xref: /openbmc/linux/drivers/gpu/drm/i915/gem/i915_gem_execbuffer.c (revision 0e73f1ba602d953ee8ceda5cea3a381bf212b80b)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6 
7 #include <linux/dma-resv.h>
8 #include <linux/highmem.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11 
12 #include <drm/drm_syncobj.h>
13 
14 #include "display/intel_frontbuffer.h"
15 
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gpu_commands.h"
19 #include "gt/intel_gt.h"
20 #include "gt/intel_gt_buffer_pool.h"
21 #include "gt/intel_gt_pm.h"
22 #include "gt/intel_ring.h"
23 
24 #include "pxp/intel_pxp.h"
25 
26 #include "i915_cmd_parser.h"
27 #include "i915_drv.h"
28 #include "i915_file_private.h"
29 #include "i915_gem_clflush.h"
30 #include "i915_gem_context.h"
31 #include "i915_gem_evict.h"
32 #include "i915_gem_ioctls.h"
33 #include "i915_reg.h"
34 #include "i915_trace.h"
35 #include "i915_user_extensions.h"
36 
37 struct eb_vma {
38 	struct i915_vma *vma;
39 	unsigned int flags;
40 
41 	/** This vma's place in the execbuf reservation list */
42 	struct drm_i915_gem_exec_object2 *exec;
43 	struct list_head bind_link;
44 	struct list_head reloc_link;
45 
46 	struct hlist_node node;
47 	u32 handle;
48 };
49 
50 enum {
51 	FORCE_CPU_RELOC = 1,
52 	FORCE_GTT_RELOC,
53 	FORCE_GPU_RELOC,
54 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
55 };
56 
57 /* __EXEC_OBJECT_ flags > BIT(29) defined in i915_vma.h */
58 #define __EXEC_OBJECT_HAS_PIN		BIT(29)
59 #define __EXEC_OBJECT_HAS_FENCE		BIT(28)
60 #define __EXEC_OBJECT_USERPTR_INIT	BIT(27)
61 #define __EXEC_OBJECT_NEEDS_MAP		BIT(26)
62 #define __EXEC_OBJECT_NEEDS_BIAS	BIT(25)
63 #define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 25) /* all of the above + */
64 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
65 
66 #define __EXEC_HAS_RELOC	BIT(31)
67 #define __EXEC_ENGINE_PINNED	BIT(30)
68 #define __EXEC_USERPTR_USED	BIT(29)
69 #define __EXEC_INTERNAL_FLAGS	(~0u << 29)
70 #define UPDATE			PIN_OFFSET_FIXED
71 
72 #define BATCH_OFFSET_BIAS (256*1024)
73 
74 #define __I915_EXEC_ILLEGAL_FLAGS \
75 	(__I915_EXEC_UNKNOWN_FLAGS | \
76 	 I915_EXEC_CONSTANTS_MASK  | \
77 	 I915_EXEC_RESOURCE_STREAMER)
78 
79 /* Catch emission of unexpected errors for CI! */
80 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
81 #undef EINVAL
82 #define EINVAL ({ \
83 	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
84 	22; \
85 })
86 #endif
87 
88 /**
89  * DOC: User command execution
90  *
91  * Userspace submits commands to be executed on the GPU as an instruction
92  * stream within a GEM object we call a batchbuffer. This instructions may
93  * refer to other GEM objects containing auxiliary state such as kernels,
94  * samplers, render targets and even secondary batchbuffers. Userspace does
95  * not know where in the GPU memory these objects reside and so before the
96  * batchbuffer is passed to the GPU for execution, those addresses in the
97  * batchbuffer and auxiliary objects are updated. This is known as relocation,
98  * or patching. To try and avoid having to relocate each object on the next
99  * execution, userspace is told the location of those objects in this pass,
100  * but this remains just a hint as the kernel may choose a new location for
101  * any object in the future.
102  *
103  * At the level of talking to the hardware, submitting a batchbuffer for the
104  * GPU to execute is to add content to a buffer from which the HW
105  * command streamer is reading.
106  *
107  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
108  *    Execlists, this command is not placed on the same buffer as the
109  *    remaining items.
110  *
111  * 2. Add a command to invalidate caches to the buffer.
112  *
113  * 3. Add a batchbuffer start command to the buffer; the start command is
114  *    essentially a token together with the GPU address of the batchbuffer
115  *    to be executed.
116  *
117  * 4. Add a pipeline flush to the buffer.
118  *
119  * 5. Add a memory write command to the buffer to record when the GPU
120  *    is done executing the batchbuffer. The memory write writes the
121  *    global sequence number of the request, ``i915_request::global_seqno``;
122  *    the i915 driver uses the current value in the register to determine
123  *    if the GPU has completed the batchbuffer.
124  *
125  * 6. Add a user interrupt command to the buffer. This command instructs
126  *    the GPU to issue an interrupt when the command, pipeline flush and
127  *    memory write are completed.
128  *
129  * 7. Inform the hardware of the additional commands added to the buffer
130  *    (by updating the tail pointer).
131  *
132  * Processing an execbuf ioctl is conceptually split up into a few phases.
133  *
134  * 1. Validation - Ensure all the pointers, handles and flags are valid.
135  * 2. Reservation - Assign GPU address space for every object
136  * 3. Relocation - Update any addresses to point to the final locations
137  * 4. Serialisation - Order the request with respect to its dependencies
138  * 5. Construction - Construct a request to execute the batchbuffer
139  * 6. Submission (at some point in the future execution)
140  *
141  * Reserving resources for the execbuf is the most complicated phase. We
142  * neither want to have to migrate the object in the address space, nor do
143  * we want to have to update any relocations pointing to this object. Ideally,
144  * we want to leave the object where it is and for all the existing relocations
145  * to match. If the object is given a new address, or if userspace thinks the
146  * object is elsewhere, we have to parse all the relocation entries and update
147  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
148  * all the target addresses in all of its objects match the value in the
149  * relocation entries and that they all match the presumed offsets given by the
150  * list of execbuffer objects. Using this knowledge, we know that if we haven't
151  * moved any buffers, all the relocation entries are valid and we can skip
152  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
153  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
154  *
155  *      The addresses written in the objects must match the corresponding
156  *      reloc.presumed_offset which in turn must match the corresponding
157  *      execobject.offset.
158  *
159  *      Any render targets written to in the batch must be flagged with
160  *      EXEC_OBJECT_WRITE.
161  *
162  *      To avoid stalling, execobject.offset should match the current
163  *      address of that object within the active context.
164  *
165  * The reservation is done is multiple phases. First we try and keep any
166  * object already bound in its current location - so as long as meets the
167  * constraints imposed by the new execbuffer. Any object left unbound after the
168  * first pass is then fitted into any available idle space. If an object does
169  * not fit, all objects are removed from the reservation and the process rerun
170  * after sorting the objects into a priority order (more difficult to fit
171  * objects are tried first). Failing that, the entire VM is cleared and we try
172  * to fit the execbuf once last time before concluding that it simply will not
173  * fit.
174  *
175  * A small complication to all of this is that we allow userspace not only to
176  * specify an alignment and a size for the object in the address space, but
177  * we also allow userspace to specify the exact offset. This objects are
178  * simpler to place (the location is known a priori) all we have to do is make
179  * sure the space is available.
180  *
181  * Once all the objects are in place, patching up the buried pointers to point
182  * to the final locations is a fairly simple job of walking over the relocation
183  * entry arrays, looking up the right address and rewriting the value into
184  * the object. Simple! ... The relocation entries are stored in user memory
185  * and so to access them we have to copy them into a local buffer. That copy
186  * has to avoid taking any pagefaults as they may lead back to a GEM object
187  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
188  * the relocation into multiple passes. First we try to do everything within an
189  * atomic context (avoid the pagefaults) which requires that we never wait. If
190  * we detect that we may wait, or if we need to fault, then we have to fallback
191  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
192  * bells yet?) Dropping the mutex means that we lose all the state we have
193  * built up so far for the execbuf and we must reset any global data. However,
194  * we do leave the objects pinned in their final locations - which is a
195  * potential issue for concurrent execbufs. Once we have left the mutex, we can
196  * allocate and copy all the relocation entries into a large array at our
197  * leisure, reacquire the mutex, reclaim all the objects and other state and
198  * then proceed to update any incorrect addresses with the objects.
199  *
200  * As we process the relocation entries, we maintain a record of whether the
201  * object is being written to. Using NORELOC, we expect userspace to provide
202  * this information instead. We also check whether we can skip the relocation
203  * by comparing the expected value inside the relocation entry with the target's
204  * final address. If they differ, we have to map the current object and rewrite
205  * the 4 or 8 byte pointer within.
206  *
207  * Serialising an execbuf is quite simple according to the rules of the GEM
208  * ABI. Execution within each context is ordered by the order of submission.
209  * Writes to any GEM object are in order of submission and are exclusive. Reads
210  * from a GEM object are unordered with respect to other reads, but ordered by
211  * writes. A write submitted after a read cannot occur before the read, and
212  * similarly any read submitted after a write cannot occur before the write.
213  * Writes are ordered between engines such that only one write occurs at any
214  * time (completing any reads beforehand) - using semaphores where available
215  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
216  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
217  * reads before starting, and any read (either using set-domain or pread) must
218  * flush all GPU writes before starting. (Note we only employ a barrier before,
219  * we currently rely on userspace not concurrently starting a new execution
220  * whilst reading or writing to an object. This may be an advantage or not
221  * depending on how much you trust userspace not to shoot themselves in the
222  * foot.) Serialisation may just result in the request being inserted into
223  * a DAG awaiting its turn, but most simple is to wait on the CPU until
224  * all dependencies are resolved.
225  *
226  * After all of that, is just a matter of closing the request and handing it to
227  * the hardware (well, leaving it in a queue to be executed). However, we also
228  * offer the ability for batchbuffers to be run with elevated privileges so
229  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
230  * Before any batch is given extra privileges we first must check that it
231  * contains no nefarious instructions, we check that each instruction is from
232  * our whitelist and all registers are also from an allowed list. We first
233  * copy the user's batchbuffer to a shadow (so that the user doesn't have
234  * access to it, either by the CPU or GPU as we scan it) and then parse each
235  * instruction. If everything is ok, we set a flag telling the hardware to run
236  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
237  */
238 
239 struct eb_fence {
240 	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
241 	struct dma_fence *dma_fence;
242 	u64 value;
243 	struct dma_fence_chain *chain_fence;
244 };
245 
246 struct i915_execbuffer {
247 	struct drm_i915_private *i915; /** i915 backpointer */
248 	struct drm_file *file; /** per-file lookup tables and limits */
249 	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
250 	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
251 	struct eb_vma *vma;
252 
253 	struct intel_gt *gt; /* gt for the execbuf */
254 	struct intel_context *context; /* logical state for the request */
255 	struct i915_gem_context *gem_context; /** caller's context */
256 
257 	/** our requests to build */
258 	struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
259 	/** identity of the batch obj/vma */
260 	struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
261 	struct i915_vma *trampoline; /** trampoline used for chaining */
262 
263 	/** used for excl fence in dma_resv objects when > 1 BB submitted */
264 	struct dma_fence *composite_fence;
265 
266 	/** actual size of execobj[] as we may extend it for the cmdparser */
267 	unsigned int buffer_count;
268 
269 	/* number of batches in execbuf IOCTL */
270 	unsigned int num_batches;
271 
272 	/** list of vma not yet bound during reservation phase */
273 	struct list_head unbound;
274 
275 	/** list of vma that have execobj.relocation_count */
276 	struct list_head relocs;
277 
278 	struct i915_gem_ww_ctx ww;
279 
280 	/**
281 	 * Track the most recently used object for relocations, as we
282 	 * frequently have to perform multiple relocations within the same
283 	 * obj/page
284 	 */
285 	struct reloc_cache {
286 		struct drm_mm_node node; /** temporary GTT binding */
287 		unsigned long vaddr; /** Current kmap address */
288 		unsigned long page; /** Currently mapped page index */
289 		unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
290 		bool use_64bit_reloc : 1;
291 		bool has_llc : 1;
292 		bool has_fence : 1;
293 		bool needs_unfenced : 1;
294 	} reloc_cache;
295 
296 	u64 invalid_flags; /** Set of execobj.flags that are invalid */
297 
298 	/** Length of batch within object */
299 	u64 batch_len[MAX_ENGINE_INSTANCE + 1];
300 	u32 batch_start_offset; /** Location within object of batch */
301 	u32 batch_flags; /** Flags composed for emit_bb_start() */
302 	struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
303 
304 	/**
305 	 * Indicate either the size of the hastable used to resolve
306 	 * relocation handles, or if negative that we are using a direct
307 	 * index into the execobj[].
308 	 */
309 	int lut_size;
310 	struct hlist_head *buckets; /** ht for relocation handles */
311 
312 	struct eb_fence *fences;
313 	unsigned long num_fences;
314 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
315 	struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
316 #endif
317 };
318 
319 static int eb_parse(struct i915_execbuffer *eb);
320 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
321 static void eb_unpin_engine(struct i915_execbuffer *eb);
322 static void eb_capture_release(struct i915_execbuffer *eb);
323 
324 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
325 {
326 	return intel_engine_requires_cmd_parser(eb->context->engine) ||
327 		(intel_engine_using_cmd_parser(eb->context->engine) &&
328 		 eb->args->batch_len);
329 }
330 
331 static int eb_create(struct i915_execbuffer *eb)
332 {
333 	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
334 		unsigned int size = 1 + ilog2(eb->buffer_count);
335 
336 		/*
337 		 * Without a 1:1 association between relocation handles and
338 		 * the execobject[] index, we instead create a hashtable.
339 		 * We size it dynamically based on available memory, starting
340 		 * first with 1:1 assocative hash and scaling back until
341 		 * the allocation succeeds.
342 		 *
343 		 * Later on we use a positive lut_size to indicate we are
344 		 * using this hashtable, and a negative value to indicate a
345 		 * direct lookup.
346 		 */
347 		do {
348 			gfp_t flags;
349 
350 			/* While we can still reduce the allocation size, don't
351 			 * raise a warning and allow the allocation to fail.
352 			 * On the last pass though, we want to try as hard
353 			 * as possible to perform the allocation and warn
354 			 * if it fails.
355 			 */
356 			flags = GFP_KERNEL;
357 			if (size > 1)
358 				flags |= __GFP_NORETRY | __GFP_NOWARN;
359 
360 			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
361 					      flags);
362 			if (eb->buckets)
363 				break;
364 		} while (--size);
365 
366 		if (unlikely(!size))
367 			return -ENOMEM;
368 
369 		eb->lut_size = size;
370 	} else {
371 		eb->lut_size = -eb->buffer_count;
372 	}
373 
374 	return 0;
375 }
376 
377 static bool
378 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
379 		 const struct i915_vma *vma,
380 		 unsigned int flags)
381 {
382 	const u64 start = i915_vma_offset(vma);
383 	const u64 size = i915_vma_size(vma);
384 
385 	if (size < entry->pad_to_size)
386 		return true;
387 
388 	if (entry->alignment && !IS_ALIGNED(start, entry->alignment))
389 		return true;
390 
391 	if (flags & EXEC_OBJECT_PINNED &&
392 	    start != entry->offset)
393 		return true;
394 
395 	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
396 	    start < BATCH_OFFSET_BIAS)
397 		return true;
398 
399 	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
400 	    (start + size + 4095) >> 32)
401 		return true;
402 
403 	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
404 	    !i915_vma_is_map_and_fenceable(vma))
405 		return true;
406 
407 	return false;
408 }
409 
410 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
411 			unsigned int exec_flags)
412 {
413 	u64 pin_flags = 0;
414 
415 	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
416 		pin_flags |= PIN_GLOBAL;
417 
418 	/*
419 	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
420 	 * limit address to the first 4GBs for unflagged objects.
421 	 */
422 	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
423 		pin_flags |= PIN_ZONE_4G;
424 
425 	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
426 		pin_flags |= PIN_MAPPABLE;
427 
428 	if (exec_flags & EXEC_OBJECT_PINNED)
429 		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
430 	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
431 		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
432 
433 	return pin_flags;
434 }
435 
436 static inline int
437 eb_pin_vma(struct i915_execbuffer *eb,
438 	   const struct drm_i915_gem_exec_object2 *entry,
439 	   struct eb_vma *ev)
440 {
441 	struct i915_vma *vma = ev->vma;
442 	u64 pin_flags;
443 	int err;
444 
445 	if (vma->node.size)
446 		pin_flags =  __i915_vma_offset(vma);
447 	else
448 		pin_flags = entry->offset & PIN_OFFSET_MASK;
449 
450 	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE;
451 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
452 		pin_flags |= PIN_GLOBAL;
453 
454 	/* Attempt to reuse the current location if available */
455 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
456 	if (err == -EDEADLK)
457 		return err;
458 
459 	if (unlikely(err)) {
460 		if (entry->flags & EXEC_OBJECT_PINNED)
461 			return err;
462 
463 		/* Failing that pick any _free_ space if suitable */
464 		err = i915_vma_pin_ww(vma, &eb->ww,
465 					     entry->pad_to_size,
466 					     entry->alignment,
467 					     eb_pin_flags(entry, ev->flags) |
468 					     PIN_USER | PIN_NOEVICT | PIN_VALIDATE);
469 		if (unlikely(err))
470 			return err;
471 	}
472 
473 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
474 		err = i915_vma_pin_fence(vma);
475 		if (unlikely(err))
476 			return err;
477 
478 		if (vma->fence)
479 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
480 	}
481 
482 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
483 	if (eb_vma_misplaced(entry, vma, ev->flags))
484 		return -EBADSLT;
485 
486 	return 0;
487 }
488 
489 static inline void
490 eb_unreserve_vma(struct eb_vma *ev)
491 {
492 	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
493 		__i915_vma_unpin_fence(ev->vma);
494 
495 	ev->flags &= ~__EXEC_OBJECT_RESERVED;
496 }
497 
498 static int
499 eb_validate_vma(struct i915_execbuffer *eb,
500 		struct drm_i915_gem_exec_object2 *entry,
501 		struct i915_vma *vma)
502 {
503 	/* Relocations are disallowed for all platforms after TGL-LP.  This
504 	 * also covers all platforms with local memory.
505 	 */
506 	if (entry->relocation_count &&
507 	    GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
508 		return -EINVAL;
509 
510 	if (unlikely(entry->flags & eb->invalid_flags))
511 		return -EINVAL;
512 
513 	if (unlikely(entry->alignment &&
514 		     !is_power_of_2_u64(entry->alignment)))
515 		return -EINVAL;
516 
517 	/*
518 	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
519 	 * any non-page-aligned or non-canonical addresses.
520 	 */
521 	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
522 		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
523 		return -EINVAL;
524 
525 	/* pad_to_size was once a reserved field, so sanitize it */
526 	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
527 		if (unlikely(offset_in_page(entry->pad_to_size)))
528 			return -EINVAL;
529 	} else {
530 		entry->pad_to_size = 0;
531 	}
532 	/*
533 	 * From drm_mm perspective address space is continuous,
534 	 * so from this point we're always using non-canonical
535 	 * form internally.
536 	 */
537 	entry->offset = gen8_noncanonical_addr(entry->offset);
538 
539 	if (!eb->reloc_cache.has_fence) {
540 		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
541 	} else {
542 		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
543 		     eb->reloc_cache.needs_unfenced) &&
544 		    i915_gem_object_is_tiled(vma->obj))
545 			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
546 	}
547 
548 	return 0;
549 }
550 
551 static inline bool
552 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
553 {
554 	return eb->args->flags & I915_EXEC_BATCH_FIRST ?
555 		buffer_idx < eb->num_batches :
556 		buffer_idx >= eb->args->buffer_count - eb->num_batches;
557 }
558 
559 static int
560 eb_add_vma(struct i915_execbuffer *eb,
561 	   unsigned int *current_batch,
562 	   unsigned int i,
563 	   struct i915_vma *vma)
564 {
565 	struct drm_i915_private *i915 = eb->i915;
566 	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
567 	struct eb_vma *ev = &eb->vma[i];
568 
569 	ev->vma = vma;
570 	ev->exec = entry;
571 	ev->flags = entry->flags;
572 
573 	if (eb->lut_size > 0) {
574 		ev->handle = entry->handle;
575 		hlist_add_head(&ev->node,
576 			       &eb->buckets[hash_32(entry->handle,
577 						    eb->lut_size)]);
578 	}
579 
580 	if (entry->relocation_count)
581 		list_add_tail(&ev->reloc_link, &eb->relocs);
582 
583 	/*
584 	 * SNA is doing fancy tricks with compressing batch buffers, which leads
585 	 * to negative relocation deltas. Usually that works out ok since the
586 	 * relocate address is still positive, except when the batch is placed
587 	 * very low in the GTT. Ensure this doesn't happen.
588 	 *
589 	 * Note that actual hangs have only been observed on gen7, but for
590 	 * paranoia do it everywhere.
591 	 */
592 	if (is_batch_buffer(eb, i)) {
593 		if (entry->relocation_count &&
594 		    !(ev->flags & EXEC_OBJECT_PINNED))
595 			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
596 		if (eb->reloc_cache.has_fence)
597 			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
598 
599 		eb->batches[*current_batch] = ev;
600 
601 		if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
602 			drm_dbg(&i915->drm,
603 				"Attempting to use self-modifying batch buffer\n");
604 			return -EINVAL;
605 		}
606 
607 		if (range_overflows_t(u64,
608 				      eb->batch_start_offset,
609 				      eb->args->batch_len,
610 				      ev->vma->size)) {
611 			drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
612 			return -EINVAL;
613 		}
614 
615 		if (eb->args->batch_len == 0)
616 			eb->batch_len[*current_batch] = ev->vma->size -
617 				eb->batch_start_offset;
618 		else
619 			eb->batch_len[*current_batch] = eb->args->batch_len;
620 		if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
621 			drm_dbg(&i915->drm, "Invalid batch length\n");
622 			return -EINVAL;
623 		}
624 
625 		++*current_batch;
626 	}
627 
628 	return 0;
629 }
630 
631 static inline int use_cpu_reloc(const struct reloc_cache *cache,
632 				const struct drm_i915_gem_object *obj)
633 {
634 	if (!i915_gem_object_has_struct_page(obj))
635 		return false;
636 
637 	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
638 		return true;
639 
640 	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
641 		return false;
642 
643 	/*
644 	 * For objects created by userspace through GEM_CREATE with pat_index
645 	 * set by set_pat extension, i915_gem_object_has_cache_level() always
646 	 * return true, otherwise the call would fall back to checking whether
647 	 * the object is un-cached.
648 	 */
649 	return (cache->has_llc ||
650 		obj->cache_dirty ||
651 		!i915_gem_object_has_cache_level(obj, I915_CACHE_NONE));
652 }
653 
654 static int eb_reserve_vma(struct i915_execbuffer *eb,
655 			  struct eb_vma *ev,
656 			  u64 pin_flags)
657 {
658 	struct drm_i915_gem_exec_object2 *entry = ev->exec;
659 	struct i915_vma *vma = ev->vma;
660 	int err;
661 
662 	if (drm_mm_node_allocated(&vma->node) &&
663 	    eb_vma_misplaced(entry, vma, ev->flags)) {
664 		err = i915_vma_unbind(vma);
665 		if (err)
666 			return err;
667 	}
668 
669 	err = i915_vma_pin_ww(vma, &eb->ww,
670 			   entry->pad_to_size, entry->alignment,
671 			   eb_pin_flags(entry, ev->flags) | pin_flags);
672 	if (err)
673 		return err;
674 
675 	if (entry->offset != i915_vma_offset(vma)) {
676 		entry->offset = i915_vma_offset(vma) | UPDATE;
677 		eb->args->flags |= __EXEC_HAS_RELOC;
678 	}
679 
680 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
681 		err = i915_vma_pin_fence(vma);
682 		if (unlikely(err))
683 			return err;
684 
685 		if (vma->fence)
686 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
687 	}
688 
689 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
690 	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
691 
692 	return 0;
693 }
694 
695 static bool eb_unbind(struct i915_execbuffer *eb, bool force)
696 {
697 	const unsigned int count = eb->buffer_count;
698 	unsigned int i;
699 	struct list_head last;
700 	bool unpinned = false;
701 
702 	/* Resort *all* the objects into priority order */
703 	INIT_LIST_HEAD(&eb->unbound);
704 	INIT_LIST_HEAD(&last);
705 
706 	for (i = 0; i < count; i++) {
707 		struct eb_vma *ev = &eb->vma[i];
708 		unsigned int flags = ev->flags;
709 
710 		if (!force && flags & EXEC_OBJECT_PINNED &&
711 		    flags & __EXEC_OBJECT_HAS_PIN)
712 			continue;
713 
714 		unpinned = true;
715 		eb_unreserve_vma(ev);
716 
717 		if (flags & EXEC_OBJECT_PINNED)
718 			/* Pinned must have their slot */
719 			list_add(&ev->bind_link, &eb->unbound);
720 		else if (flags & __EXEC_OBJECT_NEEDS_MAP)
721 			/* Map require the lowest 256MiB (aperture) */
722 			list_add_tail(&ev->bind_link, &eb->unbound);
723 		else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
724 			/* Prioritise 4GiB region for restricted bo */
725 			list_add(&ev->bind_link, &last);
726 		else
727 			list_add_tail(&ev->bind_link, &last);
728 	}
729 
730 	list_splice_tail(&last, &eb->unbound);
731 	return unpinned;
732 }
733 
734 static int eb_reserve(struct i915_execbuffer *eb)
735 {
736 	struct eb_vma *ev;
737 	unsigned int pass;
738 	int err = 0;
739 
740 	/*
741 	 * We have one more buffers that we couldn't bind, which could be due to
742 	 * various reasons. To resolve this we have 4 passes, with every next
743 	 * level turning the screws tighter:
744 	 *
745 	 * 0. Unbind all objects that do not match the GTT constraints for the
746 	 * execbuffer (fenceable, mappable, alignment etc). Bind all new
747 	 * objects.  This avoids unnecessary unbinding of later objects in order
748 	 * to make room for the earlier objects *unless* we need to defragment.
749 	 *
750 	 * 1. Reorder the buffers, where objects with the most restrictive
751 	 * placement requirements go first (ignoring fixed location buffers for
752 	 * now).  For example, objects needing the mappable aperture (the first
753 	 * 256M of GTT), should go first vs objects that can be placed just
754 	 * about anywhere. Repeat the previous pass.
755 	 *
756 	 * 2. Consider buffers that are pinned at a fixed location. Also try to
757 	 * evict the entire VM this time, leaving only objects that we were
758 	 * unable to lock. Try again to bind the buffers. (still using the new
759 	 * buffer order).
760 	 *
761 	 * 3. We likely have object lock contention for one or more stubborn
762 	 * objects in the VM, for which we need to evict to make forward
763 	 * progress (perhaps we are fighting the shrinker?). When evicting the
764 	 * VM this time around, anything that we can't lock we now track using
765 	 * the busy_bo, using the full lock (after dropping the vm->mutex to
766 	 * prevent deadlocks), instead of trylock. We then continue to evict the
767 	 * VM, this time with the stubborn object locked, which we can now
768 	 * hopefully unbind (if still bound in the VM). Repeat until the VM is
769 	 * evicted. Finally we should be able bind everything.
770 	 */
771 	for (pass = 0; pass <= 3; pass++) {
772 		int pin_flags = PIN_USER | PIN_VALIDATE;
773 
774 		if (pass == 0)
775 			pin_flags |= PIN_NONBLOCK;
776 
777 		if (pass >= 1)
778 			eb_unbind(eb, pass >= 2);
779 
780 		if (pass == 2) {
781 			err = mutex_lock_interruptible(&eb->context->vm->mutex);
782 			if (!err) {
783 				err = i915_gem_evict_vm(eb->context->vm, &eb->ww, NULL);
784 				mutex_unlock(&eb->context->vm->mutex);
785 			}
786 			if (err)
787 				return err;
788 		}
789 
790 		if (pass == 3) {
791 retry:
792 			err = mutex_lock_interruptible(&eb->context->vm->mutex);
793 			if (!err) {
794 				struct drm_i915_gem_object *busy_bo = NULL;
795 
796 				err = i915_gem_evict_vm(eb->context->vm, &eb->ww, &busy_bo);
797 				mutex_unlock(&eb->context->vm->mutex);
798 				if (err && busy_bo) {
799 					err = i915_gem_object_lock(busy_bo, &eb->ww);
800 					i915_gem_object_put(busy_bo);
801 					if (!err)
802 						goto retry;
803 				}
804 			}
805 			if (err)
806 				return err;
807 		}
808 
809 		list_for_each_entry(ev, &eb->unbound, bind_link) {
810 			err = eb_reserve_vma(eb, ev, pin_flags);
811 			if (err)
812 				break;
813 		}
814 
815 		if (err != -ENOSPC)
816 			break;
817 	}
818 
819 	return err;
820 }
821 
822 static int eb_select_context(struct i915_execbuffer *eb)
823 {
824 	struct i915_gem_context *ctx;
825 
826 	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
827 	if (unlikely(IS_ERR(ctx)))
828 		return PTR_ERR(ctx);
829 
830 	eb->gem_context = ctx;
831 	if (i915_gem_context_has_full_ppgtt(ctx))
832 		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
833 
834 	return 0;
835 }
836 
837 static int __eb_add_lut(struct i915_execbuffer *eb,
838 			u32 handle, struct i915_vma *vma)
839 {
840 	struct i915_gem_context *ctx = eb->gem_context;
841 	struct i915_lut_handle *lut;
842 	int err;
843 
844 	lut = i915_lut_handle_alloc();
845 	if (unlikely(!lut))
846 		return -ENOMEM;
847 
848 	i915_vma_get(vma);
849 	if (!atomic_fetch_inc(&vma->open_count))
850 		i915_vma_reopen(vma);
851 	lut->handle = handle;
852 	lut->ctx = ctx;
853 
854 	/* Check that the context hasn't been closed in the meantime */
855 	err = -EINTR;
856 	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
857 		if (likely(!i915_gem_context_is_closed(ctx)))
858 			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
859 		else
860 			err = -ENOENT;
861 		if (err == 0) { /* And nor has this handle */
862 			struct drm_i915_gem_object *obj = vma->obj;
863 
864 			spin_lock(&obj->lut_lock);
865 			if (idr_find(&eb->file->object_idr, handle) == obj) {
866 				list_add(&lut->obj_link, &obj->lut_list);
867 			} else {
868 				radix_tree_delete(&ctx->handles_vma, handle);
869 				err = -ENOENT;
870 			}
871 			spin_unlock(&obj->lut_lock);
872 		}
873 		mutex_unlock(&ctx->lut_mutex);
874 	}
875 	if (unlikely(err))
876 		goto err;
877 
878 	return 0;
879 
880 err:
881 	i915_vma_close(vma);
882 	i915_vma_put(vma);
883 	i915_lut_handle_free(lut);
884 	return err;
885 }
886 
887 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
888 {
889 	struct i915_address_space *vm = eb->context->vm;
890 
891 	do {
892 		struct drm_i915_gem_object *obj;
893 		struct i915_vma *vma;
894 		int err;
895 
896 		rcu_read_lock();
897 		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
898 		if (likely(vma && vma->vm == vm))
899 			vma = i915_vma_tryget(vma);
900 		rcu_read_unlock();
901 		if (likely(vma))
902 			return vma;
903 
904 		obj = i915_gem_object_lookup(eb->file, handle);
905 		if (unlikely(!obj))
906 			return ERR_PTR(-ENOENT);
907 
908 		/*
909 		 * If the user has opted-in for protected-object tracking, make
910 		 * sure the object encryption can be used.
911 		 * We only need to do this when the object is first used with
912 		 * this context, because the context itself will be banned when
913 		 * the protected objects become invalid.
914 		 */
915 		if (i915_gem_context_uses_protected_content(eb->gem_context) &&
916 		    i915_gem_object_is_protected(obj)) {
917 			err = intel_pxp_key_check(eb->i915->pxp, obj, true);
918 			if (err) {
919 				i915_gem_object_put(obj);
920 				return ERR_PTR(err);
921 			}
922 		}
923 
924 		vma = i915_vma_instance(obj, vm, NULL);
925 		if (IS_ERR(vma)) {
926 			i915_gem_object_put(obj);
927 			return vma;
928 		}
929 
930 		err = __eb_add_lut(eb, handle, vma);
931 		if (likely(!err))
932 			return vma;
933 
934 		i915_gem_object_put(obj);
935 		if (err != -EEXIST)
936 			return ERR_PTR(err);
937 	} while (1);
938 }
939 
940 static int eb_lookup_vmas(struct i915_execbuffer *eb)
941 {
942 	unsigned int i, current_batch = 0;
943 	int err = 0;
944 
945 	INIT_LIST_HEAD(&eb->relocs);
946 
947 	for (i = 0; i < eb->buffer_count; i++) {
948 		struct i915_vma *vma;
949 
950 		vma = eb_lookup_vma(eb, eb->exec[i].handle);
951 		if (IS_ERR(vma)) {
952 			err = PTR_ERR(vma);
953 			goto err;
954 		}
955 
956 		err = eb_validate_vma(eb, &eb->exec[i], vma);
957 		if (unlikely(err)) {
958 			i915_vma_put(vma);
959 			goto err;
960 		}
961 
962 		err = eb_add_vma(eb, &current_batch, i, vma);
963 		if (err)
964 			return err;
965 
966 		if (i915_gem_object_is_userptr(vma->obj)) {
967 			err = i915_gem_object_userptr_submit_init(vma->obj);
968 			if (err) {
969 				if (i + 1 < eb->buffer_count) {
970 					/*
971 					 * Execbuffer code expects last vma entry to be NULL,
972 					 * since we already initialized this entry,
973 					 * set the next value to NULL or we mess up
974 					 * cleanup handling.
975 					 */
976 					eb->vma[i + 1].vma = NULL;
977 				}
978 
979 				return err;
980 			}
981 
982 			eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
983 			eb->args->flags |= __EXEC_USERPTR_USED;
984 		}
985 	}
986 
987 	return 0;
988 
989 err:
990 	eb->vma[i].vma = NULL;
991 	return err;
992 }
993 
994 static int eb_lock_vmas(struct i915_execbuffer *eb)
995 {
996 	unsigned int i;
997 	int err;
998 
999 	for (i = 0; i < eb->buffer_count; i++) {
1000 		struct eb_vma *ev = &eb->vma[i];
1001 		struct i915_vma *vma = ev->vma;
1002 
1003 		err = i915_gem_object_lock(vma->obj, &eb->ww);
1004 		if (err)
1005 			return err;
1006 	}
1007 
1008 	return 0;
1009 }
1010 
1011 static int eb_validate_vmas(struct i915_execbuffer *eb)
1012 {
1013 	unsigned int i;
1014 	int err;
1015 
1016 	INIT_LIST_HEAD(&eb->unbound);
1017 
1018 	err = eb_lock_vmas(eb);
1019 	if (err)
1020 		return err;
1021 
1022 	for (i = 0; i < eb->buffer_count; i++) {
1023 		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
1024 		struct eb_vma *ev = &eb->vma[i];
1025 		struct i915_vma *vma = ev->vma;
1026 
1027 		err = eb_pin_vma(eb, entry, ev);
1028 		if (err == -EDEADLK)
1029 			return err;
1030 
1031 		if (!err) {
1032 			if (entry->offset != i915_vma_offset(vma)) {
1033 				entry->offset = i915_vma_offset(vma) | UPDATE;
1034 				eb->args->flags |= __EXEC_HAS_RELOC;
1035 			}
1036 		} else {
1037 			eb_unreserve_vma(ev);
1038 
1039 			list_add_tail(&ev->bind_link, &eb->unbound);
1040 			if (drm_mm_node_allocated(&vma->node)) {
1041 				err = i915_vma_unbind(vma);
1042 				if (err)
1043 					return err;
1044 			}
1045 		}
1046 
1047 		/* Reserve enough slots to accommodate composite fences */
1048 		err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches);
1049 		if (err)
1050 			return err;
1051 
1052 		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
1053 			   eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1054 	}
1055 
1056 	if (!list_empty(&eb->unbound))
1057 		return eb_reserve(eb);
1058 
1059 	return 0;
1060 }
1061 
1062 static struct eb_vma *
1063 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
1064 {
1065 	if (eb->lut_size < 0) {
1066 		if (handle >= -eb->lut_size)
1067 			return NULL;
1068 		return &eb->vma[handle];
1069 	} else {
1070 		struct hlist_head *head;
1071 		struct eb_vma *ev;
1072 
1073 		head = &eb->buckets[hash_32(handle, eb->lut_size)];
1074 		hlist_for_each_entry(ev, head, node) {
1075 			if (ev->handle == handle)
1076 				return ev;
1077 		}
1078 		return NULL;
1079 	}
1080 }
1081 
1082 static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
1083 {
1084 	const unsigned int count = eb->buffer_count;
1085 	unsigned int i;
1086 
1087 	for (i = 0; i < count; i++) {
1088 		struct eb_vma *ev = &eb->vma[i];
1089 		struct i915_vma *vma = ev->vma;
1090 
1091 		if (!vma)
1092 			break;
1093 
1094 		eb_unreserve_vma(ev);
1095 
1096 		if (final)
1097 			i915_vma_put(vma);
1098 	}
1099 
1100 	eb_capture_release(eb);
1101 	eb_unpin_engine(eb);
1102 }
1103 
1104 static void eb_destroy(const struct i915_execbuffer *eb)
1105 {
1106 	if (eb->lut_size > 0)
1107 		kfree(eb->buckets);
1108 }
1109 
1110 static inline u64
1111 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1112 		  const struct i915_vma *target)
1113 {
1114 	return gen8_canonical_addr((int)reloc->delta + i915_vma_offset(target));
1115 }
1116 
1117 static void reloc_cache_init(struct reloc_cache *cache,
1118 			     struct drm_i915_private *i915)
1119 {
1120 	cache->page = -1;
1121 	cache->vaddr = 0;
1122 	/* Must be a variable in the struct to allow GCC to unroll. */
1123 	cache->graphics_ver = GRAPHICS_VER(i915);
1124 	cache->has_llc = HAS_LLC(i915);
1125 	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1126 	cache->has_fence = cache->graphics_ver < 4;
1127 	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1128 	cache->node.flags = 0;
1129 }
1130 
1131 static inline void *unmask_page(unsigned long p)
1132 {
1133 	return (void *)(uintptr_t)(p & PAGE_MASK);
1134 }
1135 
1136 static inline unsigned int unmask_flags(unsigned long p)
1137 {
1138 	return p & ~PAGE_MASK;
1139 }
1140 
1141 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1142 
1143 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1144 {
1145 	struct drm_i915_private *i915 =
1146 		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1147 	return to_gt(i915)->ggtt;
1148 }
1149 
1150 static void reloc_cache_unmap(struct reloc_cache *cache)
1151 {
1152 	void *vaddr;
1153 
1154 	if (!cache->vaddr)
1155 		return;
1156 
1157 	vaddr = unmask_page(cache->vaddr);
1158 	if (cache->vaddr & KMAP)
1159 		kunmap_atomic(vaddr);
1160 	else
1161 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1162 }
1163 
1164 static void reloc_cache_remap(struct reloc_cache *cache,
1165 			      struct drm_i915_gem_object *obj)
1166 {
1167 	void *vaddr;
1168 
1169 	if (!cache->vaddr)
1170 		return;
1171 
1172 	if (cache->vaddr & KMAP) {
1173 		struct page *page = i915_gem_object_get_page(obj, cache->page);
1174 
1175 		vaddr = kmap_atomic(page);
1176 		cache->vaddr = unmask_flags(cache->vaddr) |
1177 			(unsigned long)vaddr;
1178 	} else {
1179 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1180 		unsigned long offset;
1181 
1182 		offset = cache->node.start;
1183 		if (!drm_mm_node_allocated(&cache->node))
1184 			offset += cache->page << PAGE_SHIFT;
1185 
1186 		cache->vaddr = (unsigned long)
1187 			io_mapping_map_atomic_wc(&ggtt->iomap, offset);
1188 	}
1189 }
1190 
1191 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1192 {
1193 	void *vaddr;
1194 
1195 	if (!cache->vaddr)
1196 		return;
1197 
1198 	vaddr = unmask_page(cache->vaddr);
1199 	if (cache->vaddr & KMAP) {
1200 		struct drm_i915_gem_object *obj =
1201 			(struct drm_i915_gem_object *)cache->node.mm;
1202 		if (cache->vaddr & CLFLUSH_AFTER)
1203 			mb();
1204 
1205 		kunmap_atomic(vaddr);
1206 		i915_gem_object_finish_access(obj);
1207 	} else {
1208 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1209 
1210 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1211 		io_mapping_unmap_atomic((void __iomem *)vaddr);
1212 
1213 		if (drm_mm_node_allocated(&cache->node)) {
1214 			ggtt->vm.clear_range(&ggtt->vm,
1215 					     cache->node.start,
1216 					     cache->node.size);
1217 			mutex_lock(&ggtt->vm.mutex);
1218 			drm_mm_remove_node(&cache->node);
1219 			mutex_unlock(&ggtt->vm.mutex);
1220 		} else {
1221 			i915_vma_unpin((struct i915_vma *)cache->node.mm);
1222 		}
1223 	}
1224 
1225 	cache->vaddr = 0;
1226 	cache->page = -1;
1227 }
1228 
1229 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1230 			struct reloc_cache *cache,
1231 			unsigned long pageno)
1232 {
1233 	void *vaddr;
1234 	struct page *page;
1235 
1236 	if (cache->vaddr) {
1237 		kunmap_atomic(unmask_page(cache->vaddr));
1238 	} else {
1239 		unsigned int flushes;
1240 		int err;
1241 
1242 		err = i915_gem_object_prepare_write(obj, &flushes);
1243 		if (err)
1244 			return ERR_PTR(err);
1245 
1246 		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1247 		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1248 
1249 		cache->vaddr = flushes | KMAP;
1250 		cache->node.mm = (void *)obj;
1251 		if (flushes)
1252 			mb();
1253 	}
1254 
1255 	page = i915_gem_object_get_page(obj, pageno);
1256 	if (!obj->mm.dirty)
1257 		set_page_dirty(page);
1258 
1259 	vaddr = kmap_atomic(page);
1260 	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1261 	cache->page = pageno;
1262 
1263 	return vaddr;
1264 }
1265 
1266 static void *reloc_iomap(struct i915_vma *batch,
1267 			 struct i915_execbuffer *eb,
1268 			 unsigned long page)
1269 {
1270 	struct drm_i915_gem_object *obj = batch->obj;
1271 	struct reloc_cache *cache = &eb->reloc_cache;
1272 	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1273 	unsigned long offset;
1274 	void *vaddr;
1275 
1276 	if (cache->vaddr) {
1277 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1278 		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1279 	} else {
1280 		struct i915_vma *vma = ERR_PTR(-ENODEV);
1281 		int err;
1282 
1283 		if (i915_gem_object_is_tiled(obj))
1284 			return ERR_PTR(-EINVAL);
1285 
1286 		if (use_cpu_reloc(cache, obj))
1287 			return NULL;
1288 
1289 		err = i915_gem_object_set_to_gtt_domain(obj, true);
1290 		if (err)
1291 			return ERR_PTR(err);
1292 
1293 		/*
1294 		 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch
1295 		 * VMA from the object list because we no longer pin.
1296 		 *
1297 		 * Only attempt to pin the batch buffer to ggtt if the current batch
1298 		 * is not inside ggtt, or the batch buffer is not misplaced.
1299 		 */
1300 		if (!i915_is_ggtt(batch->vm) ||
1301 		    !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) {
1302 			vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1303 							  PIN_MAPPABLE |
1304 							  PIN_NONBLOCK /* NOWARN */ |
1305 							  PIN_NOEVICT);
1306 		}
1307 
1308 		if (vma == ERR_PTR(-EDEADLK))
1309 			return vma;
1310 
1311 		if (IS_ERR(vma)) {
1312 			memset(&cache->node, 0, sizeof(cache->node));
1313 			mutex_lock(&ggtt->vm.mutex);
1314 			err = drm_mm_insert_node_in_range
1315 				(&ggtt->vm.mm, &cache->node,
1316 				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1317 				 0, ggtt->mappable_end,
1318 				 DRM_MM_INSERT_LOW);
1319 			mutex_unlock(&ggtt->vm.mutex);
1320 			if (err) /* no inactive aperture space, use cpu reloc */
1321 				return NULL;
1322 		} else {
1323 			cache->node.start = i915_ggtt_offset(vma);
1324 			cache->node.mm = (void *)vma;
1325 		}
1326 	}
1327 
1328 	offset = cache->node.start;
1329 	if (drm_mm_node_allocated(&cache->node)) {
1330 		ggtt->vm.insert_page(&ggtt->vm,
1331 				     i915_gem_object_get_dma_address(obj, page),
1332 				     offset,
1333 				     i915_gem_get_pat_index(ggtt->vm.i915,
1334 							    I915_CACHE_NONE),
1335 				     0);
1336 	} else {
1337 		offset += page << PAGE_SHIFT;
1338 	}
1339 
1340 	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1341 							 offset);
1342 	cache->page = page;
1343 	cache->vaddr = (unsigned long)vaddr;
1344 
1345 	return vaddr;
1346 }
1347 
1348 static void *reloc_vaddr(struct i915_vma *vma,
1349 			 struct i915_execbuffer *eb,
1350 			 unsigned long page)
1351 {
1352 	struct reloc_cache *cache = &eb->reloc_cache;
1353 	void *vaddr;
1354 
1355 	if (cache->page == page) {
1356 		vaddr = unmask_page(cache->vaddr);
1357 	} else {
1358 		vaddr = NULL;
1359 		if ((cache->vaddr & KMAP) == 0)
1360 			vaddr = reloc_iomap(vma, eb, page);
1361 		if (!vaddr)
1362 			vaddr = reloc_kmap(vma->obj, cache, page);
1363 	}
1364 
1365 	return vaddr;
1366 }
1367 
1368 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1369 {
1370 	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1371 		if (flushes & CLFLUSH_BEFORE)
1372 			drm_clflush_virt_range(addr, sizeof(*addr));
1373 
1374 		*addr = value;
1375 
1376 		/*
1377 		 * Writes to the same cacheline are serialised by the CPU
1378 		 * (including clflush). On the write path, we only require
1379 		 * that it hits memory in an orderly fashion and place
1380 		 * mb barriers at the start and end of the relocation phase
1381 		 * to ensure ordering of clflush wrt to the system.
1382 		 */
1383 		if (flushes & CLFLUSH_AFTER)
1384 			drm_clflush_virt_range(addr, sizeof(*addr));
1385 	} else
1386 		*addr = value;
1387 }
1388 
1389 static u64
1390 relocate_entry(struct i915_vma *vma,
1391 	       const struct drm_i915_gem_relocation_entry *reloc,
1392 	       struct i915_execbuffer *eb,
1393 	       const struct i915_vma *target)
1394 {
1395 	u64 target_addr = relocation_target(reloc, target);
1396 	u64 offset = reloc->offset;
1397 	bool wide = eb->reloc_cache.use_64bit_reloc;
1398 	void *vaddr;
1399 
1400 repeat:
1401 	vaddr = reloc_vaddr(vma, eb,
1402 			    offset >> PAGE_SHIFT);
1403 	if (IS_ERR(vaddr))
1404 		return PTR_ERR(vaddr);
1405 
1406 	GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1407 	clflush_write32(vaddr + offset_in_page(offset),
1408 			lower_32_bits(target_addr),
1409 			eb->reloc_cache.vaddr);
1410 
1411 	if (wide) {
1412 		offset += sizeof(u32);
1413 		target_addr >>= 32;
1414 		wide = false;
1415 		goto repeat;
1416 	}
1417 
1418 	return target->node.start | UPDATE;
1419 }
1420 
1421 static u64
1422 eb_relocate_entry(struct i915_execbuffer *eb,
1423 		  struct eb_vma *ev,
1424 		  const struct drm_i915_gem_relocation_entry *reloc)
1425 {
1426 	struct drm_i915_private *i915 = eb->i915;
1427 	struct eb_vma *target;
1428 	int err;
1429 
1430 	/* we've already hold a reference to all valid objects */
1431 	target = eb_get_vma(eb, reloc->target_handle);
1432 	if (unlikely(!target))
1433 		return -ENOENT;
1434 
1435 	/* Validate that the target is in a valid r/w GPU domain */
1436 	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1437 		drm_dbg(&i915->drm, "reloc with multiple write domains: "
1438 			  "target %d offset %d "
1439 			  "read %08x write %08x",
1440 			  reloc->target_handle,
1441 			  (int) reloc->offset,
1442 			  reloc->read_domains,
1443 			  reloc->write_domain);
1444 		return -EINVAL;
1445 	}
1446 	if (unlikely((reloc->write_domain | reloc->read_domains)
1447 		     & ~I915_GEM_GPU_DOMAINS)) {
1448 		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1449 			  "target %d offset %d "
1450 			  "read %08x write %08x",
1451 			  reloc->target_handle,
1452 			  (int) reloc->offset,
1453 			  reloc->read_domains,
1454 			  reloc->write_domain);
1455 		return -EINVAL;
1456 	}
1457 
1458 	if (reloc->write_domain) {
1459 		target->flags |= EXEC_OBJECT_WRITE;
1460 
1461 		/*
1462 		 * Sandybridge PPGTT errata: We need a global gtt mapping
1463 		 * for MI and pipe_control writes because the gpu doesn't
1464 		 * properly redirect them through the ppgtt for non_secure
1465 		 * batchbuffers.
1466 		 */
1467 		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1468 		    GRAPHICS_VER(eb->i915) == 6 &&
1469 		    !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
1470 			struct i915_vma *vma = target->vma;
1471 
1472 			reloc_cache_unmap(&eb->reloc_cache);
1473 			mutex_lock(&vma->vm->mutex);
1474 			err = i915_vma_bind(target->vma,
1475 					    target->vma->obj->pat_index,
1476 					    PIN_GLOBAL, NULL, NULL);
1477 			mutex_unlock(&vma->vm->mutex);
1478 			reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
1479 			if (err)
1480 				return err;
1481 		}
1482 	}
1483 
1484 	/*
1485 	 * If the relocation already has the right value in it, no
1486 	 * more work needs to be done.
1487 	 */
1488 	if (!DBG_FORCE_RELOC &&
1489 	    gen8_canonical_addr(i915_vma_offset(target->vma)) == reloc->presumed_offset)
1490 		return 0;
1491 
1492 	/* Check that the relocation address is valid... */
1493 	if (unlikely(reloc->offset >
1494 		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1495 		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1496 			  "target %d offset %d size %d.\n",
1497 			  reloc->target_handle,
1498 			  (int)reloc->offset,
1499 			  (int)ev->vma->size);
1500 		return -EINVAL;
1501 	}
1502 	if (unlikely(reloc->offset & 3)) {
1503 		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1504 			  "target %d offset %d.\n",
1505 			  reloc->target_handle,
1506 			  (int)reloc->offset);
1507 		return -EINVAL;
1508 	}
1509 
1510 	/*
1511 	 * If we write into the object, we need to force the synchronisation
1512 	 * barrier, either with an asynchronous clflush or if we executed the
1513 	 * patching using the GPU (though that should be serialised by the
1514 	 * timeline). To be completely sure, and since we are required to
1515 	 * do relocations we are already stalling, disable the user's opt
1516 	 * out of our synchronisation.
1517 	 */
1518 	ev->flags &= ~EXEC_OBJECT_ASYNC;
1519 
1520 	/* and update the user's relocation entry */
1521 	return relocate_entry(ev->vma, reloc, eb, target->vma);
1522 }
1523 
1524 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1525 {
1526 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1527 	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1528 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1529 	struct drm_i915_gem_relocation_entry __user *urelocs =
1530 		u64_to_user_ptr(entry->relocs_ptr);
1531 	unsigned long remain = entry->relocation_count;
1532 
1533 	if (unlikely(remain > N_RELOC(ULONG_MAX)))
1534 		return -EINVAL;
1535 
1536 	/*
1537 	 * We must check that the entire relocation array is safe
1538 	 * to read. However, if the array is not writable the user loses
1539 	 * the updated relocation values.
1540 	 */
1541 	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1542 		return -EFAULT;
1543 
1544 	do {
1545 		struct drm_i915_gem_relocation_entry *r = stack;
1546 		unsigned int count =
1547 			min_t(unsigned long, remain, ARRAY_SIZE(stack));
1548 		unsigned int copied;
1549 
1550 		/*
1551 		 * This is the fast path and we cannot handle a pagefault
1552 		 * whilst holding the struct mutex lest the user pass in the
1553 		 * relocations contained within a mmaped bo. For in such a case
1554 		 * we, the page fault handler would call i915_gem_fault() and
1555 		 * we would try to acquire the struct mutex again. Obviously
1556 		 * this is bad and so lockdep complains vehemently.
1557 		 */
1558 		pagefault_disable();
1559 		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1560 		pagefault_enable();
1561 		if (unlikely(copied)) {
1562 			remain = -EFAULT;
1563 			goto out;
1564 		}
1565 
1566 		remain -= count;
1567 		do {
1568 			u64 offset = eb_relocate_entry(eb, ev, r);
1569 
1570 			if (likely(offset == 0)) {
1571 			} else if ((s64)offset < 0) {
1572 				remain = (int)offset;
1573 				goto out;
1574 			} else {
1575 				/*
1576 				 * Note that reporting an error now
1577 				 * leaves everything in an inconsistent
1578 				 * state as we have *already* changed
1579 				 * the relocation value inside the
1580 				 * object. As we have not changed the
1581 				 * reloc.presumed_offset or will not
1582 				 * change the execobject.offset, on the
1583 				 * call we may not rewrite the value
1584 				 * inside the object, leaving it
1585 				 * dangling and causing a GPU hang. Unless
1586 				 * userspace dynamically rebuilds the
1587 				 * relocations on each execbuf rather than
1588 				 * presume a static tree.
1589 				 *
1590 				 * We did previously check if the relocations
1591 				 * were writable (access_ok), an error now
1592 				 * would be a strange race with mprotect,
1593 				 * having already demonstrated that we
1594 				 * can read from this userspace address.
1595 				 */
1596 				offset = gen8_canonical_addr(offset & ~UPDATE);
1597 				__put_user(offset,
1598 					   &urelocs[r - stack].presumed_offset);
1599 			}
1600 		} while (r++, --count);
1601 		urelocs += ARRAY_SIZE(stack);
1602 	} while (remain);
1603 out:
1604 	reloc_cache_reset(&eb->reloc_cache, eb);
1605 	return remain;
1606 }
1607 
1608 static int
1609 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1610 {
1611 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1612 	struct drm_i915_gem_relocation_entry *relocs =
1613 		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1614 	unsigned int i;
1615 	int err;
1616 
1617 	for (i = 0; i < entry->relocation_count; i++) {
1618 		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1619 
1620 		if ((s64)offset < 0) {
1621 			err = (int)offset;
1622 			goto err;
1623 		}
1624 	}
1625 	err = 0;
1626 err:
1627 	reloc_cache_reset(&eb->reloc_cache, eb);
1628 	return err;
1629 }
1630 
1631 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1632 {
1633 	const char __user *addr, *end;
1634 	unsigned long size;
1635 	char __maybe_unused c;
1636 
1637 	size = entry->relocation_count;
1638 	if (size == 0)
1639 		return 0;
1640 
1641 	if (size > N_RELOC(ULONG_MAX))
1642 		return -EINVAL;
1643 
1644 	addr = u64_to_user_ptr(entry->relocs_ptr);
1645 	size *= sizeof(struct drm_i915_gem_relocation_entry);
1646 	if (!access_ok(addr, size))
1647 		return -EFAULT;
1648 
1649 	end = addr + size;
1650 	for (; addr < end; addr += PAGE_SIZE) {
1651 		int err = __get_user(c, addr);
1652 		if (err)
1653 			return err;
1654 	}
1655 	return __get_user(c, end - 1);
1656 }
1657 
1658 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1659 {
1660 	struct drm_i915_gem_relocation_entry *relocs;
1661 	const unsigned int count = eb->buffer_count;
1662 	unsigned int i;
1663 	int err;
1664 
1665 	for (i = 0; i < count; i++) {
1666 		const unsigned int nreloc = eb->exec[i].relocation_count;
1667 		struct drm_i915_gem_relocation_entry __user *urelocs;
1668 		unsigned long size;
1669 		unsigned long copied;
1670 
1671 		if (nreloc == 0)
1672 			continue;
1673 
1674 		err = check_relocations(&eb->exec[i]);
1675 		if (err)
1676 			goto err;
1677 
1678 		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1679 		size = nreloc * sizeof(*relocs);
1680 
1681 		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1682 		if (!relocs) {
1683 			err = -ENOMEM;
1684 			goto err;
1685 		}
1686 
1687 		/* copy_from_user is limited to < 4GiB */
1688 		copied = 0;
1689 		do {
1690 			unsigned int len =
1691 				min_t(u64, BIT_ULL(31), size - copied);
1692 
1693 			if (__copy_from_user((char *)relocs + copied,
1694 					     (char __user *)urelocs + copied,
1695 					     len))
1696 				goto end;
1697 
1698 			copied += len;
1699 		} while (copied < size);
1700 
1701 		/*
1702 		 * As we do not update the known relocation offsets after
1703 		 * relocating (due to the complexities in lock handling),
1704 		 * we need to mark them as invalid now so that we force the
1705 		 * relocation processing next time. Just in case the target
1706 		 * object is evicted and then rebound into its old
1707 		 * presumed_offset before the next execbuffer - if that
1708 		 * happened we would make the mistake of assuming that the
1709 		 * relocations were valid.
1710 		 */
1711 		if (!user_access_begin(urelocs, size))
1712 			goto end;
1713 
1714 		for (copied = 0; copied < nreloc; copied++)
1715 			unsafe_put_user(-1,
1716 					&urelocs[copied].presumed_offset,
1717 					end_user);
1718 		user_access_end();
1719 
1720 		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1721 	}
1722 
1723 	return 0;
1724 
1725 end_user:
1726 	user_access_end();
1727 end:
1728 	kvfree(relocs);
1729 	err = -EFAULT;
1730 err:
1731 	while (i--) {
1732 		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1733 		if (eb->exec[i].relocation_count)
1734 			kvfree(relocs);
1735 	}
1736 	return err;
1737 }
1738 
1739 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1740 {
1741 	const unsigned int count = eb->buffer_count;
1742 	unsigned int i;
1743 
1744 	for (i = 0; i < count; i++) {
1745 		int err;
1746 
1747 		err = check_relocations(&eb->exec[i]);
1748 		if (err)
1749 			return err;
1750 	}
1751 
1752 	return 0;
1753 }
1754 
1755 static int eb_reinit_userptr(struct i915_execbuffer *eb)
1756 {
1757 	const unsigned int count = eb->buffer_count;
1758 	unsigned int i;
1759 	int ret;
1760 
1761 	if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1762 		return 0;
1763 
1764 	for (i = 0; i < count; i++) {
1765 		struct eb_vma *ev = &eb->vma[i];
1766 
1767 		if (!i915_gem_object_is_userptr(ev->vma->obj))
1768 			continue;
1769 
1770 		ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1771 		if (ret)
1772 			return ret;
1773 
1774 		ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1775 	}
1776 
1777 	return 0;
1778 }
1779 
1780 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
1781 {
1782 	bool have_copy = false;
1783 	struct eb_vma *ev;
1784 	int err = 0;
1785 
1786 repeat:
1787 	if (signal_pending(current)) {
1788 		err = -ERESTARTSYS;
1789 		goto out;
1790 	}
1791 
1792 	/* We may process another execbuffer during the unlock... */
1793 	eb_release_vmas(eb, false);
1794 	i915_gem_ww_ctx_fini(&eb->ww);
1795 
1796 	/*
1797 	 * We take 3 passes through the slowpatch.
1798 	 *
1799 	 * 1 - we try to just prefault all the user relocation entries and
1800 	 * then attempt to reuse the atomic pagefault disabled fast path again.
1801 	 *
1802 	 * 2 - we copy the user entries to a local buffer here outside of the
1803 	 * local and allow ourselves to wait upon any rendering before
1804 	 * relocations
1805 	 *
1806 	 * 3 - we already have a local copy of the relocation entries, but
1807 	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1808 	 */
1809 	if (!err) {
1810 		err = eb_prefault_relocations(eb);
1811 	} else if (!have_copy) {
1812 		err = eb_copy_relocations(eb);
1813 		have_copy = err == 0;
1814 	} else {
1815 		cond_resched();
1816 		err = 0;
1817 	}
1818 
1819 	if (!err)
1820 		err = eb_reinit_userptr(eb);
1821 
1822 	i915_gem_ww_ctx_init(&eb->ww, true);
1823 	if (err)
1824 		goto out;
1825 
1826 	/* reacquire the objects */
1827 repeat_validate:
1828 	err = eb_pin_engine(eb, false);
1829 	if (err)
1830 		goto err;
1831 
1832 	err = eb_validate_vmas(eb);
1833 	if (err)
1834 		goto err;
1835 
1836 	GEM_BUG_ON(!eb->batches[0]);
1837 
1838 	list_for_each_entry(ev, &eb->relocs, reloc_link) {
1839 		if (!have_copy) {
1840 			err = eb_relocate_vma(eb, ev);
1841 			if (err)
1842 				break;
1843 		} else {
1844 			err = eb_relocate_vma_slow(eb, ev);
1845 			if (err)
1846 				break;
1847 		}
1848 	}
1849 
1850 	if (err == -EDEADLK)
1851 		goto err;
1852 
1853 	if (err && !have_copy)
1854 		goto repeat;
1855 
1856 	if (err)
1857 		goto err;
1858 
1859 	/* as last step, parse the command buffer */
1860 	err = eb_parse(eb);
1861 	if (err)
1862 		goto err;
1863 
1864 	/*
1865 	 * Leave the user relocations as are, this is the painfully slow path,
1866 	 * and we want to avoid the complication of dropping the lock whilst
1867 	 * having buffers reserved in the aperture and so causing spurious
1868 	 * ENOSPC for random operations.
1869 	 */
1870 
1871 err:
1872 	if (err == -EDEADLK) {
1873 		eb_release_vmas(eb, false);
1874 		err = i915_gem_ww_ctx_backoff(&eb->ww);
1875 		if (!err)
1876 			goto repeat_validate;
1877 	}
1878 
1879 	if (err == -EAGAIN)
1880 		goto repeat;
1881 
1882 out:
1883 	if (have_copy) {
1884 		const unsigned int count = eb->buffer_count;
1885 		unsigned int i;
1886 
1887 		for (i = 0; i < count; i++) {
1888 			const struct drm_i915_gem_exec_object2 *entry =
1889 				&eb->exec[i];
1890 			struct drm_i915_gem_relocation_entry *relocs;
1891 
1892 			if (!entry->relocation_count)
1893 				continue;
1894 
1895 			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1896 			kvfree(relocs);
1897 		}
1898 	}
1899 
1900 	return err;
1901 }
1902 
1903 static int eb_relocate_parse(struct i915_execbuffer *eb)
1904 {
1905 	int err;
1906 	bool throttle = true;
1907 
1908 retry:
1909 	err = eb_pin_engine(eb, throttle);
1910 	if (err) {
1911 		if (err != -EDEADLK)
1912 			return err;
1913 
1914 		goto err;
1915 	}
1916 
1917 	/* only throttle once, even if we didn't need to throttle */
1918 	throttle = false;
1919 
1920 	err = eb_validate_vmas(eb);
1921 	if (err == -EAGAIN)
1922 		goto slow;
1923 	else if (err)
1924 		goto err;
1925 
1926 	/* The objects are in their final locations, apply the relocations. */
1927 	if (eb->args->flags & __EXEC_HAS_RELOC) {
1928 		struct eb_vma *ev;
1929 
1930 		list_for_each_entry(ev, &eb->relocs, reloc_link) {
1931 			err = eb_relocate_vma(eb, ev);
1932 			if (err)
1933 				break;
1934 		}
1935 
1936 		if (err == -EDEADLK)
1937 			goto err;
1938 		else if (err)
1939 			goto slow;
1940 	}
1941 
1942 	if (!err)
1943 		err = eb_parse(eb);
1944 
1945 err:
1946 	if (err == -EDEADLK) {
1947 		eb_release_vmas(eb, false);
1948 		err = i915_gem_ww_ctx_backoff(&eb->ww);
1949 		if (!err)
1950 			goto retry;
1951 	}
1952 
1953 	return err;
1954 
1955 slow:
1956 	err = eb_relocate_parse_slow(eb);
1957 	if (err)
1958 		/*
1959 		 * If the user expects the execobject.offset and
1960 		 * reloc.presumed_offset to be an exact match,
1961 		 * as for using NO_RELOC, then we cannot update
1962 		 * the execobject.offset until we have completed
1963 		 * relocation.
1964 		 */
1965 		eb->args->flags &= ~__EXEC_HAS_RELOC;
1966 
1967 	return err;
1968 }
1969 
1970 /*
1971  * Using two helper loops for the order of which requests / batches are created
1972  * and added the to backend. Requests are created in order from the parent to
1973  * the last child. Requests are added in the reverse order, from the last child
1974  * to parent. This is done for locking reasons as the timeline lock is acquired
1975  * during request creation and released when the request is added to the
1976  * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1977  * the ordering.
1978  */
1979 #define for_each_batch_create_order(_eb, _i) \
1980 	for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1981 #define for_each_batch_add_order(_eb, _i) \
1982 	BUILD_BUG_ON(!typecheck(int, _i)); \
1983 	for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1984 
1985 static struct i915_request *
1986 eb_find_first_request_added(struct i915_execbuffer *eb)
1987 {
1988 	int i;
1989 
1990 	for_each_batch_add_order(eb, i)
1991 		if (eb->requests[i])
1992 			return eb->requests[i];
1993 
1994 	GEM_BUG_ON("Request not found");
1995 
1996 	return NULL;
1997 }
1998 
1999 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
2000 
2001 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
2002 static int eb_capture_stage(struct i915_execbuffer *eb)
2003 {
2004 	const unsigned int count = eb->buffer_count;
2005 	unsigned int i = count, j;
2006 
2007 	while (i--) {
2008 		struct eb_vma *ev = &eb->vma[i];
2009 		struct i915_vma *vma = ev->vma;
2010 		unsigned int flags = ev->flags;
2011 
2012 		if (!(flags & EXEC_OBJECT_CAPTURE))
2013 			continue;
2014 
2015 		if (i915_gem_context_is_recoverable(eb->gem_context) &&
2016 		    (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0)))
2017 			return -EINVAL;
2018 
2019 		for_each_batch_create_order(eb, j) {
2020 			struct i915_capture_list *capture;
2021 
2022 			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
2023 			if (!capture)
2024 				continue;
2025 
2026 			capture->next = eb->capture_lists[j];
2027 			capture->vma_res = i915_vma_resource_get(vma->resource);
2028 			eb->capture_lists[j] = capture;
2029 		}
2030 	}
2031 
2032 	return 0;
2033 }
2034 
2035 /* Commit once we're in the critical path */
2036 static void eb_capture_commit(struct i915_execbuffer *eb)
2037 {
2038 	unsigned int j;
2039 
2040 	for_each_batch_create_order(eb, j) {
2041 		struct i915_request *rq = eb->requests[j];
2042 
2043 		if (!rq)
2044 			break;
2045 
2046 		rq->capture_list = eb->capture_lists[j];
2047 		eb->capture_lists[j] = NULL;
2048 	}
2049 }
2050 
2051 /*
2052  * Release anything that didn't get committed due to errors.
2053  * The capture_list will otherwise be freed at request retire.
2054  */
2055 static void eb_capture_release(struct i915_execbuffer *eb)
2056 {
2057 	unsigned int j;
2058 
2059 	for_each_batch_create_order(eb, j) {
2060 		if (eb->capture_lists[j]) {
2061 			i915_request_free_capture_list(eb->capture_lists[j]);
2062 			eb->capture_lists[j] = NULL;
2063 		}
2064 	}
2065 }
2066 
2067 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2068 {
2069 	memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
2070 }
2071 
2072 #else
2073 
2074 static int eb_capture_stage(struct i915_execbuffer *eb)
2075 {
2076 	return 0;
2077 }
2078 
2079 static void eb_capture_commit(struct i915_execbuffer *eb)
2080 {
2081 }
2082 
2083 static void eb_capture_release(struct i915_execbuffer *eb)
2084 {
2085 }
2086 
2087 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2088 {
2089 }
2090 
2091 #endif
2092 
2093 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2094 {
2095 	const unsigned int count = eb->buffer_count;
2096 	unsigned int i = count;
2097 	int err = 0, j;
2098 
2099 	while (i--) {
2100 		struct eb_vma *ev = &eb->vma[i];
2101 		struct i915_vma *vma = ev->vma;
2102 		unsigned int flags = ev->flags;
2103 		struct drm_i915_gem_object *obj = vma->obj;
2104 
2105 		assert_vma_held(vma);
2106 
2107 		/*
2108 		 * If the GPU is not _reading_ through the CPU cache, we need
2109 		 * to make sure that any writes (both previous GPU writes from
2110 		 * before a change in snooping levels and normal CPU writes)
2111 		 * caught in that cache are flushed to main memory.
2112 		 *
2113 		 * We want to say
2114 		 *   obj->cache_dirty &&
2115 		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2116 		 * but gcc's optimiser doesn't handle that as well and emits
2117 		 * two jumps instead of one. Maybe one day...
2118 		 *
2119 		 * FIXME: There is also sync flushing in set_pages(), which
2120 		 * serves a different purpose(some of the time at least).
2121 		 *
2122 		 * We should consider:
2123 		 *
2124 		 *   1. Rip out the async flush code.
2125 		 *
2126 		 *   2. Or make the sync flushing use the async clflush path
2127 		 *   using mandatory fences underneath. Currently the below
2128 		 *   async flush happens after we bind the object.
2129 		 */
2130 		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2131 			if (i915_gem_clflush_object(obj, 0))
2132 				flags &= ~EXEC_OBJECT_ASYNC;
2133 		}
2134 
2135 		/* We only need to await on the first request */
2136 		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2137 			err = i915_request_await_object
2138 				(eb_find_first_request_added(eb), obj,
2139 				 flags & EXEC_OBJECT_WRITE);
2140 		}
2141 
2142 		for_each_batch_add_order(eb, j) {
2143 			if (err)
2144 				break;
2145 			if (!eb->requests[j])
2146 				continue;
2147 
2148 			err = _i915_vma_move_to_active(vma, eb->requests[j],
2149 						       j ? NULL :
2150 						       eb->composite_fence ?
2151 						       eb->composite_fence :
2152 						       &eb->requests[j]->fence,
2153 						       flags | __EXEC_OBJECT_NO_RESERVE |
2154 						       __EXEC_OBJECT_NO_REQUEST_AWAIT);
2155 		}
2156 	}
2157 
2158 #ifdef CONFIG_MMU_NOTIFIER
2159 	if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2160 		read_lock(&eb->i915->mm.notifier_lock);
2161 
2162 		/*
2163 		 * count is always at least 1, otherwise __EXEC_USERPTR_USED
2164 		 * could not have been set
2165 		 */
2166 		for (i = 0; i < count; i++) {
2167 			struct eb_vma *ev = &eb->vma[i];
2168 			struct drm_i915_gem_object *obj = ev->vma->obj;
2169 
2170 			if (!i915_gem_object_is_userptr(obj))
2171 				continue;
2172 
2173 			err = i915_gem_object_userptr_submit_done(obj);
2174 			if (err)
2175 				break;
2176 		}
2177 
2178 		read_unlock(&eb->i915->mm.notifier_lock);
2179 	}
2180 #endif
2181 
2182 	if (unlikely(err))
2183 		goto err_skip;
2184 
2185 	/* Unconditionally flush any chipset caches (for streaming writes). */
2186 	intel_gt_chipset_flush(eb->gt);
2187 	eb_capture_commit(eb);
2188 
2189 	return 0;
2190 
2191 err_skip:
2192 	for_each_batch_create_order(eb, j) {
2193 		if (!eb->requests[j])
2194 			break;
2195 
2196 		i915_request_set_error_once(eb->requests[j], err);
2197 	}
2198 	return err;
2199 }
2200 
2201 static int i915_gem_check_execbuffer(struct drm_i915_private *i915,
2202 				     struct drm_i915_gem_execbuffer2 *exec)
2203 {
2204 	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2205 		return -EINVAL;
2206 
2207 	/* Kernel clipping was a DRI1 misfeature */
2208 	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2209 			     I915_EXEC_USE_EXTENSIONS))) {
2210 		if (exec->num_cliprects || exec->cliprects_ptr)
2211 			return -EINVAL;
2212 	}
2213 
2214 	if (exec->DR4 == 0xffffffff) {
2215 		drm_dbg(&i915->drm, "UXA submitting garbage DR4, fixing up\n");
2216 		exec->DR4 = 0;
2217 	}
2218 	if (exec->DR1 || exec->DR4)
2219 		return -EINVAL;
2220 
2221 	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2222 		return -EINVAL;
2223 
2224 	return 0;
2225 }
2226 
2227 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2228 {
2229 	u32 *cs;
2230 	int i;
2231 
2232 	if (GRAPHICS_VER(rq->i915) != 7 || rq->engine->id != RCS0) {
2233 		drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n");
2234 		return -EINVAL;
2235 	}
2236 
2237 	cs = intel_ring_begin(rq, 4 * 2 + 2);
2238 	if (IS_ERR(cs))
2239 		return PTR_ERR(cs);
2240 
2241 	*cs++ = MI_LOAD_REGISTER_IMM(4);
2242 	for (i = 0; i < 4; i++) {
2243 		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2244 		*cs++ = 0;
2245 	}
2246 	*cs++ = MI_NOOP;
2247 	intel_ring_advance(rq, cs);
2248 
2249 	return 0;
2250 }
2251 
2252 static struct i915_vma *
2253 shadow_batch_pin(struct i915_execbuffer *eb,
2254 		 struct drm_i915_gem_object *obj,
2255 		 struct i915_address_space *vm,
2256 		 unsigned int flags)
2257 {
2258 	struct i915_vma *vma;
2259 	int err;
2260 
2261 	vma = i915_vma_instance(obj, vm, NULL);
2262 	if (IS_ERR(vma))
2263 		return vma;
2264 
2265 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE);
2266 	if (err)
2267 		return ERR_PTR(err);
2268 
2269 	return vma;
2270 }
2271 
2272 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2273 {
2274 	/*
2275 	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2276 	 * batch" bit. Hence we need to pin secure batches into the global gtt.
2277 	 * hsw should have this fixed, but bdw mucks it up again. */
2278 	if (eb->batch_flags & I915_DISPATCH_SECURE)
2279 		return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE);
2280 
2281 	return NULL;
2282 }
2283 
2284 static int eb_parse(struct i915_execbuffer *eb)
2285 {
2286 	struct drm_i915_private *i915 = eb->i915;
2287 	struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2288 	struct i915_vma *shadow, *trampoline, *batch;
2289 	unsigned long len;
2290 	int err;
2291 
2292 	if (!eb_use_cmdparser(eb)) {
2293 		batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
2294 		if (IS_ERR(batch))
2295 			return PTR_ERR(batch);
2296 
2297 		goto secure_batch;
2298 	}
2299 
2300 	if (intel_context_is_parallel(eb->context))
2301 		return -EINVAL;
2302 
2303 	len = eb->batch_len[0];
2304 	if (!CMDPARSER_USES_GGTT(eb->i915)) {
2305 		/*
2306 		 * ppGTT backed shadow buffers must be mapped RO, to prevent
2307 		 * post-scan tampering
2308 		 */
2309 		if (!eb->context->vm->has_read_only) {
2310 			drm_dbg(&i915->drm,
2311 				"Cannot prevent post-scan tampering without RO capable vm\n");
2312 			return -EINVAL;
2313 		}
2314 	} else {
2315 		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2316 	}
2317 	if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
2318 		return -EINVAL;
2319 
2320 	if (!pool) {
2321 		pool = intel_gt_get_buffer_pool(eb->gt, len,
2322 						I915_MAP_WB);
2323 		if (IS_ERR(pool))
2324 			return PTR_ERR(pool);
2325 		eb->batch_pool = pool;
2326 	}
2327 
2328 	err = i915_gem_object_lock(pool->obj, &eb->ww);
2329 	if (err)
2330 		return err;
2331 
2332 	shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2333 	if (IS_ERR(shadow))
2334 		return PTR_ERR(shadow);
2335 
2336 	intel_gt_buffer_pool_mark_used(pool);
2337 	i915_gem_object_set_readonly(shadow->obj);
2338 	shadow->private = pool;
2339 
2340 	trampoline = NULL;
2341 	if (CMDPARSER_USES_GGTT(eb->i915)) {
2342 		trampoline = shadow;
2343 
2344 		shadow = shadow_batch_pin(eb, pool->obj,
2345 					  &eb->gt->ggtt->vm,
2346 					  PIN_GLOBAL);
2347 		if (IS_ERR(shadow))
2348 			return PTR_ERR(shadow);
2349 
2350 		shadow->private = pool;
2351 
2352 		eb->batch_flags |= I915_DISPATCH_SECURE;
2353 	}
2354 
2355 	batch = eb_dispatch_secure(eb, shadow);
2356 	if (IS_ERR(batch))
2357 		return PTR_ERR(batch);
2358 
2359 	err = dma_resv_reserve_fences(shadow->obj->base.resv, 1);
2360 	if (err)
2361 		return err;
2362 
2363 	err = intel_engine_cmd_parser(eb->context->engine,
2364 				      eb->batches[0]->vma,
2365 				      eb->batch_start_offset,
2366 				      eb->batch_len[0],
2367 				      shadow, trampoline);
2368 	if (err)
2369 		return err;
2370 
2371 	eb->batches[0] = &eb->vma[eb->buffer_count++];
2372 	eb->batches[0]->vma = i915_vma_get(shadow);
2373 	eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2374 
2375 	eb->trampoline = trampoline;
2376 	eb->batch_start_offset = 0;
2377 
2378 secure_batch:
2379 	if (batch) {
2380 		if (intel_context_is_parallel(eb->context))
2381 			return -EINVAL;
2382 
2383 		eb->batches[0] = &eb->vma[eb->buffer_count++];
2384 		eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2385 		eb->batches[0]->vma = i915_vma_get(batch);
2386 	}
2387 	return 0;
2388 }
2389 
2390 static int eb_request_submit(struct i915_execbuffer *eb,
2391 			     struct i915_request *rq,
2392 			     struct i915_vma *batch,
2393 			     u64 batch_len)
2394 {
2395 	int err;
2396 
2397 	if (intel_context_nopreempt(rq->context))
2398 		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
2399 
2400 	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2401 		err = i915_reset_gen7_sol_offsets(rq);
2402 		if (err)
2403 			return err;
2404 	}
2405 
2406 	/*
2407 	 * After we completed waiting for other engines (using HW semaphores)
2408 	 * then we can signal that this request/batch is ready to run. This
2409 	 * allows us to determine if the batch is still waiting on the GPU
2410 	 * or actually running by checking the breadcrumb.
2411 	 */
2412 	if (rq->context->engine->emit_init_breadcrumb) {
2413 		err = rq->context->engine->emit_init_breadcrumb(rq);
2414 		if (err)
2415 			return err;
2416 	}
2417 
2418 	err = rq->context->engine->emit_bb_start(rq,
2419 						 i915_vma_offset(batch) +
2420 						 eb->batch_start_offset,
2421 						 batch_len,
2422 						 eb->batch_flags);
2423 	if (err)
2424 		return err;
2425 
2426 	if (eb->trampoline) {
2427 		GEM_BUG_ON(intel_context_is_parallel(rq->context));
2428 		GEM_BUG_ON(eb->batch_start_offset);
2429 		err = rq->context->engine->emit_bb_start(rq,
2430 							 i915_vma_offset(eb->trampoline) +
2431 							 batch_len, 0, 0);
2432 		if (err)
2433 			return err;
2434 	}
2435 
2436 	return 0;
2437 }
2438 
2439 static int eb_submit(struct i915_execbuffer *eb)
2440 {
2441 	unsigned int i;
2442 	int err;
2443 
2444 	err = eb_move_to_gpu(eb);
2445 
2446 	for_each_batch_create_order(eb, i) {
2447 		if (!eb->requests[i])
2448 			break;
2449 
2450 		trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2451 		if (!err)
2452 			err = eb_request_submit(eb, eb->requests[i],
2453 						eb->batches[i]->vma,
2454 						eb->batch_len[i]);
2455 	}
2456 
2457 	return err;
2458 }
2459 
2460 /*
2461  * Find one BSD ring to dispatch the corresponding BSD command.
2462  * The engine index is returned.
2463  */
2464 static unsigned int
2465 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2466 			 struct drm_file *file)
2467 {
2468 	struct drm_i915_file_private *file_priv = file->driver_priv;
2469 
2470 	/* Check whether the file_priv has already selected one ring. */
2471 	if ((int)file_priv->bsd_engine < 0)
2472 		file_priv->bsd_engine =
2473 			get_random_u32_below(dev_priv->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO]);
2474 
2475 	return file_priv->bsd_engine;
2476 }
2477 
2478 static const enum intel_engine_id user_ring_map[] = {
2479 	[I915_EXEC_DEFAULT]	= RCS0,
2480 	[I915_EXEC_RENDER]	= RCS0,
2481 	[I915_EXEC_BLT]		= BCS0,
2482 	[I915_EXEC_BSD]		= VCS0,
2483 	[I915_EXEC_VEBOX]	= VECS0
2484 };
2485 
2486 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2487 {
2488 	struct intel_ring *ring = ce->ring;
2489 	struct intel_timeline *tl = ce->timeline;
2490 	struct i915_request *rq;
2491 
2492 	/*
2493 	 * Completely unscientific finger-in-the-air estimates for suitable
2494 	 * maximum user request size (to avoid blocking) and then backoff.
2495 	 */
2496 	if (intel_ring_update_space(ring) >= PAGE_SIZE)
2497 		return NULL;
2498 
2499 	/*
2500 	 * Find a request that after waiting upon, there will be at least half
2501 	 * the ring available. The hysteresis allows us to compete for the
2502 	 * shared ring and should mean that we sleep less often prior to
2503 	 * claiming our resources, but not so long that the ring completely
2504 	 * drains before we can submit our next request.
2505 	 */
2506 	list_for_each_entry(rq, &tl->requests, link) {
2507 		if (rq->ring != ring)
2508 			continue;
2509 
2510 		if (__intel_ring_space(rq->postfix,
2511 				       ring->emit, ring->size) > ring->size / 2)
2512 			break;
2513 	}
2514 	if (&rq->link == &tl->requests)
2515 		return NULL; /* weird, we will check again later for real */
2516 
2517 	return i915_request_get(rq);
2518 }
2519 
2520 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2521 			   bool throttle)
2522 {
2523 	struct intel_timeline *tl;
2524 	struct i915_request *rq = NULL;
2525 
2526 	/*
2527 	 * Take a local wakeref for preparing to dispatch the execbuf as
2528 	 * we expect to access the hardware fairly frequently in the
2529 	 * process, and require the engine to be kept awake between accesses.
2530 	 * Upon dispatch, we acquire another prolonged wakeref that we hold
2531 	 * until the timeline is idle, which in turn releases the wakeref
2532 	 * taken on the engine, and the parent device.
2533 	 */
2534 	tl = intel_context_timeline_lock(ce);
2535 	if (IS_ERR(tl))
2536 		return PTR_ERR(tl);
2537 
2538 	intel_context_enter(ce);
2539 	if (throttle)
2540 		rq = eb_throttle(eb, ce);
2541 	intel_context_timeline_unlock(tl);
2542 
2543 	if (rq) {
2544 		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2545 		long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2546 
2547 		if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2548 				      timeout) < 0) {
2549 			i915_request_put(rq);
2550 
2551 			/*
2552 			 * Error path, cannot use intel_context_timeline_lock as
2553 			 * that is user interruptable and this clean up step
2554 			 * must be done.
2555 			 */
2556 			mutex_lock(&ce->timeline->mutex);
2557 			intel_context_exit(ce);
2558 			mutex_unlock(&ce->timeline->mutex);
2559 
2560 			if (nonblock)
2561 				return -EWOULDBLOCK;
2562 			else
2563 				return -EINTR;
2564 		}
2565 		i915_request_put(rq);
2566 	}
2567 
2568 	return 0;
2569 }
2570 
2571 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2572 {
2573 	struct intel_context *ce = eb->context, *child;
2574 	int err;
2575 	int i = 0, j = 0;
2576 
2577 	GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2578 
2579 	if (unlikely(intel_context_is_banned(ce)))
2580 		return -EIO;
2581 
2582 	/*
2583 	 * Pinning the contexts may generate requests in order to acquire
2584 	 * GGTT space, so do this first before we reserve a seqno for
2585 	 * ourselves.
2586 	 */
2587 	err = intel_context_pin_ww(ce, &eb->ww);
2588 	if (err)
2589 		return err;
2590 	for_each_child(ce, child) {
2591 		err = intel_context_pin_ww(child, &eb->ww);
2592 		GEM_BUG_ON(err);	/* perma-pinned should incr a counter */
2593 	}
2594 
2595 	for_each_child(ce, child) {
2596 		err = eb_pin_timeline(eb, child, throttle);
2597 		if (err)
2598 			goto unwind;
2599 		++i;
2600 	}
2601 	err = eb_pin_timeline(eb, ce, throttle);
2602 	if (err)
2603 		goto unwind;
2604 
2605 	eb->args->flags |= __EXEC_ENGINE_PINNED;
2606 	return 0;
2607 
2608 unwind:
2609 	for_each_child(ce, child) {
2610 		if (j++ < i) {
2611 			mutex_lock(&child->timeline->mutex);
2612 			intel_context_exit(child);
2613 			mutex_unlock(&child->timeline->mutex);
2614 		}
2615 	}
2616 	for_each_child(ce, child)
2617 		intel_context_unpin(child);
2618 	intel_context_unpin(ce);
2619 	return err;
2620 }
2621 
2622 static void eb_unpin_engine(struct i915_execbuffer *eb)
2623 {
2624 	struct intel_context *ce = eb->context, *child;
2625 
2626 	if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2627 		return;
2628 
2629 	eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2630 
2631 	for_each_child(ce, child) {
2632 		mutex_lock(&child->timeline->mutex);
2633 		intel_context_exit(child);
2634 		mutex_unlock(&child->timeline->mutex);
2635 
2636 		intel_context_unpin(child);
2637 	}
2638 
2639 	mutex_lock(&ce->timeline->mutex);
2640 	intel_context_exit(ce);
2641 	mutex_unlock(&ce->timeline->mutex);
2642 
2643 	intel_context_unpin(ce);
2644 }
2645 
2646 static unsigned int
2647 eb_select_legacy_ring(struct i915_execbuffer *eb)
2648 {
2649 	struct drm_i915_private *i915 = eb->i915;
2650 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2651 	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2652 
2653 	if (user_ring_id != I915_EXEC_BSD &&
2654 	    (args->flags & I915_EXEC_BSD_MASK)) {
2655 		drm_dbg(&i915->drm,
2656 			"execbuf with non bsd ring but with invalid "
2657 			"bsd dispatch flags: %d\n", (int)(args->flags));
2658 		return -1;
2659 	}
2660 
2661 	if (user_ring_id == I915_EXEC_BSD &&
2662 	    i915->engine_uabi_class_count[I915_ENGINE_CLASS_VIDEO] > 1) {
2663 		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2664 
2665 		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2666 			bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2667 		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2668 			   bsd_idx <= I915_EXEC_BSD_RING2) {
2669 			bsd_idx >>= I915_EXEC_BSD_SHIFT;
2670 			bsd_idx--;
2671 		} else {
2672 			drm_dbg(&i915->drm,
2673 				"execbuf with unknown bsd ring: %u\n",
2674 				bsd_idx);
2675 			return -1;
2676 		}
2677 
2678 		return _VCS(bsd_idx);
2679 	}
2680 
2681 	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2682 		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2683 			user_ring_id);
2684 		return -1;
2685 	}
2686 
2687 	return user_ring_map[user_ring_id];
2688 }
2689 
2690 static int
2691 eb_select_engine(struct i915_execbuffer *eb)
2692 {
2693 	struct intel_context *ce, *child;
2694 	struct intel_gt *gt;
2695 	unsigned int idx;
2696 	int err;
2697 
2698 	if (i915_gem_context_user_engines(eb->gem_context))
2699 		idx = eb->args->flags & I915_EXEC_RING_MASK;
2700 	else
2701 		idx = eb_select_legacy_ring(eb);
2702 
2703 	ce = i915_gem_context_get_engine(eb->gem_context, idx);
2704 	if (IS_ERR(ce))
2705 		return PTR_ERR(ce);
2706 
2707 	if (intel_context_is_parallel(ce)) {
2708 		if (eb->buffer_count < ce->parallel.number_children + 1) {
2709 			intel_context_put(ce);
2710 			return -EINVAL;
2711 		}
2712 		if (eb->batch_start_offset || eb->args->batch_len) {
2713 			intel_context_put(ce);
2714 			return -EINVAL;
2715 		}
2716 	}
2717 	eb->num_batches = ce->parallel.number_children + 1;
2718 	gt = ce->engine->gt;
2719 
2720 	for_each_child(ce, child)
2721 		intel_context_get(child);
2722 	intel_gt_pm_get(gt);
2723 	/*
2724 	 * Keep GT0 active on MTL so that i915_vma_parked() doesn't
2725 	 * free VMAs while execbuf ioctl is validating VMAs.
2726 	 */
2727 	if (gt->info.id)
2728 		intel_gt_pm_get(to_gt(gt->i915));
2729 
2730 	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2731 		err = intel_context_alloc_state(ce);
2732 		if (err)
2733 			goto err;
2734 	}
2735 	for_each_child(ce, child) {
2736 		if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2737 			err = intel_context_alloc_state(child);
2738 			if (err)
2739 				goto err;
2740 		}
2741 	}
2742 
2743 	/*
2744 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2745 	 * EIO if the GPU is already wedged.
2746 	 */
2747 	err = intel_gt_terminally_wedged(ce->engine->gt);
2748 	if (err)
2749 		goto err;
2750 
2751 	if (!i915_vm_tryget(ce->vm)) {
2752 		err = -ENOENT;
2753 		goto err;
2754 	}
2755 
2756 	eb->context = ce;
2757 	eb->gt = ce->engine->gt;
2758 
2759 	/*
2760 	 * Make sure engine pool stays alive even if we call intel_context_put
2761 	 * during ww handling. The pool is destroyed when last pm reference
2762 	 * is dropped, which breaks our -EDEADLK handling.
2763 	 */
2764 	return err;
2765 
2766 err:
2767 	if (gt->info.id)
2768 		intel_gt_pm_put(to_gt(gt->i915));
2769 
2770 	intel_gt_pm_put(gt);
2771 	for_each_child(ce, child)
2772 		intel_context_put(child);
2773 	intel_context_put(ce);
2774 	return err;
2775 }
2776 
2777 static void
2778 eb_put_engine(struct i915_execbuffer *eb)
2779 {
2780 	struct intel_context *child;
2781 
2782 	i915_vm_put(eb->context->vm);
2783 	/*
2784 	 * This works in conjunction with eb_select_engine() to prevent
2785 	 * i915_vma_parked() from interfering while execbuf validates vmas.
2786 	 */
2787 	if (eb->gt->info.id)
2788 		intel_gt_pm_put(to_gt(eb->gt->i915));
2789 	intel_gt_pm_put(eb->gt);
2790 	for_each_child(eb->context, child)
2791 		intel_context_put(child);
2792 	intel_context_put(eb->context);
2793 }
2794 
2795 static void
2796 __free_fence_array(struct eb_fence *fences, unsigned int n)
2797 {
2798 	while (n--) {
2799 		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2800 		dma_fence_put(fences[n].dma_fence);
2801 		dma_fence_chain_free(fences[n].chain_fence);
2802 	}
2803 	kvfree(fences);
2804 }
2805 
2806 static int
2807 add_timeline_fence_array(struct i915_execbuffer *eb,
2808 			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2809 {
2810 	struct drm_i915_gem_exec_fence __user *user_fences;
2811 	u64 __user *user_values;
2812 	struct eb_fence *f;
2813 	u64 nfences;
2814 	int err = 0;
2815 
2816 	nfences = timeline_fences->fence_count;
2817 	if (!nfences)
2818 		return 0;
2819 
2820 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2821 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2822 	if (nfences > min_t(unsigned long,
2823 			    ULONG_MAX / sizeof(*user_fences),
2824 			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
2825 		return -EINVAL;
2826 
2827 	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2828 	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2829 		return -EFAULT;
2830 
2831 	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2832 	if (!access_ok(user_values, nfences * sizeof(*user_values)))
2833 		return -EFAULT;
2834 
2835 	f = krealloc(eb->fences,
2836 		     (eb->num_fences + nfences) * sizeof(*f),
2837 		     __GFP_NOWARN | GFP_KERNEL);
2838 	if (!f)
2839 		return -ENOMEM;
2840 
2841 	eb->fences = f;
2842 	f += eb->num_fences;
2843 
2844 	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2845 		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2846 
2847 	while (nfences--) {
2848 		struct drm_i915_gem_exec_fence user_fence;
2849 		struct drm_syncobj *syncobj;
2850 		struct dma_fence *fence = NULL;
2851 		u64 point;
2852 
2853 		if (__copy_from_user(&user_fence,
2854 				     user_fences++,
2855 				     sizeof(user_fence)))
2856 			return -EFAULT;
2857 
2858 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2859 			return -EINVAL;
2860 
2861 		if (__get_user(point, user_values++))
2862 			return -EFAULT;
2863 
2864 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2865 		if (!syncobj) {
2866 			drm_dbg(&eb->i915->drm,
2867 				"Invalid syncobj handle provided\n");
2868 			return -ENOENT;
2869 		}
2870 
2871 		fence = drm_syncobj_fence_get(syncobj);
2872 
2873 		if (!fence && user_fence.flags &&
2874 		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2875 			drm_dbg(&eb->i915->drm,
2876 				"Syncobj handle has no fence\n");
2877 			drm_syncobj_put(syncobj);
2878 			return -EINVAL;
2879 		}
2880 
2881 		if (fence)
2882 			err = dma_fence_chain_find_seqno(&fence, point);
2883 
2884 		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2885 			drm_dbg(&eb->i915->drm,
2886 				"Syncobj handle missing requested point %llu\n",
2887 				point);
2888 			dma_fence_put(fence);
2889 			drm_syncobj_put(syncobj);
2890 			return err;
2891 		}
2892 
2893 		/*
2894 		 * A point might have been signaled already and
2895 		 * garbage collected from the timeline. In this case
2896 		 * just ignore the point and carry on.
2897 		 */
2898 		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2899 			drm_syncobj_put(syncobj);
2900 			continue;
2901 		}
2902 
2903 		/*
2904 		 * For timeline syncobjs we need to preallocate chains for
2905 		 * later signaling.
2906 		 */
2907 		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2908 			/*
2909 			 * Waiting and signaling the same point (when point !=
2910 			 * 0) would break the timeline.
2911 			 */
2912 			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2913 				drm_dbg(&eb->i915->drm,
2914 					"Trying to wait & signal the same timeline point.\n");
2915 				dma_fence_put(fence);
2916 				drm_syncobj_put(syncobj);
2917 				return -EINVAL;
2918 			}
2919 
2920 			f->chain_fence = dma_fence_chain_alloc();
2921 			if (!f->chain_fence) {
2922 				drm_syncobj_put(syncobj);
2923 				dma_fence_put(fence);
2924 				return -ENOMEM;
2925 			}
2926 		} else {
2927 			f->chain_fence = NULL;
2928 		}
2929 
2930 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2931 		f->dma_fence = fence;
2932 		f->value = point;
2933 		f++;
2934 		eb->num_fences++;
2935 	}
2936 
2937 	return 0;
2938 }
2939 
2940 static int add_fence_array(struct i915_execbuffer *eb)
2941 {
2942 	struct drm_i915_gem_execbuffer2 *args = eb->args;
2943 	struct drm_i915_gem_exec_fence __user *user;
2944 	unsigned long num_fences = args->num_cliprects;
2945 	struct eb_fence *f;
2946 
2947 	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2948 		return 0;
2949 
2950 	if (!num_fences)
2951 		return 0;
2952 
2953 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
2954 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2955 	if (num_fences > min_t(unsigned long,
2956 			       ULONG_MAX / sizeof(*user),
2957 			       SIZE_MAX / sizeof(*f) - eb->num_fences))
2958 		return -EINVAL;
2959 
2960 	user = u64_to_user_ptr(args->cliprects_ptr);
2961 	if (!access_ok(user, num_fences * sizeof(*user)))
2962 		return -EFAULT;
2963 
2964 	f = krealloc(eb->fences,
2965 		     (eb->num_fences + num_fences) * sizeof(*f),
2966 		     __GFP_NOWARN | GFP_KERNEL);
2967 	if (!f)
2968 		return -ENOMEM;
2969 
2970 	eb->fences = f;
2971 	f += eb->num_fences;
2972 	while (num_fences--) {
2973 		struct drm_i915_gem_exec_fence user_fence;
2974 		struct drm_syncobj *syncobj;
2975 		struct dma_fence *fence = NULL;
2976 
2977 		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2978 			return -EFAULT;
2979 
2980 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2981 			return -EINVAL;
2982 
2983 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2984 		if (!syncobj) {
2985 			drm_dbg(&eb->i915->drm,
2986 				"Invalid syncobj handle provided\n");
2987 			return -ENOENT;
2988 		}
2989 
2990 		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2991 			fence = drm_syncobj_fence_get(syncobj);
2992 			if (!fence) {
2993 				drm_dbg(&eb->i915->drm,
2994 					"Syncobj handle has no fence\n");
2995 				drm_syncobj_put(syncobj);
2996 				return -EINVAL;
2997 			}
2998 		}
2999 
3000 		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
3001 			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
3002 
3003 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
3004 		f->dma_fence = fence;
3005 		f->value = 0;
3006 		f->chain_fence = NULL;
3007 		f++;
3008 		eb->num_fences++;
3009 	}
3010 
3011 	return 0;
3012 }
3013 
3014 static void put_fence_array(struct eb_fence *fences, int num_fences)
3015 {
3016 	if (fences)
3017 		__free_fence_array(fences, num_fences);
3018 }
3019 
3020 static int
3021 await_fence_array(struct i915_execbuffer *eb,
3022 		  struct i915_request *rq)
3023 {
3024 	unsigned int n;
3025 	int err;
3026 
3027 	for (n = 0; n < eb->num_fences; n++) {
3028 		if (!eb->fences[n].dma_fence)
3029 			continue;
3030 
3031 		err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
3032 		if (err < 0)
3033 			return err;
3034 	}
3035 
3036 	return 0;
3037 }
3038 
3039 static void signal_fence_array(const struct i915_execbuffer *eb,
3040 			       struct dma_fence * const fence)
3041 {
3042 	unsigned int n;
3043 
3044 	for (n = 0; n < eb->num_fences; n++) {
3045 		struct drm_syncobj *syncobj;
3046 		unsigned int flags;
3047 
3048 		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
3049 		if (!(flags & I915_EXEC_FENCE_SIGNAL))
3050 			continue;
3051 
3052 		if (eb->fences[n].chain_fence) {
3053 			drm_syncobj_add_point(syncobj,
3054 					      eb->fences[n].chain_fence,
3055 					      fence,
3056 					      eb->fences[n].value);
3057 			/*
3058 			 * The chain's ownership is transferred to the
3059 			 * timeline.
3060 			 */
3061 			eb->fences[n].chain_fence = NULL;
3062 		} else {
3063 			drm_syncobj_replace_fence(syncobj, fence);
3064 		}
3065 	}
3066 }
3067 
3068 static int
3069 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3070 {
3071 	struct i915_execbuffer *eb = data;
3072 	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3073 
3074 	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3075 		return -EFAULT;
3076 
3077 	return add_timeline_fence_array(eb, &timeline_fences);
3078 }
3079 
3080 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3081 {
3082 	struct i915_request *rq, *rn;
3083 
3084 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
3085 		if (rq == end || !i915_request_retire(rq))
3086 			break;
3087 }
3088 
3089 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
3090 			  int err, bool last_parallel)
3091 {
3092 	struct intel_timeline * const tl = i915_request_timeline(rq);
3093 	struct i915_sched_attr attr = {};
3094 	struct i915_request *prev;
3095 
3096 	lockdep_assert_held(&tl->mutex);
3097 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
3098 
3099 	trace_i915_request_add(rq);
3100 
3101 	prev = __i915_request_commit(rq);
3102 
3103 	/* Check that the context wasn't destroyed before submission */
3104 	if (likely(!intel_context_is_closed(eb->context))) {
3105 		attr = eb->gem_context->sched;
3106 	} else {
3107 		/* Serialise with context_close via the add_to_timeline */
3108 		i915_request_set_error_once(rq, -ENOENT);
3109 		__i915_request_skip(rq);
3110 		err = -ENOENT; /* override any transient errors */
3111 	}
3112 
3113 	if (intel_context_is_parallel(eb->context)) {
3114 		if (err) {
3115 			__i915_request_skip(rq);
3116 			set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
3117 				&rq->fence.flags);
3118 		}
3119 		if (last_parallel)
3120 			set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
3121 				&rq->fence.flags);
3122 	}
3123 
3124 	__i915_request_queue(rq, &attr);
3125 
3126 	/* Try to clean up the client's timeline after submitting the request */
3127 	if (prev)
3128 		retire_requests(tl, prev);
3129 
3130 	mutex_unlock(&tl->mutex);
3131 
3132 	return err;
3133 }
3134 
3135 static int eb_requests_add(struct i915_execbuffer *eb, int err)
3136 {
3137 	int i;
3138 
3139 	/*
3140 	 * We iterate in reverse order of creation to release timeline mutexes in
3141 	 * same order.
3142 	 */
3143 	for_each_batch_add_order(eb, i) {
3144 		struct i915_request *rq = eb->requests[i];
3145 
3146 		if (!rq)
3147 			continue;
3148 		err |= eb_request_add(eb, rq, err, i == 0);
3149 	}
3150 
3151 	return err;
3152 }
3153 
3154 static const i915_user_extension_fn execbuf_extensions[] = {
3155 	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3156 };
3157 
3158 static int
3159 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3160 			  struct i915_execbuffer *eb)
3161 {
3162 	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3163 		return 0;
3164 
3165 	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3166 	 * have another flag also using it at the same time.
3167 	 */
3168 	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3169 		return -EINVAL;
3170 
3171 	if (args->num_cliprects != 0)
3172 		return -EINVAL;
3173 
3174 	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3175 				    execbuf_extensions,
3176 				    ARRAY_SIZE(execbuf_extensions),
3177 				    eb);
3178 }
3179 
3180 static void eb_requests_get(struct i915_execbuffer *eb)
3181 {
3182 	unsigned int i;
3183 
3184 	for_each_batch_create_order(eb, i) {
3185 		if (!eb->requests[i])
3186 			break;
3187 
3188 		i915_request_get(eb->requests[i]);
3189 	}
3190 }
3191 
3192 static void eb_requests_put(struct i915_execbuffer *eb)
3193 {
3194 	unsigned int i;
3195 
3196 	for_each_batch_create_order(eb, i) {
3197 		if (!eb->requests[i])
3198 			break;
3199 
3200 		i915_request_put(eb->requests[i]);
3201 	}
3202 }
3203 
3204 static struct sync_file *
3205 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
3206 {
3207 	struct sync_file *out_fence = NULL;
3208 	struct dma_fence_array *fence_array;
3209 	struct dma_fence **fences;
3210 	unsigned int i;
3211 
3212 	GEM_BUG_ON(!intel_context_is_parent(eb->context));
3213 
3214 	fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3215 	if (!fences)
3216 		return ERR_PTR(-ENOMEM);
3217 
3218 	for_each_batch_create_order(eb, i) {
3219 		fences[i] = &eb->requests[i]->fence;
3220 		__set_bit(I915_FENCE_FLAG_COMPOSITE,
3221 			  &eb->requests[i]->fence.flags);
3222 	}
3223 
3224 	fence_array = dma_fence_array_create(eb->num_batches,
3225 					     fences,
3226 					     eb->context->parallel.fence_context,
3227 					     eb->context->parallel.seqno++,
3228 					     false);
3229 	if (!fence_array) {
3230 		kfree(fences);
3231 		return ERR_PTR(-ENOMEM);
3232 	}
3233 
3234 	/* Move ownership to the dma_fence_array created above */
3235 	for_each_batch_create_order(eb, i)
3236 		dma_fence_get(fences[i]);
3237 
3238 	if (out_fence_fd != -1) {
3239 		out_fence = sync_file_create(&fence_array->base);
3240 		/* sync_file now owns fence_arry, drop creation ref */
3241 		dma_fence_put(&fence_array->base);
3242 		if (!out_fence)
3243 			return ERR_PTR(-ENOMEM);
3244 	}
3245 
3246 	eb->composite_fence = &fence_array->base;
3247 
3248 	return out_fence;
3249 }
3250 
3251 static struct sync_file *
3252 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3253 	      struct dma_fence *in_fence, int out_fence_fd)
3254 {
3255 	struct sync_file *out_fence = NULL;
3256 	int err;
3257 
3258 	if (unlikely(eb->gem_context->syncobj)) {
3259 		struct dma_fence *fence;
3260 
3261 		fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3262 		err = i915_request_await_dma_fence(rq, fence);
3263 		dma_fence_put(fence);
3264 		if (err)
3265 			return ERR_PTR(err);
3266 	}
3267 
3268 	if (in_fence) {
3269 		if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3270 			err = i915_request_await_execution(rq, in_fence);
3271 		else
3272 			err = i915_request_await_dma_fence(rq, in_fence);
3273 		if (err < 0)
3274 			return ERR_PTR(err);
3275 	}
3276 
3277 	if (eb->fences) {
3278 		err = await_fence_array(eb, rq);
3279 		if (err)
3280 			return ERR_PTR(err);
3281 	}
3282 
3283 	if (intel_context_is_parallel(eb->context)) {
3284 		out_fence = eb_composite_fence_create(eb, out_fence_fd);
3285 		if (IS_ERR(out_fence))
3286 			return ERR_PTR(-ENOMEM);
3287 	} else if (out_fence_fd != -1) {
3288 		out_fence = sync_file_create(&rq->fence);
3289 		if (!out_fence)
3290 			return ERR_PTR(-ENOMEM);
3291 	}
3292 
3293 	return out_fence;
3294 }
3295 
3296 static struct intel_context *
3297 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3298 {
3299 	struct intel_context *child;
3300 
3301 	if (likely(context_number == 0))
3302 		return eb->context;
3303 
3304 	for_each_child(eb->context, child)
3305 		if (!--context_number)
3306 			return child;
3307 
3308 	GEM_BUG_ON("Context not found");
3309 
3310 	return NULL;
3311 }
3312 
3313 static struct sync_file *
3314 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3315 		   int out_fence_fd)
3316 {
3317 	struct sync_file *out_fence = NULL;
3318 	unsigned int i;
3319 
3320 	for_each_batch_create_order(eb, i) {
3321 		/* Allocate a request for this batch buffer nice and early. */
3322 		eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3323 		if (IS_ERR(eb->requests[i])) {
3324 			out_fence = ERR_CAST(eb->requests[i]);
3325 			eb->requests[i] = NULL;
3326 			return out_fence;
3327 		}
3328 
3329 		/*
3330 		 * Only the first request added (committed to backend) has to
3331 		 * take the in fences into account as all subsequent requests
3332 		 * will have fences inserted inbetween them.
3333 		 */
3334 		if (i + 1 == eb->num_batches) {
3335 			out_fence = eb_fences_add(eb, eb->requests[i],
3336 						  in_fence, out_fence_fd);
3337 			if (IS_ERR(out_fence))
3338 				return out_fence;
3339 		}
3340 
3341 		/*
3342 		 * Not really on stack, but we don't want to call
3343 		 * kfree on the batch_snapshot when we put it, so use the
3344 		 * _onstack interface.
3345 		 */
3346 		if (eb->batches[i]->vma)
3347 			eb->requests[i]->batch_res =
3348 				i915_vma_resource_get(eb->batches[i]->vma->resource);
3349 		if (eb->batch_pool) {
3350 			GEM_BUG_ON(intel_context_is_parallel(eb->context));
3351 			intel_gt_buffer_pool_mark_active(eb->batch_pool,
3352 							 eb->requests[i]);
3353 		}
3354 	}
3355 
3356 	return out_fence;
3357 }
3358 
3359 static int
3360 i915_gem_do_execbuffer(struct drm_device *dev,
3361 		       struct drm_file *file,
3362 		       struct drm_i915_gem_execbuffer2 *args,
3363 		       struct drm_i915_gem_exec_object2 *exec)
3364 {
3365 	struct drm_i915_private *i915 = to_i915(dev);
3366 	struct i915_execbuffer eb;
3367 	struct dma_fence *in_fence = NULL;
3368 	struct sync_file *out_fence = NULL;
3369 	int out_fence_fd = -1;
3370 	int err;
3371 
3372 	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3373 	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3374 		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3375 
3376 	eb.i915 = i915;
3377 	eb.file = file;
3378 	eb.args = args;
3379 	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3380 		args->flags |= __EXEC_HAS_RELOC;
3381 
3382 	eb.exec = exec;
3383 	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3384 	eb.vma[0].vma = NULL;
3385 	eb.batch_pool = NULL;
3386 
3387 	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3388 	reloc_cache_init(&eb.reloc_cache, eb.i915);
3389 
3390 	eb.buffer_count = args->buffer_count;
3391 	eb.batch_start_offset = args->batch_start_offset;
3392 	eb.trampoline = NULL;
3393 
3394 	eb.fences = NULL;
3395 	eb.num_fences = 0;
3396 
3397 	eb_capture_list_clear(&eb);
3398 
3399 	memset(eb.requests, 0, sizeof(struct i915_request *) *
3400 	       ARRAY_SIZE(eb.requests));
3401 	eb.composite_fence = NULL;
3402 
3403 	eb.batch_flags = 0;
3404 	if (args->flags & I915_EXEC_SECURE) {
3405 		if (GRAPHICS_VER(i915) >= 11)
3406 			return -ENODEV;
3407 
3408 		/* Return -EPERM to trigger fallback code on old binaries. */
3409 		if (!HAS_SECURE_BATCHES(i915))
3410 			return -EPERM;
3411 
3412 		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3413 			return -EPERM;
3414 
3415 		eb.batch_flags |= I915_DISPATCH_SECURE;
3416 	}
3417 	if (args->flags & I915_EXEC_IS_PINNED)
3418 		eb.batch_flags |= I915_DISPATCH_PINNED;
3419 
3420 	err = parse_execbuf2_extensions(args, &eb);
3421 	if (err)
3422 		goto err_ext;
3423 
3424 	err = add_fence_array(&eb);
3425 	if (err)
3426 		goto err_ext;
3427 
3428 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3429 	if (args->flags & IN_FENCES) {
3430 		if ((args->flags & IN_FENCES) == IN_FENCES)
3431 			return -EINVAL;
3432 
3433 		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3434 		if (!in_fence) {
3435 			err = -EINVAL;
3436 			goto err_ext;
3437 		}
3438 	}
3439 #undef IN_FENCES
3440 
3441 	if (args->flags & I915_EXEC_FENCE_OUT) {
3442 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3443 		if (out_fence_fd < 0) {
3444 			err = out_fence_fd;
3445 			goto err_in_fence;
3446 		}
3447 	}
3448 
3449 	err = eb_create(&eb);
3450 	if (err)
3451 		goto err_out_fence;
3452 
3453 	GEM_BUG_ON(!eb.lut_size);
3454 
3455 	err = eb_select_context(&eb);
3456 	if (unlikely(err))
3457 		goto err_destroy;
3458 
3459 	err = eb_select_engine(&eb);
3460 	if (unlikely(err))
3461 		goto err_context;
3462 
3463 	err = eb_lookup_vmas(&eb);
3464 	if (err) {
3465 		eb_release_vmas(&eb, true);
3466 		goto err_engine;
3467 	}
3468 
3469 	i915_gem_ww_ctx_init(&eb.ww, true);
3470 
3471 	err = eb_relocate_parse(&eb);
3472 	if (err) {
3473 		/*
3474 		 * If the user expects the execobject.offset and
3475 		 * reloc.presumed_offset to be an exact match,
3476 		 * as for using NO_RELOC, then we cannot update
3477 		 * the execobject.offset until we have completed
3478 		 * relocation.
3479 		 */
3480 		args->flags &= ~__EXEC_HAS_RELOC;
3481 		goto err_vma;
3482 	}
3483 
3484 	ww_acquire_done(&eb.ww.ctx);
3485 	err = eb_capture_stage(&eb);
3486 	if (err)
3487 		goto err_vma;
3488 
3489 	out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3490 	if (IS_ERR(out_fence)) {
3491 		err = PTR_ERR(out_fence);
3492 		out_fence = NULL;
3493 		if (eb.requests[0])
3494 			goto err_request;
3495 		else
3496 			goto err_vma;
3497 	}
3498 
3499 	err = eb_submit(&eb);
3500 
3501 err_request:
3502 	eb_requests_get(&eb);
3503 	err = eb_requests_add(&eb, err);
3504 
3505 	if (eb.fences)
3506 		signal_fence_array(&eb, eb.composite_fence ?
3507 				   eb.composite_fence :
3508 				   &eb.requests[0]->fence);
3509 
3510 	if (unlikely(eb.gem_context->syncobj)) {
3511 		drm_syncobj_replace_fence(eb.gem_context->syncobj,
3512 					  eb.composite_fence ?
3513 					  eb.composite_fence :
3514 					  &eb.requests[0]->fence);
3515 	}
3516 
3517 	if (out_fence) {
3518 		if (err == 0) {
3519 			fd_install(out_fence_fd, out_fence->file);
3520 			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3521 			args->rsvd2 |= (u64)out_fence_fd << 32;
3522 			out_fence_fd = -1;
3523 		} else {
3524 			fput(out_fence->file);
3525 		}
3526 	}
3527 
3528 	if (!out_fence && eb.composite_fence)
3529 		dma_fence_put(eb.composite_fence);
3530 
3531 	eb_requests_put(&eb);
3532 
3533 err_vma:
3534 	eb_release_vmas(&eb, true);
3535 	WARN_ON(err == -EDEADLK);
3536 	i915_gem_ww_ctx_fini(&eb.ww);
3537 
3538 	if (eb.batch_pool)
3539 		intel_gt_buffer_pool_put(eb.batch_pool);
3540 err_engine:
3541 	eb_put_engine(&eb);
3542 err_context:
3543 	i915_gem_context_put(eb.gem_context);
3544 err_destroy:
3545 	eb_destroy(&eb);
3546 err_out_fence:
3547 	if (out_fence_fd != -1)
3548 		put_unused_fd(out_fence_fd);
3549 err_in_fence:
3550 	dma_fence_put(in_fence);
3551 err_ext:
3552 	put_fence_array(eb.fences, eb.num_fences);
3553 	return err;
3554 }
3555 
3556 static size_t eb_element_size(void)
3557 {
3558 	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3559 }
3560 
3561 static bool check_buffer_count(size_t count)
3562 {
3563 	const size_t sz = eb_element_size();
3564 
3565 	/*
3566 	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3567 	 * array size (see eb_create()). Otherwise, we can accept an array as
3568 	 * large as can be addressed (though use large arrays at your peril)!
3569 	 */
3570 
3571 	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3572 }
3573 
3574 int
3575 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3576 			   struct drm_file *file)
3577 {
3578 	struct drm_i915_private *i915 = to_i915(dev);
3579 	struct drm_i915_gem_execbuffer2 *args = data;
3580 	struct drm_i915_gem_exec_object2 *exec2_list;
3581 	const size_t count = args->buffer_count;
3582 	int err;
3583 
3584 	if (!check_buffer_count(count)) {
3585 		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3586 		return -EINVAL;
3587 	}
3588 
3589 	err = i915_gem_check_execbuffer(i915, args);
3590 	if (err)
3591 		return err;
3592 
3593 	/* Allocate extra slots for use by the command parser */
3594 	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3595 				    __GFP_NOWARN | GFP_KERNEL);
3596 	if (exec2_list == NULL) {
3597 		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3598 			count);
3599 		return -ENOMEM;
3600 	}
3601 	if (copy_from_user(exec2_list,
3602 			   u64_to_user_ptr(args->buffers_ptr),
3603 			   sizeof(*exec2_list) * count)) {
3604 		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3605 		kvfree(exec2_list);
3606 		return -EFAULT;
3607 	}
3608 
3609 	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3610 
3611 	/*
3612 	 * Now that we have begun execution of the batchbuffer, we ignore
3613 	 * any new error after this point. Also given that we have already
3614 	 * updated the associated relocations, we try to write out the current
3615 	 * object locations irrespective of any error.
3616 	 */
3617 	if (args->flags & __EXEC_HAS_RELOC) {
3618 		struct drm_i915_gem_exec_object2 __user *user_exec_list =
3619 			u64_to_user_ptr(args->buffers_ptr);
3620 		unsigned int i;
3621 
3622 		/* Copy the new buffer offsets back to the user's exec list. */
3623 		/*
3624 		 * Note: count * sizeof(*user_exec_list) does not overflow,
3625 		 * because we checked 'count' in check_buffer_count().
3626 		 *
3627 		 * And this range already got effectively checked earlier
3628 		 * when we did the "copy_from_user()" above.
3629 		 */
3630 		if (!user_write_access_begin(user_exec_list,
3631 					     count * sizeof(*user_exec_list)))
3632 			goto end;
3633 
3634 		for (i = 0; i < args->buffer_count; i++) {
3635 			if (!(exec2_list[i].offset & UPDATE))
3636 				continue;
3637 
3638 			exec2_list[i].offset =
3639 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3640 			unsafe_put_user(exec2_list[i].offset,
3641 					&user_exec_list[i].offset,
3642 					end_user);
3643 		}
3644 end_user:
3645 		user_write_access_end();
3646 end:;
3647 	}
3648 
3649 	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3650 	kvfree(exec2_list);
3651 	return err;
3652 }
3653