL);
2818 	if (exec2_list == NULL) {
2819 		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
2820 			  count);
2821 		return -ENOMEM;
2822 	}
2823 	if (copy_from_user(exec2_list,
2824 			   u64_to_user_ptr(args->buffers_ptr),
2825 			   sizeof(*exec2_list) * count)) {
2826 		DRM_DEBUG("copy %zd exec entries failed\n", count);
2827 		kvfree(exec2_list);
2828 		return -EFAULT;
2829 	}
2830 
2831 	if (args->flags & I915_EXEC_FENCE_ARRAY) {
2832 		fences = get_fence_array(args, file);
2833 		if (IS_ERR(fences)) {
2834 			kvfree(exec2_list);
2835 			return PTR_ERR(fences);
2836 		}
2837 	}
2838 
2839 	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2840 
2841 	/*
2842 	 * Now that we have begun execution of the batchbuffer, we ignore
2843 	 * any new error after this point. Also given that we have already
2844 	 * updated the associated relocations, we try to write out the current
2845 	 * object locations irrespective of any error.
2846 	 */
2847 	if (args->flags & __EXEC_HAS_RELOC) {
2848 		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2849 			u64_to_user_ptr(args->buffers_ptr);
2850 		unsigned int i;
2851 
2852 		/* Copy the new buffer offsets back to the user's exec list. */
2853 		/*
2854 		 * Note: count * sizeof(*user_exec_list) does not overflow,
2855 		 * because we checked 'count' in check_buffer_count().
2856 		 *
2857 		 * And this range already got effectively checked earlier
2858 		 * when we did the "copy_from_user()" above.
2859 		 */
2860 		if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2861 			goto end;
2862 
2863 		for (i = 0; i < args->buffer_count; i++) {
2864 			if (!(exec2_list[i].offset & UPDATE))
2865 				continue;
2866 
2867 			exec2_list[i].offset =
2868 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2869 			unsafe_put_user(exec2_list[i].offset,
2870 					&user_exec_list[i].offset,
2871 					end_user);
2872 		}
2873 end_user:
2874 		user_access_end();
2875 end:;
2876 	}
2877 
2878 	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2879 	put_fence_array(args, fences);
2880 	kvfree(exec2_list);
2881 	return err;
2882 }
2883