1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2014-2016 Intel Corporation
5  */
6 
7 #include "display/intel_frontbuffer.h"
8 
9 #include "i915_drv.h"
10 #include "i915_gem_clflush.h"
11 #include "i915_gem_gtt.h"
12 #include "i915_gem_ioctls.h"
13 #include "i915_gem_object.h"
14 #include "i915_vma.h"
15 
16 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
17 {
18 	/*
19 	 * We manually flush the CPU domain so that we can override and
20 	 * force the flush for the display, and perform it asyncrhonously.
21 	 */
22 	i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
23 	if (obj->cache_dirty)
24 		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
25 	obj->write_domain = 0;
26 }
27 
28 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
29 {
30 	if (!READ_ONCE(obj->pin_global))
31 		return;
32 
33 	i915_gem_object_lock(obj);
34 	__i915_gem_object_flush_for_display(obj);
35 	i915_gem_object_unlock(obj);
36 }
37 
38 /**
39  * Moves a single object to the WC read, and possibly write domain.
40  * @obj: object to act on
41  * @write: ask for write access or read only
42  *
43  * This function returns when the move is complete, including waiting on
44  * flushes to occur.
45  */
46 int
47 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
48 {
49 	int ret;
50 
51 	assert_object_held(obj);
52 
53 	ret = i915_gem_object_wait(obj,
54 				   I915_WAIT_INTERRUPTIBLE |
55 				   (write ? I915_WAIT_ALL : 0),
56 				   MAX_SCHEDULE_TIMEOUT);
57 	if (ret)
58 		return ret;
59 
60 	if (obj->write_domain == I915_GEM_DOMAIN_WC)
61 		return 0;
62 
63 	/* Flush and acquire obj->pages so that we are coherent through
64 	 * direct access in memory with previous cached writes through
65 	 * shmemfs and that our cache domain tracking remains valid.
66 	 * For example, if the obj->filp was moved to swap without us
67 	 * being notified and releasing the pages, we would mistakenly
68 	 * continue to assume that the obj remained out of the CPU cached
69 	 * domain.
70 	 */
71 	ret = i915_gem_object_pin_pages(obj);
72 	if (ret)
73 		return ret;
74 
75 	i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
76 
77 	/* Serialise direct access to this object with the barriers for
78 	 * coherent writes from the GPU, by effectively invalidating the
79 	 * WC domain upon first access.
80 	 */
81 	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
82 		mb();
83 
84 	/* It should now be out of any other write domains, and we can update
85 	 * the domain values for our changes.
86 	 */
87 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
88 	obj->read_domains |= I915_GEM_DOMAIN_WC;
89 	if (write) {
90 		obj->read_domains = I915_GEM_DOMAIN_WC;
91 		obj->write_domain = I915_GEM_DOMAIN_WC;
92 		obj->mm.dirty = true;
93 	}
94 
95 	i915_gem_object_unpin_pages(obj);
96 	return 0;
97 }
98 
99 /**
100  * Moves a single object to the GTT read, and possibly write domain.
101  * @obj: object to act on
102  * @write: ask for write access or read only
103  *
104  * This function returns when the move is complete, including waiting on
105  * flushes to occur.
106  */
107 int
108 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
109 {
110 	int ret;
111 
112 	assert_object_held(obj);
113 
114 	ret = i915_gem_object_wait(obj,
115 				   I915_WAIT_INTERRUPTIBLE |
116 				   (write ? I915_WAIT_ALL : 0),
117 				   MAX_SCHEDULE_TIMEOUT);
118 	if (ret)
119 		return ret;
120 
121 	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
122 		return 0;
123 
124 	/* Flush and acquire obj->pages so that we are coherent through
125 	 * direct access in memory with previous cached writes through
126 	 * shmemfs and that our cache domain tracking remains valid.
127 	 * For example, if the obj->filp was moved to swap without us
128 	 * being notified and releasing the pages, we would mistakenly
129 	 * continue to assume that the obj remained out of the CPU cached
130 	 * domain.
131 	 */
132 	ret = i915_gem_object_pin_pages(obj);
133 	if (ret)
134 		return ret;
135 
136 	i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
137 
138 	/* Serialise direct access to this object with the barriers for
139 	 * coherent writes from the GPU, by effectively invalidating the
140 	 * GTT domain upon first access.
141 	 */
142 	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
143 		mb();
144 
145 	/* It should now be out of any other write domains, and we can update
146 	 * the domain values for our changes.
147 	 */
148 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
149 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
150 	if (write) {
151 		obj->read_domains = I915_GEM_DOMAIN_GTT;
152 		obj->write_domain = I915_GEM_DOMAIN_GTT;
153 		obj->mm.dirty = true;
154 	}
155 
156 	i915_gem_object_unpin_pages(obj);
157 	return 0;
158 }
159 
160 /**
161  * Changes the cache-level of an object across all VMA.
162  * @obj: object to act on
163  * @cache_level: new cache level to set for the object
164  *
165  * After this function returns, the object will be in the new cache-level
166  * across all GTT and the contents of the backing storage will be coherent,
167  * with respect to the new cache-level. In order to keep the backing storage
168  * coherent for all users, we only allow a single cache level to be set
169  * globally on the object and prevent it from being changed whilst the
170  * hardware is reading from the object. That is if the object is currently
171  * on the scanout it will be set to uncached (or equivalent display
172  * cache coherency) and all non-MOCS GPU access will also be uncached so
173  * that all direct access to the scanout remains coherent.
174  */
175 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
176 				    enum i915_cache_level cache_level)
177 {
178 	struct i915_vma *vma;
179 	int ret;
180 
181 	assert_object_held(obj);
182 
183 	if (obj->cache_level == cache_level)
184 		return 0;
185 
186 	/* Inspect the list of currently bound VMA and unbind any that would
187 	 * be invalid given the new cache-level. This is principally to
188 	 * catch the issue of the CS prefetch crossing page boundaries and
189 	 * reading an invalid PTE on older architectures.
190 	 */
191 restart:
192 	list_for_each_entry(vma, &obj->vma.list, obj_link) {
193 		if (!drm_mm_node_allocated(&vma->node))
194 			continue;
195 
196 		if (i915_vma_is_pinned(vma)) {
197 			DRM_DEBUG("can not change the cache level of pinned objects\n");
198 			return -EBUSY;
199 		}
200 
201 		if (!i915_vma_is_closed(vma) &&
202 		    i915_gem_valid_gtt_space(vma, cache_level))
203 			continue;
204 
205 		ret = i915_vma_unbind(vma);
206 		if (ret)
207 			return ret;
208 
209 		/* As unbinding may affect other elements in the
210 		 * obj->vma_list (due to side-effects from retiring
211 		 * an active vma), play safe and restart the iterator.
212 		 */
213 		goto restart;
214 	}
215 
216 	/* We can reuse the existing drm_mm nodes but need to change the
217 	 * cache-level on the PTE. We could simply unbind them all and
218 	 * rebind with the correct cache-level on next use. However since
219 	 * we already have a valid slot, dma mapping, pages etc, we may as
220 	 * rewrite the PTE in the belief that doing so tramples upon less
221 	 * state and so involves less work.
222 	 */
223 	if (atomic_read(&obj->bind_count)) {
224 		struct drm_i915_private *i915 = to_i915(obj->base.dev);
225 
226 		/* Before we change the PTE, the GPU must not be accessing it.
227 		 * If we wait upon the object, we know that all the bound
228 		 * VMA are no longer active.
229 		 */
230 		ret = i915_gem_object_wait(obj,
231 					   I915_WAIT_INTERRUPTIBLE |
232 					   I915_WAIT_ALL,
233 					   MAX_SCHEDULE_TIMEOUT);
234 		if (ret)
235 			return ret;
236 
237 		if (!HAS_LLC(i915) && cache_level != I915_CACHE_NONE) {
238 			intel_wakeref_t wakeref =
239 				intel_runtime_pm_get(&i915->runtime_pm);
240 
241 			/*
242 			 * Access to snoopable pages through the GTT is
243 			 * incoherent and on some machines causes a hard
244 			 * lockup. Relinquish the CPU mmaping to force
245 			 * userspace to refault in the pages and we can
246 			 * then double check if the GTT mapping is still
247 			 * valid for that pointer access.
248 			 */
249 			ret = mutex_lock_interruptible(&i915->ggtt.vm.mutex);
250 			if (ret) {
251 				intel_runtime_pm_put(&i915->runtime_pm,
252 						     wakeref);
253 				return ret;
254 			}
255 
256 			if (obj->userfault_count)
257 				__i915_gem_object_release_mmap(obj);
258 
259 			/*
260 			 * As we no longer need a fence for GTT access,
261 			 * we can relinquish it now (and so prevent having
262 			 * to steal a fence from someone else on the next
263 			 * fence request). Note GPU activity would have
264 			 * dropped the fence as all snoopable access is
265 			 * supposed to be linear.
266 			 */
267 			for_each_ggtt_vma(vma, obj) {
268 				ret = i915_vma_revoke_fence(vma);
269 				if (ret)
270 					break;
271 			}
272 			mutex_unlock(&i915->ggtt.vm.mutex);
273 			intel_runtime_pm_put(&i915->runtime_pm, wakeref);
274 			if (ret)
275 				return ret;
276 		} else {
277 			/*
278 			 * We either have incoherent backing store and
279 			 * so no GTT access or the architecture is fully
280 			 * coherent. In such cases, existing GTT mmaps
281 			 * ignore the cache bit in the PTE and we can
282 			 * rewrite it without confusing the GPU or having
283 			 * to force userspace to fault back in its mmaps.
284 			 */
285 		}
286 
287 		list_for_each_entry(vma, &obj->vma.list, obj_link) {
288 			if (!drm_mm_node_allocated(&vma->node))
289 				continue;
290 
291 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
292 			if (ret)
293 				return ret;
294 		}
295 	}
296 
297 	list_for_each_entry(vma, &obj->vma.list, obj_link)
298 		vma->node.color = cache_level;
299 	i915_gem_object_set_cache_coherency(obj, cache_level);
300 	obj->cache_dirty = true; /* Always invalidate stale cachelines */
301 
302 	return 0;
303 }
304 
305 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
306 			       struct drm_file *file)
307 {
308 	struct drm_i915_gem_caching *args = data;
309 	struct drm_i915_gem_object *obj;
310 	int err = 0;
311 
312 	rcu_read_lock();
313 	obj = i915_gem_object_lookup_rcu(file, args->handle);
314 	if (!obj) {
315 		err = -ENOENT;
316 		goto out;
317 	}
318 
319 	switch (obj->cache_level) {
320 	case I915_CACHE_LLC:
321 	case I915_CACHE_L3_LLC:
322 		args->caching = I915_CACHING_CACHED;
323 		break;
324 
325 	case I915_CACHE_WT:
326 		args->caching = I915_CACHING_DISPLAY;
327 		break;
328 
329 	default:
330 		args->caching = I915_CACHING_NONE;
331 		break;
332 	}
333 out:
334 	rcu_read_unlock();
335 	return err;
336 }
337 
338 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
339 			       struct drm_file *file)
340 {
341 	struct drm_i915_private *i915 = to_i915(dev);
342 	struct drm_i915_gem_caching *args = data;
343 	struct drm_i915_gem_object *obj;
344 	enum i915_cache_level level;
345 	int ret = 0;
346 
347 	switch (args->caching) {
348 	case I915_CACHING_NONE:
349 		level = I915_CACHE_NONE;
350 		break;
351 	case I915_CACHING_CACHED:
352 		/*
353 		 * Due to a HW issue on BXT A stepping, GPU stores via a
354 		 * snooped mapping may leave stale data in a corresponding CPU
355 		 * cacheline, whereas normally such cachelines would get
356 		 * invalidated.
357 		 */
358 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
359 			return -ENODEV;
360 
361 		level = I915_CACHE_LLC;
362 		break;
363 	case I915_CACHING_DISPLAY:
364 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
365 		break;
366 	default:
367 		return -EINVAL;
368 	}
369 
370 	obj = i915_gem_object_lookup(file, args->handle);
371 	if (!obj)
372 		return -ENOENT;
373 
374 	/*
375 	 * The caching mode of proxy object is handled by its generator, and
376 	 * not allowed to be changed by userspace.
377 	 */
378 	if (i915_gem_object_is_proxy(obj)) {
379 		ret = -ENXIO;
380 		goto out;
381 	}
382 
383 	if (obj->cache_level == level)
384 		goto out;
385 
386 	ret = i915_gem_object_wait(obj,
387 				   I915_WAIT_INTERRUPTIBLE,
388 				   MAX_SCHEDULE_TIMEOUT);
389 	if (ret)
390 		goto out;
391 
392 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
393 	if (ret)
394 		goto out;
395 
396 	ret = i915_gem_object_lock_interruptible(obj);
397 	if (ret == 0) {
398 		ret = i915_gem_object_set_cache_level(obj, level);
399 		i915_gem_object_unlock(obj);
400 	}
401 	mutex_unlock(&i915->drm.struct_mutex);
402 
403 out:
404 	i915_gem_object_put(obj);
405 	return ret;
406 }
407 
408 /*
409  * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
410  * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
411  * (for pageflips). We only flush the caches while preparing the buffer for
412  * display, the callers are responsible for frontbuffer flush.
413  */
414 struct i915_vma *
415 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
416 				     u32 alignment,
417 				     const struct i915_ggtt_view *view,
418 				     unsigned int flags)
419 {
420 	struct i915_vma *vma;
421 	int ret;
422 
423 	assert_object_held(obj);
424 
425 	/* Mark the global pin early so that we account for the
426 	 * display coherency whilst setting up the cache domains.
427 	 */
428 	obj->pin_global++;
429 
430 	/* The display engine is not coherent with the LLC cache on gen6.  As
431 	 * a result, we make sure that the pinning that is about to occur is
432 	 * done with uncached PTEs. This is lowest common denominator for all
433 	 * chipsets.
434 	 *
435 	 * However for gen6+, we could do better by using the GFDT bit instead
436 	 * of uncaching, which would allow us to flush all the LLC-cached data
437 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
438 	 */
439 	ret = i915_gem_object_set_cache_level(obj,
440 					      HAS_WT(to_i915(obj->base.dev)) ?
441 					      I915_CACHE_WT : I915_CACHE_NONE);
442 	if (ret) {
443 		vma = ERR_PTR(ret);
444 		goto err_unpin_global;
445 	}
446 
447 	/* As the user may map the buffer once pinned in the display plane
448 	 * (e.g. libkms for the bootup splash), we have to ensure that we
449 	 * always use map_and_fenceable for all scanout buffers. However,
450 	 * it may simply be too big to fit into mappable, in which case
451 	 * put it anyway and hope that userspace can cope (but always first
452 	 * try to preserve the existing ABI).
453 	 */
454 	vma = ERR_PTR(-ENOSPC);
455 	if ((flags & PIN_MAPPABLE) == 0 &&
456 	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
457 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
458 					       flags |
459 					       PIN_MAPPABLE |
460 					       PIN_NONBLOCK);
461 	if (IS_ERR(vma))
462 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
463 	if (IS_ERR(vma))
464 		goto err_unpin_global;
465 
466 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
467 
468 	__i915_gem_object_flush_for_display(obj);
469 
470 	/* It should now be out of any other write domains, and we can update
471 	 * the domain values for our changes.
472 	 */
473 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
474 
475 	return vma;
476 
477 err_unpin_global:
478 	obj->pin_global--;
479 	return vma;
480 }
481 
482 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
483 {
484 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
485 	struct i915_vma *vma;
486 
487 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
488 
489 	mutex_lock(&i915->ggtt.vm.mutex);
490 	for_each_ggtt_vma(vma, obj) {
491 		if (!drm_mm_node_allocated(&vma->node))
492 			continue;
493 
494 		list_move_tail(&vma->vm_link, &vma->vm->bound_list);
495 	}
496 	mutex_unlock(&i915->ggtt.vm.mutex);
497 
498 	if (i915_gem_object_is_shrinkable(obj)) {
499 		unsigned long flags;
500 
501 		spin_lock_irqsave(&i915->mm.obj_lock, flags);
502 
503 		if (obj->mm.madv == I915_MADV_WILLNEED)
504 			list_move_tail(&obj->mm.link, &i915->mm.shrink_list);
505 
506 		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
507 	}
508 }
509 
510 void
511 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
512 {
513 	struct drm_i915_gem_object *obj = vma->obj;
514 
515 	assert_object_held(obj);
516 
517 	if (WARN_ON(obj->pin_global == 0))
518 		return;
519 
520 	if (--obj->pin_global == 0)
521 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
522 
523 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
524 	i915_gem_object_bump_inactive_ggtt(obj);
525 
526 	i915_vma_unpin(vma);
527 }
528 
529 /**
530  * Moves a single object to the CPU read, and possibly write domain.
531  * @obj: object to act on
532  * @write: requesting write or read-only access
533  *
534  * This function returns when the move is complete, including waiting on
535  * flushes to occur.
536  */
537 int
538 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
539 {
540 	int ret;
541 
542 	assert_object_held(obj);
543 
544 	ret = i915_gem_object_wait(obj,
545 				   I915_WAIT_INTERRUPTIBLE |
546 				   (write ? I915_WAIT_ALL : 0),
547 				   MAX_SCHEDULE_TIMEOUT);
548 	if (ret)
549 		return ret;
550 
551 	i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
552 
553 	/* Flush the CPU cache if it's still invalid. */
554 	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
555 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
556 		obj->read_domains |= I915_GEM_DOMAIN_CPU;
557 	}
558 
559 	/* It should now be out of any other write domains, and we can update
560 	 * the domain values for our changes.
561 	 */
562 	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
563 
564 	/* If we're writing through the CPU, then the GPU read domains will
565 	 * need to be invalidated at next use.
566 	 */
567 	if (write)
568 		__start_cpu_write(obj);
569 
570 	return 0;
571 }
572 
573 /**
574  * Called when user space prepares to use an object with the CPU, either
575  * through the mmap ioctl's mapping or a GTT mapping.
576  * @dev: drm device
577  * @data: ioctl data blob
578  * @file: drm file
579  */
580 int
581 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
582 			  struct drm_file *file)
583 {
584 	struct drm_i915_gem_set_domain *args = data;
585 	struct drm_i915_gem_object *obj;
586 	u32 read_domains = args->read_domains;
587 	u32 write_domain = args->write_domain;
588 	int err;
589 
590 	/* Only handle setting domains to types used by the CPU. */
591 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
592 		return -EINVAL;
593 
594 	/*
595 	 * Having something in the write domain implies it's in the read
596 	 * domain, and only that read domain.  Enforce that in the request.
597 	 */
598 	if (write_domain && read_domains != write_domain)
599 		return -EINVAL;
600 
601 	if (!read_domains)
602 		return 0;
603 
604 	obj = i915_gem_object_lookup(file, args->handle);
605 	if (!obj)
606 		return -ENOENT;
607 
608 	/*
609 	 * Already in the desired write domain? Nothing for us to do!
610 	 *
611 	 * We apply a little bit of cunning here to catch a broader set of
612 	 * no-ops. If obj->write_domain is set, we must be in the same
613 	 * obj->read_domains, and only that domain. Therefore, if that
614 	 * obj->write_domain matches the request read_domains, we are
615 	 * already in the same read/write domain and can skip the operation,
616 	 * without having to further check the requested write_domain.
617 	 */
618 	if (READ_ONCE(obj->write_domain) == read_domains) {
619 		err = 0;
620 		goto out;
621 	}
622 
623 	/*
624 	 * Try to flush the object off the GPU without holding the lock.
625 	 * We will repeat the flush holding the lock in the normal manner
626 	 * to catch cases where we are gazumped.
627 	 */
628 	err = i915_gem_object_wait(obj,
629 				   I915_WAIT_INTERRUPTIBLE |
630 				   I915_WAIT_PRIORITY |
631 				   (write_domain ? I915_WAIT_ALL : 0),
632 				   MAX_SCHEDULE_TIMEOUT);
633 	if (err)
634 		goto out;
635 
636 	/*
637 	 * Proxy objects do not control access to the backing storage, ergo
638 	 * they cannot be used as a means to manipulate the cache domain
639 	 * tracking for that backing storage. The proxy object is always
640 	 * considered to be outside of any cache domain.
641 	 */
642 	if (i915_gem_object_is_proxy(obj)) {
643 		err = -ENXIO;
644 		goto out;
645 	}
646 
647 	/*
648 	 * Flush and acquire obj->pages so that we are coherent through
649 	 * direct access in memory with previous cached writes through
650 	 * shmemfs and that our cache domain tracking remains valid.
651 	 * For example, if the obj->filp was moved to swap without us
652 	 * being notified and releasing the pages, we would mistakenly
653 	 * continue to assume that the obj remained out of the CPU cached
654 	 * domain.
655 	 */
656 	err = i915_gem_object_pin_pages(obj);
657 	if (err)
658 		goto out;
659 
660 	err = i915_gem_object_lock_interruptible(obj);
661 	if (err)
662 		goto out_unpin;
663 
664 	if (read_domains & I915_GEM_DOMAIN_WC)
665 		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
666 	else if (read_domains & I915_GEM_DOMAIN_GTT)
667 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
668 	else
669 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
670 
671 	/* And bump the LRU for this access */
672 	i915_gem_object_bump_inactive_ggtt(obj);
673 
674 	i915_gem_object_unlock(obj);
675 
676 	if (write_domain)
677 		intel_frontbuffer_invalidate(obj->frontbuffer, ORIGIN_CPU);
678 
679 out_unpin:
680 	i915_gem_object_unpin_pages(obj);
681 out:
682 	i915_gem_object_put(obj);
683 	return err;
684 }
685 
686 /*
687  * Pins the specified object's pages and synchronizes the object with
688  * GPU accesses. Sets needs_clflush to non-zero if the caller should
689  * flush the object from the CPU cache.
690  */
691 int i915_gem_object_prepare_read(struct drm_i915_gem_object *obj,
692 				 unsigned int *needs_clflush)
693 {
694 	int ret;
695 
696 	*needs_clflush = 0;
697 	if (!i915_gem_object_has_struct_page(obj))
698 		return -ENODEV;
699 
700 	ret = i915_gem_object_lock_interruptible(obj);
701 	if (ret)
702 		return ret;
703 
704 	ret = i915_gem_object_wait(obj,
705 				   I915_WAIT_INTERRUPTIBLE,
706 				   MAX_SCHEDULE_TIMEOUT);
707 	if (ret)
708 		goto err_unlock;
709 
710 	ret = i915_gem_object_pin_pages(obj);
711 	if (ret)
712 		goto err_unlock;
713 
714 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
715 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
716 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
717 		if (ret)
718 			goto err_unpin;
719 		else
720 			goto out;
721 	}
722 
723 	i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
724 
725 	/* If we're not in the cpu read domain, set ourself into the gtt
726 	 * read domain and manually flush cachelines (if required). This
727 	 * optimizes for the case when the gpu will dirty the data
728 	 * anyway again before the next pread happens.
729 	 */
730 	if (!obj->cache_dirty &&
731 	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
732 		*needs_clflush = CLFLUSH_BEFORE;
733 
734 out:
735 	/* return with the pages pinned */
736 	return 0;
737 
738 err_unpin:
739 	i915_gem_object_unpin_pages(obj);
740 err_unlock:
741 	i915_gem_object_unlock(obj);
742 	return ret;
743 }
744 
745 int i915_gem_object_prepare_write(struct drm_i915_gem_object *obj,
746 				  unsigned int *needs_clflush)
747 {
748 	int ret;
749 
750 	*needs_clflush = 0;
751 	if (!i915_gem_object_has_struct_page(obj))
752 		return -ENODEV;
753 
754 	ret = i915_gem_object_lock_interruptible(obj);
755 	if (ret)
756 		return ret;
757 
758 	ret = i915_gem_object_wait(obj,
759 				   I915_WAIT_INTERRUPTIBLE |
760 				   I915_WAIT_ALL,
761 				   MAX_SCHEDULE_TIMEOUT);
762 	if (ret)
763 		goto err_unlock;
764 
765 	ret = i915_gem_object_pin_pages(obj);
766 	if (ret)
767 		goto err_unlock;
768 
769 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
770 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
771 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
772 		if (ret)
773 			goto err_unpin;
774 		else
775 			goto out;
776 	}
777 
778 	i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
779 
780 	/* If we're not in the cpu write domain, set ourself into the
781 	 * gtt write domain and manually flush cachelines (as required).
782 	 * This optimizes for the case when the gpu will use the data
783 	 * right away and we therefore have to clflush anyway.
784 	 */
785 	if (!obj->cache_dirty) {
786 		*needs_clflush |= CLFLUSH_AFTER;
787 
788 		/*
789 		 * Same trick applies to invalidate partially written
790 		 * cachelines read before writing.
791 		 */
792 		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
793 			*needs_clflush |= CLFLUSH_BEFORE;
794 	}
795 
796 out:
797 	intel_frontbuffer_invalidate(obj->frontbuffer, ORIGIN_CPU);
798 	obj->mm.dirty = true;
799 	/* return with the pages pinned */
800 	return 0;
801 
802 err_unpin:
803 	i915_gem_object_unpin_pages(obj);
804 err_unlock:
805 	i915_gem_object_unlock(obj);
806 	return ret;
807 }
808