1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008,2010 Intel Corporation 5 */ 6 7 #include <linux/intel-iommu.h> 8 #include <linux/dma-resv.h> 9 #include <linux/sync_file.h> 10 #include <linux/uaccess.h> 11 12 #include <drm/drm_syncobj.h> 13 14 #include "display/intel_frontbuffer.h" 15 16 #include "gem/i915_gem_ioctls.h" 17 #include "gt/intel_context.h" 18 #include "gt/intel_gpu_commands.h" 19 #include "gt/intel_gt.h" 20 #include "gt/intel_gt_buffer_pool.h" 21 #include "gt/intel_gt_pm.h" 22 #include "gt/intel_ring.h" 23 24 #include "pxp/intel_pxp.h" 25 26 #include "i915_drv.h" 27 #include "i915_gem_clflush.h" 28 #include "i915_gem_context.h" 29 #include "i915_gem_ioctls.h" 30 #include "i915_trace.h" 31 #include "i915_user_extensions.h" 32 #include "i915_vma_snapshot.h" 33 34 struct eb_vma { 35 struct i915_vma *vma; 36 unsigned int flags; 37 38 /** This vma's place in the execbuf reservation list */ 39 struct drm_i915_gem_exec_object2 *exec; 40 struct list_head bind_link; 41 struct list_head reloc_link; 42 43 struct hlist_node node; 44 u32 handle; 45 }; 46 47 enum { 48 FORCE_CPU_RELOC = 1, 49 FORCE_GTT_RELOC, 50 FORCE_GPU_RELOC, 51 #define DBG_FORCE_RELOC 0 /* choose one of the above! */ 52 }; 53 54 /* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */ 55 #define __EXEC_OBJECT_HAS_PIN BIT(30) 56 #define __EXEC_OBJECT_HAS_FENCE BIT(29) 57 #define __EXEC_OBJECT_USERPTR_INIT BIT(28) 58 #define __EXEC_OBJECT_NEEDS_MAP BIT(27) 59 #define __EXEC_OBJECT_NEEDS_BIAS BIT(26) 60 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 26) /* all of the above + */ 61 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) 62 63 #define __EXEC_HAS_RELOC BIT(31) 64 #define __EXEC_ENGINE_PINNED BIT(30) 65 #define __EXEC_USERPTR_USED BIT(29) 66 #define __EXEC_INTERNAL_FLAGS (~0u << 29) 67 #define UPDATE PIN_OFFSET_FIXED 68 69 #define BATCH_OFFSET_BIAS (256*1024) 70 71 #define __I915_EXEC_ILLEGAL_FLAGS \ 72 (__I915_EXEC_UNKNOWN_FLAGS | \ 73 I915_EXEC_CONSTANTS_MASK | \ 74 I915_EXEC_RESOURCE_STREAMER) 75 76 /* Catch emission of unexpected errors for CI! */ 77 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 78 #undef EINVAL 79 #define EINVAL ({ \ 80 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 81 22; \ 82 }) 83 #endif 84 85 /** 86 * DOC: User command execution 87 * 88 * Userspace submits commands to be executed on the GPU as an instruction 89 * stream within a GEM object we call a batchbuffer. This instructions may 90 * refer to other GEM objects containing auxiliary state such as kernels, 91 * samplers, render targets and even secondary batchbuffers. Userspace does 92 * not know where in the GPU memory these objects reside and so before the 93 * batchbuffer is passed to the GPU for execution, those addresses in the 94 * batchbuffer and auxiliary objects are updated. This is known as relocation, 95 * or patching. To try and avoid having to relocate each object on the next 96 * execution, userspace is told the location of those objects in this pass, 97 * but this remains just a hint as the kernel may choose a new location for 98 * any object in the future. 99 * 100 * At the level of talking to the hardware, submitting a batchbuffer for the 101 * GPU to execute is to add content to a buffer from which the HW 102 * command streamer is reading. 103 * 104 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. 105 * Execlists, this command is not placed on the same buffer as the 106 * remaining items. 107 * 108 * 2. Add a command to invalidate caches to the buffer. 109 * 110 * 3. Add a batchbuffer start command to the buffer; the start command is 111 * essentially a token together with the GPU address of the batchbuffer 112 * to be executed. 113 * 114 * 4. Add a pipeline flush to the buffer. 115 * 116 * 5. Add a memory write command to the buffer to record when the GPU 117 * is done executing the batchbuffer. The memory write writes the 118 * global sequence number of the request, ``i915_request::global_seqno``; 119 * the i915 driver uses the current value in the register to determine 120 * if the GPU has completed the batchbuffer. 121 * 122 * 6. Add a user interrupt command to the buffer. This command instructs 123 * the GPU to issue an interrupt when the command, pipeline flush and 124 * memory write are completed. 125 * 126 * 7. Inform the hardware of the additional commands added to the buffer 127 * (by updating the tail pointer). 128 * 129 * Processing an execbuf ioctl is conceptually split up into a few phases. 130 * 131 * 1. Validation - Ensure all the pointers, handles and flags are valid. 132 * 2. Reservation - Assign GPU address space for every object 133 * 3. Relocation - Update any addresses to point to the final locations 134 * 4. Serialisation - Order the request with respect to its dependencies 135 * 5. Construction - Construct a request to execute the batchbuffer 136 * 6. Submission (at some point in the future execution) 137 * 138 * Reserving resources for the execbuf is the most complicated phase. We 139 * neither want to have to migrate the object in the address space, nor do 140 * we want to have to update any relocations pointing to this object. Ideally, 141 * we want to leave the object where it is and for all the existing relocations 142 * to match. If the object is given a new address, or if userspace thinks the 143 * object is elsewhere, we have to parse all the relocation entries and update 144 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that 145 * all the target addresses in all of its objects match the value in the 146 * relocation entries and that they all match the presumed offsets given by the 147 * list of execbuffer objects. Using this knowledge, we know that if we haven't 148 * moved any buffers, all the relocation entries are valid and we can skip 149 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 150 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 151 * 152 * The addresses written in the objects must match the corresponding 153 * reloc.presumed_offset which in turn must match the corresponding 154 * execobject.offset. 155 * 156 * Any render targets written to in the batch must be flagged with 157 * EXEC_OBJECT_WRITE. 158 * 159 * To avoid stalling, execobject.offset should match the current 160 * address of that object within the active context. 161 * 162 * The reservation is done is multiple phases. First we try and keep any 163 * object already bound in its current location - so as long as meets the 164 * constraints imposed by the new execbuffer. Any object left unbound after the 165 * first pass is then fitted into any available idle space. If an object does 166 * not fit, all objects are removed from the reservation and the process rerun 167 * after sorting the objects into a priority order (more difficult to fit 168 * objects are tried first). Failing that, the entire VM is cleared and we try 169 * to fit the execbuf once last time before concluding that it simply will not 170 * fit. 171 * 172 * A small complication to all of this is that we allow userspace not only to 173 * specify an alignment and a size for the object in the address space, but 174 * we also allow userspace to specify the exact offset. This objects are 175 * simpler to place (the location is known a priori) all we have to do is make 176 * sure the space is available. 177 * 178 * Once all the objects are in place, patching up the buried pointers to point 179 * to the final locations is a fairly simple job of walking over the relocation 180 * entry arrays, looking up the right address and rewriting the value into 181 * the object. Simple! ... The relocation entries are stored in user memory 182 * and so to access them we have to copy them into a local buffer. That copy 183 * has to avoid taking any pagefaults as they may lead back to a GEM object 184 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split 185 * the relocation into multiple passes. First we try to do everything within an 186 * atomic context (avoid the pagefaults) which requires that we never wait. If 187 * we detect that we may wait, or if we need to fault, then we have to fallback 188 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 189 * bells yet?) Dropping the mutex means that we lose all the state we have 190 * built up so far for the execbuf and we must reset any global data. However, 191 * we do leave the objects pinned in their final locations - which is a 192 * potential issue for concurrent execbufs. Once we have left the mutex, we can 193 * allocate and copy all the relocation entries into a large array at our 194 * leisure, reacquire the mutex, reclaim all the objects and other state and 195 * then proceed to update any incorrect addresses with the objects. 196 * 197 * As we process the relocation entries, we maintain a record of whether the 198 * object is being written to. Using NORELOC, we expect userspace to provide 199 * this information instead. We also check whether we can skip the relocation 200 * by comparing the expected value inside the relocation entry with the target's 201 * final address. If they differ, we have to map the current object and rewrite 202 * the 4 or 8 byte pointer within. 203 * 204 * Serialising an execbuf is quite simple according to the rules of the GEM 205 * ABI. Execution within each context is ordered by the order of submission. 206 * Writes to any GEM object are in order of submission and are exclusive. Reads 207 * from a GEM object are unordered with respect to other reads, but ordered by 208 * writes. A write submitted after a read cannot occur before the read, and 209 * similarly any read submitted after a write cannot occur before the write. 210 * Writes are ordered between engines such that only one write occurs at any 211 * time (completing any reads beforehand) - using semaphores where available 212 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 213 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 214 * reads before starting, and any read (either using set-domain or pread) must 215 * flush all GPU writes before starting. (Note we only employ a barrier before, 216 * we currently rely on userspace not concurrently starting a new execution 217 * whilst reading or writing to an object. This may be an advantage or not 218 * depending on how much you trust userspace not to shoot themselves in the 219 * foot.) Serialisation may just result in the request being inserted into 220 * a DAG awaiting its turn, but most simple is to wait on the CPU until 221 * all dependencies are resolved. 222 * 223 * After all of that, is just a matter of closing the request and handing it to 224 * the hardware (well, leaving it in a queue to be executed). However, we also 225 * offer the ability for batchbuffers to be run with elevated privileges so 226 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 227 * Before any batch is given extra privileges we first must check that it 228 * contains no nefarious instructions, we check that each instruction is from 229 * our whitelist and all registers are also from an allowed list. We first 230 * copy the user's batchbuffer to a shadow (so that the user doesn't have 231 * access to it, either by the CPU or GPU as we scan it) and then parse each 232 * instruction. If everything is ok, we set a flag telling the hardware to run 233 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 234 */ 235 236 struct eb_fence { 237 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */ 238 struct dma_fence *dma_fence; 239 u64 value; 240 struct dma_fence_chain *chain_fence; 241 }; 242 243 struct i915_execbuffer { 244 struct drm_i915_private *i915; /** i915 backpointer */ 245 struct drm_file *file; /** per-file lookup tables and limits */ 246 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 247 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 248 struct eb_vma *vma; 249 250 struct intel_gt *gt; /* gt for the execbuf */ 251 struct intel_context *context; /* logical state for the request */ 252 struct i915_gem_context *gem_context; /** caller's context */ 253 254 /** our requests to build */ 255 struct i915_request *requests[MAX_ENGINE_INSTANCE + 1]; 256 /** identity of the batch obj/vma */ 257 struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1]; 258 struct i915_vma *trampoline; /** trampoline used for chaining */ 259 260 /** used for excl fence in dma_resv objects when > 1 BB submitted */ 261 struct dma_fence *composite_fence; 262 263 /** actual size of execobj[] as we may extend it for the cmdparser */ 264 unsigned int buffer_count; 265 266 /* number of batches in execbuf IOCTL */ 267 unsigned int num_batches; 268 269 /** list of vma not yet bound during reservation phase */ 270 struct list_head unbound; 271 272 /** list of vma that have execobj.relocation_count */ 273 struct list_head relocs; 274 275 struct i915_gem_ww_ctx ww; 276 277 /** 278 * Track the most recently used object for relocations, as we 279 * frequently have to perform multiple relocations within the same 280 * obj/page 281 */ 282 struct reloc_cache { 283 struct drm_mm_node node; /** temporary GTT binding */ 284 unsigned long vaddr; /** Current kmap address */ 285 unsigned long page; /** Currently mapped page index */ 286 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */ 287 bool use_64bit_reloc : 1; 288 bool has_llc : 1; 289 bool has_fence : 1; 290 bool needs_unfenced : 1; 291 } reloc_cache; 292 293 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 294 295 /** Length of batch within object */ 296 u64 batch_len[MAX_ENGINE_INSTANCE + 1]; 297 u32 batch_start_offset; /** Location within object of batch */ 298 u32 batch_flags; /** Flags composed for emit_bb_start() */ 299 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */ 300 301 /** 302 * Indicate either the size of the hastable used to resolve 303 * relocation handles, or if negative that we are using a direct 304 * index into the execobj[]. 305 */ 306 int lut_size; 307 struct hlist_head *buckets; /** ht for relocation handles */ 308 309 struct eb_fence *fences; 310 unsigned long num_fences; 311 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 312 struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1]; 313 #endif 314 }; 315 316 static int eb_parse(struct i915_execbuffer *eb); 317 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle); 318 static void eb_unpin_engine(struct i915_execbuffer *eb); 319 static void eb_capture_release(struct i915_execbuffer *eb); 320 321 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) 322 { 323 return intel_engine_requires_cmd_parser(eb->context->engine) || 324 (intel_engine_using_cmd_parser(eb->context->engine) && 325 eb->args->batch_len); 326 } 327 328 static int eb_create(struct i915_execbuffer *eb) 329 { 330 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 331 unsigned int size = 1 + ilog2(eb->buffer_count); 332 333 /* 334 * Without a 1:1 association between relocation handles and 335 * the execobject[] index, we instead create a hashtable. 336 * We size it dynamically based on available memory, starting 337 * first with 1:1 assocative hash and scaling back until 338 * the allocation succeeds. 339 * 340 * Later on we use a positive lut_size to indicate we are 341 * using this hashtable, and a negative value to indicate a 342 * direct lookup. 343 */ 344 do { 345 gfp_t flags; 346 347 /* While we can still reduce the allocation size, don't 348 * raise a warning and allow the allocation to fail. 349 * On the last pass though, we want to try as hard 350 * as possible to perform the allocation and warn 351 * if it fails. 352 */ 353 flags = GFP_KERNEL; 354 if (size > 1) 355 flags |= __GFP_NORETRY | __GFP_NOWARN; 356 357 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 358 flags); 359 if (eb->buckets) 360 break; 361 } while (--size); 362 363 if (unlikely(!size)) 364 return -ENOMEM; 365 366 eb->lut_size = size; 367 } else { 368 eb->lut_size = -eb->buffer_count; 369 } 370 371 return 0; 372 } 373 374 static bool 375 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 376 const struct i915_vma *vma, 377 unsigned int flags) 378 { 379 if (vma->node.size < entry->pad_to_size) 380 return true; 381 382 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) 383 return true; 384 385 if (flags & EXEC_OBJECT_PINNED && 386 vma->node.start != entry->offset) 387 return true; 388 389 if (flags & __EXEC_OBJECT_NEEDS_BIAS && 390 vma->node.start < BATCH_OFFSET_BIAS) 391 return true; 392 393 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 394 (vma->node.start + vma->node.size + 4095) >> 32) 395 return true; 396 397 if (flags & __EXEC_OBJECT_NEEDS_MAP && 398 !i915_vma_is_map_and_fenceable(vma)) 399 return true; 400 401 return false; 402 } 403 404 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry, 405 unsigned int exec_flags) 406 { 407 u64 pin_flags = 0; 408 409 if (exec_flags & EXEC_OBJECT_NEEDS_GTT) 410 pin_flags |= PIN_GLOBAL; 411 412 /* 413 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 414 * limit address to the first 4GBs for unflagged objects. 415 */ 416 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 417 pin_flags |= PIN_ZONE_4G; 418 419 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) 420 pin_flags |= PIN_MAPPABLE; 421 422 if (exec_flags & EXEC_OBJECT_PINNED) 423 pin_flags |= entry->offset | PIN_OFFSET_FIXED; 424 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) 425 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 426 427 return pin_flags; 428 } 429 430 static inline int 431 eb_pin_vma(struct i915_execbuffer *eb, 432 const struct drm_i915_gem_exec_object2 *entry, 433 struct eb_vma *ev) 434 { 435 struct i915_vma *vma = ev->vma; 436 u64 pin_flags; 437 int err; 438 439 if (vma->node.size) 440 pin_flags = vma->node.start; 441 else 442 pin_flags = entry->offset & PIN_OFFSET_MASK; 443 444 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED; 445 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) 446 pin_flags |= PIN_GLOBAL; 447 448 /* Attempt to reuse the current location if available */ 449 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags); 450 if (err == -EDEADLK) 451 return err; 452 453 if (unlikely(err)) { 454 if (entry->flags & EXEC_OBJECT_PINNED) 455 return err; 456 457 /* Failing that pick any _free_ space if suitable */ 458 err = i915_vma_pin_ww(vma, &eb->ww, 459 entry->pad_to_size, 460 entry->alignment, 461 eb_pin_flags(entry, ev->flags) | 462 PIN_USER | PIN_NOEVICT); 463 if (unlikely(err)) 464 return err; 465 } 466 467 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 468 err = i915_vma_pin_fence(vma); 469 if (unlikely(err)) { 470 i915_vma_unpin(vma); 471 return err; 472 } 473 474 if (vma->fence) 475 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 476 } 477 478 ev->flags |= __EXEC_OBJECT_HAS_PIN; 479 if (eb_vma_misplaced(entry, vma, ev->flags)) 480 return -EBADSLT; 481 482 return 0; 483 } 484 485 static inline void 486 eb_unreserve_vma(struct eb_vma *ev) 487 { 488 if (!(ev->flags & __EXEC_OBJECT_HAS_PIN)) 489 return; 490 491 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE)) 492 __i915_vma_unpin_fence(ev->vma); 493 494 __i915_vma_unpin(ev->vma); 495 ev->flags &= ~__EXEC_OBJECT_RESERVED; 496 } 497 498 static int 499 eb_validate_vma(struct i915_execbuffer *eb, 500 struct drm_i915_gem_exec_object2 *entry, 501 struct i915_vma *vma) 502 { 503 /* Relocations are disallowed for all platforms after TGL-LP. This 504 * also covers all platforms with local memory. 505 */ 506 if (entry->relocation_count && 507 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915)) 508 return -EINVAL; 509 510 if (unlikely(entry->flags & eb->invalid_flags)) 511 return -EINVAL; 512 513 if (unlikely(entry->alignment && 514 !is_power_of_2_u64(entry->alignment))) 515 return -EINVAL; 516 517 /* 518 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 519 * any non-page-aligned or non-canonical addresses. 520 */ 521 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 522 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) 523 return -EINVAL; 524 525 /* pad_to_size was once a reserved field, so sanitize it */ 526 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 527 if (unlikely(offset_in_page(entry->pad_to_size))) 528 return -EINVAL; 529 } else { 530 entry->pad_to_size = 0; 531 } 532 /* 533 * From drm_mm perspective address space is continuous, 534 * so from this point we're always using non-canonical 535 * form internally. 536 */ 537 entry->offset = gen8_noncanonical_addr(entry->offset); 538 539 if (!eb->reloc_cache.has_fence) { 540 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 541 } else { 542 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 543 eb->reloc_cache.needs_unfenced) && 544 i915_gem_object_is_tiled(vma->obj)) 545 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 546 } 547 548 return 0; 549 } 550 551 static inline bool 552 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx) 553 { 554 return eb->args->flags & I915_EXEC_BATCH_FIRST ? 555 buffer_idx < eb->num_batches : 556 buffer_idx >= eb->args->buffer_count - eb->num_batches; 557 } 558 559 static int 560 eb_add_vma(struct i915_execbuffer *eb, 561 unsigned int *current_batch, 562 unsigned int i, 563 struct i915_vma *vma) 564 { 565 struct drm_i915_private *i915 = eb->i915; 566 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 567 struct eb_vma *ev = &eb->vma[i]; 568 569 ev->vma = vma; 570 ev->exec = entry; 571 ev->flags = entry->flags; 572 573 if (eb->lut_size > 0) { 574 ev->handle = entry->handle; 575 hlist_add_head(&ev->node, 576 &eb->buckets[hash_32(entry->handle, 577 eb->lut_size)]); 578 } 579 580 if (entry->relocation_count) 581 list_add_tail(&ev->reloc_link, &eb->relocs); 582 583 /* 584 * SNA is doing fancy tricks with compressing batch buffers, which leads 585 * to negative relocation deltas. Usually that works out ok since the 586 * relocate address is still positive, except when the batch is placed 587 * very low in the GTT. Ensure this doesn't happen. 588 * 589 * Note that actual hangs have only been observed on gen7, but for 590 * paranoia do it everywhere. 591 */ 592 if (is_batch_buffer(eb, i)) { 593 if (entry->relocation_count && 594 !(ev->flags & EXEC_OBJECT_PINNED)) 595 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; 596 if (eb->reloc_cache.has_fence) 597 ev->flags |= EXEC_OBJECT_NEEDS_FENCE; 598 599 eb->batches[*current_batch] = ev; 600 601 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) { 602 drm_dbg(&i915->drm, 603 "Attempting to use self-modifying batch buffer\n"); 604 return -EINVAL; 605 } 606 607 if (range_overflows_t(u64, 608 eb->batch_start_offset, 609 eb->args->batch_len, 610 ev->vma->size)) { 611 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); 612 return -EINVAL; 613 } 614 615 if (eb->args->batch_len == 0) 616 eb->batch_len[*current_batch] = ev->vma->size - 617 eb->batch_start_offset; 618 else 619 eb->batch_len[*current_batch] = eb->args->batch_len; 620 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */ 621 drm_dbg(&i915->drm, "Invalid batch length\n"); 622 return -EINVAL; 623 } 624 625 ++*current_batch; 626 } 627 628 return 0; 629 } 630 631 static inline int use_cpu_reloc(const struct reloc_cache *cache, 632 const struct drm_i915_gem_object *obj) 633 { 634 if (!i915_gem_object_has_struct_page(obj)) 635 return false; 636 637 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 638 return true; 639 640 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 641 return false; 642 643 return (cache->has_llc || 644 obj->cache_dirty || 645 obj->cache_level != I915_CACHE_NONE); 646 } 647 648 static int eb_reserve_vma(struct i915_execbuffer *eb, 649 struct eb_vma *ev, 650 u64 pin_flags) 651 { 652 struct drm_i915_gem_exec_object2 *entry = ev->exec; 653 struct i915_vma *vma = ev->vma; 654 int err; 655 656 if (drm_mm_node_allocated(&vma->node) && 657 eb_vma_misplaced(entry, vma, ev->flags)) { 658 err = i915_vma_unbind(vma); 659 if (err) 660 return err; 661 } 662 663 err = i915_vma_pin_ww(vma, &eb->ww, 664 entry->pad_to_size, entry->alignment, 665 eb_pin_flags(entry, ev->flags) | pin_flags); 666 if (err) 667 return err; 668 669 if (entry->offset != vma->node.start) { 670 entry->offset = vma->node.start | UPDATE; 671 eb->args->flags |= __EXEC_HAS_RELOC; 672 } 673 674 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 675 err = i915_vma_pin_fence(vma); 676 if (unlikely(err)) { 677 i915_vma_unpin(vma); 678 return err; 679 } 680 681 if (vma->fence) 682 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 683 } 684 685 ev->flags |= __EXEC_OBJECT_HAS_PIN; 686 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); 687 688 return 0; 689 } 690 691 static int eb_reserve(struct i915_execbuffer *eb) 692 { 693 const unsigned int count = eb->buffer_count; 694 unsigned int pin_flags = PIN_USER | PIN_NONBLOCK; 695 struct list_head last; 696 struct eb_vma *ev; 697 unsigned int i, pass; 698 int err = 0; 699 700 /* 701 * Attempt to pin all of the buffers into the GTT. 702 * This is done in 3 phases: 703 * 704 * 1a. Unbind all objects that do not match the GTT constraints for 705 * the execbuffer (fenceable, mappable, alignment etc). 706 * 1b. Increment pin count for already bound objects. 707 * 2. Bind new objects. 708 * 3. Decrement pin count. 709 * 710 * This avoid unnecessary unbinding of later objects in order to make 711 * room for the earlier objects *unless* we need to defragment. 712 */ 713 pass = 0; 714 do { 715 list_for_each_entry(ev, &eb->unbound, bind_link) { 716 err = eb_reserve_vma(eb, ev, pin_flags); 717 if (err) 718 break; 719 } 720 if (err != -ENOSPC) 721 return err; 722 723 /* Resort *all* the objects into priority order */ 724 INIT_LIST_HEAD(&eb->unbound); 725 INIT_LIST_HEAD(&last); 726 for (i = 0; i < count; i++) { 727 unsigned int flags; 728 729 ev = &eb->vma[i]; 730 flags = ev->flags; 731 if (flags & EXEC_OBJECT_PINNED && 732 flags & __EXEC_OBJECT_HAS_PIN) 733 continue; 734 735 eb_unreserve_vma(ev); 736 737 if (flags & EXEC_OBJECT_PINNED) 738 /* Pinned must have their slot */ 739 list_add(&ev->bind_link, &eb->unbound); 740 else if (flags & __EXEC_OBJECT_NEEDS_MAP) 741 /* Map require the lowest 256MiB (aperture) */ 742 list_add_tail(&ev->bind_link, &eb->unbound); 743 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 744 /* Prioritise 4GiB region for restricted bo */ 745 list_add(&ev->bind_link, &last); 746 else 747 list_add_tail(&ev->bind_link, &last); 748 } 749 list_splice_tail(&last, &eb->unbound); 750 751 switch (pass++) { 752 case 0: 753 break; 754 755 case 1: 756 /* Too fragmented, unbind everything and retry */ 757 mutex_lock(&eb->context->vm->mutex); 758 err = i915_gem_evict_vm(eb->context->vm); 759 mutex_unlock(&eb->context->vm->mutex); 760 if (err) 761 return err; 762 break; 763 764 default: 765 return -ENOSPC; 766 } 767 768 pin_flags = PIN_USER; 769 } while (1); 770 } 771 772 static int eb_select_context(struct i915_execbuffer *eb) 773 { 774 struct i915_gem_context *ctx; 775 776 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 777 if (unlikely(IS_ERR(ctx))) 778 return PTR_ERR(ctx); 779 780 eb->gem_context = ctx; 781 if (i915_gem_context_has_full_ppgtt(ctx)) 782 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 783 784 return 0; 785 } 786 787 static int __eb_add_lut(struct i915_execbuffer *eb, 788 u32 handle, struct i915_vma *vma) 789 { 790 struct i915_gem_context *ctx = eb->gem_context; 791 struct i915_lut_handle *lut; 792 int err; 793 794 lut = i915_lut_handle_alloc(); 795 if (unlikely(!lut)) 796 return -ENOMEM; 797 798 i915_vma_get(vma); 799 if (!atomic_fetch_inc(&vma->open_count)) 800 i915_vma_reopen(vma); 801 lut->handle = handle; 802 lut->ctx = ctx; 803 804 /* Check that the context hasn't been closed in the meantime */ 805 err = -EINTR; 806 if (!mutex_lock_interruptible(&ctx->lut_mutex)) { 807 if (likely(!i915_gem_context_is_closed(ctx))) 808 err = radix_tree_insert(&ctx->handles_vma, handle, vma); 809 else 810 err = -ENOENT; 811 if (err == 0) { /* And nor has this handle */ 812 struct drm_i915_gem_object *obj = vma->obj; 813 814 spin_lock(&obj->lut_lock); 815 if (idr_find(&eb->file->object_idr, handle) == obj) { 816 list_add(&lut->obj_link, &obj->lut_list); 817 } else { 818 radix_tree_delete(&ctx->handles_vma, handle); 819 err = -ENOENT; 820 } 821 spin_unlock(&obj->lut_lock); 822 } 823 mutex_unlock(&ctx->lut_mutex); 824 } 825 if (unlikely(err)) 826 goto err; 827 828 return 0; 829 830 err: 831 i915_vma_close(vma); 832 i915_vma_put(vma); 833 i915_lut_handle_free(lut); 834 return err; 835 } 836 837 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle) 838 { 839 struct i915_address_space *vm = eb->context->vm; 840 841 do { 842 struct drm_i915_gem_object *obj; 843 struct i915_vma *vma; 844 int err; 845 846 rcu_read_lock(); 847 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle); 848 if (likely(vma && vma->vm == vm)) 849 vma = i915_vma_tryget(vma); 850 rcu_read_unlock(); 851 if (likely(vma)) 852 return vma; 853 854 obj = i915_gem_object_lookup(eb->file, handle); 855 if (unlikely(!obj)) 856 return ERR_PTR(-ENOENT); 857 858 /* 859 * If the user has opted-in for protected-object tracking, make 860 * sure the object encryption can be used. 861 * We only need to do this when the object is first used with 862 * this context, because the context itself will be banned when 863 * the protected objects become invalid. 864 */ 865 if (i915_gem_context_uses_protected_content(eb->gem_context) && 866 i915_gem_object_is_protected(obj)) { 867 err = intel_pxp_key_check(&vm->gt->pxp, obj, true); 868 if (err) { 869 i915_gem_object_put(obj); 870 return ERR_PTR(err); 871 } 872 } 873 874 vma = i915_vma_instance(obj, vm, NULL); 875 if (IS_ERR(vma)) { 876 i915_gem_object_put(obj); 877 return vma; 878 } 879 880 err = __eb_add_lut(eb, handle, vma); 881 if (likely(!err)) 882 return vma; 883 884 i915_gem_object_put(obj); 885 if (err != -EEXIST) 886 return ERR_PTR(err); 887 } while (1); 888 } 889 890 static int eb_lookup_vmas(struct i915_execbuffer *eb) 891 { 892 unsigned int i, current_batch = 0; 893 int err = 0; 894 895 INIT_LIST_HEAD(&eb->relocs); 896 897 for (i = 0; i < eb->buffer_count; i++) { 898 struct i915_vma *vma; 899 900 vma = eb_lookup_vma(eb, eb->exec[i].handle); 901 if (IS_ERR(vma)) { 902 err = PTR_ERR(vma); 903 goto err; 904 } 905 906 err = eb_validate_vma(eb, &eb->exec[i], vma); 907 if (unlikely(err)) { 908 i915_vma_put(vma); 909 goto err; 910 } 911 912 err = eb_add_vma(eb, ¤t_batch, i, vma); 913 if (err) 914 return err; 915 916 if (i915_gem_object_is_userptr(vma->obj)) { 917 err = i915_gem_object_userptr_submit_init(vma->obj); 918 if (err) { 919 if (i + 1 < eb->buffer_count) { 920 /* 921 * Execbuffer code expects last vma entry to be NULL, 922 * since we already initialized this entry, 923 * set the next value to NULL or we mess up 924 * cleanup handling. 925 */ 926 eb->vma[i + 1].vma = NULL; 927 } 928 929 return err; 930 } 931 932 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT; 933 eb->args->flags |= __EXEC_USERPTR_USED; 934 } 935 } 936 937 return 0; 938 939 err: 940 eb->vma[i].vma = NULL; 941 return err; 942 } 943 944 static int eb_lock_vmas(struct i915_execbuffer *eb) 945 { 946 unsigned int i; 947 int err; 948 949 for (i = 0; i < eb->buffer_count; i++) { 950 struct eb_vma *ev = &eb->vma[i]; 951 struct i915_vma *vma = ev->vma; 952 953 err = i915_gem_object_lock(vma->obj, &eb->ww); 954 if (err) 955 return err; 956 } 957 958 return 0; 959 } 960 961 static int eb_validate_vmas(struct i915_execbuffer *eb) 962 { 963 unsigned int i; 964 int err; 965 966 INIT_LIST_HEAD(&eb->unbound); 967 968 err = eb_lock_vmas(eb); 969 if (err) 970 return err; 971 972 for (i = 0; i < eb->buffer_count; i++) { 973 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 974 struct eb_vma *ev = &eb->vma[i]; 975 struct i915_vma *vma = ev->vma; 976 977 err = eb_pin_vma(eb, entry, ev); 978 if (err == -EDEADLK) 979 return err; 980 981 if (!err) { 982 if (entry->offset != vma->node.start) { 983 entry->offset = vma->node.start | UPDATE; 984 eb->args->flags |= __EXEC_HAS_RELOC; 985 } 986 } else { 987 eb_unreserve_vma(ev); 988 989 list_add_tail(&ev->bind_link, &eb->unbound); 990 if (drm_mm_node_allocated(&vma->node)) { 991 err = i915_vma_unbind(vma); 992 if (err) 993 return err; 994 } 995 } 996 997 if (!(ev->flags & EXEC_OBJECT_WRITE)) { 998 err = dma_resv_reserve_shared(vma->obj->base.resv, 1); 999 if (err) 1000 return err; 1001 } 1002 1003 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && 1004 eb_vma_misplaced(&eb->exec[i], vma, ev->flags)); 1005 } 1006 1007 if (!list_empty(&eb->unbound)) 1008 return eb_reserve(eb); 1009 1010 return 0; 1011 } 1012 1013 static struct eb_vma * 1014 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 1015 { 1016 if (eb->lut_size < 0) { 1017 if (handle >= -eb->lut_size) 1018 return NULL; 1019 return &eb->vma[handle]; 1020 } else { 1021 struct hlist_head *head; 1022 struct eb_vma *ev; 1023 1024 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 1025 hlist_for_each_entry(ev, head, node) { 1026 if (ev->handle == handle) 1027 return ev; 1028 } 1029 return NULL; 1030 } 1031 } 1032 1033 static void eb_release_vmas(struct i915_execbuffer *eb, bool final) 1034 { 1035 const unsigned int count = eb->buffer_count; 1036 unsigned int i; 1037 1038 for (i = 0; i < count; i++) { 1039 struct eb_vma *ev = &eb->vma[i]; 1040 struct i915_vma *vma = ev->vma; 1041 1042 if (!vma) 1043 break; 1044 1045 eb_unreserve_vma(ev); 1046 1047 if (final) 1048 i915_vma_put(vma); 1049 } 1050 1051 eb_capture_release(eb); 1052 eb_unpin_engine(eb); 1053 } 1054 1055 static void eb_destroy(const struct i915_execbuffer *eb) 1056 { 1057 if (eb->lut_size > 0) 1058 kfree(eb->buckets); 1059 } 1060 1061 static inline u64 1062 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 1063 const struct i915_vma *target) 1064 { 1065 return gen8_canonical_addr((int)reloc->delta + target->node.start); 1066 } 1067 1068 static void reloc_cache_init(struct reloc_cache *cache, 1069 struct drm_i915_private *i915) 1070 { 1071 cache->page = -1; 1072 cache->vaddr = 0; 1073 /* Must be a variable in the struct to allow GCC to unroll. */ 1074 cache->graphics_ver = GRAPHICS_VER(i915); 1075 cache->has_llc = HAS_LLC(i915); 1076 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 1077 cache->has_fence = cache->graphics_ver < 4; 1078 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 1079 cache->node.flags = 0; 1080 } 1081 1082 static inline void *unmask_page(unsigned long p) 1083 { 1084 return (void *)(uintptr_t)(p & PAGE_MASK); 1085 } 1086 1087 static inline unsigned int unmask_flags(unsigned long p) 1088 { 1089 return p & ~PAGE_MASK; 1090 } 1091 1092 #define KMAP 0x4 /* after CLFLUSH_FLAGS */ 1093 1094 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 1095 { 1096 struct drm_i915_private *i915 = 1097 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 1098 return &i915->ggtt; 1099 } 1100 1101 static void reloc_cache_unmap(struct reloc_cache *cache) 1102 { 1103 void *vaddr; 1104 1105 if (!cache->vaddr) 1106 return; 1107 1108 vaddr = unmask_page(cache->vaddr); 1109 if (cache->vaddr & KMAP) 1110 kunmap_atomic(vaddr); 1111 else 1112 io_mapping_unmap_atomic((void __iomem *)vaddr); 1113 } 1114 1115 static void reloc_cache_remap(struct reloc_cache *cache, 1116 struct drm_i915_gem_object *obj) 1117 { 1118 void *vaddr; 1119 1120 if (!cache->vaddr) 1121 return; 1122 1123 if (cache->vaddr & KMAP) { 1124 struct page *page = i915_gem_object_get_page(obj, cache->page); 1125 1126 vaddr = kmap_atomic(page); 1127 cache->vaddr = unmask_flags(cache->vaddr) | 1128 (unsigned long)vaddr; 1129 } else { 1130 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1131 unsigned long offset; 1132 1133 offset = cache->node.start; 1134 if (!drm_mm_node_allocated(&cache->node)) 1135 offset += cache->page << PAGE_SHIFT; 1136 1137 cache->vaddr = (unsigned long) 1138 io_mapping_map_atomic_wc(&ggtt->iomap, offset); 1139 } 1140 } 1141 1142 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb) 1143 { 1144 void *vaddr; 1145 1146 if (!cache->vaddr) 1147 return; 1148 1149 vaddr = unmask_page(cache->vaddr); 1150 if (cache->vaddr & KMAP) { 1151 struct drm_i915_gem_object *obj = 1152 (struct drm_i915_gem_object *)cache->node.mm; 1153 if (cache->vaddr & CLFLUSH_AFTER) 1154 mb(); 1155 1156 kunmap_atomic(vaddr); 1157 i915_gem_object_finish_access(obj); 1158 } else { 1159 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1160 1161 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1162 io_mapping_unmap_atomic((void __iomem *)vaddr); 1163 1164 if (drm_mm_node_allocated(&cache->node)) { 1165 ggtt->vm.clear_range(&ggtt->vm, 1166 cache->node.start, 1167 cache->node.size); 1168 mutex_lock(&ggtt->vm.mutex); 1169 drm_mm_remove_node(&cache->node); 1170 mutex_unlock(&ggtt->vm.mutex); 1171 } else { 1172 i915_vma_unpin((struct i915_vma *)cache->node.mm); 1173 } 1174 } 1175 1176 cache->vaddr = 0; 1177 cache->page = -1; 1178 } 1179 1180 static void *reloc_kmap(struct drm_i915_gem_object *obj, 1181 struct reloc_cache *cache, 1182 unsigned long pageno) 1183 { 1184 void *vaddr; 1185 struct page *page; 1186 1187 if (cache->vaddr) { 1188 kunmap_atomic(unmask_page(cache->vaddr)); 1189 } else { 1190 unsigned int flushes; 1191 int err; 1192 1193 err = i915_gem_object_prepare_write(obj, &flushes); 1194 if (err) 1195 return ERR_PTR(err); 1196 1197 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 1198 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); 1199 1200 cache->vaddr = flushes | KMAP; 1201 cache->node.mm = (void *)obj; 1202 if (flushes) 1203 mb(); 1204 } 1205 1206 page = i915_gem_object_get_page(obj, pageno); 1207 if (!obj->mm.dirty) 1208 set_page_dirty(page); 1209 1210 vaddr = kmap_atomic(page); 1211 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 1212 cache->page = pageno; 1213 1214 return vaddr; 1215 } 1216 1217 static void *reloc_iomap(struct drm_i915_gem_object *obj, 1218 struct i915_execbuffer *eb, 1219 unsigned long page) 1220 { 1221 struct reloc_cache *cache = &eb->reloc_cache; 1222 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1223 unsigned long offset; 1224 void *vaddr; 1225 1226 if (cache->vaddr) { 1227 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1228 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1229 } else { 1230 struct i915_vma *vma; 1231 int err; 1232 1233 if (i915_gem_object_is_tiled(obj)) 1234 return ERR_PTR(-EINVAL); 1235 1236 if (use_cpu_reloc(cache, obj)) 1237 return NULL; 1238 1239 err = i915_gem_object_set_to_gtt_domain(obj, true); 1240 if (err) 1241 return ERR_PTR(err); 1242 1243 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0, 1244 PIN_MAPPABLE | 1245 PIN_NONBLOCK /* NOWARN */ | 1246 PIN_NOEVICT); 1247 if (vma == ERR_PTR(-EDEADLK)) 1248 return vma; 1249 1250 if (IS_ERR(vma)) { 1251 memset(&cache->node, 0, sizeof(cache->node)); 1252 mutex_lock(&ggtt->vm.mutex); 1253 err = drm_mm_insert_node_in_range 1254 (&ggtt->vm.mm, &cache->node, 1255 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1256 0, ggtt->mappable_end, 1257 DRM_MM_INSERT_LOW); 1258 mutex_unlock(&ggtt->vm.mutex); 1259 if (err) /* no inactive aperture space, use cpu reloc */ 1260 return NULL; 1261 } else { 1262 cache->node.start = vma->node.start; 1263 cache->node.mm = (void *)vma; 1264 } 1265 } 1266 1267 offset = cache->node.start; 1268 if (drm_mm_node_allocated(&cache->node)) { 1269 ggtt->vm.insert_page(&ggtt->vm, 1270 i915_gem_object_get_dma_address(obj, page), 1271 offset, I915_CACHE_NONE, 0); 1272 } else { 1273 offset += page << PAGE_SHIFT; 1274 } 1275 1276 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, 1277 offset); 1278 cache->page = page; 1279 cache->vaddr = (unsigned long)vaddr; 1280 1281 return vaddr; 1282 } 1283 1284 static void *reloc_vaddr(struct drm_i915_gem_object *obj, 1285 struct i915_execbuffer *eb, 1286 unsigned long page) 1287 { 1288 struct reloc_cache *cache = &eb->reloc_cache; 1289 void *vaddr; 1290 1291 if (cache->page == page) { 1292 vaddr = unmask_page(cache->vaddr); 1293 } else { 1294 vaddr = NULL; 1295 if ((cache->vaddr & KMAP) == 0) 1296 vaddr = reloc_iomap(obj, eb, page); 1297 if (!vaddr) 1298 vaddr = reloc_kmap(obj, cache, page); 1299 } 1300 1301 return vaddr; 1302 } 1303 1304 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1305 { 1306 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1307 if (flushes & CLFLUSH_BEFORE) { 1308 clflushopt(addr); 1309 mb(); 1310 } 1311 1312 *addr = value; 1313 1314 /* 1315 * Writes to the same cacheline are serialised by the CPU 1316 * (including clflush). On the write path, we only require 1317 * that it hits memory in an orderly fashion and place 1318 * mb barriers at the start and end of the relocation phase 1319 * to ensure ordering of clflush wrt to the system. 1320 */ 1321 if (flushes & CLFLUSH_AFTER) 1322 clflushopt(addr); 1323 } else 1324 *addr = value; 1325 } 1326 1327 static u64 1328 relocate_entry(struct i915_vma *vma, 1329 const struct drm_i915_gem_relocation_entry *reloc, 1330 struct i915_execbuffer *eb, 1331 const struct i915_vma *target) 1332 { 1333 u64 target_addr = relocation_target(reloc, target); 1334 u64 offset = reloc->offset; 1335 bool wide = eb->reloc_cache.use_64bit_reloc; 1336 void *vaddr; 1337 1338 repeat: 1339 vaddr = reloc_vaddr(vma->obj, eb, 1340 offset >> PAGE_SHIFT); 1341 if (IS_ERR(vaddr)) 1342 return PTR_ERR(vaddr); 1343 1344 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32))); 1345 clflush_write32(vaddr + offset_in_page(offset), 1346 lower_32_bits(target_addr), 1347 eb->reloc_cache.vaddr); 1348 1349 if (wide) { 1350 offset += sizeof(u32); 1351 target_addr >>= 32; 1352 wide = false; 1353 goto repeat; 1354 } 1355 1356 return target->node.start | UPDATE; 1357 } 1358 1359 static u64 1360 eb_relocate_entry(struct i915_execbuffer *eb, 1361 struct eb_vma *ev, 1362 const struct drm_i915_gem_relocation_entry *reloc) 1363 { 1364 struct drm_i915_private *i915 = eb->i915; 1365 struct eb_vma *target; 1366 int err; 1367 1368 /* we've already hold a reference to all valid objects */ 1369 target = eb_get_vma(eb, reloc->target_handle); 1370 if (unlikely(!target)) 1371 return -ENOENT; 1372 1373 /* Validate that the target is in a valid r/w GPU domain */ 1374 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1375 drm_dbg(&i915->drm, "reloc with multiple write domains: " 1376 "target %d offset %d " 1377 "read %08x write %08x", 1378 reloc->target_handle, 1379 (int) reloc->offset, 1380 reloc->read_domains, 1381 reloc->write_domain); 1382 return -EINVAL; 1383 } 1384 if (unlikely((reloc->write_domain | reloc->read_domains) 1385 & ~I915_GEM_GPU_DOMAINS)) { 1386 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " 1387 "target %d offset %d " 1388 "read %08x write %08x", 1389 reloc->target_handle, 1390 (int) reloc->offset, 1391 reloc->read_domains, 1392 reloc->write_domain); 1393 return -EINVAL; 1394 } 1395 1396 if (reloc->write_domain) { 1397 target->flags |= EXEC_OBJECT_WRITE; 1398 1399 /* 1400 * Sandybridge PPGTT errata: We need a global gtt mapping 1401 * for MI and pipe_control writes because the gpu doesn't 1402 * properly redirect them through the ppgtt for non_secure 1403 * batchbuffers. 1404 */ 1405 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1406 GRAPHICS_VER(eb->i915) == 6 && 1407 !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) { 1408 struct i915_vma *vma = target->vma; 1409 1410 reloc_cache_unmap(&eb->reloc_cache); 1411 mutex_lock(&vma->vm->mutex); 1412 err = i915_vma_bind(target->vma, 1413 target->vma->obj->cache_level, 1414 PIN_GLOBAL, NULL); 1415 mutex_unlock(&vma->vm->mutex); 1416 reloc_cache_remap(&eb->reloc_cache, ev->vma->obj); 1417 if (err) 1418 return err; 1419 } 1420 } 1421 1422 /* 1423 * If the relocation already has the right value in it, no 1424 * more work needs to be done. 1425 */ 1426 if (!DBG_FORCE_RELOC && 1427 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset) 1428 return 0; 1429 1430 /* Check that the relocation address is valid... */ 1431 if (unlikely(reloc->offset > 1432 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1433 drm_dbg(&i915->drm, "Relocation beyond object bounds: " 1434 "target %d offset %d size %d.\n", 1435 reloc->target_handle, 1436 (int)reloc->offset, 1437 (int)ev->vma->size); 1438 return -EINVAL; 1439 } 1440 if (unlikely(reloc->offset & 3)) { 1441 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " 1442 "target %d offset %d.\n", 1443 reloc->target_handle, 1444 (int)reloc->offset); 1445 return -EINVAL; 1446 } 1447 1448 /* 1449 * If we write into the object, we need to force the synchronisation 1450 * barrier, either with an asynchronous clflush or if we executed the 1451 * patching using the GPU (though that should be serialised by the 1452 * timeline). To be completely sure, and since we are required to 1453 * do relocations we are already stalling, disable the user's opt 1454 * out of our synchronisation. 1455 */ 1456 ev->flags &= ~EXEC_OBJECT_ASYNC; 1457 1458 /* and update the user's relocation entry */ 1459 return relocate_entry(ev->vma, reloc, eb, target->vma); 1460 } 1461 1462 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) 1463 { 1464 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1465 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1466 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1467 struct drm_i915_gem_relocation_entry __user *urelocs = 1468 u64_to_user_ptr(entry->relocs_ptr); 1469 unsigned long remain = entry->relocation_count; 1470 1471 if (unlikely(remain > N_RELOC(ULONG_MAX))) 1472 return -EINVAL; 1473 1474 /* 1475 * We must check that the entire relocation array is safe 1476 * to read. However, if the array is not writable the user loses 1477 * the updated relocation values. 1478 */ 1479 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs)))) 1480 return -EFAULT; 1481 1482 do { 1483 struct drm_i915_gem_relocation_entry *r = stack; 1484 unsigned int count = 1485 min_t(unsigned long, remain, ARRAY_SIZE(stack)); 1486 unsigned int copied; 1487 1488 /* 1489 * This is the fast path and we cannot handle a pagefault 1490 * whilst holding the struct mutex lest the user pass in the 1491 * relocations contained within a mmaped bo. For in such a case 1492 * we, the page fault handler would call i915_gem_fault() and 1493 * we would try to acquire the struct mutex again. Obviously 1494 * this is bad and so lockdep complains vehemently. 1495 */ 1496 pagefault_disable(); 1497 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); 1498 pagefault_enable(); 1499 if (unlikely(copied)) { 1500 remain = -EFAULT; 1501 goto out; 1502 } 1503 1504 remain -= count; 1505 do { 1506 u64 offset = eb_relocate_entry(eb, ev, r); 1507 1508 if (likely(offset == 0)) { 1509 } else if ((s64)offset < 0) { 1510 remain = (int)offset; 1511 goto out; 1512 } else { 1513 /* 1514 * Note that reporting an error now 1515 * leaves everything in an inconsistent 1516 * state as we have *already* changed 1517 * the relocation value inside the 1518 * object. As we have not changed the 1519 * reloc.presumed_offset or will not 1520 * change the execobject.offset, on the 1521 * call we may not rewrite the value 1522 * inside the object, leaving it 1523 * dangling and causing a GPU hang. Unless 1524 * userspace dynamically rebuilds the 1525 * relocations on each execbuf rather than 1526 * presume a static tree. 1527 * 1528 * We did previously check if the relocations 1529 * were writable (access_ok), an error now 1530 * would be a strange race with mprotect, 1531 * having already demonstrated that we 1532 * can read from this userspace address. 1533 */ 1534 offset = gen8_canonical_addr(offset & ~UPDATE); 1535 __put_user(offset, 1536 &urelocs[r - stack].presumed_offset); 1537 } 1538 } while (r++, --count); 1539 urelocs += ARRAY_SIZE(stack); 1540 } while (remain); 1541 out: 1542 reloc_cache_reset(&eb->reloc_cache, eb); 1543 return remain; 1544 } 1545 1546 static int 1547 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev) 1548 { 1549 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1550 struct drm_i915_gem_relocation_entry *relocs = 1551 u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1552 unsigned int i; 1553 int err; 1554 1555 for (i = 0; i < entry->relocation_count; i++) { 1556 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]); 1557 1558 if ((s64)offset < 0) { 1559 err = (int)offset; 1560 goto err; 1561 } 1562 } 1563 err = 0; 1564 err: 1565 reloc_cache_reset(&eb->reloc_cache, eb); 1566 return err; 1567 } 1568 1569 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) 1570 { 1571 const char __user *addr, *end; 1572 unsigned long size; 1573 char __maybe_unused c; 1574 1575 size = entry->relocation_count; 1576 if (size == 0) 1577 return 0; 1578 1579 if (size > N_RELOC(ULONG_MAX)) 1580 return -EINVAL; 1581 1582 addr = u64_to_user_ptr(entry->relocs_ptr); 1583 size *= sizeof(struct drm_i915_gem_relocation_entry); 1584 if (!access_ok(addr, size)) 1585 return -EFAULT; 1586 1587 end = addr + size; 1588 for (; addr < end; addr += PAGE_SIZE) { 1589 int err = __get_user(c, addr); 1590 if (err) 1591 return err; 1592 } 1593 return __get_user(c, end - 1); 1594 } 1595 1596 static int eb_copy_relocations(const struct i915_execbuffer *eb) 1597 { 1598 struct drm_i915_gem_relocation_entry *relocs; 1599 const unsigned int count = eb->buffer_count; 1600 unsigned int i; 1601 int err; 1602 1603 for (i = 0; i < count; i++) { 1604 const unsigned int nreloc = eb->exec[i].relocation_count; 1605 struct drm_i915_gem_relocation_entry __user *urelocs; 1606 unsigned long size; 1607 unsigned long copied; 1608 1609 if (nreloc == 0) 1610 continue; 1611 1612 err = check_relocations(&eb->exec[i]); 1613 if (err) 1614 goto err; 1615 1616 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); 1617 size = nreloc * sizeof(*relocs); 1618 1619 relocs = kvmalloc_array(size, 1, GFP_KERNEL); 1620 if (!relocs) { 1621 err = -ENOMEM; 1622 goto err; 1623 } 1624 1625 /* copy_from_user is limited to < 4GiB */ 1626 copied = 0; 1627 do { 1628 unsigned int len = 1629 min_t(u64, BIT_ULL(31), size - copied); 1630 1631 if (__copy_from_user((char *)relocs + copied, 1632 (char __user *)urelocs + copied, 1633 len)) 1634 goto end; 1635 1636 copied += len; 1637 } while (copied < size); 1638 1639 /* 1640 * As we do not update the known relocation offsets after 1641 * relocating (due to the complexities in lock handling), 1642 * we need to mark them as invalid now so that we force the 1643 * relocation processing next time. Just in case the target 1644 * object is evicted and then rebound into its old 1645 * presumed_offset before the next execbuffer - if that 1646 * happened we would make the mistake of assuming that the 1647 * relocations were valid. 1648 */ 1649 if (!user_access_begin(urelocs, size)) 1650 goto end; 1651 1652 for (copied = 0; copied < nreloc; copied++) 1653 unsafe_put_user(-1, 1654 &urelocs[copied].presumed_offset, 1655 end_user); 1656 user_access_end(); 1657 1658 eb->exec[i].relocs_ptr = (uintptr_t)relocs; 1659 } 1660 1661 return 0; 1662 1663 end_user: 1664 user_access_end(); 1665 end: 1666 kvfree(relocs); 1667 err = -EFAULT; 1668 err: 1669 while (i--) { 1670 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); 1671 if (eb->exec[i].relocation_count) 1672 kvfree(relocs); 1673 } 1674 return err; 1675 } 1676 1677 static int eb_prefault_relocations(const struct i915_execbuffer *eb) 1678 { 1679 const unsigned int count = eb->buffer_count; 1680 unsigned int i; 1681 1682 for (i = 0; i < count; i++) { 1683 int err; 1684 1685 err = check_relocations(&eb->exec[i]); 1686 if (err) 1687 return err; 1688 } 1689 1690 return 0; 1691 } 1692 1693 static int eb_reinit_userptr(struct i915_execbuffer *eb) 1694 { 1695 const unsigned int count = eb->buffer_count; 1696 unsigned int i; 1697 int ret; 1698 1699 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED))) 1700 return 0; 1701 1702 for (i = 0; i < count; i++) { 1703 struct eb_vma *ev = &eb->vma[i]; 1704 1705 if (!i915_gem_object_is_userptr(ev->vma->obj)) 1706 continue; 1707 1708 ret = i915_gem_object_userptr_submit_init(ev->vma->obj); 1709 if (ret) 1710 return ret; 1711 1712 ev->flags |= __EXEC_OBJECT_USERPTR_INIT; 1713 } 1714 1715 return 0; 1716 } 1717 1718 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb) 1719 { 1720 bool have_copy = false; 1721 struct eb_vma *ev; 1722 int err = 0; 1723 1724 repeat: 1725 if (signal_pending(current)) { 1726 err = -ERESTARTSYS; 1727 goto out; 1728 } 1729 1730 /* We may process another execbuffer during the unlock... */ 1731 eb_release_vmas(eb, false); 1732 i915_gem_ww_ctx_fini(&eb->ww); 1733 1734 /* 1735 * We take 3 passes through the slowpatch. 1736 * 1737 * 1 - we try to just prefault all the user relocation entries and 1738 * then attempt to reuse the atomic pagefault disabled fast path again. 1739 * 1740 * 2 - we copy the user entries to a local buffer here outside of the 1741 * local and allow ourselves to wait upon any rendering before 1742 * relocations 1743 * 1744 * 3 - we already have a local copy of the relocation entries, but 1745 * were interrupted (EAGAIN) whilst waiting for the objects, try again. 1746 */ 1747 if (!err) { 1748 err = eb_prefault_relocations(eb); 1749 } else if (!have_copy) { 1750 err = eb_copy_relocations(eb); 1751 have_copy = err == 0; 1752 } else { 1753 cond_resched(); 1754 err = 0; 1755 } 1756 1757 if (!err) 1758 err = eb_reinit_userptr(eb); 1759 1760 i915_gem_ww_ctx_init(&eb->ww, true); 1761 if (err) 1762 goto out; 1763 1764 /* reacquire the objects */ 1765 repeat_validate: 1766 err = eb_pin_engine(eb, false); 1767 if (err) 1768 goto err; 1769 1770 err = eb_validate_vmas(eb); 1771 if (err) 1772 goto err; 1773 1774 GEM_BUG_ON(!eb->batches[0]); 1775 1776 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1777 if (!have_copy) { 1778 err = eb_relocate_vma(eb, ev); 1779 if (err) 1780 break; 1781 } else { 1782 err = eb_relocate_vma_slow(eb, ev); 1783 if (err) 1784 break; 1785 } 1786 } 1787 1788 if (err == -EDEADLK) 1789 goto err; 1790 1791 if (err && !have_copy) 1792 goto repeat; 1793 1794 if (err) 1795 goto err; 1796 1797 /* as last step, parse the command buffer */ 1798 err = eb_parse(eb); 1799 if (err) 1800 goto err; 1801 1802 /* 1803 * Leave the user relocations as are, this is the painfully slow path, 1804 * and we want to avoid the complication of dropping the lock whilst 1805 * having buffers reserved in the aperture and so causing spurious 1806 * ENOSPC for random operations. 1807 */ 1808 1809 err: 1810 if (err == -EDEADLK) { 1811 eb_release_vmas(eb, false); 1812 err = i915_gem_ww_ctx_backoff(&eb->ww); 1813 if (!err) 1814 goto repeat_validate; 1815 } 1816 1817 if (err == -EAGAIN) 1818 goto repeat; 1819 1820 out: 1821 if (have_copy) { 1822 const unsigned int count = eb->buffer_count; 1823 unsigned int i; 1824 1825 for (i = 0; i < count; i++) { 1826 const struct drm_i915_gem_exec_object2 *entry = 1827 &eb->exec[i]; 1828 struct drm_i915_gem_relocation_entry *relocs; 1829 1830 if (!entry->relocation_count) 1831 continue; 1832 1833 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1834 kvfree(relocs); 1835 } 1836 } 1837 1838 return err; 1839 } 1840 1841 static int eb_relocate_parse(struct i915_execbuffer *eb) 1842 { 1843 int err; 1844 bool throttle = true; 1845 1846 retry: 1847 err = eb_pin_engine(eb, throttle); 1848 if (err) { 1849 if (err != -EDEADLK) 1850 return err; 1851 1852 goto err; 1853 } 1854 1855 /* only throttle once, even if we didn't need to throttle */ 1856 throttle = false; 1857 1858 err = eb_validate_vmas(eb); 1859 if (err == -EAGAIN) 1860 goto slow; 1861 else if (err) 1862 goto err; 1863 1864 /* The objects are in their final locations, apply the relocations. */ 1865 if (eb->args->flags & __EXEC_HAS_RELOC) { 1866 struct eb_vma *ev; 1867 1868 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1869 err = eb_relocate_vma(eb, ev); 1870 if (err) 1871 break; 1872 } 1873 1874 if (err == -EDEADLK) 1875 goto err; 1876 else if (err) 1877 goto slow; 1878 } 1879 1880 if (!err) 1881 err = eb_parse(eb); 1882 1883 err: 1884 if (err == -EDEADLK) { 1885 eb_release_vmas(eb, false); 1886 err = i915_gem_ww_ctx_backoff(&eb->ww); 1887 if (!err) 1888 goto retry; 1889 } 1890 1891 return err; 1892 1893 slow: 1894 err = eb_relocate_parse_slow(eb); 1895 if (err) 1896 /* 1897 * If the user expects the execobject.offset and 1898 * reloc.presumed_offset to be an exact match, 1899 * as for using NO_RELOC, then we cannot update 1900 * the execobject.offset until we have completed 1901 * relocation. 1902 */ 1903 eb->args->flags &= ~__EXEC_HAS_RELOC; 1904 1905 return err; 1906 } 1907 1908 /* 1909 * Using two helper loops for the order of which requests / batches are created 1910 * and added the to backend. Requests are created in order from the parent to 1911 * the last child. Requests are added in the reverse order, from the last child 1912 * to parent. This is done for locking reasons as the timeline lock is acquired 1913 * during request creation and released when the request is added to the 1914 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be 1915 * the ordering. 1916 */ 1917 #define for_each_batch_create_order(_eb, _i) \ 1918 for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i)) 1919 #define for_each_batch_add_order(_eb, _i) \ 1920 BUILD_BUG_ON(!typecheck(int, _i)); \ 1921 for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i)) 1922 1923 static struct i915_request * 1924 eb_find_first_request_added(struct i915_execbuffer *eb) 1925 { 1926 int i; 1927 1928 for_each_batch_add_order(eb, i) 1929 if (eb->requests[i]) 1930 return eb->requests[i]; 1931 1932 GEM_BUG_ON("Request not found"); 1933 1934 return NULL; 1935 } 1936 1937 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 1938 1939 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */ 1940 static void eb_capture_stage(struct i915_execbuffer *eb) 1941 { 1942 const unsigned int count = eb->buffer_count; 1943 unsigned int i = count, j; 1944 struct i915_vma_snapshot *vsnap; 1945 1946 while (i--) { 1947 struct eb_vma *ev = &eb->vma[i]; 1948 struct i915_vma *vma = ev->vma; 1949 unsigned int flags = ev->flags; 1950 1951 if (!(flags & EXEC_OBJECT_CAPTURE)) 1952 continue; 1953 1954 vsnap = i915_vma_snapshot_alloc(GFP_KERNEL); 1955 if (!vsnap) 1956 continue; 1957 1958 i915_vma_snapshot_init(vsnap, vma, "user"); 1959 for_each_batch_create_order(eb, j) { 1960 struct i915_capture_list *capture; 1961 1962 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 1963 if (!capture) 1964 continue; 1965 1966 capture->next = eb->capture_lists[j]; 1967 capture->vma_snapshot = i915_vma_snapshot_get(vsnap); 1968 eb->capture_lists[j] = capture; 1969 } 1970 i915_vma_snapshot_put(vsnap); 1971 } 1972 } 1973 1974 /* Commit once we're in the critical path */ 1975 static void eb_capture_commit(struct i915_execbuffer *eb) 1976 { 1977 unsigned int j; 1978 1979 for_each_batch_create_order(eb, j) { 1980 struct i915_request *rq = eb->requests[j]; 1981 1982 if (!rq) 1983 break; 1984 1985 rq->capture_list = eb->capture_lists[j]; 1986 eb->capture_lists[j] = NULL; 1987 } 1988 } 1989 1990 /* 1991 * Release anything that didn't get committed due to errors. 1992 * The capture_list will otherwise be freed at request retire. 1993 */ 1994 static void eb_capture_release(struct i915_execbuffer *eb) 1995 { 1996 unsigned int j; 1997 1998 for_each_batch_create_order(eb, j) { 1999 if (eb->capture_lists[j]) { 2000 i915_request_free_capture_list(eb->capture_lists[j]); 2001 eb->capture_lists[j] = NULL; 2002 } 2003 } 2004 } 2005 2006 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2007 { 2008 memset(eb->capture_lists, 0, sizeof(eb->capture_lists)); 2009 } 2010 2011 #else 2012 2013 static void eb_capture_stage(struct i915_execbuffer *eb) 2014 { 2015 } 2016 2017 static void eb_capture_commit(struct i915_execbuffer *eb) 2018 { 2019 } 2020 2021 static void eb_capture_release(struct i915_execbuffer *eb) 2022 { 2023 } 2024 2025 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2026 { 2027 } 2028 2029 #endif 2030 2031 static int eb_move_to_gpu(struct i915_execbuffer *eb) 2032 { 2033 const unsigned int count = eb->buffer_count; 2034 unsigned int i = count; 2035 int err = 0, j; 2036 2037 while (i--) { 2038 struct eb_vma *ev = &eb->vma[i]; 2039 struct i915_vma *vma = ev->vma; 2040 unsigned int flags = ev->flags; 2041 struct drm_i915_gem_object *obj = vma->obj; 2042 2043 assert_vma_held(vma); 2044 2045 /* 2046 * If the GPU is not _reading_ through the CPU cache, we need 2047 * to make sure that any writes (both previous GPU writes from 2048 * before a change in snooping levels and normal CPU writes) 2049 * caught in that cache are flushed to main memory. 2050 * 2051 * We want to say 2052 * obj->cache_dirty && 2053 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) 2054 * but gcc's optimiser doesn't handle that as well and emits 2055 * two jumps instead of one. Maybe one day... 2056 * 2057 * FIXME: There is also sync flushing in set_pages(), which 2058 * serves a different purpose(some of the time at least). 2059 * 2060 * We should consider: 2061 * 2062 * 1. Rip out the async flush code. 2063 * 2064 * 2. Or make the sync flushing use the async clflush path 2065 * using mandatory fences underneath. Currently the below 2066 * async flush happens after we bind the object. 2067 */ 2068 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { 2069 if (i915_gem_clflush_object(obj, 0)) 2070 flags &= ~EXEC_OBJECT_ASYNC; 2071 } 2072 2073 /* We only need to await on the first request */ 2074 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { 2075 err = i915_request_await_object 2076 (eb_find_first_request_added(eb), obj, 2077 flags & EXEC_OBJECT_WRITE); 2078 } 2079 2080 for_each_batch_add_order(eb, j) { 2081 if (err) 2082 break; 2083 if (!eb->requests[j]) 2084 continue; 2085 2086 err = _i915_vma_move_to_active(vma, eb->requests[j], 2087 j ? NULL : 2088 eb->composite_fence ? 2089 eb->composite_fence : 2090 &eb->requests[j]->fence, 2091 flags | __EXEC_OBJECT_NO_RESERVE); 2092 } 2093 } 2094 2095 #ifdef CONFIG_MMU_NOTIFIER 2096 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) { 2097 read_lock(&eb->i915->mm.notifier_lock); 2098 2099 /* 2100 * count is always at least 1, otherwise __EXEC_USERPTR_USED 2101 * could not have been set 2102 */ 2103 for (i = 0; i < count; i++) { 2104 struct eb_vma *ev = &eb->vma[i]; 2105 struct drm_i915_gem_object *obj = ev->vma->obj; 2106 2107 if (!i915_gem_object_is_userptr(obj)) 2108 continue; 2109 2110 err = i915_gem_object_userptr_submit_done(obj); 2111 if (err) 2112 break; 2113 } 2114 2115 read_unlock(&eb->i915->mm.notifier_lock); 2116 } 2117 #endif 2118 2119 if (unlikely(err)) 2120 goto err_skip; 2121 2122 /* Unconditionally flush any chipset caches (for streaming writes). */ 2123 intel_gt_chipset_flush(eb->gt); 2124 eb_capture_commit(eb); 2125 2126 return 0; 2127 2128 err_skip: 2129 for_each_batch_create_order(eb, j) { 2130 if (!eb->requests[j]) 2131 break; 2132 2133 i915_request_set_error_once(eb->requests[j], err); 2134 } 2135 return err; 2136 } 2137 2138 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) 2139 { 2140 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 2141 return -EINVAL; 2142 2143 /* Kernel clipping was a DRI1 misfeature */ 2144 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY | 2145 I915_EXEC_USE_EXTENSIONS))) { 2146 if (exec->num_cliprects || exec->cliprects_ptr) 2147 return -EINVAL; 2148 } 2149 2150 if (exec->DR4 == 0xffffffff) { 2151 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); 2152 exec->DR4 = 0; 2153 } 2154 if (exec->DR1 || exec->DR4) 2155 return -EINVAL; 2156 2157 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 2158 return -EINVAL; 2159 2160 return 0; 2161 } 2162 2163 static int i915_reset_gen7_sol_offsets(struct i915_request *rq) 2164 { 2165 u32 *cs; 2166 int i; 2167 2168 if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) { 2169 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n"); 2170 return -EINVAL; 2171 } 2172 2173 cs = intel_ring_begin(rq, 4 * 2 + 2); 2174 if (IS_ERR(cs)) 2175 return PTR_ERR(cs); 2176 2177 *cs++ = MI_LOAD_REGISTER_IMM(4); 2178 for (i = 0; i < 4; i++) { 2179 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 2180 *cs++ = 0; 2181 } 2182 *cs++ = MI_NOOP; 2183 intel_ring_advance(rq, cs); 2184 2185 return 0; 2186 } 2187 2188 static struct i915_vma * 2189 shadow_batch_pin(struct i915_execbuffer *eb, 2190 struct drm_i915_gem_object *obj, 2191 struct i915_address_space *vm, 2192 unsigned int flags) 2193 { 2194 struct i915_vma *vma; 2195 int err; 2196 2197 vma = i915_vma_instance(obj, vm, NULL); 2198 if (IS_ERR(vma)) 2199 return vma; 2200 2201 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags); 2202 if (err) 2203 return ERR_PTR(err); 2204 2205 return vma; 2206 } 2207 2208 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma) 2209 { 2210 /* 2211 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2212 * batch" bit. Hence we need to pin secure batches into the global gtt. 2213 * hsw should have this fixed, but bdw mucks it up again. */ 2214 if (eb->batch_flags & I915_DISPATCH_SECURE) 2215 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0); 2216 2217 return NULL; 2218 } 2219 2220 static int eb_parse(struct i915_execbuffer *eb) 2221 { 2222 struct drm_i915_private *i915 = eb->i915; 2223 struct intel_gt_buffer_pool_node *pool = eb->batch_pool; 2224 struct i915_vma *shadow, *trampoline, *batch; 2225 unsigned long len; 2226 int err; 2227 2228 if (!eb_use_cmdparser(eb)) { 2229 batch = eb_dispatch_secure(eb, eb->batches[0]->vma); 2230 if (IS_ERR(batch)) 2231 return PTR_ERR(batch); 2232 2233 goto secure_batch; 2234 } 2235 2236 if (intel_context_is_parallel(eb->context)) 2237 return -EINVAL; 2238 2239 len = eb->batch_len[0]; 2240 if (!CMDPARSER_USES_GGTT(eb->i915)) { 2241 /* 2242 * ppGTT backed shadow buffers must be mapped RO, to prevent 2243 * post-scan tampering 2244 */ 2245 if (!eb->context->vm->has_read_only) { 2246 drm_dbg(&i915->drm, 2247 "Cannot prevent post-scan tampering without RO capable vm\n"); 2248 return -EINVAL; 2249 } 2250 } else { 2251 len += I915_CMD_PARSER_TRAMPOLINE_SIZE; 2252 } 2253 if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */ 2254 return -EINVAL; 2255 2256 if (!pool) { 2257 pool = intel_gt_get_buffer_pool(eb->gt, len, 2258 I915_MAP_WB); 2259 if (IS_ERR(pool)) 2260 return PTR_ERR(pool); 2261 eb->batch_pool = pool; 2262 } 2263 2264 err = i915_gem_object_lock(pool->obj, &eb->ww); 2265 if (err) 2266 goto err; 2267 2268 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER); 2269 if (IS_ERR(shadow)) { 2270 err = PTR_ERR(shadow); 2271 goto err; 2272 } 2273 intel_gt_buffer_pool_mark_used(pool); 2274 i915_gem_object_set_readonly(shadow->obj); 2275 shadow->private = pool; 2276 2277 trampoline = NULL; 2278 if (CMDPARSER_USES_GGTT(eb->i915)) { 2279 trampoline = shadow; 2280 2281 shadow = shadow_batch_pin(eb, pool->obj, 2282 &eb->gt->ggtt->vm, 2283 PIN_GLOBAL); 2284 if (IS_ERR(shadow)) { 2285 err = PTR_ERR(shadow); 2286 shadow = trampoline; 2287 goto err_shadow; 2288 } 2289 shadow->private = pool; 2290 2291 eb->batch_flags |= I915_DISPATCH_SECURE; 2292 } 2293 2294 batch = eb_dispatch_secure(eb, shadow); 2295 if (IS_ERR(batch)) { 2296 err = PTR_ERR(batch); 2297 goto err_trampoline; 2298 } 2299 2300 err = dma_resv_reserve_shared(shadow->obj->base.resv, 1); 2301 if (err) 2302 goto err_trampoline; 2303 2304 err = intel_engine_cmd_parser(eb->context->engine, 2305 eb->batches[0]->vma, 2306 eb->batch_start_offset, 2307 eb->batch_len[0], 2308 shadow, trampoline); 2309 if (err) 2310 goto err_unpin_batch; 2311 2312 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2313 eb->batches[0]->vma = i915_vma_get(shadow); 2314 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2315 2316 eb->trampoline = trampoline; 2317 eb->batch_start_offset = 0; 2318 2319 secure_batch: 2320 if (batch) { 2321 if (intel_context_is_parallel(eb->context)) 2322 return -EINVAL; 2323 2324 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2325 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2326 eb->batches[0]->vma = i915_vma_get(batch); 2327 } 2328 return 0; 2329 2330 err_unpin_batch: 2331 if (batch) 2332 i915_vma_unpin(batch); 2333 err_trampoline: 2334 if (trampoline) 2335 i915_vma_unpin(trampoline); 2336 err_shadow: 2337 i915_vma_unpin(shadow); 2338 err: 2339 return err; 2340 } 2341 2342 static int eb_request_submit(struct i915_execbuffer *eb, 2343 struct i915_request *rq, 2344 struct i915_vma *batch, 2345 u64 batch_len) 2346 { 2347 int err; 2348 2349 if (intel_context_nopreempt(rq->context)) 2350 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags); 2351 2352 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 2353 err = i915_reset_gen7_sol_offsets(rq); 2354 if (err) 2355 return err; 2356 } 2357 2358 /* 2359 * After we completed waiting for other engines (using HW semaphores) 2360 * then we can signal that this request/batch is ready to run. This 2361 * allows us to determine if the batch is still waiting on the GPU 2362 * or actually running by checking the breadcrumb. 2363 */ 2364 if (rq->context->engine->emit_init_breadcrumb) { 2365 err = rq->context->engine->emit_init_breadcrumb(rq); 2366 if (err) 2367 return err; 2368 } 2369 2370 err = rq->context->engine->emit_bb_start(rq, 2371 batch->node.start + 2372 eb->batch_start_offset, 2373 batch_len, 2374 eb->batch_flags); 2375 if (err) 2376 return err; 2377 2378 if (eb->trampoline) { 2379 GEM_BUG_ON(intel_context_is_parallel(rq->context)); 2380 GEM_BUG_ON(eb->batch_start_offset); 2381 err = rq->context->engine->emit_bb_start(rq, 2382 eb->trampoline->node.start + 2383 batch_len, 0, 0); 2384 if (err) 2385 return err; 2386 } 2387 2388 return 0; 2389 } 2390 2391 static int eb_submit(struct i915_execbuffer *eb) 2392 { 2393 unsigned int i; 2394 int err; 2395 2396 err = eb_move_to_gpu(eb); 2397 2398 for_each_batch_create_order(eb, i) { 2399 if (!eb->requests[i]) 2400 break; 2401 2402 trace_i915_request_queue(eb->requests[i], eb->batch_flags); 2403 if (!err) 2404 err = eb_request_submit(eb, eb->requests[i], 2405 eb->batches[i]->vma, 2406 eb->batch_len[i]); 2407 } 2408 2409 return err; 2410 } 2411 2412 static int num_vcs_engines(struct drm_i915_private *i915) 2413 { 2414 return hweight_long(VDBOX_MASK(to_gt(i915))); 2415 } 2416 2417 /* 2418 * Find one BSD ring to dispatch the corresponding BSD command. 2419 * The engine index is returned. 2420 */ 2421 static unsigned int 2422 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, 2423 struct drm_file *file) 2424 { 2425 struct drm_i915_file_private *file_priv = file->driver_priv; 2426 2427 /* Check whether the file_priv has already selected one ring. */ 2428 if ((int)file_priv->bsd_engine < 0) 2429 file_priv->bsd_engine = 2430 get_random_int() % num_vcs_engines(dev_priv); 2431 2432 return file_priv->bsd_engine; 2433 } 2434 2435 static const enum intel_engine_id user_ring_map[] = { 2436 [I915_EXEC_DEFAULT] = RCS0, 2437 [I915_EXEC_RENDER] = RCS0, 2438 [I915_EXEC_BLT] = BCS0, 2439 [I915_EXEC_BSD] = VCS0, 2440 [I915_EXEC_VEBOX] = VECS0 2441 }; 2442 2443 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce) 2444 { 2445 struct intel_ring *ring = ce->ring; 2446 struct intel_timeline *tl = ce->timeline; 2447 struct i915_request *rq; 2448 2449 /* 2450 * Completely unscientific finger-in-the-air estimates for suitable 2451 * maximum user request size (to avoid blocking) and then backoff. 2452 */ 2453 if (intel_ring_update_space(ring) >= PAGE_SIZE) 2454 return NULL; 2455 2456 /* 2457 * Find a request that after waiting upon, there will be at least half 2458 * the ring available. The hysteresis allows us to compete for the 2459 * shared ring and should mean that we sleep less often prior to 2460 * claiming our resources, but not so long that the ring completely 2461 * drains before we can submit our next request. 2462 */ 2463 list_for_each_entry(rq, &tl->requests, link) { 2464 if (rq->ring != ring) 2465 continue; 2466 2467 if (__intel_ring_space(rq->postfix, 2468 ring->emit, ring->size) > ring->size / 2) 2469 break; 2470 } 2471 if (&rq->link == &tl->requests) 2472 return NULL; /* weird, we will check again later for real */ 2473 2474 return i915_request_get(rq); 2475 } 2476 2477 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce, 2478 bool throttle) 2479 { 2480 struct intel_timeline *tl; 2481 struct i915_request *rq = NULL; 2482 2483 /* 2484 * Take a local wakeref for preparing to dispatch the execbuf as 2485 * we expect to access the hardware fairly frequently in the 2486 * process, and require the engine to be kept awake between accesses. 2487 * Upon dispatch, we acquire another prolonged wakeref that we hold 2488 * until the timeline is idle, which in turn releases the wakeref 2489 * taken on the engine, and the parent device. 2490 */ 2491 tl = intel_context_timeline_lock(ce); 2492 if (IS_ERR(tl)) 2493 return PTR_ERR(tl); 2494 2495 intel_context_enter(ce); 2496 if (throttle) 2497 rq = eb_throttle(eb, ce); 2498 intel_context_timeline_unlock(tl); 2499 2500 if (rq) { 2501 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; 2502 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT; 2503 2504 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 2505 timeout) < 0) { 2506 i915_request_put(rq); 2507 2508 tl = intel_context_timeline_lock(ce); 2509 intel_context_exit(ce); 2510 intel_context_timeline_unlock(tl); 2511 2512 if (nonblock) 2513 return -EWOULDBLOCK; 2514 else 2515 return -EINTR; 2516 } 2517 i915_request_put(rq); 2518 } 2519 2520 return 0; 2521 } 2522 2523 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle) 2524 { 2525 struct intel_context *ce = eb->context, *child; 2526 int err; 2527 int i = 0, j = 0; 2528 2529 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED); 2530 2531 if (unlikely(intel_context_is_banned(ce))) 2532 return -EIO; 2533 2534 /* 2535 * Pinning the contexts may generate requests in order to acquire 2536 * GGTT space, so do this first before we reserve a seqno for 2537 * ourselves. 2538 */ 2539 err = intel_context_pin_ww(ce, &eb->ww); 2540 if (err) 2541 return err; 2542 for_each_child(ce, child) { 2543 err = intel_context_pin_ww(child, &eb->ww); 2544 GEM_BUG_ON(err); /* perma-pinned should incr a counter */ 2545 } 2546 2547 for_each_child(ce, child) { 2548 err = eb_pin_timeline(eb, child, throttle); 2549 if (err) 2550 goto unwind; 2551 ++i; 2552 } 2553 err = eb_pin_timeline(eb, ce, throttle); 2554 if (err) 2555 goto unwind; 2556 2557 eb->args->flags |= __EXEC_ENGINE_PINNED; 2558 return 0; 2559 2560 unwind: 2561 for_each_child(ce, child) { 2562 if (j++ < i) { 2563 mutex_lock(&child->timeline->mutex); 2564 intel_context_exit(child); 2565 mutex_unlock(&child->timeline->mutex); 2566 } 2567 } 2568 for_each_child(ce, child) 2569 intel_context_unpin(child); 2570 intel_context_unpin(ce); 2571 return err; 2572 } 2573 2574 static void eb_unpin_engine(struct i915_execbuffer *eb) 2575 { 2576 struct intel_context *ce = eb->context, *child; 2577 2578 if (!(eb->args->flags & __EXEC_ENGINE_PINNED)) 2579 return; 2580 2581 eb->args->flags &= ~__EXEC_ENGINE_PINNED; 2582 2583 for_each_child(ce, child) { 2584 mutex_lock(&child->timeline->mutex); 2585 intel_context_exit(child); 2586 mutex_unlock(&child->timeline->mutex); 2587 2588 intel_context_unpin(child); 2589 } 2590 2591 mutex_lock(&ce->timeline->mutex); 2592 intel_context_exit(ce); 2593 mutex_unlock(&ce->timeline->mutex); 2594 2595 intel_context_unpin(ce); 2596 } 2597 2598 static unsigned int 2599 eb_select_legacy_ring(struct i915_execbuffer *eb) 2600 { 2601 struct drm_i915_private *i915 = eb->i915; 2602 struct drm_i915_gem_execbuffer2 *args = eb->args; 2603 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2604 2605 if (user_ring_id != I915_EXEC_BSD && 2606 (args->flags & I915_EXEC_BSD_MASK)) { 2607 drm_dbg(&i915->drm, 2608 "execbuf with non bsd ring but with invalid " 2609 "bsd dispatch flags: %d\n", (int)(args->flags)); 2610 return -1; 2611 } 2612 2613 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) { 2614 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2615 2616 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2617 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file); 2618 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2619 bsd_idx <= I915_EXEC_BSD_RING2) { 2620 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2621 bsd_idx--; 2622 } else { 2623 drm_dbg(&i915->drm, 2624 "execbuf with unknown bsd ring: %u\n", 2625 bsd_idx); 2626 return -1; 2627 } 2628 2629 return _VCS(bsd_idx); 2630 } 2631 2632 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { 2633 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", 2634 user_ring_id); 2635 return -1; 2636 } 2637 2638 return user_ring_map[user_ring_id]; 2639 } 2640 2641 static int 2642 eb_select_engine(struct i915_execbuffer *eb) 2643 { 2644 struct intel_context *ce, *child; 2645 unsigned int idx; 2646 int err; 2647 2648 if (i915_gem_context_user_engines(eb->gem_context)) 2649 idx = eb->args->flags & I915_EXEC_RING_MASK; 2650 else 2651 idx = eb_select_legacy_ring(eb); 2652 2653 ce = i915_gem_context_get_engine(eb->gem_context, idx); 2654 if (IS_ERR(ce)) 2655 return PTR_ERR(ce); 2656 2657 if (intel_context_is_parallel(ce)) { 2658 if (eb->buffer_count < ce->parallel.number_children + 1) { 2659 intel_context_put(ce); 2660 return -EINVAL; 2661 } 2662 if (eb->batch_start_offset || eb->args->batch_len) { 2663 intel_context_put(ce); 2664 return -EINVAL; 2665 } 2666 } 2667 eb->num_batches = ce->parallel.number_children + 1; 2668 2669 for_each_child(ce, child) 2670 intel_context_get(child); 2671 intel_gt_pm_get(ce->engine->gt); 2672 2673 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) { 2674 err = intel_context_alloc_state(ce); 2675 if (err) 2676 goto err; 2677 } 2678 for_each_child(ce, child) { 2679 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) { 2680 err = intel_context_alloc_state(child); 2681 if (err) 2682 goto err; 2683 } 2684 } 2685 2686 /* 2687 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 2688 * EIO if the GPU is already wedged. 2689 */ 2690 err = intel_gt_terminally_wedged(ce->engine->gt); 2691 if (err) 2692 goto err; 2693 2694 eb->context = ce; 2695 eb->gt = ce->engine->gt; 2696 2697 /* 2698 * Make sure engine pool stays alive even if we call intel_context_put 2699 * during ww handling. The pool is destroyed when last pm reference 2700 * is dropped, which breaks our -EDEADLK handling. 2701 */ 2702 return err; 2703 2704 err: 2705 intel_gt_pm_put(ce->engine->gt); 2706 for_each_child(ce, child) 2707 intel_context_put(child); 2708 intel_context_put(ce); 2709 return err; 2710 } 2711 2712 static void 2713 eb_put_engine(struct i915_execbuffer *eb) 2714 { 2715 struct intel_context *child; 2716 2717 intel_gt_pm_put(eb->gt); 2718 for_each_child(eb->context, child) 2719 intel_context_put(child); 2720 intel_context_put(eb->context); 2721 } 2722 2723 static void 2724 __free_fence_array(struct eb_fence *fences, unsigned int n) 2725 { 2726 while (n--) { 2727 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2)); 2728 dma_fence_put(fences[n].dma_fence); 2729 dma_fence_chain_free(fences[n].chain_fence); 2730 } 2731 kvfree(fences); 2732 } 2733 2734 static int 2735 add_timeline_fence_array(struct i915_execbuffer *eb, 2736 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences) 2737 { 2738 struct drm_i915_gem_exec_fence __user *user_fences; 2739 u64 __user *user_values; 2740 struct eb_fence *f; 2741 u64 nfences; 2742 int err = 0; 2743 2744 nfences = timeline_fences->fence_count; 2745 if (!nfences) 2746 return 0; 2747 2748 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2749 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2750 if (nfences > min_t(unsigned long, 2751 ULONG_MAX / sizeof(*user_fences), 2752 SIZE_MAX / sizeof(*f)) - eb->num_fences) 2753 return -EINVAL; 2754 2755 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr); 2756 if (!access_ok(user_fences, nfences * sizeof(*user_fences))) 2757 return -EFAULT; 2758 2759 user_values = u64_to_user_ptr(timeline_fences->values_ptr); 2760 if (!access_ok(user_values, nfences * sizeof(*user_values))) 2761 return -EFAULT; 2762 2763 f = krealloc(eb->fences, 2764 (eb->num_fences + nfences) * sizeof(*f), 2765 __GFP_NOWARN | GFP_KERNEL); 2766 if (!f) 2767 return -ENOMEM; 2768 2769 eb->fences = f; 2770 f += eb->num_fences; 2771 2772 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2773 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2774 2775 while (nfences--) { 2776 struct drm_i915_gem_exec_fence user_fence; 2777 struct drm_syncobj *syncobj; 2778 struct dma_fence *fence = NULL; 2779 u64 point; 2780 2781 if (__copy_from_user(&user_fence, 2782 user_fences++, 2783 sizeof(user_fence))) 2784 return -EFAULT; 2785 2786 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2787 return -EINVAL; 2788 2789 if (__get_user(point, user_values++)) 2790 return -EFAULT; 2791 2792 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2793 if (!syncobj) { 2794 DRM_DEBUG("Invalid syncobj handle provided\n"); 2795 return -ENOENT; 2796 } 2797 2798 fence = drm_syncobj_fence_get(syncobj); 2799 2800 if (!fence && user_fence.flags && 2801 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2802 DRM_DEBUG("Syncobj handle has no fence\n"); 2803 drm_syncobj_put(syncobj); 2804 return -EINVAL; 2805 } 2806 2807 if (fence) 2808 err = dma_fence_chain_find_seqno(&fence, point); 2809 2810 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2811 DRM_DEBUG("Syncobj handle missing requested point %llu\n", point); 2812 dma_fence_put(fence); 2813 drm_syncobj_put(syncobj); 2814 return err; 2815 } 2816 2817 /* 2818 * A point might have been signaled already and 2819 * garbage collected from the timeline. In this case 2820 * just ignore the point and carry on. 2821 */ 2822 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2823 drm_syncobj_put(syncobj); 2824 continue; 2825 } 2826 2827 /* 2828 * For timeline syncobjs we need to preallocate chains for 2829 * later signaling. 2830 */ 2831 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) { 2832 /* 2833 * Waiting and signaling the same point (when point != 2834 * 0) would break the timeline. 2835 */ 2836 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2837 DRM_DEBUG("Trying to wait & signal the same timeline point.\n"); 2838 dma_fence_put(fence); 2839 drm_syncobj_put(syncobj); 2840 return -EINVAL; 2841 } 2842 2843 f->chain_fence = dma_fence_chain_alloc(); 2844 if (!f->chain_fence) { 2845 drm_syncobj_put(syncobj); 2846 dma_fence_put(fence); 2847 return -ENOMEM; 2848 } 2849 } else { 2850 f->chain_fence = NULL; 2851 } 2852 2853 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2854 f->dma_fence = fence; 2855 f->value = point; 2856 f++; 2857 eb->num_fences++; 2858 } 2859 2860 return 0; 2861 } 2862 2863 static int add_fence_array(struct i915_execbuffer *eb) 2864 { 2865 struct drm_i915_gem_execbuffer2 *args = eb->args; 2866 struct drm_i915_gem_exec_fence __user *user; 2867 unsigned long num_fences = args->num_cliprects; 2868 struct eb_fence *f; 2869 2870 if (!(args->flags & I915_EXEC_FENCE_ARRAY)) 2871 return 0; 2872 2873 if (!num_fences) 2874 return 0; 2875 2876 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2877 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2878 if (num_fences > min_t(unsigned long, 2879 ULONG_MAX / sizeof(*user), 2880 SIZE_MAX / sizeof(*f) - eb->num_fences)) 2881 return -EINVAL; 2882 2883 user = u64_to_user_ptr(args->cliprects_ptr); 2884 if (!access_ok(user, num_fences * sizeof(*user))) 2885 return -EFAULT; 2886 2887 f = krealloc(eb->fences, 2888 (eb->num_fences + num_fences) * sizeof(*f), 2889 __GFP_NOWARN | GFP_KERNEL); 2890 if (!f) 2891 return -ENOMEM; 2892 2893 eb->fences = f; 2894 f += eb->num_fences; 2895 while (num_fences--) { 2896 struct drm_i915_gem_exec_fence user_fence; 2897 struct drm_syncobj *syncobj; 2898 struct dma_fence *fence = NULL; 2899 2900 if (__copy_from_user(&user_fence, user++, sizeof(user_fence))) 2901 return -EFAULT; 2902 2903 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2904 return -EINVAL; 2905 2906 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2907 if (!syncobj) { 2908 DRM_DEBUG("Invalid syncobj handle provided\n"); 2909 return -ENOENT; 2910 } 2911 2912 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2913 fence = drm_syncobj_fence_get(syncobj); 2914 if (!fence) { 2915 DRM_DEBUG("Syncobj handle has no fence\n"); 2916 drm_syncobj_put(syncobj); 2917 return -EINVAL; 2918 } 2919 } 2920 2921 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2922 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2923 2924 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2925 f->dma_fence = fence; 2926 f->value = 0; 2927 f->chain_fence = NULL; 2928 f++; 2929 eb->num_fences++; 2930 } 2931 2932 return 0; 2933 } 2934 2935 static void put_fence_array(struct eb_fence *fences, int num_fences) 2936 { 2937 if (fences) 2938 __free_fence_array(fences, num_fences); 2939 } 2940 2941 static int 2942 await_fence_array(struct i915_execbuffer *eb, 2943 struct i915_request *rq) 2944 { 2945 unsigned int n; 2946 int err; 2947 2948 for (n = 0; n < eb->num_fences; n++) { 2949 struct drm_syncobj *syncobj; 2950 unsigned int flags; 2951 2952 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 2953 2954 if (!eb->fences[n].dma_fence) 2955 continue; 2956 2957 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence); 2958 if (err < 0) 2959 return err; 2960 } 2961 2962 return 0; 2963 } 2964 2965 static void signal_fence_array(const struct i915_execbuffer *eb, 2966 struct dma_fence * const fence) 2967 { 2968 unsigned int n; 2969 2970 for (n = 0; n < eb->num_fences; n++) { 2971 struct drm_syncobj *syncobj; 2972 unsigned int flags; 2973 2974 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 2975 if (!(flags & I915_EXEC_FENCE_SIGNAL)) 2976 continue; 2977 2978 if (eb->fences[n].chain_fence) { 2979 drm_syncobj_add_point(syncobj, 2980 eb->fences[n].chain_fence, 2981 fence, 2982 eb->fences[n].value); 2983 /* 2984 * The chain's ownership is transferred to the 2985 * timeline. 2986 */ 2987 eb->fences[n].chain_fence = NULL; 2988 } else { 2989 drm_syncobj_replace_fence(syncobj, fence); 2990 } 2991 } 2992 } 2993 2994 static int 2995 parse_timeline_fences(struct i915_user_extension __user *ext, void *data) 2996 { 2997 struct i915_execbuffer *eb = data; 2998 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences; 2999 3000 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences))) 3001 return -EFAULT; 3002 3003 return add_timeline_fence_array(eb, &timeline_fences); 3004 } 3005 3006 static void retire_requests(struct intel_timeline *tl, struct i915_request *end) 3007 { 3008 struct i915_request *rq, *rn; 3009 3010 list_for_each_entry_safe(rq, rn, &tl->requests, link) 3011 if (rq == end || !i915_request_retire(rq)) 3012 break; 3013 } 3014 3015 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq, 3016 int err, bool last_parallel) 3017 { 3018 struct intel_timeline * const tl = i915_request_timeline(rq); 3019 struct i915_sched_attr attr = {}; 3020 struct i915_request *prev; 3021 3022 lockdep_assert_held(&tl->mutex); 3023 lockdep_unpin_lock(&tl->mutex, rq->cookie); 3024 3025 trace_i915_request_add(rq); 3026 3027 prev = __i915_request_commit(rq); 3028 3029 /* Check that the context wasn't destroyed before submission */ 3030 if (likely(!intel_context_is_closed(eb->context))) { 3031 attr = eb->gem_context->sched; 3032 } else { 3033 /* Serialise with context_close via the add_to_timeline */ 3034 i915_request_set_error_once(rq, -ENOENT); 3035 __i915_request_skip(rq); 3036 err = -ENOENT; /* override any transient errors */ 3037 } 3038 3039 if (intel_context_is_parallel(eb->context)) { 3040 if (err) { 3041 __i915_request_skip(rq); 3042 set_bit(I915_FENCE_FLAG_SKIP_PARALLEL, 3043 &rq->fence.flags); 3044 } 3045 if (last_parallel) 3046 set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, 3047 &rq->fence.flags); 3048 } 3049 3050 __i915_request_queue(rq, &attr); 3051 3052 /* Try to clean up the client's timeline after submitting the request */ 3053 if (prev) 3054 retire_requests(tl, prev); 3055 3056 mutex_unlock(&tl->mutex); 3057 3058 return err; 3059 } 3060 3061 static int eb_requests_add(struct i915_execbuffer *eb, int err) 3062 { 3063 int i; 3064 3065 /* 3066 * We iterate in reverse order of creation to release timeline mutexes in 3067 * same order. 3068 */ 3069 for_each_batch_add_order(eb, i) { 3070 struct i915_request *rq = eb->requests[i]; 3071 3072 if (!rq) 3073 continue; 3074 err |= eb_request_add(eb, rq, err, i == 0); 3075 } 3076 3077 return err; 3078 } 3079 3080 static const i915_user_extension_fn execbuf_extensions[] = { 3081 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences, 3082 }; 3083 3084 static int 3085 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args, 3086 struct i915_execbuffer *eb) 3087 { 3088 if (!(args->flags & I915_EXEC_USE_EXTENSIONS)) 3089 return 0; 3090 3091 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot 3092 * have another flag also using it at the same time. 3093 */ 3094 if (eb->args->flags & I915_EXEC_FENCE_ARRAY) 3095 return -EINVAL; 3096 3097 if (args->num_cliprects != 0) 3098 return -EINVAL; 3099 3100 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr), 3101 execbuf_extensions, 3102 ARRAY_SIZE(execbuf_extensions), 3103 eb); 3104 } 3105 3106 static void eb_requests_get(struct i915_execbuffer *eb) 3107 { 3108 unsigned int i; 3109 3110 for_each_batch_create_order(eb, i) { 3111 if (!eb->requests[i]) 3112 break; 3113 3114 i915_request_get(eb->requests[i]); 3115 } 3116 } 3117 3118 static void eb_requests_put(struct i915_execbuffer *eb) 3119 { 3120 unsigned int i; 3121 3122 for_each_batch_create_order(eb, i) { 3123 if (!eb->requests[i]) 3124 break; 3125 3126 i915_request_put(eb->requests[i]); 3127 } 3128 } 3129 3130 static struct sync_file * 3131 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd) 3132 { 3133 struct sync_file *out_fence = NULL; 3134 struct dma_fence_array *fence_array; 3135 struct dma_fence **fences; 3136 unsigned int i; 3137 3138 GEM_BUG_ON(!intel_context_is_parent(eb->context)); 3139 3140 fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL); 3141 if (!fences) 3142 return ERR_PTR(-ENOMEM); 3143 3144 for_each_batch_create_order(eb, i) { 3145 fences[i] = &eb->requests[i]->fence; 3146 __set_bit(I915_FENCE_FLAG_COMPOSITE, 3147 &eb->requests[i]->fence.flags); 3148 } 3149 3150 fence_array = dma_fence_array_create(eb->num_batches, 3151 fences, 3152 eb->context->parallel.fence_context, 3153 eb->context->parallel.seqno++, 3154 false); 3155 if (!fence_array) { 3156 kfree(fences); 3157 return ERR_PTR(-ENOMEM); 3158 } 3159 3160 /* Move ownership to the dma_fence_array created above */ 3161 for_each_batch_create_order(eb, i) 3162 dma_fence_get(fences[i]); 3163 3164 if (out_fence_fd != -1) { 3165 out_fence = sync_file_create(&fence_array->base); 3166 /* sync_file now owns fence_arry, drop creation ref */ 3167 dma_fence_put(&fence_array->base); 3168 if (!out_fence) 3169 return ERR_PTR(-ENOMEM); 3170 } 3171 3172 eb->composite_fence = &fence_array->base; 3173 3174 return out_fence; 3175 } 3176 3177 static struct sync_file * 3178 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq, 3179 struct dma_fence *in_fence, int out_fence_fd) 3180 { 3181 struct sync_file *out_fence = NULL; 3182 int err; 3183 3184 if (unlikely(eb->gem_context->syncobj)) { 3185 struct dma_fence *fence; 3186 3187 fence = drm_syncobj_fence_get(eb->gem_context->syncobj); 3188 err = i915_request_await_dma_fence(rq, fence); 3189 dma_fence_put(fence); 3190 if (err) 3191 return ERR_PTR(err); 3192 } 3193 3194 if (in_fence) { 3195 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT) 3196 err = i915_request_await_execution(rq, in_fence); 3197 else 3198 err = i915_request_await_dma_fence(rq, in_fence); 3199 if (err < 0) 3200 return ERR_PTR(err); 3201 } 3202 3203 if (eb->fences) { 3204 err = await_fence_array(eb, rq); 3205 if (err) 3206 return ERR_PTR(err); 3207 } 3208 3209 if (intel_context_is_parallel(eb->context)) { 3210 out_fence = eb_composite_fence_create(eb, out_fence_fd); 3211 if (IS_ERR(out_fence)) 3212 return ERR_PTR(-ENOMEM); 3213 } else if (out_fence_fd != -1) { 3214 out_fence = sync_file_create(&rq->fence); 3215 if (!out_fence) 3216 return ERR_PTR(-ENOMEM); 3217 } 3218 3219 return out_fence; 3220 } 3221 3222 static struct intel_context * 3223 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number) 3224 { 3225 struct intel_context *child; 3226 3227 if (likely(context_number == 0)) 3228 return eb->context; 3229 3230 for_each_child(eb->context, child) 3231 if (!--context_number) 3232 return child; 3233 3234 GEM_BUG_ON("Context not found"); 3235 3236 return NULL; 3237 } 3238 3239 static struct sync_file * 3240 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence, 3241 int out_fence_fd) 3242 { 3243 struct sync_file *out_fence = NULL; 3244 unsigned int i; 3245 3246 for_each_batch_create_order(eb, i) { 3247 /* Allocate a request for this batch buffer nice and early. */ 3248 eb->requests[i] = i915_request_create(eb_find_context(eb, i)); 3249 if (IS_ERR(eb->requests[i])) { 3250 out_fence = ERR_CAST(eb->requests[i]); 3251 eb->requests[i] = NULL; 3252 return out_fence; 3253 } 3254 3255 /* 3256 * Only the first request added (committed to backend) has to 3257 * take the in fences into account as all subsequent requests 3258 * will have fences inserted inbetween them. 3259 */ 3260 if (i + 1 == eb->num_batches) { 3261 out_fence = eb_fences_add(eb, eb->requests[i], 3262 in_fence, out_fence_fd); 3263 if (IS_ERR(out_fence)) 3264 return out_fence; 3265 } 3266 3267 /* 3268 * Not really on stack, but we don't want to call 3269 * kfree on the batch_snapshot when we put it, so use the 3270 * _onstack interface. 3271 */ 3272 if (eb->batches[i]->vma) 3273 i915_vma_snapshot_init_onstack(&eb->requests[i]->batch_snapshot, 3274 eb->batches[i]->vma, 3275 "batch"); 3276 if (eb->batch_pool) { 3277 GEM_BUG_ON(intel_context_is_parallel(eb->context)); 3278 intel_gt_buffer_pool_mark_active(eb->batch_pool, 3279 eb->requests[i]); 3280 } 3281 } 3282 3283 return out_fence; 3284 } 3285 3286 static int 3287 i915_gem_do_execbuffer(struct drm_device *dev, 3288 struct drm_file *file, 3289 struct drm_i915_gem_execbuffer2 *args, 3290 struct drm_i915_gem_exec_object2 *exec) 3291 { 3292 struct drm_i915_private *i915 = to_i915(dev); 3293 struct i915_execbuffer eb; 3294 struct dma_fence *in_fence = NULL; 3295 struct sync_file *out_fence = NULL; 3296 int out_fence_fd = -1; 3297 int err; 3298 3299 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); 3300 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 3301 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 3302 3303 eb.i915 = i915; 3304 eb.file = file; 3305 eb.args = args; 3306 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 3307 args->flags |= __EXEC_HAS_RELOC; 3308 3309 eb.exec = exec; 3310 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1); 3311 eb.vma[0].vma = NULL; 3312 eb.batch_pool = NULL; 3313 3314 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 3315 reloc_cache_init(&eb.reloc_cache, eb.i915); 3316 3317 eb.buffer_count = args->buffer_count; 3318 eb.batch_start_offset = args->batch_start_offset; 3319 eb.trampoline = NULL; 3320 3321 eb.fences = NULL; 3322 eb.num_fences = 0; 3323 3324 eb_capture_list_clear(&eb); 3325 3326 memset(eb.requests, 0, sizeof(struct i915_request *) * 3327 ARRAY_SIZE(eb.requests)); 3328 eb.composite_fence = NULL; 3329 3330 eb.batch_flags = 0; 3331 if (args->flags & I915_EXEC_SECURE) { 3332 if (GRAPHICS_VER(i915) >= 11) 3333 return -ENODEV; 3334 3335 /* Return -EPERM to trigger fallback code on old binaries. */ 3336 if (!HAS_SECURE_BATCHES(i915)) 3337 return -EPERM; 3338 3339 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 3340 return -EPERM; 3341 3342 eb.batch_flags |= I915_DISPATCH_SECURE; 3343 } 3344 if (args->flags & I915_EXEC_IS_PINNED) 3345 eb.batch_flags |= I915_DISPATCH_PINNED; 3346 3347 err = parse_execbuf2_extensions(args, &eb); 3348 if (err) 3349 goto err_ext; 3350 3351 err = add_fence_array(&eb); 3352 if (err) 3353 goto err_ext; 3354 3355 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT) 3356 if (args->flags & IN_FENCES) { 3357 if ((args->flags & IN_FENCES) == IN_FENCES) 3358 return -EINVAL; 3359 3360 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 3361 if (!in_fence) { 3362 err = -EINVAL; 3363 goto err_ext; 3364 } 3365 } 3366 #undef IN_FENCES 3367 3368 if (args->flags & I915_EXEC_FENCE_OUT) { 3369 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 3370 if (out_fence_fd < 0) { 3371 err = out_fence_fd; 3372 goto err_in_fence; 3373 } 3374 } 3375 3376 err = eb_create(&eb); 3377 if (err) 3378 goto err_out_fence; 3379 3380 GEM_BUG_ON(!eb.lut_size); 3381 3382 err = eb_select_context(&eb); 3383 if (unlikely(err)) 3384 goto err_destroy; 3385 3386 err = eb_select_engine(&eb); 3387 if (unlikely(err)) 3388 goto err_context; 3389 3390 err = eb_lookup_vmas(&eb); 3391 if (err) { 3392 eb_release_vmas(&eb, true); 3393 goto err_engine; 3394 } 3395 3396 i915_gem_ww_ctx_init(&eb.ww, true); 3397 3398 err = eb_relocate_parse(&eb); 3399 if (err) { 3400 /* 3401 * If the user expects the execobject.offset and 3402 * reloc.presumed_offset to be an exact match, 3403 * as for using NO_RELOC, then we cannot update 3404 * the execobject.offset until we have completed 3405 * relocation. 3406 */ 3407 args->flags &= ~__EXEC_HAS_RELOC; 3408 goto err_vma; 3409 } 3410 3411 ww_acquire_done(&eb.ww.ctx); 3412 eb_capture_stage(&eb); 3413 3414 out_fence = eb_requests_create(&eb, in_fence, out_fence_fd); 3415 if (IS_ERR(out_fence)) { 3416 err = PTR_ERR(out_fence); 3417 out_fence = NULL; 3418 if (eb.requests[0]) 3419 goto err_request; 3420 else 3421 goto err_vma; 3422 } 3423 3424 err = eb_submit(&eb); 3425 3426 err_request: 3427 eb_requests_get(&eb); 3428 err = eb_requests_add(&eb, err); 3429 3430 if (eb.fences) 3431 signal_fence_array(&eb, eb.composite_fence ? 3432 eb.composite_fence : 3433 &eb.requests[0]->fence); 3434 3435 if (out_fence) { 3436 if (err == 0) { 3437 fd_install(out_fence_fd, out_fence->file); 3438 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ 3439 args->rsvd2 |= (u64)out_fence_fd << 32; 3440 out_fence_fd = -1; 3441 } else { 3442 fput(out_fence->file); 3443 } 3444 } 3445 3446 if (unlikely(eb.gem_context->syncobj)) { 3447 drm_syncobj_replace_fence(eb.gem_context->syncobj, 3448 eb.composite_fence ? 3449 eb.composite_fence : 3450 &eb.requests[0]->fence); 3451 } 3452 3453 if (!out_fence && eb.composite_fence) 3454 dma_fence_put(eb.composite_fence); 3455 3456 eb_requests_put(&eb); 3457 3458 err_vma: 3459 eb_release_vmas(&eb, true); 3460 if (eb.trampoline) 3461 i915_vma_unpin(eb.trampoline); 3462 WARN_ON(err == -EDEADLK); 3463 i915_gem_ww_ctx_fini(&eb.ww); 3464 3465 if (eb.batch_pool) 3466 intel_gt_buffer_pool_put(eb.batch_pool); 3467 err_engine: 3468 eb_put_engine(&eb); 3469 err_context: 3470 i915_gem_context_put(eb.gem_context); 3471 err_destroy: 3472 eb_destroy(&eb); 3473 err_out_fence: 3474 if (out_fence_fd != -1) 3475 put_unused_fd(out_fence_fd); 3476 err_in_fence: 3477 dma_fence_put(in_fence); 3478 err_ext: 3479 put_fence_array(eb.fences, eb.num_fences); 3480 return err; 3481 } 3482 3483 static size_t eb_element_size(void) 3484 { 3485 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma); 3486 } 3487 3488 static bool check_buffer_count(size_t count) 3489 { 3490 const size_t sz = eb_element_size(); 3491 3492 /* 3493 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup 3494 * array size (see eb_create()). Otherwise, we can accept an array as 3495 * large as can be addressed (though use large arrays at your peril)! 3496 */ 3497 3498 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); 3499 } 3500 3501 int 3502 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 3503 struct drm_file *file) 3504 { 3505 struct drm_i915_private *i915 = to_i915(dev); 3506 struct drm_i915_gem_execbuffer2 *args = data; 3507 struct drm_i915_gem_exec_object2 *exec2_list; 3508 const size_t count = args->buffer_count; 3509 int err; 3510 3511 if (!check_buffer_count(count)) { 3512 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 3513 return -EINVAL; 3514 } 3515 3516 err = i915_gem_check_execbuffer(args); 3517 if (err) 3518 return err; 3519 3520 /* Allocate extra slots for use by the command parser */ 3521 exec2_list = kvmalloc_array(count + 2, eb_element_size(), 3522 __GFP_NOWARN | GFP_KERNEL); 3523 if (exec2_list == NULL) { 3524 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", 3525 count); 3526 return -ENOMEM; 3527 } 3528 if (copy_from_user(exec2_list, 3529 u64_to_user_ptr(args->buffers_ptr), 3530 sizeof(*exec2_list) * count)) { 3531 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); 3532 kvfree(exec2_list); 3533 return -EFAULT; 3534 } 3535 3536 err = i915_gem_do_execbuffer(dev, file, args, exec2_list); 3537 3538 /* 3539 * Now that we have begun execution of the batchbuffer, we ignore 3540 * any new error after this point. Also given that we have already 3541 * updated the associated relocations, we try to write out the current 3542 * object locations irrespective of any error. 3543 */ 3544 if (args->flags & __EXEC_HAS_RELOC) { 3545 struct drm_i915_gem_exec_object2 __user *user_exec_list = 3546 u64_to_user_ptr(args->buffers_ptr); 3547 unsigned int i; 3548 3549 /* Copy the new buffer offsets back to the user's exec list. */ 3550 /* 3551 * Note: count * sizeof(*user_exec_list) does not overflow, 3552 * because we checked 'count' in check_buffer_count(). 3553 * 3554 * And this range already got effectively checked earlier 3555 * when we did the "copy_from_user()" above. 3556 */ 3557 if (!user_write_access_begin(user_exec_list, 3558 count * sizeof(*user_exec_list))) 3559 goto end; 3560 3561 for (i = 0; i < args->buffer_count; i++) { 3562 if (!(exec2_list[i].offset & UPDATE)) 3563 continue; 3564 3565 exec2_list[i].offset = 3566 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 3567 unsafe_put_user(exec2_list[i].offset, 3568 &user_exec_list[i].offset, 3569 end_user); 3570 } 3571 end_user: 3572 user_write_access_end(); 3573 end:; 3574 } 3575 3576 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 3577 kvfree(exec2_list); 3578 return err; 3579 } 3580