xref: /openbmc/linux/drivers/gpu/drm/i915/gem/i915_gem_domain.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2014-2016 Intel Corporation
5  */
6 
7 #include "display/intel_frontbuffer.h"
8 
9 #include "i915_drv.h"
10 #include "i915_gem_clflush.h"
11 #include "i915_gem_gtt.h"
12 #include "i915_gem_ioctls.h"
13 #include "i915_gem_object.h"
14 #include "i915_vma.h"
15 #include "i915_gem_lmem.h"
16 #include "i915_gem_mman.h"
17 
18 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
19 {
20 	/*
21 	 * We manually flush the CPU domain so that we can override and
22 	 * force the flush for the display, and perform it asyncrhonously.
23 	 */
24 	i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
25 	if (obj->cache_dirty)
26 		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
27 	obj->write_domain = 0;
28 }
29 
30 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
31 {
32 	if (!i915_gem_object_is_framebuffer(obj))
33 		return;
34 
35 	i915_gem_object_lock(obj);
36 	__i915_gem_object_flush_for_display(obj);
37 	i915_gem_object_unlock(obj);
38 }
39 
40 /**
41  * Moves a single object to the WC read, and possibly write domain.
42  * @obj: object to act on
43  * @write: ask for write access or read only
44  *
45  * This function returns when the move is complete, including waiting on
46  * flushes to occur.
47  */
48 int
49 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
50 {
51 	int ret;
52 
53 	assert_object_held(obj);
54 
55 	ret = i915_gem_object_wait(obj,
56 				   I915_WAIT_INTERRUPTIBLE |
57 				   (write ? I915_WAIT_ALL : 0),
58 				   MAX_SCHEDULE_TIMEOUT);
59 	if (ret)
60 		return ret;
61 
62 	if (obj->write_domain == I915_GEM_DOMAIN_WC)
63 		return 0;
64 
65 	/* Flush and acquire obj->pages so that we are coherent through
66 	 * direct access in memory with previous cached writes through
67 	 * shmemfs and that our cache domain tracking remains valid.
68 	 * For example, if the obj->filp was moved to swap without us
69 	 * being notified and releasing the pages, we would mistakenly
70 	 * continue to assume that the obj remained out of the CPU cached
71 	 * domain.
72 	 */
73 	ret = i915_gem_object_pin_pages(obj);
74 	if (ret)
75 		return ret;
76 
77 	i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
78 
79 	/* Serialise direct access to this object with the barriers for
80 	 * coherent writes from the GPU, by effectively invalidating the
81 	 * WC domain upon first access.
82 	 */
83 	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
84 		mb();
85 
86 	/* It should now be out of any other write domains, and we can update
87 	 * the domain values for our changes.
88 	 */
89 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
90 	obj->read_domains |= I915_GEM_DOMAIN_WC;
91 	if (write) {
92 		obj->read_domains = I915_GEM_DOMAIN_WC;
93 		obj->write_domain = I915_GEM_DOMAIN_WC;
94 		obj->mm.dirty = true;
95 	}
96 
97 	i915_gem_object_unpin_pages(obj);
98 	return 0;
99 }
100 
101 /**
102  * Moves a single object to the GTT read, and possibly write domain.
103  * @obj: object to act on
104  * @write: ask for write access or read only
105  *
106  * This function returns when the move is complete, including waiting on
107  * flushes to occur.
108  */
109 int
110 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
111 {
112 	int ret;
113 
114 	assert_object_held(obj);
115 
116 	ret = i915_gem_object_wait(obj,
117 				   I915_WAIT_INTERRUPTIBLE |
118 				   (write ? I915_WAIT_ALL : 0),
119 				   MAX_SCHEDULE_TIMEOUT);
120 	if (ret)
121 		return ret;
122 
123 	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
124 		return 0;
125 
126 	/* Flush and acquire obj->pages so that we are coherent through
127 	 * direct access in memory with previous cached writes through
128 	 * shmemfs and that our cache domain tracking remains valid.
129 	 * For example, if the obj->filp was moved to swap without us
130 	 * being notified and releasing the pages, we would mistakenly
131 	 * continue to assume that the obj remained out of the CPU cached
132 	 * domain.
133 	 */
134 	ret = i915_gem_object_pin_pages(obj);
135 	if (ret)
136 		return ret;
137 
138 	i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
139 
140 	/* Serialise direct access to this object with the barriers for
141 	 * coherent writes from the GPU, by effectively invalidating the
142 	 * GTT domain upon first access.
143 	 */
144 	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
145 		mb();
146 
147 	/* It should now be out of any other write domains, and we can update
148 	 * the domain values for our changes.
149 	 */
150 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
151 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
152 	if (write) {
153 		struct i915_vma *vma;
154 
155 		obj->read_domains = I915_GEM_DOMAIN_GTT;
156 		obj->write_domain = I915_GEM_DOMAIN_GTT;
157 		obj->mm.dirty = true;
158 
159 		spin_lock(&obj->vma.lock);
160 		for_each_ggtt_vma(vma, obj)
161 			if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
162 				i915_vma_set_ggtt_write(vma);
163 		spin_unlock(&obj->vma.lock);
164 	}
165 
166 	i915_gem_object_unpin_pages(obj);
167 	return 0;
168 }
169 
170 /**
171  * Changes the cache-level of an object across all VMA.
172  * @obj: object to act on
173  * @cache_level: new cache level to set for the object
174  *
175  * After this function returns, the object will be in the new cache-level
176  * across all GTT and the contents of the backing storage will be coherent,
177  * with respect to the new cache-level. In order to keep the backing storage
178  * coherent for all users, we only allow a single cache level to be set
179  * globally on the object and prevent it from being changed whilst the
180  * hardware is reading from the object. That is if the object is currently
181  * on the scanout it will be set to uncached (or equivalent display
182  * cache coherency) and all non-MOCS GPU access will also be uncached so
183  * that all direct access to the scanout remains coherent.
184  */
185 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
186 				    enum i915_cache_level cache_level)
187 {
188 	int ret;
189 
190 	if (obj->cache_level == cache_level)
191 		return 0;
192 
193 	ret = i915_gem_object_wait(obj,
194 				   I915_WAIT_INTERRUPTIBLE |
195 				   I915_WAIT_ALL,
196 				   MAX_SCHEDULE_TIMEOUT);
197 	if (ret)
198 		return ret;
199 
200 	ret = i915_gem_object_lock_interruptible(obj);
201 	if (ret)
202 		return ret;
203 
204 	/* Always invalidate stale cachelines */
205 	if (obj->cache_level != cache_level) {
206 		i915_gem_object_set_cache_coherency(obj, cache_level);
207 		obj->cache_dirty = true;
208 	}
209 
210 	i915_gem_object_unlock(obj);
211 
212 	/* The cache-level will be applied when each vma is rebound. */
213 	return i915_gem_object_unbind(obj,
214 				      I915_GEM_OBJECT_UNBIND_ACTIVE |
215 				      I915_GEM_OBJECT_UNBIND_BARRIER);
216 }
217 
218 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
219 			       struct drm_file *file)
220 {
221 	struct drm_i915_gem_caching *args = data;
222 	struct drm_i915_gem_object *obj;
223 	int err = 0;
224 
225 	rcu_read_lock();
226 	obj = i915_gem_object_lookup_rcu(file, args->handle);
227 	if (!obj) {
228 		err = -ENOENT;
229 		goto out;
230 	}
231 
232 	switch (obj->cache_level) {
233 	case I915_CACHE_LLC:
234 	case I915_CACHE_L3_LLC:
235 		args->caching = I915_CACHING_CACHED;
236 		break;
237 
238 	case I915_CACHE_WT:
239 		args->caching = I915_CACHING_DISPLAY;
240 		break;
241 
242 	default:
243 		args->caching = I915_CACHING_NONE;
244 		break;
245 	}
246 out:
247 	rcu_read_unlock();
248 	return err;
249 }
250 
251 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
252 			       struct drm_file *file)
253 {
254 	struct drm_i915_private *i915 = to_i915(dev);
255 	struct drm_i915_gem_caching *args = data;
256 	struct drm_i915_gem_object *obj;
257 	enum i915_cache_level level;
258 	int ret = 0;
259 
260 	switch (args->caching) {
261 	case I915_CACHING_NONE:
262 		level = I915_CACHE_NONE;
263 		break;
264 	case I915_CACHING_CACHED:
265 		/*
266 		 * Due to a HW issue on BXT A stepping, GPU stores via a
267 		 * snooped mapping may leave stale data in a corresponding CPU
268 		 * cacheline, whereas normally such cachelines would get
269 		 * invalidated.
270 		 */
271 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
272 			return -ENODEV;
273 
274 		level = I915_CACHE_LLC;
275 		break;
276 	case I915_CACHING_DISPLAY:
277 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
278 		break;
279 	default:
280 		return -EINVAL;
281 	}
282 
283 	obj = i915_gem_object_lookup(file, args->handle);
284 	if (!obj)
285 		return -ENOENT;
286 
287 	/*
288 	 * The caching mode of proxy object is handled by its generator, and
289 	 * not allowed to be changed by userspace.
290 	 */
291 	if (i915_gem_object_is_proxy(obj)) {
292 		ret = -ENXIO;
293 		goto out;
294 	}
295 
296 	ret = i915_gem_object_set_cache_level(obj, level);
297 
298 out:
299 	i915_gem_object_put(obj);
300 	return ret;
301 }
302 
303 /*
304  * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
305  * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
306  * (for pageflips). We only flush the caches while preparing the buffer for
307  * display, the callers are responsible for frontbuffer flush.
308  */
309 struct i915_vma *
310 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
311 				     u32 alignment,
312 				     const struct i915_ggtt_view *view,
313 				     unsigned int flags)
314 {
315 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
316 	struct i915_vma *vma;
317 	int ret;
318 
319 	/* Frame buffer must be in LMEM (no migration yet) */
320 	if (HAS_LMEM(i915) && !i915_gem_object_is_lmem(obj))
321 		return ERR_PTR(-EINVAL);
322 
323 	/*
324 	 * The display engine is not coherent with the LLC cache on gen6.  As
325 	 * a result, we make sure that the pinning that is about to occur is
326 	 * done with uncached PTEs. This is lowest common denominator for all
327 	 * chipsets.
328 	 *
329 	 * However for gen6+, we could do better by using the GFDT bit instead
330 	 * of uncaching, which would allow us to flush all the LLC-cached data
331 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
332 	 */
333 	ret = i915_gem_object_set_cache_level(obj,
334 					      HAS_WT(i915) ?
335 					      I915_CACHE_WT : I915_CACHE_NONE);
336 	if (ret)
337 		return ERR_PTR(ret);
338 
339 	/*
340 	 * As the user may map the buffer once pinned in the display plane
341 	 * (e.g. libkms for the bootup splash), we have to ensure that we
342 	 * always use map_and_fenceable for all scanout buffers. However,
343 	 * it may simply be too big to fit into mappable, in which case
344 	 * put it anyway and hope that userspace can cope (but always first
345 	 * try to preserve the existing ABI).
346 	 */
347 	vma = ERR_PTR(-ENOSPC);
348 	if ((flags & PIN_MAPPABLE) == 0 &&
349 	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
350 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
351 					       flags |
352 					       PIN_MAPPABLE |
353 					       PIN_NONBLOCK);
354 	if (IS_ERR(vma))
355 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
356 	if (IS_ERR(vma))
357 		return vma;
358 
359 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
360 
361 	i915_gem_object_flush_if_display(obj);
362 
363 	return vma;
364 }
365 
366 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
367 {
368 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
369 	struct i915_vma *vma;
370 
371 	if (list_empty(&obj->vma.list))
372 		return;
373 
374 	mutex_lock(&i915->ggtt.vm.mutex);
375 	spin_lock(&obj->vma.lock);
376 	for_each_ggtt_vma(vma, obj) {
377 		if (!drm_mm_node_allocated(&vma->node))
378 			continue;
379 
380 		GEM_BUG_ON(vma->vm != &i915->ggtt.vm);
381 		list_move_tail(&vma->vm_link, &vma->vm->bound_list);
382 	}
383 	spin_unlock(&obj->vma.lock);
384 	mutex_unlock(&i915->ggtt.vm.mutex);
385 
386 	if (i915_gem_object_is_shrinkable(obj)) {
387 		unsigned long flags;
388 
389 		spin_lock_irqsave(&i915->mm.obj_lock, flags);
390 
391 		if (obj->mm.madv == I915_MADV_WILLNEED &&
392 		    !atomic_read(&obj->mm.shrink_pin))
393 			list_move_tail(&obj->mm.link, &i915->mm.shrink_list);
394 
395 		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
396 	}
397 }
398 
399 void
400 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
401 {
402 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
403 	i915_gem_object_bump_inactive_ggtt(vma->obj);
404 
405 	i915_vma_unpin(vma);
406 }
407 
408 /**
409  * Moves a single object to the CPU read, and possibly write domain.
410  * @obj: object to act on
411  * @write: requesting write or read-only access
412  *
413  * This function returns when the move is complete, including waiting on
414  * flushes to occur.
415  */
416 int
417 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
418 {
419 	int ret;
420 
421 	assert_object_held(obj);
422 
423 	ret = i915_gem_object_wait(obj,
424 				   I915_WAIT_INTERRUPTIBLE |
425 				   (write ? I915_WAIT_ALL : 0),
426 				   MAX_SCHEDULE_TIMEOUT);
427 	if (ret)
428 		return ret;
429 
430 	i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
431 
432 	/* Flush the CPU cache if it's still invalid. */
433 	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
434 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
435 		obj->read_domains |= I915_GEM_DOMAIN_CPU;
436 	}
437 
438 	/* It should now be out of any other write domains, and we can update
439 	 * the domain values for our changes.
440 	 */
441 	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
442 
443 	/* If we're writing through the CPU, then the GPU read domains will
444 	 * need to be invalidated at next use.
445 	 */
446 	if (write)
447 		__start_cpu_write(obj);
448 
449 	return 0;
450 }
451 
452 /**
453  * Called when user space prepares to use an object with the CPU, either
454  * through the mmap ioctl's mapping or a GTT mapping.
455  * @dev: drm device
456  * @data: ioctl data blob
457  * @file: drm file
458  */
459 int
460 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
461 			  struct drm_file *file)
462 {
463 	struct drm_i915_gem_set_domain *args = data;
464 	struct drm_i915_gem_object *obj;
465 	u32 read_domains = args->read_domains;
466 	u32 write_domain = args->write_domain;
467 	int err;
468 
469 	/* Only handle setting domains to types used by the CPU. */
470 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
471 		return -EINVAL;
472 
473 	/*
474 	 * Having something in the write domain implies it's in the read
475 	 * domain, and only that read domain.  Enforce that in the request.
476 	 */
477 	if (write_domain && read_domains != write_domain)
478 		return -EINVAL;
479 
480 	if (!read_domains)
481 		return 0;
482 
483 	obj = i915_gem_object_lookup(file, args->handle);
484 	if (!obj)
485 		return -ENOENT;
486 
487 	/*
488 	 * Already in the desired write domain? Nothing for us to do!
489 	 *
490 	 * We apply a little bit of cunning here to catch a broader set of
491 	 * no-ops. If obj->write_domain is set, we must be in the same
492 	 * obj->read_domains, and only that domain. Therefore, if that
493 	 * obj->write_domain matches the request read_domains, we are
494 	 * already in the same read/write domain and can skip the operation,
495 	 * without having to further check the requested write_domain.
496 	 */
497 	if (READ_ONCE(obj->write_domain) == read_domains) {
498 		err = 0;
499 		goto out;
500 	}
501 
502 	/*
503 	 * Try to flush the object off the GPU without holding the lock.
504 	 * We will repeat the flush holding the lock in the normal manner
505 	 * to catch cases where we are gazumped.
506 	 */
507 	err = i915_gem_object_wait(obj,
508 				   I915_WAIT_INTERRUPTIBLE |
509 				   I915_WAIT_PRIORITY |
510 				   (write_domain ? I915_WAIT_ALL : 0),
511 				   MAX_SCHEDULE_TIMEOUT);
512 	if (err)
513 		goto out;
514 
515 	/*
516 	 * Proxy objects do not control access to the backing storage, ergo
517 	 * they cannot be used as a means to manipulate the cache domain
518 	 * tracking for that backing storage. The proxy object is always
519 	 * considered to be outside of any cache domain.
520 	 */
521 	if (i915_gem_object_is_proxy(obj)) {
522 		err = -ENXIO;
523 		goto out;
524 	}
525 
526 	/*
527 	 * Flush and acquire obj->pages so that we are coherent through
528 	 * direct access in memory with previous cached writes through
529 	 * shmemfs and that our cache domain tracking remains valid.
530 	 * For example, if the obj->filp was moved to swap without us
531 	 * being notified and releasing the pages, we would mistakenly
532 	 * continue to assume that the obj remained out of the CPU cached
533 	 * domain.
534 	 */
535 	err = i915_gem_object_pin_pages(obj);
536 	if (err)
537 		goto out;
538 
539 	err = i915_gem_object_lock_interruptible(obj);
540 	if (err)
541 		goto out_unpin;
542 
543 	if (read_domains & I915_GEM_DOMAIN_WC)
544 		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
545 	else if (read_domains & I915_GEM_DOMAIN_GTT)
546 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
547 	else
548 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
549 
550 	/* And bump the LRU for this access */
551 	i915_gem_object_bump_inactive_ggtt(obj);
552 
553 	i915_gem_object_unlock(obj);
554 
555 	if (write_domain)
556 		i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
557 
558 out_unpin:
559 	i915_gem_object_unpin_pages(obj);
560 out:
561 	i915_gem_object_put(obj);
562 	return err;
563 }
564 
565 /*
566  * Pins the specified object's pages and synchronizes the object with
567  * GPU accesses. Sets needs_clflush to non-zero if the caller should
568  * flush the object from the CPU cache.
569  */
570 int i915_gem_object_prepare_read(struct drm_i915_gem_object *obj,
571 				 unsigned int *needs_clflush)
572 {
573 	int ret;
574 
575 	*needs_clflush = 0;
576 	if (!i915_gem_object_has_struct_page(obj))
577 		return -ENODEV;
578 
579 	ret = i915_gem_object_lock_interruptible(obj);
580 	if (ret)
581 		return ret;
582 
583 	ret = i915_gem_object_wait(obj,
584 				   I915_WAIT_INTERRUPTIBLE,
585 				   MAX_SCHEDULE_TIMEOUT);
586 	if (ret)
587 		goto err_unlock;
588 
589 	ret = i915_gem_object_pin_pages(obj);
590 	if (ret)
591 		goto err_unlock;
592 
593 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
594 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
595 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
596 		if (ret)
597 			goto err_unpin;
598 		else
599 			goto out;
600 	}
601 
602 	i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
603 
604 	/* If we're not in the cpu read domain, set ourself into the gtt
605 	 * read domain and manually flush cachelines (if required). This
606 	 * optimizes for the case when the gpu will dirty the data
607 	 * anyway again before the next pread happens.
608 	 */
609 	if (!obj->cache_dirty &&
610 	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
611 		*needs_clflush = CLFLUSH_BEFORE;
612 
613 out:
614 	/* return with the pages pinned */
615 	return 0;
616 
617 err_unpin:
618 	i915_gem_object_unpin_pages(obj);
619 err_unlock:
620 	i915_gem_object_unlock(obj);
621 	return ret;
622 }
623 
624 int i915_gem_object_prepare_write(struct drm_i915_gem_object *obj,
625 				  unsigned int *needs_clflush)
626 {
627 	int ret;
628 
629 	*needs_clflush = 0;
630 	if (!i915_gem_object_has_struct_page(obj))
631 		return -ENODEV;
632 
633 	ret = i915_gem_object_lock_interruptible(obj);
634 	if (ret)
635 		return ret;
636 
637 	ret = i915_gem_object_wait(obj,
638 				   I915_WAIT_INTERRUPTIBLE |
639 				   I915_WAIT_ALL,
640 				   MAX_SCHEDULE_TIMEOUT);
641 	if (ret)
642 		goto err_unlock;
643 
644 	ret = i915_gem_object_pin_pages(obj);
645 	if (ret)
646 		goto err_unlock;
647 
648 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
649 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
650 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
651 		if (ret)
652 			goto err_unpin;
653 		else
654 			goto out;
655 	}
656 
657 	i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
658 
659 	/* If we're not in the cpu write domain, set ourself into the
660 	 * gtt write domain and manually flush cachelines (as required).
661 	 * This optimizes for the case when the gpu will use the data
662 	 * right away and we therefore have to clflush anyway.
663 	 */
664 	if (!obj->cache_dirty) {
665 		*needs_clflush |= CLFLUSH_AFTER;
666 
667 		/*
668 		 * Same trick applies to invalidate partially written
669 		 * cachelines read before writing.
670 		 */
671 		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
672 			*needs_clflush |= CLFLUSH_BEFORE;
673 	}
674 
675 out:
676 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
677 	obj->mm.dirty = true;
678 	/* return with the pages pinned */
679 	return 0;
680 
681 err_unpin:
682 	i915_gem_object_unpin_pages(obj);
683 err_unlock:
684 	i915_gem_object_unlock(obj);
685 	return ret;
686 }
687