xref: /openbmc/linux/drivers/gpu/drm/i915/gem/i915_gem_domain.c (revision b1c8ea3c09db24a55ff84ac047cb2e9d9f644bf9)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2014-2016 Intel Corporation
5  */
6 
7 #include "display/intel_display.h"
8 #include "display/intel_frontbuffer.h"
9 #include "gt/intel_gt.h"
10 
11 #include "i915_drv.h"
12 #include "i915_gem_clflush.h"
13 #include "i915_gem_domain.h"
14 #include "i915_gem_gtt.h"
15 #include "i915_gem_ioctls.h"
16 #include "i915_gem_lmem.h"
17 #include "i915_gem_mman.h"
18 #include "i915_gem_object.h"
19 #include "i915_vma.h"
20 
21 #define VTD_GUARD (168u * I915_GTT_PAGE_SIZE) /* 168 or tile-row PTE padding */
22 
23 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
24 {
25 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
26 
27 	if (IS_DGFX(i915))
28 		return false;
29 
30 	return !(obj->cache_level == I915_CACHE_NONE ||
31 		 obj->cache_level == I915_CACHE_WT);
32 }
33 
34 bool i915_gem_cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
35 {
36 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
37 
38 	if (obj->cache_dirty)
39 		return false;
40 
41 	if (IS_DGFX(i915))
42 		return false;
43 
44 	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
45 		return true;
46 
47 	/* Currently in use by HW (display engine)? Keep flushed. */
48 	return i915_gem_object_is_framebuffer(obj);
49 }
50 
51 static void
52 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
53 {
54 	struct i915_vma *vma;
55 
56 	assert_object_held(obj);
57 
58 	if (!(obj->write_domain & flush_domains))
59 		return;
60 
61 	switch (obj->write_domain) {
62 	case I915_GEM_DOMAIN_GTT:
63 		spin_lock(&obj->vma.lock);
64 		for_each_ggtt_vma(vma, obj) {
65 			if (i915_vma_unset_ggtt_write(vma))
66 				intel_gt_flush_ggtt_writes(vma->vm->gt);
67 		}
68 		spin_unlock(&obj->vma.lock);
69 
70 		i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
71 		break;
72 
73 	case I915_GEM_DOMAIN_WC:
74 		wmb();
75 		break;
76 
77 	case I915_GEM_DOMAIN_CPU:
78 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
79 		break;
80 
81 	case I915_GEM_DOMAIN_RENDER:
82 		if (gpu_write_needs_clflush(obj))
83 			obj->cache_dirty = true;
84 		break;
85 	}
86 
87 	obj->write_domain = 0;
88 }
89 
90 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
91 {
92 	/*
93 	 * We manually flush the CPU domain so that we can override and
94 	 * force the flush for the display, and perform it asyncrhonously.
95 	 */
96 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
97 	if (obj->cache_dirty)
98 		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
99 	obj->write_domain = 0;
100 }
101 
102 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
103 {
104 	if (!i915_gem_object_is_framebuffer(obj))
105 		return;
106 
107 	i915_gem_object_lock(obj, NULL);
108 	__i915_gem_object_flush_for_display(obj);
109 	i915_gem_object_unlock(obj);
110 }
111 
112 void i915_gem_object_flush_if_display_locked(struct drm_i915_gem_object *obj)
113 {
114 	if (i915_gem_object_is_framebuffer(obj))
115 		__i915_gem_object_flush_for_display(obj);
116 }
117 
118 /**
119  * i915_gem_object_set_to_wc_domain - Moves a single object to the WC read, and
120  *                                    possibly write domain.
121  * @obj: object to act on
122  * @write: ask for write access or read only
123  *
124  * This function returns when the move is complete, including waiting on
125  * flushes to occur.
126  */
127 int
128 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
129 {
130 	int ret;
131 
132 	assert_object_held(obj);
133 
134 	ret = i915_gem_object_wait(obj,
135 				   I915_WAIT_INTERRUPTIBLE |
136 				   (write ? I915_WAIT_ALL : 0),
137 				   MAX_SCHEDULE_TIMEOUT);
138 	if (ret)
139 		return ret;
140 
141 	if (obj->write_domain == I915_GEM_DOMAIN_WC)
142 		return 0;
143 
144 	/* Flush and acquire obj->pages so that we are coherent through
145 	 * direct access in memory with previous cached writes through
146 	 * shmemfs and that our cache domain tracking remains valid.
147 	 * For example, if the obj->filp was moved to swap without us
148 	 * being notified and releasing the pages, we would mistakenly
149 	 * continue to assume that the obj remained out of the CPU cached
150 	 * domain.
151 	 */
152 	ret = i915_gem_object_pin_pages(obj);
153 	if (ret)
154 		return ret;
155 
156 	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
157 
158 	/* Serialise direct access to this object with the barriers for
159 	 * coherent writes from the GPU, by effectively invalidating the
160 	 * WC domain upon first access.
161 	 */
162 	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
163 		mb();
164 
165 	/* It should now be out of any other write domains, and we can update
166 	 * the domain values for our changes.
167 	 */
168 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
169 	obj->read_domains |= I915_GEM_DOMAIN_WC;
170 	if (write) {
171 		obj->read_domains = I915_GEM_DOMAIN_WC;
172 		obj->write_domain = I915_GEM_DOMAIN_WC;
173 		obj->mm.dirty = true;
174 	}
175 
176 	i915_gem_object_unpin_pages(obj);
177 	return 0;
178 }
179 
180 /**
181  * i915_gem_object_set_to_gtt_domain - Moves a single object to the GTT read,
182  *                                     and possibly write domain.
183  * @obj: object to act on
184  * @write: ask for write access or read only
185  *
186  * This function returns when the move is complete, including waiting on
187  * flushes to occur.
188  */
189 int
190 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
191 {
192 	int ret;
193 
194 	assert_object_held(obj);
195 
196 	ret = i915_gem_object_wait(obj,
197 				   I915_WAIT_INTERRUPTIBLE |
198 				   (write ? I915_WAIT_ALL : 0),
199 				   MAX_SCHEDULE_TIMEOUT);
200 	if (ret)
201 		return ret;
202 
203 	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
204 		return 0;
205 
206 	/* Flush and acquire obj->pages so that we are coherent through
207 	 * direct access in memory with previous cached writes through
208 	 * shmemfs and that our cache domain tracking remains valid.
209 	 * For example, if the obj->filp was moved to swap without us
210 	 * being notified and releasing the pages, we would mistakenly
211 	 * continue to assume that the obj remained out of the CPU cached
212 	 * domain.
213 	 */
214 	ret = i915_gem_object_pin_pages(obj);
215 	if (ret)
216 		return ret;
217 
218 	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
219 
220 	/* Serialise direct access to this object with the barriers for
221 	 * coherent writes from the GPU, by effectively invalidating the
222 	 * GTT domain upon first access.
223 	 */
224 	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
225 		mb();
226 
227 	/* It should now be out of any other write domains, and we can update
228 	 * the domain values for our changes.
229 	 */
230 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
231 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
232 	if (write) {
233 		struct i915_vma *vma;
234 
235 		obj->read_domains = I915_GEM_DOMAIN_GTT;
236 		obj->write_domain = I915_GEM_DOMAIN_GTT;
237 		obj->mm.dirty = true;
238 
239 		spin_lock(&obj->vma.lock);
240 		for_each_ggtt_vma(vma, obj)
241 			if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
242 				i915_vma_set_ggtt_write(vma);
243 		spin_unlock(&obj->vma.lock);
244 	}
245 
246 	i915_gem_object_unpin_pages(obj);
247 	return 0;
248 }
249 
250 /**
251  * i915_gem_object_set_cache_level - Changes the cache-level of an object across all VMA.
252  * @obj: object to act on
253  * @cache_level: new cache level to set for the object
254  *
255  * After this function returns, the object will be in the new cache-level
256  * across all GTT and the contents of the backing storage will be coherent,
257  * with respect to the new cache-level. In order to keep the backing storage
258  * coherent for all users, we only allow a single cache level to be set
259  * globally on the object and prevent it from being changed whilst the
260  * hardware is reading from the object. That is if the object is currently
261  * on the scanout it will be set to uncached (or equivalent display
262  * cache coherency) and all non-MOCS GPU access will also be uncached so
263  * that all direct access to the scanout remains coherent.
264  */
265 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
266 				    enum i915_cache_level cache_level)
267 {
268 	int ret;
269 
270 	if (obj->cache_level == cache_level)
271 		return 0;
272 
273 	ret = i915_gem_object_wait(obj,
274 				   I915_WAIT_INTERRUPTIBLE |
275 				   I915_WAIT_ALL,
276 				   MAX_SCHEDULE_TIMEOUT);
277 	if (ret)
278 		return ret;
279 
280 	/* Always invalidate stale cachelines */
281 	if (obj->cache_level != cache_level) {
282 		i915_gem_object_set_cache_coherency(obj, cache_level);
283 		obj->cache_dirty = true;
284 	}
285 
286 	/* The cache-level will be applied when each vma is rebound. */
287 	return i915_gem_object_unbind(obj,
288 				      I915_GEM_OBJECT_UNBIND_ACTIVE |
289 				      I915_GEM_OBJECT_UNBIND_BARRIER);
290 }
291 
292 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
293 			       struct drm_file *file)
294 {
295 	struct drm_i915_gem_caching *args = data;
296 	struct drm_i915_gem_object *obj;
297 	int err = 0;
298 
299 	if (IS_DGFX(to_i915(dev)))
300 		return -ENODEV;
301 
302 	rcu_read_lock();
303 	obj = i915_gem_object_lookup_rcu(file, args->handle);
304 	if (!obj) {
305 		err = -ENOENT;
306 		goto out;
307 	}
308 
309 	switch (obj->cache_level) {
310 	case I915_CACHE_LLC:
311 	case I915_CACHE_L3_LLC:
312 		args->caching = I915_CACHING_CACHED;
313 		break;
314 
315 	case I915_CACHE_WT:
316 		args->caching = I915_CACHING_DISPLAY;
317 		break;
318 
319 	default:
320 		args->caching = I915_CACHING_NONE;
321 		break;
322 	}
323 out:
324 	rcu_read_unlock();
325 	return err;
326 }
327 
328 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
329 			       struct drm_file *file)
330 {
331 	struct drm_i915_private *i915 = to_i915(dev);
332 	struct drm_i915_gem_caching *args = data;
333 	struct drm_i915_gem_object *obj;
334 	enum i915_cache_level level;
335 	int ret = 0;
336 
337 	if (IS_DGFX(i915))
338 		return -ENODEV;
339 
340 	switch (args->caching) {
341 	case I915_CACHING_NONE:
342 		level = I915_CACHE_NONE;
343 		break;
344 	case I915_CACHING_CACHED:
345 		/*
346 		 * Due to a HW issue on BXT A stepping, GPU stores via a
347 		 * snooped mapping may leave stale data in a corresponding CPU
348 		 * cacheline, whereas normally such cachelines would get
349 		 * invalidated.
350 		 */
351 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
352 			return -ENODEV;
353 
354 		level = I915_CACHE_LLC;
355 		break;
356 	case I915_CACHING_DISPLAY:
357 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
358 		break;
359 	default:
360 		return -EINVAL;
361 	}
362 
363 	obj = i915_gem_object_lookup(file, args->handle);
364 	if (!obj)
365 		return -ENOENT;
366 
367 	/*
368 	 * The caching mode of proxy object is handled by its generator, and
369 	 * not allowed to be changed by userspace.
370 	 */
371 	if (i915_gem_object_is_proxy(obj)) {
372 		/*
373 		 * Silently allow cached for userptr; the vulkan driver
374 		 * sets all objects to cached
375 		 */
376 		if (!i915_gem_object_is_userptr(obj) ||
377 		    args->caching != I915_CACHING_CACHED)
378 			ret = -ENXIO;
379 
380 		goto out;
381 	}
382 
383 	ret = i915_gem_object_lock_interruptible(obj, NULL);
384 	if (ret)
385 		goto out;
386 
387 	ret = i915_gem_object_set_cache_level(obj, level);
388 	i915_gem_object_unlock(obj);
389 
390 out:
391 	i915_gem_object_put(obj);
392 	return ret;
393 }
394 
395 /*
396  * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
397  * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
398  * (for pageflips). We only flush the caches while preparing the buffer for
399  * display, the callers are responsible for frontbuffer flush.
400  */
401 struct i915_vma *
402 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
403 				     struct i915_gem_ww_ctx *ww,
404 				     u32 alignment,
405 				     const struct i915_gtt_view *view,
406 				     unsigned int flags)
407 {
408 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
409 	struct i915_vma *vma;
410 	int ret;
411 
412 	/* Frame buffer must be in LMEM */
413 	if (HAS_LMEM(i915) && !i915_gem_object_is_lmem(obj))
414 		return ERR_PTR(-EINVAL);
415 
416 	/*
417 	 * The display engine is not coherent with the LLC cache on gen6.  As
418 	 * a result, we make sure that the pinning that is about to occur is
419 	 * done with uncached PTEs. This is lowest common denominator for all
420 	 * chipsets.
421 	 *
422 	 * However for gen6+, we could do better by using the GFDT bit instead
423 	 * of uncaching, which would allow us to flush all the LLC-cached data
424 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
425 	 */
426 	ret = i915_gem_object_set_cache_level(obj,
427 					      HAS_WT(i915) ?
428 					      I915_CACHE_WT : I915_CACHE_NONE);
429 	if (ret)
430 		return ERR_PTR(ret);
431 
432 	/* VT-d may overfetch before/after the vma, so pad with scratch */
433 	if (intel_scanout_needs_vtd_wa(i915)) {
434 		unsigned int guard = VTD_GUARD;
435 
436 		if (i915_gem_object_is_tiled(obj))
437 			guard = max(guard,
438 				    i915_gem_object_get_tile_row_size(obj));
439 
440 		flags |= PIN_OFFSET_GUARD | guard;
441 	}
442 
443 	/*
444 	 * As the user may map the buffer once pinned in the display plane
445 	 * (e.g. libkms for the bootup splash), we have to ensure that we
446 	 * always use map_and_fenceable for all scanout buffers. However,
447 	 * it may simply be too big to fit into mappable, in which case
448 	 * put it anyway and hope that userspace can cope (but always first
449 	 * try to preserve the existing ABI).
450 	 */
451 	vma = ERR_PTR(-ENOSPC);
452 	if ((flags & PIN_MAPPABLE) == 0 &&
453 	    (!view || view->type == I915_GTT_VIEW_NORMAL))
454 		vma = i915_gem_object_ggtt_pin_ww(obj, ww, view, 0, alignment,
455 						  flags | PIN_MAPPABLE |
456 						  PIN_NONBLOCK);
457 	if (IS_ERR(vma) && vma != ERR_PTR(-EDEADLK))
458 		vma = i915_gem_object_ggtt_pin_ww(obj, ww, view, 0,
459 						  alignment, flags);
460 	if (IS_ERR(vma))
461 		return vma;
462 
463 	vma->display_alignment = max(vma->display_alignment, alignment);
464 	i915_vma_mark_scanout(vma);
465 
466 	i915_gem_object_flush_if_display_locked(obj);
467 
468 	return vma;
469 }
470 
471 /**
472  * i915_gem_object_set_to_cpu_domain - Moves a single object to the CPU read,
473  *                                     and possibly write domain.
474  * @obj: object to act on
475  * @write: requesting write or read-only access
476  *
477  * This function returns when the move is complete, including waiting on
478  * flushes to occur.
479  */
480 int
481 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
482 {
483 	int ret;
484 
485 	assert_object_held(obj);
486 
487 	ret = i915_gem_object_wait(obj,
488 				   I915_WAIT_INTERRUPTIBLE |
489 				   (write ? I915_WAIT_ALL : 0),
490 				   MAX_SCHEDULE_TIMEOUT);
491 	if (ret)
492 		return ret;
493 
494 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
495 
496 	/* Flush the CPU cache if it's still invalid. */
497 	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
498 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
499 		obj->read_domains |= I915_GEM_DOMAIN_CPU;
500 	}
501 
502 	/* It should now be out of any other write domains, and we can update
503 	 * the domain values for our changes.
504 	 */
505 	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
506 
507 	/* If we're writing through the CPU, then the GPU read domains will
508 	 * need to be invalidated at next use.
509 	 */
510 	if (write)
511 		__start_cpu_write(obj);
512 
513 	return 0;
514 }
515 
516 /**
517  * i915_gem_set_domain_ioctl - Called when user space prepares to use an
518  *                             object with the CPU, either
519  * through the mmap ioctl's mapping or a GTT mapping.
520  * @dev: drm device
521  * @data: ioctl data blob
522  * @file: drm file
523  */
524 int
525 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
526 			  struct drm_file *file)
527 {
528 	struct drm_i915_gem_set_domain *args = data;
529 	struct drm_i915_gem_object *obj;
530 	u32 read_domains = args->read_domains;
531 	u32 write_domain = args->write_domain;
532 	int err;
533 
534 	if (IS_DGFX(to_i915(dev)))
535 		return -ENODEV;
536 
537 	/* Only handle setting domains to types used by the CPU. */
538 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
539 		return -EINVAL;
540 
541 	/*
542 	 * Having something in the write domain implies it's in the read
543 	 * domain, and only that read domain.  Enforce that in the request.
544 	 */
545 	if (write_domain && read_domains != write_domain)
546 		return -EINVAL;
547 
548 	if (!read_domains)
549 		return 0;
550 
551 	obj = i915_gem_object_lookup(file, args->handle);
552 	if (!obj)
553 		return -ENOENT;
554 
555 	/*
556 	 * Try to flush the object off the GPU without holding the lock.
557 	 * We will repeat the flush holding the lock in the normal manner
558 	 * to catch cases where we are gazumped.
559 	 */
560 	err = i915_gem_object_wait(obj,
561 				   I915_WAIT_INTERRUPTIBLE |
562 				   I915_WAIT_PRIORITY |
563 				   (write_domain ? I915_WAIT_ALL : 0),
564 				   MAX_SCHEDULE_TIMEOUT);
565 	if (err)
566 		goto out;
567 
568 	if (i915_gem_object_is_userptr(obj)) {
569 		/*
570 		 * Try to grab userptr pages, iris uses set_domain to check
571 		 * userptr validity
572 		 */
573 		err = i915_gem_object_userptr_validate(obj);
574 		if (!err)
575 			err = i915_gem_object_wait(obj,
576 						   I915_WAIT_INTERRUPTIBLE |
577 						   I915_WAIT_PRIORITY |
578 						   (write_domain ? I915_WAIT_ALL : 0),
579 						   MAX_SCHEDULE_TIMEOUT);
580 		goto out;
581 	}
582 
583 	/*
584 	 * Proxy objects do not control access to the backing storage, ergo
585 	 * they cannot be used as a means to manipulate the cache domain
586 	 * tracking for that backing storage. The proxy object is always
587 	 * considered to be outside of any cache domain.
588 	 */
589 	if (i915_gem_object_is_proxy(obj)) {
590 		err = -ENXIO;
591 		goto out;
592 	}
593 
594 	err = i915_gem_object_lock_interruptible(obj, NULL);
595 	if (err)
596 		goto out;
597 
598 	/*
599 	 * Flush and acquire obj->pages so that we are coherent through
600 	 * direct access in memory with previous cached writes through
601 	 * shmemfs and that our cache domain tracking remains valid.
602 	 * For example, if the obj->filp was moved to swap without us
603 	 * being notified and releasing the pages, we would mistakenly
604 	 * continue to assume that the obj remained out of the CPU cached
605 	 * domain.
606 	 */
607 	err = i915_gem_object_pin_pages(obj);
608 	if (err)
609 		goto out_unlock;
610 
611 	/*
612 	 * Already in the desired write domain? Nothing for us to do!
613 	 *
614 	 * We apply a little bit of cunning here to catch a broader set of
615 	 * no-ops. If obj->write_domain is set, we must be in the same
616 	 * obj->read_domains, and only that domain. Therefore, if that
617 	 * obj->write_domain matches the request read_domains, we are
618 	 * already in the same read/write domain and can skip the operation,
619 	 * without having to further check the requested write_domain.
620 	 */
621 	if (READ_ONCE(obj->write_domain) == read_domains)
622 		goto out_unpin;
623 
624 	if (read_domains & I915_GEM_DOMAIN_WC)
625 		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
626 	else if (read_domains & I915_GEM_DOMAIN_GTT)
627 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
628 	else
629 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
630 
631 out_unpin:
632 	i915_gem_object_unpin_pages(obj);
633 
634 out_unlock:
635 	i915_gem_object_unlock(obj);
636 
637 	if (!err && write_domain)
638 		i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
639 
640 out:
641 	i915_gem_object_put(obj);
642 	return err;
643 }
644 
645 /*
646  * Pins the specified object's pages and synchronizes the object with
647  * GPU accesses. Sets needs_clflush to non-zero if the caller should
648  * flush the object from the CPU cache.
649  */
650 int i915_gem_object_prepare_read(struct drm_i915_gem_object *obj,
651 				 unsigned int *needs_clflush)
652 {
653 	int ret;
654 
655 	*needs_clflush = 0;
656 	if (!i915_gem_object_has_struct_page(obj))
657 		return -ENODEV;
658 
659 	assert_object_held(obj);
660 
661 	ret = i915_gem_object_wait(obj,
662 				   I915_WAIT_INTERRUPTIBLE,
663 				   MAX_SCHEDULE_TIMEOUT);
664 	if (ret)
665 		return ret;
666 
667 	ret = i915_gem_object_pin_pages(obj);
668 	if (ret)
669 		return ret;
670 
671 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
672 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
673 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
674 		if (ret)
675 			goto err_unpin;
676 		else
677 			goto out;
678 	}
679 
680 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
681 
682 	/* If we're not in the cpu read domain, set ourself into the gtt
683 	 * read domain and manually flush cachelines (if required). This
684 	 * optimizes for the case when the gpu will dirty the data
685 	 * anyway again before the next pread happens.
686 	 */
687 	if (!obj->cache_dirty &&
688 	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
689 		*needs_clflush = CLFLUSH_BEFORE;
690 
691 out:
692 	/* return with the pages pinned */
693 	return 0;
694 
695 err_unpin:
696 	i915_gem_object_unpin_pages(obj);
697 	return ret;
698 }
699 
700 int i915_gem_object_prepare_write(struct drm_i915_gem_object *obj,
701 				  unsigned int *needs_clflush)
702 {
703 	int ret;
704 
705 	*needs_clflush = 0;
706 	if (!i915_gem_object_has_struct_page(obj))
707 		return -ENODEV;
708 
709 	assert_object_held(obj);
710 
711 	ret = i915_gem_object_wait(obj,
712 				   I915_WAIT_INTERRUPTIBLE |
713 				   I915_WAIT_ALL,
714 				   MAX_SCHEDULE_TIMEOUT);
715 	if (ret)
716 		return ret;
717 
718 	ret = i915_gem_object_pin_pages(obj);
719 	if (ret)
720 		return ret;
721 
722 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
723 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
724 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
725 		if (ret)
726 			goto err_unpin;
727 		else
728 			goto out;
729 	}
730 
731 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
732 
733 	/* If we're not in the cpu write domain, set ourself into the
734 	 * gtt write domain and manually flush cachelines (as required).
735 	 * This optimizes for the case when the gpu will use the data
736 	 * right away and we therefore have to clflush anyway.
737 	 */
738 	if (!obj->cache_dirty) {
739 		*needs_clflush |= CLFLUSH_AFTER;
740 
741 		/*
742 		 * Same trick applies to invalidate partially written
743 		 * cachelines read before writing.
744 		 */
745 		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
746 			*needs_clflush |= CLFLUSH_BEFORE;
747 	}
748 
749 out:
750 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
751 	obj->mm.dirty = true;
752 	/* return with the pages pinned */
753 	return 0;
754 
755 err_unpin:
756 	i915_gem_object_unpin_pages(obj);
757 	return ret;
758 }
759