1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2008,2010 Intel Corporation 5 */ 6 7 #include <linux/intel-iommu.h> 8 #include <linux/reservation.h> 9 #include <linux/sync_file.h> 10 #include <linux/uaccess.h> 11 12 #include <drm/drm_syncobj.h> 13 #include <drm/i915_drm.h> 14 15 #include "display/intel_frontbuffer.h" 16 17 #include "gem/i915_gem_ioctls.h" 18 #include "gt/intel_context.h" 19 #include "gt/intel_gt_pm.h" 20 21 #include "i915_gem_ioctls.h" 22 #include "i915_gem_clflush.h" 23 #include "i915_gem_context.h" 24 #include "i915_trace.h" 25 #include "intel_drv.h" 26 27 enum { 28 FORCE_CPU_RELOC = 1, 29 FORCE_GTT_RELOC, 30 FORCE_GPU_RELOC, 31 #define DBG_FORCE_RELOC 0 /* choose one of the above! */ 32 }; 33 34 #define __EXEC_OBJECT_HAS_REF BIT(31) 35 #define __EXEC_OBJECT_HAS_PIN BIT(30) 36 #define __EXEC_OBJECT_HAS_FENCE BIT(29) 37 #define __EXEC_OBJECT_NEEDS_MAP BIT(28) 38 #define __EXEC_OBJECT_NEEDS_BIAS BIT(27) 39 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 27) /* all of the above */ 40 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) 41 42 #define __EXEC_HAS_RELOC BIT(31) 43 #define __EXEC_VALIDATED BIT(30) 44 #define __EXEC_INTERNAL_FLAGS (~0u << 30) 45 #define UPDATE PIN_OFFSET_FIXED 46 47 #define BATCH_OFFSET_BIAS (256*1024) 48 49 #define __I915_EXEC_ILLEGAL_FLAGS \ 50 (__I915_EXEC_UNKNOWN_FLAGS | \ 51 I915_EXEC_CONSTANTS_MASK | \ 52 I915_EXEC_RESOURCE_STREAMER) 53 54 /* Catch emission of unexpected errors for CI! */ 55 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) 56 #undef EINVAL 57 #define EINVAL ({ \ 58 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ 59 22; \ 60 }) 61 #endif 62 63 /** 64 * DOC: User command execution 65 * 66 * Userspace submits commands to be executed on the GPU as an instruction 67 * stream within a GEM object we call a batchbuffer. This instructions may 68 * refer to other GEM objects containing auxiliary state such as kernels, 69 * samplers, render targets and even secondary batchbuffers. Userspace does 70 * not know where in the GPU memory these objects reside and so before the 71 * batchbuffer is passed to the GPU for execution, those addresses in the 72 * batchbuffer and auxiliary objects are updated. This is known as relocation, 73 * or patching. To try and avoid having to relocate each object on the next 74 * execution, userspace is told the location of those objects in this pass, 75 * but this remains just a hint as the kernel may choose a new location for 76 * any object in the future. 77 * 78 * At the level of talking to the hardware, submitting a batchbuffer for the 79 * GPU to execute is to add content to a buffer from which the HW 80 * command streamer is reading. 81 * 82 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. 83 * Execlists, this command is not placed on the same buffer as the 84 * remaining items. 85 * 86 * 2. Add a command to invalidate caches to the buffer. 87 * 88 * 3. Add a batchbuffer start command to the buffer; the start command is 89 * essentially a token together with the GPU address of the batchbuffer 90 * to be executed. 91 * 92 * 4. Add a pipeline flush to the buffer. 93 * 94 * 5. Add a memory write command to the buffer to record when the GPU 95 * is done executing the batchbuffer. The memory write writes the 96 * global sequence number of the request, ``i915_request::global_seqno``; 97 * the i915 driver uses the current value in the register to determine 98 * if the GPU has completed the batchbuffer. 99 * 100 * 6. Add a user interrupt command to the buffer. This command instructs 101 * the GPU to issue an interrupt when the command, pipeline flush and 102 * memory write are completed. 103 * 104 * 7. Inform the hardware of the additional commands added to the buffer 105 * (by updating the tail pointer). 106 * 107 * Processing an execbuf ioctl is conceptually split up into a few phases. 108 * 109 * 1. Validation - Ensure all the pointers, handles and flags are valid. 110 * 2. Reservation - Assign GPU address space for every object 111 * 3. Relocation - Update any addresses to point to the final locations 112 * 4. Serialisation - Order the request with respect to its dependencies 113 * 5. Construction - Construct a request to execute the batchbuffer 114 * 6. Submission (at some point in the future execution) 115 * 116 * Reserving resources for the execbuf is the most complicated phase. We 117 * neither want to have to migrate the object in the address space, nor do 118 * we want to have to update any relocations pointing to this object. Ideally, 119 * we want to leave the object where it is and for all the existing relocations 120 * to match. If the object is given a new address, or if userspace thinks the 121 * object is elsewhere, we have to parse all the relocation entries and update 122 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that 123 * all the target addresses in all of its objects match the value in the 124 * relocation entries and that they all match the presumed offsets given by the 125 * list of execbuffer objects. Using this knowledge, we know that if we haven't 126 * moved any buffers, all the relocation entries are valid and we can skip 127 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU 128 * hang.) The requirement for using I915_EXEC_NO_RELOC are: 129 * 130 * The addresses written in the objects must match the corresponding 131 * reloc.presumed_offset which in turn must match the corresponding 132 * execobject.offset. 133 * 134 * Any render targets written to in the batch must be flagged with 135 * EXEC_OBJECT_WRITE. 136 * 137 * To avoid stalling, execobject.offset should match the current 138 * address of that object within the active context. 139 * 140 * The reservation is done is multiple phases. First we try and keep any 141 * object already bound in its current location - so as long as meets the 142 * constraints imposed by the new execbuffer. Any object left unbound after the 143 * first pass is then fitted into any available idle space. If an object does 144 * not fit, all objects are removed from the reservation and the process rerun 145 * after sorting the objects into a priority order (more difficult to fit 146 * objects are tried first). Failing that, the entire VM is cleared and we try 147 * to fit the execbuf once last time before concluding that it simply will not 148 * fit. 149 * 150 * A small complication to all of this is that we allow userspace not only to 151 * specify an alignment and a size for the object in the address space, but 152 * we also allow userspace to specify the exact offset. This objects are 153 * simpler to place (the location is known a priori) all we have to do is make 154 * sure the space is available. 155 * 156 * Once all the objects are in place, patching up the buried pointers to point 157 * to the final locations is a fairly simple job of walking over the relocation 158 * entry arrays, looking up the right address and rewriting the value into 159 * the object. Simple! ... The relocation entries are stored in user memory 160 * and so to access them we have to copy them into a local buffer. That copy 161 * has to avoid taking any pagefaults as they may lead back to a GEM object 162 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split 163 * the relocation into multiple passes. First we try to do everything within an 164 * atomic context (avoid the pagefaults) which requires that we never wait. If 165 * we detect that we may wait, or if we need to fault, then we have to fallback 166 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm 167 * bells yet?) Dropping the mutex means that we lose all the state we have 168 * built up so far for the execbuf and we must reset any global data. However, 169 * we do leave the objects pinned in their final locations - which is a 170 * potential issue for concurrent execbufs. Once we have left the mutex, we can 171 * allocate and copy all the relocation entries into a large array at our 172 * leisure, reacquire the mutex, reclaim all the objects and other state and 173 * then proceed to update any incorrect addresses with the objects. 174 * 175 * As we process the relocation entries, we maintain a record of whether the 176 * object is being written to. Using NORELOC, we expect userspace to provide 177 * this information instead. We also check whether we can skip the relocation 178 * by comparing the expected value inside the relocation entry with the target's 179 * final address. If they differ, we have to map the current object and rewrite 180 * the 4 or 8 byte pointer within. 181 * 182 * Serialising an execbuf is quite simple according to the rules of the GEM 183 * ABI. Execution within each context is ordered by the order of submission. 184 * Writes to any GEM object are in order of submission and are exclusive. Reads 185 * from a GEM object are unordered with respect to other reads, but ordered by 186 * writes. A write submitted after a read cannot occur before the read, and 187 * similarly any read submitted after a write cannot occur before the write. 188 * Writes are ordered between engines such that only one write occurs at any 189 * time (completing any reads beforehand) - using semaphores where available 190 * and CPU serialisation otherwise. Other GEM access obey the same rules, any 191 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU 192 * reads before starting, and any read (either using set-domain or pread) must 193 * flush all GPU writes before starting. (Note we only employ a barrier before, 194 * we currently rely on userspace not concurrently starting a new execution 195 * whilst reading or writing to an object. This may be an advantage or not 196 * depending on how much you trust userspace not to shoot themselves in the 197 * foot.) Serialisation may just result in the request being inserted into 198 * a DAG awaiting its turn, but most simple is to wait on the CPU until 199 * all dependencies are resolved. 200 * 201 * After all of that, is just a matter of closing the request and handing it to 202 * the hardware (well, leaving it in a queue to be executed). However, we also 203 * offer the ability for batchbuffers to be run with elevated privileges so 204 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) 205 * Before any batch is given extra privileges we first must check that it 206 * contains no nefarious instructions, we check that each instruction is from 207 * our whitelist and all registers are also from an allowed list. We first 208 * copy the user's batchbuffer to a shadow (so that the user doesn't have 209 * access to it, either by the CPU or GPU as we scan it) and then parse each 210 * instruction. If everything is ok, we set a flag telling the hardware to run 211 * the batchbuffer in trusted mode, otherwise the ioctl is rejected. 212 */ 213 214 struct i915_execbuffer { 215 struct drm_i915_private *i915; /** i915 backpointer */ 216 struct drm_file *file; /** per-file lookup tables and limits */ 217 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ 218 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ 219 struct i915_vma **vma; 220 unsigned int *flags; 221 222 struct intel_engine_cs *engine; /** engine to queue the request to */ 223 struct intel_context *context; /* logical state for the request */ 224 struct i915_gem_context *gem_context; /** caller's context */ 225 struct i915_address_space *vm; /** GTT and vma for the request */ 226 227 struct i915_request *request; /** our request to build */ 228 struct i915_vma *batch; /** identity of the batch obj/vma */ 229 230 /** actual size of execobj[] as we may extend it for the cmdparser */ 231 unsigned int buffer_count; 232 233 /** list of vma not yet bound during reservation phase */ 234 struct list_head unbound; 235 236 /** list of vma that have execobj.relocation_count */ 237 struct list_head relocs; 238 239 /** 240 * Track the most recently used object for relocations, as we 241 * frequently have to perform multiple relocations within the same 242 * obj/page 243 */ 244 struct reloc_cache { 245 struct drm_mm_node node; /** temporary GTT binding */ 246 unsigned long vaddr; /** Current kmap address */ 247 unsigned long page; /** Currently mapped page index */ 248 unsigned int gen; /** Cached value of INTEL_GEN */ 249 bool use_64bit_reloc : 1; 250 bool has_llc : 1; 251 bool has_fence : 1; 252 bool needs_unfenced : 1; 253 254 struct i915_request *rq; 255 u32 *rq_cmd; 256 unsigned int rq_size; 257 } reloc_cache; 258 259 u64 invalid_flags; /** Set of execobj.flags that are invalid */ 260 u32 context_flags; /** Set of execobj.flags to insert from the ctx */ 261 262 u32 batch_start_offset; /** Location within object of batch */ 263 u32 batch_len; /** Length of batch within object */ 264 u32 batch_flags; /** Flags composed for emit_bb_start() */ 265 266 /** 267 * Indicate either the size of the hastable used to resolve 268 * relocation handles, or if negative that we are using a direct 269 * index into the execobj[]. 270 */ 271 int lut_size; 272 struct hlist_head *buckets; /** ht for relocation handles */ 273 }; 274 275 #define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags]) 276 277 /* 278 * Used to convert any address to canonical form. 279 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS, 280 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the 281 * addresses to be in a canonical form: 282 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct 283 * canonical form [63:48] == [47]." 284 */ 285 #define GEN8_HIGH_ADDRESS_BIT 47 286 static inline u64 gen8_canonical_addr(u64 address) 287 { 288 return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT); 289 } 290 291 static inline u64 gen8_noncanonical_addr(u64 address) 292 { 293 return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0); 294 } 295 296 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) 297 { 298 return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len; 299 } 300 301 static int eb_create(struct i915_execbuffer *eb) 302 { 303 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { 304 unsigned int size = 1 + ilog2(eb->buffer_count); 305 306 /* 307 * Without a 1:1 association between relocation handles and 308 * the execobject[] index, we instead create a hashtable. 309 * We size it dynamically based on available memory, starting 310 * first with 1:1 assocative hash and scaling back until 311 * the allocation succeeds. 312 * 313 * Later on we use a positive lut_size to indicate we are 314 * using this hashtable, and a negative value to indicate a 315 * direct lookup. 316 */ 317 do { 318 gfp_t flags; 319 320 /* While we can still reduce the allocation size, don't 321 * raise a warning and allow the allocation to fail. 322 * On the last pass though, we want to try as hard 323 * as possible to perform the allocation and warn 324 * if it fails. 325 */ 326 flags = GFP_KERNEL; 327 if (size > 1) 328 flags |= __GFP_NORETRY | __GFP_NOWARN; 329 330 eb->buckets = kzalloc(sizeof(struct hlist_head) << size, 331 flags); 332 if (eb->buckets) 333 break; 334 } while (--size); 335 336 if (unlikely(!size)) 337 return -ENOMEM; 338 339 eb->lut_size = size; 340 } else { 341 eb->lut_size = -eb->buffer_count; 342 } 343 344 return 0; 345 } 346 347 static bool 348 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, 349 const struct i915_vma *vma, 350 unsigned int flags) 351 { 352 if (vma->node.size < entry->pad_to_size) 353 return true; 354 355 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) 356 return true; 357 358 if (flags & EXEC_OBJECT_PINNED && 359 vma->node.start != entry->offset) 360 return true; 361 362 if (flags & __EXEC_OBJECT_NEEDS_BIAS && 363 vma->node.start < BATCH_OFFSET_BIAS) 364 return true; 365 366 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && 367 (vma->node.start + vma->node.size - 1) >> 32) 368 return true; 369 370 if (flags & __EXEC_OBJECT_NEEDS_MAP && 371 !i915_vma_is_map_and_fenceable(vma)) 372 return true; 373 374 return false; 375 } 376 377 static inline bool 378 eb_pin_vma(struct i915_execbuffer *eb, 379 const struct drm_i915_gem_exec_object2 *entry, 380 struct i915_vma *vma) 381 { 382 unsigned int exec_flags = *vma->exec_flags; 383 u64 pin_flags; 384 385 if (vma->node.size) 386 pin_flags = vma->node.start; 387 else 388 pin_flags = entry->offset & PIN_OFFSET_MASK; 389 390 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED; 391 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT)) 392 pin_flags |= PIN_GLOBAL; 393 394 if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags))) 395 return false; 396 397 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) { 398 if (unlikely(i915_vma_pin_fence(vma))) { 399 i915_vma_unpin(vma); 400 return false; 401 } 402 403 if (vma->fence) 404 exec_flags |= __EXEC_OBJECT_HAS_FENCE; 405 } 406 407 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN; 408 return !eb_vma_misplaced(entry, vma, exec_flags); 409 } 410 411 static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags) 412 { 413 GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN)); 414 415 if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE)) 416 __i915_vma_unpin_fence(vma); 417 418 __i915_vma_unpin(vma); 419 } 420 421 static inline void 422 eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags) 423 { 424 if (!(*flags & __EXEC_OBJECT_HAS_PIN)) 425 return; 426 427 __eb_unreserve_vma(vma, *flags); 428 *flags &= ~__EXEC_OBJECT_RESERVED; 429 } 430 431 static int 432 eb_validate_vma(struct i915_execbuffer *eb, 433 struct drm_i915_gem_exec_object2 *entry, 434 struct i915_vma *vma) 435 { 436 if (unlikely(entry->flags & eb->invalid_flags)) 437 return -EINVAL; 438 439 if (unlikely(entry->alignment && !is_power_of_2(entry->alignment))) 440 return -EINVAL; 441 442 /* 443 * Offset can be used as input (EXEC_OBJECT_PINNED), reject 444 * any non-page-aligned or non-canonical addresses. 445 */ 446 if (unlikely(entry->flags & EXEC_OBJECT_PINNED && 447 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) 448 return -EINVAL; 449 450 /* pad_to_size was once a reserved field, so sanitize it */ 451 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { 452 if (unlikely(offset_in_page(entry->pad_to_size))) 453 return -EINVAL; 454 } else { 455 entry->pad_to_size = 0; 456 } 457 458 if (unlikely(vma->exec_flags)) { 459 DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n", 460 entry->handle, (int)(entry - eb->exec)); 461 return -EINVAL; 462 } 463 464 /* 465 * From drm_mm perspective address space is continuous, 466 * so from this point we're always using non-canonical 467 * form internally. 468 */ 469 entry->offset = gen8_noncanonical_addr(entry->offset); 470 471 if (!eb->reloc_cache.has_fence) { 472 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; 473 } else { 474 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || 475 eb->reloc_cache.needs_unfenced) && 476 i915_gem_object_is_tiled(vma->obj)) 477 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; 478 } 479 480 if (!(entry->flags & EXEC_OBJECT_PINNED)) 481 entry->flags |= eb->context_flags; 482 483 return 0; 484 } 485 486 static int 487 eb_add_vma(struct i915_execbuffer *eb, 488 unsigned int i, unsigned batch_idx, 489 struct i915_vma *vma) 490 { 491 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; 492 int err; 493 494 GEM_BUG_ON(i915_vma_is_closed(vma)); 495 496 if (!(eb->args->flags & __EXEC_VALIDATED)) { 497 err = eb_validate_vma(eb, entry, vma); 498 if (unlikely(err)) 499 return err; 500 } 501 502 if (eb->lut_size > 0) { 503 vma->exec_handle = entry->handle; 504 hlist_add_head(&vma->exec_node, 505 &eb->buckets[hash_32(entry->handle, 506 eb->lut_size)]); 507 } 508 509 if (entry->relocation_count) 510 list_add_tail(&vma->reloc_link, &eb->relocs); 511 512 /* 513 * Stash a pointer from the vma to execobj, so we can query its flags, 514 * size, alignment etc as provided by the user. Also we stash a pointer 515 * to the vma inside the execobj so that we can use a direct lookup 516 * to find the right target VMA when doing relocations. 517 */ 518 eb->vma[i] = vma; 519 eb->flags[i] = entry->flags; 520 vma->exec_flags = &eb->flags[i]; 521 522 /* 523 * SNA is doing fancy tricks with compressing batch buffers, which leads 524 * to negative relocation deltas. Usually that works out ok since the 525 * relocate address is still positive, except when the batch is placed 526 * very low in the GTT. Ensure this doesn't happen. 527 * 528 * Note that actual hangs have only been observed on gen7, but for 529 * paranoia do it everywhere. 530 */ 531 if (i == batch_idx) { 532 if (entry->relocation_count && 533 !(eb->flags[i] & EXEC_OBJECT_PINNED)) 534 eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS; 535 if (eb->reloc_cache.has_fence) 536 eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE; 537 538 eb->batch = vma; 539 } 540 541 err = 0; 542 if (eb_pin_vma(eb, entry, vma)) { 543 if (entry->offset != vma->node.start) { 544 entry->offset = vma->node.start | UPDATE; 545 eb->args->flags |= __EXEC_HAS_RELOC; 546 } 547 } else { 548 eb_unreserve_vma(vma, vma->exec_flags); 549 550 list_add_tail(&vma->exec_link, &eb->unbound); 551 if (drm_mm_node_allocated(&vma->node)) 552 err = i915_vma_unbind(vma); 553 if (unlikely(err)) 554 vma->exec_flags = NULL; 555 } 556 return err; 557 } 558 559 static inline int use_cpu_reloc(const struct reloc_cache *cache, 560 const struct drm_i915_gem_object *obj) 561 { 562 if (!i915_gem_object_has_struct_page(obj)) 563 return false; 564 565 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) 566 return true; 567 568 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) 569 return false; 570 571 return (cache->has_llc || 572 obj->cache_dirty || 573 obj->cache_level != I915_CACHE_NONE); 574 } 575 576 static int eb_reserve_vma(const struct i915_execbuffer *eb, 577 struct i915_vma *vma) 578 { 579 struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma); 580 unsigned int exec_flags = *vma->exec_flags; 581 u64 pin_flags; 582 int err; 583 584 pin_flags = PIN_USER | PIN_NONBLOCK; 585 if (exec_flags & EXEC_OBJECT_NEEDS_GTT) 586 pin_flags |= PIN_GLOBAL; 587 588 /* 589 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, 590 * limit address to the first 4GBs for unflagged objects. 591 */ 592 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 593 pin_flags |= PIN_ZONE_4G; 594 595 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) 596 pin_flags |= PIN_MAPPABLE; 597 598 if (exec_flags & EXEC_OBJECT_PINNED) { 599 pin_flags |= entry->offset | PIN_OFFSET_FIXED; 600 pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */ 601 } else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) { 602 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; 603 } 604 605 err = i915_vma_pin(vma, 606 entry->pad_to_size, entry->alignment, 607 pin_flags); 608 if (err) 609 return err; 610 611 if (entry->offset != vma->node.start) { 612 entry->offset = vma->node.start | UPDATE; 613 eb->args->flags |= __EXEC_HAS_RELOC; 614 } 615 616 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) { 617 err = i915_vma_pin_fence(vma); 618 if (unlikely(err)) { 619 i915_vma_unpin(vma); 620 return err; 621 } 622 623 if (vma->fence) 624 exec_flags |= __EXEC_OBJECT_HAS_FENCE; 625 } 626 627 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN; 628 GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags)); 629 630 return 0; 631 } 632 633 static int eb_reserve(struct i915_execbuffer *eb) 634 { 635 const unsigned int count = eb->buffer_count; 636 struct list_head last; 637 struct i915_vma *vma; 638 unsigned int i, pass; 639 int err; 640 641 /* 642 * Attempt to pin all of the buffers into the GTT. 643 * This is done in 3 phases: 644 * 645 * 1a. Unbind all objects that do not match the GTT constraints for 646 * the execbuffer (fenceable, mappable, alignment etc). 647 * 1b. Increment pin count for already bound objects. 648 * 2. Bind new objects. 649 * 3. Decrement pin count. 650 * 651 * This avoid unnecessary unbinding of later objects in order to make 652 * room for the earlier objects *unless* we need to defragment. 653 */ 654 655 pass = 0; 656 err = 0; 657 do { 658 list_for_each_entry(vma, &eb->unbound, exec_link) { 659 err = eb_reserve_vma(eb, vma); 660 if (err) 661 break; 662 } 663 if (err != -ENOSPC) 664 return err; 665 666 /* Resort *all* the objects into priority order */ 667 INIT_LIST_HEAD(&eb->unbound); 668 INIT_LIST_HEAD(&last); 669 for (i = 0; i < count; i++) { 670 unsigned int flags = eb->flags[i]; 671 struct i915_vma *vma = eb->vma[i]; 672 673 if (flags & EXEC_OBJECT_PINNED && 674 flags & __EXEC_OBJECT_HAS_PIN) 675 continue; 676 677 eb_unreserve_vma(vma, &eb->flags[i]); 678 679 if (flags & EXEC_OBJECT_PINNED) 680 /* Pinned must have their slot */ 681 list_add(&vma->exec_link, &eb->unbound); 682 else if (flags & __EXEC_OBJECT_NEEDS_MAP) 683 /* Map require the lowest 256MiB (aperture) */ 684 list_add_tail(&vma->exec_link, &eb->unbound); 685 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) 686 /* Prioritise 4GiB region for restricted bo */ 687 list_add(&vma->exec_link, &last); 688 else 689 list_add_tail(&vma->exec_link, &last); 690 } 691 list_splice_tail(&last, &eb->unbound); 692 693 switch (pass++) { 694 case 0: 695 break; 696 697 case 1: 698 /* Too fragmented, unbind everything and retry */ 699 err = i915_gem_evict_vm(eb->vm); 700 if (err) 701 return err; 702 break; 703 704 default: 705 return -ENOSPC; 706 } 707 } while (1); 708 } 709 710 static unsigned int eb_batch_index(const struct i915_execbuffer *eb) 711 { 712 if (eb->args->flags & I915_EXEC_BATCH_FIRST) 713 return 0; 714 else 715 return eb->buffer_count - 1; 716 } 717 718 static int eb_select_context(struct i915_execbuffer *eb) 719 { 720 struct i915_gem_context *ctx; 721 722 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); 723 if (unlikely(!ctx)) 724 return -ENOENT; 725 726 eb->gem_context = ctx; 727 if (ctx->vm) { 728 eb->vm = ctx->vm; 729 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; 730 } else { 731 eb->vm = &eb->i915->ggtt.vm; 732 } 733 734 eb->context_flags = 0; 735 if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags)) 736 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS; 737 738 return 0; 739 } 740 741 static struct i915_request *__eb_wait_for_ring(struct intel_ring *ring) 742 { 743 struct i915_request *rq; 744 745 /* 746 * Completely unscientific finger-in-the-air estimates for suitable 747 * maximum user request size (to avoid blocking) and then backoff. 748 */ 749 if (intel_ring_update_space(ring) >= PAGE_SIZE) 750 return NULL; 751 752 /* 753 * Find a request that after waiting upon, there will be at least half 754 * the ring available. The hysteresis allows us to compete for the 755 * shared ring and should mean that we sleep less often prior to 756 * claiming our resources, but not so long that the ring completely 757 * drains before we can submit our next request. 758 */ 759 list_for_each_entry(rq, &ring->request_list, ring_link) { 760 if (__intel_ring_space(rq->postfix, 761 ring->emit, ring->size) > ring->size / 2) 762 break; 763 } 764 if (&rq->ring_link == &ring->request_list) 765 return NULL; /* weird, we will check again later for real */ 766 767 return i915_request_get(rq); 768 } 769 770 static int eb_wait_for_ring(const struct i915_execbuffer *eb) 771 { 772 struct i915_request *rq; 773 int ret = 0; 774 775 /* 776 * Apply a light amount of backpressure to prevent excessive hogs 777 * from blocking waiting for space whilst holding struct_mutex and 778 * keeping all of their resources pinned. 779 */ 780 781 rq = __eb_wait_for_ring(eb->context->ring); 782 if (rq) { 783 mutex_unlock(&eb->i915->drm.struct_mutex); 784 785 if (i915_request_wait(rq, 786 I915_WAIT_INTERRUPTIBLE, 787 MAX_SCHEDULE_TIMEOUT) < 0) 788 ret = -EINTR; 789 790 i915_request_put(rq); 791 792 mutex_lock(&eb->i915->drm.struct_mutex); 793 } 794 795 return ret; 796 } 797 798 static int eb_lookup_vmas(struct i915_execbuffer *eb) 799 { 800 struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma; 801 struct drm_i915_gem_object *obj; 802 unsigned int i, batch; 803 int err; 804 805 if (unlikely(i915_gem_context_is_banned(eb->gem_context))) 806 return -EIO; 807 808 INIT_LIST_HEAD(&eb->relocs); 809 INIT_LIST_HEAD(&eb->unbound); 810 811 batch = eb_batch_index(eb); 812 813 mutex_lock(&eb->gem_context->mutex); 814 if (unlikely(i915_gem_context_is_closed(eb->gem_context))) { 815 err = -ENOENT; 816 goto err_ctx; 817 } 818 819 for (i = 0; i < eb->buffer_count; i++) { 820 u32 handle = eb->exec[i].handle; 821 struct i915_lut_handle *lut; 822 struct i915_vma *vma; 823 824 vma = radix_tree_lookup(handles_vma, handle); 825 if (likely(vma)) 826 goto add_vma; 827 828 obj = i915_gem_object_lookup(eb->file, handle); 829 if (unlikely(!obj)) { 830 err = -ENOENT; 831 goto err_vma; 832 } 833 834 vma = i915_vma_instance(obj, eb->vm, NULL); 835 if (IS_ERR(vma)) { 836 err = PTR_ERR(vma); 837 goto err_obj; 838 } 839 840 lut = i915_lut_handle_alloc(); 841 if (unlikely(!lut)) { 842 err = -ENOMEM; 843 goto err_obj; 844 } 845 846 err = radix_tree_insert(handles_vma, handle, vma); 847 if (unlikely(err)) { 848 i915_lut_handle_free(lut); 849 goto err_obj; 850 } 851 852 /* transfer ref to lut */ 853 if (!atomic_fetch_inc(&vma->open_count)) 854 i915_vma_reopen(vma); 855 lut->handle = handle; 856 lut->ctx = eb->gem_context; 857 858 i915_gem_object_lock(obj); 859 list_add(&lut->obj_link, &obj->lut_list); 860 i915_gem_object_unlock(obj); 861 862 add_vma: 863 err = eb_add_vma(eb, i, batch, vma); 864 if (unlikely(err)) 865 goto err_vma; 866 867 GEM_BUG_ON(vma != eb->vma[i]); 868 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]); 869 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && 870 eb_vma_misplaced(&eb->exec[i], vma, eb->flags[i])); 871 } 872 873 mutex_unlock(&eb->gem_context->mutex); 874 875 eb->args->flags |= __EXEC_VALIDATED; 876 return eb_reserve(eb); 877 878 err_obj: 879 i915_gem_object_put(obj); 880 err_vma: 881 eb->vma[i] = NULL; 882 err_ctx: 883 mutex_unlock(&eb->gem_context->mutex); 884 return err; 885 } 886 887 static struct i915_vma * 888 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) 889 { 890 if (eb->lut_size < 0) { 891 if (handle >= -eb->lut_size) 892 return NULL; 893 return eb->vma[handle]; 894 } else { 895 struct hlist_head *head; 896 struct i915_vma *vma; 897 898 head = &eb->buckets[hash_32(handle, eb->lut_size)]; 899 hlist_for_each_entry(vma, head, exec_node) { 900 if (vma->exec_handle == handle) 901 return vma; 902 } 903 return NULL; 904 } 905 } 906 907 static void eb_release_vmas(const struct i915_execbuffer *eb) 908 { 909 const unsigned int count = eb->buffer_count; 910 unsigned int i; 911 912 for (i = 0; i < count; i++) { 913 struct i915_vma *vma = eb->vma[i]; 914 unsigned int flags = eb->flags[i]; 915 916 if (!vma) 917 break; 918 919 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]); 920 vma->exec_flags = NULL; 921 eb->vma[i] = NULL; 922 923 if (flags & __EXEC_OBJECT_HAS_PIN) 924 __eb_unreserve_vma(vma, flags); 925 926 if (flags & __EXEC_OBJECT_HAS_REF) 927 i915_vma_put(vma); 928 } 929 } 930 931 static void eb_reset_vmas(const struct i915_execbuffer *eb) 932 { 933 eb_release_vmas(eb); 934 if (eb->lut_size > 0) 935 memset(eb->buckets, 0, 936 sizeof(struct hlist_head) << eb->lut_size); 937 } 938 939 static void eb_destroy(const struct i915_execbuffer *eb) 940 { 941 GEM_BUG_ON(eb->reloc_cache.rq); 942 943 if (eb->lut_size > 0) 944 kfree(eb->buckets); 945 } 946 947 static inline u64 948 relocation_target(const struct drm_i915_gem_relocation_entry *reloc, 949 const struct i915_vma *target) 950 { 951 return gen8_canonical_addr((int)reloc->delta + target->node.start); 952 } 953 954 static void reloc_cache_init(struct reloc_cache *cache, 955 struct drm_i915_private *i915) 956 { 957 cache->page = -1; 958 cache->vaddr = 0; 959 /* Must be a variable in the struct to allow GCC to unroll. */ 960 cache->gen = INTEL_GEN(i915); 961 cache->has_llc = HAS_LLC(i915); 962 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); 963 cache->has_fence = cache->gen < 4; 964 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; 965 cache->node.allocated = false; 966 cache->rq = NULL; 967 cache->rq_size = 0; 968 } 969 970 static inline void *unmask_page(unsigned long p) 971 { 972 return (void *)(uintptr_t)(p & PAGE_MASK); 973 } 974 975 static inline unsigned int unmask_flags(unsigned long p) 976 { 977 return p & ~PAGE_MASK; 978 } 979 980 #define KMAP 0x4 /* after CLFLUSH_FLAGS */ 981 982 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) 983 { 984 struct drm_i915_private *i915 = 985 container_of(cache, struct i915_execbuffer, reloc_cache)->i915; 986 return &i915->ggtt; 987 } 988 989 static void reloc_gpu_flush(struct reloc_cache *cache) 990 { 991 GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32)); 992 cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END; 993 994 __i915_gem_object_flush_map(cache->rq->batch->obj, 0, cache->rq_size); 995 i915_gem_object_unpin_map(cache->rq->batch->obj); 996 997 i915_gem_chipset_flush(cache->rq->i915); 998 999 i915_request_add(cache->rq); 1000 cache->rq = NULL; 1001 } 1002 1003 static void reloc_cache_reset(struct reloc_cache *cache) 1004 { 1005 void *vaddr; 1006 1007 if (cache->rq) 1008 reloc_gpu_flush(cache); 1009 1010 if (!cache->vaddr) 1011 return; 1012 1013 vaddr = unmask_page(cache->vaddr); 1014 if (cache->vaddr & KMAP) { 1015 if (cache->vaddr & CLFLUSH_AFTER) 1016 mb(); 1017 1018 kunmap_atomic(vaddr); 1019 i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm); 1020 } else { 1021 wmb(); 1022 io_mapping_unmap_atomic((void __iomem *)vaddr); 1023 if (cache->node.allocated) { 1024 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1025 1026 ggtt->vm.clear_range(&ggtt->vm, 1027 cache->node.start, 1028 cache->node.size); 1029 drm_mm_remove_node(&cache->node); 1030 } else { 1031 i915_vma_unpin((struct i915_vma *)cache->node.mm); 1032 } 1033 } 1034 1035 cache->vaddr = 0; 1036 cache->page = -1; 1037 } 1038 1039 static void *reloc_kmap(struct drm_i915_gem_object *obj, 1040 struct reloc_cache *cache, 1041 unsigned long page) 1042 { 1043 void *vaddr; 1044 1045 if (cache->vaddr) { 1046 kunmap_atomic(unmask_page(cache->vaddr)); 1047 } else { 1048 unsigned int flushes; 1049 int err; 1050 1051 err = i915_gem_object_prepare_write(obj, &flushes); 1052 if (err) 1053 return ERR_PTR(err); 1054 1055 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); 1056 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); 1057 1058 cache->vaddr = flushes | KMAP; 1059 cache->node.mm = (void *)obj; 1060 if (flushes) 1061 mb(); 1062 } 1063 1064 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page)); 1065 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; 1066 cache->page = page; 1067 1068 return vaddr; 1069 } 1070 1071 static void *reloc_iomap(struct drm_i915_gem_object *obj, 1072 struct reloc_cache *cache, 1073 unsigned long page) 1074 { 1075 struct i915_ggtt *ggtt = cache_to_ggtt(cache); 1076 unsigned long offset; 1077 void *vaddr; 1078 1079 if (cache->vaddr) { 1080 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); 1081 } else { 1082 struct i915_vma *vma; 1083 int err; 1084 1085 if (use_cpu_reloc(cache, obj)) 1086 return NULL; 1087 1088 i915_gem_object_lock(obj); 1089 err = i915_gem_object_set_to_gtt_domain(obj, true); 1090 i915_gem_object_unlock(obj); 1091 if (err) 1092 return ERR_PTR(err); 1093 1094 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 1095 PIN_MAPPABLE | 1096 PIN_NONBLOCK | 1097 PIN_NONFAULT); 1098 if (IS_ERR(vma)) { 1099 memset(&cache->node, 0, sizeof(cache->node)); 1100 err = drm_mm_insert_node_in_range 1101 (&ggtt->vm.mm, &cache->node, 1102 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 1103 0, ggtt->mappable_end, 1104 DRM_MM_INSERT_LOW); 1105 if (err) /* no inactive aperture space, use cpu reloc */ 1106 return NULL; 1107 } else { 1108 err = i915_vma_put_fence(vma); 1109 if (err) { 1110 i915_vma_unpin(vma); 1111 return ERR_PTR(err); 1112 } 1113 1114 cache->node.start = vma->node.start; 1115 cache->node.mm = (void *)vma; 1116 } 1117 } 1118 1119 offset = cache->node.start; 1120 if (cache->node.allocated) { 1121 wmb(); 1122 ggtt->vm.insert_page(&ggtt->vm, 1123 i915_gem_object_get_dma_address(obj, page), 1124 offset, I915_CACHE_NONE, 0); 1125 } else { 1126 offset += page << PAGE_SHIFT; 1127 } 1128 1129 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, 1130 offset); 1131 cache->page = page; 1132 cache->vaddr = (unsigned long)vaddr; 1133 1134 return vaddr; 1135 } 1136 1137 static void *reloc_vaddr(struct drm_i915_gem_object *obj, 1138 struct reloc_cache *cache, 1139 unsigned long page) 1140 { 1141 void *vaddr; 1142 1143 if (cache->page == page) { 1144 vaddr = unmask_page(cache->vaddr); 1145 } else { 1146 vaddr = NULL; 1147 if ((cache->vaddr & KMAP) == 0) 1148 vaddr = reloc_iomap(obj, cache, page); 1149 if (!vaddr) 1150 vaddr = reloc_kmap(obj, cache, page); 1151 } 1152 1153 return vaddr; 1154 } 1155 1156 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) 1157 { 1158 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { 1159 if (flushes & CLFLUSH_BEFORE) { 1160 clflushopt(addr); 1161 mb(); 1162 } 1163 1164 *addr = value; 1165 1166 /* 1167 * Writes to the same cacheline are serialised by the CPU 1168 * (including clflush). On the write path, we only require 1169 * that it hits memory in an orderly fashion and place 1170 * mb barriers at the start and end of the relocation phase 1171 * to ensure ordering of clflush wrt to the system. 1172 */ 1173 if (flushes & CLFLUSH_AFTER) 1174 clflushopt(addr); 1175 } else 1176 *addr = value; 1177 } 1178 1179 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma) 1180 { 1181 struct drm_i915_gem_object *obj = vma->obj; 1182 int err; 1183 1184 i915_vma_lock(vma); 1185 1186 if (obj->cache_dirty & ~obj->cache_coherent) 1187 i915_gem_clflush_object(obj, 0); 1188 obj->write_domain = 0; 1189 1190 err = i915_request_await_object(rq, vma->obj, true); 1191 if (err == 0) 1192 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE); 1193 1194 i915_vma_unlock(vma); 1195 1196 return err; 1197 } 1198 1199 static int __reloc_gpu_alloc(struct i915_execbuffer *eb, 1200 struct i915_vma *vma, 1201 unsigned int len) 1202 { 1203 struct reloc_cache *cache = &eb->reloc_cache; 1204 struct drm_i915_gem_object *obj; 1205 struct i915_request *rq; 1206 struct i915_vma *batch; 1207 u32 *cmd; 1208 int err; 1209 1210 obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE); 1211 if (IS_ERR(obj)) 1212 return PTR_ERR(obj); 1213 1214 cmd = i915_gem_object_pin_map(obj, 1215 cache->has_llc ? 1216 I915_MAP_FORCE_WB : 1217 I915_MAP_FORCE_WC); 1218 i915_gem_object_unpin_pages(obj); 1219 if (IS_ERR(cmd)) 1220 return PTR_ERR(cmd); 1221 1222 batch = i915_vma_instance(obj, vma->vm, NULL); 1223 if (IS_ERR(batch)) { 1224 err = PTR_ERR(batch); 1225 goto err_unmap; 1226 } 1227 1228 err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK); 1229 if (err) 1230 goto err_unmap; 1231 1232 rq = i915_request_create(eb->context); 1233 if (IS_ERR(rq)) { 1234 err = PTR_ERR(rq); 1235 goto err_unpin; 1236 } 1237 1238 err = reloc_move_to_gpu(rq, vma); 1239 if (err) 1240 goto err_request; 1241 1242 err = eb->engine->emit_bb_start(rq, 1243 batch->node.start, PAGE_SIZE, 1244 cache->gen > 5 ? 0 : I915_DISPATCH_SECURE); 1245 if (err) 1246 goto skip_request; 1247 1248 i915_vma_lock(batch); 1249 GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true)); 1250 err = i915_vma_move_to_active(batch, rq, 0); 1251 i915_vma_unlock(batch); 1252 if (err) 1253 goto skip_request; 1254 1255 rq->batch = batch; 1256 i915_vma_unpin(batch); 1257 1258 cache->rq = rq; 1259 cache->rq_cmd = cmd; 1260 cache->rq_size = 0; 1261 1262 /* Return with batch mapping (cmd) still pinned */ 1263 return 0; 1264 1265 skip_request: 1266 i915_request_skip(rq, err); 1267 err_request: 1268 i915_request_add(rq); 1269 err_unpin: 1270 i915_vma_unpin(batch); 1271 err_unmap: 1272 i915_gem_object_unpin_map(obj); 1273 return err; 1274 } 1275 1276 static u32 *reloc_gpu(struct i915_execbuffer *eb, 1277 struct i915_vma *vma, 1278 unsigned int len) 1279 { 1280 struct reloc_cache *cache = &eb->reloc_cache; 1281 u32 *cmd; 1282 1283 if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1)) 1284 reloc_gpu_flush(cache); 1285 1286 if (unlikely(!cache->rq)) { 1287 int err; 1288 1289 /* If we need to copy for the cmdparser, we will stall anyway */ 1290 if (eb_use_cmdparser(eb)) 1291 return ERR_PTR(-EWOULDBLOCK); 1292 1293 if (!intel_engine_can_store_dword(eb->engine)) 1294 return ERR_PTR(-ENODEV); 1295 1296 err = __reloc_gpu_alloc(eb, vma, len); 1297 if (unlikely(err)) 1298 return ERR_PTR(err); 1299 } 1300 1301 cmd = cache->rq_cmd + cache->rq_size; 1302 cache->rq_size += len; 1303 1304 return cmd; 1305 } 1306 1307 static u64 1308 relocate_entry(struct i915_vma *vma, 1309 const struct drm_i915_gem_relocation_entry *reloc, 1310 struct i915_execbuffer *eb, 1311 const struct i915_vma *target) 1312 { 1313 u64 offset = reloc->offset; 1314 u64 target_offset = relocation_target(reloc, target); 1315 bool wide = eb->reloc_cache.use_64bit_reloc; 1316 void *vaddr; 1317 1318 if (!eb->reloc_cache.vaddr && 1319 (DBG_FORCE_RELOC == FORCE_GPU_RELOC || 1320 !reservation_object_test_signaled_rcu(vma->resv, true))) { 1321 const unsigned int gen = eb->reloc_cache.gen; 1322 unsigned int len; 1323 u32 *batch; 1324 u64 addr; 1325 1326 if (wide) 1327 len = offset & 7 ? 8 : 5; 1328 else if (gen >= 4) 1329 len = 4; 1330 else 1331 len = 3; 1332 1333 batch = reloc_gpu(eb, vma, len); 1334 if (IS_ERR(batch)) 1335 goto repeat; 1336 1337 addr = gen8_canonical_addr(vma->node.start + offset); 1338 if (wide) { 1339 if (offset & 7) { 1340 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1341 *batch++ = lower_32_bits(addr); 1342 *batch++ = upper_32_bits(addr); 1343 *batch++ = lower_32_bits(target_offset); 1344 1345 addr = gen8_canonical_addr(addr + 4); 1346 1347 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1348 *batch++ = lower_32_bits(addr); 1349 *batch++ = upper_32_bits(addr); 1350 *batch++ = upper_32_bits(target_offset); 1351 } else { 1352 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1; 1353 *batch++ = lower_32_bits(addr); 1354 *batch++ = upper_32_bits(addr); 1355 *batch++ = lower_32_bits(target_offset); 1356 *batch++ = upper_32_bits(target_offset); 1357 } 1358 } else if (gen >= 6) { 1359 *batch++ = MI_STORE_DWORD_IMM_GEN4; 1360 *batch++ = 0; 1361 *batch++ = addr; 1362 *batch++ = target_offset; 1363 } else if (gen >= 4) { 1364 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 1365 *batch++ = 0; 1366 *batch++ = addr; 1367 *batch++ = target_offset; 1368 } else { 1369 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL; 1370 *batch++ = addr; 1371 *batch++ = target_offset; 1372 } 1373 1374 goto out; 1375 } 1376 1377 repeat: 1378 vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT); 1379 if (IS_ERR(vaddr)) 1380 return PTR_ERR(vaddr); 1381 1382 clflush_write32(vaddr + offset_in_page(offset), 1383 lower_32_bits(target_offset), 1384 eb->reloc_cache.vaddr); 1385 1386 if (wide) { 1387 offset += sizeof(u32); 1388 target_offset >>= 32; 1389 wide = false; 1390 goto repeat; 1391 } 1392 1393 out: 1394 return target->node.start | UPDATE; 1395 } 1396 1397 static u64 1398 eb_relocate_entry(struct i915_execbuffer *eb, 1399 struct i915_vma *vma, 1400 const struct drm_i915_gem_relocation_entry *reloc) 1401 { 1402 struct i915_vma *target; 1403 int err; 1404 1405 /* we've already hold a reference to all valid objects */ 1406 target = eb_get_vma(eb, reloc->target_handle); 1407 if (unlikely(!target)) 1408 return -ENOENT; 1409 1410 /* Validate that the target is in a valid r/w GPU domain */ 1411 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { 1412 DRM_DEBUG("reloc with multiple write domains: " 1413 "target %d offset %d " 1414 "read %08x write %08x", 1415 reloc->target_handle, 1416 (int) reloc->offset, 1417 reloc->read_domains, 1418 reloc->write_domain); 1419 return -EINVAL; 1420 } 1421 if (unlikely((reloc->write_domain | reloc->read_domains) 1422 & ~I915_GEM_GPU_DOMAINS)) { 1423 DRM_DEBUG("reloc with read/write non-GPU domains: " 1424 "target %d offset %d " 1425 "read %08x write %08x", 1426 reloc->target_handle, 1427 (int) reloc->offset, 1428 reloc->read_domains, 1429 reloc->write_domain); 1430 return -EINVAL; 1431 } 1432 1433 if (reloc->write_domain) { 1434 *target->exec_flags |= EXEC_OBJECT_WRITE; 1435 1436 /* 1437 * Sandybridge PPGTT errata: We need a global gtt mapping 1438 * for MI and pipe_control writes because the gpu doesn't 1439 * properly redirect them through the ppgtt for non_secure 1440 * batchbuffers. 1441 */ 1442 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && 1443 IS_GEN(eb->i915, 6)) { 1444 err = i915_vma_bind(target, target->obj->cache_level, 1445 PIN_GLOBAL); 1446 if (WARN_ONCE(err, 1447 "Unexpected failure to bind target VMA!")) 1448 return err; 1449 } 1450 } 1451 1452 /* 1453 * If the relocation already has the right value in it, no 1454 * more work needs to be done. 1455 */ 1456 if (!DBG_FORCE_RELOC && 1457 gen8_canonical_addr(target->node.start) == reloc->presumed_offset) 1458 return 0; 1459 1460 /* Check that the relocation address is valid... */ 1461 if (unlikely(reloc->offset > 1462 vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { 1463 DRM_DEBUG("Relocation beyond object bounds: " 1464 "target %d offset %d size %d.\n", 1465 reloc->target_handle, 1466 (int)reloc->offset, 1467 (int)vma->size); 1468 return -EINVAL; 1469 } 1470 if (unlikely(reloc->offset & 3)) { 1471 DRM_DEBUG("Relocation not 4-byte aligned: " 1472 "target %d offset %d.\n", 1473 reloc->target_handle, 1474 (int)reloc->offset); 1475 return -EINVAL; 1476 } 1477 1478 /* 1479 * If we write into the object, we need to force the synchronisation 1480 * barrier, either with an asynchronous clflush or if we executed the 1481 * patching using the GPU (though that should be serialised by the 1482 * timeline). To be completely sure, and since we are required to 1483 * do relocations we are already stalling, disable the user's opt 1484 * out of our synchronisation. 1485 */ 1486 *vma->exec_flags &= ~EXEC_OBJECT_ASYNC; 1487 1488 /* and update the user's relocation entry */ 1489 return relocate_entry(vma, reloc, eb, target); 1490 } 1491 1492 static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma) 1493 { 1494 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) 1495 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; 1496 struct drm_i915_gem_relocation_entry __user *urelocs; 1497 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma); 1498 unsigned int remain; 1499 1500 urelocs = u64_to_user_ptr(entry->relocs_ptr); 1501 remain = entry->relocation_count; 1502 if (unlikely(remain > N_RELOC(ULONG_MAX))) 1503 return -EINVAL; 1504 1505 /* 1506 * We must check that the entire relocation array is safe 1507 * to read. However, if the array is not writable the user loses 1508 * the updated relocation values. 1509 */ 1510 if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs)))) 1511 return -EFAULT; 1512 1513 do { 1514 struct drm_i915_gem_relocation_entry *r = stack; 1515 unsigned int count = 1516 min_t(unsigned int, remain, ARRAY_SIZE(stack)); 1517 unsigned int copied; 1518 1519 /* 1520 * This is the fast path and we cannot handle a pagefault 1521 * whilst holding the struct mutex lest the user pass in the 1522 * relocations contained within a mmaped bo. For in such a case 1523 * we, the page fault handler would call i915_gem_fault() and 1524 * we would try to acquire the struct mutex again. Obviously 1525 * this is bad and so lockdep complains vehemently. 1526 */ 1527 pagefault_disable(); 1528 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); 1529 pagefault_enable(); 1530 if (unlikely(copied)) { 1531 remain = -EFAULT; 1532 goto out; 1533 } 1534 1535 remain -= count; 1536 do { 1537 u64 offset = eb_relocate_entry(eb, vma, r); 1538 1539 if (likely(offset == 0)) { 1540 } else if ((s64)offset < 0) { 1541 remain = (int)offset; 1542 goto out; 1543 } else { 1544 /* 1545 * Note that reporting an error now 1546 * leaves everything in an inconsistent 1547 * state as we have *already* changed 1548 * the relocation value inside the 1549 * object. As we have not changed the 1550 * reloc.presumed_offset or will not 1551 * change the execobject.offset, on the 1552 * call we may not rewrite the value 1553 * inside the object, leaving it 1554 * dangling and causing a GPU hang. Unless 1555 * userspace dynamically rebuilds the 1556 * relocations on each execbuf rather than 1557 * presume a static tree. 1558 * 1559 * We did previously check if the relocations 1560 * were writable (access_ok), an error now 1561 * would be a strange race with mprotect, 1562 * having already demonstrated that we 1563 * can read from this userspace address. 1564 */ 1565 offset = gen8_canonical_addr(offset & ~UPDATE); 1566 if (unlikely(__put_user(offset, &urelocs[r-stack].presumed_offset))) { 1567 remain = -EFAULT; 1568 goto out; 1569 } 1570 } 1571 } while (r++, --count); 1572 urelocs += ARRAY_SIZE(stack); 1573 } while (remain); 1574 out: 1575 reloc_cache_reset(&eb->reloc_cache); 1576 return remain; 1577 } 1578 1579 static int 1580 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma) 1581 { 1582 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma); 1583 struct drm_i915_gem_relocation_entry *relocs = 1584 u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1585 unsigned int i; 1586 int err; 1587 1588 for (i = 0; i < entry->relocation_count; i++) { 1589 u64 offset = eb_relocate_entry(eb, vma, &relocs[i]); 1590 1591 if ((s64)offset < 0) { 1592 err = (int)offset; 1593 goto err; 1594 } 1595 } 1596 err = 0; 1597 err: 1598 reloc_cache_reset(&eb->reloc_cache); 1599 return err; 1600 } 1601 1602 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) 1603 { 1604 const char __user *addr, *end; 1605 unsigned long size; 1606 char __maybe_unused c; 1607 1608 size = entry->relocation_count; 1609 if (size == 0) 1610 return 0; 1611 1612 if (size > N_RELOC(ULONG_MAX)) 1613 return -EINVAL; 1614 1615 addr = u64_to_user_ptr(entry->relocs_ptr); 1616 size *= sizeof(struct drm_i915_gem_relocation_entry); 1617 if (!access_ok(addr, size)) 1618 return -EFAULT; 1619 1620 end = addr + size; 1621 for (; addr < end; addr += PAGE_SIZE) { 1622 int err = __get_user(c, addr); 1623 if (err) 1624 return err; 1625 } 1626 return __get_user(c, end - 1); 1627 } 1628 1629 static int eb_copy_relocations(const struct i915_execbuffer *eb) 1630 { 1631 struct drm_i915_gem_relocation_entry *relocs; 1632 const unsigned int count = eb->buffer_count; 1633 unsigned int i; 1634 int err; 1635 1636 for (i = 0; i < count; i++) { 1637 const unsigned int nreloc = eb->exec[i].relocation_count; 1638 struct drm_i915_gem_relocation_entry __user *urelocs; 1639 unsigned long size; 1640 unsigned long copied; 1641 1642 if (nreloc == 0) 1643 continue; 1644 1645 err = check_relocations(&eb->exec[i]); 1646 if (err) 1647 goto err; 1648 1649 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); 1650 size = nreloc * sizeof(*relocs); 1651 1652 relocs = kvmalloc_array(size, 1, GFP_KERNEL); 1653 if (!relocs) { 1654 err = -ENOMEM; 1655 goto err; 1656 } 1657 1658 /* copy_from_user is limited to < 4GiB */ 1659 copied = 0; 1660 do { 1661 unsigned int len = 1662 min_t(u64, BIT_ULL(31), size - copied); 1663 1664 if (__copy_from_user((char *)relocs + copied, 1665 (char __user *)urelocs + copied, 1666 len)) 1667 goto end; 1668 1669 copied += len; 1670 } while (copied < size); 1671 1672 /* 1673 * As we do not update the known relocation offsets after 1674 * relocating (due to the complexities in lock handling), 1675 * we need to mark them as invalid now so that we force the 1676 * relocation processing next time. Just in case the target 1677 * object is evicted and then rebound into its old 1678 * presumed_offset before the next execbuffer - if that 1679 * happened we would make the mistake of assuming that the 1680 * relocations were valid. 1681 */ 1682 if (!user_access_begin(urelocs, size)) 1683 goto end; 1684 1685 for (copied = 0; copied < nreloc; copied++) 1686 unsafe_put_user(-1, 1687 &urelocs[copied].presumed_offset, 1688 end_user); 1689 user_access_end(); 1690 1691 eb->exec[i].relocs_ptr = (uintptr_t)relocs; 1692 } 1693 1694 return 0; 1695 1696 end_user: 1697 user_access_end(); 1698 end: 1699 kvfree(relocs); 1700 err = -EFAULT; 1701 err: 1702 while (i--) { 1703 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); 1704 if (eb->exec[i].relocation_count) 1705 kvfree(relocs); 1706 } 1707 return err; 1708 } 1709 1710 static int eb_prefault_relocations(const struct i915_execbuffer *eb) 1711 { 1712 const unsigned int count = eb->buffer_count; 1713 unsigned int i; 1714 1715 if (unlikely(i915_modparams.prefault_disable)) 1716 return 0; 1717 1718 for (i = 0; i < count; i++) { 1719 int err; 1720 1721 err = check_relocations(&eb->exec[i]); 1722 if (err) 1723 return err; 1724 } 1725 1726 return 0; 1727 } 1728 1729 static noinline int eb_relocate_slow(struct i915_execbuffer *eb) 1730 { 1731 struct drm_device *dev = &eb->i915->drm; 1732 bool have_copy = false; 1733 struct i915_vma *vma; 1734 int err = 0; 1735 1736 repeat: 1737 if (signal_pending(current)) { 1738 err = -ERESTARTSYS; 1739 goto out; 1740 } 1741 1742 /* We may process another execbuffer during the unlock... */ 1743 eb_reset_vmas(eb); 1744 mutex_unlock(&dev->struct_mutex); 1745 1746 /* 1747 * We take 3 passes through the slowpatch. 1748 * 1749 * 1 - we try to just prefault all the user relocation entries and 1750 * then attempt to reuse the atomic pagefault disabled fast path again. 1751 * 1752 * 2 - we copy the user entries to a local buffer here outside of the 1753 * local and allow ourselves to wait upon any rendering before 1754 * relocations 1755 * 1756 * 3 - we already have a local copy of the relocation entries, but 1757 * were interrupted (EAGAIN) whilst waiting for the objects, try again. 1758 */ 1759 if (!err) { 1760 err = eb_prefault_relocations(eb); 1761 } else if (!have_copy) { 1762 err = eb_copy_relocations(eb); 1763 have_copy = err == 0; 1764 } else { 1765 cond_resched(); 1766 err = 0; 1767 } 1768 if (err) { 1769 mutex_lock(&dev->struct_mutex); 1770 goto out; 1771 } 1772 1773 /* A frequent cause for EAGAIN are currently unavailable client pages */ 1774 flush_workqueue(eb->i915->mm.userptr_wq); 1775 1776 err = i915_mutex_lock_interruptible(dev); 1777 if (err) { 1778 mutex_lock(&dev->struct_mutex); 1779 goto out; 1780 } 1781 1782 /* reacquire the objects */ 1783 err = eb_lookup_vmas(eb); 1784 if (err) 1785 goto err; 1786 1787 GEM_BUG_ON(!eb->batch); 1788 1789 list_for_each_entry(vma, &eb->relocs, reloc_link) { 1790 if (!have_copy) { 1791 pagefault_disable(); 1792 err = eb_relocate_vma(eb, vma); 1793 pagefault_enable(); 1794 if (err) 1795 goto repeat; 1796 } else { 1797 err = eb_relocate_vma_slow(eb, vma); 1798 if (err) 1799 goto err; 1800 } 1801 } 1802 1803 /* 1804 * Leave the user relocations as are, this is the painfully slow path, 1805 * and we want to avoid the complication of dropping the lock whilst 1806 * having buffers reserved in the aperture and so causing spurious 1807 * ENOSPC for random operations. 1808 */ 1809 1810 err: 1811 if (err == -EAGAIN) 1812 goto repeat; 1813 1814 out: 1815 if (have_copy) { 1816 const unsigned int count = eb->buffer_count; 1817 unsigned int i; 1818 1819 for (i = 0; i < count; i++) { 1820 const struct drm_i915_gem_exec_object2 *entry = 1821 &eb->exec[i]; 1822 struct drm_i915_gem_relocation_entry *relocs; 1823 1824 if (!entry->relocation_count) 1825 continue; 1826 1827 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); 1828 kvfree(relocs); 1829 } 1830 } 1831 1832 return err; 1833 } 1834 1835 static int eb_relocate(struct i915_execbuffer *eb) 1836 { 1837 if (eb_lookup_vmas(eb)) 1838 goto slow; 1839 1840 /* The objects are in their final locations, apply the relocations. */ 1841 if (eb->args->flags & __EXEC_HAS_RELOC) { 1842 struct i915_vma *vma; 1843 1844 list_for_each_entry(vma, &eb->relocs, reloc_link) { 1845 if (eb_relocate_vma(eb, vma)) 1846 goto slow; 1847 } 1848 } 1849 1850 return 0; 1851 1852 slow: 1853 return eb_relocate_slow(eb); 1854 } 1855 1856 static int eb_move_to_gpu(struct i915_execbuffer *eb) 1857 { 1858 const unsigned int count = eb->buffer_count; 1859 struct ww_acquire_ctx acquire; 1860 unsigned int i; 1861 int err = 0; 1862 1863 ww_acquire_init(&acquire, &reservation_ww_class); 1864 1865 for (i = 0; i < count; i++) { 1866 struct i915_vma *vma = eb->vma[i]; 1867 1868 err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire); 1869 if (!err) 1870 continue; 1871 1872 GEM_BUG_ON(err == -EALREADY); /* No duplicate vma */ 1873 1874 if (err == -EDEADLK) { 1875 GEM_BUG_ON(i == 0); 1876 do { 1877 int j = i - 1; 1878 1879 ww_mutex_unlock(&eb->vma[j]->resv->lock); 1880 1881 swap(eb->flags[i], eb->flags[j]); 1882 swap(eb->vma[i], eb->vma[j]); 1883 eb->vma[i]->exec_flags = &eb->flags[i]; 1884 } while (--i); 1885 GEM_BUG_ON(vma != eb->vma[0]); 1886 vma->exec_flags = &eb->flags[0]; 1887 1888 err = ww_mutex_lock_slow_interruptible(&vma->resv->lock, 1889 &acquire); 1890 } 1891 if (err) 1892 break; 1893 } 1894 ww_acquire_done(&acquire); 1895 1896 while (i--) { 1897 unsigned int flags = eb->flags[i]; 1898 struct i915_vma *vma = eb->vma[i]; 1899 struct drm_i915_gem_object *obj = vma->obj; 1900 1901 assert_vma_held(vma); 1902 1903 if (flags & EXEC_OBJECT_CAPTURE) { 1904 struct i915_capture_list *capture; 1905 1906 capture = kmalloc(sizeof(*capture), GFP_KERNEL); 1907 if (capture) { 1908 capture->next = eb->request->capture_list; 1909 capture->vma = vma; 1910 eb->request->capture_list = capture; 1911 } 1912 } 1913 1914 /* 1915 * If the GPU is not _reading_ through the CPU cache, we need 1916 * to make sure that any writes (both previous GPU writes from 1917 * before a change in snooping levels and normal CPU writes) 1918 * caught in that cache are flushed to main memory. 1919 * 1920 * We want to say 1921 * obj->cache_dirty && 1922 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) 1923 * but gcc's optimiser doesn't handle that as well and emits 1924 * two jumps instead of one. Maybe one day... 1925 */ 1926 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { 1927 if (i915_gem_clflush_object(obj, 0)) 1928 flags &= ~EXEC_OBJECT_ASYNC; 1929 } 1930 1931 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { 1932 err = i915_request_await_object 1933 (eb->request, obj, flags & EXEC_OBJECT_WRITE); 1934 } 1935 1936 if (err == 0) 1937 err = i915_vma_move_to_active(vma, eb->request, flags); 1938 1939 i915_vma_unlock(vma); 1940 1941 __eb_unreserve_vma(vma, flags); 1942 vma->exec_flags = NULL; 1943 1944 if (unlikely(flags & __EXEC_OBJECT_HAS_REF)) 1945 i915_vma_put(vma); 1946 } 1947 ww_acquire_fini(&acquire); 1948 1949 if (unlikely(err)) 1950 goto err_skip; 1951 1952 eb->exec = NULL; 1953 1954 /* Unconditionally flush any chipset caches (for streaming writes). */ 1955 i915_gem_chipset_flush(eb->i915); 1956 return 0; 1957 1958 err_skip: 1959 i915_request_skip(eb->request, err); 1960 return err; 1961 } 1962 1963 static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) 1964 { 1965 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) 1966 return false; 1967 1968 /* Kernel clipping was a DRI1 misfeature */ 1969 if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) { 1970 if (exec->num_cliprects || exec->cliprects_ptr) 1971 return false; 1972 } 1973 1974 if (exec->DR4 == 0xffffffff) { 1975 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); 1976 exec->DR4 = 0; 1977 } 1978 if (exec->DR1 || exec->DR4) 1979 return false; 1980 1981 if ((exec->batch_start_offset | exec->batch_len) & 0x7) 1982 return false; 1983 1984 return true; 1985 } 1986 1987 static int i915_reset_gen7_sol_offsets(struct i915_request *rq) 1988 { 1989 u32 *cs; 1990 int i; 1991 1992 if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) { 1993 DRM_DEBUG("sol reset is gen7/rcs only\n"); 1994 return -EINVAL; 1995 } 1996 1997 cs = intel_ring_begin(rq, 4 * 2 + 2); 1998 if (IS_ERR(cs)) 1999 return PTR_ERR(cs); 2000 2001 *cs++ = MI_LOAD_REGISTER_IMM(4); 2002 for (i = 0; i < 4; i++) { 2003 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); 2004 *cs++ = 0; 2005 } 2006 *cs++ = MI_NOOP; 2007 intel_ring_advance(rq, cs); 2008 2009 return 0; 2010 } 2011 2012 static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master) 2013 { 2014 struct drm_i915_gem_object *shadow_batch_obj; 2015 struct i915_vma *vma; 2016 int err; 2017 2018 shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, 2019 PAGE_ALIGN(eb->batch_len)); 2020 if (IS_ERR(shadow_batch_obj)) 2021 return ERR_CAST(shadow_batch_obj); 2022 2023 err = intel_engine_cmd_parser(eb->engine, 2024 eb->batch->obj, 2025 shadow_batch_obj, 2026 eb->batch_start_offset, 2027 eb->batch_len, 2028 is_master); 2029 if (err) { 2030 if (err == -EACCES) /* unhandled chained batch */ 2031 vma = NULL; 2032 else 2033 vma = ERR_PTR(err); 2034 goto out; 2035 } 2036 2037 vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0); 2038 if (IS_ERR(vma)) 2039 goto out; 2040 2041 eb->vma[eb->buffer_count] = i915_vma_get(vma); 2042 eb->flags[eb->buffer_count] = 2043 __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF; 2044 vma->exec_flags = &eb->flags[eb->buffer_count]; 2045 eb->buffer_count++; 2046 2047 out: 2048 i915_gem_object_unpin_pages(shadow_batch_obj); 2049 return vma; 2050 } 2051 2052 static void 2053 add_to_client(struct i915_request *rq, struct drm_file *file) 2054 { 2055 rq->file_priv = file->driver_priv; 2056 list_add_tail(&rq->client_link, &rq->file_priv->mm.request_list); 2057 } 2058 2059 static int eb_submit(struct i915_execbuffer *eb) 2060 { 2061 int err; 2062 2063 err = eb_move_to_gpu(eb); 2064 if (err) 2065 return err; 2066 2067 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { 2068 err = i915_reset_gen7_sol_offsets(eb->request); 2069 if (err) 2070 return err; 2071 } 2072 2073 /* 2074 * After we completed waiting for other engines (using HW semaphores) 2075 * then we can signal that this request/batch is ready to run. This 2076 * allows us to determine if the batch is still waiting on the GPU 2077 * or actually running by checking the breadcrumb. 2078 */ 2079 if (eb->engine->emit_init_breadcrumb) { 2080 err = eb->engine->emit_init_breadcrumb(eb->request); 2081 if (err) 2082 return err; 2083 } 2084 2085 err = eb->engine->emit_bb_start(eb->request, 2086 eb->batch->node.start + 2087 eb->batch_start_offset, 2088 eb->batch_len, 2089 eb->batch_flags); 2090 if (err) 2091 return err; 2092 2093 return 0; 2094 } 2095 2096 /* 2097 * Find one BSD ring to dispatch the corresponding BSD command. 2098 * The engine index is returned. 2099 */ 2100 static unsigned int 2101 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, 2102 struct drm_file *file) 2103 { 2104 struct drm_i915_file_private *file_priv = file->driver_priv; 2105 2106 /* Check whether the file_priv has already selected one ring. */ 2107 if ((int)file_priv->bsd_engine < 0) 2108 file_priv->bsd_engine = atomic_fetch_xor(1, 2109 &dev_priv->mm.bsd_engine_dispatch_index); 2110 2111 return file_priv->bsd_engine; 2112 } 2113 2114 static const enum intel_engine_id user_ring_map[] = { 2115 [I915_EXEC_DEFAULT] = RCS0, 2116 [I915_EXEC_RENDER] = RCS0, 2117 [I915_EXEC_BLT] = BCS0, 2118 [I915_EXEC_BSD] = VCS0, 2119 [I915_EXEC_VEBOX] = VECS0 2120 }; 2121 2122 static int eb_pin_context(struct i915_execbuffer *eb, struct intel_context *ce) 2123 { 2124 int err; 2125 2126 /* 2127 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report 2128 * EIO if the GPU is already wedged. 2129 */ 2130 err = i915_terminally_wedged(eb->i915); 2131 if (err) 2132 return err; 2133 2134 /* 2135 * Pinning the contexts may generate requests in order to acquire 2136 * GGTT space, so do this first before we reserve a seqno for 2137 * ourselves. 2138 */ 2139 err = intel_context_pin(ce); 2140 if (err) 2141 return err; 2142 2143 eb->engine = ce->engine; 2144 eb->context = ce; 2145 return 0; 2146 } 2147 2148 static void eb_unpin_context(struct i915_execbuffer *eb) 2149 { 2150 intel_context_unpin(eb->context); 2151 } 2152 2153 static unsigned int 2154 eb_select_legacy_ring(struct i915_execbuffer *eb, 2155 struct drm_file *file, 2156 struct drm_i915_gem_execbuffer2 *args) 2157 { 2158 struct drm_i915_private *i915 = eb->i915; 2159 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; 2160 2161 if (user_ring_id != I915_EXEC_BSD && 2162 (args->flags & I915_EXEC_BSD_MASK)) { 2163 DRM_DEBUG("execbuf with non bsd ring but with invalid " 2164 "bsd dispatch flags: %d\n", (int)(args->flags)); 2165 return -1; 2166 } 2167 2168 if (user_ring_id == I915_EXEC_BSD && HAS_ENGINE(i915, VCS1)) { 2169 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; 2170 2171 if (bsd_idx == I915_EXEC_BSD_DEFAULT) { 2172 bsd_idx = gen8_dispatch_bsd_engine(i915, file); 2173 } else if (bsd_idx >= I915_EXEC_BSD_RING1 && 2174 bsd_idx <= I915_EXEC_BSD_RING2) { 2175 bsd_idx >>= I915_EXEC_BSD_SHIFT; 2176 bsd_idx--; 2177 } else { 2178 DRM_DEBUG("execbuf with unknown bsd ring: %u\n", 2179 bsd_idx); 2180 return -1; 2181 } 2182 2183 return _VCS(bsd_idx); 2184 } 2185 2186 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { 2187 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id); 2188 return -1; 2189 } 2190 2191 return user_ring_map[user_ring_id]; 2192 } 2193 2194 static int 2195 eb_select_engine(struct i915_execbuffer *eb, 2196 struct drm_file *file, 2197 struct drm_i915_gem_execbuffer2 *args) 2198 { 2199 struct intel_context *ce; 2200 unsigned int idx; 2201 int err; 2202 2203 if (i915_gem_context_user_engines(eb->gem_context)) 2204 idx = args->flags & I915_EXEC_RING_MASK; 2205 else 2206 idx = eb_select_legacy_ring(eb, file, args); 2207 2208 ce = i915_gem_context_get_engine(eb->gem_context, idx); 2209 if (IS_ERR(ce)) 2210 return PTR_ERR(ce); 2211 2212 err = eb_pin_context(eb, ce); 2213 intel_context_put(ce); 2214 2215 return err; 2216 } 2217 2218 static void 2219 __free_fence_array(struct drm_syncobj **fences, unsigned int n) 2220 { 2221 while (n--) 2222 drm_syncobj_put(ptr_mask_bits(fences[n], 2)); 2223 kvfree(fences); 2224 } 2225 2226 static struct drm_syncobj ** 2227 get_fence_array(struct drm_i915_gem_execbuffer2 *args, 2228 struct drm_file *file) 2229 { 2230 const unsigned long nfences = args->num_cliprects; 2231 struct drm_i915_gem_exec_fence __user *user; 2232 struct drm_syncobj **fences; 2233 unsigned long n; 2234 int err; 2235 2236 if (!(args->flags & I915_EXEC_FENCE_ARRAY)) 2237 return NULL; 2238 2239 /* Check multiplication overflow for access_ok() and kvmalloc_array() */ 2240 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); 2241 if (nfences > min_t(unsigned long, 2242 ULONG_MAX / sizeof(*user), 2243 SIZE_MAX / sizeof(*fences))) 2244 return ERR_PTR(-EINVAL); 2245 2246 user = u64_to_user_ptr(args->cliprects_ptr); 2247 if (!access_ok(user, nfences * sizeof(*user))) 2248 return ERR_PTR(-EFAULT); 2249 2250 fences = kvmalloc_array(nfences, sizeof(*fences), 2251 __GFP_NOWARN | GFP_KERNEL); 2252 if (!fences) 2253 return ERR_PTR(-ENOMEM); 2254 2255 for (n = 0; n < nfences; n++) { 2256 struct drm_i915_gem_exec_fence fence; 2257 struct drm_syncobj *syncobj; 2258 2259 if (__copy_from_user(&fence, user++, sizeof(fence))) { 2260 err = -EFAULT; 2261 goto err; 2262 } 2263 2264 if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) { 2265 err = -EINVAL; 2266 goto err; 2267 } 2268 2269 syncobj = drm_syncobj_find(file, fence.handle); 2270 if (!syncobj) { 2271 DRM_DEBUG("Invalid syncobj handle provided\n"); 2272 err = -ENOENT; 2273 goto err; 2274 } 2275 2276 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & 2277 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); 2278 2279 fences[n] = ptr_pack_bits(syncobj, fence.flags, 2); 2280 } 2281 2282 return fences; 2283 2284 err: 2285 __free_fence_array(fences, n); 2286 return ERR_PTR(err); 2287 } 2288 2289 static void 2290 put_fence_array(struct drm_i915_gem_execbuffer2 *args, 2291 struct drm_syncobj **fences) 2292 { 2293 if (fences) 2294 __free_fence_array(fences, args->num_cliprects); 2295 } 2296 2297 static int 2298 await_fence_array(struct i915_execbuffer *eb, 2299 struct drm_syncobj **fences) 2300 { 2301 const unsigned int nfences = eb->args->num_cliprects; 2302 unsigned int n; 2303 int err; 2304 2305 for (n = 0; n < nfences; n++) { 2306 struct drm_syncobj *syncobj; 2307 struct dma_fence *fence; 2308 unsigned int flags; 2309 2310 syncobj = ptr_unpack_bits(fences[n], &flags, 2); 2311 if (!(flags & I915_EXEC_FENCE_WAIT)) 2312 continue; 2313 2314 fence = drm_syncobj_fence_get(syncobj); 2315 if (!fence) 2316 return -EINVAL; 2317 2318 err = i915_request_await_dma_fence(eb->request, fence); 2319 dma_fence_put(fence); 2320 if (err < 0) 2321 return err; 2322 } 2323 2324 return 0; 2325 } 2326 2327 static void 2328 signal_fence_array(struct i915_execbuffer *eb, 2329 struct drm_syncobj **fences) 2330 { 2331 const unsigned int nfences = eb->args->num_cliprects; 2332 struct dma_fence * const fence = &eb->request->fence; 2333 unsigned int n; 2334 2335 for (n = 0; n < nfences; n++) { 2336 struct drm_syncobj *syncobj; 2337 unsigned int flags; 2338 2339 syncobj = ptr_unpack_bits(fences[n], &flags, 2); 2340 if (!(flags & I915_EXEC_FENCE_SIGNAL)) 2341 continue; 2342 2343 drm_syncobj_replace_fence(syncobj, fence); 2344 } 2345 } 2346 2347 static int 2348 i915_gem_do_execbuffer(struct drm_device *dev, 2349 struct drm_file *file, 2350 struct drm_i915_gem_execbuffer2 *args, 2351 struct drm_i915_gem_exec_object2 *exec, 2352 struct drm_syncobj **fences) 2353 { 2354 struct i915_execbuffer eb; 2355 struct dma_fence *in_fence = NULL; 2356 struct dma_fence *exec_fence = NULL; 2357 struct sync_file *out_fence = NULL; 2358 int out_fence_fd = -1; 2359 int err; 2360 2361 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); 2362 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & 2363 ~__EXEC_OBJECT_UNKNOWN_FLAGS); 2364 2365 eb.i915 = to_i915(dev); 2366 eb.file = file; 2367 eb.args = args; 2368 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) 2369 args->flags |= __EXEC_HAS_RELOC; 2370 2371 eb.exec = exec; 2372 eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1); 2373 eb.vma[0] = NULL; 2374 eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1); 2375 2376 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; 2377 reloc_cache_init(&eb.reloc_cache, eb.i915); 2378 2379 eb.buffer_count = args->buffer_count; 2380 eb.batch_start_offset = args->batch_start_offset; 2381 eb.batch_len = args->batch_len; 2382 2383 eb.batch_flags = 0; 2384 if (args->flags & I915_EXEC_SECURE) { 2385 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) 2386 return -EPERM; 2387 2388 eb.batch_flags |= I915_DISPATCH_SECURE; 2389 } 2390 if (args->flags & I915_EXEC_IS_PINNED) 2391 eb.batch_flags |= I915_DISPATCH_PINNED; 2392 2393 if (args->flags & I915_EXEC_FENCE_IN) { 2394 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 2395 if (!in_fence) 2396 return -EINVAL; 2397 } 2398 2399 if (args->flags & I915_EXEC_FENCE_SUBMIT) { 2400 if (in_fence) { 2401 err = -EINVAL; 2402 goto err_in_fence; 2403 } 2404 2405 exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); 2406 if (!exec_fence) { 2407 err = -EINVAL; 2408 goto err_in_fence; 2409 } 2410 } 2411 2412 if (args->flags & I915_EXEC_FENCE_OUT) { 2413 out_fence_fd = get_unused_fd_flags(O_CLOEXEC); 2414 if (out_fence_fd < 0) { 2415 err = out_fence_fd; 2416 goto err_exec_fence; 2417 } 2418 } 2419 2420 err = eb_create(&eb); 2421 if (err) 2422 goto err_out_fence; 2423 2424 GEM_BUG_ON(!eb.lut_size); 2425 2426 err = eb_select_context(&eb); 2427 if (unlikely(err)) 2428 goto err_destroy; 2429 2430 /* 2431 * Take a local wakeref for preparing to dispatch the execbuf as 2432 * we expect to access the hardware fairly frequently in the 2433 * process. Upon first dispatch, we acquire another prolonged 2434 * wakeref that we hold until the GPU has been idle for at least 2435 * 100ms. 2436 */ 2437 intel_gt_pm_get(eb.i915); 2438 2439 err = i915_mutex_lock_interruptible(dev); 2440 if (err) 2441 goto err_rpm; 2442 2443 err = eb_select_engine(&eb, file, args); 2444 if (unlikely(err)) 2445 goto err_unlock; 2446 2447 err = eb_wait_for_ring(&eb); /* may temporarily drop struct_mutex */ 2448 if (unlikely(err)) 2449 goto err_engine; 2450 2451 err = eb_relocate(&eb); 2452 if (err) { 2453 /* 2454 * If the user expects the execobject.offset and 2455 * reloc.presumed_offset to be an exact match, 2456 * as for using NO_RELOC, then we cannot update 2457 * the execobject.offset until we have completed 2458 * relocation. 2459 */ 2460 args->flags &= ~__EXEC_HAS_RELOC; 2461 goto err_vma; 2462 } 2463 2464 if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) { 2465 DRM_DEBUG("Attempting to use self-modifying batch buffer\n"); 2466 err = -EINVAL; 2467 goto err_vma; 2468 } 2469 if (eb.batch_start_offset > eb.batch->size || 2470 eb.batch_len > eb.batch->size - eb.batch_start_offset) { 2471 DRM_DEBUG("Attempting to use out-of-bounds batch\n"); 2472 err = -EINVAL; 2473 goto err_vma; 2474 } 2475 2476 if (eb_use_cmdparser(&eb)) { 2477 struct i915_vma *vma; 2478 2479 vma = eb_parse(&eb, drm_is_current_master(file)); 2480 if (IS_ERR(vma)) { 2481 err = PTR_ERR(vma); 2482 goto err_vma; 2483 } 2484 2485 if (vma) { 2486 /* 2487 * Batch parsed and accepted: 2488 * 2489 * Set the DISPATCH_SECURE bit to remove the NON_SECURE 2490 * bit from MI_BATCH_BUFFER_START commands issued in 2491 * the dispatch_execbuffer implementations. We 2492 * specifically don't want that set on batches the 2493 * command parser has accepted. 2494 */ 2495 eb.batch_flags |= I915_DISPATCH_SECURE; 2496 eb.batch_start_offset = 0; 2497 eb.batch = vma; 2498 } 2499 } 2500 2501 if (eb.batch_len == 0) 2502 eb.batch_len = eb.batch->size - eb.batch_start_offset; 2503 2504 /* 2505 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure 2506 * batch" bit. Hence we need to pin secure batches into the global gtt. 2507 * hsw should have this fixed, but bdw mucks it up again. */ 2508 if (eb.batch_flags & I915_DISPATCH_SECURE) { 2509 struct i915_vma *vma; 2510 2511 /* 2512 * So on first glance it looks freaky that we pin the batch here 2513 * outside of the reservation loop. But: 2514 * - The batch is already pinned into the relevant ppgtt, so we 2515 * already have the backing storage fully allocated. 2516 * - No other BO uses the global gtt (well contexts, but meh), 2517 * so we don't really have issues with multiple objects not 2518 * fitting due to fragmentation. 2519 * So this is actually safe. 2520 */ 2521 vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0); 2522 if (IS_ERR(vma)) { 2523 err = PTR_ERR(vma); 2524 goto err_vma; 2525 } 2526 2527 eb.batch = vma; 2528 } 2529 2530 /* All GPU relocation batches must be submitted prior to the user rq */ 2531 GEM_BUG_ON(eb.reloc_cache.rq); 2532 2533 /* Allocate a request for this batch buffer nice and early. */ 2534 eb.request = i915_request_create(eb.context); 2535 if (IS_ERR(eb.request)) { 2536 err = PTR_ERR(eb.request); 2537 goto err_batch_unpin; 2538 } 2539 2540 if (in_fence) { 2541 err = i915_request_await_dma_fence(eb.request, in_fence); 2542 if (err < 0) 2543 goto err_request; 2544 } 2545 2546 if (exec_fence) { 2547 err = i915_request_await_execution(eb.request, exec_fence, 2548 eb.engine->bond_execute); 2549 if (err < 0) 2550 goto err_request; 2551 } 2552 2553 if (fences) { 2554 err = await_fence_array(&eb, fences); 2555 if (err) 2556 goto err_request; 2557 } 2558 2559 if (out_fence_fd != -1) { 2560 out_fence = sync_file_create(&eb.request->fence); 2561 if (!out_fence) { 2562 err = -ENOMEM; 2563 goto err_request; 2564 } 2565 } 2566 2567 /* 2568 * Whilst this request exists, batch_obj will be on the 2569 * active_list, and so will hold the active reference. Only when this 2570 * request is retired will the the batch_obj be moved onto the 2571 * inactive_list and lose its active reference. Hence we do not need 2572 * to explicitly hold another reference here. 2573 */ 2574 eb.request->batch = eb.batch; 2575 2576 trace_i915_request_queue(eb.request, eb.batch_flags); 2577 err = eb_submit(&eb); 2578 err_request: 2579 add_to_client(eb.request, file); 2580 i915_request_add(eb.request); 2581 2582 if (fences) 2583 signal_fence_array(&eb, fences); 2584 2585 if (out_fence) { 2586 if (err == 0) { 2587 fd_install(out_fence_fd, out_fence->file); 2588 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ 2589 args->rsvd2 |= (u64)out_fence_fd << 32; 2590 out_fence_fd = -1; 2591 } else { 2592 fput(out_fence->file); 2593 } 2594 } 2595 2596 err_batch_unpin: 2597 if (eb.batch_flags & I915_DISPATCH_SECURE) 2598 i915_vma_unpin(eb.batch); 2599 err_vma: 2600 if (eb.exec) 2601 eb_release_vmas(&eb); 2602 err_engine: 2603 eb_unpin_context(&eb); 2604 err_unlock: 2605 mutex_unlock(&dev->struct_mutex); 2606 err_rpm: 2607 intel_gt_pm_put(eb.i915); 2608 i915_gem_context_put(eb.gem_context); 2609 err_destroy: 2610 eb_destroy(&eb); 2611 err_out_fence: 2612 if (out_fence_fd != -1) 2613 put_unused_fd(out_fence_fd); 2614 err_exec_fence: 2615 dma_fence_put(exec_fence); 2616 err_in_fence: 2617 dma_fence_put(in_fence); 2618 return err; 2619 } 2620 2621 static size_t eb_element_size(void) 2622 { 2623 return (sizeof(struct drm_i915_gem_exec_object2) + 2624 sizeof(struct i915_vma *) + 2625 sizeof(unsigned int)); 2626 } 2627 2628 static bool check_buffer_count(size_t count) 2629 { 2630 const size_t sz = eb_element_size(); 2631 2632 /* 2633 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup 2634 * array size (see eb_create()). Otherwise, we can accept an array as 2635 * large as can be addressed (though use large arrays at your peril)! 2636 */ 2637 2638 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); 2639 } 2640 2641 /* 2642 * Legacy execbuffer just creates an exec2 list from the original exec object 2643 * list array and passes it to the real function. 2644 */ 2645 int 2646 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data, 2647 struct drm_file *file) 2648 { 2649 struct drm_i915_gem_execbuffer *args = data; 2650 struct drm_i915_gem_execbuffer2 exec2; 2651 struct drm_i915_gem_exec_object *exec_list = NULL; 2652 struct drm_i915_gem_exec_object2 *exec2_list = NULL; 2653 const size_t count = args->buffer_count; 2654 unsigned int i; 2655 int err; 2656 2657 if (!check_buffer_count(count)) { 2658 DRM_DEBUG("execbuf2 with %zd buffers\n", count); 2659 return -EINVAL; 2660 } 2661 2662 exec2.buffers_ptr = args->buffers_ptr; 2663 exec2.buffer_count = args->buffer_count; 2664 exec2.batch_start_offset = args->batch_start_offset; 2665 exec2.batch_len = args->batch_len; 2666 exec2.DR1 = args->DR1; 2667 exec2.DR4 = args->DR4; 2668 exec2.num_cliprects = args->num_cliprects; 2669 exec2.cliprects_ptr = args->cliprects_ptr; 2670 exec2.flags = I915_EXEC_RENDER; 2671 i915_execbuffer2_set_context_id(exec2, 0); 2672 2673 if (!i915_gem_check_execbuffer(&exec2)) 2674 return -EINVAL; 2675 2676 /* Copy in the exec list from userland */ 2677 exec_list = kvmalloc_array(count, sizeof(*exec_list), 2678 __GFP_NOWARN | GFP_KERNEL); 2679 exec2_list = kvmalloc_array(count + 1, eb_element_size(), 2680 __GFP_NOWARN | GFP_KERNEL); 2681 if (exec_list == NULL || exec2_list == NULL) { 2682 DRM_DEBUG("Failed to allocate exec list for %d buffers\n", 2683 args->buffer_count); 2684 kvfree(exec_list); 2685 kvfree(exec2_list); 2686 return -ENOMEM; 2687 } 2688 err = copy_from_user(exec_list, 2689 u64_to_user_ptr(args->buffers_ptr), 2690 sizeof(*exec_list) * count); 2691 if (err) { 2692 DRM_DEBUG("copy %d exec entries failed %d\n", 2693 args->buffer_count, err); 2694 kvfree(exec_list); 2695 kvfree(exec2_list); 2696 return -EFAULT; 2697 } 2698 2699 for (i = 0; i < args->buffer_count; i++) { 2700 exec2_list[i].handle = exec_list[i].handle; 2701 exec2_list[i].relocation_count = exec_list[i].relocation_count; 2702 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr; 2703 exec2_list[i].alignment = exec_list[i].alignment; 2704 exec2_list[i].offset = exec_list[i].offset; 2705 if (INTEL_GEN(to_i915(dev)) < 4) 2706 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE; 2707 else 2708 exec2_list[i].flags = 0; 2709 } 2710 2711 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL); 2712 if (exec2.flags & __EXEC_HAS_RELOC) { 2713 struct drm_i915_gem_exec_object __user *user_exec_list = 2714 u64_to_user_ptr(args->buffers_ptr); 2715 2716 /* Copy the new buffer offsets back to the user's exec list. */ 2717 for (i = 0; i < args->buffer_count; i++) { 2718 if (!(exec2_list[i].offset & UPDATE)) 2719 continue; 2720 2721 exec2_list[i].offset = 2722 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 2723 exec2_list[i].offset &= PIN_OFFSET_MASK; 2724 if (__copy_to_user(&user_exec_list[i].offset, 2725 &exec2_list[i].offset, 2726 sizeof(user_exec_list[i].offset))) 2727 break; 2728 } 2729 } 2730 2731 kvfree(exec_list); 2732 kvfree(exec2_list); 2733 return err; 2734 } 2735 2736 int 2737 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, 2738 struct drm_file *file) 2739 { 2740 struct drm_i915_gem_execbuffer2 *args = data; 2741 struct drm_i915_gem_exec_object2 *exec2_list; 2742 struct drm_syncobj **fences = NULL; 2743 const size_t count = args->buffer_count; 2744 int err; 2745 2746 if (!check_buffer_count(count)) { 2747 DRM_DEBUG("execbuf2 with %zd buffers\n", count); 2748 return -EINVAL; 2749 } 2750 2751 if (!i915_gem_check_execbuffer(args)) 2752 return -EINVAL; 2753 2754 /* Allocate an extra slot for use by the command parser */ 2755 exec2_list = kvmalloc_array(count + 1, eb_element_size(), 2756 __GFP_NOWARN | GFP_KERNEL); 2757 if (exec2_list == NULL) { 2758 DRM_DEBUG("Failed to allocate exec list for %zd buffers\n", 2759 count); 2760 return -ENOMEM; 2761 } 2762 if (copy_from_user(exec2_list, 2763 u64_to_user_ptr(args->buffers_ptr), 2764 sizeof(*exec2_list) * count)) { 2765 DRM_DEBUG("copy %zd exec entries failed\n", count); 2766 kvfree(exec2_list); 2767 return -EFAULT; 2768 } 2769 2770 if (args->flags & I915_EXEC_FENCE_ARRAY) { 2771 fences = get_fence_array(args, file); 2772 if (IS_ERR(fences)) { 2773 kvfree(exec2_list); 2774 return PTR_ERR(fences); 2775 } 2776 } 2777 2778 err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences); 2779 2780 /* 2781 * Now that we have begun execution of the batchbuffer, we ignore 2782 * any new error after this point. Also given that we have already 2783 * updated the associated relocations, we try to write out the current 2784 * object locations irrespective of any error. 2785 */ 2786 if (args->flags & __EXEC_HAS_RELOC) { 2787 struct drm_i915_gem_exec_object2 __user *user_exec_list = 2788 u64_to_user_ptr(args->buffers_ptr); 2789 unsigned int i; 2790 2791 /* Copy the new buffer offsets back to the user's exec list. */ 2792 /* 2793 * Note: count * sizeof(*user_exec_list) does not overflow, 2794 * because we checked 'count' in check_buffer_count(). 2795 * 2796 * And this range already got effectively checked earlier 2797 * when we did the "copy_from_user()" above. 2798 */ 2799 if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list))) 2800 goto end; 2801 2802 for (i = 0; i < args->buffer_count; i++) { 2803 if (!(exec2_list[i].offset & UPDATE)) 2804 continue; 2805 2806 exec2_list[i].offset = 2807 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); 2808 unsafe_put_user(exec2_list[i].offset, 2809 &user_exec_list[i].offset, 2810 end_user); 2811 } 2812 end_user: 2813 user_access_end(); 2814 end:; 2815 } 2816 2817 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; 2818 put_fence_array(args, fences); 2819 kvfree(exec2_list); 2820 return err; 2821 } 2822