1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008,2010 Intel Corporation 5 */ 6 7 #include <linux/dma-resv.h> 8 #include <linux/highmem.h> 9 #include <linux/sync_file.h> 10 #include <linux/uaccess.h> 11 12 #include <drm/drm_syncobj.h> 13 14 #include "display/intel_frontbuffer.h" 15 16 #include "gem/i915_gem_ioctls.h" 17 #include "gt/intel_context.h" 18 #include "gt/intel_gpu_commands.h" 19 #include "gt/intel_gt.h" 20 #include "gt/intel_gt_buffer_pool.h" 21 #include "gt/intel_gt_pm.h" 22 #include "gt/intel_ring.h" 23 24 #include "pxp/intel_pxp.h" 25 26 #include "i915_cmd_parser.h" 27 #include "i915_drv.h" 28 #include "i915_file_private.h" 29 #include "i915_gem_clflush.h" 30 #include "i915_gem_context.h" 31 #include "i915_gem_evict.h" 32 #include "i915_gem_ioctls.h" 33 #include "i915_trace.h" 34 #include "i915_user_extensions.h" 35 36 struct eb_vma { 37 struct i915_vma *vma; 38 unsigned int flags; 39 40 /** This vma's place in the execbuf reservation list */ 41 struct drm_i915_gem_exec_object2 *exec; 42 struct list_head bind_link; 43 struct list_head reloc_link; 44 45 struct hlist_node node; 46 u32 handle; 47 }; 48 49 enum { 50 FORCE_CPU_RELOC = 1, 51 FORCE_GTT_RELOC, 52 FORCE_GPU_RELOC, 53 #define DBG_FORCE_RELOC 0 /* choose one of the above! */ 54 }; 55 56 /* __EXEC_OBJECT_ flags > BIT(29) defined in i915_vma.h */ 57 #define __EXEC_OBJECT_HAS_PIN BIT(29) 58 #define __EXEC_OBJECT_HAS_FENCE BIT(28) 59 #define __EXEC_OBJECT_USERPTR_INIT BIT(27) 60 #define __EXEC_OBJECT_NEEDS_MAP BIT(26) 61 #define __EXEC_OBJECT_NEEDS_BIAS BIT(25) 62 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 25) /* all of the above + */ 63 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) 64 65 #define __EXEC_HAS_RELOC BIT(31) 66 #define __EXEC_ENGINE_PINNED BIT(30) 67 #define __EXEC_USERPTR_USED BIT(29) 68 #define __EXEC_INTERNAL_FLAGS (~0u << 29) 69 #define UPDATE PIN_OFFSET_FIXED 70 71 #define BATCH_OFFSET_BIAS (256*1024) 72 73 #define __I915_EXEC_ILLEGAL_FLAGS \ 74 (__I915_EXEC_UNKNOWN_FLAGS | \ 75 I915_EXEC_CONSTANTS_MASK | \ 76 I915_EXEC_RESOURCE_STREAMER) 77 78 /* Catch emission of unexpected errors for CI! */ 79 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 80 #undef EINVAL 81 #define EINVAL ({ \ 82 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 83 22; \ 84 }) 85 #endif 86 87 /** 88 * DOC: User command execution 89 * 90 * Userspace submits commands to be executed on the GPU as an instruction 91 * stream within a GEM object we call a batchbuffer. This instructions may 92 * refer to other GEM objects containing auxiliary state such as kernels, 93 * samplers, render targets and even secondary batchbuffers. Userspace does 94 * not know where in the GPU memory these objects reside and so before the 95 * batchbuffer is passed to the GPU for execution, those addresses in the 96 * batchbuffer and auxiliary objects are updated. This is known as relocation, 97 * or patching. To try and avoid having to relocate each object on the next 98 * execution, userspace is told the location of those objects in this pass, 99 * but this remains just a hint as the kernel may choose a new location for 100 * any object in the future. 101 * 102 * At the level of talking to the hardware, submitting a batchbuffer for the 103 * GPU to execute is to add content to a buffer from which the HW 104 * command streamer is reading. 105 * 106 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. 107 * Execlists, this command is not placed on the same buffer as the 108 * remaining items. 109 * 110 * 2. Add a command to invalidate caches to the buffer. 111 * 112 * 3. Add a batchbuffer start command to the buffer; the start command is 113 * essentially a token together with the GPU address of the batchbuffer 114 * to be executed. 115 * 116 * 4. Add a pipeline flush to the buffer. 117 * 118 * 5. Add a memory write command to the buffer to record when the GPU 119 * is done executing the batchbuffer. The memory write writes the 120 * global sequence number of the request, ``i915_request::global_seqno``; 121 * the i915 driver uses the current value in the register to determine 122 * if the GPU has completed the batchbuffer. 123 * 124 * 6. Add a user interrupt command to the buffer. This command instructs 125 * the GPU to issue an interrupt when the command, pipeline flush and 126 * memory write are completed. 127 * 128 * 7. Inform the hardware of the additional commands added to the buffer 129 * (by updating the tail pointer). 130 * 131 * Processing an execbuf ioctl is conceptually split up into a few phases. 132 * 133 * 1. Validation - Ensure all the pointers, handles and flags are valid. 134 * 2. Reservation - Assign GPU address space for every object 135 * 3. Relocation - Update any addresses to point to the final locations 136 * 4. Serialisation - Order the request with respect to its dependencies 137 * 5. Construction - Construct a request to execute the batchbuffer 138 * 6. Submission (at some point in the future execution) 139 * 140 * Reserving resources for the execbuf is the most complicated phase. We 141 * neither want to have to migrate the object in the address space, nor do 142 * we want to have to update any relocations pointing to this object. Ideally, 143 * we want to leave the object where it is and for all the existing relocations 144 * to match. If the object is given a new address, or if userspace thinks the 145 * object is elsewhere, we have to parse all the relocation entries and update 146 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that 147 * all the target addresses in all of its objects match the value in the 148 * relocation entries and that they all match the presumed offsets given by the 149 * list of execbuffer objects. Using this knowledge, we know that if we haven't 150 * moved any buffers, all the relocation entries are valid and we can skip 151 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 152 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 153 * 154 * The addresses written in the objects must match the corresponding 155 * reloc.presumed_offset which in turn must match the corresponding 156 * execobject.offset. 157 * 158 * Any render targets written to in the batch must be flagged with 159 * EXEC_OBJECT_WRITE. 160 * 161 * To avoid stalling, execobject.offset should match the current 162 * address of that object within the active context. 163 * 164 * The reservation is done is multiple phases. First we try and keep any 165 * object already bound in its current location - so as long as meets the 166 * constraints imposed by the new execbuffer. Any object left unbound after the 167 * first pass is then fitted into any available idle space. If an object does 168 * not fit, all objects are removed from the reservation and the process rerun 169 * after sorting the objects into a priority order (more difficult to fit 170 * objects are tried first). Failing that, the entire VM is cleared and we try 171 * to fit the execbuf once last time before concluding that it simply will not 172 * fit. 173 * 174 * A small complication to all of this is that we allow userspace not only to 175 * specify an alignment and a size for the object in the address space, but 176 * we also allow userspace to specify the exact offset. This objects are 177 * simpler to place (the location is known a priori) all we have to do is make 178 * sure the space is available. 179 * 180 * Once all the objects are in place, patching up the buried pointers to point 181 * to the final locations is a fairly simple job of walking over the relocation 182 * entry arrays, looking up the right address and rewriting the value into 183 * the object. Simple! ... The relocation entries are stored in user memory 184 * and so to access them we have to copy them into a local buffer. That copy 185 * has to avoid taking any pagefaults as they may lead back to a GEM object 186 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split 187 * the relocation into multiple passes. First we try to do everything within an 188 * atomic context (avoid the pagefaults) which requires that we never wait. If 189 * we detect that we may wait, or if we need to fault, then we have to fallback 190 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 191 * bells yet?) Dropping the mutex means that we lose all the state we have 192 * built up so far for the execbuf and we must reset any global data. However, 193 * we do leave the objects pinned in their final locations - which is a 194 * potential issue for concurrent execbufs. Once we have left the mutex, we can 195 * allocate and copy all the relocation entries into a large array at our 196 * leisure, reacquire the mutex, reclaim all the objects and other state and 197 * then proceed to update any incorrect addresses with the objects. 198 * 199 * As we process the relocation entries, we maintain a record of whether the 200 * object is being written to. Using NORELOC, we expect userspace to provide 201 * this information instead. We also check whether we can skip the relocation 202 * by comparing the expected value inside the relocation entry with the target's 203 * final address. If they differ, we have to map the current object and rewrite 204 * the 4 or 8 byte pointer within. 205 * 206 * Serialising an execbuf is quite simple according to the rules of the GEM 207 * ABI. Execution within each context is ordered by the order of submission. 208 * Writes to any GEM object are in order of submission and are exclusive. Reads 209 * from a GEM object are unordered with respect to other reads, but ordered by 210 * writes. A write submitted after a read cannot occur before the read, and 211 * similarly any read submitted after a write cannot occur before the write. 212 * Writes are ordered between engines such that only one write occurs at any 213 * time (completing any reads beforehand) - using semaphores where available 214 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 215 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 216 * reads before starting, and any read (either using set-domain or pread) must 217 * flush all GPU writes before starting. (Note we only employ a barrier before, 218 * we currently rely on userspace not concurrently starting a new execution 219 * whilst reading or writing to an object. This may be an advantage or not 220 * depending on how much you trust userspace not to shoot themselves in the 221 * foot.) Serialisation may just result in the request being inserted into 222 * a DAG awaiting its turn, but most simple is to wait on the CPU until 223 * all dependencies are resolved. 224 * 225 * After all of that, is just a matter of closing the request and handing it to 226 * the hardware (well, leaving it in a queue to be executed). However, we also 227 * offer the ability for batchbuffers to be run with elevated privileges so 228 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 229 * Before any batch is given extra privileges we first must check that it 230 * contains no nefarious instructions, we check that each instruction is from 231 * our whitelist and all registers are also from an allowed list. We first 232 * copy the user's batchbuffer to a shadow (so that the user doesn't have 233 * access to it, either by the CPU or GPU as we scan it) and then parse each 234 * instruction. If everything is ok, we set a flag telling the hardware to run 235 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 236 */ 237 238 struct eb_fence { 239 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */ 240 struct dma_fence *dma_fence; 241 u64 value; 242 struct dma_fence_chain *chain_fence; 243 }; 244 245 struct i915_execbuffer { 246 struct drm_i915_private *i915; /** i915 backpointer */ 247 struct drm_file *file; /** per-file lookup tables and limits */ 248 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 249 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 250 struct eb_vma *vma; 251 252 struct intel_gt *gt; /* gt for the execbuf */ 253 struct intel_context *context; /* logical state for the request */ 254 struct i915_gem_context *gem_context; /** caller's context */ 255 256 /** our requests to build */ 257 struct i915_request *requests[MAX_ENGINE_INSTANCE + 1]; 258 /** identity of the batch obj/vma */ 259 struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1]; 260 struct i915_vma *trampoline; /** trampoline used for chaining */ 261 262 /** used for excl fence in dma_resv objects when > 1 BB submitted */ 263 struct dma_fence *composite_fence; 264 265 /** actual size of execobj[] as we may extend it for the cmdparser */ 266 unsigned int buffer_count; 267 268 /* number of batches in execbuf IOCTL */ 269 unsigned int num_batches; 270 271 /** list of vma not yet bound during reservation phase */ 272 struct list_head unbound; 273 274 /** list of vma that have execobj.relocation_count */ 275 struct list_head relocs; 276 277 struct i915_gem_ww_ctx ww; 278 279 /** 280 * Track the most recently used object for relocations, as we 281 * frequently have to perform multiple relocations within the same 282 * obj/page 283 */ 284 struct reloc_cache { 285 struct drm_mm_node node; /** temporary GTT binding */ 286 unsigned long vaddr; /** Current kmap address */ 287 unsigned long page; /** Currently mapped page index */ 288 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */ 289 bool use_64bit_reloc : 1; 290 bool has_llc : 1; 291 bool has_fence : 1; 292 bool needs_unfenced : 1; 293 } reloc_cache; 294 295 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 296 297 /** Length of batch within object */ 298 u64 batch_len[MAX_ENGINE_INSTANCE + 1]; 299 u32 batch_start_offset; /** Location within object of batch */ 300 u32 batch_flags; /** Flags composed for emit_bb_start() */ 301 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */ 302 303 /** 304 * Indicate either the size of the hastable used to resolve 305 * relocation handles, or if negative that we are using a direct 306 * index into the execobj[]. 307 */ 308 int lut_size; 309 struct hlist_head *buckets; /** ht for relocation handles */ 310 311 struct eb_fence *fences; 312 unsigned long num_fences; 313 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 314 struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1]; 315 #endif 316 }; 317 318 static int eb_parse(struct i915_execbuffer *eb); 319 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle); 320 static void eb_unpin_engine(struct i915_execbuffer *eb); 321 static void eb_capture_release(struct i915_execbuffer *eb); 322 323 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) 324 { 325 return intel_engine_requires_cmd_parser(eb->context->engine) || 326 (intel_engine_using_cmd_parser(eb->context->engine) && 327 eb->args->batch_len); 328 } 329 330 static int eb_create(struct i915_execbuffer *eb) 331 { 332 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 333 unsigned int size = 1 + ilog2(eb->buffer_count); 334 335 /* 336 * Without a 1:1 association between relocation handles and 337 * the execobject[] index, we instead create a hashtable. 338 * We size it dynamically based on available memory, starting 339 * first with 1:1 assocative hash and scaling back until 340 * the allocation succeeds. 341 * 342 * Later on we use a positive lut_size to indicate we are 343 * using this hashtable, and a negative value to indicate a 344 * direct lookup. 345 */ 346 do { 347 gfp_t flags; 348 349 /* While we can still reduce the allocation size, don't 350 * raise a warning and allow the allocation to fail. 351 * On the last pass though, we want to try as hard 352 * as possible to perform the allocation and warn 353 * if it fails. 354 */ 355 flags = GFP_KERNEL; 356 if (size > 1) 357 flags |= __GFP_NORETRY | __GFP_NOWARN; 358 359 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 360 flags); 361 if (eb->buckets) 362 break; 363 } while (--size); 364 365 if (unlikely(!size)) 366 return -ENOMEM; 367 368 eb->lut_size = size; 369 } else { 370 eb->lut_size = -eb->buffer_count; 371 } 372 373 return 0; 374 } 375 376 static bool 377 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 378 const struct i915_vma *vma, 379 unsigned int flags) 380 { 381 const u64 start = i915_vma_offset(vma); 382 const u64 size = i915_vma_size(vma); 383 384 if (size < entry->pad_to_size) 385 return true; 386 387 if (entry->alignment && !IS_ALIGNED(start, entry->alignment)) 388 return true; 389 390 if (flags & EXEC_OBJECT_PINNED && 391 start != entry->offset) 392 return true; 393 394 if (flags & __EXEC_OBJECT_NEEDS_BIAS && 395 start < BATCH_OFFSET_BIAS) 396 return true; 397 398 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 399 (start + size + 4095) >> 32) 400 return true; 401 402 if (flags & __EXEC_OBJECT_NEEDS_MAP && 403 !i915_vma_is_map_and_fenceable(vma)) 404 return true; 405 406 return false; 407 } 408 409 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry, 410 unsigned int exec_flags) 411 { 412 u64 pin_flags = 0; 413 414 if (exec_flags & EXEC_OBJECT_NEEDS_GTT) 415 pin_flags |= PIN_GLOBAL; 416 417 /* 418 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 419 * limit address to the first 4GBs for unflagged objects. 420 */ 421 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 422 pin_flags |= PIN_ZONE_4G; 423 424 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) 425 pin_flags |= PIN_MAPPABLE; 426 427 if (exec_flags & EXEC_OBJECT_PINNED) 428 pin_flags |= entry->offset | PIN_OFFSET_FIXED; 429 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) 430 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 431 432 return pin_flags; 433 } 434 435 static inline int 436 eb_pin_vma(struct i915_execbuffer *eb, 437 const struct drm_i915_gem_exec_object2 *entry, 438 struct eb_vma *ev) 439 { 440 struct i915_vma *vma = ev->vma; 441 u64 pin_flags; 442 int err; 443 444 if (vma->node.size) 445 pin_flags = __i915_vma_offset(vma); 446 else 447 pin_flags = entry->offset & PIN_OFFSET_MASK; 448 449 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE; 450 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) 451 pin_flags |= PIN_GLOBAL; 452 453 /* Attempt to reuse the current location if available */ 454 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags); 455 if (err == -EDEADLK) 456 return err; 457 458 if (unlikely(err)) { 459 if (entry->flags & EXEC_OBJECT_PINNED) 460 return err; 461 462 /* Failing that pick any _free_ space if suitable */ 463 err = i915_vma_pin_ww(vma, &eb->ww, 464 entry->pad_to_size, 465 entry->alignment, 466 eb_pin_flags(entry, ev->flags) | 467 PIN_USER | PIN_NOEVICT | PIN_VALIDATE); 468 if (unlikely(err)) 469 return err; 470 } 471 472 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 473 err = i915_vma_pin_fence(vma); 474 if (unlikely(err)) 475 return err; 476 477 if (vma->fence) 478 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 479 } 480 481 ev->flags |= __EXEC_OBJECT_HAS_PIN; 482 if (eb_vma_misplaced(entry, vma, ev->flags)) 483 return -EBADSLT; 484 485 return 0; 486 } 487 488 static inline void 489 eb_unreserve_vma(struct eb_vma *ev) 490 { 491 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE)) 492 __i915_vma_unpin_fence(ev->vma); 493 494 ev->flags &= ~__EXEC_OBJECT_RESERVED; 495 } 496 497 static int 498 eb_validate_vma(struct i915_execbuffer *eb, 499 struct drm_i915_gem_exec_object2 *entry, 500 struct i915_vma *vma) 501 { 502 /* Relocations are disallowed for all platforms after TGL-LP. This 503 * also covers all platforms with local memory. 504 */ 505 if (entry->relocation_count && 506 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915)) 507 return -EINVAL; 508 509 if (unlikely(entry->flags & eb->invalid_flags)) 510 return -EINVAL; 511 512 if (unlikely(entry->alignment && 513 !is_power_of_2_u64(entry->alignment))) 514 return -EINVAL; 515 516 /* 517 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 518 * any non-page-aligned or non-canonical addresses. 519 */ 520 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 521 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) 522 return -EINVAL; 523 524 /* pad_to_size was once a reserved field, so sanitize it */ 525 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 526 if (unlikely(offset_in_page(entry->pad_to_size))) 527 return -EINVAL; 528 } else { 529 entry->pad_to_size = 0; 530 } 531 /* 532 * From drm_mm perspective address space is continuous, 533 * so from this point we're always using non-canonical 534 * form internally. 535 */ 536 entry->offset = gen8_noncanonical_addr(entry->offset); 537 538 if (!eb->reloc_cache.has_fence) { 539 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 540 } else { 541 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 542 eb->reloc_cache.needs_unfenced) && 543 i915_gem_object_is_tiled(vma->obj)) 544 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 545 } 546 547 return 0; 548 } 549 550 static inline bool 551 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx) 552 { 553 return eb->args->flags & I915_EXEC_BATCH_FIRST ? 554 buffer_idx < eb->num_batches : 555 buffer_idx >= eb->args->buffer_count - eb->num_batches; 556 } 557 558 static int 559 eb_add_vma(struct i915_execbuffer *eb, 560 unsigned int *current_batch, 561 unsigned int i, 562 struct i915_vma *vma) 563 { 564 struct drm_i915_private *i915 = eb->i915; 565 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 566 struct eb_vma *ev = &eb->vma[i]; 567 568 ev->vma = vma; 569 ev->exec = entry; 570 ev->flags = entry->flags; 571 572 if (eb->lut_size > 0) { 573 ev->handle = entry->handle; 574 hlist_add_head(&ev->node, 575 &eb->buckets[hash_32(entry->handle, 576 eb->lut_size)]); 577 } 578 579 if (entry->relocation_count) 580 list_add_tail(&ev->reloc_link, &eb->relocs); 581 582 /* 583 * SNA is doing fancy tricks with compressing batch buffers, which leads 584 * to negative relocation deltas. Usually that works out ok since the 585 * relocate address is still positive, except when the batch is placed 586 * very low in the GTT. Ensure this doesn't happen. 587 * 588 * Note that actual hangs have only been observed on gen7, but for 589 * paranoia do it everywhere. 590 */ 591 if (is_batch_buffer(eb, i)) { 592 if (entry->relocation_count && 593 !(ev->flags & EXEC_OBJECT_PINNED)) 594 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; 595 if (eb->reloc_cache.has_fence) 596 ev->flags |= EXEC_OBJECT_NEEDS_FENCE; 597 598 eb->batches[*current_batch] = ev; 599 600 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) { 601 drm_dbg(&i915->drm, 602 "Attempting to use self-modifying batch buffer\n"); 603 return -EINVAL; 604 } 605 606 if (range_overflows_t(u64, 607 eb->batch_start_offset, 608 eb->args->batch_len, 609 ev->vma->size)) { 610 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); 611 return -EINVAL; 612 } 613 614 if (eb->args->batch_len == 0) 615 eb->batch_len[*current_batch] = ev->vma->size - 616 eb->batch_start_offset; 617 else 618 eb->batch_len[*current_batch] = eb->args->batch_len; 619 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */ 620 drm_dbg(&i915->drm, "Invalid batch length\n"); 621 return -EINVAL; 622 } 623 624 ++*current_batch; 625 } 626 627 return 0; 628 } 629 630 static inline int use_cpu_reloc(const struct reloc_cache *cache, 631 const struct drm_i915_gem_object *obj) 632 { 633 if (!i915_gem_object_has_struct_page(obj)) 634 return false; 635 636 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 637 return true; 638 639 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 640 return false; 641 642 return (cache->has_llc || 643 obj->cache_dirty || 644 obj->cache_level != I915_CACHE_NONE); 645 } 646 647 static int eb_reserve_vma(struct i915_execbuffer *eb, 648 struct eb_vma *ev, 649 u64 pin_flags) 650 { 651 struct drm_i915_gem_exec_object2 *entry = ev->exec; 652 struct i915_vma *vma = ev->vma; 653 int err; 654 655 if (drm_mm_node_allocated(&vma->node) && 656 eb_vma_misplaced(entry, vma, ev->flags)) { 657 err = i915_vma_unbind(vma); 658 if (err) 659 return err; 660 } 661 662 err = i915_vma_pin_ww(vma, &eb->ww, 663 entry->pad_to_size, entry->alignment, 664 eb_pin_flags(entry, ev->flags) | pin_flags); 665 if (err) 666 return err; 667 668 if (entry->offset != i915_vma_offset(vma)) { 669 entry->offset = i915_vma_offset(vma) | UPDATE; 670 eb->args->flags |= __EXEC_HAS_RELOC; 671 } 672 673 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { 674 err = i915_vma_pin_fence(vma); 675 if (unlikely(err)) 676 return err; 677 678 if (vma->fence) 679 ev->flags |= __EXEC_OBJECT_HAS_FENCE; 680 } 681 682 ev->flags |= __EXEC_OBJECT_HAS_PIN; 683 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); 684 685 return 0; 686 } 687 688 static bool eb_unbind(struct i915_execbuffer *eb, bool force) 689 { 690 const unsigned int count = eb->buffer_count; 691 unsigned int i; 692 struct list_head last; 693 bool unpinned = false; 694 695 /* Resort *all* the objects into priority order */ 696 INIT_LIST_HEAD(&eb->unbound); 697 INIT_LIST_HEAD(&last); 698 699 for (i = 0; i < count; i++) { 700 struct eb_vma *ev = &eb->vma[i]; 701 unsigned int flags = ev->flags; 702 703 if (!force && flags & EXEC_OBJECT_PINNED && 704 flags & __EXEC_OBJECT_HAS_PIN) 705 continue; 706 707 unpinned = true; 708 eb_unreserve_vma(ev); 709 710 if (flags & EXEC_OBJECT_PINNED) 711 /* Pinned must have their slot */ 712 list_add(&ev->bind_link, &eb->unbound); 713 else if (flags & __EXEC_OBJECT_NEEDS_MAP) 714 /* Map require the lowest 256MiB (aperture) */ 715 list_add_tail(&ev->bind_link, &eb->unbound); 716 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 717 /* Prioritise 4GiB region for restricted bo */ 718 list_add(&ev->bind_link, &last); 719 else 720 list_add_tail(&ev->bind_link, &last); 721 } 722 723 list_splice_tail(&last, &eb->unbound); 724 return unpinned; 725 } 726 727 static int eb_reserve(struct i915_execbuffer *eb) 728 { 729 struct eb_vma *ev; 730 unsigned int pass; 731 int err = 0; 732 bool unpinned; 733 734 /* 735 * We have one more buffers that we couldn't bind, which could be due to 736 * various reasons. To resolve this we have 4 passes, with every next 737 * level turning the screws tighter: 738 * 739 * 0. Unbind all objects that do not match the GTT constraints for the 740 * execbuffer (fenceable, mappable, alignment etc). Bind all new 741 * objects. This avoids unnecessary unbinding of later objects in order 742 * to make room for the earlier objects *unless* we need to defragment. 743 * 744 * 1. Reorder the buffers, where objects with the most restrictive 745 * placement requirements go first (ignoring fixed location buffers for 746 * now). For example, objects needing the mappable aperture (the first 747 * 256M of GTT), should go first vs objects that can be placed just 748 * about anywhere. Repeat the previous pass. 749 * 750 * 2. Consider buffers that are pinned at a fixed location. Also try to 751 * evict the entire VM this time, leaving only objects that we were 752 * unable to lock. Try again to bind the buffers. (still using the new 753 * buffer order). 754 * 755 * 3. We likely have object lock contention for one or more stubborn 756 * objects in the VM, for which we need to evict to make forward 757 * progress (perhaps we are fighting the shrinker?). When evicting the 758 * VM this time around, anything that we can't lock we now track using 759 * the busy_bo, using the full lock (after dropping the vm->mutex to 760 * prevent deadlocks), instead of trylock. We then continue to evict the 761 * VM, this time with the stubborn object locked, which we can now 762 * hopefully unbind (if still bound in the VM). Repeat until the VM is 763 * evicted. Finally we should be able bind everything. 764 */ 765 for (pass = 0; pass <= 3; pass++) { 766 int pin_flags = PIN_USER | PIN_VALIDATE; 767 768 if (pass == 0) 769 pin_flags |= PIN_NONBLOCK; 770 771 if (pass >= 1) 772 unpinned = eb_unbind(eb, pass >= 2); 773 774 if (pass == 2) { 775 err = mutex_lock_interruptible(&eb->context->vm->mutex); 776 if (!err) { 777 err = i915_gem_evict_vm(eb->context->vm, &eb->ww, NULL); 778 mutex_unlock(&eb->context->vm->mutex); 779 } 780 if (err) 781 return err; 782 } 783 784 if (pass == 3) { 785 retry: 786 err = mutex_lock_interruptible(&eb->context->vm->mutex); 787 if (!err) { 788 struct drm_i915_gem_object *busy_bo = NULL; 789 790 err = i915_gem_evict_vm(eb->context->vm, &eb->ww, &busy_bo); 791 mutex_unlock(&eb->context->vm->mutex); 792 if (err && busy_bo) { 793 err = i915_gem_object_lock(busy_bo, &eb->ww); 794 i915_gem_object_put(busy_bo); 795 if (!err) 796 goto retry; 797 } 798 } 799 if (err) 800 return err; 801 } 802 803 list_for_each_entry(ev, &eb->unbound, bind_link) { 804 err = eb_reserve_vma(eb, ev, pin_flags); 805 if (err) 806 break; 807 } 808 809 if (err != -ENOSPC) 810 break; 811 } 812 813 return err; 814 } 815 816 static int eb_select_context(struct i915_execbuffer *eb) 817 { 818 struct i915_gem_context *ctx; 819 820 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 821 if (unlikely(IS_ERR(ctx))) 822 return PTR_ERR(ctx); 823 824 eb->gem_context = ctx; 825 if (i915_gem_context_has_full_ppgtt(ctx)) 826 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 827 828 return 0; 829 } 830 831 static int __eb_add_lut(struct i915_execbuffer *eb, 832 u32 handle, struct i915_vma *vma) 833 { 834 struct i915_gem_context *ctx = eb->gem_context; 835 struct i915_lut_handle *lut; 836 int err; 837 838 lut = i915_lut_handle_alloc(); 839 if (unlikely(!lut)) 840 return -ENOMEM; 841 842 i915_vma_get(vma); 843 if (!atomic_fetch_inc(&vma->open_count)) 844 i915_vma_reopen(vma); 845 lut->handle = handle; 846 lut->ctx = ctx; 847 848 /* Check that the context hasn't been closed in the meantime */ 849 err = -EINTR; 850 if (!mutex_lock_interruptible(&ctx->lut_mutex)) { 851 if (likely(!i915_gem_context_is_closed(ctx))) 852 err = radix_tree_insert(&ctx->handles_vma, handle, vma); 853 else 854 err = -ENOENT; 855 if (err == 0) { /* And nor has this handle */ 856 struct drm_i915_gem_object *obj = vma->obj; 857 858 spin_lock(&obj->lut_lock); 859 if (idr_find(&eb->file->object_idr, handle) == obj) { 860 list_add(&lut->obj_link, &obj->lut_list); 861 } else { 862 radix_tree_delete(&ctx->handles_vma, handle); 863 err = -ENOENT; 864 } 865 spin_unlock(&obj->lut_lock); 866 } 867 mutex_unlock(&ctx->lut_mutex); 868 } 869 if (unlikely(err)) 870 goto err; 871 872 return 0; 873 874 err: 875 i915_vma_close(vma); 876 i915_vma_put(vma); 877 i915_lut_handle_free(lut); 878 return err; 879 } 880 881 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle) 882 { 883 struct i915_address_space *vm = eb->context->vm; 884 885 do { 886 struct drm_i915_gem_object *obj; 887 struct i915_vma *vma; 888 int err; 889 890 rcu_read_lock(); 891 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle); 892 if (likely(vma && vma->vm == vm)) 893 vma = i915_vma_tryget(vma); 894 rcu_read_unlock(); 895 if (likely(vma)) 896 return vma; 897 898 obj = i915_gem_object_lookup(eb->file, handle); 899 if (unlikely(!obj)) 900 return ERR_PTR(-ENOENT); 901 902 /* 903 * If the user has opted-in for protected-object tracking, make 904 * sure the object encryption can be used. 905 * We only need to do this when the object is first used with 906 * this context, because the context itself will be banned when 907 * the protected objects become invalid. 908 */ 909 if (i915_gem_context_uses_protected_content(eb->gem_context) && 910 i915_gem_object_is_protected(obj)) { 911 err = intel_pxp_key_check(eb->i915->pxp, obj, true); 912 if (err) { 913 i915_gem_object_put(obj); 914 return ERR_PTR(err); 915 } 916 } 917 918 vma = i915_vma_instance(obj, vm, NULL); 919 if (IS_ERR(vma)) { 920 i915_gem_object_put(obj); 921 return vma; 922 } 923 924 err = __eb_add_lut(eb, handle, vma); 925 if (likely(!err)) 926 return vma; 927 928 i915_gem_object_put(obj); 929 if (err != -EEXIST) 930 return ERR_PTR(err); 931 } while (1); 932 } 933 934 static int eb_lookup_vmas(struct i915_execbuffer *eb) 935 { 936 unsigned int i, current_batch = 0; 937 int err = 0; 938 939 INIT_LIST_HEAD(&eb->relocs); 940 941 for (i = 0; i < eb->buffer_count; i++) { 942 struct i915_vma *vma; 943 944 vma = eb_lookup_vma(eb, eb->exec[i].handle); 945 if (IS_ERR(vma)) { 946 err = PTR_ERR(vma); 947 goto err; 948 } 949 950 err = eb_validate_vma(eb, &eb->exec[i], vma); 951 if (unlikely(err)) { 952 i915_vma_put(vma); 953 goto err; 954 } 955 956 err = eb_add_vma(eb, ¤t_batch, i, vma); 957 if (err) 958 return err; 959 960 if (i915_gem_object_is_userptr(vma->obj)) { 961 err = i915_gem_object_userptr_submit_init(vma->obj); 962 if (err) { 963 if (i + 1 < eb->buffer_count) { 964 /* 965 * Execbuffer code expects last vma entry to be NULL, 966 * since we already initialized this entry, 967 * set the next value to NULL or we mess up 968 * cleanup handling. 969 */ 970 eb->vma[i + 1].vma = NULL; 971 } 972 973 return err; 974 } 975 976 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT; 977 eb->args->flags |= __EXEC_USERPTR_USED; 978 } 979 } 980 981 return 0; 982 983 err: 984 eb->vma[i].vma = NULL; 985 return err; 986 } 987 988 static int eb_lock_vmas(struct i915_execbuffer *eb) 989 { 990 unsigned int i; 991 int err; 992 993 for (i = 0; i < eb->buffer_count; i++) { 994 struct eb_vma *ev = &eb->vma[i]; 995 struct i915_vma *vma = ev->vma; 996 997 err = i915_gem_object_lock(vma->obj, &eb->ww); 998 if (err) 999 return err; 1000 } 1001 1002 return 0; 1003 } 1004 1005 static int eb_validate_vmas(struct i915_execbuffer *eb) 1006 { 1007 unsigned int i; 1008 int err; 1009 1010 INIT_LIST_HEAD(&eb->unbound); 1011 1012 err = eb_lock_vmas(eb); 1013 if (err) 1014 return err; 1015 1016 for (i = 0; i < eb->buffer_count; i++) { 1017 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 1018 struct eb_vma *ev = &eb->vma[i]; 1019 struct i915_vma *vma = ev->vma; 1020 1021 err = eb_pin_vma(eb, entry, ev); 1022 if (err == -EDEADLK) 1023 return err; 1024 1025 if (!err) { 1026 if (entry->offset != i915_vma_offset(vma)) { 1027 entry->offset = i915_vma_offset(vma) | UPDATE; 1028 eb->args->flags |= __EXEC_HAS_RELOC; 1029 } 1030 } else { 1031 eb_unreserve_vma(ev); 1032 1033 list_add_tail(&ev->bind_link, &eb->unbound); 1034 if (drm_mm_node_allocated(&vma->node)) { 1035 err = i915_vma_unbind(vma); 1036 if (err) 1037 return err; 1038 } 1039 } 1040 1041 /* Reserve enough slots to accommodate composite fences */ 1042 err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches); 1043 if (err) 1044 return err; 1045 1046 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && 1047 eb_vma_misplaced(&eb->exec[i], vma, ev->flags)); 1048 } 1049 1050 if (!list_empty(&eb->unbound)) 1051 return eb_reserve(eb); 1052 1053 return 0; 1054 } 1055 1056 static struct eb_vma * 1057 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 1058 { 1059 if (eb->lut_size < 0) { 1060 if (handle >= -eb->lut_size) 1061 return NULL; 1062 return &eb->vma[handle]; 1063 } else { 1064 struct hlist_head *head; 1065 struct eb_vma *ev; 1066 1067 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 1068 hlist_for_each_entry(ev, head, node) { 1069 if (ev->handle == handle) 1070 return ev; 1071 } 1072 return NULL; 1073 } 1074 } 1075 1076 static void eb_release_vmas(struct i915_execbuffer *eb, bool final) 1077 { 1078 const unsigned int count = eb->buffer_count; 1079 unsigned int i; 1080 1081 for (i = 0; i < count; i++) { 1082 struct eb_vma *ev = &eb->vma[i]; 1083 struct i915_vma *vma = ev->vma; 1084 1085 if (!vma) 1086 break; 1087 1088 eb_unreserve_vma(ev); 1089 1090 if (final) 1091 i915_vma_put(vma); 1092 } 1093 1094 eb_capture_release(eb); 1095 eb_unpin_engine(eb); 1096 } 1097 1098 static void eb_destroy(const struct i915_execbuffer *eb) 1099 { 1100 if (eb->lut_size > 0) 1101 kfree(eb->buckets); 1102 } 1103 1104 static inline u64 1105 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 1106 const struct i915_vma *target) 1107 { 1108 return gen8_canonical_addr((int)reloc->delta + i915_vma_offset(target)); 1109 } 1110 1111 static void reloc_cache_init(struct reloc_cache *cache, 1112 struct drm_i915_private *i915) 1113 { 1114 cache->page = -1; 1115 cache->vaddr = 0; 1116 /* Must be a variable in the struct to allow GCC to unroll. */ 1117 cache->graphics_ver = GRAPHICS_VER(i915); 1118 cache->has_llc = HAS_LLC(i915); 1119 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 1120 cache->has_fence = cache->graphics_ver < 4; 1121 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 1122 cache->node.flags = 0; 1123 } 1124 1125 static inline void *unmask_page(unsigned long p) 1126 { 1127 return (void *)(uintptr_t)(p & PAGE_MASK); 1128 } 1129 1130 static inline unsigned int unmask_flags(unsigned long p) 1131 { 1132 return p & ~PAGE_MASK; 1133 } 1134 1135 #define KMAP 0x4 /* after CLFLUSH_FLAGS */ 1136 1137 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 1138 { 1139 struct drm_i915_private *i915 = 1140 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 1141 return to_gt(i915)->ggtt; 1142 } 1143 1144 static void reloc_cache_unmap(struct reloc_cache *cache) 1145 { 1146 void *vaddr; 1147 1148 if (!cache->vaddr) 1149 return; 1150 1151 vaddr = unmask_page(cache->vaddr); 1152 if (cache->vaddr & KMAP) 1153 kunmap_atomic(vaddr); 1154 else 1155 io_mapping_unmap_atomic((void __iomem *)vaddr); 1156 } 1157 1158 static void reloc_cache_remap(struct reloc_cache *cache, 1159 struct drm_i915_gem_object *obj) 1160 { 1161 void *vaddr; 1162 1163 if (!cache->vaddr) 1164 return; 1165 1166 if (cache->vaddr & KMAP) { 1167 struct page *page = i915_gem_object_get_page(obj, cache->page); 1168 1169 vaddr = kmap_atomic(page); 1170 cache->vaddr = unmask_flags(cache->vaddr) | 1171 (unsigned long)vaddr; 1172 } else { 1173 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1174 unsigned long offset; 1175 1176 offset = cache->node.start; 1177 if (!drm_mm_node_allocated(&cache->node)) 1178 offset += cache->page << PAGE_SHIFT; 1179 1180 cache->vaddr = (unsigned long) 1181 io_mapping_map_atomic_wc(&ggtt->iomap, offset); 1182 } 1183 } 1184 1185 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb) 1186 { 1187 void *vaddr; 1188 1189 if (!cache->vaddr) 1190 return; 1191 1192 vaddr = unmask_page(cache->vaddr); 1193 if (cache->vaddr & KMAP) { 1194 struct drm_i915_gem_object *obj = 1195 (struct drm_i915_gem_object *)cache->node.mm; 1196 if (cache->vaddr & CLFLUSH_AFTER) 1197 mb(); 1198 1199 kunmap_atomic(vaddr); 1200 i915_gem_object_finish_access(obj); 1201 } else { 1202 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1203 1204 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1205 io_mapping_unmap_atomic((void __iomem *)vaddr); 1206 1207 if (drm_mm_node_allocated(&cache->node)) { 1208 ggtt->vm.clear_range(&ggtt->vm, 1209 cache->node.start, 1210 cache->node.size); 1211 mutex_lock(&ggtt->vm.mutex); 1212 drm_mm_remove_node(&cache->node); 1213 mutex_unlock(&ggtt->vm.mutex); 1214 } else { 1215 i915_vma_unpin((struct i915_vma *)cache->node.mm); 1216 } 1217 } 1218 1219 cache->vaddr = 0; 1220 cache->page = -1; 1221 } 1222 1223 static void *reloc_kmap(struct drm_i915_gem_object *obj, 1224 struct reloc_cache *cache, 1225 unsigned long pageno) 1226 { 1227 void *vaddr; 1228 struct page *page; 1229 1230 if (cache->vaddr) { 1231 kunmap_atomic(unmask_page(cache->vaddr)); 1232 } else { 1233 unsigned int flushes; 1234 int err; 1235 1236 err = i915_gem_object_prepare_write(obj, &flushes); 1237 if (err) 1238 return ERR_PTR(err); 1239 1240 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 1241 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); 1242 1243 cache->vaddr = flushes | KMAP; 1244 cache->node.mm = (void *)obj; 1245 if (flushes) 1246 mb(); 1247 } 1248 1249 page = i915_gem_object_get_page(obj, pageno); 1250 if (!obj->mm.dirty) 1251 set_page_dirty(page); 1252 1253 vaddr = kmap_atomic(page); 1254 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 1255 cache->page = pageno; 1256 1257 return vaddr; 1258 } 1259 1260 static void *reloc_iomap(struct i915_vma *batch, 1261 struct i915_execbuffer *eb, 1262 unsigned long page) 1263 { 1264 struct drm_i915_gem_object *obj = batch->obj; 1265 struct reloc_cache *cache = &eb->reloc_cache; 1266 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1267 unsigned long offset; 1268 void *vaddr; 1269 1270 if (cache->vaddr) { 1271 intel_gt_flush_ggtt_writes(ggtt->vm.gt); 1272 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1273 } else { 1274 struct i915_vma *vma = ERR_PTR(-ENODEV); 1275 int err; 1276 1277 if (i915_gem_object_is_tiled(obj)) 1278 return ERR_PTR(-EINVAL); 1279 1280 if (use_cpu_reloc(cache, obj)) 1281 return NULL; 1282 1283 err = i915_gem_object_set_to_gtt_domain(obj, true); 1284 if (err) 1285 return ERR_PTR(err); 1286 1287 /* 1288 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch 1289 * VMA from the object list because we no longer pin. 1290 * 1291 * Only attempt to pin the batch buffer to ggtt if the current batch 1292 * is not inside ggtt, or the batch buffer is not misplaced. 1293 */ 1294 if (!i915_is_ggtt(batch->vm) || 1295 !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) { 1296 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0, 1297 PIN_MAPPABLE | 1298 PIN_NONBLOCK /* NOWARN */ | 1299 PIN_NOEVICT); 1300 } 1301 1302 if (vma == ERR_PTR(-EDEADLK)) 1303 return vma; 1304 1305 if (IS_ERR(vma)) { 1306 memset(&cache->node, 0, sizeof(cache->node)); 1307 mutex_lock(&ggtt->vm.mutex); 1308 err = drm_mm_insert_node_in_range 1309 (&ggtt->vm.mm, &cache->node, 1310 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1311 0, ggtt->mappable_end, 1312 DRM_MM_INSERT_LOW); 1313 mutex_unlock(&ggtt->vm.mutex); 1314 if (err) /* no inactive aperture space, use cpu reloc */ 1315 return NULL; 1316 } else { 1317 cache->node.start = i915_ggtt_offset(vma); 1318 cache->node.mm = (void *)vma; 1319 } 1320 } 1321 1322 offset = cache->node.start; 1323 if (drm_mm_node_allocated(&cache->node)) { 1324 ggtt->vm.insert_page(&ggtt->vm, 1325 i915_gem_object_get_dma_address(obj, page), 1326 offset, I915_CACHE_NONE, 0); 1327 } else { 1328 offset += page << PAGE_SHIFT; 1329 } 1330 1331 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, 1332 offset); 1333 cache->page = page; 1334 cache->vaddr = (unsigned long)vaddr; 1335 1336 return vaddr; 1337 } 1338 1339 static void *reloc_vaddr(struct i915_vma *vma, 1340 struct i915_execbuffer *eb, 1341 unsigned long page) 1342 { 1343 struct reloc_cache *cache = &eb->reloc_cache; 1344 void *vaddr; 1345 1346 if (cache->page == page) { 1347 vaddr = unmask_page(cache->vaddr); 1348 } else { 1349 vaddr = NULL; 1350 if ((cache->vaddr & KMAP) == 0) 1351 vaddr = reloc_iomap(vma, eb, page); 1352 if (!vaddr) 1353 vaddr = reloc_kmap(vma->obj, cache, page); 1354 } 1355 1356 return vaddr; 1357 } 1358 1359 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1360 { 1361 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1362 if (flushes & CLFLUSH_BEFORE) 1363 drm_clflush_virt_range(addr, sizeof(*addr)); 1364 1365 *addr = value; 1366 1367 /* 1368 * Writes to the same cacheline are serialised by the CPU 1369 * (including clflush). On the write path, we only require 1370 * that it hits memory in an orderly fashion and place 1371 * mb barriers at the start and end of the relocation phase 1372 * to ensure ordering of clflush wrt to the system. 1373 */ 1374 if (flushes & CLFLUSH_AFTER) 1375 drm_clflush_virt_range(addr, sizeof(*addr)); 1376 } else 1377 *addr = value; 1378 } 1379 1380 static u64 1381 relocate_entry(struct i915_vma *vma, 1382 const struct drm_i915_gem_relocation_entry *reloc, 1383 struct i915_execbuffer *eb, 1384 const struct i915_vma *target) 1385 { 1386 u64 target_addr = relocation_target(reloc, target); 1387 u64 offset = reloc->offset; 1388 bool wide = eb->reloc_cache.use_64bit_reloc; 1389 void *vaddr; 1390 1391 repeat: 1392 vaddr = reloc_vaddr(vma, eb, 1393 offset >> PAGE_SHIFT); 1394 if (IS_ERR(vaddr)) 1395 return PTR_ERR(vaddr); 1396 1397 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32))); 1398 clflush_write32(vaddr + offset_in_page(offset), 1399 lower_32_bits(target_addr), 1400 eb->reloc_cache.vaddr); 1401 1402 if (wide) { 1403 offset += sizeof(u32); 1404 target_addr >>= 32; 1405 wide = false; 1406 goto repeat; 1407 } 1408 1409 return target->node.start | UPDATE; 1410 } 1411 1412 static u64 1413 eb_relocate_entry(struct i915_execbuffer *eb, 1414 struct eb_vma *ev, 1415 const struct drm_i915_gem_relocation_entry *reloc) 1416 { 1417 struct drm_i915_private *i915 = eb->i915; 1418 struct eb_vma *target; 1419 int err; 1420 1421 /* we've already hold a reference to all valid objects */ 1422 target = eb_get_vma(eb, reloc->target_handle); 1423 if (unlikely(!target)) 1424 return -ENOENT; 1425 1426 /* Validate that the target is in a valid r/w GPU domain */ 1427 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1428 drm_dbg(&i915->drm, "reloc with multiple write domains: " 1429 "target %d offset %d " 1430 "read %08x write %08x", 1431 reloc->target_handle, 1432 (int) reloc->offset, 1433 reloc->read_domains, 1434 reloc->write_domain); 1435 return -EINVAL; 1436 } 1437 if (unlikely((reloc->write_domain | reloc->read_domains) 1438 & ~I915_GEM_GPU_DOMAINS)) { 1439 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " 1440 "target %d offset %d " 1441 "read %08x write %08x", 1442 reloc->target_handle, 1443 (int) reloc->offset, 1444 reloc->read_domains, 1445 reloc->write_domain); 1446 return -EINVAL; 1447 } 1448 1449 if (reloc->write_domain) { 1450 target->flags |= EXEC_OBJECT_WRITE; 1451 1452 /* 1453 * Sandybridge PPGTT errata: We need a global gtt mapping 1454 * for MI and pipe_control writes because the gpu doesn't 1455 * properly redirect them through the ppgtt for non_secure 1456 * batchbuffers. 1457 */ 1458 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1459 GRAPHICS_VER(eb->i915) == 6 && 1460 !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) { 1461 struct i915_vma *vma = target->vma; 1462 1463 reloc_cache_unmap(&eb->reloc_cache); 1464 mutex_lock(&vma->vm->mutex); 1465 err = i915_vma_bind(target->vma, 1466 target->vma->obj->cache_level, 1467 PIN_GLOBAL, NULL, NULL); 1468 mutex_unlock(&vma->vm->mutex); 1469 reloc_cache_remap(&eb->reloc_cache, ev->vma->obj); 1470 if (err) 1471 return err; 1472 } 1473 } 1474 1475 /* 1476 * If the relocation already has the right value in it, no 1477 * more work needs to be done. 1478 */ 1479 if (!DBG_FORCE_RELOC && 1480 gen8_canonical_addr(i915_vma_offset(target->vma)) == reloc->presumed_offset) 1481 return 0; 1482 1483 /* Check that the relocation address is valid... */ 1484 if (unlikely(reloc->offset > 1485 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1486 drm_dbg(&i915->drm, "Relocation beyond object bounds: " 1487 "target %d offset %d size %d.\n", 1488 reloc->target_handle, 1489 (int)reloc->offset, 1490 (int)ev->vma->size); 1491 return -EINVAL; 1492 } 1493 if (unlikely(reloc->offset & 3)) { 1494 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " 1495 "target %d offset %d.\n", 1496 reloc->target_handle, 1497 (int)reloc->offset); 1498 return -EINVAL; 1499 } 1500 1501 /* 1502 * If we write into the object, we need to force the synchronisation 1503 * barrier, either with an asynchronous clflush or if we executed the 1504 * patching using the GPU (though that should be serialised by the 1505 * timeline). To be completely sure, and since we are required to 1506 * do relocations we are already stalling, disable the user's opt 1507 * out of our synchronisation. 1508 */ 1509 ev->flags &= ~EXEC_OBJECT_ASYNC; 1510 1511 /* and update the user's relocation entry */ 1512 return relocate_entry(ev->vma, reloc, eb, target->vma); 1513 } 1514 1515 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) 1516 { 1517 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1518 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1519 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1520 struct drm_i915_gem_relocation_entry __user *urelocs = 1521 u64_to_user_ptr(entry->relocs_ptr); 1522 unsigned long remain = entry->relocation_count; 1523 1524 if (unlikely(remain > N_RELOC(ULONG_MAX))) 1525 return -EINVAL; 1526 1527 /* 1528 * We must check that the entire relocation array is safe 1529 * to read. However, if the array is not writable the user loses 1530 * the updated relocation values. 1531 */ 1532 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs)))) 1533 return -EFAULT; 1534 1535 do { 1536 struct drm_i915_gem_relocation_entry *r = stack; 1537 unsigned int count = 1538 min_t(unsigned long, remain, ARRAY_SIZE(stack)); 1539 unsigned int copied; 1540 1541 /* 1542 * This is the fast path and we cannot handle a pagefault 1543 * whilst holding the struct mutex lest the user pass in the 1544 * relocations contained within a mmaped bo. For in such a case 1545 * we, the page fault handler would call i915_gem_fault() and 1546 * we would try to acquire the struct mutex again. Obviously 1547 * this is bad and so lockdep complains vehemently. 1548 */ 1549 pagefault_disable(); 1550 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); 1551 pagefault_enable(); 1552 if (unlikely(copied)) { 1553 remain = -EFAULT; 1554 goto out; 1555 } 1556 1557 remain -= count; 1558 do { 1559 u64 offset = eb_relocate_entry(eb, ev, r); 1560 1561 if (likely(offset == 0)) { 1562 } else if ((s64)offset < 0) { 1563 remain = (int)offset; 1564 goto out; 1565 } else { 1566 /* 1567 * Note that reporting an error now 1568 * leaves everything in an inconsistent 1569 * state as we have *already* changed 1570 * the relocation value inside the 1571 * object. As we have not changed the 1572 * reloc.presumed_offset or will not 1573 * change the execobject.offset, on the 1574 * call we may not rewrite the value 1575 * inside the object, leaving it 1576 * dangling and causing a GPU hang. Unless 1577 * userspace dynamically rebuilds the 1578 * relocations on each execbuf rather than 1579 * presume a static tree. 1580 * 1581 * We did previously check if the relocations 1582 * were writable (access_ok), an error now 1583 * would be a strange race with mprotect, 1584 * having already demonstrated that we 1585 * can read from this userspace address. 1586 */ 1587 offset = gen8_canonical_addr(offset & ~UPDATE); 1588 __put_user(offset, 1589 &urelocs[r - stack].presumed_offset); 1590 } 1591 } while (r++, --count); 1592 urelocs += ARRAY_SIZE(stack); 1593 } while (remain); 1594 out: 1595 reloc_cache_reset(&eb->reloc_cache, eb); 1596 return remain; 1597 } 1598 1599 static int 1600 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev) 1601 { 1602 const struct drm_i915_gem_exec_object2 *entry = ev->exec; 1603 struct drm_i915_gem_relocation_entry *relocs = 1604 u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1605 unsigned int i; 1606 int err; 1607 1608 for (i = 0; i < entry->relocation_count; i++) { 1609 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]); 1610 1611 if ((s64)offset < 0) { 1612 err = (int)offset; 1613 goto err; 1614 } 1615 } 1616 err = 0; 1617 err: 1618 reloc_cache_reset(&eb->reloc_cache, eb); 1619 return err; 1620 } 1621 1622 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) 1623 { 1624 const char __user *addr, *end; 1625 unsigned long size; 1626 char __maybe_unused c; 1627 1628 size = entry->relocation_count; 1629 if (size == 0) 1630 return 0; 1631 1632 if (size > N_RELOC(ULONG_MAX)) 1633 return -EINVAL; 1634 1635 addr = u64_to_user_ptr(entry->relocs_ptr); 1636 size *= sizeof(struct drm_i915_gem_relocation_entry); 1637 if (!access_ok(addr, size)) 1638 return -EFAULT; 1639 1640 end = addr + size; 1641 for (; addr < end; addr += PAGE_SIZE) { 1642 int err = __get_user(c, addr); 1643 if (err) 1644 return err; 1645 } 1646 return __get_user(c, end - 1); 1647 } 1648 1649 static int eb_copy_relocations(const struct i915_execbuffer *eb) 1650 { 1651 struct drm_i915_gem_relocation_entry *relocs; 1652 const unsigned int count = eb->buffer_count; 1653 unsigned int i; 1654 int err; 1655 1656 for (i = 0; i < count; i++) { 1657 const unsigned int nreloc = eb->exec[i].relocation_count; 1658 struct drm_i915_gem_relocation_entry __user *urelocs; 1659 unsigned long size; 1660 unsigned long copied; 1661 1662 if (nreloc == 0) 1663 continue; 1664 1665 err = check_relocations(&eb->exec[i]); 1666 if (err) 1667 goto err; 1668 1669 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); 1670 size = nreloc * sizeof(*relocs); 1671 1672 relocs = kvmalloc_array(size, 1, GFP_KERNEL); 1673 if (!relocs) { 1674 err = -ENOMEM; 1675 goto err; 1676 } 1677 1678 /* copy_from_user is limited to < 4GiB */ 1679 copied = 0; 1680 do { 1681 unsigned int len = 1682 min_t(u64, BIT_ULL(31), size - copied); 1683 1684 if (__copy_from_user((char *)relocs + copied, 1685 (char __user *)urelocs + copied, 1686 len)) 1687 goto end; 1688 1689 copied += len; 1690 } while (copied < size); 1691 1692 /* 1693 * As we do not update the known relocation offsets after 1694 * relocating (due to the complexities in lock handling), 1695 * we need to mark them as invalid now so that we force the 1696 * relocation processing next time. Just in case the target 1697 * object is evicted and then rebound into its old 1698 * presumed_offset before the next execbuffer - if that 1699 * happened we would make the mistake of assuming that the 1700 * relocations were valid. 1701 */ 1702 if (!user_access_begin(urelocs, size)) 1703 goto end; 1704 1705 for (copied = 0; copied < nreloc; copied++) 1706 unsafe_put_user(-1, 1707 &urelocs[copied].presumed_offset, 1708 end_user); 1709 user_access_end(); 1710 1711 eb->exec[i].relocs_ptr = (uintptr_t)relocs; 1712 } 1713 1714 return 0; 1715 1716 end_user: 1717 user_access_end(); 1718 end: 1719 kvfree(relocs); 1720 err = -EFAULT; 1721 err: 1722 while (i--) { 1723 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); 1724 if (eb->exec[i].relocation_count) 1725 kvfree(relocs); 1726 } 1727 return err; 1728 } 1729 1730 static int eb_prefault_relocations(const struct i915_execbuffer *eb) 1731 { 1732 const unsigned int count = eb->buffer_count; 1733 unsigned int i; 1734 1735 for (i = 0; i < count; i++) { 1736 int err; 1737 1738 err = check_relocations(&eb->exec[i]); 1739 if (err) 1740 return err; 1741 } 1742 1743 return 0; 1744 } 1745 1746 static int eb_reinit_userptr(struct i915_execbuffer *eb) 1747 { 1748 const unsigned int count = eb->buffer_count; 1749 unsigned int i; 1750 int ret; 1751 1752 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED))) 1753 return 0; 1754 1755 for (i = 0; i < count; i++) { 1756 struct eb_vma *ev = &eb->vma[i]; 1757 1758 if (!i915_gem_object_is_userptr(ev->vma->obj)) 1759 continue; 1760 1761 ret = i915_gem_object_userptr_submit_init(ev->vma->obj); 1762 if (ret) 1763 return ret; 1764 1765 ev->flags |= __EXEC_OBJECT_USERPTR_INIT; 1766 } 1767 1768 return 0; 1769 } 1770 1771 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb) 1772 { 1773 bool have_copy = false; 1774 struct eb_vma *ev; 1775 int err = 0; 1776 1777 repeat: 1778 if (signal_pending(current)) { 1779 err = -ERESTARTSYS; 1780 goto out; 1781 } 1782 1783 /* We may process another execbuffer during the unlock... */ 1784 eb_release_vmas(eb, false); 1785 i915_gem_ww_ctx_fini(&eb->ww); 1786 1787 /* 1788 * We take 3 passes through the slowpatch. 1789 * 1790 * 1 - we try to just prefault all the user relocation entries and 1791 * then attempt to reuse the atomic pagefault disabled fast path again. 1792 * 1793 * 2 - we copy the user entries to a local buffer here outside of the 1794 * local and allow ourselves to wait upon any rendering before 1795 * relocations 1796 * 1797 * 3 - we already have a local copy of the relocation entries, but 1798 * were interrupted (EAGAIN) whilst waiting for the objects, try again. 1799 */ 1800 if (!err) { 1801 err = eb_prefault_relocations(eb); 1802 } else if (!have_copy) { 1803 err = eb_copy_relocations(eb); 1804 have_copy = err == 0; 1805 } else { 1806 cond_resched(); 1807 err = 0; 1808 } 1809 1810 if (!err) 1811 err = eb_reinit_userptr(eb); 1812 1813 i915_gem_ww_ctx_init(&eb->ww, true); 1814 if (err) 1815 goto out; 1816 1817 /* reacquire the objects */ 1818 repeat_validate: 1819 err = eb_pin_engine(eb, false); 1820 if (err) 1821 goto err; 1822 1823 err = eb_validate_vmas(eb); 1824 if (err) 1825 goto err; 1826 1827 GEM_BUG_ON(!eb->batches[0]); 1828 1829 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1830 if (!have_copy) { 1831 err = eb_relocate_vma(eb, ev); 1832 if (err) 1833 break; 1834 } else { 1835 err = eb_relocate_vma_slow(eb, ev); 1836 if (err) 1837 break; 1838 } 1839 } 1840 1841 if (err == -EDEADLK) 1842 goto err; 1843 1844 if (err && !have_copy) 1845 goto repeat; 1846 1847 if (err) 1848 goto err; 1849 1850 /* as last step, parse the command buffer */ 1851 err = eb_parse(eb); 1852 if (err) 1853 goto err; 1854 1855 /* 1856 * Leave the user relocations as are, this is the painfully slow path, 1857 * and we want to avoid the complication of dropping the lock whilst 1858 * having buffers reserved in the aperture and so causing spurious 1859 * ENOSPC for random operations. 1860 */ 1861 1862 err: 1863 if (err == -EDEADLK) { 1864 eb_release_vmas(eb, false); 1865 err = i915_gem_ww_ctx_backoff(&eb->ww); 1866 if (!err) 1867 goto repeat_validate; 1868 } 1869 1870 if (err == -EAGAIN) 1871 goto repeat; 1872 1873 out: 1874 if (have_copy) { 1875 const unsigned int count = eb->buffer_count; 1876 unsigned int i; 1877 1878 for (i = 0; i < count; i++) { 1879 const struct drm_i915_gem_exec_object2 *entry = 1880 &eb->exec[i]; 1881 struct drm_i915_gem_relocation_entry *relocs; 1882 1883 if (!entry->relocation_count) 1884 continue; 1885 1886 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1887 kvfree(relocs); 1888 } 1889 } 1890 1891 return err; 1892 } 1893 1894 static int eb_relocate_parse(struct i915_execbuffer *eb) 1895 { 1896 int err; 1897 bool throttle = true; 1898 1899 retry: 1900 err = eb_pin_engine(eb, throttle); 1901 if (err) { 1902 if (err != -EDEADLK) 1903 return err; 1904 1905 goto err; 1906 } 1907 1908 /* only throttle once, even if we didn't need to throttle */ 1909 throttle = false; 1910 1911 err = eb_validate_vmas(eb); 1912 if (err == -EAGAIN) 1913 goto slow; 1914 else if (err) 1915 goto err; 1916 1917 /* The objects are in their final locations, apply the relocations. */ 1918 if (eb->args->flags & __EXEC_HAS_RELOC) { 1919 struct eb_vma *ev; 1920 1921 list_for_each_entry(ev, &eb->relocs, reloc_link) { 1922 err = eb_relocate_vma(eb, ev); 1923 if (err) 1924 break; 1925 } 1926 1927 if (err == -EDEADLK) 1928 goto err; 1929 else if (err) 1930 goto slow; 1931 } 1932 1933 if (!err) 1934 err = eb_parse(eb); 1935 1936 err: 1937 if (err == -EDEADLK) { 1938 eb_release_vmas(eb, false); 1939 err = i915_gem_ww_ctx_backoff(&eb->ww); 1940 if (!err) 1941 goto retry; 1942 } 1943 1944 return err; 1945 1946 slow: 1947 err = eb_relocate_parse_slow(eb); 1948 if (err) 1949 /* 1950 * If the user expects the execobject.offset and 1951 * reloc.presumed_offset to be an exact match, 1952 * as for using NO_RELOC, then we cannot update 1953 * the execobject.offset until we have completed 1954 * relocation. 1955 */ 1956 eb->args->flags &= ~__EXEC_HAS_RELOC; 1957 1958 return err; 1959 } 1960 1961 /* 1962 * Using two helper loops for the order of which requests / batches are created 1963 * and added the to backend. Requests are created in order from the parent to 1964 * the last child. Requests are added in the reverse order, from the last child 1965 * to parent. This is done for locking reasons as the timeline lock is acquired 1966 * during request creation and released when the request is added to the 1967 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be 1968 * the ordering. 1969 */ 1970 #define for_each_batch_create_order(_eb, _i) \ 1971 for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i)) 1972 #define for_each_batch_add_order(_eb, _i) \ 1973 BUILD_BUG_ON(!typecheck(int, _i)); \ 1974 for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i)) 1975 1976 static struct i915_request * 1977 eb_find_first_request_added(struct i915_execbuffer *eb) 1978 { 1979 int i; 1980 1981 for_each_batch_add_order(eb, i) 1982 if (eb->requests[i]) 1983 return eb->requests[i]; 1984 1985 GEM_BUG_ON("Request not found"); 1986 1987 return NULL; 1988 } 1989 1990 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR) 1991 1992 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */ 1993 static int eb_capture_stage(struct i915_execbuffer *eb) 1994 { 1995 const unsigned int count = eb->buffer_count; 1996 unsigned int i = count, j; 1997 1998 while (i--) { 1999 struct eb_vma *ev = &eb->vma[i]; 2000 struct i915_vma *vma = ev->vma; 2001 unsigned int flags = ev->flags; 2002 2003 if (!(flags & EXEC_OBJECT_CAPTURE)) 2004 continue; 2005 2006 if (i915_gem_context_is_recoverable(eb->gem_context) && 2007 (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0))) 2008 return -EINVAL; 2009 2010 for_each_batch_create_order(eb, j) { 2011 struct i915_capture_list *capture; 2012 2013 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 2014 if (!capture) 2015 continue; 2016 2017 capture->next = eb->capture_lists[j]; 2018 capture->vma_res = i915_vma_resource_get(vma->resource); 2019 eb->capture_lists[j] = capture; 2020 } 2021 } 2022 2023 return 0; 2024 } 2025 2026 /* Commit once we're in the critical path */ 2027 static void eb_capture_commit(struct i915_execbuffer *eb) 2028 { 2029 unsigned int j; 2030 2031 for_each_batch_create_order(eb, j) { 2032 struct i915_request *rq = eb->requests[j]; 2033 2034 if (!rq) 2035 break; 2036 2037 rq->capture_list = eb->capture_lists[j]; 2038 eb->capture_lists[j] = NULL; 2039 } 2040 } 2041 2042 /* 2043 * Release anything that didn't get committed due to errors. 2044 * The capture_list will otherwise be freed at request retire. 2045 */ 2046 static void eb_capture_release(struct i915_execbuffer *eb) 2047 { 2048 unsigned int j; 2049 2050 for_each_batch_create_order(eb, j) { 2051 if (eb->capture_lists[j]) { 2052 i915_request_free_capture_list(eb->capture_lists[j]); 2053 eb->capture_lists[j] = NULL; 2054 } 2055 } 2056 } 2057 2058 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2059 { 2060 memset(eb->capture_lists, 0, sizeof(eb->capture_lists)); 2061 } 2062 2063 #else 2064 2065 static int eb_capture_stage(struct i915_execbuffer *eb) 2066 { 2067 return 0; 2068 } 2069 2070 static void eb_capture_commit(struct i915_execbuffer *eb) 2071 { 2072 } 2073 2074 static void eb_capture_release(struct i915_execbuffer *eb) 2075 { 2076 } 2077 2078 static void eb_capture_list_clear(struct i915_execbuffer *eb) 2079 { 2080 } 2081 2082 #endif 2083 2084 static int eb_move_to_gpu(struct i915_execbuffer *eb) 2085 { 2086 const unsigned int count = eb->buffer_count; 2087 unsigned int i = count; 2088 int err = 0, j; 2089 2090 while (i--) { 2091 struct eb_vma *ev = &eb->vma[i]; 2092 struct i915_vma *vma = ev->vma; 2093 unsigned int flags = ev->flags; 2094 struct drm_i915_gem_object *obj = vma->obj; 2095 2096 assert_vma_held(vma); 2097 2098 /* 2099 * If the GPU is not _reading_ through the CPU cache, we need 2100 * to make sure that any writes (both previous GPU writes from 2101 * before a change in snooping levels and normal CPU writes) 2102 * caught in that cache are flushed to main memory. 2103 * 2104 * We want to say 2105 * obj->cache_dirty && 2106 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) 2107 * but gcc's optimiser doesn't handle that as well and emits 2108 * two jumps instead of one. Maybe one day... 2109 * 2110 * FIXME: There is also sync flushing in set_pages(), which 2111 * serves a different purpose(some of the time at least). 2112 * 2113 * We should consider: 2114 * 2115 * 1. Rip out the async flush code. 2116 * 2117 * 2. Or make the sync flushing use the async clflush path 2118 * using mandatory fences underneath. Currently the below 2119 * async flush happens after we bind the object. 2120 */ 2121 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { 2122 if (i915_gem_clflush_object(obj, 0)) 2123 flags &= ~EXEC_OBJECT_ASYNC; 2124 } 2125 2126 /* We only need to await on the first request */ 2127 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { 2128 err = i915_request_await_object 2129 (eb_find_first_request_added(eb), obj, 2130 flags & EXEC_OBJECT_WRITE); 2131 } 2132 2133 for_each_batch_add_order(eb, j) { 2134 if (err) 2135 break; 2136 if (!eb->requests[j]) 2137 continue; 2138 2139 err = _i915_vma_move_to_active(vma, eb->requests[j], 2140 j ? NULL : 2141 eb->composite_fence ? 2142 eb->composite_fence : 2143 &eb->requests[j]->fence, 2144 flags | __EXEC_OBJECT_NO_RESERVE | 2145 __EXEC_OBJECT_NO_REQUEST_AWAIT); 2146 } 2147 } 2148 2149 #ifdef CONFIG_MMU_NOTIFIER 2150 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) { 2151 read_lock(&eb->i915->mm.notifier_lock); 2152 2153 /* 2154 * count is always at least 1, otherwise __EXEC_USERPTR_USED 2155 * could not have been set 2156 */ 2157 for (i = 0; i < count; i++) { 2158 struct eb_vma *ev = &eb->vma[i]; 2159 struct drm_i915_gem_object *obj = ev->vma->obj; 2160 2161 if (!i915_gem_object_is_userptr(obj)) 2162 continue; 2163 2164 err = i915_gem_object_userptr_submit_done(obj); 2165 if (err) 2166 break; 2167 } 2168 2169 read_unlock(&eb->i915->mm.notifier_lock); 2170 } 2171 #endif 2172 2173 if (unlikely(err)) 2174 goto err_skip; 2175 2176 /* Unconditionally flush any chipset caches (for streaming writes). */ 2177 intel_gt_chipset_flush(eb->gt); 2178 eb_capture_commit(eb); 2179 2180 return 0; 2181 2182 err_skip: 2183 for_each_batch_create_order(eb, j) { 2184 if (!eb->requests[j]) 2185 break; 2186 2187 i915_request_set_error_once(eb->requests[j], err); 2188 } 2189 return err; 2190 } 2191 2192 static int i915_gem_check_execbuffer(struct drm_i915_private *i915, 2193 struct drm_i915_gem_execbuffer2 *exec) 2194 { 2195 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 2196 return -EINVAL; 2197 2198 /* Kernel clipping was a DRI1 misfeature */ 2199 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY | 2200 I915_EXEC_USE_EXTENSIONS))) { 2201 if (exec->num_cliprects || exec->cliprects_ptr) 2202 return -EINVAL; 2203 } 2204 2205 if (exec->DR4 == 0xffffffff) { 2206 drm_dbg(&i915->drm, "UXA submitting garbage DR4, fixing up\n"); 2207 exec->DR4 = 0; 2208 } 2209 if (exec->DR1 || exec->DR4) 2210 return -EINVAL; 2211 2212 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 2213 return -EINVAL; 2214 2215 return 0; 2216 } 2217 2218 static int i915_reset_gen7_sol_offsets(struct i915_request *rq) 2219 { 2220 u32 *cs; 2221 int i; 2222 2223 if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) { 2224 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n"); 2225 return -EINVAL; 2226 } 2227 2228 cs = intel_ring_begin(rq, 4 * 2 + 2); 2229 if (IS_ERR(cs)) 2230 return PTR_ERR(cs); 2231 2232 *cs++ = MI_LOAD_REGISTER_IMM(4); 2233 for (i = 0; i < 4; i++) { 2234 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 2235 *cs++ = 0; 2236 } 2237 *cs++ = MI_NOOP; 2238 intel_ring_advance(rq, cs); 2239 2240 return 0; 2241 } 2242 2243 static struct i915_vma * 2244 shadow_batch_pin(struct i915_execbuffer *eb, 2245 struct drm_i915_gem_object *obj, 2246 struct i915_address_space *vm, 2247 unsigned int flags) 2248 { 2249 struct i915_vma *vma; 2250 int err; 2251 2252 vma = i915_vma_instance(obj, vm, NULL); 2253 if (IS_ERR(vma)) 2254 return vma; 2255 2256 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE); 2257 if (err) 2258 return ERR_PTR(err); 2259 2260 return vma; 2261 } 2262 2263 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma) 2264 { 2265 /* 2266 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2267 * batch" bit. Hence we need to pin secure batches into the global gtt. 2268 * hsw should have this fixed, but bdw mucks it up again. */ 2269 if (eb->batch_flags & I915_DISPATCH_SECURE) 2270 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE); 2271 2272 return NULL; 2273 } 2274 2275 static int eb_parse(struct i915_execbuffer *eb) 2276 { 2277 struct drm_i915_private *i915 = eb->i915; 2278 struct intel_gt_buffer_pool_node *pool = eb->batch_pool; 2279 struct i915_vma *shadow, *trampoline, *batch; 2280 unsigned long len; 2281 int err; 2282 2283 if (!eb_use_cmdparser(eb)) { 2284 batch = eb_dispatch_secure(eb, eb->batches[0]->vma); 2285 if (IS_ERR(batch)) 2286 return PTR_ERR(batch); 2287 2288 goto secure_batch; 2289 } 2290 2291 if (intel_context_is_parallel(eb->context)) 2292 return -EINVAL; 2293 2294 len = eb->batch_len[0]; 2295 if (!CMDPARSER_USES_GGTT(eb->i915)) { 2296 /* 2297 * ppGTT backed shadow buffers must be mapped RO, to prevent 2298 * post-scan tampering 2299 */ 2300 if (!eb->context->vm->has_read_only) { 2301 drm_dbg(&i915->drm, 2302 "Cannot prevent post-scan tampering without RO capable vm\n"); 2303 return -EINVAL; 2304 } 2305 } else { 2306 len += I915_CMD_PARSER_TRAMPOLINE_SIZE; 2307 } 2308 if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */ 2309 return -EINVAL; 2310 2311 if (!pool) { 2312 pool = intel_gt_get_buffer_pool(eb->gt, len, 2313 I915_MAP_WB); 2314 if (IS_ERR(pool)) 2315 return PTR_ERR(pool); 2316 eb->batch_pool = pool; 2317 } 2318 2319 err = i915_gem_object_lock(pool->obj, &eb->ww); 2320 if (err) 2321 return err; 2322 2323 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER); 2324 if (IS_ERR(shadow)) 2325 return PTR_ERR(shadow); 2326 2327 intel_gt_buffer_pool_mark_used(pool); 2328 i915_gem_object_set_readonly(shadow->obj); 2329 shadow->private = pool; 2330 2331 trampoline = NULL; 2332 if (CMDPARSER_USES_GGTT(eb->i915)) { 2333 trampoline = shadow; 2334 2335 shadow = shadow_batch_pin(eb, pool->obj, 2336 &eb->gt->ggtt->vm, 2337 PIN_GLOBAL); 2338 if (IS_ERR(shadow)) 2339 return PTR_ERR(shadow); 2340 2341 shadow->private = pool; 2342 2343 eb->batch_flags |= I915_DISPATCH_SECURE; 2344 } 2345 2346 batch = eb_dispatch_secure(eb, shadow); 2347 if (IS_ERR(batch)) 2348 return PTR_ERR(batch); 2349 2350 err = dma_resv_reserve_fences(shadow->obj->base.resv, 1); 2351 if (err) 2352 return err; 2353 2354 err = intel_engine_cmd_parser(eb->context->engine, 2355 eb->batches[0]->vma, 2356 eb->batch_start_offset, 2357 eb->batch_len[0], 2358 shadow, trampoline); 2359 if (err) 2360 return err; 2361 2362 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2363 eb->batches[0]->vma = i915_vma_get(shadow); 2364 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2365 2366 eb->trampoline = trampoline; 2367 eb->batch_start_offset = 0; 2368 2369 secure_batch: 2370 if (batch) { 2371 if (intel_context_is_parallel(eb->context)) 2372 return -EINVAL; 2373 2374 eb->batches[0] = &eb->vma[eb->buffer_count++]; 2375 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; 2376 eb->batches[0]->vma = i915_vma_get(batch); 2377 } 2378 return 0; 2379 } 2380 2381 static int eb_request_submit(struct i915_execbuffer *eb, 2382 struct i915_request *rq, 2383 struct i915_vma *batch, 2384 u64 batch_len) 2385 { 2386 int err; 2387 2388 if (intel_context_nopreempt(rq->context)) 2389 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags); 2390 2391 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 2392 err = i915_reset_gen7_sol_offsets(rq); 2393 if (err) 2394 return err; 2395 } 2396 2397 /* 2398 * After we completed waiting for other engines (using HW semaphores) 2399 * then we can signal that this request/batch is ready to run. This 2400 * allows us to determine if the batch is still waiting on the GPU 2401 * or actually running by checking the breadcrumb. 2402 */ 2403 if (rq->context->engine->emit_init_breadcrumb) { 2404 err = rq->context->engine->emit_init_breadcrumb(rq); 2405 if (err) 2406 return err; 2407 } 2408 2409 err = rq->context->engine->emit_bb_start(rq, 2410 i915_vma_offset(batch) + 2411 eb->batch_start_offset, 2412 batch_len, 2413 eb->batch_flags); 2414 if (err) 2415 return err; 2416 2417 if (eb->trampoline) { 2418 GEM_BUG_ON(intel_context_is_parallel(rq->context)); 2419 GEM_BUG_ON(eb->batch_start_offset); 2420 err = rq->context->engine->emit_bb_start(rq, 2421 i915_vma_offset(eb->trampoline) + 2422 batch_len, 0, 0); 2423 if (err) 2424 return err; 2425 } 2426 2427 return 0; 2428 } 2429 2430 static int eb_submit(struct i915_execbuffer *eb) 2431 { 2432 unsigned int i; 2433 int err; 2434 2435 err = eb_move_to_gpu(eb); 2436 2437 for_each_batch_create_order(eb, i) { 2438 if (!eb->requests[i]) 2439 break; 2440 2441 trace_i915_request_queue(eb->requests[i], eb->batch_flags); 2442 if (!err) 2443 err = eb_request_submit(eb, eb->requests[i], 2444 eb->batches[i]->vma, 2445 eb->batch_len[i]); 2446 } 2447 2448 return err; 2449 } 2450 2451 static int num_vcs_engines(struct drm_i915_private *i915) 2452 { 2453 return hweight_long(VDBOX_MASK(to_gt(i915))); 2454 } 2455 2456 /* 2457 * Find one BSD ring to dispatch the corresponding BSD command. 2458 * The engine index is returned. 2459 */ 2460 static unsigned int 2461 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, 2462 struct drm_file *file) 2463 { 2464 struct drm_i915_file_private *file_priv = file->driver_priv; 2465 2466 /* Check whether the file_priv has already selected one ring. */ 2467 if ((int)file_priv->bsd_engine < 0) 2468 file_priv->bsd_engine = 2469 prandom_u32_max(num_vcs_engines(dev_priv)); 2470 2471 return file_priv->bsd_engine; 2472 } 2473 2474 static const enum intel_engine_id user_ring_map[] = { 2475 [I915_EXEC_DEFAULT] = RCS0, 2476 [I915_EXEC_RENDER] = RCS0, 2477 [I915_EXEC_BLT] = BCS0, 2478 [I915_EXEC_BSD] = VCS0, 2479 [I915_EXEC_VEBOX] = VECS0 2480 }; 2481 2482 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce) 2483 { 2484 struct intel_ring *ring = ce->ring; 2485 struct intel_timeline *tl = ce->timeline; 2486 struct i915_request *rq; 2487 2488 /* 2489 * Completely unscientific finger-in-the-air estimates for suitable 2490 * maximum user request size (to avoid blocking) and then backoff. 2491 */ 2492 if (intel_ring_update_space(ring) >= PAGE_SIZE) 2493 return NULL; 2494 2495 /* 2496 * Find a request that after waiting upon, there will be at least half 2497 * the ring available. The hysteresis allows us to compete for the 2498 * shared ring and should mean that we sleep less often prior to 2499 * claiming our resources, but not so long that the ring completely 2500 * drains before we can submit our next request. 2501 */ 2502 list_for_each_entry(rq, &tl->requests, link) { 2503 if (rq->ring != ring) 2504 continue; 2505 2506 if (__intel_ring_space(rq->postfix, 2507 ring->emit, ring->size) > ring->size / 2) 2508 break; 2509 } 2510 if (&rq->link == &tl->requests) 2511 return NULL; /* weird, we will check again later for real */ 2512 2513 return i915_request_get(rq); 2514 } 2515 2516 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce, 2517 bool throttle) 2518 { 2519 struct intel_timeline *tl; 2520 struct i915_request *rq = NULL; 2521 2522 /* 2523 * Take a local wakeref for preparing to dispatch the execbuf as 2524 * we expect to access the hardware fairly frequently in the 2525 * process, and require the engine to be kept awake between accesses. 2526 * Upon dispatch, we acquire another prolonged wakeref that we hold 2527 * until the timeline is idle, which in turn releases the wakeref 2528 * taken on the engine, and the parent device. 2529 */ 2530 tl = intel_context_timeline_lock(ce); 2531 if (IS_ERR(tl)) 2532 return PTR_ERR(tl); 2533 2534 intel_context_enter(ce); 2535 if (throttle) 2536 rq = eb_throttle(eb, ce); 2537 intel_context_timeline_unlock(tl); 2538 2539 if (rq) { 2540 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; 2541 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT; 2542 2543 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, 2544 timeout) < 0) { 2545 i915_request_put(rq); 2546 2547 /* 2548 * Error path, cannot use intel_context_timeline_lock as 2549 * that is user interruptable and this clean up step 2550 * must be done. 2551 */ 2552 mutex_lock(&ce->timeline->mutex); 2553 intel_context_exit(ce); 2554 mutex_unlock(&ce->timeline->mutex); 2555 2556 if (nonblock) 2557 return -EWOULDBLOCK; 2558 else 2559 return -EINTR; 2560 } 2561 i915_request_put(rq); 2562 } 2563 2564 return 0; 2565 } 2566 2567 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle) 2568 { 2569 struct intel_context *ce = eb->context, *child; 2570 int err; 2571 int i = 0, j = 0; 2572 2573 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED); 2574 2575 if (unlikely(intel_context_is_banned(ce))) 2576 return -EIO; 2577 2578 /* 2579 * Pinning the contexts may generate requests in order to acquire 2580 * GGTT space, so do this first before we reserve a seqno for 2581 * ourselves. 2582 */ 2583 err = intel_context_pin_ww(ce, &eb->ww); 2584 if (err) 2585 return err; 2586 for_each_child(ce, child) { 2587 err = intel_context_pin_ww(child, &eb->ww); 2588 GEM_BUG_ON(err); /* perma-pinned should incr a counter */ 2589 } 2590 2591 for_each_child(ce, child) { 2592 err = eb_pin_timeline(eb, child, throttle); 2593 if (err) 2594 goto unwind; 2595 ++i; 2596 } 2597 err = eb_pin_timeline(eb, ce, throttle); 2598 if (err) 2599 goto unwind; 2600 2601 eb->args->flags |= __EXEC_ENGINE_PINNED; 2602 return 0; 2603 2604 unwind: 2605 for_each_child(ce, child) { 2606 if (j++ < i) { 2607 mutex_lock(&child->timeline->mutex); 2608 intel_context_exit(child); 2609 mutex_unlock(&child->timeline->mutex); 2610 } 2611 } 2612 for_each_child(ce, child) 2613 intel_context_unpin(child); 2614 intel_context_unpin(ce); 2615 return err; 2616 } 2617 2618 static void eb_unpin_engine(struct i915_execbuffer *eb) 2619 { 2620 struct intel_context *ce = eb->context, *child; 2621 2622 if (!(eb->args->flags & __EXEC_ENGINE_PINNED)) 2623 return; 2624 2625 eb->args->flags &= ~__EXEC_ENGINE_PINNED; 2626 2627 for_each_child(ce, child) { 2628 mutex_lock(&child->timeline->mutex); 2629 intel_context_exit(child); 2630 mutex_unlock(&child->timeline->mutex); 2631 2632 intel_context_unpin(child); 2633 } 2634 2635 mutex_lock(&ce->timeline->mutex); 2636 intel_context_exit(ce); 2637 mutex_unlock(&ce->timeline->mutex); 2638 2639 intel_context_unpin(ce); 2640 } 2641 2642 static unsigned int 2643 eb_select_legacy_ring(struct i915_execbuffer *eb) 2644 { 2645 struct drm_i915_private *i915 = eb->i915; 2646 struct drm_i915_gem_execbuffer2 *args = eb->args; 2647 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2648 2649 if (user_ring_id != I915_EXEC_BSD && 2650 (args->flags & I915_EXEC_BSD_MASK)) { 2651 drm_dbg(&i915->drm, 2652 "execbuf with non bsd ring but with invalid " 2653 "bsd dispatch flags: %d\n", (int)(args->flags)); 2654 return -1; 2655 } 2656 2657 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) { 2658 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2659 2660 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2661 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file); 2662 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2663 bsd_idx <= I915_EXEC_BSD_RING2) { 2664 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2665 bsd_idx--; 2666 } else { 2667 drm_dbg(&i915->drm, 2668 "execbuf with unknown bsd ring: %u\n", 2669 bsd_idx); 2670 return -1; 2671 } 2672 2673 return _VCS(bsd_idx); 2674 } 2675 2676 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { 2677 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", 2678 user_ring_id); 2679 return -1; 2680 } 2681 2682 return user_ring_map[user_ring_id]; 2683 } 2684 2685 static int 2686 eb_select_engine(struct i915_execbuffer *eb) 2687 { 2688 struct intel_context *ce, *child; 2689 unsigned int idx; 2690 int err; 2691 2692 if (i915_gem_context_user_engines(eb->gem_context)) 2693 idx = eb->args->flags & I915_EXEC_RING_MASK; 2694 else 2695 idx = eb_select_legacy_ring(eb); 2696 2697 ce = i915_gem_context_get_engine(eb->gem_context, idx); 2698 if (IS_ERR(ce)) 2699 return PTR_ERR(ce); 2700 2701 if (intel_context_is_parallel(ce)) { 2702 if (eb->buffer_count < ce->parallel.number_children + 1) { 2703 intel_context_put(ce); 2704 return -EINVAL; 2705 } 2706 if (eb->batch_start_offset || eb->args->batch_len) { 2707 intel_context_put(ce); 2708 return -EINVAL; 2709 } 2710 } 2711 eb->num_batches = ce->parallel.number_children + 1; 2712 2713 for_each_child(ce, child) 2714 intel_context_get(child); 2715 intel_gt_pm_get(ce->engine->gt); 2716 2717 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) { 2718 err = intel_context_alloc_state(ce); 2719 if (err) 2720 goto err; 2721 } 2722 for_each_child(ce, child) { 2723 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) { 2724 err = intel_context_alloc_state(child); 2725 if (err) 2726 goto err; 2727 } 2728 } 2729 2730 /* 2731 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 2732 * EIO if the GPU is already wedged. 2733 */ 2734 err = intel_gt_terminally_wedged(ce->engine->gt); 2735 if (err) 2736 goto err; 2737 2738 if (!i915_vm_tryget(ce->vm)) { 2739 err = -ENOENT; 2740 goto err; 2741 } 2742 2743 eb->context = ce; 2744 eb->gt = ce->engine->gt; 2745 2746 /* 2747 * Make sure engine pool stays alive even if we call intel_context_put 2748 * during ww handling. The pool is destroyed when last pm reference 2749 * is dropped, which breaks our -EDEADLK handling. 2750 */ 2751 return err; 2752 2753 err: 2754 intel_gt_pm_put(ce->engine->gt); 2755 for_each_child(ce, child) 2756 intel_context_put(child); 2757 intel_context_put(ce); 2758 return err; 2759 } 2760 2761 static void 2762 eb_put_engine(struct i915_execbuffer *eb) 2763 { 2764 struct intel_context *child; 2765 2766 i915_vm_put(eb->context->vm); 2767 intel_gt_pm_put(eb->gt); 2768 for_each_child(eb->context, child) 2769 intel_context_put(child); 2770 intel_context_put(eb->context); 2771 } 2772 2773 static void 2774 __free_fence_array(struct eb_fence *fences, unsigned int n) 2775 { 2776 while (n--) { 2777 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2)); 2778 dma_fence_put(fences[n].dma_fence); 2779 dma_fence_chain_free(fences[n].chain_fence); 2780 } 2781 kvfree(fences); 2782 } 2783 2784 static int 2785 add_timeline_fence_array(struct i915_execbuffer *eb, 2786 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences) 2787 { 2788 struct drm_i915_gem_exec_fence __user *user_fences; 2789 u64 __user *user_values; 2790 struct eb_fence *f; 2791 u64 nfences; 2792 int err = 0; 2793 2794 nfences = timeline_fences->fence_count; 2795 if (!nfences) 2796 return 0; 2797 2798 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2799 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2800 if (nfences > min_t(unsigned long, 2801 ULONG_MAX / sizeof(*user_fences), 2802 SIZE_MAX / sizeof(*f)) - eb->num_fences) 2803 return -EINVAL; 2804 2805 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr); 2806 if (!access_ok(user_fences, nfences * sizeof(*user_fences))) 2807 return -EFAULT; 2808 2809 user_values = u64_to_user_ptr(timeline_fences->values_ptr); 2810 if (!access_ok(user_values, nfences * sizeof(*user_values))) 2811 return -EFAULT; 2812 2813 f = krealloc(eb->fences, 2814 (eb->num_fences + nfences) * sizeof(*f), 2815 __GFP_NOWARN | GFP_KERNEL); 2816 if (!f) 2817 return -ENOMEM; 2818 2819 eb->fences = f; 2820 f += eb->num_fences; 2821 2822 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2823 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2824 2825 while (nfences--) { 2826 struct drm_i915_gem_exec_fence user_fence; 2827 struct drm_syncobj *syncobj; 2828 struct dma_fence *fence = NULL; 2829 u64 point; 2830 2831 if (__copy_from_user(&user_fence, 2832 user_fences++, 2833 sizeof(user_fence))) 2834 return -EFAULT; 2835 2836 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2837 return -EINVAL; 2838 2839 if (__get_user(point, user_values++)) 2840 return -EFAULT; 2841 2842 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2843 if (!syncobj) { 2844 drm_dbg(&eb->i915->drm, 2845 "Invalid syncobj handle provided\n"); 2846 return -ENOENT; 2847 } 2848 2849 fence = drm_syncobj_fence_get(syncobj); 2850 2851 if (!fence && user_fence.flags && 2852 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2853 drm_dbg(&eb->i915->drm, 2854 "Syncobj handle has no fence\n"); 2855 drm_syncobj_put(syncobj); 2856 return -EINVAL; 2857 } 2858 2859 if (fence) 2860 err = dma_fence_chain_find_seqno(&fence, point); 2861 2862 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2863 drm_dbg(&eb->i915->drm, 2864 "Syncobj handle missing requested point %llu\n", 2865 point); 2866 dma_fence_put(fence); 2867 drm_syncobj_put(syncobj); 2868 return err; 2869 } 2870 2871 /* 2872 * A point might have been signaled already and 2873 * garbage collected from the timeline. In this case 2874 * just ignore the point and carry on. 2875 */ 2876 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { 2877 drm_syncobj_put(syncobj); 2878 continue; 2879 } 2880 2881 /* 2882 * For timeline syncobjs we need to preallocate chains for 2883 * later signaling. 2884 */ 2885 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) { 2886 /* 2887 * Waiting and signaling the same point (when point != 2888 * 0) would break the timeline. 2889 */ 2890 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2891 drm_dbg(&eb->i915->drm, 2892 "Trying to wait & signal the same timeline point.\n"); 2893 dma_fence_put(fence); 2894 drm_syncobj_put(syncobj); 2895 return -EINVAL; 2896 } 2897 2898 f->chain_fence = dma_fence_chain_alloc(); 2899 if (!f->chain_fence) { 2900 drm_syncobj_put(syncobj); 2901 dma_fence_put(fence); 2902 return -ENOMEM; 2903 } 2904 } else { 2905 f->chain_fence = NULL; 2906 } 2907 2908 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2909 f->dma_fence = fence; 2910 f->value = point; 2911 f++; 2912 eb->num_fences++; 2913 } 2914 2915 return 0; 2916 } 2917 2918 static int add_fence_array(struct i915_execbuffer *eb) 2919 { 2920 struct drm_i915_gem_execbuffer2 *args = eb->args; 2921 struct drm_i915_gem_exec_fence __user *user; 2922 unsigned long num_fences = args->num_cliprects; 2923 struct eb_fence *f; 2924 2925 if (!(args->flags & I915_EXEC_FENCE_ARRAY)) 2926 return 0; 2927 2928 if (!num_fences) 2929 return 0; 2930 2931 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2932 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2933 if (num_fences > min_t(unsigned long, 2934 ULONG_MAX / sizeof(*user), 2935 SIZE_MAX / sizeof(*f) - eb->num_fences)) 2936 return -EINVAL; 2937 2938 user = u64_to_user_ptr(args->cliprects_ptr); 2939 if (!access_ok(user, num_fences * sizeof(*user))) 2940 return -EFAULT; 2941 2942 f = krealloc(eb->fences, 2943 (eb->num_fences + num_fences) * sizeof(*f), 2944 __GFP_NOWARN | GFP_KERNEL); 2945 if (!f) 2946 return -ENOMEM; 2947 2948 eb->fences = f; 2949 f += eb->num_fences; 2950 while (num_fences--) { 2951 struct drm_i915_gem_exec_fence user_fence; 2952 struct drm_syncobj *syncobj; 2953 struct dma_fence *fence = NULL; 2954 2955 if (__copy_from_user(&user_fence, user++, sizeof(user_fence))) 2956 return -EFAULT; 2957 2958 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) 2959 return -EINVAL; 2960 2961 syncobj = drm_syncobj_find(eb->file, user_fence.handle); 2962 if (!syncobj) { 2963 drm_dbg(&eb->i915->drm, 2964 "Invalid syncobj handle provided\n"); 2965 return -ENOENT; 2966 } 2967 2968 if (user_fence.flags & I915_EXEC_FENCE_WAIT) { 2969 fence = drm_syncobj_fence_get(syncobj); 2970 if (!fence) { 2971 drm_dbg(&eb->i915->drm, 2972 "Syncobj handle has no fence\n"); 2973 drm_syncobj_put(syncobj); 2974 return -EINVAL; 2975 } 2976 } 2977 2978 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2979 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2980 2981 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); 2982 f->dma_fence = fence; 2983 f->value = 0; 2984 f->chain_fence = NULL; 2985 f++; 2986 eb->num_fences++; 2987 } 2988 2989 return 0; 2990 } 2991 2992 static void put_fence_array(struct eb_fence *fences, int num_fences) 2993 { 2994 if (fences) 2995 __free_fence_array(fences, num_fences); 2996 } 2997 2998 static int 2999 await_fence_array(struct i915_execbuffer *eb, 3000 struct i915_request *rq) 3001 { 3002 unsigned int n; 3003 int err; 3004 3005 for (n = 0; n < eb->num_fences; n++) { 3006 if (!eb->fences[n].dma_fence) 3007 continue; 3008 3009 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence); 3010 if (err < 0) 3011 return err; 3012 } 3013 3014 return 0; 3015 } 3016 3017 static void signal_fence_array(const struct i915_execbuffer *eb, 3018 struct dma_fence * const fence) 3019 { 3020 unsigned int n; 3021 3022 for (n = 0; n < eb->num_fences; n++) { 3023 struct drm_syncobj *syncobj; 3024 unsigned int flags; 3025 3026 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); 3027 if (!(flags & I915_EXEC_FENCE_SIGNAL)) 3028 continue; 3029 3030 if (eb->fences[n].chain_fence) { 3031 drm_syncobj_add_point(syncobj, 3032 eb->fences[n].chain_fence, 3033 fence, 3034 eb->fences[n].value); 3035 /* 3036 * The chain's ownership is transferred to the 3037 * timeline. 3038 */ 3039 eb->fences[n].chain_fence = NULL; 3040 } else { 3041 drm_syncobj_replace_fence(syncobj, fence); 3042 } 3043 } 3044 } 3045 3046 static int 3047 parse_timeline_fences(struct i915_user_extension __user *ext, void *data) 3048 { 3049 struct i915_execbuffer *eb = data; 3050 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences; 3051 3052 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences))) 3053 return -EFAULT; 3054 3055 return add_timeline_fence_array(eb, &timeline_fences); 3056 } 3057 3058 static void retire_requests(struct intel_timeline *tl, struct i915_request *end) 3059 { 3060 struct i915_request *rq, *rn; 3061 3062 list_for_each_entry_safe(rq, rn, &tl->requests, link) 3063 if (rq == end || !i915_request_retire(rq)) 3064 break; 3065 } 3066 3067 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq, 3068 int err, bool last_parallel) 3069 { 3070 struct intel_timeline * const tl = i915_request_timeline(rq); 3071 struct i915_sched_attr attr = {}; 3072 struct i915_request *prev; 3073 3074 lockdep_assert_held(&tl->mutex); 3075 lockdep_unpin_lock(&tl->mutex, rq->cookie); 3076 3077 trace_i915_request_add(rq); 3078 3079 prev = __i915_request_commit(rq); 3080 3081 /* Check that the context wasn't destroyed before submission */ 3082 if (likely(!intel_context_is_closed(eb->context))) { 3083 attr = eb->gem_context->sched; 3084 } else { 3085 /* Serialise with context_close via the add_to_timeline */ 3086 i915_request_set_error_once(rq, -ENOENT); 3087 __i915_request_skip(rq); 3088 err = -ENOENT; /* override any transient errors */ 3089 } 3090 3091 if (intel_context_is_parallel(eb->context)) { 3092 if (err) { 3093 __i915_request_skip(rq); 3094 set_bit(I915_FENCE_FLAG_SKIP_PARALLEL, 3095 &rq->fence.flags); 3096 } 3097 if (last_parallel) 3098 set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, 3099 &rq->fence.flags); 3100 } 3101 3102 __i915_request_queue(rq, &attr); 3103 3104 /* Try to clean up the client's timeline after submitting the request */ 3105 if (prev) 3106 retire_requests(tl, prev); 3107 3108 mutex_unlock(&tl->mutex); 3109 3110 return err; 3111 } 3112 3113 static int eb_requests_add(struct i915_execbuffer *eb, int err) 3114 { 3115 int i; 3116 3117 /* 3118 * We iterate in reverse order of creation to release timeline mutexes in 3119 * same order. 3120 */ 3121 for_each_batch_add_order(eb, i) { 3122 struct i915_request *rq = eb->requests[i]; 3123 3124 if (!rq) 3125 continue; 3126 err |= eb_request_add(eb, rq, err, i == 0); 3127 } 3128 3129 return err; 3130 } 3131 3132 static const i915_user_extension_fn execbuf_extensions[] = { 3133 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences, 3134 }; 3135 3136 static int 3137 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args, 3138 struct i915_execbuffer *eb) 3139 { 3140 if (!(args->flags & I915_EXEC_USE_EXTENSIONS)) 3141 return 0; 3142 3143 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot 3144 * have another flag also using it at the same time. 3145 */ 3146 if (eb->args->flags & I915_EXEC_FENCE_ARRAY) 3147 return -EINVAL; 3148 3149 if (args->num_cliprects != 0) 3150 return -EINVAL; 3151 3152 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr), 3153 execbuf_extensions, 3154 ARRAY_SIZE(execbuf_extensions), 3155 eb); 3156 } 3157 3158 static void eb_requests_get(struct i915_execbuffer *eb) 3159 { 3160 unsigned int i; 3161 3162 for_each_batch_create_order(eb, i) { 3163 if (!eb->requests[i]) 3164 break; 3165 3166 i915_request_get(eb->requests[i]); 3167 } 3168 } 3169 3170 static void eb_requests_put(struct i915_execbuffer *eb) 3171 { 3172 unsigned int i; 3173 3174 for_each_batch_create_order(eb, i) { 3175 if (!eb->requests[i]) 3176 break; 3177 3178 i915_request_put(eb->requests[i]); 3179 } 3180 } 3181 3182 static struct sync_file * 3183 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd) 3184 { 3185 struct sync_file *out_fence = NULL; 3186 struct dma_fence_array *fence_array; 3187 struct dma_fence **fences; 3188 unsigned int i; 3189 3190 GEM_BUG_ON(!intel_context_is_parent(eb->context)); 3191 3192 fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL); 3193 if (!fences) 3194 return ERR_PTR(-ENOMEM); 3195 3196 for_each_batch_create_order(eb, i) { 3197 fences[i] = &eb->requests[i]->fence; 3198 __set_bit(I915_FENCE_FLAG_COMPOSITE, 3199 &eb->requests[i]->fence.flags); 3200 } 3201 3202 fence_array = dma_fence_array_create(eb->num_batches, 3203 fences, 3204 eb->context->parallel.fence_context, 3205 eb->context->parallel.seqno++, 3206 false); 3207 if (!fence_array) { 3208 kfree(fences); 3209 return ERR_PTR(-ENOMEM); 3210 } 3211 3212 /* Move ownership to the dma_fence_array created above */ 3213 for_each_batch_create_order(eb, i) 3214 dma_fence_get(fences[i]); 3215 3216 if (out_fence_fd != -1) { 3217 out_fence = sync_file_create(&fence_array->base); 3218 /* sync_file now owns fence_arry, drop creation ref */ 3219 dma_fence_put(&fence_array->base); 3220 if (!out_fence) 3221 return ERR_PTR(-ENOMEM); 3222 } 3223 3224 eb->composite_fence = &fence_array->base; 3225 3226 return out_fence; 3227 } 3228 3229 static struct sync_file * 3230 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq, 3231 struct dma_fence *in_fence, int out_fence_fd) 3232 { 3233 struct sync_file *out_fence = NULL; 3234 int err; 3235 3236 if (unlikely(eb->gem_context->syncobj)) { 3237 struct dma_fence *fence; 3238 3239 fence = drm_syncobj_fence_get(eb->gem_context->syncobj); 3240 err = i915_request_await_dma_fence(rq, fence); 3241 dma_fence_put(fence); 3242 if (err) 3243 return ERR_PTR(err); 3244 } 3245 3246 if (in_fence) { 3247 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT) 3248 err = i915_request_await_execution(rq, in_fence); 3249 else 3250 err = i915_request_await_dma_fence(rq, in_fence); 3251 if (err < 0) 3252 return ERR_PTR(err); 3253 } 3254 3255 if (eb->fences) { 3256 err = await_fence_array(eb, rq); 3257 if (err) 3258 return ERR_PTR(err); 3259 } 3260 3261 if (intel_context_is_parallel(eb->context)) { 3262 out_fence = eb_composite_fence_create(eb, out_fence_fd); 3263 if (IS_ERR(out_fence)) 3264 return ERR_PTR(-ENOMEM); 3265 } else if (out_fence_fd != -1) { 3266 out_fence = sync_file_create(&rq->fence); 3267 if (!out_fence) 3268 return ERR_PTR(-ENOMEM); 3269 } 3270 3271 return out_fence; 3272 } 3273 3274 static struct intel_context * 3275 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number) 3276 { 3277 struct intel_context *child; 3278 3279 if (likely(context_number == 0)) 3280 return eb->context; 3281 3282 for_each_child(eb->context, child) 3283 if (!--context_number) 3284 return child; 3285 3286 GEM_BUG_ON("Context not found"); 3287 3288 return NULL; 3289 } 3290 3291 static struct sync_file * 3292 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence, 3293 int out_fence_fd) 3294 { 3295 struct sync_file *out_fence = NULL; 3296 unsigned int i; 3297 3298 for_each_batch_create_order(eb, i) { 3299 /* Allocate a request for this batch buffer nice and early. */ 3300 eb->requests[i] = i915_request_create(eb_find_context(eb, i)); 3301 if (IS_ERR(eb->requests[i])) { 3302 out_fence = ERR_CAST(eb->requests[i]); 3303 eb->requests[i] = NULL; 3304 return out_fence; 3305 } 3306 3307 /* 3308 * Only the first request added (committed to backend) has to 3309 * take the in fences into account as all subsequent requests 3310 * will have fences inserted inbetween them. 3311 */ 3312 if (i + 1 == eb->num_batches) { 3313 out_fence = eb_fences_add(eb, eb->requests[i], 3314 in_fence, out_fence_fd); 3315 if (IS_ERR(out_fence)) 3316 return out_fence; 3317 } 3318 3319 /* 3320 * Not really on stack, but we don't want to call 3321 * kfree on the batch_snapshot when we put it, so use the 3322 * _onstack interface. 3323 */ 3324 if (eb->batches[i]->vma) 3325 eb->requests[i]->batch_res = 3326 i915_vma_resource_get(eb->batches[i]->vma->resource); 3327 if (eb->batch_pool) { 3328 GEM_BUG_ON(intel_context_is_parallel(eb->context)); 3329 intel_gt_buffer_pool_mark_active(eb->batch_pool, 3330 eb->requests[i]); 3331 } 3332 } 3333 3334 return out_fence; 3335 } 3336 3337 static int 3338 i915_gem_do_execbuffer(struct drm_device *dev, 3339 struct drm_file *file, 3340 struct drm_i915_gem_execbuffer2 *args, 3341 struct drm_i915_gem_exec_object2 *exec) 3342 { 3343 struct drm_i915_private *i915 = to_i915(dev); 3344 struct i915_execbuffer eb; 3345 struct dma_fence *in_fence = NULL; 3346 struct sync_file *out_fence = NULL; 3347 int out_fence_fd = -1; 3348 int err; 3349 3350 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); 3351 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 3352 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 3353 3354 eb.i915 = i915; 3355 eb.file = file; 3356 eb.args = args; 3357 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 3358 args->flags |= __EXEC_HAS_RELOC; 3359 3360 eb.exec = exec; 3361 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1); 3362 eb.vma[0].vma = NULL; 3363 eb.batch_pool = NULL; 3364 3365 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 3366 reloc_cache_init(&eb.reloc_cache, eb.i915); 3367 3368 eb.buffer_count = args->buffer_count; 3369 eb.batch_start_offset = args->batch_start_offset; 3370 eb.trampoline = NULL; 3371 3372 eb.fences = NULL; 3373 eb.num_fences = 0; 3374 3375 eb_capture_list_clear(&eb); 3376 3377 memset(eb.requests, 0, sizeof(struct i915_request *) * 3378 ARRAY_SIZE(eb.requests)); 3379 eb.composite_fence = NULL; 3380 3381 eb.batch_flags = 0; 3382 if (args->flags & I915_EXEC_SECURE) { 3383 if (GRAPHICS_VER(i915) >= 11) 3384 return -ENODEV; 3385 3386 /* Return -EPERM to trigger fallback code on old binaries. */ 3387 if (!HAS_SECURE_BATCHES(i915)) 3388 return -EPERM; 3389 3390 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 3391 return -EPERM; 3392 3393 eb.batch_flags |= I915_DISPATCH_SECURE; 3394 } 3395 if (args->flags & I915_EXEC_IS_PINNED) 3396 eb.batch_flags |= I915_DISPATCH_PINNED; 3397 3398 err = parse_execbuf2_extensions(args, &eb); 3399 if (err) 3400 goto err_ext; 3401 3402 err = add_fence_array(&eb); 3403 if (err) 3404 goto err_ext; 3405 3406 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT) 3407 if (args->flags & IN_FENCES) { 3408 if ((args->flags & IN_FENCES) == IN_FENCES) 3409 return -EINVAL; 3410 3411 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 3412 if (!in_fence) { 3413 err = -EINVAL; 3414 goto err_ext; 3415 } 3416 } 3417 #undef IN_FENCES 3418 3419 if (args->flags & I915_EXEC_FENCE_OUT) { 3420 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 3421 if (out_fence_fd < 0) { 3422 err = out_fence_fd; 3423 goto err_in_fence; 3424 } 3425 } 3426 3427 err = eb_create(&eb); 3428 if (err) 3429 goto err_out_fence; 3430 3431 GEM_BUG_ON(!eb.lut_size); 3432 3433 err = eb_select_context(&eb); 3434 if (unlikely(err)) 3435 goto err_destroy; 3436 3437 err = eb_select_engine(&eb); 3438 if (unlikely(err)) 3439 goto err_context; 3440 3441 err = eb_lookup_vmas(&eb); 3442 if (err) { 3443 eb_release_vmas(&eb, true); 3444 goto err_engine; 3445 } 3446 3447 i915_gem_ww_ctx_init(&eb.ww, true); 3448 3449 err = eb_relocate_parse(&eb); 3450 if (err) { 3451 /* 3452 * If the user expects the execobject.offset and 3453 * reloc.presumed_offset to be an exact match, 3454 * as for using NO_RELOC, then we cannot update 3455 * the execobject.offset until we have completed 3456 * relocation. 3457 */ 3458 args->flags &= ~__EXEC_HAS_RELOC; 3459 goto err_vma; 3460 } 3461 3462 ww_acquire_done(&eb.ww.ctx); 3463 err = eb_capture_stage(&eb); 3464 if (err) 3465 goto err_vma; 3466 3467 out_fence = eb_requests_create(&eb, in_fence, out_fence_fd); 3468 if (IS_ERR(out_fence)) { 3469 err = PTR_ERR(out_fence); 3470 out_fence = NULL; 3471 if (eb.requests[0]) 3472 goto err_request; 3473 else 3474 goto err_vma; 3475 } 3476 3477 err = eb_submit(&eb); 3478 3479 err_request: 3480 eb_requests_get(&eb); 3481 err = eb_requests_add(&eb, err); 3482 3483 if (eb.fences) 3484 signal_fence_array(&eb, eb.composite_fence ? 3485 eb.composite_fence : 3486 &eb.requests[0]->fence); 3487 3488 if (out_fence) { 3489 if (err == 0) { 3490 fd_install(out_fence_fd, out_fence->file); 3491 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ 3492 args->rsvd2 |= (u64)out_fence_fd << 32; 3493 out_fence_fd = -1; 3494 } else { 3495 fput(out_fence->file); 3496 } 3497 } 3498 3499 if (unlikely(eb.gem_context->syncobj)) { 3500 drm_syncobj_replace_fence(eb.gem_context->syncobj, 3501 eb.composite_fence ? 3502 eb.composite_fence : 3503 &eb.requests[0]->fence); 3504 } 3505 3506 if (!out_fence && eb.composite_fence) 3507 dma_fence_put(eb.composite_fence); 3508 3509 eb_requests_put(&eb); 3510 3511 err_vma: 3512 eb_release_vmas(&eb, true); 3513 WARN_ON(err == -EDEADLK); 3514 i915_gem_ww_ctx_fini(&eb.ww); 3515 3516 if (eb.batch_pool) 3517 intel_gt_buffer_pool_put(eb.batch_pool); 3518 err_engine: 3519 eb_put_engine(&eb); 3520 err_context: 3521 i915_gem_context_put(eb.gem_context); 3522 err_destroy: 3523 eb_destroy(&eb); 3524 err_out_fence: 3525 if (out_fence_fd != -1) 3526 put_unused_fd(out_fence_fd); 3527 err_in_fence: 3528 dma_fence_put(in_fence); 3529 err_ext: 3530 put_fence_array(eb.fences, eb.num_fences); 3531 return err; 3532 } 3533 3534 static size_t eb_element_size(void) 3535 { 3536 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma); 3537 } 3538 3539 static bool check_buffer_count(size_t count) 3540 { 3541 const size_t sz = eb_element_size(); 3542 3543 /* 3544 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup 3545 * array size (see eb_create()). Otherwise, we can accept an array as 3546 * large as can be addressed (though use large arrays at your peril)! 3547 */ 3548 3549 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); 3550 } 3551 3552 int 3553 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 3554 struct drm_file *file) 3555 { 3556 struct drm_i915_private *i915 = to_i915(dev); 3557 struct drm_i915_gem_execbuffer2 *args = data; 3558 struct drm_i915_gem_exec_object2 *exec2_list; 3559 const size_t count = args->buffer_count; 3560 int err; 3561 3562 if (!check_buffer_count(count)) { 3563 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); 3564 return -EINVAL; 3565 } 3566 3567 err = i915_gem_check_execbuffer(i915, args); 3568 if (err) 3569 return err; 3570 3571 /* Allocate extra slots for use by the command parser */ 3572 exec2_list = kvmalloc_array(count + 2, eb_element_size(), 3573 __GFP_NOWARN | GFP_KERNEL); 3574 if (exec2_list == NULL) { 3575 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", 3576 count); 3577 return -ENOMEM; 3578 } 3579 if (copy_from_user(exec2_list, 3580 u64_to_user_ptr(args->buffers_ptr), 3581 sizeof(*exec2_list) * count)) { 3582 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); 3583 kvfree(exec2_list); 3584 return -EFAULT; 3585 } 3586 3587 err = i915_gem_do_execbuffer(dev, file, args, exec2_list); 3588 3589 /* 3590 * Now that we have begun execution of the batchbuffer, we ignore 3591 * any new error after this point. Also given that we have already 3592 * updated the associated relocations, we try to write out the current 3593 * object locations irrespective of any error. 3594 */ 3595 if (args->flags & __EXEC_HAS_RELOC) { 3596 struct drm_i915_gem_exec_object2 __user *user_exec_list = 3597 u64_to_user_ptr(args->buffers_ptr); 3598 unsigned int i; 3599 3600 /* Copy the new buffer offsets back to the user's exec list. */ 3601 /* 3602 * Note: count * sizeof(*user_exec_list) does not overflow, 3603 * because we checked 'count' in check_buffer_count(). 3604 * 3605 * And this range already got effectively checked earlier 3606 * when we did the "copy_from_user()" above. 3607 */ 3608 if (!user_write_access_begin(user_exec_list, 3609 count * sizeof(*user_exec_list))) 3610 goto end; 3611 3612 for (i = 0; i < args->buffer_count; i++) { 3613 if (!(exec2_list[i].offset & UPDATE)) 3614 continue; 3615 3616 exec2_list[i].offset = 3617 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 3618 unsafe_put_user(exec2_list[i].offset, 3619 &user_exec_list[i].offset, 3620 end_user); 3621 } 3622 end_user: 3623 user_write_access_end(); 3624 end:; 3625 } 3626 3627 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 3628 kvfree(exec2_list); 3629 return err; 3630 } 3631