1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6 
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11 
12 #include <drm/drm_syncobj.h>
13 
14 #include "display/intel_frontbuffer.h"
15 
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gt.h"
19 #include "gt/intel_gt_buffer_pool.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_ring.h"
22 
23 #include "i915_drv.h"
24 #include "i915_gem_clflush.h"
25 #include "i915_gem_context.h"
26 #include "i915_gem_ioctls.h"
27 #include "i915_sw_fence_work.h"
28 #include "i915_trace.h"
29 
30 struct eb_vma {
31 	struct i915_vma *vma;
32 	unsigned int flags;
33 
34 	/** This vma's place in the execbuf reservation list */
35 	struct drm_i915_gem_exec_object2 *exec;
36 	struct list_head bind_link;
37 	struct list_head reloc_link;
38 
39 	struct hlist_node node;
40 	u32 handle;
41 };
42 
43 struct eb_vma_array {
44 	struct kref kref;
45 	struct eb_vma vma[];
46 };
47 
48 enum {
49 	FORCE_CPU_RELOC = 1,
50 	FORCE_GTT_RELOC,
51 	FORCE_GPU_RELOC,
52 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
53 };
54 
55 #define __EXEC_OBJECT_HAS_PIN		BIT(31)
56 #define __EXEC_OBJECT_HAS_FENCE		BIT(30)
57 #define __EXEC_OBJECT_NEEDS_MAP		BIT(29)
58 #define __EXEC_OBJECT_NEEDS_BIAS	BIT(28)
59 #define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 28) /* all of the above */
60 
61 #define __EXEC_HAS_RELOC	BIT(31)
62 #define __EXEC_INTERNAL_FLAGS	(~0u << 31)
63 #define UPDATE			PIN_OFFSET_FIXED
64 
65 #define BATCH_OFFSET_BIAS (256*1024)
66 
67 #define __I915_EXEC_ILLEGAL_FLAGS \
68 	(__I915_EXEC_UNKNOWN_FLAGS | \
69 	 I915_EXEC_CONSTANTS_MASK  | \
70 	 I915_EXEC_RESOURCE_STREAMER)
71 
72 /* Catch emission of unexpected errors for CI! */
73 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
74 #undef EINVAL
75 #define EINVAL ({ \
76 	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
77 	22; \
78 })
79 #endif
80 
81 /**
82  * DOC: User command execution
83  *
84  * Userspace submits commands to be executed on the GPU as an instruction
85  * stream within a GEM object we call a batchbuffer. This instructions may
86  * refer to other GEM objects containing auxiliary state such as kernels,
87  * samplers, render targets and even secondary batchbuffers. Userspace does
88  * not know where in the GPU memory these objects reside and so before the
89  * batchbuffer is passed to the GPU for execution, those addresses in the
90  * batchbuffer and auxiliary objects are updated. This is known as relocation,
91  * or patching. To try and avoid having to relocate each object on the next
92  * execution, userspace is told the location of those objects in this pass,
93  * but this remains just a hint as the kernel may choose a new location for
94  * any object in the future.
95  *
96  * At the level of talking to the hardware, submitting a batchbuffer for the
97  * GPU to execute is to add content to a buffer from which the HW
98  * command streamer is reading.
99  *
100  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
101  *    Execlists, this command is not placed on the same buffer as the
102  *    remaining items.
103  *
104  * 2. Add a command to invalidate caches to the buffer.
105  *
106  * 3. Add a batchbuffer start command to the buffer; the start command is
107  *    essentially a token together with the GPU address of the batchbuffer
108  *    to be executed.
109  *
110  * 4. Add a pipeline flush to the buffer.
111  *
112  * 5. Add a memory write command to the buffer to record when the GPU
113  *    is done executing the batchbuffer. The memory write writes the
114  *    global sequence number of the request, ``i915_request::global_seqno``;
115  *    the i915 driver uses the current value in the register to determine
116  *    if the GPU has completed the batchbuffer.
117  *
118  * 6. Add a user interrupt command to the buffer. This command instructs
119  *    the GPU to issue an interrupt when the command, pipeline flush and
120  *    memory write are completed.
121  *
122  * 7. Inform the hardware of the additional commands added to the buffer
123  *    (by updating the tail pointer).
124  *
125  * Processing an execbuf ioctl is conceptually split up into a few phases.
126  *
127  * 1. Validation - Ensure all the pointers, handles and flags are valid.
128  * 2. Reservation - Assign GPU address space for every object
129  * 3. Relocation - Update any addresses to point to the final locations
130  * 4. Serialisation - Order the request with respect to its dependencies
131  * 5. Construction - Construct a request to execute the batchbuffer
132  * 6. Submission (at some point in the future execution)
133  *
134  * Reserving resources for the execbuf is the most complicated phase. We
135  * neither want to have to migrate the object in the address space, nor do
136  * we want to have to update any relocations pointing to this object. Ideally,
137  * we want to leave the object where it is and for all the existing relocations
138  * to match. If the object is given a new address, or if userspace thinks the
139  * object is elsewhere, we have to parse all the relocation entries and update
140  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
141  * all the target addresses in all of its objects match the value in the
142  * relocation entries and that they all match the presumed offsets given by the
143  * list of execbuffer objects. Using this knowledge, we know that if we haven't
144  * moved any buffers, all the relocation entries are valid and we can skip
145  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
146  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
147  *
148  *      The addresses written in the objects must match the corresponding
149  *      reloc.presumed_offset which in turn must match the corresponding
150  *      execobject.offset.
151  *
152  *      Any render targets written to in the batch must be flagged with
153  *      EXEC_OBJECT_WRITE.
154  *
155  *      To avoid stalling, execobject.offset should match the current
156  *      address of that object within the active context.
157  *
158  * The reservation is done is multiple phases. First we try and keep any
159  * object already bound in its current location - so as long as meets the
160  * constraints imposed by the new execbuffer. Any object left unbound after the
161  * first pass is then fitted into any available idle space. If an object does
162  * not fit, all objects are removed from the reservation and the process rerun
163  * after sorting the objects into a priority order (more difficult to fit
164  * objects are tried first). Failing that, the entire VM is cleared and we try
165  * to fit the execbuf once last time before concluding that it simply will not
166  * fit.
167  *
168  * A small complication to all of this is that we allow userspace not only to
169  * specify an alignment and a size for the object in the address space, but
170  * we also allow userspace to specify the exact offset. This objects are
171  * simpler to place (the location is known a priori) all we have to do is make
172  * sure the space is available.
173  *
174  * Once all the objects are in place, patching up the buried pointers to point
175  * to the final locations is a fairly simple job of walking over the relocation
176  * entry arrays, looking up the right address and rewriting the value into
177  * the object. Simple! ... The relocation entries are stored in user memory
178  * and so to access them we have to copy them into a local buffer. That copy
179  * has to avoid taking any pagefaults as they may lead back to a GEM object
180  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
181  * the relocation into multiple passes. First we try to do everything within an
182  * atomic context (avoid the pagefaults) which requires that we never wait. If
183  * we detect that we may wait, or if we need to fault, then we have to fallback
184  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
185  * bells yet?) Dropping the mutex means that we lose all the state we have
186  * built up so far for the execbuf and we must reset any global data. However,
187  * we do leave the objects pinned in their final locations - which is a
188  * potential issue for concurrent execbufs. Once we have left the mutex, we can
189  * allocate and copy all the relocation entries into a large array at our
190  * leisure, reacquire the mutex, reclaim all the objects and other state and
191  * then proceed to update any incorrect addresses with the objects.
192  *
193  * As we process the relocation entries, we maintain a record of whether the
194  * object is being written to. Using NORELOC, we expect userspace to provide
195  * this information instead. We also check whether we can skip the relocation
196  * by comparing the expected value inside the relocation entry with the target's
197  * final address. If they differ, we have to map the current object and rewrite
198  * the 4 or 8 byte pointer within.
199  *
200  * Serialising an execbuf is quite simple according to the rules of the GEM
201  * ABI. Execution within each context is ordered by the order of submission.
202  * Writes to any GEM object are in order of submission and are exclusive. Reads
203  * from a GEM object are unordered with respect to other reads, but ordered by
204  * writes. A write submitted after a read cannot occur before the read, and
205  * similarly any read submitted after a write cannot occur before the write.
206  * Writes are ordered between engines such that only one write occurs at any
207  * time (completing any reads beforehand) - using semaphores where available
208  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
209  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
210  * reads before starting, and any read (either using set-domain or pread) must
211  * flush all GPU writes before starting. (Note we only employ a barrier before,
212  * we currently rely on userspace not concurrently starting a new execution
213  * whilst reading or writing to an object. This may be an advantage or not
214  * depending on how much you trust userspace not to shoot themselves in the
215  * foot.) Serialisation may just result in the request being inserted into
216  * a DAG awaiting its turn, but most simple is to wait on the CPU until
217  * all dependencies are resolved.
218  *
219  * After all of that, is just a matter of closing the request and handing it to
220  * the hardware (well, leaving it in a queue to be executed). However, we also
221  * offer the ability for batchbuffers to be run with elevated privileges so
222  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
223  * Before any batch is given extra privileges we first must check that it
224  * contains no nefarious instructions, we check that each instruction is from
225  * our whitelist and all registers are also from an allowed list. We first
226  * copy the user's batchbuffer to a shadow (so that the user doesn't have
227  * access to it, either by the CPU or GPU as we scan it) and then parse each
228  * instruction. If everything is ok, we set a flag telling the hardware to run
229  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
230  */
231 
232 struct i915_execbuffer {
233 	struct drm_i915_private *i915; /** i915 backpointer */
234 	struct drm_file *file; /** per-file lookup tables and limits */
235 	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
236 	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
237 	struct eb_vma *vma;
238 
239 	struct intel_engine_cs *engine; /** engine to queue the request to */
240 	struct intel_context *context; /* logical state for the request */
241 	struct i915_gem_context *gem_context; /** caller's context */
242 
243 	struct i915_request *request; /** our request to build */
244 	struct eb_vma *batch; /** identity of the batch obj/vma */
245 	struct i915_vma *trampoline; /** trampoline used for chaining */
246 
247 	/** actual size of execobj[] as we may extend it for the cmdparser */
248 	unsigned int buffer_count;
249 
250 	/** list of vma not yet bound during reservation phase */
251 	struct list_head unbound;
252 
253 	/** list of vma that have execobj.relocation_count */
254 	struct list_head relocs;
255 
256 	/**
257 	 * Track the most recently used object for relocations, as we
258 	 * frequently have to perform multiple relocations within the same
259 	 * obj/page
260 	 */
261 	struct reloc_cache {
262 		struct drm_mm_node node; /** temporary GTT binding */
263 		unsigned long vaddr; /** Current kmap address */
264 		unsigned long page; /** Currently mapped page index */
265 		unsigned int gen; /** Cached value of INTEL_GEN */
266 		bool use_64bit_reloc : 1;
267 		bool has_llc : 1;
268 		bool has_fence : 1;
269 		bool needs_unfenced : 1;
270 
271 		struct i915_request *rq;
272 		u32 *rq_cmd;
273 		unsigned int rq_size;
274 	} reloc_cache;
275 
276 	u64 invalid_flags; /** Set of execobj.flags that are invalid */
277 	u32 context_flags; /** Set of execobj.flags to insert from the ctx */
278 
279 	u32 batch_start_offset; /** Location within object of batch */
280 	u32 batch_len; /** Length of batch within object */
281 	u32 batch_flags; /** Flags composed for emit_bb_start() */
282 
283 	/**
284 	 * Indicate either the size of the hastable used to resolve
285 	 * relocation handles, or if negative that we are using a direct
286 	 * index into the execobj[].
287 	 */
288 	int lut_size;
289 	struct hlist_head *buckets; /** ht for relocation handles */
290 	struct eb_vma_array *array;
291 };
292 
293 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
294 {
295 	return intel_engine_requires_cmd_parser(eb->engine) ||
296 		(intel_engine_using_cmd_parser(eb->engine) &&
297 		 eb->args->batch_len);
298 }
299 
300 static struct eb_vma_array *eb_vma_array_create(unsigned int count)
301 {
302 	struct eb_vma_array *arr;
303 
304 	arr = kvmalloc(struct_size(arr, vma, count), GFP_KERNEL | __GFP_NOWARN);
305 	if (!arr)
306 		return NULL;
307 
308 	kref_init(&arr->kref);
309 	arr->vma[0].vma = NULL;
310 
311 	return arr;
312 }
313 
314 static inline void eb_unreserve_vma(struct eb_vma *ev)
315 {
316 	struct i915_vma *vma = ev->vma;
317 
318 	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
319 		__i915_vma_unpin_fence(vma);
320 
321 	if (ev->flags & __EXEC_OBJECT_HAS_PIN)
322 		__i915_vma_unpin(vma);
323 
324 	ev->flags &= ~(__EXEC_OBJECT_HAS_PIN |
325 		       __EXEC_OBJECT_HAS_FENCE);
326 }
327 
328 static void eb_vma_array_destroy(struct kref *kref)
329 {
330 	struct eb_vma_array *arr = container_of(kref, typeof(*arr), kref);
331 	struct eb_vma *ev = arr->vma;
332 
333 	while (ev->vma) {
334 		eb_unreserve_vma(ev);
335 		i915_vma_put(ev->vma);
336 		ev++;
337 	}
338 
339 	kvfree(arr);
340 }
341 
342 static void eb_vma_array_put(struct eb_vma_array *arr)
343 {
344 	kref_put(&arr->kref, eb_vma_array_destroy);
345 }
346 
347 static int eb_create(struct i915_execbuffer *eb)
348 {
349 	/* Allocate an extra slot for use by the command parser + sentinel */
350 	eb->array = eb_vma_array_create(eb->buffer_count + 2);
351 	if (!eb->array)
352 		return -ENOMEM;
353 
354 	eb->vma = eb->array->vma;
355 
356 	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
357 		unsigned int size = 1 + ilog2(eb->buffer_count);
358 
359 		/*
360 		 * Without a 1:1 association between relocation handles and
361 		 * the execobject[] index, we instead create a hashtable.
362 		 * We size it dynamically based on available memory, starting
363 		 * first with 1:1 assocative hash and scaling back until
364 		 * the allocation succeeds.
365 		 *
366 		 * Later on we use a positive lut_size to indicate we are
367 		 * using this hashtable, and a negative value to indicate a
368 		 * direct lookup.
369 		 */
370 		do {
371 			gfp_t flags;
372 
373 			/* While we can still reduce the allocation size, don't
374 			 * raise a warning and allow the allocation to fail.
375 			 * On the last pass though, we want to try as hard
376 			 * as possible to perform the allocation and warn
377 			 * if it fails.
378 			 */
379 			flags = GFP_KERNEL;
380 			if (size > 1)
381 				flags |= __GFP_NORETRY | __GFP_NOWARN;
382 
383 			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
384 					      flags);
385 			if (eb->buckets)
386 				break;
387 		} while (--size);
388 
389 		if (unlikely(!size)) {
390 			eb_vma_array_put(eb->array);
391 			return -ENOMEM;
392 		}
393 
394 		eb->lut_size = size;
395 	} else {
396 		eb->lut_size = -eb->buffer_count;
397 	}
398 
399 	return 0;
400 }
401 
402 static bool
403 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
404 		 const struct i915_vma *vma,
405 		 unsigned int flags)
406 {
407 	if (vma->node.size < entry->pad_to_size)
408 		return true;
409 
410 	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
411 		return true;
412 
413 	if (flags & EXEC_OBJECT_PINNED &&
414 	    vma->node.start != entry->offset)
415 		return true;
416 
417 	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
418 	    vma->node.start < BATCH_OFFSET_BIAS)
419 		return true;
420 
421 	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
422 	    (vma->node.start + vma->node.size - 1) >> 32)
423 		return true;
424 
425 	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
426 	    !i915_vma_is_map_and_fenceable(vma))
427 		return true;
428 
429 	return false;
430 }
431 
432 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
433 			unsigned int exec_flags)
434 {
435 	u64 pin_flags = 0;
436 
437 	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
438 		pin_flags |= PIN_GLOBAL;
439 
440 	/*
441 	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
442 	 * limit address to the first 4GBs for unflagged objects.
443 	 */
444 	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
445 		pin_flags |= PIN_ZONE_4G;
446 
447 	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
448 		pin_flags |= PIN_MAPPABLE;
449 
450 	if (exec_flags & EXEC_OBJECT_PINNED)
451 		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
452 	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
453 		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
454 
455 	return pin_flags;
456 }
457 
458 static inline bool
459 eb_pin_vma(struct i915_execbuffer *eb,
460 	   const struct drm_i915_gem_exec_object2 *entry,
461 	   struct eb_vma *ev)
462 {
463 	struct i915_vma *vma = ev->vma;
464 	u64 pin_flags;
465 
466 	if (vma->node.size)
467 		pin_flags = vma->node.start;
468 	else
469 		pin_flags = entry->offset & PIN_OFFSET_MASK;
470 
471 	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
472 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
473 		pin_flags |= PIN_GLOBAL;
474 
475 	/* Attempt to reuse the current location if available */
476 	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags))) {
477 		if (entry->flags & EXEC_OBJECT_PINNED)
478 			return false;
479 
480 		/* Failing that pick any _free_ space if suitable */
481 		if (unlikely(i915_vma_pin(vma,
482 					  entry->pad_to_size,
483 					  entry->alignment,
484 					  eb_pin_flags(entry, ev->flags) |
485 					  PIN_USER | PIN_NOEVICT)))
486 			return false;
487 	}
488 
489 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
490 		if (unlikely(i915_vma_pin_fence(vma))) {
491 			i915_vma_unpin(vma);
492 			return false;
493 		}
494 
495 		if (vma->fence)
496 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
497 	}
498 
499 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
500 	return !eb_vma_misplaced(entry, vma, ev->flags);
501 }
502 
503 static int
504 eb_validate_vma(struct i915_execbuffer *eb,
505 		struct drm_i915_gem_exec_object2 *entry,
506 		struct i915_vma *vma)
507 {
508 	if (unlikely(entry->flags & eb->invalid_flags))
509 		return -EINVAL;
510 
511 	if (unlikely(entry->alignment &&
512 		     !is_power_of_2_u64(entry->alignment)))
513 		return -EINVAL;
514 
515 	/*
516 	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
517 	 * any non-page-aligned or non-canonical addresses.
518 	 */
519 	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
520 		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
521 		return -EINVAL;
522 
523 	/* pad_to_size was once a reserved field, so sanitize it */
524 	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
525 		if (unlikely(offset_in_page(entry->pad_to_size)))
526 			return -EINVAL;
527 	} else {
528 		entry->pad_to_size = 0;
529 	}
530 	/*
531 	 * From drm_mm perspective address space is continuous,
532 	 * so from this point we're always using non-canonical
533 	 * form internally.
534 	 */
535 	entry->offset = gen8_noncanonical_addr(entry->offset);
536 
537 	if (!eb->reloc_cache.has_fence) {
538 		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
539 	} else {
540 		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
541 		     eb->reloc_cache.needs_unfenced) &&
542 		    i915_gem_object_is_tiled(vma->obj))
543 			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
544 	}
545 
546 	if (!(entry->flags & EXEC_OBJECT_PINNED))
547 		entry->flags |= eb->context_flags;
548 
549 	return 0;
550 }
551 
552 static void
553 eb_add_vma(struct i915_execbuffer *eb,
554 	   unsigned int i, unsigned batch_idx,
555 	   struct i915_vma *vma)
556 {
557 	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
558 	struct eb_vma *ev = &eb->vma[i];
559 
560 	GEM_BUG_ON(i915_vma_is_closed(vma));
561 
562 	ev->vma = vma;
563 	ev->exec = entry;
564 	ev->flags = entry->flags;
565 
566 	if (eb->lut_size > 0) {
567 		ev->handle = entry->handle;
568 		hlist_add_head(&ev->node,
569 			       &eb->buckets[hash_32(entry->handle,
570 						    eb->lut_size)]);
571 	}
572 
573 	if (entry->relocation_count)
574 		list_add_tail(&ev->reloc_link, &eb->relocs);
575 
576 	/*
577 	 * SNA is doing fancy tricks with compressing batch buffers, which leads
578 	 * to negative relocation deltas. Usually that works out ok since the
579 	 * relocate address is still positive, except when the batch is placed
580 	 * very low in the GTT. Ensure this doesn't happen.
581 	 *
582 	 * Note that actual hangs have only been observed on gen7, but for
583 	 * paranoia do it everywhere.
584 	 */
585 	if (i == batch_idx) {
586 		if (entry->relocation_count &&
587 		    !(ev->flags & EXEC_OBJECT_PINNED))
588 			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
589 		if (eb->reloc_cache.has_fence)
590 			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
591 
592 		eb->batch = ev;
593 	}
594 
595 	if (eb_pin_vma(eb, entry, ev)) {
596 		if (entry->offset != vma->node.start) {
597 			entry->offset = vma->node.start | UPDATE;
598 			eb->args->flags |= __EXEC_HAS_RELOC;
599 		}
600 	} else {
601 		eb_unreserve_vma(ev);
602 		list_add_tail(&ev->bind_link, &eb->unbound);
603 	}
604 }
605 
606 static inline int use_cpu_reloc(const struct reloc_cache *cache,
607 				const struct drm_i915_gem_object *obj)
608 {
609 	if (!i915_gem_object_has_struct_page(obj))
610 		return false;
611 
612 	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
613 		return true;
614 
615 	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
616 		return false;
617 
618 	return (cache->has_llc ||
619 		obj->cache_dirty ||
620 		obj->cache_level != I915_CACHE_NONE);
621 }
622 
623 static int eb_reserve_vma(const struct i915_execbuffer *eb,
624 			  struct eb_vma *ev,
625 			  u64 pin_flags)
626 {
627 	struct drm_i915_gem_exec_object2 *entry = ev->exec;
628 	struct i915_vma *vma = ev->vma;
629 	int err;
630 
631 	if (drm_mm_node_allocated(&vma->node) &&
632 	    eb_vma_misplaced(entry, vma, ev->flags)) {
633 		err = i915_vma_unbind(vma);
634 		if (err)
635 			return err;
636 	}
637 
638 	err = i915_vma_pin(vma,
639 			   entry->pad_to_size, entry->alignment,
640 			   eb_pin_flags(entry, ev->flags) | pin_flags);
641 	if (err)
642 		return err;
643 
644 	if (entry->offset != vma->node.start) {
645 		entry->offset = vma->node.start | UPDATE;
646 		eb->args->flags |= __EXEC_HAS_RELOC;
647 	}
648 
649 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
650 		err = i915_vma_pin_fence(vma);
651 		if (unlikely(err)) {
652 			i915_vma_unpin(vma);
653 			return err;
654 		}
655 
656 		if (vma->fence)
657 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
658 	}
659 
660 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
661 	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
662 
663 	return 0;
664 }
665 
666 static int eb_reserve(struct i915_execbuffer *eb)
667 {
668 	const unsigned int count = eb->buffer_count;
669 	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
670 	struct list_head last;
671 	struct eb_vma *ev;
672 	unsigned int i, pass;
673 	int err = 0;
674 
675 	/*
676 	 * Attempt to pin all of the buffers into the GTT.
677 	 * This is done in 3 phases:
678 	 *
679 	 * 1a. Unbind all objects that do not match the GTT constraints for
680 	 *     the execbuffer (fenceable, mappable, alignment etc).
681 	 * 1b. Increment pin count for already bound objects.
682 	 * 2.  Bind new objects.
683 	 * 3.  Decrement pin count.
684 	 *
685 	 * This avoid unnecessary unbinding of later objects in order to make
686 	 * room for the earlier objects *unless* we need to defragment.
687 	 */
688 
689 	if (mutex_lock_interruptible(&eb->i915->drm.struct_mutex))
690 		return -EINTR;
691 
692 	pass = 0;
693 	do {
694 		list_for_each_entry(ev, &eb->unbound, bind_link) {
695 			err = eb_reserve_vma(eb, ev, pin_flags);
696 			if (err)
697 				break;
698 		}
699 		if (!(err == -ENOSPC || err == -EAGAIN))
700 			break;
701 
702 		/* Resort *all* the objects into priority order */
703 		INIT_LIST_HEAD(&eb->unbound);
704 		INIT_LIST_HEAD(&last);
705 		for (i = 0; i < count; i++) {
706 			unsigned int flags;
707 
708 			ev = &eb->vma[i];
709 			flags = ev->flags;
710 			if (flags & EXEC_OBJECT_PINNED &&
711 			    flags & __EXEC_OBJECT_HAS_PIN)
712 				continue;
713 
714 			eb_unreserve_vma(ev);
715 
716 			if (flags & EXEC_OBJECT_PINNED)
717 				/* Pinned must have their slot */
718 				list_add(&ev->bind_link, &eb->unbound);
719 			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
720 				/* Map require the lowest 256MiB (aperture) */
721 				list_add_tail(&ev->bind_link, &eb->unbound);
722 			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
723 				/* Prioritise 4GiB region for restricted bo */
724 				list_add(&ev->bind_link, &last);
725 			else
726 				list_add_tail(&ev->bind_link, &last);
727 		}
728 		list_splice_tail(&last, &eb->unbound);
729 
730 		if (err == -EAGAIN) {
731 			mutex_unlock(&eb->i915->drm.struct_mutex);
732 			flush_workqueue(eb->i915->mm.userptr_wq);
733 			mutex_lock(&eb->i915->drm.struct_mutex);
734 			continue;
735 		}
736 
737 		switch (pass++) {
738 		case 0:
739 			break;
740 
741 		case 1:
742 			/* Too fragmented, unbind everything and retry */
743 			mutex_lock(&eb->context->vm->mutex);
744 			err = i915_gem_evict_vm(eb->context->vm);
745 			mutex_unlock(&eb->context->vm->mutex);
746 			if (err)
747 				goto unlock;
748 			break;
749 
750 		default:
751 			err = -ENOSPC;
752 			goto unlock;
753 		}
754 
755 		pin_flags = PIN_USER;
756 	} while (1);
757 
758 unlock:
759 	mutex_unlock(&eb->i915->drm.struct_mutex);
760 	return err;
761 }
762 
763 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
764 {
765 	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
766 		return 0;
767 	else
768 		return eb->buffer_count - 1;
769 }
770 
771 static int eb_select_context(struct i915_execbuffer *eb)
772 {
773 	struct i915_gem_context *ctx;
774 
775 	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
776 	if (unlikely(!ctx))
777 		return -ENOENT;
778 
779 	eb->gem_context = ctx;
780 	if (rcu_access_pointer(ctx->vm))
781 		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
782 
783 	eb->context_flags = 0;
784 	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
785 		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
786 
787 	return 0;
788 }
789 
790 static int __eb_add_lut(struct i915_execbuffer *eb,
791 			u32 handle, struct i915_vma *vma)
792 {
793 	struct i915_gem_context *ctx = eb->gem_context;
794 	struct i915_lut_handle *lut;
795 	int err;
796 
797 	lut = i915_lut_handle_alloc();
798 	if (unlikely(!lut))
799 		return -ENOMEM;
800 
801 	i915_vma_get(vma);
802 	if (!atomic_fetch_inc(&vma->open_count))
803 		i915_vma_reopen(vma);
804 	lut->handle = handle;
805 	lut->ctx = ctx;
806 
807 	/* Check that the context hasn't been closed in the meantime */
808 	err = -EINTR;
809 	if (!mutex_lock_interruptible(&ctx->mutex)) {
810 		err = -ENOENT;
811 		if (likely(!i915_gem_context_is_closed(ctx)))
812 			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
813 		if (err == 0) { /* And nor has this handle */
814 			struct drm_i915_gem_object *obj = vma->obj;
815 
816 			i915_gem_object_lock(obj);
817 			if (idr_find(&eb->file->object_idr, handle) == obj) {
818 				list_add(&lut->obj_link, &obj->lut_list);
819 			} else {
820 				radix_tree_delete(&ctx->handles_vma, handle);
821 				err = -ENOENT;
822 			}
823 			i915_gem_object_unlock(obj);
824 		}
825 		mutex_unlock(&ctx->mutex);
826 	}
827 	if (unlikely(err))
828 		goto err;
829 
830 	return 0;
831 
832 err:
833 	i915_vma_close(vma);
834 	i915_vma_put(vma);
835 	i915_lut_handle_free(lut);
836 	return err;
837 }
838 
839 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
840 {
841 	do {
842 		struct drm_i915_gem_object *obj;
843 		struct i915_vma *vma;
844 		int err;
845 
846 		rcu_read_lock();
847 		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
848 		if (likely(vma))
849 			vma = i915_vma_tryget(vma);
850 		rcu_read_unlock();
851 		if (likely(vma))
852 			return vma;
853 
854 		obj = i915_gem_object_lookup(eb->file, handle);
855 		if (unlikely(!obj))
856 			return ERR_PTR(-ENOENT);
857 
858 		vma = i915_vma_instance(obj, eb->context->vm, NULL);
859 		if (IS_ERR(vma)) {
860 			i915_gem_object_put(obj);
861 			return vma;
862 		}
863 
864 		err = __eb_add_lut(eb, handle, vma);
865 		if (likely(!err))
866 			return vma;
867 
868 		i915_gem_object_put(obj);
869 		if (err != -EEXIST)
870 			return ERR_PTR(err);
871 	} while (1);
872 }
873 
874 static int eb_lookup_vmas(struct i915_execbuffer *eb)
875 {
876 	unsigned int batch = eb_batch_index(eb);
877 	unsigned int i;
878 	int err = 0;
879 
880 	INIT_LIST_HEAD(&eb->relocs);
881 	INIT_LIST_HEAD(&eb->unbound);
882 
883 	for (i = 0; i < eb->buffer_count; i++) {
884 		struct i915_vma *vma;
885 
886 		vma = eb_lookup_vma(eb, eb->exec[i].handle);
887 		if (IS_ERR(vma)) {
888 			err = PTR_ERR(vma);
889 			break;
890 		}
891 
892 		err = eb_validate_vma(eb, &eb->exec[i], vma);
893 		if (unlikely(err)) {
894 			i915_vma_put(vma);
895 			break;
896 		}
897 
898 		eb_add_vma(eb, i, batch, vma);
899 	}
900 
901 	eb->vma[i].vma = NULL;
902 	return err;
903 }
904 
905 static struct eb_vma *
906 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
907 {
908 	if (eb->lut_size < 0) {
909 		if (handle >= -eb->lut_size)
910 			return NULL;
911 		return &eb->vma[handle];
912 	} else {
913 		struct hlist_head *head;
914 		struct eb_vma *ev;
915 
916 		head = &eb->buckets[hash_32(handle, eb->lut_size)];
917 		hlist_for_each_entry(ev, head, node) {
918 			if (ev->handle == handle)
919 				return ev;
920 		}
921 		return NULL;
922 	}
923 }
924 
925 static void eb_destroy(const struct i915_execbuffer *eb)
926 {
927 	GEM_BUG_ON(eb->reloc_cache.rq);
928 
929 	if (eb->array)
930 		eb_vma_array_put(eb->array);
931 
932 	if (eb->lut_size > 0)
933 		kfree(eb->buckets);
934 }
935 
936 static inline u64
937 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
938 		  const struct i915_vma *target)
939 {
940 	return gen8_canonical_addr((int)reloc->delta + target->node.start);
941 }
942 
943 static void reloc_cache_init(struct reloc_cache *cache,
944 			     struct drm_i915_private *i915)
945 {
946 	cache->page = -1;
947 	cache->vaddr = 0;
948 	/* Must be a variable in the struct to allow GCC to unroll. */
949 	cache->gen = INTEL_GEN(i915);
950 	cache->has_llc = HAS_LLC(i915);
951 	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
952 	cache->has_fence = cache->gen < 4;
953 	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
954 	cache->node.flags = 0;
955 	cache->rq = NULL;
956 	cache->rq_size = 0;
957 }
958 
959 static inline void *unmask_page(unsigned long p)
960 {
961 	return (void *)(uintptr_t)(p & PAGE_MASK);
962 }
963 
964 static inline unsigned int unmask_flags(unsigned long p)
965 {
966 	return p & ~PAGE_MASK;
967 }
968 
969 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
970 
971 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
972 {
973 	struct drm_i915_private *i915 =
974 		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
975 	return &i915->ggtt;
976 }
977 
978 static void reloc_gpu_flush(struct reloc_cache *cache)
979 {
980 	struct drm_i915_gem_object *obj = cache->rq->batch->obj;
981 
982 	GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
983 	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
984 
985 	__i915_gem_object_flush_map(obj, 0, sizeof(u32) * (cache->rq_size + 1));
986 	i915_gem_object_unpin_map(obj);
987 
988 	intel_gt_chipset_flush(cache->rq->engine->gt);
989 
990 	i915_request_add(cache->rq);
991 	cache->rq = NULL;
992 }
993 
994 static void reloc_cache_reset(struct reloc_cache *cache)
995 {
996 	void *vaddr;
997 
998 	if (cache->rq)
999 		reloc_gpu_flush(cache);
1000 
1001 	if (!cache->vaddr)
1002 		return;
1003 
1004 	vaddr = unmask_page(cache->vaddr);
1005 	if (cache->vaddr & KMAP) {
1006 		if (cache->vaddr & CLFLUSH_AFTER)
1007 			mb();
1008 
1009 		kunmap_atomic(vaddr);
1010 		i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
1011 	} else {
1012 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1013 
1014 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1015 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1016 
1017 		if (drm_mm_node_allocated(&cache->node)) {
1018 			ggtt->vm.clear_range(&ggtt->vm,
1019 					     cache->node.start,
1020 					     cache->node.size);
1021 			mutex_lock(&ggtt->vm.mutex);
1022 			drm_mm_remove_node(&cache->node);
1023 			mutex_unlock(&ggtt->vm.mutex);
1024 		} else {
1025 			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1026 		}
1027 	}
1028 
1029 	cache->vaddr = 0;
1030 	cache->page = -1;
1031 }
1032 
1033 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1034 			struct reloc_cache *cache,
1035 			unsigned long page)
1036 {
1037 	void *vaddr;
1038 
1039 	if (cache->vaddr) {
1040 		kunmap_atomic(unmask_page(cache->vaddr));
1041 	} else {
1042 		unsigned int flushes;
1043 		int err;
1044 
1045 		err = i915_gem_object_prepare_write(obj, &flushes);
1046 		if (err)
1047 			return ERR_PTR(err);
1048 
1049 		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1050 		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1051 
1052 		cache->vaddr = flushes | KMAP;
1053 		cache->node.mm = (void *)obj;
1054 		if (flushes)
1055 			mb();
1056 	}
1057 
1058 	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
1059 	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1060 	cache->page = page;
1061 
1062 	return vaddr;
1063 }
1064 
1065 static void *reloc_iomap(struct drm_i915_gem_object *obj,
1066 			 struct reloc_cache *cache,
1067 			 unsigned long page)
1068 {
1069 	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1070 	unsigned long offset;
1071 	void *vaddr;
1072 
1073 	if (cache->vaddr) {
1074 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1075 		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1076 	} else {
1077 		struct i915_vma *vma;
1078 		int err;
1079 
1080 		if (i915_gem_object_is_tiled(obj))
1081 			return ERR_PTR(-EINVAL);
1082 
1083 		if (use_cpu_reloc(cache, obj))
1084 			return NULL;
1085 
1086 		i915_gem_object_lock(obj);
1087 		err = i915_gem_object_set_to_gtt_domain(obj, true);
1088 		i915_gem_object_unlock(obj);
1089 		if (err)
1090 			return ERR_PTR(err);
1091 
1092 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1093 					       PIN_MAPPABLE |
1094 					       PIN_NONBLOCK /* NOWARN */ |
1095 					       PIN_NOEVICT);
1096 		if (IS_ERR(vma)) {
1097 			memset(&cache->node, 0, sizeof(cache->node));
1098 			mutex_lock(&ggtt->vm.mutex);
1099 			err = drm_mm_insert_node_in_range
1100 				(&ggtt->vm.mm, &cache->node,
1101 				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1102 				 0, ggtt->mappable_end,
1103 				 DRM_MM_INSERT_LOW);
1104 			mutex_unlock(&ggtt->vm.mutex);
1105 			if (err) /* no inactive aperture space, use cpu reloc */
1106 				return NULL;
1107 		} else {
1108 			cache->node.start = vma->node.start;
1109 			cache->node.mm = (void *)vma;
1110 		}
1111 	}
1112 
1113 	offset = cache->node.start;
1114 	if (drm_mm_node_allocated(&cache->node)) {
1115 		ggtt->vm.insert_page(&ggtt->vm,
1116 				     i915_gem_object_get_dma_address(obj, page),
1117 				     offset, I915_CACHE_NONE, 0);
1118 	} else {
1119 		offset += page << PAGE_SHIFT;
1120 	}
1121 
1122 	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1123 							 offset);
1124 	cache->page = page;
1125 	cache->vaddr = (unsigned long)vaddr;
1126 
1127 	return vaddr;
1128 }
1129 
1130 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1131 			 struct reloc_cache *cache,
1132 			 unsigned long page)
1133 {
1134 	void *vaddr;
1135 
1136 	if (cache->page == page) {
1137 		vaddr = unmask_page(cache->vaddr);
1138 	} else {
1139 		vaddr = NULL;
1140 		if ((cache->vaddr & KMAP) == 0)
1141 			vaddr = reloc_iomap(obj, cache, page);
1142 		if (!vaddr)
1143 			vaddr = reloc_kmap(obj, cache, page);
1144 	}
1145 
1146 	return vaddr;
1147 }
1148 
1149 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1150 {
1151 	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1152 		if (flushes & CLFLUSH_BEFORE) {
1153 			clflushopt(addr);
1154 			mb();
1155 		}
1156 
1157 		*addr = value;
1158 
1159 		/*
1160 		 * Writes to the same cacheline are serialised by the CPU
1161 		 * (including clflush). On the write path, we only require
1162 		 * that it hits memory in an orderly fashion and place
1163 		 * mb barriers at the start and end of the relocation phase
1164 		 * to ensure ordering of clflush wrt to the system.
1165 		 */
1166 		if (flushes & CLFLUSH_AFTER)
1167 			clflushopt(addr);
1168 	} else
1169 		*addr = value;
1170 }
1171 
1172 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1173 {
1174 	struct drm_i915_gem_object *obj = vma->obj;
1175 	int err;
1176 
1177 	i915_vma_lock(vma);
1178 
1179 	if (obj->cache_dirty & ~obj->cache_coherent)
1180 		i915_gem_clflush_object(obj, 0);
1181 	obj->write_domain = 0;
1182 
1183 	err = i915_request_await_object(rq, vma->obj, true);
1184 	if (err == 0)
1185 		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1186 
1187 	i915_vma_unlock(vma);
1188 
1189 	return err;
1190 }
1191 
1192 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1193 			     struct i915_vma *vma,
1194 			     unsigned int len)
1195 {
1196 	struct reloc_cache *cache = &eb->reloc_cache;
1197 	struct intel_gt_buffer_pool_node *pool;
1198 	struct i915_request *rq;
1199 	struct i915_vma *batch;
1200 	u32 *cmd;
1201 	int err;
1202 
1203 	pool = intel_gt_get_buffer_pool(eb->engine->gt, PAGE_SIZE);
1204 	if (IS_ERR(pool))
1205 		return PTR_ERR(pool);
1206 
1207 	cmd = i915_gem_object_pin_map(pool->obj,
1208 				      cache->has_llc ?
1209 				      I915_MAP_FORCE_WB :
1210 				      I915_MAP_FORCE_WC);
1211 	if (IS_ERR(cmd)) {
1212 		err = PTR_ERR(cmd);
1213 		goto out_pool;
1214 	}
1215 
1216 	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1217 	if (IS_ERR(batch)) {
1218 		err = PTR_ERR(batch);
1219 		goto err_unmap;
1220 	}
1221 
1222 	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1223 	if (err)
1224 		goto err_unmap;
1225 
1226 	rq = i915_request_create(eb->context);
1227 	if (IS_ERR(rq)) {
1228 		err = PTR_ERR(rq);
1229 		goto err_unpin;
1230 	}
1231 
1232 	err = intel_gt_buffer_pool_mark_active(pool, rq);
1233 	if (err)
1234 		goto err_request;
1235 
1236 	err = reloc_move_to_gpu(rq, vma);
1237 	if (err)
1238 		goto err_request;
1239 
1240 	err = eb->engine->emit_bb_start(rq,
1241 					batch->node.start, PAGE_SIZE,
1242 					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1243 	if (err)
1244 		goto skip_request;
1245 
1246 	i915_vma_lock(batch);
1247 	err = i915_request_await_object(rq, batch->obj, false);
1248 	if (err == 0)
1249 		err = i915_vma_move_to_active(batch, rq, 0);
1250 	i915_vma_unlock(batch);
1251 	if (err)
1252 		goto skip_request;
1253 
1254 	rq->batch = batch;
1255 	i915_vma_unpin(batch);
1256 
1257 	cache->rq = rq;
1258 	cache->rq_cmd = cmd;
1259 	cache->rq_size = 0;
1260 
1261 	/* Return with batch mapping (cmd) still pinned */
1262 	goto out_pool;
1263 
1264 skip_request:
1265 	i915_request_set_error_once(rq, err);
1266 err_request:
1267 	i915_request_add(rq);
1268 err_unpin:
1269 	i915_vma_unpin(batch);
1270 err_unmap:
1271 	i915_gem_object_unpin_map(pool->obj);
1272 out_pool:
1273 	intel_gt_buffer_pool_put(pool);
1274 	return err;
1275 }
1276 
1277 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1278 		      struct i915_vma *vma,
1279 		      unsigned int len)
1280 {
1281 	struct reloc_cache *cache = &eb->reloc_cache;
1282 	u32 *cmd;
1283 
1284 	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1285 		reloc_gpu_flush(cache);
1286 
1287 	if (unlikely(!cache->rq)) {
1288 		int err;
1289 
1290 		if (!intel_engine_can_store_dword(eb->engine))
1291 			return ERR_PTR(-ENODEV);
1292 
1293 		err = __reloc_gpu_alloc(eb, vma, len);
1294 		if (unlikely(err))
1295 			return ERR_PTR(err);
1296 	}
1297 
1298 	cmd = cache->rq_cmd + cache->rq_size;
1299 	cache->rq_size += len;
1300 
1301 	return cmd;
1302 }
1303 
1304 static inline bool use_reloc_gpu(struct i915_vma *vma)
1305 {
1306 	if (DBG_FORCE_RELOC == FORCE_GPU_RELOC)
1307 		return true;
1308 
1309 	if (DBG_FORCE_RELOC)
1310 		return false;
1311 
1312 	return !dma_resv_test_signaled_rcu(vma->resv, true);
1313 }
1314 
1315 static u64
1316 relocate_entry(struct i915_vma *vma,
1317 	       const struct drm_i915_gem_relocation_entry *reloc,
1318 	       struct i915_execbuffer *eb,
1319 	       const struct i915_vma *target)
1320 {
1321 	u64 offset = reloc->offset;
1322 	u64 target_offset = relocation_target(reloc, target);
1323 	bool wide = eb->reloc_cache.use_64bit_reloc;
1324 	void *vaddr;
1325 
1326 	if (!eb->reloc_cache.vaddr && use_reloc_gpu(vma)) {
1327 		const unsigned int gen = eb->reloc_cache.gen;
1328 		unsigned int len;
1329 		u32 *batch;
1330 		u64 addr;
1331 
1332 		if (wide)
1333 			len = offset & 7 ? 8 : 5;
1334 		else if (gen >= 4)
1335 			len = 4;
1336 		else
1337 			len = 3;
1338 
1339 		batch = reloc_gpu(eb, vma, len);
1340 		if (IS_ERR(batch))
1341 			goto repeat;
1342 
1343 		addr = gen8_canonical_addr(vma->node.start + offset);
1344 		if (wide) {
1345 			if (offset & 7) {
1346 				*batch++ = MI_STORE_DWORD_IMM_GEN4;
1347 				*batch++ = lower_32_bits(addr);
1348 				*batch++ = upper_32_bits(addr);
1349 				*batch++ = lower_32_bits(target_offset);
1350 
1351 				addr = gen8_canonical_addr(addr + 4);
1352 
1353 				*batch++ = MI_STORE_DWORD_IMM_GEN4;
1354 				*batch++ = lower_32_bits(addr);
1355 				*batch++ = upper_32_bits(addr);
1356 				*batch++ = upper_32_bits(target_offset);
1357 			} else {
1358 				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1359 				*batch++ = lower_32_bits(addr);
1360 				*batch++ = upper_32_bits(addr);
1361 				*batch++ = lower_32_bits(target_offset);
1362 				*batch++ = upper_32_bits(target_offset);
1363 			}
1364 		} else if (gen >= 6) {
1365 			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1366 			*batch++ = 0;
1367 			*batch++ = addr;
1368 			*batch++ = target_offset;
1369 		} else if (gen >= 4) {
1370 			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1371 			*batch++ = 0;
1372 			*batch++ = addr;
1373 			*batch++ = target_offset;
1374 		} else {
1375 			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1376 			*batch++ = addr;
1377 			*batch++ = target_offset;
1378 		}
1379 
1380 		goto out;
1381 	}
1382 
1383 repeat:
1384 	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1385 	if (IS_ERR(vaddr))
1386 		return PTR_ERR(vaddr);
1387 
1388 	clflush_write32(vaddr + offset_in_page(offset),
1389 			lower_32_bits(target_offset),
1390 			eb->reloc_cache.vaddr);
1391 
1392 	if (wide) {
1393 		offset += sizeof(u32);
1394 		target_offset >>= 32;
1395 		wide = false;
1396 		goto repeat;
1397 	}
1398 
1399 out:
1400 	return target->node.start | UPDATE;
1401 }
1402 
1403 static u64
1404 eb_relocate_entry(struct i915_execbuffer *eb,
1405 		  struct eb_vma *ev,
1406 		  const struct drm_i915_gem_relocation_entry *reloc)
1407 {
1408 	struct drm_i915_private *i915 = eb->i915;
1409 	struct eb_vma *target;
1410 	int err;
1411 
1412 	/* we've already hold a reference to all valid objects */
1413 	target = eb_get_vma(eb, reloc->target_handle);
1414 	if (unlikely(!target))
1415 		return -ENOENT;
1416 
1417 	/* Validate that the target is in a valid r/w GPU domain */
1418 	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1419 		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1420 			  "target %d offset %d "
1421 			  "read %08x write %08x",
1422 			  reloc->target_handle,
1423 			  (int) reloc->offset,
1424 			  reloc->read_domains,
1425 			  reloc->write_domain);
1426 		return -EINVAL;
1427 	}
1428 	if (unlikely((reloc->write_domain | reloc->read_domains)
1429 		     & ~I915_GEM_GPU_DOMAINS)) {
1430 		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1431 			  "target %d offset %d "
1432 			  "read %08x write %08x",
1433 			  reloc->target_handle,
1434 			  (int) reloc->offset,
1435 			  reloc->read_domains,
1436 			  reloc->write_domain);
1437 		return -EINVAL;
1438 	}
1439 
1440 	if (reloc->write_domain) {
1441 		target->flags |= EXEC_OBJECT_WRITE;
1442 
1443 		/*
1444 		 * Sandybridge PPGTT errata: We need a global gtt mapping
1445 		 * for MI and pipe_control writes because the gpu doesn't
1446 		 * properly redirect them through the ppgtt for non_secure
1447 		 * batchbuffers.
1448 		 */
1449 		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1450 		    IS_GEN(eb->i915, 6)) {
1451 			err = i915_vma_bind(target->vma,
1452 					    target->vma->obj->cache_level,
1453 					    PIN_GLOBAL, NULL);
1454 			if (WARN_ONCE(err,
1455 				      "Unexpected failure to bind target VMA!"))
1456 				return err;
1457 		}
1458 	}
1459 
1460 	/*
1461 	 * If the relocation already has the right value in it, no
1462 	 * more work needs to be done.
1463 	 */
1464 	if (!DBG_FORCE_RELOC &&
1465 	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1466 		return 0;
1467 
1468 	/* Check that the relocation address is valid... */
1469 	if (unlikely(reloc->offset >
1470 		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1471 		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1472 			  "target %d offset %d size %d.\n",
1473 			  reloc->target_handle,
1474 			  (int)reloc->offset,
1475 			  (int)ev->vma->size);
1476 		return -EINVAL;
1477 	}
1478 	if (unlikely(reloc->offset & 3)) {
1479 		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1480 			  "target %d offset %d.\n",
1481 			  reloc->target_handle,
1482 			  (int)reloc->offset);
1483 		return -EINVAL;
1484 	}
1485 
1486 	/*
1487 	 * If we write into the object, we need to force the synchronisation
1488 	 * barrier, either with an asynchronous clflush or if we executed the
1489 	 * patching using the GPU (though that should be serialised by the
1490 	 * timeline). To be completely sure, and since we are required to
1491 	 * do relocations we are already stalling, disable the user's opt
1492 	 * out of our synchronisation.
1493 	 */
1494 	ev->flags &= ~EXEC_OBJECT_ASYNC;
1495 
1496 	/* and update the user's relocation entry */
1497 	return relocate_entry(ev->vma, reloc, eb, target->vma);
1498 }
1499 
1500 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1501 {
1502 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1503 	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1504 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1505 	struct drm_i915_gem_relocation_entry __user *urelocs =
1506 		u64_to_user_ptr(entry->relocs_ptr);
1507 	unsigned long remain = entry->relocation_count;
1508 
1509 	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1510 		return -EINVAL;
1511 
1512 	/*
1513 	 * We must check that the entire relocation array is safe
1514 	 * to read. However, if the array is not writable the user loses
1515 	 * the updated relocation values.
1516 	 */
1517 	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1518 		return -EFAULT;
1519 
1520 	do {
1521 		struct drm_i915_gem_relocation_entry *r = stack;
1522 		unsigned int count =
1523 			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1524 		unsigned int copied;
1525 
1526 		/*
1527 		 * This is the fast path and we cannot handle a pagefault
1528 		 * whilst holding the struct mutex lest the user pass in the
1529 		 * relocations contained within a mmaped bo. For in such a case
1530 		 * we, the page fault handler would call i915_gem_fault() and
1531 		 * we would try to acquire the struct mutex again. Obviously
1532 		 * this is bad and so lockdep complains vehemently.
1533 		 */
1534 		copied = __copy_from_user(r, urelocs, count * sizeof(r[0]));
1535 		if (unlikely(copied)) {
1536 			remain = -EFAULT;
1537 			goto out;
1538 		}
1539 
1540 		remain -= count;
1541 		do {
1542 			u64 offset = eb_relocate_entry(eb, ev, r);
1543 
1544 			if (likely(offset == 0)) {
1545 			} else if ((s64)offset < 0) {
1546 				remain = (int)offset;
1547 				goto out;
1548 			} else {
1549 				/*
1550 				 * Note that reporting an error now
1551 				 * leaves everything in an inconsistent
1552 				 * state as we have *already* changed
1553 				 * the relocation value inside the
1554 				 * object. As we have not changed the
1555 				 * reloc.presumed_offset or will not
1556 				 * change the execobject.offset, on the
1557 				 * call we may not rewrite the value
1558 				 * inside the object, leaving it
1559 				 * dangling and causing a GPU hang. Unless
1560 				 * userspace dynamically rebuilds the
1561 				 * relocations on each execbuf rather than
1562 				 * presume a static tree.
1563 				 *
1564 				 * We did previously check if the relocations
1565 				 * were writable (access_ok), an error now
1566 				 * would be a strange race with mprotect,
1567 				 * having already demonstrated that we
1568 				 * can read from this userspace address.
1569 				 */
1570 				offset = gen8_canonical_addr(offset & ~UPDATE);
1571 				__put_user(offset,
1572 					   &urelocs[r - stack].presumed_offset);
1573 			}
1574 		} while (r++, --count);
1575 		urelocs += ARRAY_SIZE(stack);
1576 	} while (remain);
1577 out:
1578 	reloc_cache_reset(&eb->reloc_cache);
1579 	return remain;
1580 }
1581 
1582 static int eb_relocate(struct i915_execbuffer *eb)
1583 {
1584 	int err;
1585 
1586 	err = eb_lookup_vmas(eb);
1587 	if (err)
1588 		return err;
1589 
1590 	if (!list_empty(&eb->unbound)) {
1591 		err = eb_reserve(eb);
1592 		if (err)
1593 			return err;
1594 	}
1595 
1596 	/* The objects are in their final locations, apply the relocations. */
1597 	if (eb->args->flags & __EXEC_HAS_RELOC) {
1598 		struct eb_vma *ev;
1599 
1600 		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1601 			err = eb_relocate_vma(eb, ev);
1602 			if (err)
1603 				return err;
1604 		}
1605 	}
1606 
1607 	return 0;
1608 }
1609 
1610 static int eb_move_to_gpu(struct i915_execbuffer *eb)
1611 {
1612 	const unsigned int count = eb->buffer_count;
1613 	struct ww_acquire_ctx acquire;
1614 	unsigned int i;
1615 	int err = 0;
1616 
1617 	ww_acquire_init(&acquire, &reservation_ww_class);
1618 
1619 	for (i = 0; i < count; i++) {
1620 		struct eb_vma *ev = &eb->vma[i];
1621 		struct i915_vma *vma = ev->vma;
1622 
1623 		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
1624 		if (err == -EDEADLK) {
1625 			GEM_BUG_ON(i == 0);
1626 			do {
1627 				int j = i - 1;
1628 
1629 				ww_mutex_unlock(&eb->vma[j].vma->resv->lock);
1630 
1631 				swap(eb->vma[i],  eb->vma[j]);
1632 			} while (--i);
1633 
1634 			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
1635 							       &acquire);
1636 		}
1637 		if (err)
1638 			break;
1639 	}
1640 	ww_acquire_done(&acquire);
1641 
1642 	while (i--) {
1643 		struct eb_vma *ev = &eb->vma[i];
1644 		struct i915_vma *vma = ev->vma;
1645 		unsigned int flags = ev->flags;
1646 		struct drm_i915_gem_object *obj = vma->obj;
1647 
1648 		assert_vma_held(vma);
1649 
1650 		if (flags & EXEC_OBJECT_CAPTURE) {
1651 			struct i915_capture_list *capture;
1652 
1653 			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1654 			if (capture) {
1655 				capture->next = eb->request->capture_list;
1656 				capture->vma = vma;
1657 				eb->request->capture_list = capture;
1658 			}
1659 		}
1660 
1661 		/*
1662 		 * If the GPU is not _reading_ through the CPU cache, we need
1663 		 * to make sure that any writes (both previous GPU writes from
1664 		 * before a change in snooping levels and normal CPU writes)
1665 		 * caught in that cache are flushed to main memory.
1666 		 *
1667 		 * We want to say
1668 		 *   obj->cache_dirty &&
1669 		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1670 		 * but gcc's optimiser doesn't handle that as well and emits
1671 		 * two jumps instead of one. Maybe one day...
1672 		 */
1673 		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1674 			if (i915_gem_clflush_object(obj, 0))
1675 				flags &= ~EXEC_OBJECT_ASYNC;
1676 		}
1677 
1678 		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
1679 			err = i915_request_await_object
1680 				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
1681 		}
1682 
1683 		if (err == 0)
1684 			err = i915_vma_move_to_active(vma, eb->request, flags);
1685 
1686 		i915_vma_unlock(vma);
1687 		eb_unreserve_vma(ev);
1688 	}
1689 	ww_acquire_fini(&acquire);
1690 
1691 	eb_vma_array_put(fetch_and_zero(&eb->array));
1692 
1693 	if (unlikely(err))
1694 		goto err_skip;
1695 
1696 	/* Unconditionally flush any chipset caches (for streaming writes). */
1697 	intel_gt_chipset_flush(eb->engine->gt);
1698 	return 0;
1699 
1700 err_skip:
1701 	i915_request_set_error_once(eb->request, err);
1702 	return err;
1703 }
1704 
1705 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1706 {
1707 	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1708 		return -EINVAL;
1709 
1710 	/* Kernel clipping was a DRI1 misfeature */
1711 	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1712 		if (exec->num_cliprects || exec->cliprects_ptr)
1713 			return -EINVAL;
1714 	}
1715 
1716 	if (exec->DR4 == 0xffffffff) {
1717 		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1718 		exec->DR4 = 0;
1719 	}
1720 	if (exec->DR1 || exec->DR4)
1721 		return -EINVAL;
1722 
1723 	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1724 		return -EINVAL;
1725 
1726 	return 0;
1727 }
1728 
1729 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1730 {
1731 	u32 *cs;
1732 	int i;
1733 
1734 	if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1735 		drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n");
1736 		return -EINVAL;
1737 	}
1738 
1739 	cs = intel_ring_begin(rq, 4 * 2 + 2);
1740 	if (IS_ERR(cs))
1741 		return PTR_ERR(cs);
1742 
1743 	*cs++ = MI_LOAD_REGISTER_IMM(4);
1744 	for (i = 0; i < 4; i++) {
1745 		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1746 		*cs++ = 0;
1747 	}
1748 	*cs++ = MI_NOOP;
1749 	intel_ring_advance(rq, cs);
1750 
1751 	return 0;
1752 }
1753 
1754 static struct i915_vma *
1755 shadow_batch_pin(struct drm_i915_gem_object *obj,
1756 		 struct i915_address_space *vm,
1757 		 unsigned int flags)
1758 {
1759 	struct i915_vma *vma;
1760 	int err;
1761 
1762 	vma = i915_vma_instance(obj, vm, NULL);
1763 	if (IS_ERR(vma))
1764 		return vma;
1765 
1766 	err = i915_vma_pin(vma, 0, 0, flags);
1767 	if (err)
1768 		return ERR_PTR(err);
1769 
1770 	return vma;
1771 }
1772 
1773 struct eb_parse_work {
1774 	struct dma_fence_work base;
1775 	struct intel_engine_cs *engine;
1776 	struct i915_vma *batch;
1777 	struct i915_vma *shadow;
1778 	struct i915_vma *trampoline;
1779 	unsigned int batch_offset;
1780 	unsigned int batch_length;
1781 };
1782 
1783 static int __eb_parse(struct dma_fence_work *work)
1784 {
1785 	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
1786 
1787 	return intel_engine_cmd_parser(pw->engine,
1788 				       pw->batch,
1789 				       pw->batch_offset,
1790 				       pw->batch_length,
1791 				       pw->shadow,
1792 				       pw->trampoline);
1793 }
1794 
1795 static void __eb_parse_release(struct dma_fence_work *work)
1796 {
1797 	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
1798 
1799 	if (pw->trampoline)
1800 		i915_active_release(&pw->trampoline->active);
1801 	i915_active_release(&pw->shadow->active);
1802 	i915_active_release(&pw->batch->active);
1803 }
1804 
1805 static const struct dma_fence_work_ops eb_parse_ops = {
1806 	.name = "eb_parse",
1807 	.work = __eb_parse,
1808 	.release = __eb_parse_release,
1809 };
1810 
1811 static int eb_parse_pipeline(struct i915_execbuffer *eb,
1812 			     struct i915_vma *shadow,
1813 			     struct i915_vma *trampoline)
1814 {
1815 	struct eb_parse_work *pw;
1816 	int err;
1817 
1818 	pw = kzalloc(sizeof(*pw), GFP_KERNEL);
1819 	if (!pw)
1820 		return -ENOMEM;
1821 
1822 	err = i915_active_acquire(&eb->batch->vma->active);
1823 	if (err)
1824 		goto err_free;
1825 
1826 	err = i915_active_acquire(&shadow->active);
1827 	if (err)
1828 		goto err_batch;
1829 
1830 	if (trampoline) {
1831 		err = i915_active_acquire(&trampoline->active);
1832 		if (err)
1833 			goto err_shadow;
1834 	}
1835 
1836 	dma_fence_work_init(&pw->base, &eb_parse_ops);
1837 
1838 	pw->engine = eb->engine;
1839 	pw->batch = eb->batch->vma;
1840 	pw->batch_offset = eb->batch_start_offset;
1841 	pw->batch_length = eb->batch_len;
1842 	pw->shadow = shadow;
1843 	pw->trampoline = trampoline;
1844 
1845 	err = dma_resv_lock_interruptible(pw->batch->resv, NULL);
1846 	if (err)
1847 		goto err_trampoline;
1848 
1849 	err = dma_resv_reserve_shared(pw->batch->resv, 1);
1850 	if (err)
1851 		goto err_batch_unlock;
1852 
1853 	/* Wait for all writes (and relocs) into the batch to complete */
1854 	err = i915_sw_fence_await_reservation(&pw->base.chain,
1855 					      pw->batch->resv, NULL, false,
1856 					      0, I915_FENCE_GFP);
1857 	if (err < 0)
1858 		goto err_batch_unlock;
1859 
1860 	/* Keep the batch alive and unwritten as we parse */
1861 	dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);
1862 
1863 	dma_resv_unlock(pw->batch->resv);
1864 
1865 	/* Force execution to wait for completion of the parser */
1866 	dma_resv_lock(shadow->resv, NULL);
1867 	dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
1868 	dma_resv_unlock(shadow->resv);
1869 
1870 	dma_fence_work_commit_imm(&pw->base);
1871 	return 0;
1872 
1873 err_batch_unlock:
1874 	dma_resv_unlock(pw->batch->resv);
1875 err_trampoline:
1876 	if (trampoline)
1877 		i915_active_release(&trampoline->active);
1878 err_shadow:
1879 	i915_active_release(&shadow->active);
1880 err_batch:
1881 	i915_active_release(&eb->batch->vma->active);
1882 err_free:
1883 	kfree(pw);
1884 	return err;
1885 }
1886 
1887 static int eb_parse(struct i915_execbuffer *eb)
1888 {
1889 	struct drm_i915_private *i915 = eb->i915;
1890 	struct intel_gt_buffer_pool_node *pool;
1891 	struct i915_vma *shadow, *trampoline;
1892 	unsigned int len;
1893 	int err;
1894 
1895 	if (!eb_use_cmdparser(eb))
1896 		return 0;
1897 
1898 	len = eb->batch_len;
1899 	if (!CMDPARSER_USES_GGTT(eb->i915)) {
1900 		/*
1901 		 * ppGTT backed shadow buffers must be mapped RO, to prevent
1902 		 * post-scan tampering
1903 		 */
1904 		if (!eb->context->vm->has_read_only) {
1905 			drm_dbg(&i915->drm,
1906 				"Cannot prevent post-scan tampering without RO capable vm\n");
1907 			return -EINVAL;
1908 		}
1909 	} else {
1910 		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
1911 	}
1912 
1913 	pool = intel_gt_get_buffer_pool(eb->engine->gt, len);
1914 	if (IS_ERR(pool))
1915 		return PTR_ERR(pool);
1916 
1917 	shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER);
1918 	if (IS_ERR(shadow)) {
1919 		err = PTR_ERR(shadow);
1920 		goto err;
1921 	}
1922 	i915_gem_object_set_readonly(shadow->obj);
1923 
1924 	trampoline = NULL;
1925 	if (CMDPARSER_USES_GGTT(eb->i915)) {
1926 		trampoline = shadow;
1927 
1928 		shadow = shadow_batch_pin(pool->obj,
1929 					  &eb->engine->gt->ggtt->vm,
1930 					  PIN_GLOBAL);
1931 		if (IS_ERR(shadow)) {
1932 			err = PTR_ERR(shadow);
1933 			shadow = trampoline;
1934 			goto err_shadow;
1935 		}
1936 
1937 		eb->batch_flags |= I915_DISPATCH_SECURE;
1938 	}
1939 
1940 	err = eb_parse_pipeline(eb, shadow, trampoline);
1941 	if (err)
1942 		goto err_trampoline;
1943 
1944 	eb->vma[eb->buffer_count].vma = i915_vma_get(shadow);
1945 	eb->vma[eb->buffer_count].flags = __EXEC_OBJECT_HAS_PIN;
1946 	eb->batch = &eb->vma[eb->buffer_count++];
1947 	eb->vma[eb->buffer_count].vma = NULL;
1948 
1949 	eb->trampoline = trampoline;
1950 	eb->batch_start_offset = 0;
1951 
1952 	shadow->private = pool;
1953 	return 0;
1954 
1955 err_trampoline:
1956 	if (trampoline)
1957 		i915_vma_unpin(trampoline);
1958 err_shadow:
1959 	i915_vma_unpin(shadow);
1960 err:
1961 	intel_gt_buffer_pool_put(pool);
1962 	return err;
1963 }
1964 
1965 static void
1966 add_to_client(struct i915_request *rq, struct drm_file *file)
1967 {
1968 	struct drm_i915_file_private *file_priv = file->driver_priv;
1969 
1970 	rq->file_priv = file_priv;
1971 
1972 	spin_lock(&file_priv->mm.lock);
1973 	list_add_tail(&rq->client_link, &file_priv->mm.request_list);
1974 	spin_unlock(&file_priv->mm.lock);
1975 }
1976 
1977 static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
1978 {
1979 	int err;
1980 
1981 	err = eb_move_to_gpu(eb);
1982 	if (err)
1983 		return err;
1984 
1985 	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1986 		err = i915_reset_gen7_sol_offsets(eb->request);
1987 		if (err)
1988 			return err;
1989 	}
1990 
1991 	/*
1992 	 * After we completed waiting for other engines (using HW semaphores)
1993 	 * then we can signal that this request/batch is ready to run. This
1994 	 * allows us to determine if the batch is still waiting on the GPU
1995 	 * or actually running by checking the breadcrumb.
1996 	 */
1997 	if (eb->engine->emit_init_breadcrumb) {
1998 		err = eb->engine->emit_init_breadcrumb(eb->request);
1999 		if (err)
2000 			return err;
2001 	}
2002 
2003 	err = eb->engine->emit_bb_start(eb->request,
2004 					batch->node.start +
2005 					eb->batch_start_offset,
2006 					eb->batch_len,
2007 					eb->batch_flags);
2008 	if (err)
2009 		return err;
2010 
2011 	if (eb->trampoline) {
2012 		GEM_BUG_ON(eb->batch_start_offset);
2013 		err = eb->engine->emit_bb_start(eb->request,
2014 						eb->trampoline->node.start +
2015 						eb->batch_len,
2016 						0, 0);
2017 		if (err)
2018 			return err;
2019 	}
2020 
2021 	if (intel_context_nopreempt(eb->context))
2022 		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
2023 
2024 	return 0;
2025 }
2026 
2027 static int num_vcs_engines(const struct drm_i915_private *i915)
2028 {
2029 	return hweight64(INTEL_INFO(i915)->engine_mask &
2030 			 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
2031 }
2032 
2033 /*
2034  * Find one BSD ring to dispatch the corresponding BSD command.
2035  * The engine index is returned.
2036  */
2037 static unsigned int
2038 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2039 			 struct drm_file *file)
2040 {
2041 	struct drm_i915_file_private *file_priv = file->driver_priv;
2042 
2043 	/* Check whether the file_priv has already selected one ring. */
2044 	if ((int)file_priv->bsd_engine < 0)
2045 		file_priv->bsd_engine =
2046 			get_random_int() % num_vcs_engines(dev_priv);
2047 
2048 	return file_priv->bsd_engine;
2049 }
2050 
2051 static const enum intel_engine_id user_ring_map[] = {
2052 	[I915_EXEC_DEFAULT]	= RCS0,
2053 	[I915_EXEC_RENDER]	= RCS0,
2054 	[I915_EXEC_BLT]		= BCS0,
2055 	[I915_EXEC_BSD]		= VCS0,
2056 	[I915_EXEC_VEBOX]	= VECS0
2057 };
2058 
2059 static struct i915_request *eb_throttle(struct intel_context *ce)
2060 {
2061 	struct intel_ring *ring = ce->ring;
2062 	struct intel_timeline *tl = ce->timeline;
2063 	struct i915_request *rq;
2064 
2065 	/*
2066 	 * Completely unscientific finger-in-the-air estimates for suitable
2067 	 * maximum user request size (to avoid blocking) and then backoff.
2068 	 */
2069 	if (intel_ring_update_space(ring) >= PAGE_SIZE)
2070 		return NULL;
2071 
2072 	/*
2073 	 * Find a request that after waiting upon, there will be at least half
2074 	 * the ring available. The hysteresis allows us to compete for the
2075 	 * shared ring and should mean that we sleep less often prior to
2076 	 * claiming our resources, but not so long that the ring completely
2077 	 * drains before we can submit our next request.
2078 	 */
2079 	list_for_each_entry(rq, &tl->requests, link) {
2080 		if (rq->ring != ring)
2081 			continue;
2082 
2083 		if (__intel_ring_space(rq->postfix,
2084 				       ring->emit, ring->size) > ring->size / 2)
2085 			break;
2086 	}
2087 	if (&rq->link == &tl->requests)
2088 		return NULL; /* weird, we will check again later for real */
2089 
2090 	return i915_request_get(rq);
2091 }
2092 
2093 static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
2094 {
2095 	struct intel_timeline *tl;
2096 	struct i915_request *rq;
2097 	int err;
2098 
2099 	/*
2100 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2101 	 * EIO if the GPU is already wedged.
2102 	 */
2103 	err = intel_gt_terminally_wedged(ce->engine->gt);
2104 	if (err)
2105 		return err;
2106 
2107 	if (unlikely(intel_context_is_banned(ce)))
2108 		return -EIO;
2109 
2110 	/*
2111 	 * Pinning the contexts may generate requests in order to acquire
2112 	 * GGTT space, so do this first before we reserve a seqno for
2113 	 * ourselves.
2114 	 */
2115 	err = intel_context_pin(ce);
2116 	if (err)
2117 		return err;
2118 
2119 	/*
2120 	 * Take a local wakeref for preparing to dispatch the execbuf as
2121 	 * we expect to access the hardware fairly frequently in the
2122 	 * process, and require the engine to be kept awake between accesses.
2123 	 * Upon dispatch, we acquire another prolonged wakeref that we hold
2124 	 * until the timeline is idle, which in turn releases the wakeref
2125 	 * taken on the engine, and the parent device.
2126 	 */
2127 	tl = intel_context_timeline_lock(ce);
2128 	if (IS_ERR(tl)) {
2129 		err = PTR_ERR(tl);
2130 		goto err_unpin;
2131 	}
2132 
2133 	intel_context_enter(ce);
2134 	rq = eb_throttle(ce);
2135 
2136 	intel_context_timeline_unlock(tl);
2137 
2138 	if (rq) {
2139 		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2140 		long timeout;
2141 
2142 		timeout = MAX_SCHEDULE_TIMEOUT;
2143 		if (nonblock)
2144 			timeout = 0;
2145 
2146 		timeout = i915_request_wait(rq,
2147 					    I915_WAIT_INTERRUPTIBLE,
2148 					    timeout);
2149 		i915_request_put(rq);
2150 
2151 		if (timeout < 0) {
2152 			err = nonblock ? -EWOULDBLOCK : timeout;
2153 			goto err_exit;
2154 		}
2155 	}
2156 
2157 	eb->engine = ce->engine;
2158 	eb->context = ce;
2159 	return 0;
2160 
2161 err_exit:
2162 	mutex_lock(&tl->mutex);
2163 	intel_context_exit(ce);
2164 	intel_context_timeline_unlock(tl);
2165 err_unpin:
2166 	intel_context_unpin(ce);
2167 	return err;
2168 }
2169 
2170 static void eb_unpin_engine(struct i915_execbuffer *eb)
2171 {
2172 	struct intel_context *ce = eb->context;
2173 	struct intel_timeline *tl = ce->timeline;
2174 
2175 	mutex_lock(&tl->mutex);
2176 	intel_context_exit(ce);
2177 	mutex_unlock(&tl->mutex);
2178 
2179 	intel_context_unpin(ce);
2180 }
2181 
2182 static unsigned int
2183 eb_select_legacy_ring(struct i915_execbuffer *eb,
2184 		      struct drm_file *file,
2185 		      struct drm_i915_gem_execbuffer2 *args)
2186 {
2187 	struct drm_i915_private *i915 = eb->i915;
2188 	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2189 
2190 	if (user_ring_id != I915_EXEC_BSD &&
2191 	    (args->flags & I915_EXEC_BSD_MASK)) {
2192 		drm_dbg(&i915->drm,
2193 			"execbuf with non bsd ring but with invalid "
2194 			"bsd dispatch flags: %d\n", (int)(args->flags));
2195 		return -1;
2196 	}
2197 
2198 	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2199 		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2200 
2201 		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2202 			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2203 		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2204 			   bsd_idx <= I915_EXEC_BSD_RING2) {
2205 			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2206 			bsd_idx--;
2207 		} else {
2208 			drm_dbg(&i915->drm,
2209 				"execbuf with unknown bsd ring: %u\n",
2210 				bsd_idx);
2211 			return -1;
2212 		}
2213 
2214 		return _VCS(bsd_idx);
2215 	}
2216 
2217 	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2218 		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2219 			user_ring_id);
2220 		return -1;
2221 	}
2222 
2223 	return user_ring_map[user_ring_id];
2224 }
2225 
2226 static int
2227 eb_pin_engine(struct i915_execbuffer *eb,
2228 	      struct drm_file *file,
2229 	      struct drm_i915_gem_execbuffer2 *args)
2230 {
2231 	struct intel_context *ce;
2232 	unsigned int idx;
2233 	int err;
2234 
2235 	if (i915_gem_context_user_engines(eb->gem_context))
2236 		idx = args->flags & I915_EXEC_RING_MASK;
2237 	else
2238 		idx = eb_select_legacy_ring(eb, file, args);
2239 
2240 	ce = i915_gem_context_get_engine(eb->gem_context, idx);
2241 	if (IS_ERR(ce))
2242 		return PTR_ERR(ce);
2243 
2244 	err = __eb_pin_engine(eb, ce);
2245 	intel_context_put(ce);
2246 
2247 	return err;
2248 }
2249 
2250 static void
2251 __free_fence_array(struct drm_syncobj **fences, unsigned int n)
2252 {
2253 	while (n--)
2254 		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2255 	kvfree(fences);
2256 }
2257 
2258 static struct drm_syncobj **
2259 get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2260 		struct drm_file *file)
2261 {
2262 	const unsigned long nfences = args->num_cliprects;
2263 	struct drm_i915_gem_exec_fence __user *user;
2264 	struct drm_syncobj **fences;
2265 	unsigned long n;
2266 	int err;
2267 
2268 	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2269 		return NULL;
2270 
2271 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2272 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2273 	if (nfences > min_t(unsigned long,
2274 			    ULONG_MAX / sizeof(*user),
2275 			    SIZE_MAX / sizeof(*fences)))
2276 		return ERR_PTR(-EINVAL);
2277 
2278 	user = u64_to_user_ptr(args->cliprects_ptr);
2279 	if (!access_ok(user, nfences * sizeof(*user)))
2280 		return ERR_PTR(-EFAULT);
2281 
2282 	fences = kvmalloc_array(nfences, sizeof(*fences),
2283 				__GFP_NOWARN | GFP_KERNEL);
2284 	if (!fences)
2285 		return ERR_PTR(-ENOMEM);
2286 
2287 	for (n = 0; n < nfences; n++) {
2288 		struct drm_i915_gem_exec_fence fence;
2289 		struct drm_syncobj *syncobj;
2290 
2291 		if (__copy_from_user(&fence, user++, sizeof(fence))) {
2292 			err = -EFAULT;
2293 			goto err;
2294 		}
2295 
2296 		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2297 			err = -EINVAL;
2298 			goto err;
2299 		}
2300 
2301 		syncobj = drm_syncobj_find(file, fence.handle);
2302 		if (!syncobj) {
2303 			DRM_DEBUG("Invalid syncobj handle provided\n");
2304 			err = -ENOENT;
2305 			goto err;
2306 		}
2307 
2308 		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2309 			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2310 
2311 		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2312 	}
2313 
2314 	return fences;
2315 
2316 err:
2317 	__free_fence_array(fences, n);
2318 	return ERR_PTR(err);
2319 }
2320 
2321 static void
2322 put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2323 		struct drm_syncobj **fences)
2324 {
2325 	if (fences)
2326 		__free_fence_array(fences, args->num_cliprects);
2327 }
2328 
2329 static int
2330 await_fence_array(struct i915_execbuffer *eb,
2331 		  struct drm_syncobj **fences)
2332 {
2333 	const unsigned int nfences = eb->args->num_cliprects;
2334 	unsigned int n;
2335 	int err;
2336 
2337 	for (n = 0; n < nfences; n++) {
2338 		struct drm_syncobj *syncobj;
2339 		struct dma_fence *fence;
2340 		unsigned int flags;
2341 
2342 		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2343 		if (!(flags & I915_EXEC_FENCE_WAIT))
2344 			continue;
2345 
2346 		fence = drm_syncobj_fence_get(syncobj);
2347 		if (!fence)
2348 			return -EINVAL;
2349 
2350 		err = i915_request_await_dma_fence(eb->request, fence);
2351 		dma_fence_put(fence);
2352 		if (err < 0)
2353 			return err;
2354 	}
2355 
2356 	return 0;
2357 }
2358 
2359 static void
2360 signal_fence_array(struct i915_execbuffer *eb,
2361 		   struct drm_syncobj **fences)
2362 {
2363 	const unsigned int nfences = eb->args->num_cliprects;
2364 	struct dma_fence * const fence = &eb->request->fence;
2365 	unsigned int n;
2366 
2367 	for (n = 0; n < nfences; n++) {
2368 		struct drm_syncobj *syncobj;
2369 		unsigned int flags;
2370 
2371 		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2372 		if (!(flags & I915_EXEC_FENCE_SIGNAL))
2373 			continue;
2374 
2375 		drm_syncobj_replace_fence(syncobj, fence);
2376 	}
2377 }
2378 
2379 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
2380 {
2381 	struct i915_request *rq, *rn;
2382 
2383 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
2384 		if (rq == end || !i915_request_retire(rq))
2385 			break;
2386 }
2387 
2388 static void eb_request_add(struct i915_execbuffer *eb)
2389 {
2390 	struct i915_request *rq = eb->request;
2391 	struct intel_timeline * const tl = i915_request_timeline(rq);
2392 	struct i915_sched_attr attr = {};
2393 	struct i915_request *prev;
2394 
2395 	lockdep_assert_held(&tl->mutex);
2396 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
2397 
2398 	trace_i915_request_add(rq);
2399 
2400 	prev = __i915_request_commit(rq);
2401 
2402 	/* Check that the context wasn't destroyed before submission */
2403 	if (likely(!intel_context_is_closed(eb->context))) {
2404 		attr = eb->gem_context->sched;
2405 
2406 		/*
2407 		 * Boost actual workloads past semaphores!
2408 		 *
2409 		 * With semaphores we spin on one engine waiting for another,
2410 		 * simply to reduce the latency of starting our work when
2411 		 * the signaler completes. However, if there is any other
2412 		 * work that we could be doing on this engine instead, that
2413 		 * is better utilisation and will reduce the overall duration
2414 		 * of the current work. To avoid PI boosting a semaphore
2415 		 * far in the distance past over useful work, we keep a history
2416 		 * of any semaphore use along our dependency chain.
2417 		 */
2418 		if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
2419 			attr.priority |= I915_PRIORITY_NOSEMAPHORE;
2420 
2421 		/*
2422 		 * Boost priorities to new clients (new request flows).
2423 		 *
2424 		 * Allow interactive/synchronous clients to jump ahead of
2425 		 * the bulk clients. (FQ_CODEL)
2426 		 */
2427 		if (list_empty(&rq->sched.signalers_list))
2428 			attr.priority |= I915_PRIORITY_WAIT;
2429 	} else {
2430 		/* Serialise with context_close via the add_to_timeline */
2431 		i915_request_set_error_once(rq, -ENOENT);
2432 		__i915_request_skip(rq);
2433 	}
2434 
2435 	__i915_request_queue(rq, &attr);
2436 
2437 	/* Try to clean up the client's timeline after submitting the request */
2438 	if (prev)
2439 		retire_requests(tl, prev);
2440 
2441 	mutex_unlock(&tl->mutex);
2442 }
2443 
2444 static int
2445 i915_gem_do_execbuffer(struct drm_device *dev,
2446 		       struct drm_file *file,
2447 		       struct drm_i915_gem_execbuffer2 *args,
2448 		       struct drm_i915_gem_exec_object2 *exec,
2449 		       struct drm_syncobj **fences)
2450 {
2451 	struct drm_i915_private *i915 = to_i915(dev);
2452 	struct i915_execbuffer eb;
2453 	struct dma_fence *in_fence = NULL;
2454 	struct dma_fence *exec_fence = NULL;
2455 	struct sync_file *out_fence = NULL;
2456 	struct i915_vma *batch;
2457 	int out_fence_fd = -1;
2458 	int err;
2459 
2460 	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2461 	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2462 		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2463 
2464 	eb.i915 = i915;
2465 	eb.file = file;
2466 	eb.args = args;
2467 	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2468 		args->flags |= __EXEC_HAS_RELOC;
2469 
2470 	eb.exec = exec;
2471 
2472 	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2473 	reloc_cache_init(&eb.reloc_cache, eb.i915);
2474 
2475 	eb.buffer_count = args->buffer_count;
2476 	eb.batch_start_offset = args->batch_start_offset;
2477 	eb.batch_len = args->batch_len;
2478 	eb.trampoline = NULL;
2479 
2480 	eb.batch_flags = 0;
2481 	if (args->flags & I915_EXEC_SECURE) {
2482 		if (INTEL_GEN(i915) >= 11)
2483 			return -ENODEV;
2484 
2485 		/* Return -EPERM to trigger fallback code on old binaries. */
2486 		if (!HAS_SECURE_BATCHES(i915))
2487 			return -EPERM;
2488 
2489 		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2490 			return -EPERM;
2491 
2492 		eb.batch_flags |= I915_DISPATCH_SECURE;
2493 	}
2494 	if (args->flags & I915_EXEC_IS_PINNED)
2495 		eb.batch_flags |= I915_DISPATCH_PINNED;
2496 
2497 	if (args->flags & I915_EXEC_FENCE_IN) {
2498 		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2499 		if (!in_fence)
2500 			return -EINVAL;
2501 	}
2502 
2503 	if (args->flags & I915_EXEC_FENCE_SUBMIT) {
2504 		if (in_fence) {
2505 			err = -EINVAL;
2506 			goto err_in_fence;
2507 		}
2508 
2509 		exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2510 		if (!exec_fence) {
2511 			err = -EINVAL;
2512 			goto err_in_fence;
2513 		}
2514 	}
2515 
2516 	if (args->flags & I915_EXEC_FENCE_OUT) {
2517 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2518 		if (out_fence_fd < 0) {
2519 			err = out_fence_fd;
2520 			goto err_exec_fence;
2521 		}
2522 	}
2523 
2524 	err = eb_create(&eb);
2525 	if (err)
2526 		goto err_out_fence;
2527 
2528 	GEM_BUG_ON(!eb.lut_size);
2529 
2530 	err = eb_select_context(&eb);
2531 	if (unlikely(err))
2532 		goto err_destroy;
2533 
2534 	err = eb_pin_engine(&eb, file, args);
2535 	if (unlikely(err))
2536 		goto err_context;
2537 
2538 	err = eb_relocate(&eb);
2539 	if (err) {
2540 		/*
2541 		 * If the user expects the execobject.offset and
2542 		 * reloc.presumed_offset to be an exact match,
2543 		 * as for using NO_RELOC, then we cannot update
2544 		 * the execobject.offset until we have completed
2545 		 * relocation.
2546 		 */
2547 		args->flags &= ~__EXEC_HAS_RELOC;
2548 		goto err_vma;
2549 	}
2550 
2551 	if (unlikely(eb.batch->flags & EXEC_OBJECT_WRITE)) {
2552 		drm_dbg(&i915->drm,
2553 			"Attempting to use self-modifying batch buffer\n");
2554 		err = -EINVAL;
2555 		goto err_vma;
2556 	}
2557 
2558 	if (range_overflows_t(u64,
2559 			      eb.batch_start_offset, eb.batch_len,
2560 			      eb.batch->vma->size)) {
2561 		drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
2562 		err = -EINVAL;
2563 		goto err_vma;
2564 	}
2565 
2566 	if (eb.batch_len == 0)
2567 		eb.batch_len = eb.batch->vma->size - eb.batch_start_offset;
2568 
2569 	err = eb_parse(&eb);
2570 	if (err)
2571 		goto err_vma;
2572 
2573 	/*
2574 	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2575 	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2576 	 * hsw should have this fixed, but bdw mucks it up again. */
2577 	batch = eb.batch->vma;
2578 	if (eb.batch_flags & I915_DISPATCH_SECURE) {
2579 		struct i915_vma *vma;
2580 
2581 		/*
2582 		 * So on first glance it looks freaky that we pin the batch here
2583 		 * outside of the reservation loop. But:
2584 		 * - The batch is already pinned into the relevant ppgtt, so we
2585 		 *   already have the backing storage fully allocated.
2586 		 * - No other BO uses the global gtt (well contexts, but meh),
2587 		 *   so we don't really have issues with multiple objects not
2588 		 *   fitting due to fragmentation.
2589 		 * So this is actually safe.
2590 		 */
2591 		vma = i915_gem_object_ggtt_pin(batch->obj, NULL, 0, 0, 0);
2592 		if (IS_ERR(vma)) {
2593 			err = PTR_ERR(vma);
2594 			goto err_parse;
2595 		}
2596 
2597 		batch = vma;
2598 	}
2599 
2600 	/* All GPU relocation batches must be submitted prior to the user rq */
2601 	GEM_BUG_ON(eb.reloc_cache.rq);
2602 
2603 	/* Allocate a request for this batch buffer nice and early. */
2604 	eb.request = i915_request_create(eb.context);
2605 	if (IS_ERR(eb.request)) {
2606 		err = PTR_ERR(eb.request);
2607 		goto err_batch_unpin;
2608 	}
2609 
2610 	if (in_fence) {
2611 		err = i915_request_await_dma_fence(eb.request, in_fence);
2612 		if (err < 0)
2613 			goto err_request;
2614 	}
2615 
2616 	if (exec_fence) {
2617 		err = i915_request_await_execution(eb.request, exec_fence,
2618 						   eb.engine->bond_execute);
2619 		if (err < 0)
2620 			goto err_request;
2621 	}
2622 
2623 	if (fences) {
2624 		err = await_fence_array(&eb, fences);
2625 		if (err)
2626 			goto err_request;
2627 	}
2628 
2629 	if (out_fence_fd != -1) {
2630 		out_fence = sync_file_create(&eb.request->fence);
2631 		if (!out_fence) {
2632 			err = -ENOMEM;
2633 			goto err_request;
2634 		}
2635 	}
2636 
2637 	/*
2638 	 * Whilst this request exists, batch_obj will be on the
2639 	 * active_list, and so will hold the active reference. Only when this
2640 	 * request is retired will the the batch_obj be moved onto the
2641 	 * inactive_list and lose its active reference. Hence we do not need
2642 	 * to explicitly hold another reference here.
2643 	 */
2644 	eb.request->batch = batch;
2645 	if (batch->private)
2646 		intel_gt_buffer_pool_mark_active(batch->private, eb.request);
2647 
2648 	trace_i915_request_queue(eb.request, eb.batch_flags);
2649 	err = eb_submit(&eb, batch);
2650 err_request:
2651 	add_to_client(eb.request, file);
2652 	i915_request_get(eb.request);
2653 	eb_request_add(&eb);
2654 
2655 	if (fences)
2656 		signal_fence_array(&eb, fences);
2657 
2658 	if (out_fence) {
2659 		if (err == 0) {
2660 			fd_install(out_fence_fd, out_fence->file);
2661 			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2662 			args->rsvd2 |= (u64)out_fence_fd << 32;
2663 			out_fence_fd = -1;
2664 		} else {
2665 			fput(out_fence->file);
2666 		}
2667 	}
2668 	i915_request_put(eb.request);
2669 
2670 err_batch_unpin:
2671 	if (eb.batch_flags & I915_DISPATCH_SECURE)
2672 		i915_vma_unpin(batch);
2673 err_parse:
2674 	if (batch->private)
2675 		intel_gt_buffer_pool_put(batch->private);
2676 err_vma:
2677 	if (eb.trampoline)
2678 		i915_vma_unpin(eb.trampoline);
2679 	eb_unpin_engine(&eb);
2680 err_context:
2681 	i915_gem_context_put(eb.gem_context);
2682 err_destroy:
2683 	eb_destroy(&eb);
2684 err_out_fence:
2685 	if (out_fence_fd != -1)
2686 		put_unused_fd(out_fence_fd);
2687 err_exec_fence:
2688 	dma_fence_put(exec_fence);
2689 err_in_fence:
2690 	dma_fence_put(in_fence);
2691 	return err;
2692 }
2693 
2694 static size_t eb_element_size(void)
2695 {
2696 	return sizeof(struct drm_i915_gem_exec_object2);
2697 }
2698 
2699 static bool check_buffer_count(size_t count)
2700 {
2701 	const size_t sz = eb_element_size();
2702 
2703 	/*
2704 	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2705 	 * array size (see eb_create()). Otherwise, we can accept an array as
2706 	 * large as can be addressed (though use large arrays at your peril)!
2707 	 */
2708 
2709 	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
2710 }
2711 
2712 /*
2713  * Legacy execbuffer just creates an exec2 list from the original exec object
2714  * list array and passes it to the real function.
2715  */
2716 int
2717 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2718 			  struct drm_file *file)
2719 {
2720 	struct drm_i915_private *i915 = to_i915(dev);
2721 	struct drm_i915_gem_execbuffer *args = data;
2722 	struct drm_i915_gem_execbuffer2 exec2;
2723 	struct drm_i915_gem_exec_object *exec_list = NULL;
2724 	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2725 	const size_t count = args->buffer_count;
2726 	unsigned int i;
2727 	int err;
2728 
2729 	if (!check_buffer_count(count)) {
2730 		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
2731 		return -EINVAL;
2732 	}
2733 
2734 	exec2.buffers_ptr = args->buffers_ptr;
2735 	exec2.buffer_count = args->buffer_count;
2736 	exec2.batch_start_offset = args->batch_start_offset;
2737 	exec2.batch_len = args->batch_len;
2738 	exec2.DR1 = args->DR1;
2739 	exec2.DR4 = args->DR4;
2740 	exec2.num_cliprects = args->num_cliprects;
2741 	exec2.cliprects_ptr = args->cliprects_ptr;
2742 	exec2.flags = I915_EXEC_RENDER;
2743 	i915_execbuffer2_set_context_id(exec2, 0);
2744 
2745 	err = i915_gem_check_execbuffer(&exec2);
2746 	if (err)
2747 		return err;
2748 
2749 	/* Copy in the exec list from userland */
2750 	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2751 				   __GFP_NOWARN | GFP_KERNEL);
2752 	exec2_list = kvmalloc_array(count, eb_element_size(),
2753 				    __GFP_NOWARN | GFP_KERNEL);
2754 	if (exec_list == NULL || exec2_list == NULL) {
2755 		drm_dbg(&i915->drm,
2756 			"Failed to allocate exec list for %d buffers\n",
2757 			args->buffer_count);
2758 		kvfree(exec_list);
2759 		kvfree(exec2_list);
2760 		return -ENOMEM;
2761 	}
2762 	err = copy_from_user(exec_list,
2763 			     u64_to_user_ptr(args->buffers_ptr),
2764 			     sizeof(*exec_list) * count);
2765 	if (err) {
2766 		drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
2767 			args->buffer_count, err);
2768 		kvfree(exec_list);
2769 		kvfree(exec2_list);
2770 		return -EFAULT;
2771 	}
2772 
2773 	for (i = 0; i < args->buffer_count; i++) {
2774 		exec2_list[i].handle = exec_list[i].handle;
2775 		exec2_list[i].relocation_count = exec_list[i].relocation_count;
2776 		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2777 		exec2_list[i].alignment = exec_list[i].alignment;
2778 		exec2_list[i].offset = exec_list[i].offset;
2779 		if (INTEL_GEN(to_i915(dev)) < 4)
2780 			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2781 		else
2782 			exec2_list[i].flags = 0;
2783 	}
2784 
2785 	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2786 	if (exec2.flags & __EXEC_HAS_RELOC) {
2787 		struct drm_i915_gem_exec_object __user *user_exec_list =
2788 			u64_to_user_ptr(args->buffers_ptr);
2789 
2790 		/* Copy the new buffer offsets back to the user's exec list. */
2791 		for (i = 0; i < args->buffer_count; i++) {
2792 			if (!(exec2_list[i].offset & UPDATE))
2793 				continue;
2794 
2795 			exec2_list[i].offset =
2796 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2797 			exec2_list[i].offset &= PIN_OFFSET_MASK;
2798 			if (__copy_to_user(&user_exec_list[i].offset,
2799 					   &exec2_list[i].offset,
2800 					   sizeof(user_exec_list[i].offset)))
2801 				break;
2802 		}
2803 	}
2804 
2805 	kvfree(exec_list);
2806 	kvfree(exec2_list);
2807 	return err;
2808 }
2809 
2810 int
2811 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2812 			   struct drm_file *file)
2813 {
2814 	struct drm_i915_private *i915 = to_i915(dev);
2815 	struct drm_i915_gem_execbuffer2 *args = data;
2816 	struct drm_i915_gem_exec_object2 *exec2_list;
2817 	struct drm_syncobj **fences = NULL;
2818 	const size_t count = args->buffer_count;
2819 	int err;
2820 
2821 	if (!check_buffer_count(count)) {
2822 		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
2823 		return -EINVAL;
2824 	}
2825 
2826 	err = i915_gem_check_execbuffer(args);
2827 	if (err)
2828 		return err;
2829 
2830 	exec2_list = kvmalloc_array(count, eb_element_size(),
2831 				    __GFP_NOWARN | GFP_KERNEL);
2832 	if (exec2_list == NULL) {
2833 		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
2834 			count);
2835 		return -ENOMEM;
2836 	}
2837 	if (copy_from_user(exec2_list,
2838 			   u64_to_user_ptr(args->buffers_ptr),
2839 			   sizeof(*exec2_list) * count)) {
2840 		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
2841 		kvfree(exec2_list);
2842 		return -EFAULT;
2843 	}
2844 
2845 	if (args->flags & I915_EXEC_FENCE_ARRAY) {
2846 		fences = get_fence_array(args, file);
2847 		if (IS_ERR(fences)) {
2848 			kvfree(exec2_list);
2849 			return PTR_ERR(fences);
2850 		}
2851 	}
2852 
2853 	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2854 
2855 	/*
2856 	 * Now that we have begun execution of the batchbuffer, we ignore
2857 	 * any new error after this point. Also given that we have already
2858 	 * updated the associated relocations, we try to write out the current
2859 	 * object locations irrespective of any error.
2860 	 */
2861 	if (args->flags & __EXEC_HAS_RELOC) {
2862 		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2863 			u64_to_user_ptr(args->buffers_ptr);
2864 		unsigned int i;
2865 
2866 		/* Copy the new buffer offsets back to the user's exec list. */
2867 		/*
2868 		 * Note: count * sizeof(*user_exec_list) does not overflow,
2869 		 * because we checked 'count' in check_buffer_count().
2870 		 *
2871 		 * And this range already got effectively checked earlier
2872 		 * when we did the "copy_from_user()" above.
2873 		 */
2874 		if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2875 			goto end;
2876 
2877 		for (i = 0; i < args->buffer_count; i++) {
2878 			if (!(exec2_list[i].offset & UPDATE))
2879 				continue;
2880 
2881 			exec2_list[i].offset =
2882 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2883 			unsafe_put_user(exec2_list[i].offset,
2884 					&user_exec_list[i].offset,
2885 					end_user);
2886 		}
2887 end_user:
2888 		user_access_end();
2889 end:;
2890 	}
2891 
2892 	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2893 	put_fence_array(args, fences);
2894 	kvfree(exec2_list);
2895 	return err;
2896 }
2897