1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6 
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11 
12 #include <drm/drm_syncobj.h>
13 
14 #include "display/intel_frontbuffer.h"
15 
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_engine_pool.h"
19 #include "gt/intel_gt.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_ring.h"
22 
23 #include "i915_drv.h"
24 #include "i915_gem_clflush.h"
25 #include "i915_gem_context.h"
26 #include "i915_gem_ioctls.h"
27 #include "i915_sw_fence_work.h"
28 #include "i915_trace.h"
29 
30 struct eb_vma {
31 	struct i915_vma *vma;
32 	unsigned int flags;
33 
34 	/** This vma's place in the execbuf reservation list */
35 	struct drm_i915_gem_exec_object2 *exec;
36 	struct list_head bind_link;
37 	struct list_head reloc_link;
38 
39 	struct hlist_node node;
40 	u32 handle;
41 };
42 
43 enum {
44 	FORCE_CPU_RELOC = 1,
45 	FORCE_GTT_RELOC,
46 	FORCE_GPU_RELOC,
47 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
48 };
49 
50 #define __EXEC_OBJECT_HAS_PIN		BIT(31)
51 #define __EXEC_OBJECT_HAS_FENCE		BIT(30)
52 #define __EXEC_OBJECT_NEEDS_MAP		BIT(29)
53 #define __EXEC_OBJECT_NEEDS_BIAS	BIT(28)
54 #define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 28) /* all of the above */
55 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
56 
57 #define __EXEC_HAS_RELOC	BIT(31)
58 #define __EXEC_INTERNAL_FLAGS	(~0u << 31)
59 #define UPDATE			PIN_OFFSET_FIXED
60 
61 #define BATCH_OFFSET_BIAS (256*1024)
62 
63 #define __I915_EXEC_ILLEGAL_FLAGS \
64 	(__I915_EXEC_UNKNOWN_FLAGS | \
65 	 I915_EXEC_CONSTANTS_MASK  | \
66 	 I915_EXEC_RESOURCE_STREAMER)
67 
68 /* Catch emission of unexpected errors for CI! */
69 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
70 #undef EINVAL
71 #define EINVAL ({ \
72 	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
73 	22; \
74 })
75 #endif
76 
77 /**
78  * DOC: User command execution
79  *
80  * Userspace submits commands to be executed on the GPU as an instruction
81  * stream within a GEM object we call a batchbuffer. This instructions may
82  * refer to other GEM objects containing auxiliary state such as kernels,
83  * samplers, render targets and even secondary batchbuffers. Userspace does
84  * not know where in the GPU memory these objects reside and so before the
85  * batchbuffer is passed to the GPU for execution, those addresses in the
86  * batchbuffer and auxiliary objects are updated. This is known as relocation,
87  * or patching. To try and avoid having to relocate each object on the next
88  * execution, userspace is told the location of those objects in this pass,
89  * but this remains just a hint as the kernel may choose a new location for
90  * any object in the future.
91  *
92  * At the level of talking to the hardware, submitting a batchbuffer for the
93  * GPU to execute is to add content to a buffer from which the HW
94  * command streamer is reading.
95  *
96  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
97  *    Execlists, this command is not placed on the same buffer as the
98  *    remaining items.
99  *
100  * 2. Add a command to invalidate caches to the buffer.
101  *
102  * 3. Add a batchbuffer start command to the buffer; the start command is
103  *    essentially a token together with the GPU address of the batchbuffer
104  *    to be executed.
105  *
106  * 4. Add a pipeline flush to the buffer.
107  *
108  * 5. Add a memory write command to the buffer to record when the GPU
109  *    is done executing the batchbuffer. The memory write writes the
110  *    global sequence number of the request, ``i915_request::global_seqno``;
111  *    the i915 driver uses the current value in the register to determine
112  *    if the GPU has completed the batchbuffer.
113  *
114  * 6. Add a user interrupt command to the buffer. This command instructs
115  *    the GPU to issue an interrupt when the command, pipeline flush and
116  *    memory write are completed.
117  *
118  * 7. Inform the hardware of the additional commands added to the buffer
119  *    (by updating the tail pointer).
120  *
121  * Processing an execbuf ioctl is conceptually split up into a few phases.
122  *
123  * 1. Validation - Ensure all the pointers, handles and flags are valid.
124  * 2. Reservation - Assign GPU address space for every object
125  * 3. Relocation - Update any addresses to point to the final locations
126  * 4. Serialisation - Order the request with respect to its dependencies
127  * 5. Construction - Construct a request to execute the batchbuffer
128  * 6. Submission (at some point in the future execution)
129  *
130  * Reserving resources for the execbuf is the most complicated phase. We
131  * neither want to have to migrate the object in the address space, nor do
132  * we want to have to update any relocations pointing to this object. Ideally,
133  * we want to leave the object where it is and for all the existing relocations
134  * to match. If the object is given a new address, or if userspace thinks the
135  * object is elsewhere, we have to parse all the relocation entries and update
136  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
137  * all the target addresses in all of its objects match the value in the
138  * relocation entries and that they all match the presumed offsets given by the
139  * list of execbuffer objects. Using this knowledge, we know that if we haven't
140  * moved any buffers, all the relocation entries are valid and we can skip
141  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
142  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
143  *
144  *      The addresses written in the objects must match the corresponding
145  *      reloc.presumed_offset which in turn must match the corresponding
146  *      execobject.offset.
147  *
148  *      Any render targets written to in the batch must be flagged with
149  *      EXEC_OBJECT_WRITE.
150  *
151  *      To avoid stalling, execobject.offset should match the current
152  *      address of that object within the active context.
153  *
154  * The reservation is done is multiple phases. First we try and keep any
155  * object already bound in its current location - so as long as meets the
156  * constraints imposed by the new execbuffer. Any object left unbound after the
157  * first pass is then fitted into any available idle space. If an object does
158  * not fit, all objects are removed from the reservation and the process rerun
159  * after sorting the objects into a priority order (more difficult to fit
160  * objects are tried first). Failing that, the entire VM is cleared and we try
161  * to fit the execbuf once last time before concluding that it simply will not
162  * fit.
163  *
164  * A small complication to all of this is that we allow userspace not only to
165  * specify an alignment and a size for the object in the address space, but
166  * we also allow userspace to specify the exact offset. This objects are
167  * simpler to place (the location is known a priori) all we have to do is make
168  * sure the space is available.
169  *
170  * Once all the objects are in place, patching up the buried pointers to point
171  * to the final locations is a fairly simple job of walking over the relocation
172  * entry arrays, looking up the right address and rewriting the value into
173  * the object. Simple! ... The relocation entries are stored in user memory
174  * and so to access them we have to copy them into a local buffer. That copy
175  * has to avoid taking any pagefaults as they may lead back to a GEM object
176  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
177  * the relocation into multiple passes. First we try to do everything within an
178  * atomic context (avoid the pagefaults) which requires that we never wait. If
179  * we detect that we may wait, or if we need to fault, then we have to fallback
180  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
181  * bells yet?) Dropping the mutex means that we lose all the state we have
182  * built up so far for the execbuf and we must reset any global data. However,
183  * we do leave the objects pinned in their final locations - which is a
184  * potential issue for concurrent execbufs. Once we have left the mutex, we can
185  * allocate and copy all the relocation entries into a large array at our
186  * leisure, reacquire the mutex, reclaim all the objects and other state and
187  * then proceed to update any incorrect addresses with the objects.
188  *
189  * As we process the relocation entries, we maintain a record of whether the
190  * object is being written to. Using NORELOC, we expect userspace to provide
191  * this information instead. We also check whether we can skip the relocation
192  * by comparing the expected value inside the relocation entry with the target's
193  * final address. If they differ, we have to map the current object and rewrite
194  * the 4 or 8 byte pointer within.
195  *
196  * Serialising an execbuf is quite simple according to the rules of the GEM
197  * ABI. Execution within each context is ordered by the order of submission.
198  * Writes to any GEM object are in order of submission and are exclusive. Reads
199  * from a GEM object are unordered with respect to other reads, but ordered by
200  * writes. A write submitted after a read cannot occur before the read, and
201  * similarly any read submitted after a write cannot occur before the write.
202  * Writes are ordered between engines such that only one write occurs at any
203  * time (completing any reads beforehand) - using semaphores where available
204  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
205  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
206  * reads before starting, and any read (either using set-domain or pread) must
207  * flush all GPU writes before starting. (Note we only employ a barrier before,
208  * we currently rely on userspace not concurrently starting a new execution
209  * whilst reading or writing to an object. This may be an advantage or not
210  * depending on how much you trust userspace not to shoot themselves in the
211  * foot.) Serialisation may just result in the request being inserted into
212  * a DAG awaiting its turn, but most simple is to wait on the CPU until
213  * all dependencies are resolved.
214  *
215  * After all of that, is just a matter of closing the request and handing it to
216  * the hardware (well, leaving it in a queue to be executed). However, we also
217  * offer the ability for batchbuffers to be run with elevated privileges so
218  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
219  * Before any batch is given extra privileges we first must check that it
220  * contains no nefarious instructions, we check that each instruction is from
221  * our whitelist and all registers are also from an allowed list. We first
222  * copy the user's batchbuffer to a shadow (so that the user doesn't have
223  * access to it, either by the CPU or GPU as we scan it) and then parse each
224  * instruction. If everything is ok, we set a flag telling the hardware to run
225  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
226  */
227 
228 struct i915_execbuffer {
229 	struct drm_i915_private *i915; /** i915 backpointer */
230 	struct drm_file *file; /** per-file lookup tables and limits */
231 	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
232 	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
233 	struct eb_vma *vma;
234 
235 	struct intel_engine_cs *engine; /** engine to queue the request to */
236 	struct intel_context *context; /* logical state for the request */
237 	struct i915_gem_context *gem_context; /** caller's context */
238 
239 	struct i915_request *request; /** our request to build */
240 	struct eb_vma *batch; /** identity of the batch obj/vma */
241 	struct i915_vma *trampoline; /** trampoline used for chaining */
242 
243 	/** actual size of execobj[] as we may extend it for the cmdparser */
244 	unsigned int buffer_count;
245 
246 	/** list of vma not yet bound during reservation phase */
247 	struct list_head unbound;
248 
249 	/** list of vma that have execobj.relocation_count */
250 	struct list_head relocs;
251 
252 	/**
253 	 * Track the most recently used object for relocations, as we
254 	 * frequently have to perform multiple relocations within the same
255 	 * obj/page
256 	 */
257 	struct reloc_cache {
258 		struct drm_mm_node node; /** temporary GTT binding */
259 		unsigned long vaddr; /** Current kmap address */
260 		unsigned long page; /** Currently mapped page index */
261 		unsigned int gen; /** Cached value of INTEL_GEN */
262 		bool use_64bit_reloc : 1;
263 		bool has_llc : 1;
264 		bool has_fence : 1;
265 		bool needs_unfenced : 1;
266 
267 		struct i915_request *rq;
268 		u32 *rq_cmd;
269 		unsigned int rq_size;
270 	} reloc_cache;
271 
272 	u64 invalid_flags; /** Set of execobj.flags that are invalid */
273 	u32 context_flags; /** Set of execobj.flags to insert from the ctx */
274 
275 	u32 batch_start_offset; /** Location within object of batch */
276 	u32 batch_len; /** Length of batch within object */
277 	u32 batch_flags; /** Flags composed for emit_bb_start() */
278 
279 	/**
280 	 * Indicate either the size of the hastable used to resolve
281 	 * relocation handles, or if negative that we are using a direct
282 	 * index into the execobj[].
283 	 */
284 	int lut_size;
285 	struct hlist_head *buckets; /** ht for relocation handles */
286 };
287 
288 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
289 {
290 	return intel_engine_requires_cmd_parser(eb->engine) ||
291 		(intel_engine_using_cmd_parser(eb->engine) &&
292 		 eb->args->batch_len);
293 }
294 
295 static int eb_create(struct i915_execbuffer *eb)
296 {
297 	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
298 		unsigned int size = 1 + ilog2(eb->buffer_count);
299 
300 		/*
301 		 * Without a 1:1 association between relocation handles and
302 		 * the execobject[] index, we instead create a hashtable.
303 		 * We size it dynamically based on available memory, starting
304 		 * first with 1:1 assocative hash and scaling back until
305 		 * the allocation succeeds.
306 		 *
307 		 * Later on we use a positive lut_size to indicate we are
308 		 * using this hashtable, and a negative value to indicate a
309 		 * direct lookup.
310 		 */
311 		do {
312 			gfp_t flags;
313 
314 			/* While we can still reduce the allocation size, don't
315 			 * raise a warning and allow the allocation to fail.
316 			 * On the last pass though, we want to try as hard
317 			 * as possible to perform the allocation and warn
318 			 * if it fails.
319 			 */
320 			flags = GFP_KERNEL;
321 			if (size > 1)
322 				flags |= __GFP_NORETRY | __GFP_NOWARN;
323 
324 			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
325 					      flags);
326 			if (eb->buckets)
327 				break;
328 		} while (--size);
329 
330 		if (unlikely(!size))
331 			return -ENOMEM;
332 
333 		eb->lut_size = size;
334 	} else {
335 		eb->lut_size = -eb->buffer_count;
336 	}
337 
338 	return 0;
339 }
340 
341 static bool
342 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
343 		 const struct i915_vma *vma,
344 		 unsigned int flags)
345 {
346 	if (vma->node.size < entry->pad_to_size)
347 		return true;
348 
349 	if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
350 		return true;
351 
352 	if (flags & EXEC_OBJECT_PINNED &&
353 	    vma->node.start != entry->offset)
354 		return true;
355 
356 	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
357 	    vma->node.start < BATCH_OFFSET_BIAS)
358 		return true;
359 
360 	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
361 	    (vma->node.start + vma->node.size - 1) >> 32)
362 		return true;
363 
364 	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
365 	    !i915_vma_is_map_and_fenceable(vma))
366 		return true;
367 
368 	return false;
369 }
370 
371 static inline bool
372 eb_pin_vma(struct i915_execbuffer *eb,
373 	   const struct drm_i915_gem_exec_object2 *entry,
374 	   struct eb_vma *ev)
375 {
376 	struct i915_vma *vma = ev->vma;
377 	u64 pin_flags;
378 
379 	if (vma->node.size)
380 		pin_flags = vma->node.start;
381 	else
382 		pin_flags = entry->offset & PIN_OFFSET_MASK;
383 
384 	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
385 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
386 		pin_flags |= PIN_GLOBAL;
387 
388 	if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
389 		return false;
390 
391 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
392 		if (unlikely(i915_vma_pin_fence(vma))) {
393 			i915_vma_unpin(vma);
394 			return false;
395 		}
396 
397 		if (vma->fence)
398 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
399 	}
400 
401 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
402 	return !eb_vma_misplaced(entry, vma, ev->flags);
403 }
404 
405 static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
406 {
407 	GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
408 
409 	if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
410 		__i915_vma_unpin_fence(vma);
411 
412 	__i915_vma_unpin(vma);
413 }
414 
415 static inline void
416 eb_unreserve_vma(struct eb_vma *ev)
417 {
418 	if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
419 		return;
420 
421 	__eb_unreserve_vma(ev->vma, ev->flags);
422 	ev->flags &= ~__EXEC_OBJECT_RESERVED;
423 }
424 
425 static int
426 eb_validate_vma(struct i915_execbuffer *eb,
427 		struct drm_i915_gem_exec_object2 *entry,
428 		struct i915_vma *vma)
429 {
430 	if (unlikely(entry->flags & eb->invalid_flags))
431 		return -EINVAL;
432 
433 	if (unlikely(entry->alignment &&
434 		     !is_power_of_2_u64(entry->alignment)))
435 		return -EINVAL;
436 
437 	/*
438 	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
439 	 * any non-page-aligned or non-canonical addresses.
440 	 */
441 	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
442 		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
443 		return -EINVAL;
444 
445 	/* pad_to_size was once a reserved field, so sanitize it */
446 	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
447 		if (unlikely(offset_in_page(entry->pad_to_size)))
448 			return -EINVAL;
449 	} else {
450 		entry->pad_to_size = 0;
451 	}
452 	/*
453 	 * From drm_mm perspective address space is continuous,
454 	 * so from this point we're always using non-canonical
455 	 * form internally.
456 	 */
457 	entry->offset = gen8_noncanonical_addr(entry->offset);
458 
459 	if (!eb->reloc_cache.has_fence) {
460 		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
461 	} else {
462 		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
463 		     eb->reloc_cache.needs_unfenced) &&
464 		    i915_gem_object_is_tiled(vma->obj))
465 			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
466 	}
467 
468 	if (!(entry->flags & EXEC_OBJECT_PINNED))
469 		entry->flags |= eb->context_flags;
470 
471 	return 0;
472 }
473 
474 static void
475 eb_add_vma(struct i915_execbuffer *eb,
476 	   unsigned int i, unsigned batch_idx,
477 	   struct i915_vma *vma)
478 {
479 	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
480 	struct eb_vma *ev = &eb->vma[i];
481 
482 	GEM_BUG_ON(i915_vma_is_closed(vma));
483 
484 	ev->vma = i915_vma_get(vma);
485 	ev->exec = entry;
486 	ev->flags = entry->flags;
487 
488 	if (eb->lut_size > 0) {
489 		ev->handle = entry->handle;
490 		hlist_add_head(&ev->node,
491 			       &eb->buckets[hash_32(entry->handle,
492 						    eb->lut_size)]);
493 	}
494 
495 	if (entry->relocation_count)
496 		list_add_tail(&ev->reloc_link, &eb->relocs);
497 
498 	/*
499 	 * SNA is doing fancy tricks with compressing batch buffers, which leads
500 	 * to negative relocation deltas. Usually that works out ok since the
501 	 * relocate address is still positive, except when the batch is placed
502 	 * very low in the GTT. Ensure this doesn't happen.
503 	 *
504 	 * Note that actual hangs have only been observed on gen7, but for
505 	 * paranoia do it everywhere.
506 	 */
507 	if (i == batch_idx) {
508 		if (entry->relocation_count &&
509 		    !(ev->flags & EXEC_OBJECT_PINNED))
510 			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
511 		if (eb->reloc_cache.has_fence)
512 			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
513 
514 		eb->batch = ev;
515 	}
516 
517 	if (eb_pin_vma(eb, entry, ev)) {
518 		if (entry->offset != vma->node.start) {
519 			entry->offset = vma->node.start | UPDATE;
520 			eb->args->flags |= __EXEC_HAS_RELOC;
521 		}
522 	} else {
523 		eb_unreserve_vma(ev);
524 		list_add_tail(&ev->bind_link, &eb->unbound);
525 	}
526 }
527 
528 static inline int use_cpu_reloc(const struct reloc_cache *cache,
529 				const struct drm_i915_gem_object *obj)
530 {
531 	if (!i915_gem_object_has_struct_page(obj))
532 		return false;
533 
534 	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
535 		return true;
536 
537 	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
538 		return false;
539 
540 	return (cache->has_llc ||
541 		obj->cache_dirty ||
542 		obj->cache_level != I915_CACHE_NONE);
543 }
544 
545 static int eb_reserve_vma(const struct i915_execbuffer *eb,
546 			  struct eb_vma *ev,
547 			  u64 pin_flags)
548 {
549 	struct drm_i915_gem_exec_object2 *entry = ev->exec;
550 	unsigned int exec_flags = ev->flags;
551 	struct i915_vma *vma = ev->vma;
552 	int err;
553 
554 	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
555 		pin_flags |= PIN_GLOBAL;
556 
557 	/*
558 	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
559 	 * limit address to the first 4GBs for unflagged objects.
560 	 */
561 	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
562 		pin_flags |= PIN_ZONE_4G;
563 
564 	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
565 		pin_flags |= PIN_MAPPABLE;
566 
567 	if (exec_flags & EXEC_OBJECT_PINNED)
568 		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
569 	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
570 		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
571 
572 	if (drm_mm_node_allocated(&vma->node) &&
573 	    eb_vma_misplaced(entry, vma, ev->flags)) {
574 		err = i915_vma_unbind(vma);
575 		if (err)
576 			return err;
577 	}
578 
579 	err = i915_vma_pin(vma,
580 			   entry->pad_to_size, entry->alignment,
581 			   pin_flags);
582 	if (err)
583 		return err;
584 
585 	if (entry->offset != vma->node.start) {
586 		entry->offset = vma->node.start | UPDATE;
587 		eb->args->flags |= __EXEC_HAS_RELOC;
588 	}
589 
590 	if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
591 		err = i915_vma_pin_fence(vma);
592 		if (unlikely(err)) {
593 			i915_vma_unpin(vma);
594 			return err;
595 		}
596 
597 		if (vma->fence)
598 			exec_flags |= __EXEC_OBJECT_HAS_FENCE;
599 	}
600 
601 	ev->flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
602 	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
603 
604 	return 0;
605 }
606 
607 static int eb_reserve(struct i915_execbuffer *eb)
608 {
609 	const unsigned int count = eb->buffer_count;
610 	unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
611 	struct list_head last;
612 	struct eb_vma *ev;
613 	unsigned int i, pass;
614 	int err = 0;
615 
616 	/*
617 	 * Attempt to pin all of the buffers into the GTT.
618 	 * This is done in 3 phases:
619 	 *
620 	 * 1a. Unbind all objects that do not match the GTT constraints for
621 	 *     the execbuffer (fenceable, mappable, alignment etc).
622 	 * 1b. Increment pin count for already bound objects.
623 	 * 2.  Bind new objects.
624 	 * 3.  Decrement pin count.
625 	 *
626 	 * This avoid unnecessary unbinding of later objects in order to make
627 	 * room for the earlier objects *unless* we need to defragment.
628 	 */
629 
630 	if (mutex_lock_interruptible(&eb->i915->drm.struct_mutex))
631 		return -EINTR;
632 
633 	pass = 0;
634 	do {
635 		list_for_each_entry(ev, &eb->unbound, bind_link) {
636 			err = eb_reserve_vma(eb, ev, pin_flags);
637 			if (err)
638 				break;
639 		}
640 		if (!(err == -ENOSPC || err == -EAGAIN))
641 			break;
642 
643 		/* Resort *all* the objects into priority order */
644 		INIT_LIST_HEAD(&eb->unbound);
645 		INIT_LIST_HEAD(&last);
646 		for (i = 0; i < count; i++) {
647 			unsigned int flags;
648 
649 			ev = &eb->vma[i];
650 			flags = ev->flags;
651 			if (flags & EXEC_OBJECT_PINNED &&
652 			    flags & __EXEC_OBJECT_HAS_PIN)
653 				continue;
654 
655 			eb_unreserve_vma(ev);
656 
657 			if (flags & EXEC_OBJECT_PINNED)
658 				/* Pinned must have their slot */
659 				list_add(&ev->bind_link, &eb->unbound);
660 			else if (flags & __EXEC_OBJECT_NEEDS_MAP)
661 				/* Map require the lowest 256MiB (aperture) */
662 				list_add_tail(&ev->bind_link, &eb->unbound);
663 			else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
664 				/* Prioritise 4GiB region for restricted bo */
665 				list_add(&ev->bind_link, &last);
666 			else
667 				list_add_tail(&ev->bind_link, &last);
668 		}
669 		list_splice_tail(&last, &eb->unbound);
670 
671 		if (err == -EAGAIN) {
672 			mutex_unlock(&eb->i915->drm.struct_mutex);
673 			flush_workqueue(eb->i915->mm.userptr_wq);
674 			mutex_lock(&eb->i915->drm.struct_mutex);
675 			continue;
676 		}
677 
678 		switch (pass++) {
679 		case 0:
680 			break;
681 
682 		case 1:
683 			/* Too fragmented, unbind everything and retry */
684 			mutex_lock(&eb->context->vm->mutex);
685 			err = i915_gem_evict_vm(eb->context->vm);
686 			mutex_unlock(&eb->context->vm->mutex);
687 			if (err)
688 				goto unlock;
689 			break;
690 
691 		default:
692 			err = -ENOSPC;
693 			goto unlock;
694 		}
695 
696 		pin_flags = PIN_USER;
697 	} while (1);
698 
699 unlock:
700 	mutex_unlock(&eb->i915->drm.struct_mutex);
701 	return err;
702 }
703 
704 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
705 {
706 	if (eb->args->flags & I915_EXEC_BATCH_FIRST)
707 		return 0;
708 	else
709 		return eb->buffer_count - 1;
710 }
711 
712 static int eb_select_context(struct i915_execbuffer *eb)
713 {
714 	struct i915_gem_context *ctx;
715 
716 	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
717 	if (unlikely(!ctx))
718 		return -ENOENT;
719 
720 	eb->gem_context = ctx;
721 	if (rcu_access_pointer(ctx->vm))
722 		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
723 
724 	eb->context_flags = 0;
725 	if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
726 		eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
727 
728 	return 0;
729 }
730 
731 static int eb_lookup_vmas(struct i915_execbuffer *eb)
732 {
733 	struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
734 	struct drm_i915_gem_object *obj;
735 	unsigned int i, batch;
736 	int err;
737 
738 	if (unlikely(i915_gem_context_is_closed(eb->gem_context)))
739 		return -ENOENT;
740 
741 	INIT_LIST_HEAD(&eb->relocs);
742 	INIT_LIST_HEAD(&eb->unbound);
743 
744 	batch = eb_batch_index(eb);
745 
746 	for (i = 0; i < eb->buffer_count; i++) {
747 		u32 handle = eb->exec[i].handle;
748 		struct i915_lut_handle *lut;
749 		struct i915_vma *vma;
750 
751 		vma = radix_tree_lookup(handles_vma, handle);
752 		if (likely(vma))
753 			goto add_vma;
754 
755 		obj = i915_gem_object_lookup(eb->file, handle);
756 		if (unlikely(!obj)) {
757 			err = -ENOENT;
758 			goto err_vma;
759 		}
760 
761 		vma = i915_vma_instance(obj, eb->context->vm, NULL);
762 		if (IS_ERR(vma)) {
763 			err = PTR_ERR(vma);
764 			goto err_obj;
765 		}
766 
767 		lut = i915_lut_handle_alloc();
768 		if (unlikely(!lut)) {
769 			err = -ENOMEM;
770 			goto err_obj;
771 		}
772 
773 		err = radix_tree_insert(handles_vma, handle, vma);
774 		if (unlikely(err)) {
775 			i915_lut_handle_free(lut);
776 			goto err_obj;
777 		}
778 
779 		/* transfer ref to lut */
780 		if (!atomic_fetch_inc(&vma->open_count))
781 			i915_vma_reopen(vma);
782 		lut->handle = handle;
783 		lut->ctx = eb->gem_context;
784 
785 		i915_gem_object_lock(obj);
786 		list_add(&lut->obj_link, &obj->lut_list);
787 		i915_gem_object_unlock(obj);
788 
789 add_vma:
790 		err = eb_validate_vma(eb, &eb->exec[i], vma);
791 		if (unlikely(err))
792 			goto err_vma;
793 
794 		eb_add_vma(eb, i, batch, vma);
795 	}
796 
797 	return 0;
798 
799 err_obj:
800 	i915_gem_object_put(obj);
801 err_vma:
802 	eb->vma[i].vma = NULL;
803 	return err;
804 }
805 
806 static struct eb_vma *
807 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
808 {
809 	if (eb->lut_size < 0) {
810 		if (handle >= -eb->lut_size)
811 			return NULL;
812 		return &eb->vma[handle];
813 	} else {
814 		struct hlist_head *head;
815 		struct eb_vma *ev;
816 
817 		head = &eb->buckets[hash_32(handle, eb->lut_size)];
818 		hlist_for_each_entry(ev, head, node) {
819 			if (ev->handle == handle)
820 				return ev;
821 		}
822 		return NULL;
823 	}
824 }
825 
826 static void eb_release_vmas(const struct i915_execbuffer *eb)
827 {
828 	const unsigned int count = eb->buffer_count;
829 	unsigned int i;
830 
831 	for (i = 0; i < count; i++) {
832 		struct eb_vma *ev = &eb->vma[i];
833 		struct i915_vma *vma = ev->vma;
834 
835 		if (!vma)
836 			break;
837 
838 		eb->vma[i].vma = NULL;
839 
840 		if (ev->flags & __EXEC_OBJECT_HAS_PIN)
841 			__eb_unreserve_vma(vma, ev->flags);
842 
843 		i915_vma_put(vma);
844 	}
845 }
846 
847 static void eb_destroy(const struct i915_execbuffer *eb)
848 {
849 	GEM_BUG_ON(eb->reloc_cache.rq);
850 
851 	if (eb->lut_size > 0)
852 		kfree(eb->buckets);
853 }
854 
855 static inline u64
856 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
857 		  const struct i915_vma *target)
858 {
859 	return gen8_canonical_addr((int)reloc->delta + target->node.start);
860 }
861 
862 static void reloc_cache_init(struct reloc_cache *cache,
863 			     struct drm_i915_private *i915)
864 {
865 	cache->page = -1;
866 	cache->vaddr = 0;
867 	/* Must be a variable in the struct to allow GCC to unroll. */
868 	cache->gen = INTEL_GEN(i915);
869 	cache->has_llc = HAS_LLC(i915);
870 	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
871 	cache->has_fence = cache->gen < 4;
872 	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
873 	cache->node.flags = 0;
874 	cache->rq = NULL;
875 	cache->rq_size = 0;
876 }
877 
878 static inline void *unmask_page(unsigned long p)
879 {
880 	return (void *)(uintptr_t)(p & PAGE_MASK);
881 }
882 
883 static inline unsigned int unmask_flags(unsigned long p)
884 {
885 	return p & ~PAGE_MASK;
886 }
887 
888 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
889 
890 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
891 {
892 	struct drm_i915_private *i915 =
893 		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
894 	return &i915->ggtt;
895 }
896 
897 static void reloc_gpu_flush(struct reloc_cache *cache)
898 {
899 	struct drm_i915_gem_object *obj = cache->rq->batch->obj;
900 
901 	GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
902 	cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
903 
904 	__i915_gem_object_flush_map(obj, 0, sizeof(u32) * (cache->rq_size + 1));
905 	i915_gem_object_unpin_map(obj);
906 
907 	intel_gt_chipset_flush(cache->rq->engine->gt);
908 
909 	i915_request_add(cache->rq);
910 	cache->rq = NULL;
911 }
912 
913 static void reloc_cache_reset(struct reloc_cache *cache)
914 {
915 	void *vaddr;
916 
917 	if (cache->rq)
918 		reloc_gpu_flush(cache);
919 
920 	if (!cache->vaddr)
921 		return;
922 
923 	vaddr = unmask_page(cache->vaddr);
924 	if (cache->vaddr & KMAP) {
925 		if (cache->vaddr & CLFLUSH_AFTER)
926 			mb();
927 
928 		kunmap_atomic(vaddr);
929 		i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
930 	} else {
931 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
932 
933 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
934 		io_mapping_unmap_atomic((void __iomem *)vaddr);
935 
936 		if (drm_mm_node_allocated(&cache->node)) {
937 			ggtt->vm.clear_range(&ggtt->vm,
938 					     cache->node.start,
939 					     cache->node.size);
940 			mutex_lock(&ggtt->vm.mutex);
941 			drm_mm_remove_node(&cache->node);
942 			mutex_unlock(&ggtt->vm.mutex);
943 		} else {
944 			i915_vma_unpin((struct i915_vma *)cache->node.mm);
945 		}
946 	}
947 
948 	cache->vaddr = 0;
949 	cache->page = -1;
950 }
951 
952 static void *reloc_kmap(struct drm_i915_gem_object *obj,
953 			struct reloc_cache *cache,
954 			unsigned long page)
955 {
956 	void *vaddr;
957 
958 	if (cache->vaddr) {
959 		kunmap_atomic(unmask_page(cache->vaddr));
960 	} else {
961 		unsigned int flushes;
962 		int err;
963 
964 		err = i915_gem_object_prepare_write(obj, &flushes);
965 		if (err)
966 			return ERR_PTR(err);
967 
968 		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
969 		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
970 
971 		cache->vaddr = flushes | KMAP;
972 		cache->node.mm = (void *)obj;
973 		if (flushes)
974 			mb();
975 	}
976 
977 	vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
978 	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
979 	cache->page = page;
980 
981 	return vaddr;
982 }
983 
984 static void *reloc_iomap(struct drm_i915_gem_object *obj,
985 			 struct reloc_cache *cache,
986 			 unsigned long page)
987 {
988 	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
989 	unsigned long offset;
990 	void *vaddr;
991 
992 	if (cache->vaddr) {
993 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
994 		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
995 	} else {
996 		struct i915_vma *vma;
997 		int err;
998 
999 		if (i915_gem_object_is_tiled(obj))
1000 			return ERR_PTR(-EINVAL);
1001 
1002 		if (use_cpu_reloc(cache, obj))
1003 			return NULL;
1004 
1005 		i915_gem_object_lock(obj);
1006 		err = i915_gem_object_set_to_gtt_domain(obj, true);
1007 		i915_gem_object_unlock(obj);
1008 		if (err)
1009 			return ERR_PTR(err);
1010 
1011 		vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1012 					       PIN_MAPPABLE |
1013 					       PIN_NONBLOCK /* NOWARN */ |
1014 					       PIN_NOEVICT);
1015 		if (IS_ERR(vma)) {
1016 			memset(&cache->node, 0, sizeof(cache->node));
1017 			mutex_lock(&ggtt->vm.mutex);
1018 			err = drm_mm_insert_node_in_range
1019 				(&ggtt->vm.mm, &cache->node,
1020 				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1021 				 0, ggtt->mappable_end,
1022 				 DRM_MM_INSERT_LOW);
1023 			mutex_unlock(&ggtt->vm.mutex);
1024 			if (err) /* no inactive aperture space, use cpu reloc */
1025 				return NULL;
1026 		} else {
1027 			cache->node.start = vma->node.start;
1028 			cache->node.mm = (void *)vma;
1029 		}
1030 	}
1031 
1032 	offset = cache->node.start;
1033 	if (drm_mm_node_allocated(&cache->node)) {
1034 		ggtt->vm.insert_page(&ggtt->vm,
1035 				     i915_gem_object_get_dma_address(obj, page),
1036 				     offset, I915_CACHE_NONE, 0);
1037 	} else {
1038 		offset += page << PAGE_SHIFT;
1039 	}
1040 
1041 	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1042 							 offset);
1043 	cache->page = page;
1044 	cache->vaddr = (unsigned long)vaddr;
1045 
1046 	return vaddr;
1047 }
1048 
1049 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1050 			 struct reloc_cache *cache,
1051 			 unsigned long page)
1052 {
1053 	void *vaddr;
1054 
1055 	if (cache->page == page) {
1056 		vaddr = unmask_page(cache->vaddr);
1057 	} else {
1058 		vaddr = NULL;
1059 		if ((cache->vaddr & KMAP) == 0)
1060 			vaddr = reloc_iomap(obj, cache, page);
1061 		if (!vaddr)
1062 			vaddr = reloc_kmap(obj, cache, page);
1063 	}
1064 
1065 	return vaddr;
1066 }
1067 
1068 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1069 {
1070 	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1071 		if (flushes & CLFLUSH_BEFORE) {
1072 			clflushopt(addr);
1073 			mb();
1074 		}
1075 
1076 		*addr = value;
1077 
1078 		/*
1079 		 * Writes to the same cacheline are serialised by the CPU
1080 		 * (including clflush). On the write path, we only require
1081 		 * that it hits memory in an orderly fashion and place
1082 		 * mb barriers at the start and end of the relocation phase
1083 		 * to ensure ordering of clflush wrt to the system.
1084 		 */
1085 		if (flushes & CLFLUSH_AFTER)
1086 			clflushopt(addr);
1087 	} else
1088 		*addr = value;
1089 }
1090 
1091 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1092 {
1093 	struct drm_i915_gem_object *obj = vma->obj;
1094 	int err;
1095 
1096 	i915_vma_lock(vma);
1097 
1098 	if (obj->cache_dirty & ~obj->cache_coherent)
1099 		i915_gem_clflush_object(obj, 0);
1100 	obj->write_domain = 0;
1101 
1102 	err = i915_request_await_object(rq, vma->obj, true);
1103 	if (err == 0)
1104 		err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1105 
1106 	i915_vma_unlock(vma);
1107 
1108 	return err;
1109 }
1110 
1111 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1112 			     struct i915_vma *vma,
1113 			     unsigned int len)
1114 {
1115 	struct reloc_cache *cache = &eb->reloc_cache;
1116 	struct intel_engine_pool_node *pool;
1117 	struct i915_request *rq;
1118 	struct i915_vma *batch;
1119 	u32 *cmd;
1120 	int err;
1121 
1122 	pool = intel_engine_get_pool(eb->engine, PAGE_SIZE);
1123 	if (IS_ERR(pool))
1124 		return PTR_ERR(pool);
1125 
1126 	cmd = i915_gem_object_pin_map(pool->obj,
1127 				      cache->has_llc ?
1128 				      I915_MAP_FORCE_WB :
1129 				      I915_MAP_FORCE_WC);
1130 	if (IS_ERR(cmd)) {
1131 		err = PTR_ERR(cmd);
1132 		goto out_pool;
1133 	}
1134 
1135 	batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1136 	if (IS_ERR(batch)) {
1137 		err = PTR_ERR(batch);
1138 		goto err_unmap;
1139 	}
1140 
1141 	err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1142 	if (err)
1143 		goto err_unmap;
1144 
1145 	rq = i915_request_create(eb->context);
1146 	if (IS_ERR(rq)) {
1147 		err = PTR_ERR(rq);
1148 		goto err_unpin;
1149 	}
1150 
1151 	err = intel_engine_pool_mark_active(pool, rq);
1152 	if (err)
1153 		goto err_request;
1154 
1155 	err = reloc_move_to_gpu(rq, vma);
1156 	if (err)
1157 		goto err_request;
1158 
1159 	err = eb->engine->emit_bb_start(rq,
1160 					batch->node.start, PAGE_SIZE,
1161 					cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1162 	if (err)
1163 		goto skip_request;
1164 
1165 	i915_vma_lock(batch);
1166 	err = i915_request_await_object(rq, batch->obj, false);
1167 	if (err == 0)
1168 		err = i915_vma_move_to_active(batch, rq, 0);
1169 	i915_vma_unlock(batch);
1170 	if (err)
1171 		goto skip_request;
1172 
1173 	rq->batch = batch;
1174 	i915_vma_unpin(batch);
1175 
1176 	cache->rq = rq;
1177 	cache->rq_cmd = cmd;
1178 	cache->rq_size = 0;
1179 
1180 	/* Return with batch mapping (cmd) still pinned */
1181 	goto out_pool;
1182 
1183 skip_request:
1184 	i915_request_set_error_once(rq, err);
1185 err_request:
1186 	i915_request_add(rq);
1187 err_unpin:
1188 	i915_vma_unpin(batch);
1189 err_unmap:
1190 	i915_gem_object_unpin_map(pool->obj);
1191 out_pool:
1192 	intel_engine_pool_put(pool);
1193 	return err;
1194 }
1195 
1196 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1197 		      struct i915_vma *vma,
1198 		      unsigned int len)
1199 {
1200 	struct reloc_cache *cache = &eb->reloc_cache;
1201 	u32 *cmd;
1202 
1203 	if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1204 		reloc_gpu_flush(cache);
1205 
1206 	if (unlikely(!cache->rq)) {
1207 		int err;
1208 
1209 		if (!intel_engine_can_store_dword(eb->engine))
1210 			return ERR_PTR(-ENODEV);
1211 
1212 		err = __reloc_gpu_alloc(eb, vma, len);
1213 		if (unlikely(err))
1214 			return ERR_PTR(err);
1215 	}
1216 
1217 	cmd = cache->rq_cmd + cache->rq_size;
1218 	cache->rq_size += len;
1219 
1220 	return cmd;
1221 }
1222 
1223 static u64
1224 relocate_entry(struct i915_vma *vma,
1225 	       const struct drm_i915_gem_relocation_entry *reloc,
1226 	       struct i915_execbuffer *eb,
1227 	       const struct i915_vma *target)
1228 {
1229 	u64 offset = reloc->offset;
1230 	u64 target_offset = relocation_target(reloc, target);
1231 	bool wide = eb->reloc_cache.use_64bit_reloc;
1232 	void *vaddr;
1233 
1234 	if (!eb->reloc_cache.vaddr &&
1235 	    (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1236 	     !dma_resv_test_signaled_rcu(vma->resv, true))) {
1237 		const unsigned int gen = eb->reloc_cache.gen;
1238 		unsigned int len;
1239 		u32 *batch;
1240 		u64 addr;
1241 
1242 		if (wide)
1243 			len = offset & 7 ? 8 : 5;
1244 		else if (gen >= 4)
1245 			len = 4;
1246 		else
1247 			len = 3;
1248 
1249 		batch = reloc_gpu(eb, vma, len);
1250 		if (IS_ERR(batch))
1251 			goto repeat;
1252 
1253 		addr = gen8_canonical_addr(vma->node.start + offset);
1254 		if (wide) {
1255 			if (offset & 7) {
1256 				*batch++ = MI_STORE_DWORD_IMM_GEN4;
1257 				*batch++ = lower_32_bits(addr);
1258 				*batch++ = upper_32_bits(addr);
1259 				*batch++ = lower_32_bits(target_offset);
1260 
1261 				addr = gen8_canonical_addr(addr + 4);
1262 
1263 				*batch++ = MI_STORE_DWORD_IMM_GEN4;
1264 				*batch++ = lower_32_bits(addr);
1265 				*batch++ = upper_32_bits(addr);
1266 				*batch++ = upper_32_bits(target_offset);
1267 			} else {
1268 				*batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1269 				*batch++ = lower_32_bits(addr);
1270 				*batch++ = upper_32_bits(addr);
1271 				*batch++ = lower_32_bits(target_offset);
1272 				*batch++ = upper_32_bits(target_offset);
1273 			}
1274 		} else if (gen >= 6) {
1275 			*batch++ = MI_STORE_DWORD_IMM_GEN4;
1276 			*batch++ = 0;
1277 			*batch++ = addr;
1278 			*batch++ = target_offset;
1279 		} else if (gen >= 4) {
1280 			*batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1281 			*batch++ = 0;
1282 			*batch++ = addr;
1283 			*batch++ = target_offset;
1284 		} else {
1285 			*batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1286 			*batch++ = addr;
1287 			*batch++ = target_offset;
1288 		}
1289 
1290 		goto out;
1291 	}
1292 
1293 repeat:
1294 	vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1295 	if (IS_ERR(vaddr))
1296 		return PTR_ERR(vaddr);
1297 
1298 	clflush_write32(vaddr + offset_in_page(offset),
1299 			lower_32_bits(target_offset),
1300 			eb->reloc_cache.vaddr);
1301 
1302 	if (wide) {
1303 		offset += sizeof(u32);
1304 		target_offset >>= 32;
1305 		wide = false;
1306 		goto repeat;
1307 	}
1308 
1309 out:
1310 	return target->node.start | UPDATE;
1311 }
1312 
1313 static u64
1314 eb_relocate_entry(struct i915_execbuffer *eb,
1315 		  struct eb_vma *ev,
1316 		  const struct drm_i915_gem_relocation_entry *reloc)
1317 {
1318 	struct drm_i915_private *i915 = eb->i915;
1319 	struct eb_vma *target;
1320 	int err;
1321 
1322 	/* we've already hold a reference to all valid objects */
1323 	target = eb_get_vma(eb, reloc->target_handle);
1324 	if (unlikely(!target))
1325 		return -ENOENT;
1326 
1327 	/* Validate that the target is in a valid r/w GPU domain */
1328 	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1329 		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1330 			  "target %d offset %d "
1331 			  "read %08x write %08x",
1332 			  reloc->target_handle,
1333 			  (int) reloc->offset,
1334 			  reloc->read_domains,
1335 			  reloc->write_domain);
1336 		return -EINVAL;
1337 	}
1338 	if (unlikely((reloc->write_domain | reloc->read_domains)
1339 		     & ~I915_GEM_GPU_DOMAINS)) {
1340 		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1341 			  "target %d offset %d "
1342 			  "read %08x write %08x",
1343 			  reloc->target_handle,
1344 			  (int) reloc->offset,
1345 			  reloc->read_domains,
1346 			  reloc->write_domain);
1347 		return -EINVAL;
1348 	}
1349 
1350 	if (reloc->write_domain) {
1351 		target->flags |= EXEC_OBJECT_WRITE;
1352 
1353 		/*
1354 		 * Sandybridge PPGTT errata: We need a global gtt mapping
1355 		 * for MI and pipe_control writes because the gpu doesn't
1356 		 * properly redirect them through the ppgtt for non_secure
1357 		 * batchbuffers.
1358 		 */
1359 		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1360 		    IS_GEN(eb->i915, 6)) {
1361 			err = i915_vma_bind(target->vma,
1362 					    target->vma->obj->cache_level,
1363 					    PIN_GLOBAL, NULL);
1364 			if (WARN_ONCE(err,
1365 				      "Unexpected failure to bind target VMA!"))
1366 				return err;
1367 		}
1368 	}
1369 
1370 	/*
1371 	 * If the relocation already has the right value in it, no
1372 	 * more work needs to be done.
1373 	 */
1374 	if (!DBG_FORCE_RELOC &&
1375 	    gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1376 		return 0;
1377 
1378 	/* Check that the relocation address is valid... */
1379 	if (unlikely(reloc->offset >
1380 		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1381 		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1382 			  "target %d offset %d size %d.\n",
1383 			  reloc->target_handle,
1384 			  (int)reloc->offset,
1385 			  (int)ev->vma->size);
1386 		return -EINVAL;
1387 	}
1388 	if (unlikely(reloc->offset & 3)) {
1389 		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1390 			  "target %d offset %d.\n",
1391 			  reloc->target_handle,
1392 			  (int)reloc->offset);
1393 		return -EINVAL;
1394 	}
1395 
1396 	/*
1397 	 * If we write into the object, we need to force the synchronisation
1398 	 * barrier, either with an asynchronous clflush or if we executed the
1399 	 * patching using the GPU (though that should be serialised by the
1400 	 * timeline). To be completely sure, and since we are required to
1401 	 * do relocations we are already stalling, disable the user's opt
1402 	 * out of our synchronisation.
1403 	 */
1404 	ev->flags &= ~EXEC_OBJECT_ASYNC;
1405 
1406 	/* and update the user's relocation entry */
1407 	return relocate_entry(ev->vma, reloc, eb, target->vma);
1408 }
1409 
1410 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1411 {
1412 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1413 	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1414 	struct drm_i915_gem_relocation_entry __user *urelocs;
1415 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1416 	unsigned int remain;
1417 
1418 	urelocs = u64_to_user_ptr(entry->relocs_ptr);
1419 	remain = entry->relocation_count;
1420 	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1421 		return -EINVAL;
1422 
1423 	/*
1424 	 * We must check that the entire relocation array is safe
1425 	 * to read. However, if the array is not writable the user loses
1426 	 * the updated relocation values.
1427 	 */
1428 	if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1429 		return -EFAULT;
1430 
1431 	do {
1432 		struct drm_i915_gem_relocation_entry *r = stack;
1433 		unsigned int count =
1434 			min_t(unsigned int, remain, ARRAY_SIZE(stack));
1435 		unsigned int copied;
1436 
1437 		/*
1438 		 * This is the fast path and we cannot handle a pagefault
1439 		 * whilst holding the struct mutex lest the user pass in the
1440 		 * relocations contained within a mmaped bo. For in such a case
1441 		 * we, the page fault handler would call i915_gem_fault() and
1442 		 * we would try to acquire the struct mutex again. Obviously
1443 		 * this is bad and so lockdep complains vehemently.
1444 		 */
1445 		copied = __copy_from_user(r, urelocs, count * sizeof(r[0]));
1446 		if (unlikely(copied)) {
1447 			remain = -EFAULT;
1448 			goto out;
1449 		}
1450 
1451 		remain -= count;
1452 		do {
1453 			u64 offset = eb_relocate_entry(eb, ev, r);
1454 
1455 			if (likely(offset == 0)) {
1456 			} else if ((s64)offset < 0) {
1457 				remain = (int)offset;
1458 				goto out;
1459 			} else {
1460 				/*
1461 				 * Note that reporting an error now
1462 				 * leaves everything in an inconsistent
1463 				 * state as we have *already* changed
1464 				 * the relocation value inside the
1465 				 * object. As we have not changed the
1466 				 * reloc.presumed_offset or will not
1467 				 * change the execobject.offset, on the
1468 				 * call we may not rewrite the value
1469 				 * inside the object, leaving it
1470 				 * dangling and causing a GPU hang. Unless
1471 				 * userspace dynamically rebuilds the
1472 				 * relocations on each execbuf rather than
1473 				 * presume a static tree.
1474 				 *
1475 				 * We did previously check if the relocations
1476 				 * were writable (access_ok), an error now
1477 				 * would be a strange race with mprotect,
1478 				 * having already demonstrated that we
1479 				 * can read from this userspace address.
1480 				 */
1481 				offset = gen8_canonical_addr(offset & ~UPDATE);
1482 				__put_user(offset,
1483 					   &urelocs[r - stack].presumed_offset);
1484 			}
1485 		} while (r++, --count);
1486 		urelocs += ARRAY_SIZE(stack);
1487 	} while (remain);
1488 out:
1489 	reloc_cache_reset(&eb->reloc_cache);
1490 	return remain;
1491 }
1492 
1493 static int eb_relocate(struct i915_execbuffer *eb)
1494 {
1495 	int err;
1496 
1497 	mutex_lock(&eb->gem_context->mutex);
1498 	err = eb_lookup_vmas(eb);
1499 	mutex_unlock(&eb->gem_context->mutex);
1500 	if (err)
1501 		return err;
1502 
1503 	if (!list_empty(&eb->unbound)) {
1504 		err = eb_reserve(eb);
1505 		if (err)
1506 			return err;
1507 	}
1508 
1509 	/* The objects are in their final locations, apply the relocations. */
1510 	if (eb->args->flags & __EXEC_HAS_RELOC) {
1511 		struct eb_vma *ev;
1512 
1513 		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1514 			err = eb_relocate_vma(eb, ev);
1515 			if (err)
1516 				return err;
1517 		}
1518 	}
1519 
1520 	return 0;
1521 }
1522 
1523 static int eb_move_to_gpu(struct i915_execbuffer *eb)
1524 {
1525 	const unsigned int count = eb->buffer_count;
1526 	struct ww_acquire_ctx acquire;
1527 	unsigned int i;
1528 	int err = 0;
1529 
1530 	ww_acquire_init(&acquire, &reservation_ww_class);
1531 
1532 	for (i = 0; i < count; i++) {
1533 		struct eb_vma *ev = &eb->vma[i];
1534 		struct i915_vma *vma = ev->vma;
1535 
1536 		err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
1537 		if (err == -EDEADLK) {
1538 			GEM_BUG_ON(i == 0);
1539 			do {
1540 				int j = i - 1;
1541 
1542 				ww_mutex_unlock(&eb->vma[j].vma->resv->lock);
1543 
1544 				swap(eb->vma[i],  eb->vma[j]);
1545 			} while (--i);
1546 
1547 			err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
1548 							       &acquire);
1549 		}
1550 		if (err)
1551 			break;
1552 	}
1553 	ww_acquire_done(&acquire);
1554 
1555 	while (i--) {
1556 		struct eb_vma *ev = &eb->vma[i];
1557 		struct i915_vma *vma = ev->vma;
1558 		unsigned int flags = ev->flags;
1559 		struct drm_i915_gem_object *obj = vma->obj;
1560 
1561 		assert_vma_held(vma);
1562 
1563 		if (flags & EXEC_OBJECT_CAPTURE) {
1564 			struct i915_capture_list *capture;
1565 
1566 			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1567 			if (capture) {
1568 				capture->next = eb->request->capture_list;
1569 				capture->vma = vma;
1570 				eb->request->capture_list = capture;
1571 			}
1572 		}
1573 
1574 		/*
1575 		 * If the GPU is not _reading_ through the CPU cache, we need
1576 		 * to make sure that any writes (both previous GPU writes from
1577 		 * before a change in snooping levels and normal CPU writes)
1578 		 * caught in that cache are flushed to main memory.
1579 		 *
1580 		 * We want to say
1581 		 *   obj->cache_dirty &&
1582 		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1583 		 * but gcc's optimiser doesn't handle that as well and emits
1584 		 * two jumps instead of one. Maybe one day...
1585 		 */
1586 		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1587 			if (i915_gem_clflush_object(obj, 0))
1588 				flags &= ~EXEC_OBJECT_ASYNC;
1589 		}
1590 
1591 		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
1592 			err = i915_request_await_object
1593 				(eb->request, obj, flags & EXEC_OBJECT_WRITE);
1594 		}
1595 
1596 		if (err == 0)
1597 			err = i915_vma_move_to_active(vma, eb->request, flags);
1598 
1599 		i915_vma_unlock(vma);
1600 
1601 		__eb_unreserve_vma(vma, flags);
1602 		i915_vma_put(vma);
1603 
1604 		ev->vma = NULL;
1605 	}
1606 	ww_acquire_fini(&acquire);
1607 
1608 	if (unlikely(err))
1609 		goto err_skip;
1610 
1611 	eb->exec = NULL;
1612 
1613 	/* Unconditionally flush any chipset caches (for streaming writes). */
1614 	intel_gt_chipset_flush(eb->engine->gt);
1615 	return 0;
1616 
1617 err_skip:
1618 	i915_request_set_error_once(eb->request, err);
1619 	return err;
1620 }
1621 
1622 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1623 {
1624 	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1625 		return -EINVAL;
1626 
1627 	/* Kernel clipping was a DRI1 misfeature */
1628 	if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1629 		if (exec->num_cliprects || exec->cliprects_ptr)
1630 			return -EINVAL;
1631 	}
1632 
1633 	if (exec->DR4 == 0xffffffff) {
1634 		DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1635 		exec->DR4 = 0;
1636 	}
1637 	if (exec->DR1 || exec->DR4)
1638 		return -EINVAL;
1639 
1640 	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1641 		return -EINVAL;
1642 
1643 	return 0;
1644 }
1645 
1646 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1647 {
1648 	u32 *cs;
1649 	int i;
1650 
1651 	if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1652 		drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n");
1653 		return -EINVAL;
1654 	}
1655 
1656 	cs = intel_ring_begin(rq, 4 * 2 + 2);
1657 	if (IS_ERR(cs))
1658 		return PTR_ERR(cs);
1659 
1660 	*cs++ = MI_LOAD_REGISTER_IMM(4);
1661 	for (i = 0; i < 4; i++) {
1662 		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1663 		*cs++ = 0;
1664 	}
1665 	*cs++ = MI_NOOP;
1666 	intel_ring_advance(rq, cs);
1667 
1668 	return 0;
1669 }
1670 
1671 static struct i915_vma *
1672 shadow_batch_pin(struct drm_i915_gem_object *obj,
1673 		 struct i915_address_space *vm,
1674 		 unsigned int flags)
1675 {
1676 	struct i915_vma *vma;
1677 	int err;
1678 
1679 	vma = i915_vma_instance(obj, vm, NULL);
1680 	if (IS_ERR(vma))
1681 		return vma;
1682 
1683 	err = i915_vma_pin(vma, 0, 0, flags);
1684 	if (err)
1685 		return ERR_PTR(err);
1686 
1687 	return vma;
1688 }
1689 
1690 struct eb_parse_work {
1691 	struct dma_fence_work base;
1692 	struct intel_engine_cs *engine;
1693 	struct i915_vma *batch;
1694 	struct i915_vma *shadow;
1695 	struct i915_vma *trampoline;
1696 	unsigned int batch_offset;
1697 	unsigned int batch_length;
1698 };
1699 
1700 static int __eb_parse(struct dma_fence_work *work)
1701 {
1702 	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
1703 
1704 	return intel_engine_cmd_parser(pw->engine,
1705 				       pw->batch,
1706 				       pw->batch_offset,
1707 				       pw->batch_length,
1708 				       pw->shadow,
1709 				       pw->trampoline);
1710 }
1711 
1712 static void __eb_parse_release(struct dma_fence_work *work)
1713 {
1714 	struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
1715 
1716 	if (pw->trampoline)
1717 		i915_active_release(&pw->trampoline->active);
1718 	i915_active_release(&pw->shadow->active);
1719 	i915_active_release(&pw->batch->active);
1720 }
1721 
1722 static const struct dma_fence_work_ops eb_parse_ops = {
1723 	.name = "eb_parse",
1724 	.work = __eb_parse,
1725 	.release = __eb_parse_release,
1726 };
1727 
1728 static int eb_parse_pipeline(struct i915_execbuffer *eb,
1729 			     struct i915_vma *shadow,
1730 			     struct i915_vma *trampoline)
1731 {
1732 	struct eb_parse_work *pw;
1733 	int err;
1734 
1735 	pw = kzalloc(sizeof(*pw), GFP_KERNEL);
1736 	if (!pw)
1737 		return -ENOMEM;
1738 
1739 	err = i915_active_acquire(&eb->batch->vma->active);
1740 	if (err)
1741 		goto err_free;
1742 
1743 	err = i915_active_acquire(&shadow->active);
1744 	if (err)
1745 		goto err_batch;
1746 
1747 	if (trampoline) {
1748 		err = i915_active_acquire(&trampoline->active);
1749 		if (err)
1750 			goto err_shadow;
1751 	}
1752 
1753 	dma_fence_work_init(&pw->base, &eb_parse_ops);
1754 
1755 	pw->engine = eb->engine;
1756 	pw->batch = eb->batch->vma;
1757 	pw->batch_offset = eb->batch_start_offset;
1758 	pw->batch_length = eb->batch_len;
1759 	pw->shadow = shadow;
1760 	pw->trampoline = trampoline;
1761 
1762 	err = dma_resv_lock_interruptible(pw->batch->resv, NULL);
1763 	if (err)
1764 		goto err_trampoline;
1765 
1766 	err = dma_resv_reserve_shared(pw->batch->resv, 1);
1767 	if (err)
1768 		goto err_batch_unlock;
1769 
1770 	/* Wait for all writes (and relocs) into the batch to complete */
1771 	err = i915_sw_fence_await_reservation(&pw->base.chain,
1772 					      pw->batch->resv, NULL, false,
1773 					      0, I915_FENCE_GFP);
1774 	if (err < 0)
1775 		goto err_batch_unlock;
1776 
1777 	/* Keep the batch alive and unwritten as we parse */
1778 	dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);
1779 
1780 	dma_resv_unlock(pw->batch->resv);
1781 
1782 	/* Force execution to wait for completion of the parser */
1783 	dma_resv_lock(shadow->resv, NULL);
1784 	dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
1785 	dma_resv_unlock(shadow->resv);
1786 
1787 	dma_fence_work_commit(&pw->base);
1788 	return 0;
1789 
1790 err_batch_unlock:
1791 	dma_resv_unlock(pw->batch->resv);
1792 err_trampoline:
1793 	if (trampoline)
1794 		i915_active_release(&trampoline->active);
1795 err_shadow:
1796 	i915_active_release(&shadow->active);
1797 err_batch:
1798 	i915_active_release(&eb->batch->vma->active);
1799 err_free:
1800 	kfree(pw);
1801 	return err;
1802 }
1803 
1804 static int eb_parse(struct i915_execbuffer *eb)
1805 {
1806 	struct drm_i915_private *i915 = eb->i915;
1807 	struct intel_engine_pool_node *pool;
1808 	struct i915_vma *shadow, *trampoline;
1809 	unsigned int len;
1810 	int err;
1811 
1812 	if (!eb_use_cmdparser(eb))
1813 		return 0;
1814 
1815 	len = eb->batch_len;
1816 	if (!CMDPARSER_USES_GGTT(eb->i915)) {
1817 		/*
1818 		 * ppGTT backed shadow buffers must be mapped RO, to prevent
1819 		 * post-scan tampering
1820 		 */
1821 		if (!eb->context->vm->has_read_only) {
1822 			drm_dbg(&i915->drm,
1823 				"Cannot prevent post-scan tampering without RO capable vm\n");
1824 			return -EINVAL;
1825 		}
1826 	} else {
1827 		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
1828 	}
1829 
1830 	pool = intel_engine_get_pool(eb->engine, len);
1831 	if (IS_ERR(pool))
1832 		return PTR_ERR(pool);
1833 
1834 	shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER);
1835 	if (IS_ERR(shadow)) {
1836 		err = PTR_ERR(shadow);
1837 		goto err;
1838 	}
1839 	i915_gem_object_set_readonly(shadow->obj);
1840 
1841 	trampoline = NULL;
1842 	if (CMDPARSER_USES_GGTT(eb->i915)) {
1843 		trampoline = shadow;
1844 
1845 		shadow = shadow_batch_pin(pool->obj,
1846 					  &eb->engine->gt->ggtt->vm,
1847 					  PIN_GLOBAL);
1848 		if (IS_ERR(shadow)) {
1849 			err = PTR_ERR(shadow);
1850 			shadow = trampoline;
1851 			goto err_shadow;
1852 		}
1853 
1854 		eb->batch_flags |= I915_DISPATCH_SECURE;
1855 	}
1856 
1857 	err = eb_parse_pipeline(eb, shadow, trampoline);
1858 	if (err)
1859 		goto err_trampoline;
1860 
1861 	eb->vma[eb->buffer_count].vma = i915_vma_get(shadow);
1862 	eb->vma[eb->buffer_count].flags = __EXEC_OBJECT_HAS_PIN;
1863 	eb->batch = &eb->vma[eb->buffer_count++];
1864 
1865 	eb->trampoline = trampoline;
1866 	eb->batch_start_offset = 0;
1867 
1868 	shadow->private = pool;
1869 	return 0;
1870 
1871 err_trampoline:
1872 	if (trampoline)
1873 		i915_vma_unpin(trampoline);
1874 err_shadow:
1875 	i915_vma_unpin(shadow);
1876 err:
1877 	intel_engine_pool_put(pool);
1878 	return err;
1879 }
1880 
1881 static void
1882 add_to_client(struct i915_request *rq, struct drm_file *file)
1883 {
1884 	struct drm_i915_file_private *file_priv = file->driver_priv;
1885 
1886 	rq->file_priv = file_priv;
1887 
1888 	spin_lock(&file_priv->mm.lock);
1889 	list_add_tail(&rq->client_link, &file_priv->mm.request_list);
1890 	spin_unlock(&file_priv->mm.lock);
1891 }
1892 
1893 static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
1894 {
1895 	int err;
1896 
1897 	err = eb_move_to_gpu(eb);
1898 	if (err)
1899 		return err;
1900 
1901 	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1902 		err = i915_reset_gen7_sol_offsets(eb->request);
1903 		if (err)
1904 			return err;
1905 	}
1906 
1907 	/*
1908 	 * After we completed waiting for other engines (using HW semaphores)
1909 	 * then we can signal that this request/batch is ready to run. This
1910 	 * allows us to determine if the batch is still waiting on the GPU
1911 	 * or actually running by checking the breadcrumb.
1912 	 */
1913 	if (eb->engine->emit_init_breadcrumb) {
1914 		err = eb->engine->emit_init_breadcrumb(eb->request);
1915 		if (err)
1916 			return err;
1917 	}
1918 
1919 	err = eb->engine->emit_bb_start(eb->request,
1920 					batch->node.start +
1921 					eb->batch_start_offset,
1922 					eb->batch_len,
1923 					eb->batch_flags);
1924 	if (err)
1925 		return err;
1926 
1927 	if (eb->trampoline) {
1928 		GEM_BUG_ON(eb->batch_start_offset);
1929 		err = eb->engine->emit_bb_start(eb->request,
1930 						eb->trampoline->node.start +
1931 						eb->batch_len,
1932 						0, 0);
1933 		if (err)
1934 			return err;
1935 	}
1936 
1937 	if (intel_context_nopreempt(eb->context))
1938 		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
1939 
1940 	return 0;
1941 }
1942 
1943 static int num_vcs_engines(const struct drm_i915_private *i915)
1944 {
1945 	return hweight64(INTEL_INFO(i915)->engine_mask &
1946 			 GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
1947 }
1948 
1949 /*
1950  * Find one BSD ring to dispatch the corresponding BSD command.
1951  * The engine index is returned.
1952  */
1953 static unsigned int
1954 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
1955 			 struct drm_file *file)
1956 {
1957 	struct drm_i915_file_private *file_priv = file->driver_priv;
1958 
1959 	/* Check whether the file_priv has already selected one ring. */
1960 	if ((int)file_priv->bsd_engine < 0)
1961 		file_priv->bsd_engine =
1962 			get_random_int() % num_vcs_engines(dev_priv);
1963 
1964 	return file_priv->bsd_engine;
1965 }
1966 
1967 static const enum intel_engine_id user_ring_map[] = {
1968 	[I915_EXEC_DEFAULT]	= RCS0,
1969 	[I915_EXEC_RENDER]	= RCS0,
1970 	[I915_EXEC_BLT]		= BCS0,
1971 	[I915_EXEC_BSD]		= VCS0,
1972 	[I915_EXEC_VEBOX]	= VECS0
1973 };
1974 
1975 static struct i915_request *eb_throttle(struct intel_context *ce)
1976 {
1977 	struct intel_ring *ring = ce->ring;
1978 	struct intel_timeline *tl = ce->timeline;
1979 	struct i915_request *rq;
1980 
1981 	/*
1982 	 * Completely unscientific finger-in-the-air estimates for suitable
1983 	 * maximum user request size (to avoid blocking) and then backoff.
1984 	 */
1985 	if (intel_ring_update_space(ring) >= PAGE_SIZE)
1986 		return NULL;
1987 
1988 	/*
1989 	 * Find a request that after waiting upon, there will be at least half
1990 	 * the ring available. The hysteresis allows us to compete for the
1991 	 * shared ring and should mean that we sleep less often prior to
1992 	 * claiming our resources, but not so long that the ring completely
1993 	 * drains before we can submit our next request.
1994 	 */
1995 	list_for_each_entry(rq, &tl->requests, link) {
1996 		if (rq->ring != ring)
1997 			continue;
1998 
1999 		if (__intel_ring_space(rq->postfix,
2000 				       ring->emit, ring->size) > ring->size / 2)
2001 			break;
2002 	}
2003 	if (&rq->link == &tl->requests)
2004 		return NULL; /* weird, we will check again later for real */
2005 
2006 	return i915_request_get(rq);
2007 }
2008 
2009 static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
2010 {
2011 	struct intel_timeline *tl;
2012 	struct i915_request *rq;
2013 	int err;
2014 
2015 	/*
2016 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2017 	 * EIO if the GPU is already wedged.
2018 	 */
2019 	err = intel_gt_terminally_wedged(ce->engine->gt);
2020 	if (err)
2021 		return err;
2022 
2023 	if (unlikely(intel_context_is_banned(ce)))
2024 		return -EIO;
2025 
2026 	/*
2027 	 * Pinning the contexts may generate requests in order to acquire
2028 	 * GGTT space, so do this first before we reserve a seqno for
2029 	 * ourselves.
2030 	 */
2031 	err = intel_context_pin(ce);
2032 	if (err)
2033 		return err;
2034 
2035 	/*
2036 	 * Take a local wakeref for preparing to dispatch the execbuf as
2037 	 * we expect to access the hardware fairly frequently in the
2038 	 * process, and require the engine to be kept awake between accesses.
2039 	 * Upon dispatch, we acquire another prolonged wakeref that we hold
2040 	 * until the timeline is idle, which in turn releases the wakeref
2041 	 * taken on the engine, and the parent device.
2042 	 */
2043 	tl = intel_context_timeline_lock(ce);
2044 	if (IS_ERR(tl)) {
2045 		err = PTR_ERR(tl);
2046 		goto err_unpin;
2047 	}
2048 
2049 	intel_context_enter(ce);
2050 	rq = eb_throttle(ce);
2051 
2052 	intel_context_timeline_unlock(tl);
2053 
2054 	if (rq) {
2055 		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2056 		long timeout;
2057 
2058 		timeout = MAX_SCHEDULE_TIMEOUT;
2059 		if (nonblock)
2060 			timeout = 0;
2061 
2062 		timeout = i915_request_wait(rq,
2063 					    I915_WAIT_INTERRUPTIBLE,
2064 					    timeout);
2065 		i915_request_put(rq);
2066 
2067 		if (timeout < 0) {
2068 			err = nonblock ? -EWOULDBLOCK : timeout;
2069 			goto err_exit;
2070 		}
2071 	}
2072 
2073 	eb->engine = ce->engine;
2074 	eb->context = ce;
2075 	return 0;
2076 
2077 err_exit:
2078 	mutex_lock(&tl->mutex);
2079 	intel_context_exit(ce);
2080 	intel_context_timeline_unlock(tl);
2081 err_unpin:
2082 	intel_context_unpin(ce);
2083 	return err;
2084 }
2085 
2086 static void eb_unpin_engine(struct i915_execbuffer *eb)
2087 {
2088 	struct intel_context *ce = eb->context;
2089 	struct intel_timeline *tl = ce->timeline;
2090 
2091 	mutex_lock(&tl->mutex);
2092 	intel_context_exit(ce);
2093 	mutex_unlock(&tl->mutex);
2094 
2095 	intel_context_unpin(ce);
2096 }
2097 
2098 static unsigned int
2099 eb_select_legacy_ring(struct i915_execbuffer *eb,
2100 		      struct drm_file *file,
2101 		      struct drm_i915_gem_execbuffer2 *args)
2102 {
2103 	struct drm_i915_private *i915 = eb->i915;
2104 	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2105 
2106 	if (user_ring_id != I915_EXEC_BSD &&
2107 	    (args->flags & I915_EXEC_BSD_MASK)) {
2108 		drm_dbg(&i915->drm,
2109 			"execbuf with non bsd ring but with invalid "
2110 			"bsd dispatch flags: %d\n", (int)(args->flags));
2111 		return -1;
2112 	}
2113 
2114 	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2115 		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2116 
2117 		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2118 			bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2119 		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2120 			   bsd_idx <= I915_EXEC_BSD_RING2) {
2121 			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2122 			bsd_idx--;
2123 		} else {
2124 			drm_dbg(&i915->drm,
2125 				"execbuf with unknown bsd ring: %u\n",
2126 				bsd_idx);
2127 			return -1;
2128 		}
2129 
2130 		return _VCS(bsd_idx);
2131 	}
2132 
2133 	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2134 		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2135 			user_ring_id);
2136 		return -1;
2137 	}
2138 
2139 	return user_ring_map[user_ring_id];
2140 }
2141 
2142 static int
2143 eb_pin_engine(struct i915_execbuffer *eb,
2144 	      struct drm_file *file,
2145 	      struct drm_i915_gem_execbuffer2 *args)
2146 {
2147 	struct intel_context *ce;
2148 	unsigned int idx;
2149 	int err;
2150 
2151 	if (i915_gem_context_user_engines(eb->gem_context))
2152 		idx = args->flags & I915_EXEC_RING_MASK;
2153 	else
2154 		idx = eb_select_legacy_ring(eb, file, args);
2155 
2156 	ce = i915_gem_context_get_engine(eb->gem_context, idx);
2157 	if (IS_ERR(ce))
2158 		return PTR_ERR(ce);
2159 
2160 	err = __eb_pin_engine(eb, ce);
2161 	intel_context_put(ce);
2162 
2163 	return err;
2164 }
2165 
2166 static void
2167 __free_fence_array(struct drm_syncobj **fences, unsigned int n)
2168 {
2169 	while (n--)
2170 		drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2171 	kvfree(fences);
2172 }
2173 
2174 static struct drm_syncobj **
2175 get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2176 		struct drm_file *file)
2177 {
2178 	const unsigned long nfences = args->num_cliprects;
2179 	struct drm_i915_gem_exec_fence __user *user;
2180 	struct drm_syncobj **fences;
2181 	unsigned long n;
2182 	int err;
2183 
2184 	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2185 		return NULL;
2186 
2187 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2188 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2189 	if (nfences > min_t(unsigned long,
2190 			    ULONG_MAX / sizeof(*user),
2191 			    SIZE_MAX / sizeof(*fences)))
2192 		return ERR_PTR(-EINVAL);
2193 
2194 	user = u64_to_user_ptr(args->cliprects_ptr);
2195 	if (!access_ok(user, nfences * sizeof(*user)))
2196 		return ERR_PTR(-EFAULT);
2197 
2198 	fences = kvmalloc_array(nfences, sizeof(*fences),
2199 				__GFP_NOWARN | GFP_KERNEL);
2200 	if (!fences)
2201 		return ERR_PTR(-ENOMEM);
2202 
2203 	for (n = 0; n < nfences; n++) {
2204 		struct drm_i915_gem_exec_fence fence;
2205 		struct drm_syncobj *syncobj;
2206 
2207 		if (__copy_from_user(&fence, user++, sizeof(fence))) {
2208 			err = -EFAULT;
2209 			goto err;
2210 		}
2211 
2212 		if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2213 			err = -EINVAL;
2214 			goto err;
2215 		}
2216 
2217 		syncobj = drm_syncobj_find(file, fence.handle);
2218 		if (!syncobj) {
2219 			DRM_DEBUG("Invalid syncobj handle provided\n");
2220 			err = -ENOENT;
2221 			goto err;
2222 		}
2223 
2224 		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2225 			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2226 
2227 		fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2228 	}
2229 
2230 	return fences;
2231 
2232 err:
2233 	__free_fence_array(fences, n);
2234 	return ERR_PTR(err);
2235 }
2236 
2237 static void
2238 put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2239 		struct drm_syncobj **fences)
2240 {
2241 	if (fences)
2242 		__free_fence_array(fences, args->num_cliprects);
2243 }
2244 
2245 static int
2246 await_fence_array(struct i915_execbuffer *eb,
2247 		  struct drm_syncobj **fences)
2248 {
2249 	const unsigned int nfences = eb->args->num_cliprects;
2250 	unsigned int n;
2251 	int err;
2252 
2253 	for (n = 0; n < nfences; n++) {
2254 		struct drm_syncobj *syncobj;
2255 		struct dma_fence *fence;
2256 		unsigned int flags;
2257 
2258 		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2259 		if (!(flags & I915_EXEC_FENCE_WAIT))
2260 			continue;
2261 
2262 		fence = drm_syncobj_fence_get(syncobj);
2263 		if (!fence)
2264 			return -EINVAL;
2265 
2266 		err = i915_request_await_dma_fence(eb->request, fence);
2267 		dma_fence_put(fence);
2268 		if (err < 0)
2269 			return err;
2270 	}
2271 
2272 	return 0;
2273 }
2274 
2275 static void
2276 signal_fence_array(struct i915_execbuffer *eb,
2277 		   struct drm_syncobj **fences)
2278 {
2279 	const unsigned int nfences = eb->args->num_cliprects;
2280 	struct dma_fence * const fence = &eb->request->fence;
2281 	unsigned int n;
2282 
2283 	for (n = 0; n < nfences; n++) {
2284 		struct drm_syncobj *syncobj;
2285 		unsigned int flags;
2286 
2287 		syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2288 		if (!(flags & I915_EXEC_FENCE_SIGNAL))
2289 			continue;
2290 
2291 		drm_syncobj_replace_fence(syncobj, fence);
2292 	}
2293 }
2294 
2295 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
2296 {
2297 	struct i915_request *rq, *rn;
2298 
2299 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
2300 		if (rq == end || !i915_request_retire(rq))
2301 			break;
2302 }
2303 
2304 static void eb_request_add(struct i915_execbuffer *eb)
2305 {
2306 	struct i915_request *rq = eb->request;
2307 	struct intel_timeline * const tl = i915_request_timeline(rq);
2308 	struct i915_sched_attr attr = {};
2309 	struct i915_request *prev;
2310 
2311 	lockdep_assert_held(&tl->mutex);
2312 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
2313 
2314 	trace_i915_request_add(rq);
2315 
2316 	prev = __i915_request_commit(rq);
2317 
2318 	/* Check that the context wasn't destroyed before submission */
2319 	if (likely(!intel_context_is_closed(eb->context))) {
2320 		attr = eb->gem_context->sched;
2321 
2322 		/*
2323 		 * Boost actual workloads past semaphores!
2324 		 *
2325 		 * With semaphores we spin on one engine waiting for another,
2326 		 * simply to reduce the latency of starting our work when
2327 		 * the signaler completes. However, if there is any other
2328 		 * work that we could be doing on this engine instead, that
2329 		 * is better utilisation and will reduce the overall duration
2330 		 * of the current work. To avoid PI boosting a semaphore
2331 		 * far in the distance past over useful work, we keep a history
2332 		 * of any semaphore use along our dependency chain.
2333 		 */
2334 		if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
2335 			attr.priority |= I915_PRIORITY_NOSEMAPHORE;
2336 
2337 		/*
2338 		 * Boost priorities to new clients (new request flows).
2339 		 *
2340 		 * Allow interactive/synchronous clients to jump ahead of
2341 		 * the bulk clients. (FQ_CODEL)
2342 		 */
2343 		if (list_empty(&rq->sched.signalers_list))
2344 			attr.priority |= I915_PRIORITY_WAIT;
2345 	} else {
2346 		/* Serialise with context_close via the add_to_timeline */
2347 		i915_request_set_error_once(rq, -ENOENT);
2348 		__i915_request_skip(rq);
2349 	}
2350 
2351 	local_bh_disable();
2352 	__i915_request_queue(rq, &attr);
2353 	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
2354 
2355 	/* Try to clean up the client's timeline after submitting the request */
2356 	if (prev)
2357 		retire_requests(tl, prev);
2358 
2359 	mutex_unlock(&tl->mutex);
2360 }
2361 
2362 static int
2363 i915_gem_do_execbuffer(struct drm_device *dev,
2364 		       struct drm_file *file,
2365 		       struct drm_i915_gem_execbuffer2 *args,
2366 		       struct drm_i915_gem_exec_object2 *exec,
2367 		       struct drm_syncobj **fences)
2368 {
2369 	struct drm_i915_private *i915 = to_i915(dev);
2370 	struct i915_execbuffer eb;
2371 	struct dma_fence *in_fence = NULL;
2372 	struct dma_fence *exec_fence = NULL;
2373 	struct sync_file *out_fence = NULL;
2374 	struct i915_vma *batch;
2375 	int out_fence_fd = -1;
2376 	int err;
2377 
2378 	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2379 	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2380 		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2381 
2382 	eb.i915 = i915;
2383 	eb.file = file;
2384 	eb.args = args;
2385 	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2386 		args->flags |= __EXEC_HAS_RELOC;
2387 
2388 	eb.exec = exec;
2389 	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
2390 	eb.vma[0].vma = NULL;
2391 
2392 	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2393 	reloc_cache_init(&eb.reloc_cache, eb.i915);
2394 
2395 	eb.buffer_count = args->buffer_count;
2396 	eb.batch_start_offset = args->batch_start_offset;
2397 	eb.batch_len = args->batch_len;
2398 	eb.trampoline = NULL;
2399 
2400 	eb.batch_flags = 0;
2401 	if (args->flags & I915_EXEC_SECURE) {
2402 		if (INTEL_GEN(i915) >= 11)
2403 			return -ENODEV;
2404 
2405 		/* Return -EPERM to trigger fallback code on old binaries. */
2406 		if (!HAS_SECURE_BATCHES(i915))
2407 			return -EPERM;
2408 
2409 		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2410 			return -EPERM;
2411 
2412 		eb.batch_flags |= I915_DISPATCH_SECURE;
2413 	}
2414 	if (args->flags & I915_EXEC_IS_PINNED)
2415 		eb.batch_flags |= I915_DISPATCH_PINNED;
2416 
2417 	if (args->flags & I915_EXEC_FENCE_IN) {
2418 		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2419 		if (!in_fence)
2420 			return -EINVAL;
2421 	}
2422 
2423 	if (args->flags & I915_EXEC_FENCE_SUBMIT) {
2424 		if (in_fence) {
2425 			err = -EINVAL;
2426 			goto err_in_fence;
2427 		}
2428 
2429 		exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2430 		if (!exec_fence) {
2431 			err = -EINVAL;
2432 			goto err_in_fence;
2433 		}
2434 	}
2435 
2436 	if (args->flags & I915_EXEC_FENCE_OUT) {
2437 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2438 		if (out_fence_fd < 0) {
2439 			err = out_fence_fd;
2440 			goto err_exec_fence;
2441 		}
2442 	}
2443 
2444 	err = eb_create(&eb);
2445 	if (err)
2446 		goto err_out_fence;
2447 
2448 	GEM_BUG_ON(!eb.lut_size);
2449 
2450 	err = eb_select_context(&eb);
2451 	if (unlikely(err))
2452 		goto err_destroy;
2453 
2454 	err = eb_pin_engine(&eb, file, args);
2455 	if (unlikely(err))
2456 		goto err_context;
2457 
2458 	err = eb_relocate(&eb);
2459 	if (err) {
2460 		/*
2461 		 * If the user expects the execobject.offset and
2462 		 * reloc.presumed_offset to be an exact match,
2463 		 * as for using NO_RELOC, then we cannot update
2464 		 * the execobject.offset until we have completed
2465 		 * relocation.
2466 		 */
2467 		args->flags &= ~__EXEC_HAS_RELOC;
2468 		goto err_vma;
2469 	}
2470 
2471 	if (unlikely(eb.batch->flags & EXEC_OBJECT_WRITE)) {
2472 		drm_dbg(&i915->drm,
2473 			"Attempting to use self-modifying batch buffer\n");
2474 		err = -EINVAL;
2475 		goto err_vma;
2476 	}
2477 
2478 	if (range_overflows_t(u64,
2479 			      eb.batch_start_offset, eb.batch_len,
2480 			      eb.batch->vma->size)) {
2481 		drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
2482 		err = -EINVAL;
2483 		goto err_vma;
2484 	}
2485 
2486 	if (eb.batch_len == 0)
2487 		eb.batch_len = eb.batch->vma->size - eb.batch_start_offset;
2488 
2489 	err = eb_parse(&eb);
2490 	if (err)
2491 		goto err_vma;
2492 
2493 	/*
2494 	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2495 	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2496 	 * hsw should have this fixed, but bdw mucks it up again. */
2497 	batch = eb.batch->vma;
2498 	if (eb.batch_flags & I915_DISPATCH_SECURE) {
2499 		struct i915_vma *vma;
2500 
2501 		/*
2502 		 * So on first glance it looks freaky that we pin the batch here
2503 		 * outside of the reservation loop. But:
2504 		 * - The batch is already pinned into the relevant ppgtt, so we
2505 		 *   already have the backing storage fully allocated.
2506 		 * - No other BO uses the global gtt (well contexts, but meh),
2507 		 *   so we don't really have issues with multiple objects not
2508 		 *   fitting due to fragmentation.
2509 		 * So this is actually safe.
2510 		 */
2511 		vma = i915_gem_object_ggtt_pin(batch->obj, NULL, 0, 0, 0);
2512 		if (IS_ERR(vma)) {
2513 			err = PTR_ERR(vma);
2514 			goto err_parse;
2515 		}
2516 
2517 		batch = vma;
2518 	}
2519 
2520 	/* All GPU relocation batches must be submitted prior to the user rq */
2521 	GEM_BUG_ON(eb.reloc_cache.rq);
2522 
2523 	/* Allocate a request for this batch buffer nice and early. */
2524 	eb.request = i915_request_create(eb.context);
2525 	if (IS_ERR(eb.request)) {
2526 		err = PTR_ERR(eb.request);
2527 		goto err_batch_unpin;
2528 	}
2529 
2530 	if (in_fence) {
2531 		err = i915_request_await_dma_fence(eb.request, in_fence);
2532 		if (err < 0)
2533 			goto err_request;
2534 	}
2535 
2536 	if (exec_fence) {
2537 		err = i915_request_await_execution(eb.request, exec_fence,
2538 						   eb.engine->bond_execute);
2539 		if (err < 0)
2540 			goto err_request;
2541 	}
2542 
2543 	if (fences) {
2544 		err = await_fence_array(&eb, fences);
2545 		if (err)
2546 			goto err_request;
2547 	}
2548 
2549 	if (out_fence_fd != -1) {
2550 		out_fence = sync_file_create(&eb.request->fence);
2551 		if (!out_fence) {
2552 			err = -ENOMEM;
2553 			goto err_request;
2554 		}
2555 	}
2556 
2557 	/*
2558 	 * Whilst this request exists, batch_obj will be on the
2559 	 * active_list, and so will hold the active reference. Only when this
2560 	 * request is retired will the the batch_obj be moved onto the
2561 	 * inactive_list and lose its active reference. Hence we do not need
2562 	 * to explicitly hold another reference here.
2563 	 */
2564 	eb.request->batch = batch;
2565 	if (batch->private)
2566 		intel_engine_pool_mark_active(batch->private, eb.request);
2567 
2568 	trace_i915_request_queue(eb.request, eb.batch_flags);
2569 	err = eb_submit(&eb, batch);
2570 err_request:
2571 	add_to_client(eb.request, file);
2572 	i915_request_get(eb.request);
2573 	eb_request_add(&eb);
2574 
2575 	if (fences)
2576 		signal_fence_array(&eb, fences);
2577 
2578 	if (out_fence) {
2579 		if (err == 0) {
2580 			fd_install(out_fence_fd, out_fence->file);
2581 			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2582 			args->rsvd2 |= (u64)out_fence_fd << 32;
2583 			out_fence_fd = -1;
2584 		} else {
2585 			fput(out_fence->file);
2586 		}
2587 	}
2588 	i915_request_put(eb.request);
2589 
2590 err_batch_unpin:
2591 	if (eb.batch_flags & I915_DISPATCH_SECURE)
2592 		i915_vma_unpin(batch);
2593 err_parse:
2594 	if (batch->private)
2595 		intel_engine_pool_put(batch->private);
2596 err_vma:
2597 	if (eb.exec)
2598 		eb_release_vmas(&eb);
2599 	if (eb.trampoline)
2600 		i915_vma_unpin(eb.trampoline);
2601 	eb_unpin_engine(&eb);
2602 err_context:
2603 	i915_gem_context_put(eb.gem_context);
2604 err_destroy:
2605 	eb_destroy(&eb);
2606 err_out_fence:
2607 	if (out_fence_fd != -1)
2608 		put_unused_fd(out_fence_fd);
2609 err_exec_fence:
2610 	dma_fence_put(exec_fence);
2611 err_in_fence:
2612 	dma_fence_put(in_fence);
2613 	return err;
2614 }
2615 
2616 static size_t eb_element_size(void)
2617 {
2618 	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
2619 }
2620 
2621 static bool check_buffer_count(size_t count)
2622 {
2623 	const size_t sz = eb_element_size();
2624 
2625 	/*
2626 	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2627 	 * array size (see eb_create()). Otherwise, we can accept an array as
2628 	 * large as can be addressed (though use large arrays at your peril)!
2629 	 */
2630 
2631 	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
2632 }
2633 
2634 /*
2635  * Legacy execbuffer just creates an exec2 list from the original exec object
2636  * list array and passes it to the real function.
2637  */
2638 int
2639 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2640 			  struct drm_file *file)
2641 {
2642 	struct drm_i915_private *i915 = to_i915(dev);
2643 	struct drm_i915_gem_execbuffer *args = data;
2644 	struct drm_i915_gem_execbuffer2 exec2;
2645 	struct drm_i915_gem_exec_object *exec_list = NULL;
2646 	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2647 	const size_t count = args->buffer_count;
2648 	unsigned int i;
2649 	int err;
2650 
2651 	if (!check_buffer_count(count)) {
2652 		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
2653 		return -EINVAL;
2654 	}
2655 
2656 	exec2.buffers_ptr = args->buffers_ptr;
2657 	exec2.buffer_count = args->buffer_count;
2658 	exec2.batch_start_offset = args->batch_start_offset;
2659 	exec2.batch_len = args->batch_len;
2660 	exec2.DR1 = args->DR1;
2661 	exec2.DR4 = args->DR4;
2662 	exec2.num_cliprects = args->num_cliprects;
2663 	exec2.cliprects_ptr = args->cliprects_ptr;
2664 	exec2.flags = I915_EXEC_RENDER;
2665 	i915_execbuffer2_set_context_id(exec2, 0);
2666 
2667 	err = i915_gem_check_execbuffer(&exec2);
2668 	if (err)
2669 		return err;
2670 
2671 	/* Copy in the exec list from userland */
2672 	exec_list = kvmalloc_array(count, sizeof(*exec_list),
2673 				   __GFP_NOWARN | GFP_KERNEL);
2674 	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2675 				    __GFP_NOWARN | GFP_KERNEL);
2676 	if (exec_list == NULL || exec2_list == NULL) {
2677 		drm_dbg(&i915->drm,
2678 			"Failed to allocate exec list for %d buffers\n",
2679 			args->buffer_count);
2680 		kvfree(exec_list);
2681 		kvfree(exec2_list);
2682 		return -ENOMEM;
2683 	}
2684 	err = copy_from_user(exec_list,
2685 			     u64_to_user_ptr(args->buffers_ptr),
2686 			     sizeof(*exec_list) * count);
2687 	if (err) {
2688 		drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
2689 			args->buffer_count, err);
2690 		kvfree(exec_list);
2691 		kvfree(exec2_list);
2692 		return -EFAULT;
2693 	}
2694 
2695 	for (i = 0; i < args->buffer_count; i++) {
2696 		exec2_list[i].handle = exec_list[i].handle;
2697 		exec2_list[i].relocation_count = exec_list[i].relocation_count;
2698 		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2699 		exec2_list[i].alignment = exec_list[i].alignment;
2700 		exec2_list[i].offset = exec_list[i].offset;
2701 		if (INTEL_GEN(to_i915(dev)) < 4)
2702 			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2703 		else
2704 			exec2_list[i].flags = 0;
2705 	}
2706 
2707 	err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2708 	if (exec2.flags & __EXEC_HAS_RELOC) {
2709 		struct drm_i915_gem_exec_object __user *user_exec_list =
2710 			u64_to_user_ptr(args->buffers_ptr);
2711 
2712 		/* Copy the new buffer offsets back to the user's exec list. */
2713 		for (i = 0; i < args->buffer_count; i++) {
2714 			if (!(exec2_list[i].offset & UPDATE))
2715 				continue;
2716 
2717 			exec2_list[i].offset =
2718 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2719 			exec2_list[i].offset &= PIN_OFFSET_MASK;
2720 			if (__copy_to_user(&user_exec_list[i].offset,
2721 					   &exec2_list[i].offset,
2722 					   sizeof(user_exec_list[i].offset)))
2723 				break;
2724 		}
2725 	}
2726 
2727 	kvfree(exec_list);
2728 	kvfree(exec2_list);
2729 	return err;
2730 }
2731 
2732 int
2733 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2734 			   struct drm_file *file)
2735 {
2736 	struct drm_i915_private *i915 = to_i915(dev);
2737 	struct drm_i915_gem_execbuffer2 *args = data;
2738 	struct drm_i915_gem_exec_object2 *exec2_list;
2739 	struct drm_syncobj **fences = NULL;
2740 	const size_t count = args->buffer_count;
2741 	int err;
2742 
2743 	if (!check_buffer_count(count)) {
2744 		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
2745 		return -EINVAL;
2746 	}
2747 
2748 	err = i915_gem_check_execbuffer(args);
2749 	if (err)
2750 		return err;
2751 
2752 	/* Allocate an extra slot for use by the command parser */
2753 	exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2754 				    __GFP_NOWARN | GFP_KERNEL);
2755 	if (exec2_list == NULL) {
2756 		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
2757 			count);
2758 		return -ENOMEM;
2759 	}
2760 	if (copy_from_user(exec2_list,
2761 			   u64_to_user_ptr(args->buffers_ptr),
2762 			   sizeof(*exec2_list) * count)) {
2763 		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
2764 		kvfree(exec2_list);
2765 		return -EFAULT;
2766 	}
2767 
2768 	if (args->flags & I915_EXEC_FENCE_ARRAY) {
2769 		fences = get_fence_array(args, file);
2770 		if (IS_ERR(fences)) {
2771 			kvfree(exec2_list);
2772 			return PTR_ERR(fences);
2773 		}
2774 	}
2775 
2776 	err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2777 
2778 	/*
2779 	 * Now that we have begun execution of the batchbuffer, we ignore
2780 	 * any new error after this point. Also given that we have already
2781 	 * updated the associated relocations, we try to write out the current
2782 	 * object locations irrespective of any error.
2783 	 */
2784 	if (args->flags & __EXEC_HAS_RELOC) {
2785 		struct drm_i915_gem_exec_object2 __user *user_exec_list =
2786 			u64_to_user_ptr(args->buffers_ptr);
2787 		unsigned int i;
2788 
2789 		/* Copy the new buffer offsets back to the user's exec list. */
2790 		/*
2791 		 * Note: count * sizeof(*user_exec_list) does not overflow,
2792 		 * because we checked 'count' in check_buffer_count().
2793 		 *
2794 		 * And this range already got effectively checked earlier
2795 		 * when we did the "copy_from_user()" above.
2796 		 */
2797 		if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2798 			goto end;
2799 
2800 		for (i = 0; i < args->buffer_count; i++) {
2801 			if (!(exec2_list[i].offset & UPDATE))
2802 				continue;
2803 
2804 			exec2_list[i].offset =
2805 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2806 			unsafe_put_user(exec2_list[i].offset,
2807 					&user_exec_list[i].offset,
2808 					end_user);
2809 		}
2810 end_user:
2811 		user_access_end();
2812 end:;
2813 	}
2814 
2815 	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2816 	put_fence_array(args, fences);
2817 	kvfree(exec2_list);
2818 	return err;
2819 }
2820