1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6 
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11 
12 #include <drm/drm_syncobj.h>
13 #include <drm/i915_drm.h>
14 
15 #include "display/intel_frontbuffer.h"
16 
17 #include "gem/i915_gem_ioctls.h"
18 #include "gt/intel_context.h"
19 #include "gt/intel_engine_pool.h"
20 #include "gt/intel_gt.h"
21 #include "gt/intel_gt_pm.h"
22 #include "gt/intel_ring.h"
23 
24 #include "i915_drv.h"
25 #include "i915_gem_clflush.h"
26 #include "i915_gem_context.h"
27 #include "i915_gem_ioctls.h"
28 #include "i915_sw_fence_work.h"
29 #include "i915_trace.h"
30 
31 enum {
32 	FORCE_CPU_RELOC = 1,
33 	FORCE_GTT_RELOC,
34 	FORCE_GPU_RELOC,
35 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
36 };
37 
38 #define __EXEC_OBJECT_HAS_REF		BIT(31)
39 #define __EXEC_OBJECT_HAS_PIN		BIT(30)
40 #define __EXEC_OBJECT_HAS_FENCE		BIT(29)
41 #define __EXEC_OBJECT_NEEDS_MAP		BIT(28)
42 #define __EXEC_OBJECT_NEEDS_BIAS	BIT(27)
43 #define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 27) /* all of the above */
44 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
45 
46 #define __EXEC_HAS_RELOC	BIT(31)
47 #define __EXEC_VALIDATED	BIT(30)
48 #define __EXEC_INTERNAL_FLAGS	(~0u << 30)
49 #define UPDATE			PIN_OFFSET_FIXED
50 
51 #define BATCH_OFFSET_BIAS (256*1024)
52 
53 #define __I915_EXEC_ILLEGAL_FLAGS \
54 	(__I915_EXEC_UNKNOWN_FLAGS | \
55 	 I915_EXEC_CONSTANTS_MASK  | \
56 	 I915_EXEC_RESOURCE_STREAMER)
57 
58 /* Catch emission of unexpected errors for CI! */
59 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
60 #undef EINVAL
61 #define EINVAL ({ \
62 	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
63 	22; \
64 })
65 #endif
66 
67 /**
68  * DOC: User command execution
69  *
70  * Userspace submits commands to be executed on the GPU as an instruction
71  * stream within a GEM object we call a batchbuffer. This instructions may
72  * refer to other GEM objects containing auxiliary state such as kernels,
73  * samplers, render targets and even secondary batchbuffers. Userspace does
74  * not know where in the GPU memory these objects reside and so before the
75  * batchbuffer is passed to the GPU for execution, those addresses in the
76  * batchbuffer and auxiliary objects are updated. This is known as relocation,
77  * or patching. To try and avoid having to relocate each object on the next
78  * execution, userspace is told the location of those objects in this pass,
79  * but this remains just a hint as the kernel may choose a new location for
80  * any object in the future.
81  *
82  * At the level of talking to the hardware, submitting a batchbuffer for the
83  * GPU to execute is to add content to a buffer from which the HW
84  * command streamer is reading.
85  *
86  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
87  *    Execlists, this command is not placed on the same buffer as the
88  *    remaining items.
89  *
90  * 2. Add a command to invalidate caches to the buffer.
91  *
92  * 3. Add a batchbuffer start command to the buffer; the start command is
93  *    essentially a token together with the GPU address of the batchbuffer
94  *    to be executed.
95  *
96  * 4. Add a pipeline flush to the buffer.
97  *
98  * 5. Add a memory write command to the buffer to record when the GPU
99  *    is done executing the batchbuffer. The memory write writes the
100  *    global sequence number of the request, ``i915_request::global_seqno``;
101  *    the i915 driver uses the current value in the register to determine
102  *    if the GPU has completed the batchbuffer.
103  *
104  * 6. Add a user interrupt command to the buffer. This command instructs
105  *    the GPU to issue an interrupt when the command, pipeline flush and
106  *    memory write are completed.
107  *
108  * 7. Inform the hardware of the additional commands added to the buffer
109  *    (by updating the tail pointer).
110  *
111  * Processing an execbuf ioctl is conceptually split up into a few phases.
112  *
113  * 1. Validation - Ensure all the pointers, handles and flags are valid.
114  * 2. Reservation - Assign GPU address space for every object
115  * 3. Relocation - Update any addresses to point to the final locations
116  * 4. Serialisation - Order the request with respect to its dependencies
117  * 5. Construction - Construct a request to execute the batchbuffer
118  * 6. Submission (at some point in the future execution)
119  *
120  * Reserving resources for the execbuf is the most complicated phase. We
121  * neither want to have to migrate the object in the address space, nor do
122  * we want to have to update any relocations pointing to this object. Ideally,
123  * we want to leave the object where it is and for all the existing relocations
124  * to match. If the object is given a new address, or if userspace thinks the
125  * object is elsewhere, we have to parse all the relocation entries and update
126  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
127  * all the target addresses in all of its objects match the value in the
128  * relocation entries and that they all match the presumed offsets given by the
129  * list of execbuffer objects. Using this knowledge, we know that if we haven't
130  * moved any buffers, all the relocation entries are valid and we can skip
131  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
132  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
133  *
134  *      The addresses written in the objects must match the corresponding
135  *      reloc.presumed_offset which in turn must match the corresponding
136  *      execobject.offset.
137  *
138  *      Any render targets written to in the batch must be flagged with
139  *      EXEC_OBJECT_WRITE.
140  *
141  *      To avoid stalling, execobject.offset should match the current
142  *      address of that object within the active context.
143  *
144  * The reservation is done is multiple phases. First we try and keep any
145  * object already bound in its current location - so as long as meets the
146  * constraints imposed by the new execbuffer. Any object left unbound after the
147  * first pass is then fitted into any available idle space. If an object does
148  * not fit, all objects are removed from the reservation and the process rerun
149  * after sorting the objects into a priority order (more difficult to fit
150  * objects are tried first). Failing that, the entire VM is cleared and we try
151  * to fit the execbuf once last time before concluding that it simply will not
152  * fit.
153  *
154  * A small complication to all of this is that we allow userspace not only to
155  * specify an alignment and a size for the object in the address space, but
156  * we also allow userspace to specify the exact offset. This objects are
157  * simpler to place (the location is known a priori) all we have to do is make
158  * sure the space is available.
159  *
160  * Once all the objects are in place, patching up the buried pointers to point
161  * to the final locations is a fairly simple job of walking over the relocation
162  * entry arrays, looking up the right address and rewriting the value into
163  * the object. Simple! ... The relocation entries are stored in user memory
164  * and so to access them we have to copy them into a local buffer. That copy
165  * has to avoid taking any pagefaults as they may lead back to a GEM object
166  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
167  * the relocation into multiple passes. First we try to do everything within an
168  * atomic context (avoid the pagefaults) which requires that we never wait. If
169  * we detect that we may wait, or if we need to fault, then we have to fallback
170  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
171  * bells yet?) Dropping the mutex means that we lose all the state we have
172  * built up so far for the execbuf and we must reset any global data. However,
173  * we do leave the objects pinned in their final locations - which is a
174  * potential issue for concurrent execbufs. Once we have left the mutex, we can
175  * allocate and copy all the relocation entries into a large array at our
176  * leisure, reacquire the mutex, reclaim all the objects and other state and
177  * then proceed to update any incorrect addresses with the objects.
178  *
179  * As we process the relocation entries, we maintain a record of whether the
180  * object is being written to. Using NORELOC, we expect userspace to provide
181  * this information instead. We also check whether we can skip the relocation
182  * by comparing the expected value inside the relocation entry with the target's
183  * final address. If they differ, we have to map the current object and rewrite
184  * the 4 or 8 byte pointer within.
185  *
186  * Serialising an execbuf is quite simple according to the rules of the GEM
187  * ABI. Execution within each context is ordered by the order of submission.
188  * Writes to any GEM object are in order of submission and are exclusive. Reads
189  * from a GEM object are unordered with respect to other reads, but ordered by
190  * writes. A write submitted after a read cannot occur before the read, and
191  * similarly any read submitted after a write cannot occur before the write.
192  * Writes are ordered between engines such that only one write occurs at any
193  * time (completing any reads beforehand) - using semaphores where available
194  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
195  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
196  * reads before starting, and any read (either using set-domain or pread) must
197  * flush all GPU writes before starting. (Note we only employ a barrier before,
198  * we currently rely on userspace not concurrently starting a new execution
199  * whilst reading or writing to an object. This may be an advantage or not
200  * depending on how much you trust userspace not to shoot themselves in the
201  * foot.) Serialisation may just result in the request being inserted into
202  * a DAG awaiting its turn, but most simple is to wait on the CPU until
203  * all dependencies are resolved.
204  *
205  * After all of that, is just a matter of closing the request and handing it to
206  * the hardware (well, leaving it in a queue to be executed). However, we also
207  * offer the ability for batchbuffers to be run with elevated privileges so
208  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
209  * Before any batch is given extra privileges we first must check that it
210  * contains no nefarious instructions, we check that each instruction is from
211  * our whitelist and all registers are also from an allowed list. We first
212  * copy the user's batchbuffer to a shadow (so that the user doesn't have
213  * access to it, either by the CPU or GPU as we scan it) and then parse each
214  * instruction. If everything is ok, we set a flag telling the hardware to run
215  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
216  */
217 
218 struct i915_execbuffer {
219 	struct drm_i915_private *i915; /** i915 backpointer */
220 	struct drm_file *file; /** per-file lookup tables and limits */
221 	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
222 	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
223 	struct i915_vma **vma;
224 	unsigned int *flags;
225 
226 	struct intel_engine_cs *engine; /** engine to queue the request to */
227 	struct intel_context *context; /* logical state for the request */
228 	struct i915_gem_context *gem_context; /** caller's context */
229 
230 	struct i915_request *request; /** our request to build */
231 	struct i915_vma *batch; /** identity of the batch obj/vma */
232 	struct i915_vma *trampoline; /** trampoline used for chaining */
233 
234 	/** actual size of execobj[] as we may extend it for the cmdparser */
235 	unsigned int buffer_count;
236 
237 	/** list of vma not yet bound during reservation phase */
238 	struct list_head unbound;
239 
240 	/** list of vma that have execobj.relocation_count */
241 	struct list_head relocs;
242 
243 	/**
244 	 * Track the most recently used object for relocations, as we
245 	 * frequently have to perform multiple relocations within the same
246 	 * obj/page
247 	 */
248 	struct reloc_cache {
249 		struct drm_mm_node node; /** temporary GTT binding */
250 		unsigned long vaddr; /** Current kmap address */
251 		unsigned long page; /** Currently mapped page index */
252 		unsigned int gen; /** Cached value of INTEL_GEN */
253 		bool use_64bit_reloc : 1;
254 		bool has_llc : 1;
255 		bool has_fence : 1;
256 		bool needs_unfenced : 1;
257 
258 		struct i915_request *rq;
259 		u32 *rq_cmd;
260 		unsigned int rq_size;
261 	} reloc_cache;
262 
263 	u64 invalid_flags; /** Set of execobj.flags that are invalid */
264 	u32 context_flags; /** Set of execobj.flags to insert from the ctx */
265 
266 	u32 batch_start_offset; /** Location within object of batch */
267 	u32 batch_len; /** Length of batch within object */
268 	u32 batch_flags; /** Flags composed for emit_bb_start() */
269 
270 	/**
271 	 * Indicate either the size of the hastable used to resolve
272 	 * relocation handles, or if negative that we are using a direct
273 	 * index into the execobj[].
274 	 */
275 	int lut_size;
276 	struct hlist_head *buckets; /** ht for relocation handles */
277 };
278 
279 #define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
280 
281 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
282 {
283 	return intel_engine_requires_cmd_parser(eb->engine) ||
284 		(intel_engine_using_cmd_parser(eb->engine) &&
285 		 eb->args->batch_len);
286 }
287 
288 static int eb_create(struct i915_execbuffer *eb)
289 {
290 	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
291 		unsigned int size = 1 + ilog2(eb->buffer_count);
292 
293 		/*
294 		 * Without a 1:1 association between relocation handles and
295 		 * the execobject[] index, we instead create a hashtable.
296 		 * We size it dynamically based on available memory, starting
297 		 * first with 1:1 assocative hash and scaling back until
298 		 * the allocation succeeds.
299 		 *
300 		 * Later on we use a positive lut_size to indicate we are
301 		 * using this hashtable, and a negative value to indicate a
302 		 * direct lookup.
303 		 */
304 		do {
305 			gfp_t flags;
306 
307 			/* While we can still reduce the allocation size, don't
308 			 * raise a warning and allow the allocation to fail.
309 			 * On the last pass though, we want to try as hard
310 			 * as possible to perform the allocation and warn
311 			 * if it fails.
312 			 */
313 			flags = GFP_KERNEL;
314 			if (size > 1)
315 				flags |= __GFP_NORETRY | __GFP_NOWARN;
316 
317 			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
318 					      flags);
319 			if (eb->buckets)
320 				break;
321 		} while (--size);
322 
323 		if (unlikely(!size))
324 			return -ENOMEM;
325 
326 		eb->lut_size = size;
327 	} else {
328 		eb->lut_size = -eb->buffer_count;
329 	}
330 
331 	return 0;
332 }
333 
334 static bool
335 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
336 		 const struct i915_vma *vma,
337 		 unsigned int flags)
338 {
339 	if (vma->node.size < entry->pad_to_size)
340 		return true;
341 
342 	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
343 		return true;
344 
345 	if (flags & EXEC_OBJECT_PINNED &&
346 	    vma->node.start != entry->offset)
347 		return true;
348 
349 	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
350 	    vma->node.start < BATCH_OFFSET_BIAS)
351 		return true;
352 
353 	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
354 	    (vma->node.start + vma->node.size - 1) >> 32)
355 		return true;
356 
357 	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
358 	    !i915_vma_is_map_and_fenceable(vma))
359 		return true;
360 
361 	return false;
362 }
363 
364 static inline bool
365 eb_pin_vma(struct i915_execbuffer *eb,
366 	   const struct drm_i915_gem_exec_object2 *entry,
367 	   struct i915_vma *vma)
368 {
369 	unsigned int exec_flags = *vma->exec_flags;
370 	u64 pin_flags;
371 
372 	if (vma->node.size)
373 		pin_flags = vma->node.start;
374 	else
375 		pin_flags = entry->offset & PIN_OFFSET_MASK;
376 
377 	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
378 	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
379 		pin_flags |= PIN_GLOBAL;
380 
381 	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
382 		return false;
383 
384 	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
385 		if (unlikely(i915_vma_pin_fence(vma))) {
386 			i915_vma_unpin(vma);
387 			return false;
388 		}
389 
390 		if (vma->fence)
391 			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
392 	}
393 
394 	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
395 	return !eb_vma_misplaced(entry, vma, exec_flags);
396 }
397 
398 static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
399 {
400 	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
401 
402 	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
403 		__i915_vma_unpin_fence(vma);
404 
405 	__i915_vma_unpin(vma);
406 }
407 
408 static inline void
409 eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
410 {
411 	if (!(*flags & __EXEC_OBJECT_HAS_PIN))
412 		return;
413 
414 	__eb_unreserve_vma(vma, *flags);
415 	*flags &= ~__EXEC_OBJECT_RESERVED;
416 }
417 
418 static int
419 eb_validate_vma(struct i915_execbuffer *eb,
420 		struct drm_i915_gem_exec_object2 *entry,
421 		struct i915_vma *vma)
422 {
423 	if (unlikely(entry->flags & eb->invalid_flags))
424 		return -EINVAL;
425 
426 	if (unlikely(entry->alignment &&
427 		     !is_power_of_2_u64(entry->alignment)))
428 		return -EINVAL;
429 
430 	/*
431 	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
432 	 * any non-page-aligned or non-canonical addresses.
433 	 */
434 	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
435 		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
436 		return -EINVAL;
437 
438 	/* pad_to_size was once a reserved field, so sanitize it */
439 	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
440 		if (unlikely(offset_in_page(entry->pad_to_size)))
441 			return -EINVAL;
442 	} else {
443 		entry->pad_to_size = 0;
444 	}
445 
446 	if (unlikely(vma->exec_flags)) {
447 		DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
448 			  entry->handle, (int)(entry - eb->exec));
449 		return -EINVAL;
450 	}
451 
452 	/*
453 	 * From drm_mm perspective address space is continuous,
454 	 * so from this point we're always using non-canonical
455 	 * form internally.
456 	 */
457 	entry->offset = gen8_noncanonical_addr(entry->offset);
458 
459 	if (!eb->reloc_cache.has_fence) {
460 		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
461 	} else {
462 		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
463 		     eb->reloc_cache.needs_unfenced) &&
464 		    i915_gem_object_is_tiled(vma->obj))
465 			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
466 	}
467 
468 	if (!(entry->flags & EXEC_OBJECT_PINNED))
469 		entry->flags |= eb->context_flags;
470 
471 	return 0;
472 }
473 
474 static int
475 eb_add_vma(struct i915_execbuffer *eb,
476 	   unsigned int i, unsigned batch_idx,
477 	   struct i915_vma *vma)
478 {
479 	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
480 	int err;
481 
482 	GEM_BUG_ON(i915_vma_is_closed(vma));
483 
484 	if (!(eb->args->flags & __EXEC_VALIDATED)) {
485 		err = eb_validate_vma(eb, entry, vma);
486 		if (unlikely(err))
487 			return err;
488 	}
489 
490 	if (eb->lut_size > 0) {
491 		vma->exec_handle = entry->handle;
492 		hlist_add_head(&vma->exec_node,
493 			       &eb->buckets[hash_32(entry->handle,
494 						    eb->lut_size)]);
495 	}
496 
497 	if (entry->relocation_count)
498 		list_add_tail(&vma->reloc_link, &eb->relocs);
499 
500 	/*
501 	 * Stash a pointer from the vma to execobj, so we can query its flags,
502 	 * size, alignment etc as provided by the user. Also we stash a pointer
503 	 * to the vma inside the execobj so that we can use a direct lookup
504 	 * to find the right target VMA when doing relocations.
505 	 */
506 	eb->vma[i] = vma;
507 	eb->flags[i] = entry->flags;
508 	vma->exec_flags = &eb->flags[i];
509 
510 	/*
511 	 * SNA is doing fancy tricks with compressing batch buffers, which leads
512 	 * to negative relocation deltas. Usually that works out ok since the
513 	 * relocate address is still positive, except when the batch is placed
514 	 * very low in the GTT. Ensure this doesn't happen.
515 	 *
516 	 * Note that actual hangs have only been observed on gen7, but for
517 	 * paranoia do it everywhere.
518 	 */
519 	if (i == batch_idx) {
520 		if (entry->relocation_count &&
521 		    !(eb->flags[i] & EXEC_OBJECT_PINNED))
522 			eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
523 		if (eb->reloc_cache.has_fence)
524 			eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
525 
526 		eb->batch = vma;
527 	}
528 
529 	err = 0;
530 	if (eb_pin_vma(eb, entry, vma)) {
531 		if (entry->offset != vma->node.start) {
532 			entry->offset = vma->node.start | UPDATE;
533 			eb->args->flags |= __EXEC_HAS_RELOC;
534 		}
535 	} else {
536 		eb_unreserve_vma(vma, vma->exec_flags);
537 
538 		list_add_tail(&vma->exec_link, &eb->unbound);
539 		if (drm_mm_node_allocated(&vma->node))
540 			err = i915_vma_unbind(vma);
541 		if (unlikely(err))
542 			vma->exec_flags = NULL;
543 	}
544 	return err;
545 }
546 
547 static inline int use_cpu_reloc(const struct reloc_cache *cache,
548 				const struct drm_i915_gem_object *obj)
549 {
550 	if (!i915_gem_object_has_struct_page(obj))
551 		return false;
552 
553 	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
554 		return true;
555 
556 	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
557 		return false;
558 
559 	return (cache->has_llc ||
560 		obj->cache_dirty ||
561 		obj->cache_level != I915_CACHE_NONE);
562 }
563 
564 static int eb_reserve_vma(const struct i915_execbuffer *eb,
565 			  struct i915_vma *vma)
566 {
567 	struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
568 	unsigned int exec_flags = *vma->exec_flags;
569 	u64 pin_flags;
570 	int err;
571 
572 	pin_flags = PIN_USER | PIN_NONBLOCK;
573 	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
574 		pin_flags |= PIN_GLOBAL;
575 
576 	/*
577 	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
578 	 * limit address to the first 4GBs for unflagged objects.
579 	 */
580 	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
581 		pin_flags |= PIN_ZONE_4G;
582 
583 	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
584 		pin_flags |= PIN_MAPPABLE;
585 
586 	if (exec_flags & EXEC_OBJECT_PINNED) {
587 		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
588 		pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
589 	} else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
590 		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
591 	}
592 
593 	err = i915_vma_pin(vma,
594 			   entry->pad_to_size, entry->alignment,
595 			   pin_flags);
596 	if (err)
597 		return err;
598 
599 	if (entry->offset != vma->node.start) {
600 		entry->offset = vma->node.start | UPDATE;
601 		eb->args->flags |= __EXEC_HAS_RELOC;
602 	}
603 
604 	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
605 		err = i915_vma_pin_fence(vma);
606 		if (unlikely(err)) {
607 			i915_vma_unpin(vma);
608 			return err;
609 		}
610 
611 		if (vma->fence)
612 			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
613 	}
614 
615 	*vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
616 	GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
617 
618 	return 0;
619 }
620 
621 static int eb_reserve(struct i915_execbuffer *eb)
622 {
623 	const unsigned int count = eb->buffer_count;
624 	struct list_head last;
625 	struct i915_vma *vma;
626 	unsigned int i, pass;
627 	int err;
628 
629 	/*
630 	 * Attempt to pin all of the buffers into the GTT.
631 	 * This is done in 3 phases:
632 	 *
633 	 * 1a. Unbind all objects that do not match the GTT constraints for
634 	 *     the execbuffer (fenceable, mappable, alignment etc).
635 	 * 1b. Increment pin count for already bound objects.
636 	 * 2.  Bind new objects.
637 	 * 3.  Decrement pin count.
638 	 *
639 	 * This avoid unnecessary unbinding of later objects in order to make
640 	 * room for the earlier objects *unless* we need to defragment.
641 	 */
642 
643 	pass = 0;
644 	err = 0;
645 	do {
646 		list_for_each_entry(vma, &eb->unbound, exec_link) {
647 			err = eb_reserve_vma(eb, vma);
648 			if (err)
649 				break;
650 		}
651 		if (err != -ENOSPC)
652 			return err;
653 
654 		/* Resort *all* the objects into priority order */
655 		INIT_LIST_HEAD(&eb->unbound);
656 		INIT_LIST_HEAD(&last);
657 		for (i = 0; i < count; i++) {
658 			unsigned int flags = eb->flags[i];
659 			struct i915_vma *vma = eb->vma[i];
660 
661 			if (flags & EXEC_OBJECT_PINNED &&
662 			    flags & __EXEC_OBJECT_HAS_PIN)
663 				continue;
664 
665 			eb_unreserve_vma(vma, &eb->flags[i]);
666 
667 			if (flags & EXEC_OBJECT_PINNED)
668 				/* Pinned must have their slot */
669 				list_add(&vma->exec_link, &eb->unbound);
670 			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
671 				/* Map require the lowest 256MiB (aperture) */
672 				list_add_tail(&vma->exec_link, &eb->unbound);
673 			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
674 				/* Prioritise 4GiB region for restricted bo */
675 				list_add(&vma->exec_link, &last);
676 			else
677 				list_add_tail(&vma->exec_link, &last);
678 		}
679 		list_splice_tail(&last, &eb->unbound);
680 
681 		switch (pass++) {
682 		case 0:
683 			break;
684 
685 		case 1:
686 			/* Too fragmented, unbind everything and retry */
687 			mutex_lock(&eb->context->vm->mutex);
688 			err = i915_gem_evict_vm(eb->context->vm);
689 			mutex_unlock(&eb->context->vm->mutex);
690 			if (err)
691 				return err;
692 			break;
693 
694 		default:
695 			return -ENOSPC;
696 		}
697 	} while (1);
698 }
699 
700 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
701 {
702 	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
703 		return 0;
704 	else
705 		return eb->buffer_count - 1;
706 }
707 
708 static int eb_select_context(struct i915_execbuffer *eb)
709 {
710 	struct i915_gem_context *ctx;
711 
712 	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
713 	if (unlikely(!ctx))
714 		return -ENOENT;
715 
716 	eb->gem_context = ctx;
717 	if (rcu_access_pointer(ctx->vm))
718 		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
719 
720 	eb->context_flags = 0;
721 	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
722 		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
723 
724 	return 0;
725 }
726 
727 static int eb_lookup_vmas(struct i915_execbuffer *eb)
728 {
729 	struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
730 	struct drm_i915_gem_object *obj;
731 	unsigned int i, batch;
732 	int err;
733 
734 	INIT_LIST_HEAD(&eb->relocs);
735 	INIT_LIST_HEAD(&eb->unbound);
736 
737 	batch = eb_batch_index(eb);
738 
739 	mutex_lock(&eb->gem_context->mutex);
740 	if (unlikely(i915_gem_context_is_closed(eb->gem_context))) {
741 		err = -ENOENT;
742 		goto err_ctx;
743 	}
744 
745 	for (i = 0; i < eb->buffer_count; i++) {
746 		u32 handle = eb->exec[i].handle;
747 		struct i915_lut_handle *lut;
748 		struct i915_vma *vma;
749 
750 		vma = radix_tree_lookup(handles_vma, handle);
751 		if (likely(vma))
752 			goto add_vma;
753 
754 		obj = i915_gem_object_lookup(eb->file, handle);
755 		if (unlikely(!obj)) {
756 			err = -ENOENT;
757 			goto err_vma;
758 		}
759 
760 		vma = i915_vma_instance(obj, eb->context->vm, NULL);
761 		if (IS_ERR(vma)) {
762 			err = PTR_ERR(vma);
763 			goto err_obj;
764 		}
765 
766 		lut = i915_lut_handle_alloc();
767 		if (unlikely(!lut)) {
768 			err = -ENOMEM;
769 			goto err_obj;
770 		}
771 
772 		err = radix_tree_insert(handles_vma, handle, vma);
773 		if (unlikely(err)) {
774 			i915_lut_handle_free(lut);
775 			goto err_obj;
776 		}
777 
778 		/* transfer ref to lut */
779 		if (!atomic_fetch_inc(&vma->open_count))
780 			i915_vma_reopen(vma);
781 		lut->handle = handle;
782 		lut->ctx = eb->gem_context;
783 
784 		i915_gem_object_lock(obj);
785 		list_add(&lut->obj_link, &obj->lut_list);
786 		i915_gem_object_unlock(obj);
787 
788 add_vma:
789 		err = eb_add_vma(eb, i, batch, vma);
790 		if (unlikely(err))
791 			goto err_vma;
792 
793 		GEM_BUG_ON(vma != eb->vma[i]);
794 		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
795 		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
796 			   eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i]));
797 	}
798 
799 	mutex_unlock(&eb->gem_context->mutex);
800 
801 	eb->args->flags |= __EXEC_VALIDATED;
802 	return eb_reserve(eb);
803 
804 err_obj:
805 	i915_gem_object_put(obj);
806 err_vma:
807 	eb->vma[i] = NULL;
808 err_ctx:
809 	mutex_unlock(&eb->gem_context->mutex);
810 	return err;
811 }
812 
813 static struct i915_vma *
814 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
815 {
816 	if (eb->lut_size < 0) {
817 		if (handle >= -eb->lut_size)
818 			return NULL;
819 		return eb->vma[handle];
820 	} else {
821 		struct hlist_head *head;
822 		struct i915_vma *vma;
823 
824 		head = &eb->buckets[hash_32(handle, eb->lut_size)];
825 		hlist_for_each_entry(vma, head, exec_node) {
826 			if (vma->exec_handle == handle)
827 				return vma;
828 		}
829 		return NULL;
830 	}
831 }
832 
833 static void eb_release_vmas(const struct i915_execbuffer *eb)
834 {
835 	const unsigned int count = eb->buffer_count;
836 	unsigned int i;
837 
838 	for (i = 0; i < count; i++) {
839 		struct i915_vma *vma = eb->vma[i];
840 		unsigned int flags = eb->flags[i];
841 
842 		if (!vma)
843 			break;
844 
845 		GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
846 		vma->exec_flags = NULL;
847 		eb->vma[i] = NULL;
848 
849 		if (flags & __EXEC_OBJECT_HAS_PIN)
850 			__eb_unreserve_vma(vma, flags);
851 
852 		if (flags & __EXEC_OBJECT_HAS_REF)
853 			i915_vma_put(vma);
854 	}
855 }
856 
857 static void eb_reset_vmas(const struct i915_execbuffer *eb)
858 {
859 	eb_release_vmas(eb);
860 	if (eb->lut_size > 0)
861 		memset(eb->buckets, 0,
862 		       sizeof(struct hlist_head) << eb->lut_size);
863 }
864 
865 static void eb_destroy(const struct i915_execbuffer *eb)
866 {
867 	GEM_BUG_ON(eb->reloc_cache.rq);
868 
869 	if (eb->lut_size > 0)
870 		kfree(eb->buckets);
871 }
872 
873 static inline u64
874 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
875 		  const struct i915_vma *target)
876 {
877 	return gen8_canonical_addr((int)reloc->delta + target->node.start);
878 }
879 
880 static void reloc_cache_init(struct reloc_cache *cache,
881 			     struct drm_i915_private *i915)
882 {
883 	cache->page = -1;
884 	cache->vaddr = 0;
885 	/* Must be a variable in the struct to allow GCC to unroll. */
886 	cache->gen = INTEL_GEN(i915);
887 	cache->has_llc = HAS_LLC(i915);
888 	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
889 	cache->has_fence = cache->gen < 4;
890 	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
891 	cache->node.flags = 0;
892 	cache->rq = NULL;
893 	cache->rq_size = 0;
894 }
895 
896 static inline void *unmask_page(unsigned long p)
897 {
898 	return (void *)(uintptr_t)(p & PAGE_MASK);
899 }
900 
901 static inline unsigned int unmask_flags(unsigned long p)
902 {
903 	return p & ~PAGE_MASK;
904 }
905 
906 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
907 
908 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
909 {
910 	struct drm_i915_private *i915 =
911 		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
912 	return &i915->ggtt;
913 }
914 
915 static void reloc_gpu_flush(struct reloc_cache *cache)
916 {
917 	GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
918 	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
919 
920 	__i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size);
921 	i915_gem_object_unpin_map(cache->rq->batch->obj);
922 
923 	intel_gt_chipset_flush(cache->rq->engine->gt);
924 
925 	i915_request_add(cache->rq);
926 	cache->rq = NULL;
927 }
928 
929 static void reloc_cache_reset(struct reloc_cache *cache)
930 {
931 	void *vaddr;
932 
933 	if (cache->rq)
934 		reloc_gpu_flush(cache);
935 
936 	if (!cache->vaddr)
937 		return;
938 
939 	vaddr = unmask_page(cache->vaddr);
940 	if (cache->vaddr & KMAP) {
941 		if (cache->vaddr & CLFLUSH_AFTER)
942 			mb();
943 
944 		kunmap_atomic(vaddr);
945 		i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
946 	} else {
947 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
948 
949 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
950 		io_mapping_unmap_atomic((void __iomem *)vaddr);
951 
952 		if (drm_mm_node_allocated(&cache->node)) {
953 			ggtt->vm.clear_range(&ggtt->vm,
954 					     cache->node.start,
955 					     cache->node.size);
956 			mutex_lock(&ggtt->vm.mutex);
957 			drm_mm_remove_node(&cache->node);
958 			mutex_unlock(&ggtt->vm.mutex);
959 		} else {
960 			i915_vma_unpin((struct i915_vma *)cache->node.mm);
961 		}
962 	}
963 
964 	cache->vaddr = 0;
965 	cache->page = -1;
966 }
967 
968 static void *reloc_kmap(struct drm_i915_gem_object *obj,
969 			struct reloc_cache *cache,
970 			unsigned long page)
971 {
972 	void *vaddr;
973 
974 	if (cache->vaddr) {
975 		kunmap_atomic(unmask_page(cache->vaddr));
976 	} else {
977 		unsigned int flushes;
978 		int err;
979 
980 		err = i915_gem_object_prepare_write(obj, &flushes);
981 		if (err)
982 			return ERR_PTR(err);
983 
984 		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
985 		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
986 
987 		cache->vaddr = flushes | KMAP;
988 		cache->node.mm = (void *)obj;
989 		if (flushes)
990 			mb();
991 	}
992 
993 	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
994 	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
995 	cache->page = page;
996 
997 	return vaddr;
998 }
999 
1000 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1001 			 struct reloc_cache *cache,
1002 			 unsigned long page)
1003 {
1004 	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1005 	unsigned long offset;
1006 	void *vaddr;
1007 
1008 	if (cache->vaddr) {
1009 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1010 		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1011 	} else {
1012 		struct i915_vma *vma;
1013 		int err;
1014 
1015 		if (i915_gem_object_is_tiled(obj))
1016 			return ERR_PTR(-EINVAL);
1017 
1018 		if (use_cpu_reloc(cache, obj))
1019 			return NULL;
1020 
1021 		i915_gem_object_lock(obj);
1022 		err = i915_gem_object_set_to_gtt_domain(obj, true);
1023 		i915_gem_object_unlock(obj);
1024 		if (err)
1025 			return ERR_PTR(err);
1026 
1027 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1028 					       PIN_MAPPABLE |
1029 					       PIN_NONBLOCK /* NOWARN */ |
1030 					       PIN_NOEVICT);
1031 		if (IS_ERR(vma)) {
1032 			memset(&cache->node, 0, sizeof(cache->node));
1033 			mutex_lock(&ggtt->vm.mutex);
1034 			err = drm_mm_insert_node_in_range
1035 				(&ggtt->vm.mm, &cache->node,
1036 				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1037 				 0, ggtt->mappable_end,
1038 				 DRM_MM_INSERT_LOW);
1039 			mutex_unlock(&ggtt->vm.mutex);
1040 			if (err) /* no inactive aperture space, use cpu reloc */
1041 				return NULL;
1042 		} else {
1043 			cache->node.start = vma->node.start;
1044 			cache->node.mm = (void *)vma;
1045 		}
1046 	}
1047 
1048 	offset = cache->node.start;
1049 	if (drm_mm_node_allocated(&cache->node)) {
1050 		ggtt->vm.insert_page(&ggtt->vm,
1051 				     i915_gem_object_get_dma_address(obj, page),
1052 				     offset, I915_CACHE_NONE, 0);
1053 	} else {
1054 		offset += page << PAGE_SHIFT;
1055 	}
1056 
1057 	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1058 							 offset);
1059 	cache->page = page;
1060 	cache->vaddr = (unsigned long)vaddr;
1061 
1062 	return vaddr;
1063 }
1064 
1065 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1066 			 struct reloc_cache *cache,
1067 			 unsigned long page)
1068 {
1069 	void *vaddr;
1070 
1071 	if (cache->page == page) {
1072 		vaddr = unmask_page(cache->vaddr);
1073 	} else {
1074 		vaddr = NULL;
1075 		if ((cache->vaddr & KMAP) == 0)
1076 			vaddr = reloc_iomap(obj, cache, page);
1077 		if (!vaddr)
1078 			vaddr = reloc_kmap(obj, cache, page);
1079 	}
1080 
1081 	return vaddr;
1082 }
1083 
1084 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1085 {
1086 	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1087 		if (flushes & CLFLUSH_BEFORE) {
1088 			clflushopt(addr);
1089 			mb();
1090 		}
1091 
1092 		*addr = value;
1093 
1094 		/*
1095 		 * Writes to the same cacheline are serialised by the CPU
1096 		 * (including clflush). On the write path, we only require
1097 		 * that it hits memory in an orderly fashion and place
1098 		 * mb barriers at the start and end of the relocation phase
1099 		 * to ensure ordering of clflush wrt to the system.
1100 		 */
1101 		if (flushes & CLFLUSH_AFTER)
1102 			clflushopt(addr);
1103 	} else
1104 		*addr = value;
1105 }
1106 
1107 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1108 {
1109 	struct drm_i915_gem_object *obj = vma->obj;
1110 	int err;
1111 
1112 	i915_vma_lock(vma);
1113 
1114 	if (obj->cache_dirty & ~obj->cache_coherent)
1115 		i915_gem_clflush_object(obj, 0);
1116 	obj->write_domain = 0;
1117 
1118 	err = i915_request_await_object(rq, vma->obj, true);
1119 	if (err == 0)
1120 		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1121 
1122 	i915_vma_unlock(vma);
1123 
1124 	return err;
1125 }
1126 
1127 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1128 			     struct i915_vma *vma,
1129 			     unsigned int len)
1130 {
1131 	struct reloc_cache *cache = &eb->reloc_cache;
1132 	struct intel_engine_pool_node *pool;
1133 	struct i915_request *rq;
1134 	struct i915_vma *batch;
1135 	u32 *cmd;
1136 	int err;
1137 
1138 	pool = intel_engine_get_pool(eb->engine, PAGE_SIZE);
1139 	if (IS_ERR(pool))
1140 		return PTR_ERR(pool);
1141 
1142 	cmd = i915_gem_object_pin_map(pool->obj,
1143 				      cache->has_llc ?
1144 				      I915_MAP_FORCE_WB :
1145 				      I915_MAP_FORCE_WC);
1146 	if (IS_ERR(cmd)) {
1147 		err = PTR_ERR(cmd);
1148 		goto out_pool;
1149 	}
1150 
1151 	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1152 	if (IS_ERR(batch)) {
1153 		err = PTR_ERR(batch);
1154 		goto err_unmap;
1155 	}
1156 
1157 	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1158 	if (err)
1159 		goto err_unmap;
1160 
1161 	rq = i915_request_create(eb->context);
1162 	if (IS_ERR(rq)) {
1163 		err = PTR_ERR(rq);
1164 		goto err_unpin;
1165 	}
1166 
1167 	err = intel_engine_pool_mark_active(pool, rq);
1168 	if (err)
1169 		goto err_request;
1170 
1171 	err = reloc_move_to_gpu(rq, vma);
1172 	if (err)
1173 		goto err_request;
1174 
1175 	err = eb->engine->emit_bb_start(rq,
1176 					batch->node.start, PAGE_SIZE,
1177 					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1178 	if (err)
1179 		goto skip_request;
1180 
1181 	i915_vma_lock(batch);
1182 	err = i915_request_await_object(rq, batch->obj, false);
1183 	if (err == 0)
1184 		err = i915_vma_move_to_active(batch, rq, 0);
1185 	i915_vma_unlock(batch);
1186 	if (err)
1187 		goto skip_request;
1188 
1189 	rq->batch = batch;
1190 	i915_vma_unpin(batch);
1191 
1192 	cache->rq = rq;
1193 	cache->rq_cmd = cmd;
1194 	cache->rq_size = 0;
1195 
1196 	/* Return with batch mapping (cmd) still pinned */
1197 	goto out_pool;
1198 
1199 skip_request:
1200 	i915_request_skip(rq, err);
1201 err_request:
1202 	i915_request_add(rq);
1203 err_unpin:
1204 	i915_vma_unpin(batch);
1205 err_unmap:
1206 	i915_gem_object_unpin_map(pool->obj);
1207 out_pool:
1208 	intel_engine_pool_put(pool);
1209 	return err;
1210 }
1211 
1212 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1213 		      struct i915_vma *vma,
1214 		      unsigned int len)
1215 {
1216 	struct reloc_cache *cache = &eb->reloc_cache;
1217 	u32 *cmd;
1218 
1219 	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1220 		reloc_gpu_flush(cache);
1221 
1222 	if (unlikely(!cache->rq)) {
1223 		int err;
1224 
1225 		if (!intel_engine_can_store_dword(eb->engine))
1226 			return ERR_PTR(-ENODEV);
1227 
1228 		err = __reloc_gpu_alloc(eb, vma, len);
1229 		if (unlikely(err))
1230 			return ERR_PTR(err);
1231 	}
1232 
1233 	cmd = cache->rq_cmd + cache->rq_size;
1234 	cache->rq_size += len;
1235 
1236 	return cmd;
1237 }
1238 
1239 static u64
1240 relocate_entry(struct i915_vma *vma,
1241 	       const struct drm_i915_gem_relocation_entry *reloc,
1242 	       struct i915_execbuffer *eb,
1243 	       const struct i915_vma *target)
1244 {
1245 	u64 offset = reloc->offset;
1246 	u64 target_offset = relocation_target(reloc, target);
1247 	bool wide = eb->reloc_cache.use_64bit_reloc;
1248 	void *vaddr;
1249 
1250 	if (!eb->reloc_cache.vaddr &&
1251 	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1252 	     !dma_resv_test_signaled_rcu(vma->resv, true))) {
1253 		const unsigned int gen = eb->reloc_cache.gen;
1254 		unsigned int len;
1255 		u32 *batch;
1256 		u64 addr;
1257 
1258 		if (wide)
1259 			len = offset & 7 ? 8 : 5;
1260 		else if (gen >= 4)
1261 			len = 4;
1262 		else
1263 			len = 3;
1264 
1265 		batch = reloc_gpu(eb, vma, len);
1266 		if (IS_ERR(batch))
1267 			goto repeat;
1268 
1269 		addr = gen8_canonical_addr(vma->node.start + offset);
1270 		if (wide) {
1271 			if (offset & 7) {
1272 				*batch++ = MI_STORE_DWORD_IMM_GEN4;
1273 				*batch++ = lower_32_bits(addr);
1274 				*batch++ = upper_32_bits(addr);
1275 				*batch++ = lower_32_bits(target_offset);
1276 
1277 				addr = gen8_canonical_addr(addr + 4);
1278 
1279 				*batch++ = MI_STORE_DWORD_IMM_GEN4;
1280 				*batch++ = lower_32_bits(addr);
1281 				*batch++ = upper_32_bits(addr);
1282 				*batch++ = upper_32_bits(target_offset);
1283 			} else {
1284 				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1285 				*batch++ = lower_32_bits(addr);
1286 				*batch++ = upper_32_bits(addr);
1287 				*batch++ = lower_32_bits(target_offset);
1288 				*batch++ = upper_32_bits(target_offset);
1289 			}
1290 		} else if (gen >= 6) {
1291 			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1292 			*batch++ = 0;
1293 			*batch++ = addr;
1294 			*batch++ = target_offset;
1295 		} else if (gen >= 4) {
1296 			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1297 			*batch++ = 0;
1298 			*batch++ = addr;
1299 			*batch++ = target_offset;
1300 		} else {
1301 			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1302 			*batch++ = addr;
1303 			*batch++ = target_offset;
1304 		}
1305 
1306 		goto out;
1307 	}
1308 
1309 repeat:
1310 	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1311 	if (IS_ERR(vaddr))
1312 		return PTR_ERR(vaddr);
1313 
1314 	clflush_write32(vaddr + offset_in_page(offset),
1315 			lower_32_bits(target_offset),
1316 			eb->reloc_cache.vaddr);
1317 
1318 	if (wide) {
1319 		offset += sizeof(u32);
1320 		target_offset >>= 32;
1321 		wide = false;
1322 		goto repeat;
1323 	}
1324 
1325 out:
1326 	return target->node.start | UPDATE;
1327 }
1328 
1329 static u64
1330 eb_relocate_entry(struct i915_execbuffer *eb,
1331 		  struct i915_vma *vma,
1332 		  const struct drm_i915_gem_relocation_entry *reloc)
1333 {
1334 	struct i915_vma *target;
1335 	int err;
1336 
1337 	/* we've already hold a reference to all valid objects */
1338 	target = eb_get_vma(eb, reloc->target_handle);
1339 	if (unlikely(!target))
1340 		return -ENOENT;
1341 
1342 	/* Validate that the target is in a valid r/w GPU domain */
1343 	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1344 		DRM_DEBUG("reloc with multiple write domains: "
1345 			  "target %d offset %d "
1346 			  "read %08x write %08x",
1347 			  reloc->target_handle,
1348 			  (int) reloc->offset,
1349 			  reloc->read_domains,
1350 			  reloc->write_domain);
1351 		return -EINVAL;
1352 	}
1353 	if (unlikely((reloc->write_domain | reloc->read_domains)
1354 		     & ~I915_GEM_GPU_DOMAINS)) {
1355 		DRM_DEBUG("reloc with read/write non-GPU domains: "
1356 			  "target %d offset %d "
1357 			  "read %08x write %08x",
1358 			  reloc->target_handle,
1359 			  (int) reloc->offset,
1360 			  reloc->read_domains,
1361 			  reloc->write_domain);
1362 		return -EINVAL;
1363 	}
1364 
1365 	if (reloc->write_domain) {
1366 		*target->exec_flags |= EXEC_OBJECT_WRITE;
1367 
1368 		/*
1369 		 * Sandybridge PPGTT errata: We need a global gtt mapping
1370 		 * for MI and pipe_control writes because the gpu doesn't
1371 		 * properly redirect them through the ppgtt for non_secure
1372 		 * batchbuffers.
1373 		 */
1374 		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1375 		    IS_GEN(eb->i915, 6)) {
1376 			err = i915_vma_bind(target, target->obj->cache_level,
1377 					    PIN_GLOBAL, NULL);
1378 			if (WARN_ONCE(err,
1379 				      "Unexpected failure to bind target VMA!"))
1380 				return err;
1381 		}
1382 	}
1383 
1384 	/*
1385 	 * If the relocation already has the right value in it, no
1386 	 * more work needs to be done.
1387 	 */
1388 	if (!DBG_FORCE_RELOC &&
1389 	    gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1390 		return 0;
1391 
1392 	/* Check that the relocation address is valid... */
1393 	if (unlikely(reloc->offset >
1394 		     vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1395 		DRM_DEBUG("Relocation beyond object bounds: "
1396 			  "target %d offset %d size %d.\n",
1397 			  reloc->target_handle,
1398 			  (int)reloc->offset,
1399 			  (int)vma->size);
1400 		return -EINVAL;
1401 	}
1402 	if (unlikely(reloc->offset & 3)) {
1403 		DRM_DEBUG("Relocation not 4-byte aligned: "
1404 			  "target %d offset %d.\n",
1405 			  reloc->target_handle,
1406 			  (int)reloc->offset);
1407 		return -EINVAL;
1408 	}
1409 
1410 	/*
1411 	 * If we write into the object, we need to force the synchronisation
1412 	 * barrier, either with an asynchronous clflush or if we executed the
1413 	 * patching using the GPU (though that should be serialised by the
1414 	 * timeline). To be completely sure, and since we are required to
1415 	 * do relocations we are already stalling, disable the user's opt
1416 	 * out of our synchronisation.
1417 	 */
1418 	*vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1419 
1420 	/* and update the user's relocation entry */
1421 	return relocate_entry(vma, reloc, eb, target);
1422 }
1423 
1424 static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1425 {
1426 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1427 	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1428 	struct drm_i915_gem_relocation_entry __user *urelocs;
1429 	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1430 	unsigned int remain;
1431 
1432 	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1433 	remain = entry->relocation_count;
1434 	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1435 		return -EINVAL;
1436 
1437 	/*
1438 	 * We must check that the entire relocation array is safe
1439 	 * to read. However, if the array is not writable the user loses
1440 	 * the updated relocation values.
1441 	 */
1442 	if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1443 		return -EFAULT;
1444 
1445 	do {
1446 		struct drm_i915_gem_relocation_entry *r = stack;
1447 		unsigned int count =
1448 			min_t(unsigned int, remain, ARRAY_SIZE(stack));
1449 		unsigned int copied;
1450 
1451 		/*
1452 		 * This is the fast path and we cannot handle a pagefault
1453 		 * whilst holding the struct mutex lest the user pass in the
1454 		 * relocations contained within a mmaped bo. For in such a case
1455 		 * we, the page fault handler would call i915_gem_fault() and
1456 		 * we would try to acquire the struct mutex again. Obviously
1457 		 * this is bad and so lockdep complains vehemently.
1458 		 */
1459 		pagefault_disable();
1460 		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1461 		pagefault_enable();
1462 		if (unlikely(copied)) {
1463 			remain = -EFAULT;
1464 			goto out;
1465 		}
1466 
1467 		remain -= count;
1468 		do {
1469 			u64 offset = eb_relocate_entry(eb, vma, r);
1470 
1471 			if (likely(offset == 0)) {
1472 			} else if ((s64)offset < 0) {
1473 				remain = (int)offset;
1474 				goto out;
1475 			} else {
1476 				/*
1477 				 * Note that reporting an error now
1478 				 * leaves everything in an inconsistent
1479 				 * state as we have *already* changed
1480 				 * the relocation value inside the
1481 				 * object. As we have not changed the
1482 				 * reloc.presumed_offset or will not
1483 				 * change the execobject.offset, on the
1484 				 * call we may not rewrite the value
1485 				 * inside the object, leaving it
1486 				 * dangling and causing a GPU hang. Unless
1487 				 * userspace dynamically rebuilds the
1488 				 * relocations on each execbuf rather than
1489 				 * presume a static tree.
1490 				 *
1491 				 * We did previously check if the relocations
1492 				 * were writable (access_ok), an error now
1493 				 * would be a strange race with mprotect,
1494 				 * having already demonstrated that we
1495 				 * can read from this userspace address.
1496 				 */
1497 				offset = gen8_canonical_addr(offset & ~UPDATE);
1498 				if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) {
1499 					remain = -EFAULT;
1500 					goto out;
1501 				}
1502 			}
1503 		} while (r++, --count);
1504 		urelocs += ARRAY_SIZE(stack);
1505 	} while (remain);
1506 out:
1507 	reloc_cache_reset(&eb->reloc_cache);
1508 	return remain;
1509 }
1510 
1511 static int
1512 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1513 {
1514 	const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1515 	struct drm_i915_gem_relocation_entry *relocs =
1516 		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1517 	unsigned int i;
1518 	int err;
1519 
1520 	for (i = 0; i < entry->relocation_count; i++) {
1521 		u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1522 
1523 		if ((s64)offset < 0) {
1524 			err = (int)offset;
1525 			goto err;
1526 		}
1527 	}
1528 	err = 0;
1529 err:
1530 	reloc_cache_reset(&eb->reloc_cache);
1531 	return err;
1532 }
1533 
1534 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1535 {
1536 	const char __user *addr, *end;
1537 	unsigned long size;
1538 	char __maybe_unused c;
1539 
1540 	size = entry->relocation_count;
1541 	if (size == 0)
1542 		return 0;
1543 
1544 	if (size > N_RELOC(ULONG_MAX))
1545 		return -EINVAL;
1546 
1547 	addr = u64_to_user_ptr(entry->relocs_ptr);
1548 	size *= sizeof(struct drm_i915_gem_relocation_entry);
1549 	if (!access_ok(addr, size))
1550 		return -EFAULT;
1551 
1552 	end = addr + size;
1553 	for (; addr < end; addr += PAGE_SIZE) {
1554 		int err = __get_user(c, addr);
1555 		if (err)
1556 			return err;
1557 	}
1558 	return __get_user(c, end - 1);
1559 }
1560 
1561 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1562 {
1563 	struct drm_i915_gem_relocation_entry *relocs;
1564 	const unsigned int count = eb->buffer_count;
1565 	unsigned int i;
1566 	int err;
1567 
1568 	for (i = 0; i < count; i++) {
1569 		const unsigned int nreloc = eb->exec[i].relocation_count;
1570 		struct drm_i915_gem_relocation_entry __user *urelocs;
1571 		unsigned long size;
1572 		unsigned long copied;
1573 
1574 		if (nreloc == 0)
1575 			continue;
1576 
1577 		err = check_relocations(&eb->exec[i]);
1578 		if (err)
1579 			goto err;
1580 
1581 		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1582 		size = nreloc * sizeof(*relocs);
1583 
1584 		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1585 		if (!relocs) {
1586 			err = -ENOMEM;
1587 			goto err;
1588 		}
1589 
1590 		/* copy_from_user is limited to < 4GiB */
1591 		copied = 0;
1592 		do {
1593 			unsigned int len =
1594 				min_t(u64, BIT_ULL(31), size - copied);
1595 
1596 			if (__copy_from_user((char *)relocs + copied,
1597 					     (char __user *)urelocs + copied,
1598 					     len))
1599 				goto end;
1600 
1601 			copied += len;
1602 		} while (copied < size);
1603 
1604 		/*
1605 		 * As we do not update the known relocation offsets after
1606 		 * relocating (due to the complexities in lock handling),
1607 		 * we need to mark them as invalid now so that we force the
1608 		 * relocation processing next time. Just in case the target
1609 		 * object is evicted and then rebound into its old
1610 		 * presumed_offset before the next execbuffer - if that
1611 		 * happened we would make the mistake of assuming that the
1612 		 * relocations were valid.
1613 		 */
1614 		if (!user_access_begin(urelocs, size))
1615 			goto end;
1616 
1617 		for (copied = 0; copied < nreloc; copied++)
1618 			unsafe_put_user(-1,
1619 					&urelocs[copied].presumed_offset,
1620 					end_user);
1621 		user_access_end();
1622 
1623 		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1624 	}
1625 
1626 	return 0;
1627 
1628 end_user:
1629 	user_access_end();
1630 end:
1631 	kvfree(relocs);
1632 	err = -EFAULT;
1633 err:
1634 	while (i--) {
1635 		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1636 		if (eb->exec[i].relocation_count)
1637 			kvfree(relocs);
1638 	}
1639 	return err;
1640 }
1641 
1642 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1643 {
1644 	const unsigned int count = eb->buffer_count;
1645 	unsigned int i;
1646 
1647 	if (unlikely(i915_modparams.prefault_disable))
1648 		return 0;
1649 
1650 	for (i = 0; i < count; i++) {
1651 		int err;
1652 
1653 		err = check_relocations(&eb->exec[i]);
1654 		if (err)
1655 			return err;
1656 	}
1657 
1658 	return 0;
1659 }
1660 
1661 static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1662 {
1663 	struct drm_device *dev = &eb->i915->drm;
1664 	bool have_copy = false;
1665 	struct i915_vma *vma;
1666 	int err = 0;
1667 
1668 repeat:
1669 	if (signal_pending(current)) {
1670 		err = -ERESTARTSYS;
1671 		goto out;
1672 	}
1673 
1674 	/* We may process another execbuffer during the unlock... */
1675 	eb_reset_vmas(eb);
1676 	mutex_unlock(&dev->struct_mutex);
1677 
1678 	/*
1679 	 * We take 3 passes through the slowpatch.
1680 	 *
1681 	 * 1 - we try to just prefault all the user relocation entries and
1682 	 * then attempt to reuse the atomic pagefault disabled fast path again.
1683 	 *
1684 	 * 2 - we copy the user entries to a local buffer here outside of the
1685 	 * local and allow ourselves to wait upon any rendering before
1686 	 * relocations
1687 	 *
1688 	 * 3 - we already have a local copy of the relocation entries, but
1689 	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1690 	 */
1691 	if (!err) {
1692 		err = eb_prefault_relocations(eb);
1693 	} else if (!have_copy) {
1694 		err = eb_copy_relocations(eb);
1695 		have_copy = err == 0;
1696 	} else {
1697 		cond_resched();
1698 		err = 0;
1699 	}
1700 	if (err) {
1701 		mutex_lock(&dev->struct_mutex);
1702 		goto out;
1703 	}
1704 
1705 	/* A frequent cause for EAGAIN are currently unavailable client pages */
1706 	flush_workqueue(eb->i915->mm.userptr_wq);
1707 
1708 	err = i915_mutex_lock_interruptible(dev);
1709 	if (err) {
1710 		mutex_lock(&dev->struct_mutex);
1711 		goto out;
1712 	}
1713 
1714 	/* reacquire the objects */
1715 	err = eb_lookup_vmas(eb);
1716 	if (err)
1717 		goto err;
1718 
1719 	GEM_BUG_ON(!eb->batch);
1720 
1721 	list_for_each_entry(vma, &eb->relocs, reloc_link) {
1722 		if (!have_copy) {
1723 			pagefault_disable();
1724 			err = eb_relocate_vma(eb, vma);
1725 			pagefault_enable();
1726 			if (err)
1727 				goto repeat;
1728 		} else {
1729 			err = eb_relocate_vma_slow(eb, vma);
1730 			if (err)
1731 				goto err;
1732 		}
1733 	}
1734 
1735 	/*
1736 	 * Leave the user relocations as are, this is the painfully slow path,
1737 	 * and we want to avoid the complication of dropping the lock whilst
1738 	 * having buffers reserved in the aperture and so causing spurious
1739 	 * ENOSPC for random operations.
1740 	 */
1741 
1742 err:
1743 	if (err == -EAGAIN)
1744 		goto repeat;
1745 
1746 out:
1747 	if (have_copy) {
1748 		const unsigned int count = eb->buffer_count;
1749 		unsigned int i;
1750 
1751 		for (i = 0; i < count; i++) {
1752 			const struct drm_i915_gem_exec_object2 *entry =
1753 				&eb->exec[i];
1754 			struct drm_i915_gem_relocation_entry *relocs;
1755 
1756 			if (!entry->relocation_count)
1757 				continue;
1758 
1759 			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1760 			kvfree(relocs);
1761 		}
1762 	}
1763 
1764 	return err;
1765 }
1766 
1767 static int eb_relocate(struct i915_execbuffer *eb)
1768 {
1769 	if (eb_lookup_vmas(eb))
1770 		goto slow;
1771 
1772 	/* The objects are in their final locations, apply the relocations. */
1773 	if (eb->args->flags & __EXEC_HAS_RELOC) {
1774 		struct i915_vma *vma;
1775 
1776 		list_for_each_entry(vma, &eb->relocs, reloc_link) {
1777 			if (eb_relocate_vma(eb, vma))
1778 				goto slow;
1779 		}
1780 	}
1781 
1782 	return 0;
1783 
1784 slow:
1785 	return eb_relocate_slow(eb);
1786 }
1787 
1788 static int eb_move_to_gpu(struct i915_execbuffer *eb)
1789 {
1790 	const unsigned int count = eb->buffer_count;
1791 	struct ww_acquire_ctx acquire;
1792 	unsigned int i;
1793 	int err = 0;
1794 
1795 	ww_acquire_init(&acquire, &reservation_ww_class);
1796 
1797 	for (i = 0; i < count; i++) {
1798 		struct i915_vma *vma = eb->vma[i];
1799 
1800 		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
1801 		if (!err)
1802 			continue;
1803 
1804 		GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */
1805 
1806 		if (err == -EDEADLK) {
1807 			GEM_BUG_ON(i == 0);
1808 			do {
1809 				int j = i - 1;
1810 
1811 				ww_mutex_unlock(&eb->vma[j]->resv->lock);
1812 
1813 				swap(eb->flags[i], eb->flags[j]);
1814 				swap(eb->vma[i],  eb->vma[j]);
1815 				eb->vma[i]->exec_flags = &eb->flags[i];
1816 			} while (--i);
1817 			GEM_BUG_ON(vma != eb->vma[0]);
1818 			vma->exec_flags = &eb->flags[0];
1819 
1820 			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
1821 							       &acquire);
1822 		}
1823 		if (err)
1824 			break;
1825 	}
1826 	ww_acquire_done(&acquire);
1827 
1828 	while (i--) {
1829 		unsigned int flags = eb->flags[i];
1830 		struct i915_vma *vma = eb->vma[i];
1831 		struct drm_i915_gem_object *obj = vma->obj;
1832 
1833 		assert_vma_held(vma);
1834 
1835 		if (flags & EXEC_OBJECT_CAPTURE) {
1836 			struct i915_capture_list *capture;
1837 
1838 			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1839 			if (capture) {
1840 				capture->next = eb->request->capture_list;
1841 				capture->vma = vma;
1842 				eb->request->capture_list = capture;
1843 			}
1844 		}
1845 
1846 		/*
1847 		 * If the GPU is not _reading_ through the CPU cache, we need
1848 		 * to make sure that any writes (both previous GPU writes from
1849 		 * before a change in snooping levels and normal CPU writes)
1850 		 * caught in that cache are flushed to main memory.
1851 		 *
1852 		 * We want to say
1853 		 *   obj->cache_dirty &&
1854 		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1855 		 * but gcc's optimiser doesn't handle that as well and emits
1856 		 * two jumps instead of one. Maybe one day...
1857 		 */
1858 		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1859 			if (i915_gem_clflush_object(obj, 0))
1860 				flags &= ~EXEC_OBJECT_ASYNC;
1861 		}
1862 
1863 		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
1864 			err = i915_request_await_object
1865 				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
1866 		}
1867 
1868 		if (err == 0)
1869 			err = i915_vma_move_to_active(vma, eb->request, flags);
1870 
1871 		i915_vma_unlock(vma);
1872 
1873 		__eb_unreserve_vma(vma, flags);
1874 		vma->exec_flags = NULL;
1875 
1876 		if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1877 			i915_vma_put(vma);
1878 	}
1879 	ww_acquire_fini(&acquire);
1880 
1881 	if (unlikely(err))
1882 		goto err_skip;
1883 
1884 	eb->exec = NULL;
1885 
1886 	/* Unconditionally flush any chipset caches (for streaming writes). */
1887 	intel_gt_chipset_flush(eb->engine->gt);
1888 	return 0;
1889 
1890 err_skip:
1891 	i915_request_skip(eb->request, err);
1892 	return err;
1893 }
1894 
1895 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1896 {
1897 	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1898 		return -EINVAL;
1899 
1900 	/* Kernel clipping was a DRI1 misfeature */
1901 	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1902 		if (exec->num_cliprects || exec->cliprects_ptr)
1903 			return -EINVAL;
1904 	}
1905 
1906 	if (exec->DR4 == 0xffffffff) {
1907 		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1908 		exec->DR4 = 0;
1909 	}
1910 	if (exec->DR1 || exec->DR4)
1911 		return -EINVAL;
1912 
1913 	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1914 		return -EINVAL;
1915 
1916 	return 0;
1917 }
1918 
1919 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1920 {
1921 	u32 *cs;
1922 	int i;
1923 
1924 	if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1925 		DRM_DEBUG("sol reset is gen7/rcs only\n");
1926 		return -EINVAL;
1927 	}
1928 
1929 	cs = intel_ring_begin(rq, 4 * 2 + 2);
1930 	if (IS_ERR(cs))
1931 		return PTR_ERR(cs);
1932 
1933 	*cs++ = MI_LOAD_REGISTER_IMM(4);
1934 	for (i = 0; i < 4; i++) {
1935 		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1936 		*cs++ = 0;
1937 	}
1938 	*cs++ = MI_NOOP;
1939 	intel_ring_advance(rq, cs);
1940 
1941 	return 0;
1942 }
1943 
1944 static struct i915_vma *
1945 shadow_batch_pin(struct drm_i915_gem_object *obj,
1946 		 struct i915_address_space *vm,
1947 		 unsigned int flags)
1948 {
1949 	struct i915_vma *vma;
1950 	int err;
1951 
1952 	vma = i915_vma_instance(obj, vm, NULL);
1953 	if (IS_ERR(vma))
1954 		return vma;
1955 
1956 	err = i915_vma_pin(vma, 0, 0, flags);
1957 	if (err)
1958 		return ERR_PTR(err);
1959 
1960 	return vma;
1961 }
1962 
1963 struct eb_parse_work {
1964 	struct dma_fence_work base;
1965 	struct intel_engine_cs *engine;
1966 	struct i915_vma *batch;
1967 	struct i915_vma *shadow;
1968 	struct i915_vma *trampoline;
1969 	unsigned int batch_offset;
1970 	unsigned int batch_length;
1971 };
1972 
1973 static int __eb_parse(struct dma_fence_work *work)
1974 {
1975 	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
1976 
1977 	return intel_engine_cmd_parser(pw->engine,
1978 				       pw->batch,
1979 				       pw->batch_offset,
1980 				       pw->batch_length,
1981 				       pw->shadow,
1982 				       pw->trampoline);
1983 }
1984 
1985 static void __eb_parse_release(struct dma_fence_work *work)
1986 {
1987 	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
1988 
1989 	if (pw->trampoline)
1990 		i915_active_release(&pw->trampoline->active);
1991 	i915_active_release(&pw->shadow->active);
1992 	i915_active_release(&pw->batch->active);
1993 }
1994 
1995 static const struct dma_fence_work_ops eb_parse_ops = {
1996 	.name = "eb_parse",
1997 	.work = __eb_parse,
1998 	.release = __eb_parse_release,
1999 };
2000 
2001 static int eb_parse_pipeline(struct i915_execbuffer *eb,
2002 			     struct i915_vma *shadow,
2003 			     struct i915_vma *trampoline)
2004 {
2005 	struct eb_parse_work *pw;
2006 	int err;
2007 
2008 	pw = kzalloc(sizeof(*pw), GFP_KERNEL);
2009 	if (!pw)
2010 		return -ENOMEM;
2011 
2012 	err = i915_active_acquire(&eb->batch->active);
2013 	if (err)
2014 		goto err_free;
2015 
2016 	err = i915_active_acquire(&shadow->active);
2017 	if (err)
2018 		goto err_batch;
2019 
2020 	if (trampoline) {
2021 		err = i915_active_acquire(&trampoline->active);
2022 		if (err)
2023 			goto err_shadow;
2024 	}
2025 
2026 	dma_fence_work_init(&pw->base, &eb_parse_ops);
2027 
2028 	pw->engine = eb->engine;
2029 	pw->batch = eb->batch;
2030 	pw->batch_offset = eb->batch_start_offset;
2031 	pw->batch_length = eb->batch_len;
2032 	pw->shadow = shadow;
2033 	pw->trampoline = trampoline;
2034 
2035 	err = dma_resv_lock_interruptible(pw->batch->resv, NULL);
2036 	if (err)
2037 		goto err_trampoline;
2038 
2039 	err = dma_resv_reserve_shared(pw->batch->resv, 1);
2040 	if (err)
2041 		goto err_batch_unlock;
2042 
2043 	/* Wait for all writes (and relocs) into the batch to complete */
2044 	err = i915_sw_fence_await_reservation(&pw->base.chain,
2045 					      pw->batch->resv, NULL, false,
2046 					      0, I915_FENCE_GFP);
2047 	if (err < 0)
2048 		goto err_batch_unlock;
2049 
2050 	/* Keep the batch alive and unwritten as we parse */
2051 	dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);
2052 
2053 	dma_resv_unlock(pw->batch->resv);
2054 
2055 	/* Force execution to wait for completion of the parser */
2056 	dma_resv_lock(shadow->resv, NULL);
2057 	dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
2058 	dma_resv_unlock(shadow->resv);
2059 
2060 	dma_fence_work_commit(&pw->base);
2061 	return 0;
2062 
2063 err_batch_unlock:
2064 	dma_resv_unlock(pw->batch->resv);
2065 err_trampoline:
2066 	if (trampoline)
2067 		i915_active_release(&trampoline->active);
2068 err_shadow:
2069 	i915_active_release(&shadow->active);
2070 err_batch:
2071 	i915_active_release(&eb->batch->active);
2072 err_free:
2073 	kfree(pw);
2074 	return err;
2075 }
2076 
2077 static int eb_parse(struct i915_execbuffer *eb)
2078 {
2079 	struct intel_engine_pool_node *pool;
2080 	struct i915_vma *shadow, *trampoline;
2081 	unsigned int len;
2082 	int err;
2083 
2084 	if (!eb_use_cmdparser(eb))
2085 		return 0;
2086 
2087 	len = eb->batch_len;
2088 	if (!CMDPARSER_USES_GGTT(eb->i915)) {
2089 		/*
2090 		 * ppGTT backed shadow buffers must be mapped RO, to prevent
2091 		 * post-scan tampering
2092 		 */
2093 		if (!eb->context->vm->has_read_only) {
2094 			DRM_DEBUG("Cannot prevent post-scan tampering without RO capable vm\n");
2095 			return -EINVAL;
2096 		}
2097 	} else {
2098 		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2099 	}
2100 
2101 	pool = intel_engine_get_pool(eb->engine, len);
2102 	if (IS_ERR(pool))
2103 		return PTR_ERR(pool);
2104 
2105 	shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER);
2106 	if (IS_ERR(shadow)) {
2107 		err = PTR_ERR(shadow);
2108 		goto err;
2109 	}
2110 	i915_gem_object_set_readonly(shadow->obj);
2111 
2112 	trampoline = NULL;
2113 	if (CMDPARSER_USES_GGTT(eb->i915)) {
2114 		trampoline = shadow;
2115 
2116 		shadow = shadow_batch_pin(pool->obj,
2117 					  &eb->engine->gt->ggtt->vm,
2118 					  PIN_GLOBAL);
2119 		if (IS_ERR(shadow)) {
2120 			err = PTR_ERR(shadow);
2121 			shadow = trampoline;
2122 			goto err_shadow;
2123 		}
2124 
2125 		eb->batch_flags |= I915_DISPATCH_SECURE;
2126 	}
2127 
2128 	err = eb_parse_pipeline(eb, shadow, trampoline);
2129 	if (err)
2130 		goto err_trampoline;
2131 
2132 	eb->vma[eb->buffer_count] = i915_vma_get(shadow);
2133 	eb->flags[eb->buffer_count] =
2134 		__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
2135 	shadow->exec_flags = &eb->flags[eb->buffer_count];
2136 	eb->buffer_count++;
2137 
2138 	eb->trampoline = trampoline;
2139 	eb->batch_start_offset = 0;
2140 	eb->batch = shadow;
2141 
2142 	shadow->private = pool;
2143 	return 0;
2144 
2145 err_trampoline:
2146 	if (trampoline)
2147 		i915_vma_unpin(trampoline);
2148 err_shadow:
2149 	i915_vma_unpin(shadow);
2150 err:
2151 	intel_engine_pool_put(pool);
2152 	return err;
2153 }
2154 
2155 static void
2156 add_to_client(struct i915_request *rq, struct drm_file *file)
2157 {
2158 	struct drm_i915_file_private *file_priv = file->driver_priv;
2159 
2160 	rq->file_priv = file_priv;
2161 
2162 	spin_lock(&file_priv->mm.lock);
2163 	list_add_tail(&rq->client_link, &file_priv->mm.request_list);
2164 	spin_unlock(&file_priv->mm.lock);
2165 }
2166 
2167 static int eb_submit(struct i915_execbuffer *eb)
2168 {
2169 	int err;
2170 
2171 	err = eb_move_to_gpu(eb);
2172 	if (err)
2173 		return err;
2174 
2175 	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2176 		err = i915_reset_gen7_sol_offsets(eb->request);
2177 		if (err)
2178 			return err;
2179 	}
2180 
2181 	/*
2182 	 * After we completed waiting for other engines (using HW semaphores)
2183 	 * then we can signal that this request/batch is ready to run. This
2184 	 * allows us to determine if the batch is still waiting on the GPU
2185 	 * or actually running by checking the breadcrumb.
2186 	 */
2187 	if (eb->engine->emit_init_breadcrumb) {
2188 		err = eb->engine->emit_init_breadcrumb(eb->request);
2189 		if (err)
2190 			return err;
2191 	}
2192 
2193 	err = eb->engine->emit_bb_start(eb->request,
2194 					eb->batch->node.start +
2195 					eb->batch_start_offset,
2196 					eb->batch_len,
2197 					eb->batch_flags);
2198 	if (err)
2199 		return err;
2200 
2201 	if (eb->trampoline) {
2202 		GEM_BUG_ON(eb->batch_start_offset);
2203 		err = eb->engine->emit_bb_start(eb->request,
2204 						eb->trampoline->node.start +
2205 						eb->batch_len,
2206 						0, 0);
2207 		if (err)
2208 			return err;
2209 	}
2210 
2211 	if (intel_context_nopreempt(eb->context))
2212 		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2213 
2214 	return 0;
2215 }
2216 
2217 static int num_vcs_engines(const struct drm_i915_private *i915)
2218 {
2219 	return hweight64(INTEL_INFO(i915)->engine_mask &
2220 			 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
2221 }
2222 
2223 /*
2224  * Find one BSD ring to dispatch the corresponding BSD command.
2225  * The engine index is returned.
2226  */
2227 static unsigned int
2228 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2229 			 struct drm_file *file)
2230 {
2231 	struct drm_i915_file_private *file_priv = file->driver_priv;
2232 
2233 	/* Check whether the file_priv has already selected one ring. */
2234 	if ((int)file_priv->bsd_engine < 0)
2235 		file_priv->bsd_engine =
2236 			get_random_int() % num_vcs_engines(dev_priv);
2237 
2238 	return file_priv->bsd_engine;
2239 }
2240 
2241 static const enum intel_engine_id user_ring_map[] = {
2242 	[I915_EXEC_DEFAULT]	= RCS0,
2243 	[I915_EXEC_RENDER]	= RCS0,
2244 	[I915_EXEC_BLT]		= BCS0,
2245 	[I915_EXEC_BSD]		= VCS0,
2246 	[I915_EXEC_VEBOX]	= VECS0
2247 };
2248 
2249 static struct i915_request *eb_throttle(struct intel_context *ce)
2250 {
2251 	struct intel_ring *ring = ce->ring;
2252 	struct intel_timeline *tl = ce->timeline;
2253 	struct i915_request *rq;
2254 
2255 	/*
2256 	 * Completely unscientific finger-in-the-air estimates for suitable
2257 	 * maximum user request size (to avoid blocking) and then backoff.
2258 	 */
2259 	if (intel_ring_update_space(ring) >= PAGE_SIZE)
2260 		return NULL;
2261 
2262 	/*
2263 	 * Find a request that after waiting upon, there will be at least half
2264 	 * the ring available. The hysteresis allows us to compete for the
2265 	 * shared ring and should mean that we sleep less often prior to
2266 	 * claiming our resources, but not so long that the ring completely
2267 	 * drains before we can submit our next request.
2268 	 */
2269 	list_for_each_entry(rq, &tl->requests, link) {
2270 		if (rq->ring != ring)
2271 			continue;
2272 
2273 		if (__intel_ring_space(rq->postfix,
2274 				       ring->emit, ring->size) > ring->size / 2)
2275 			break;
2276 	}
2277 	if (&rq->link == &tl->requests)
2278 		return NULL; /* weird, we will check again later for real */
2279 
2280 	return i915_request_get(rq);
2281 }
2282 
2283 static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
2284 {
2285 	struct intel_timeline *tl;
2286 	struct i915_request *rq;
2287 	int err;
2288 
2289 	/*
2290 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2291 	 * EIO if the GPU is already wedged.
2292 	 */
2293 	err = intel_gt_terminally_wedged(ce->engine->gt);
2294 	if (err)
2295 		return err;
2296 
2297 	if (unlikely(intel_context_is_banned(ce)))
2298 		return -EIO;
2299 
2300 	/*
2301 	 * Pinning the contexts may generate requests in order to acquire
2302 	 * GGTT space, so do this first before we reserve a seqno for
2303 	 * ourselves.
2304 	 */
2305 	err = intel_context_pin(ce);
2306 	if (err)
2307 		return err;
2308 
2309 	/*
2310 	 * Take a local wakeref for preparing to dispatch the execbuf as
2311 	 * we expect to access the hardware fairly frequently in the
2312 	 * process, and require the engine to be kept awake between accesses.
2313 	 * Upon dispatch, we acquire another prolonged wakeref that we hold
2314 	 * until the timeline is idle, which in turn releases the wakeref
2315 	 * taken on the engine, and the parent device.
2316 	 */
2317 	tl = intel_context_timeline_lock(ce);
2318 	if (IS_ERR(tl)) {
2319 		err = PTR_ERR(tl);
2320 		goto err_unpin;
2321 	}
2322 
2323 	intel_context_enter(ce);
2324 	rq = eb_throttle(ce);
2325 
2326 	intel_context_timeline_unlock(tl);
2327 
2328 	if (rq) {
2329 		if (i915_request_wait(rq,
2330 				      I915_WAIT_INTERRUPTIBLE,
2331 				      MAX_SCHEDULE_TIMEOUT) < 0) {
2332 			i915_request_put(rq);
2333 			err = -EINTR;
2334 			goto err_exit;
2335 		}
2336 
2337 		i915_request_put(rq);
2338 	}
2339 
2340 	eb->engine = ce->engine;
2341 	eb->context = ce;
2342 	return 0;
2343 
2344 err_exit:
2345 	mutex_lock(&tl->mutex);
2346 	intel_context_exit(ce);
2347 	intel_context_timeline_unlock(tl);
2348 err_unpin:
2349 	intel_context_unpin(ce);
2350 	return err;
2351 }
2352 
2353 static void eb_unpin_engine(struct i915_execbuffer *eb)
2354 {
2355 	struct intel_context *ce = eb->context;
2356 	struct intel_timeline *tl = ce->timeline;
2357 
2358 	mutex_lock(&tl->mutex);
2359 	intel_context_exit(ce);
2360 	mutex_unlock(&tl->mutex);
2361 
2362 	intel_context_unpin(ce);
2363 }
2364 
2365 static unsigned int
2366 eb_select_legacy_ring(struct i915_execbuffer *eb,
2367 		      struct drm_file *file,
2368 		      struct drm_i915_gem_execbuffer2 *args)
2369 {
2370 	struct drm_i915_private *i915 = eb->i915;
2371 	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2372 
2373 	if (user_ring_id != I915_EXEC_BSD &&
2374 	    (args->flags & I915_EXEC_BSD_MASK)) {
2375 		DRM_DEBUG("execbuf with non bsd ring but with invalid "
2376 			  "bsd dispatch flags: %d\n", (int)(args->flags));
2377 		return -1;
2378 	}
2379 
2380 	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2381 		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2382 
2383 		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2384 			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2385 		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2386 			   bsd_idx <= I915_EXEC_BSD_RING2) {
2387 			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2388 			bsd_idx--;
2389 		} else {
2390 			DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
2391 				  bsd_idx);
2392 			return -1;
2393 		}
2394 
2395 		return _VCS(bsd_idx);
2396 	}
2397 
2398 	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2399 		DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2400 		return -1;
2401 	}
2402 
2403 	return user_ring_map[user_ring_id];
2404 }
2405 
2406 static int
2407 eb_pin_engine(struct i915_execbuffer *eb,
2408 	      struct drm_file *file,
2409 	      struct drm_i915_gem_execbuffer2 *args)
2410 {
2411 	struct intel_context *ce;
2412 	unsigned int idx;
2413 	int err;
2414 
2415 	if (i915_gem_context_user_engines(eb->gem_context))
2416 		idx = args->flags & I915_EXEC_RING_MASK;
2417 	else
2418 		idx = eb_select_legacy_ring(eb, file, args);
2419 
2420 	ce = i915_gem_context_get_engine(eb->gem_context, idx);
2421 	if (IS_ERR(ce))
2422 		return PTR_ERR(ce);
2423 
2424 	err = __eb_pin_engine(eb, ce);
2425 	intel_context_put(ce);
2426 
2427 	return err;
2428 }
2429 
2430 static void
2431 __free_fence_array(struct drm_syncobj **fences, unsigned int n)
2432 {
2433 	while (n--)
2434 		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2435 	kvfree(fences);
2436 }
2437 
2438 static struct drm_syncobj **
2439 get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2440 		struct drm_file *file)
2441 {
2442 	const unsigned long nfences = args->num_cliprects;
2443 	struct drm_i915_gem_exec_fence __user *user;
2444 	struct drm_syncobj **fences;
2445 	unsigned long n;
2446 	int err;
2447 
2448 	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2449 		return NULL;
2450 
2451 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2452 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2453 	if (nfences > min_t(unsigned long,
2454 			    ULONG_MAX / sizeof(*user),
2455 			    SIZE_MAX / sizeof(*fences)))
2456 		return ERR_PTR(-EINVAL);
2457 
2458 	user = u64_to_user_ptr(args->cliprects_ptr);
2459 	if (!access_ok(user, nfences * sizeof(*user)))
2460 		return ERR_PTR(-EFAULT);
2461 
2462 	fences = kvmalloc_array(nfences, sizeof(*fences),
2463 				__GFP_NOWARN | GFP_KERNEL);
2464 	if (!fences)
2465 		return ERR_PTR(-ENOMEM);
2466 
2467 	for (n = 0; n < nfences; n++) {
2468 		struct drm_i915_gem_exec_fence fence;
2469 		struct drm_syncobj *syncobj;
2470 
2471 		if (__copy_from_user(&fence, user++, sizeof(fence))) {
2472 			err = -EFAULT;
2473 			goto err;
2474 		}
2475 
2476 		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2477 			err = -EINVAL;
2478 			goto err;
2479 		}
2480 
2481 		syncobj = drm_syncobj_find(file, fence.handle);
2482 		if (!syncobj) {
2483 			DRM_DEBUG("Invalid syncobj handle provided\n");
2484 			err = -ENOENT;
2485 			goto err;
2486 		}
2487 
2488 		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2489 			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2490 
2491 		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2492 	}
2493 
2494 	return fences;
2495 
2496 err:
2497 	__free_fence_array(fences, n);
2498 	return ERR_PTR(err);
2499 }
2500 
2501 static void
2502 put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2503 		struct drm_syncobj **fences)
2504 {
2505 	if (fences)
2506 		__free_fence_array(fences, args->num_cliprects);
2507 }
2508 
2509 static int
2510 await_fence_array(struct i915_execbuffer *eb,
2511 		  struct drm_syncobj **fences)
2512 {
2513 	const unsigned int nfences = eb->args->num_cliprects;
2514 	unsigned int n;
2515 	int err;
2516 
2517 	for (n = 0; n < nfences; n++) {
2518 		struct drm_syncobj *syncobj;
2519 		struct dma_fence *fence;
2520 		unsigned int flags;
2521 
2522 		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2523 		if (!(flags & I915_EXEC_FENCE_WAIT))
2524 			continue;
2525 
2526 		fence = drm_syncobj_fence_get(syncobj);
2527 		if (!fence)
2528 			return -EINVAL;
2529 
2530 		err = i915_request_await_dma_fence(eb->request, fence);
2531 		dma_fence_put(fence);
2532 		if (err < 0)
2533 			return err;
2534 	}
2535 
2536 	return 0;
2537 }
2538 
2539 static void
2540 signal_fence_array(struct i915_execbuffer *eb,
2541 		   struct drm_syncobj **fences)
2542 {
2543 	const unsigned int nfences = eb->args->num_cliprects;
2544 	struct dma_fence * const fence = &eb->request->fence;
2545 	unsigned int n;
2546 
2547 	for (n = 0; n < nfences; n++) {
2548 		struct drm_syncobj *syncobj;
2549 		unsigned int flags;
2550 
2551 		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2552 		if (!(flags & I915_EXEC_FENCE_SIGNAL))
2553 			continue;
2554 
2555 		drm_syncobj_replace_fence(syncobj, fence);
2556 	}
2557 }
2558 
2559 static int
2560 i915_gem_do_execbuffer(struct drm_device *dev,
2561 		       struct drm_file *file,
2562 		       struct drm_i915_gem_execbuffer2 *args,
2563 		       struct drm_i915_gem_exec_object2 *exec,
2564 		       struct drm_syncobj **fences)
2565 {
2566 	struct drm_i915_private *i915 = to_i915(dev);
2567 	struct i915_execbuffer eb;
2568 	struct dma_fence *in_fence = NULL;
2569 	struct dma_fence *exec_fence = NULL;
2570 	struct sync_file *out_fence = NULL;
2571 	int out_fence_fd = -1;
2572 	int err;
2573 
2574 	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2575 	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2576 		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2577 
2578 	eb.i915 = i915;
2579 	eb.file = file;
2580 	eb.args = args;
2581 	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2582 		args->flags |= __EXEC_HAS_RELOC;
2583 
2584 	eb.exec = exec;
2585 	eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
2586 	eb.vma[0] = NULL;
2587 	eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);
2588 
2589 	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2590 	reloc_cache_init(&eb.reloc_cache, eb.i915);
2591 
2592 	eb.buffer_count = args->buffer_count;
2593 	eb.batch_start_offset = args->batch_start_offset;
2594 	eb.batch_len = args->batch_len;
2595 	eb.trampoline = NULL;
2596 
2597 	eb.batch_flags = 0;
2598 	if (args->flags & I915_EXEC_SECURE) {
2599 		if (INTEL_GEN(i915) >= 11)
2600 			return -ENODEV;
2601 
2602 		/* Return -EPERM to trigger fallback code on old binaries. */
2603 		if (!HAS_SECURE_BATCHES(i915))
2604 			return -EPERM;
2605 
2606 		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2607 			return -EPERM;
2608 
2609 		eb.batch_flags |= I915_DISPATCH_SECURE;
2610 	}
2611 	if (args->flags & I915_EXEC_IS_PINNED)
2612 		eb.batch_flags |= I915_DISPATCH_PINNED;
2613 
2614 	if (args->flags & I915_EXEC_FENCE_IN) {
2615 		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2616 		if (!in_fence)
2617 			return -EINVAL;
2618 	}
2619 
2620 	if (args->flags & I915_EXEC_FENCE_SUBMIT) {
2621 		if (in_fence) {
2622 			err = -EINVAL;
2623 			goto err_in_fence;
2624 		}
2625 
2626 		exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2627 		if (!exec_fence) {
2628 			err = -EINVAL;
2629 			goto err_in_fence;
2630 		}
2631 	}
2632 
2633 	if (args->flags & I915_EXEC_FENCE_OUT) {
2634 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2635 		if (out_fence_fd < 0) {
2636 			err = out_fence_fd;
2637 			goto err_exec_fence;
2638 		}
2639 	}
2640 
2641 	err = eb_create(&eb);
2642 	if (err)
2643 		goto err_out_fence;
2644 
2645 	GEM_BUG_ON(!eb.lut_size);
2646 
2647 	err = eb_select_context(&eb);
2648 	if (unlikely(err))
2649 		goto err_destroy;
2650 
2651 	err = eb_pin_engine(&eb, file, args);
2652 	if (unlikely(err))
2653 		goto err_context;
2654 
2655 	err = i915_mutex_lock_interruptible(dev);
2656 	if (err)
2657 		goto err_engine;
2658 
2659 	err = eb_relocate(&eb);
2660 	if (err) {
2661 		/*
2662 		 * If the user expects the execobject.offset and
2663 		 * reloc.presumed_offset to be an exact match,
2664 		 * as for using NO_RELOC, then we cannot update
2665 		 * the execobject.offset until we have completed
2666 		 * relocation.
2667 		 */
2668 		args->flags &= ~__EXEC_HAS_RELOC;
2669 		goto err_vma;
2670 	}
2671 
2672 	if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2673 		DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2674 		err = -EINVAL;
2675 		goto err_vma;
2676 	}
2677 	if (eb.batch_start_offset > eb.batch->size ||
2678 	    eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2679 		DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2680 		err = -EINVAL;
2681 		goto err_vma;
2682 	}
2683 
2684 	if (eb.batch_len == 0)
2685 		eb.batch_len = eb.batch->size - eb.batch_start_offset;
2686 
2687 	err = eb_parse(&eb);
2688 	if (err)
2689 		goto err_vma;
2690 
2691 	/*
2692 	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2693 	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2694 	 * hsw should have this fixed, but bdw mucks it up again. */
2695 	if (eb.batch_flags & I915_DISPATCH_SECURE) {
2696 		struct i915_vma *vma;
2697 
2698 		/*
2699 		 * So on first glance it looks freaky that we pin the batch here
2700 		 * outside of the reservation loop. But:
2701 		 * - The batch is already pinned into the relevant ppgtt, so we
2702 		 *   already have the backing storage fully allocated.
2703 		 * - No other BO uses the global gtt (well contexts, but meh),
2704 		 *   so we don't really have issues with multiple objects not
2705 		 *   fitting due to fragmentation.
2706 		 * So this is actually safe.
2707 		 */
2708 		vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
2709 		if (IS_ERR(vma)) {
2710 			err = PTR_ERR(vma);
2711 			goto err_vma;
2712 		}
2713 
2714 		eb.batch = vma;
2715 	}
2716 
2717 	/* All GPU relocation batches must be submitted prior to the user rq */
2718 	GEM_BUG_ON(eb.reloc_cache.rq);
2719 
2720 	/* Allocate a request for this batch buffer nice and early. */
2721 	eb.request = i915_request_create(eb.context);
2722 	if (IS_ERR(eb.request)) {
2723 		err = PTR_ERR(eb.request);
2724 		goto err_batch_unpin;
2725 	}
2726 
2727 	if (in_fence) {
2728 		err = i915_request_await_dma_fence(eb.request, in_fence);
2729 		if (err < 0)
2730 			goto err_request;
2731 	}
2732 
2733 	if (exec_fence) {
2734 		err = i915_request_await_execution(eb.request, exec_fence,
2735 						   eb.engine->bond_execute);
2736 		if (err < 0)
2737 			goto err_request;
2738 	}
2739 
2740 	if (fences) {
2741 		err = await_fence_array(&eb, fences);
2742 		if (err)
2743 			goto err_request;
2744 	}
2745 
2746 	if (out_fence_fd != -1) {
2747 		out_fence = sync_file_create(&eb.request->fence);
2748 		if (!out_fence) {
2749 			err = -ENOMEM;
2750 			goto err_request;
2751 		}
2752 	}
2753 
2754 	/*
2755 	 * Whilst this request exists, batch_obj will be on the
2756 	 * active_list, and so will hold the active reference. Only when this
2757 	 * request is retired will the the batch_obj be moved onto the
2758 	 * inactive_list and lose its active reference. Hence we do not need
2759 	 * to explicitly hold another reference here.
2760 	 */
2761 	eb.request->batch = eb.batch;
2762 	if (eb.batch->private)
2763 		intel_engine_pool_mark_active(eb.batch->private, eb.request);
2764 
2765 	trace_i915_request_queue(eb.request, eb.batch_flags);
2766 	err = eb_submit(&eb);
2767 err_request:
2768 	add_to_client(eb.request, file);
2769 	i915_request_get(eb.request);
2770 	i915_request_add(eb.request);
2771 
2772 	if (fences)
2773 		signal_fence_array(&eb, fences);
2774 
2775 	if (out_fence) {
2776 		if (err == 0) {
2777 			fd_install(out_fence_fd, out_fence->file);
2778 			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2779 			args->rsvd2 |= (u64)out_fence_fd << 32;
2780 			out_fence_fd = -1;
2781 		} else {
2782 			fput(out_fence->file);
2783 		}
2784 	}
2785 	i915_request_put(eb.request);
2786 
2787 err_batch_unpin:
2788 	if (eb.batch_flags & I915_DISPATCH_SECURE)
2789 		i915_vma_unpin(eb.batch);
2790 	if (eb.batch->private)
2791 		intel_engine_pool_put(eb.batch->private);
2792 err_vma:
2793 	if (eb.exec)
2794 		eb_release_vmas(&eb);
2795 	if (eb.trampoline)
2796 		i915_vma_unpin(eb.trampoline);
2797 	mutex_unlock(&dev->struct_mutex);
2798 err_engine:
2799 	eb_unpin_engine(&eb);
2800 err_context:
2801 	i915_gem_context_put(eb.gem_context);
2802 err_destroy:
2803 	eb_destroy(&eb);
2804 err_out_fence:
2805 	if (out_fence_fd != -1)
2806 		put_unused_fd(out_fence_fd);
2807 err_exec_fence:
2808 	dma_fence_put(exec_fence);
2809 err_in_fence:
2810 	dma_fence_put(in_fence);
2811 	return err;
2812 }
2813 
2814 static size_t eb_element_size(void)
2815 {
2816 	return (sizeof(struct drm_i915_gem_exec_object2) +
2817 		sizeof(struct i915_vma *) +
2818 		sizeof(unsigned int));
2819 }
2820 
2821 static bool check_buffer_count(size_t count)
2822 {
2823 	const size_t sz = eb_element_size();
2824 
2825 	/*
2826 	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2827 	 * array size (see eb_create()). Otherwise, we can accept an array as
2828 	 * large as can be addressed (though use large arrays at your peril)!
2829 	 */
2830 
2831 	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
2832 }
2833 
2834 /*
2835  * Legacy execbuffer just creates an exec2 list from the original exec object
2836  * list array and passes it to the real function.
2837  */
2838 int
2839 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2840 			  struct drm_file *file)
2841 {
2842 	struct drm_i915_gem_execbuffer *args = data;
2843 	struct drm_i915_gem_execbuffer2 exec2;
2844 	struct drm_i915_gem_exec_object *exec_list = NULL;
2845 	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2846 	const size_t count = args->buffer_count;
2847 	unsigned int i;
2848 	int err;
2849 
2850 	if (!check_buffer_count(count)) {
2851 		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2852 		return -EINVAL;
2853 	}
2854 
2855 	exec2.buffers_ptr = args->buffers_ptr;
2856 	exec2.buffer_count = args->buffer_count;
2857 	exec2.batch_start_offset = args->batch_start_offset;
2858 	exec2.batch_len = args->batch_len;
2859 	exec2.DR1 = args->DR1;
2860 	exec2.DR4 = args->DR4;
2861 	exec2.num_cliprects = args->num_cliprects;
2862 	exec2.cliprects_ptr = args->cliprects_ptr;
2863 	exec2.flags = I915_EXEC_RENDER;
2864 	i915_execbuffer2_set_context_id(exec2, 0);
2865 
2866 	err = i915_gem_check_execbuffer(&exec2);
2867 	if (err)
2868 		return err;
2869 
2870 	/* Copy in the exec list from userland */
2871 	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2872 				   __GFP_NOWARN | GFP_KERNEL);
2873 	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2874 				    __GFP_NOWARN | GFP_KERNEL);
2875 	if (exec_list == NULL || exec2_list == NULL) {
2876 		DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2877 			  args->buffer_count);
2878 		kvfree(exec_list);
2879 		kvfree(exec2_list);
2880 		return -ENOMEM;
2881 	}
2882 	err = copy_from_user(exec_list,
2883 			     u64_to_user_ptr(args->buffers_ptr),
2884 			     sizeof(*exec_list) * count);
2885 	if (err) {
2886 		DRM_DEBUG("copy %d exec entries failed %d\n",
2887 			  args->buffer_count, err);
2888 		kvfree(exec_list);
2889 		kvfree(exec2_list);
2890 		return -EFAULT;
2891 	}
2892 
2893 	for (i = 0; i < args->buffer_count; i++) {
2894 		exec2_list[i].handle = exec_list[i].handle;
2895 		exec2_list[i].relocation_count = exec_list[i].relocation_count;
2896 		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2897 		exec2_list[i].alignment = exec_list[i].alignment;
2898 		exec2_list[i].offset = exec_list[i].offset;
2899 		if (INTEL_GEN(to_i915(dev)) < 4)
2900 			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2901 		else
2902 			exec2_list[i].flags = 0;
2903 	}
2904 
2905 	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2906 	if (exec2.flags & __EXEC_HAS_RELOC) {
2907 		struct drm_i915_gem_exec_object __user *user_exec_list =
2908 			u64_to_user_ptr(args->buffers_ptr);
2909 
2910 		/* Copy the new buffer offsets back to the user's exec list. */
2911 		for (i = 0; i < args->buffer_count; i++) {
2912 			if (!(exec2_list[i].offset & UPDATE))
2913 				continue;
2914 
2915 			exec2_list[i].offset =
2916 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2917 			exec2_list[i].offset &= PIN_OFFSET_MASK;
2918 			if (__copy_to_user(&user_exec_list[i].offset,
2919 					   &exec2_list[i].offset,
2920 					   sizeof(user_exec_list[i].offset)))
2921 				break;
2922 		}
2923 	}
2924 
2925 	kvfree(exec_list);
2926 	kvfree(exec2_list);
2927 	return err;
2928 }
2929 
2930 int
2931 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2932 			   struct drm_file *file)
2933 {
2934 	struct drm_i915_gem_execbuffer2 *args = data;
2935 	struct drm_i915_gem_exec_object2 *exec2_list;
2936 	struct drm_syncobj **fences = NULL;
2937 	const size_t count = args->buffer_count;
2938 	int err;
2939 
2940 	if (!check_buffer_count(count)) {
2941 		DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2942 		return -EINVAL;
2943 	}
2944 
2945 	err = i915_gem_check_execbuffer(args);
2946 	if (err)
2947 		return err;
2948 
2949 	/* Allocate an extra slot for use by the command parser */
2950 	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2951 				    __GFP_NOWARN | GFP_KERNEL);
2952 	if (exec2_list == NULL) {
2953 		DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
2954 			  count);
2955 		return -ENOMEM;
2956 	}
2957 	if (copy_from_user(exec2_list,
2958 			   u64_to_user_ptr(args->buffers_ptr),
2959 			   sizeof(*exec2_list) * count)) {
2960 		DRM_DEBUG("copy %zd exec entries failed\n", count);
2961 		kvfree(exec2_list);
2962 		return -EFAULT;
2963 	}
2964 
2965 	if (args->flags & I915_EXEC_FENCE_ARRAY) {
2966 		fences = get_fence_array(args, file);
2967 		if (IS_ERR(fences)) {
2968 			kvfree(exec2_list);
2969 			return PTR_ERR(fences);
2970 		}
2971 	}
2972 
2973 	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2974 
2975 	/*
2976 	 * Now that we have begun execution of the batchbuffer, we ignore
2977 	 * any new error after this point. Also given that we have already
2978 	 * updated the associated relocations, we try to write out the current
2979 	 * object locations irrespective of any error.
2980 	 */
2981 	if (args->flags & __EXEC_HAS_RELOC) {
2982 		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2983 			u64_to_user_ptr(args->buffers_ptr);
2984 		unsigned int i;
2985 
2986 		/* Copy the new buffer offsets back to the user's exec list. */
2987 		/*
2988 		 * Note: count * sizeof(*user_exec_list) does not overflow,
2989 		 * because we checked 'count' in check_buffer_count().
2990 		 *
2991 		 * And this range already got effectively checked earlier
2992 		 * when we did the "copy_from_user()" above.
2993 		 */
2994 		if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2995 			goto end;
2996 
2997 		for (i = 0; i < args->buffer_count; i++) {
2998 			if (!(exec2_list[i].offset & UPDATE))
2999 				continue;
3000 
3001 			exec2_list[i].offset =
3002 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3003 			unsafe_put_user(exec2_list[i].offset,
3004 					&user_exec_list[i].offset,
3005 					end_user);
3006 		}
3007 end_user:
3008 		user_access_end();
3009 end:;
3010 	}
3011 
3012 	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3013 	put_fence_array(args, fences);
3014 	kvfree(exec2_list);
3015 	return err;
3016 }
3017