1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2014-2016 Intel Corporation
5  */
6 
7 #include "display/intel_frontbuffer.h"
8 #include "gt/intel_gt.h"
9 
10 #include "i915_drv.h"
11 #include "i915_gem_clflush.h"
12 #include "i915_gem_gtt.h"
13 #include "i915_gem_ioctls.h"
14 #include "i915_gem_object.h"
15 #include "i915_vma.h"
16 #include "i915_gem_lmem.h"
17 #include "i915_gem_mman.h"
18 
19 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
20 {
21 	return !(obj->cache_level == I915_CACHE_NONE ||
22 		 obj->cache_level == I915_CACHE_WT);
23 }
24 
25 static void
26 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
27 {
28 	struct i915_vma *vma;
29 
30 	assert_object_held(obj);
31 
32 	if (!(obj->write_domain & flush_domains))
33 		return;
34 
35 	switch (obj->write_domain) {
36 	case I915_GEM_DOMAIN_GTT:
37 		spin_lock(&obj->vma.lock);
38 		for_each_ggtt_vma(vma, obj) {
39 			if (i915_vma_unset_ggtt_write(vma))
40 				intel_gt_flush_ggtt_writes(vma->vm->gt);
41 		}
42 		spin_unlock(&obj->vma.lock);
43 
44 		i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
45 		break;
46 
47 	case I915_GEM_DOMAIN_WC:
48 		wmb();
49 		break;
50 
51 	case I915_GEM_DOMAIN_CPU:
52 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
53 		break;
54 
55 	case I915_GEM_DOMAIN_RENDER:
56 		if (gpu_write_needs_clflush(obj))
57 			obj->cache_dirty = true;
58 		break;
59 	}
60 
61 	obj->write_domain = 0;
62 }
63 
64 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
65 {
66 	/*
67 	 * We manually flush the CPU domain so that we can override and
68 	 * force the flush for the display, and perform it asyncrhonously.
69 	 */
70 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
71 	if (obj->cache_dirty)
72 		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
73 	obj->write_domain = 0;
74 }
75 
76 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
77 {
78 	if (!i915_gem_object_is_framebuffer(obj))
79 		return;
80 
81 	i915_gem_object_lock(obj, NULL);
82 	__i915_gem_object_flush_for_display(obj);
83 	i915_gem_object_unlock(obj);
84 }
85 
86 void i915_gem_object_flush_if_display_locked(struct drm_i915_gem_object *obj)
87 {
88 	if (i915_gem_object_is_framebuffer(obj))
89 		__i915_gem_object_flush_for_display(obj);
90 }
91 
92 /**
93  * Moves a single object to the WC read, and possibly write domain.
94  * @obj: object to act on
95  * @write: ask for write access or read only
96  *
97  * This function returns when the move is complete, including waiting on
98  * flushes to occur.
99  */
100 int
101 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
102 {
103 	int ret;
104 
105 	assert_object_held(obj);
106 
107 	ret = i915_gem_object_wait(obj,
108 				   I915_WAIT_INTERRUPTIBLE |
109 				   (write ? I915_WAIT_ALL : 0),
110 				   MAX_SCHEDULE_TIMEOUT);
111 	if (ret)
112 		return ret;
113 
114 	if (obj->write_domain == I915_GEM_DOMAIN_WC)
115 		return 0;
116 
117 	/* Flush and acquire obj->pages so that we are coherent through
118 	 * direct access in memory with previous cached writes through
119 	 * shmemfs and that our cache domain tracking remains valid.
120 	 * For example, if the obj->filp was moved to swap without us
121 	 * being notified and releasing the pages, we would mistakenly
122 	 * continue to assume that the obj remained out of the CPU cached
123 	 * domain.
124 	 */
125 	ret = i915_gem_object_pin_pages(obj);
126 	if (ret)
127 		return ret;
128 
129 	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
130 
131 	/* Serialise direct access to this object with the barriers for
132 	 * coherent writes from the GPU, by effectively invalidating the
133 	 * WC domain upon first access.
134 	 */
135 	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
136 		mb();
137 
138 	/* It should now be out of any other write domains, and we can update
139 	 * the domain values for our changes.
140 	 */
141 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
142 	obj->read_domains |= I915_GEM_DOMAIN_WC;
143 	if (write) {
144 		obj->read_domains = I915_GEM_DOMAIN_WC;
145 		obj->write_domain = I915_GEM_DOMAIN_WC;
146 		obj->mm.dirty = true;
147 	}
148 
149 	i915_gem_object_unpin_pages(obj);
150 	return 0;
151 }
152 
153 /**
154  * Moves a single object to the GTT read, and possibly write domain.
155  * @obj: object to act on
156  * @write: ask for write access or read only
157  *
158  * This function returns when the move is complete, including waiting on
159  * flushes to occur.
160  */
161 int
162 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
163 {
164 	int ret;
165 
166 	assert_object_held(obj);
167 
168 	ret = i915_gem_object_wait(obj,
169 				   I915_WAIT_INTERRUPTIBLE |
170 				   (write ? I915_WAIT_ALL : 0),
171 				   MAX_SCHEDULE_TIMEOUT);
172 	if (ret)
173 		return ret;
174 
175 	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
176 		return 0;
177 
178 	/* Flush and acquire obj->pages so that we are coherent through
179 	 * direct access in memory with previous cached writes through
180 	 * shmemfs and that our cache domain tracking remains valid.
181 	 * For example, if the obj->filp was moved to swap without us
182 	 * being notified and releasing the pages, we would mistakenly
183 	 * continue to assume that the obj remained out of the CPU cached
184 	 * domain.
185 	 */
186 	ret = i915_gem_object_pin_pages(obj);
187 	if (ret)
188 		return ret;
189 
190 	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
191 
192 	/* Serialise direct access to this object with the barriers for
193 	 * coherent writes from the GPU, by effectively invalidating the
194 	 * GTT domain upon first access.
195 	 */
196 	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
197 		mb();
198 
199 	/* It should now be out of any other write domains, and we can update
200 	 * the domain values for our changes.
201 	 */
202 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
203 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
204 	if (write) {
205 		struct i915_vma *vma;
206 
207 		obj->read_domains = I915_GEM_DOMAIN_GTT;
208 		obj->write_domain = I915_GEM_DOMAIN_GTT;
209 		obj->mm.dirty = true;
210 
211 		spin_lock(&obj->vma.lock);
212 		for_each_ggtt_vma(vma, obj)
213 			if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
214 				i915_vma_set_ggtt_write(vma);
215 		spin_unlock(&obj->vma.lock);
216 	}
217 
218 	i915_gem_object_unpin_pages(obj);
219 	return 0;
220 }
221 
222 /**
223  * Changes the cache-level of an object across all VMA.
224  * @obj: object to act on
225  * @cache_level: new cache level to set for the object
226  *
227  * After this function returns, the object will be in the new cache-level
228  * across all GTT and the contents of the backing storage will be coherent,
229  * with respect to the new cache-level. In order to keep the backing storage
230  * coherent for all users, we only allow a single cache level to be set
231  * globally on the object and prevent it from being changed whilst the
232  * hardware is reading from the object. That is if the object is currently
233  * on the scanout it will be set to uncached (or equivalent display
234  * cache coherency) and all non-MOCS GPU access will also be uncached so
235  * that all direct access to the scanout remains coherent.
236  */
237 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
238 				    enum i915_cache_level cache_level)
239 {
240 	int ret;
241 
242 	if (obj->cache_level == cache_level)
243 		return 0;
244 
245 	ret = i915_gem_object_wait(obj,
246 				   I915_WAIT_INTERRUPTIBLE |
247 				   I915_WAIT_ALL,
248 				   MAX_SCHEDULE_TIMEOUT);
249 	if (ret)
250 		return ret;
251 
252 	/* Always invalidate stale cachelines */
253 	if (obj->cache_level != cache_level) {
254 		i915_gem_object_set_cache_coherency(obj, cache_level);
255 		obj->cache_dirty = true;
256 	}
257 
258 	/* The cache-level will be applied when each vma is rebound. */
259 	return i915_gem_object_unbind(obj,
260 				      I915_GEM_OBJECT_UNBIND_ACTIVE |
261 				      I915_GEM_OBJECT_UNBIND_BARRIER);
262 }
263 
264 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
265 			       struct drm_file *file)
266 {
267 	struct drm_i915_gem_caching *args = data;
268 	struct drm_i915_gem_object *obj;
269 	int err = 0;
270 
271 	rcu_read_lock();
272 	obj = i915_gem_object_lookup_rcu(file, args->handle);
273 	if (!obj) {
274 		err = -ENOENT;
275 		goto out;
276 	}
277 
278 	switch (obj->cache_level) {
279 	case I915_CACHE_LLC:
280 	case I915_CACHE_L3_LLC:
281 		args->caching = I915_CACHING_CACHED;
282 		break;
283 
284 	case I915_CACHE_WT:
285 		args->caching = I915_CACHING_DISPLAY;
286 		break;
287 
288 	default:
289 		args->caching = I915_CACHING_NONE;
290 		break;
291 	}
292 out:
293 	rcu_read_unlock();
294 	return err;
295 }
296 
297 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
298 			       struct drm_file *file)
299 {
300 	struct drm_i915_private *i915 = to_i915(dev);
301 	struct drm_i915_gem_caching *args = data;
302 	struct drm_i915_gem_object *obj;
303 	enum i915_cache_level level;
304 	int ret = 0;
305 
306 	switch (args->caching) {
307 	case I915_CACHING_NONE:
308 		level = I915_CACHE_NONE;
309 		break;
310 	case I915_CACHING_CACHED:
311 		/*
312 		 * Due to a HW issue on BXT A stepping, GPU stores via a
313 		 * snooped mapping may leave stale data in a corresponding CPU
314 		 * cacheline, whereas normally such cachelines would get
315 		 * invalidated.
316 		 */
317 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
318 			return -ENODEV;
319 
320 		level = I915_CACHE_LLC;
321 		break;
322 	case I915_CACHING_DISPLAY:
323 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
324 		break;
325 	default:
326 		return -EINVAL;
327 	}
328 
329 	obj = i915_gem_object_lookup(file, args->handle);
330 	if (!obj)
331 		return -ENOENT;
332 
333 	/*
334 	 * The caching mode of proxy object is handled by its generator, and
335 	 * not allowed to be changed by userspace.
336 	 */
337 	if (i915_gem_object_is_proxy(obj)) {
338 		/*
339 		 * Silently allow cached for userptr; the vulkan driver
340 		 * sets all objects to cached
341 		 */
342 		if (!i915_gem_object_is_userptr(obj) ||
343 		    args->caching != I915_CACHING_CACHED)
344 			ret = -ENXIO;
345 
346 		goto out;
347 	}
348 
349 	ret = i915_gem_object_lock_interruptible(obj, NULL);
350 	if (ret)
351 		goto out;
352 
353 	ret = i915_gem_object_set_cache_level(obj, level);
354 	i915_gem_object_unlock(obj);
355 
356 out:
357 	i915_gem_object_put(obj);
358 	return ret;
359 }
360 
361 /*
362  * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
363  * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
364  * (for pageflips). We only flush the caches while preparing the buffer for
365  * display, the callers are responsible for frontbuffer flush.
366  */
367 struct i915_vma *
368 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
369 				     struct i915_gem_ww_ctx *ww,
370 				     u32 alignment,
371 				     const struct i915_ggtt_view *view,
372 				     unsigned int flags)
373 {
374 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
375 	struct i915_vma *vma;
376 	int ret;
377 
378 	/* Frame buffer must be in LMEM (no migration yet) */
379 	if (HAS_LMEM(i915) && !i915_gem_object_is_lmem(obj))
380 		return ERR_PTR(-EINVAL);
381 
382 	/*
383 	 * The display engine is not coherent with the LLC cache on gen6.  As
384 	 * a result, we make sure that the pinning that is about to occur is
385 	 * done with uncached PTEs. This is lowest common denominator for all
386 	 * chipsets.
387 	 *
388 	 * However for gen6+, we could do better by using the GFDT bit instead
389 	 * of uncaching, which would allow us to flush all the LLC-cached data
390 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
391 	 */
392 	ret = i915_gem_object_set_cache_level(obj,
393 					      HAS_WT(i915) ?
394 					      I915_CACHE_WT : I915_CACHE_NONE);
395 	if (ret)
396 		return ERR_PTR(ret);
397 
398 	/*
399 	 * As the user may map the buffer once pinned in the display plane
400 	 * (e.g. libkms for the bootup splash), we have to ensure that we
401 	 * always use map_and_fenceable for all scanout buffers. However,
402 	 * it may simply be too big to fit into mappable, in which case
403 	 * put it anyway and hope that userspace can cope (but always first
404 	 * try to preserve the existing ABI).
405 	 */
406 	vma = ERR_PTR(-ENOSPC);
407 	if ((flags & PIN_MAPPABLE) == 0 &&
408 	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
409 		vma = i915_gem_object_ggtt_pin_ww(obj, ww, view, 0, alignment,
410 						  flags | PIN_MAPPABLE |
411 						  PIN_NONBLOCK);
412 	if (IS_ERR(vma) && vma != ERR_PTR(-EDEADLK))
413 		vma = i915_gem_object_ggtt_pin_ww(obj, ww, view, 0,
414 						  alignment, flags);
415 	if (IS_ERR(vma))
416 		return vma;
417 
418 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
419 	i915_vma_mark_scanout(vma);
420 
421 	i915_gem_object_flush_if_display_locked(obj);
422 
423 	return vma;
424 }
425 
426 /**
427  * Moves a single object to the CPU read, and possibly write domain.
428  * @obj: object to act on
429  * @write: requesting write or read-only access
430  *
431  * This function returns when the move is complete, including waiting on
432  * flushes to occur.
433  */
434 int
435 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
436 {
437 	int ret;
438 
439 	assert_object_held(obj);
440 
441 	ret = i915_gem_object_wait(obj,
442 				   I915_WAIT_INTERRUPTIBLE |
443 				   (write ? I915_WAIT_ALL : 0),
444 				   MAX_SCHEDULE_TIMEOUT);
445 	if (ret)
446 		return ret;
447 
448 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
449 
450 	/* Flush the CPU cache if it's still invalid. */
451 	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
452 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
453 		obj->read_domains |= I915_GEM_DOMAIN_CPU;
454 	}
455 
456 	/* It should now be out of any other write domains, and we can update
457 	 * the domain values for our changes.
458 	 */
459 	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
460 
461 	/* If we're writing through the CPU, then the GPU read domains will
462 	 * need to be invalidated at next use.
463 	 */
464 	if (write)
465 		__start_cpu_write(obj);
466 
467 	return 0;
468 }
469 
470 /**
471  * Called when user space prepares to use an object with the CPU, either
472  * through the mmap ioctl's mapping or a GTT mapping.
473  * @dev: drm device
474  * @data: ioctl data blob
475  * @file: drm file
476  */
477 int
478 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
479 			  struct drm_file *file)
480 {
481 	struct drm_i915_gem_set_domain *args = data;
482 	struct drm_i915_gem_object *obj;
483 	u32 read_domains = args->read_domains;
484 	u32 write_domain = args->write_domain;
485 	int err;
486 
487 	/* Only handle setting domains to types used by the CPU. */
488 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
489 		return -EINVAL;
490 
491 	/*
492 	 * Having something in the write domain implies it's in the read
493 	 * domain, and only that read domain.  Enforce that in the request.
494 	 */
495 	if (write_domain && read_domains != write_domain)
496 		return -EINVAL;
497 
498 	if (!read_domains)
499 		return 0;
500 
501 	obj = i915_gem_object_lookup(file, args->handle);
502 	if (!obj)
503 		return -ENOENT;
504 
505 	/*
506 	 * Try to flush the object off the GPU without holding the lock.
507 	 * We will repeat the flush holding the lock in the normal manner
508 	 * to catch cases where we are gazumped.
509 	 */
510 	err = i915_gem_object_wait(obj,
511 				   I915_WAIT_INTERRUPTIBLE |
512 				   I915_WAIT_PRIORITY |
513 				   (write_domain ? I915_WAIT_ALL : 0),
514 				   MAX_SCHEDULE_TIMEOUT);
515 	if (err)
516 		goto out;
517 
518 	if (i915_gem_object_is_userptr(obj)) {
519 		/*
520 		 * Try to grab userptr pages, iris uses set_domain to check
521 		 * userptr validity
522 		 */
523 		err = i915_gem_object_userptr_validate(obj);
524 		if (!err)
525 			err = i915_gem_object_wait(obj,
526 						   I915_WAIT_INTERRUPTIBLE |
527 						   I915_WAIT_PRIORITY |
528 						   (write_domain ? I915_WAIT_ALL : 0),
529 						   MAX_SCHEDULE_TIMEOUT);
530 		goto out;
531 	}
532 
533 	/*
534 	 * Proxy objects do not control access to the backing storage, ergo
535 	 * they cannot be used as a means to manipulate the cache domain
536 	 * tracking for that backing storage. The proxy object is always
537 	 * considered to be outside of any cache domain.
538 	 */
539 	if (i915_gem_object_is_proxy(obj)) {
540 		err = -ENXIO;
541 		goto out;
542 	}
543 
544 	err = i915_gem_object_lock_interruptible(obj, NULL);
545 	if (err)
546 		goto out;
547 
548 	/*
549 	 * Flush and acquire obj->pages so that we are coherent through
550 	 * direct access in memory with previous cached writes through
551 	 * shmemfs and that our cache domain tracking remains valid.
552 	 * For example, if the obj->filp was moved to swap without us
553 	 * being notified and releasing the pages, we would mistakenly
554 	 * continue to assume that the obj remained out of the CPU cached
555 	 * domain.
556 	 */
557 	err = i915_gem_object_pin_pages(obj);
558 	if (err)
559 		goto out_unlock;
560 
561 	/*
562 	 * Already in the desired write domain? Nothing for us to do!
563 	 *
564 	 * We apply a little bit of cunning here to catch a broader set of
565 	 * no-ops. If obj->write_domain is set, we must be in the same
566 	 * obj->read_domains, and only that domain. Therefore, if that
567 	 * obj->write_domain matches the request read_domains, we are
568 	 * already in the same read/write domain and can skip the operation,
569 	 * without having to further check the requested write_domain.
570 	 */
571 	if (READ_ONCE(obj->write_domain) == read_domains)
572 		goto out_unpin;
573 
574 	if (read_domains & I915_GEM_DOMAIN_WC)
575 		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
576 	else if (read_domains & I915_GEM_DOMAIN_GTT)
577 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
578 	else
579 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
580 
581 out_unpin:
582 	i915_gem_object_unpin_pages(obj);
583 
584 out_unlock:
585 	i915_gem_object_unlock(obj);
586 
587 	if (!err && write_domain)
588 		i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
589 
590 out:
591 	i915_gem_object_put(obj);
592 	return err;
593 }
594 
595 /*
596  * Pins the specified object's pages and synchronizes the object with
597  * GPU accesses. Sets needs_clflush to non-zero if the caller should
598  * flush the object from the CPU cache.
599  */
600 int i915_gem_object_prepare_read(struct drm_i915_gem_object *obj,
601 				 unsigned int *needs_clflush)
602 {
603 	int ret;
604 
605 	*needs_clflush = 0;
606 	if (!i915_gem_object_has_struct_page(obj))
607 		return -ENODEV;
608 
609 	assert_object_held(obj);
610 
611 	ret = i915_gem_object_wait(obj,
612 				   I915_WAIT_INTERRUPTIBLE,
613 				   MAX_SCHEDULE_TIMEOUT);
614 	if (ret)
615 		return ret;
616 
617 	ret = i915_gem_object_pin_pages(obj);
618 	if (ret)
619 		return ret;
620 
621 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
622 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
623 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
624 		if (ret)
625 			goto err_unpin;
626 		else
627 			goto out;
628 	}
629 
630 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
631 
632 	/* If we're not in the cpu read domain, set ourself into the gtt
633 	 * read domain and manually flush cachelines (if required). This
634 	 * optimizes for the case when the gpu will dirty the data
635 	 * anyway again before the next pread happens.
636 	 */
637 	if (!obj->cache_dirty &&
638 	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
639 		*needs_clflush = CLFLUSH_BEFORE;
640 
641 out:
642 	/* return with the pages pinned */
643 	return 0;
644 
645 err_unpin:
646 	i915_gem_object_unpin_pages(obj);
647 	return ret;
648 }
649 
650 int i915_gem_object_prepare_write(struct drm_i915_gem_object *obj,
651 				  unsigned int *needs_clflush)
652 {
653 	int ret;
654 
655 	*needs_clflush = 0;
656 	if (!i915_gem_object_has_struct_page(obj))
657 		return -ENODEV;
658 
659 	assert_object_held(obj);
660 
661 	ret = i915_gem_object_wait(obj,
662 				   I915_WAIT_INTERRUPTIBLE |
663 				   I915_WAIT_ALL,
664 				   MAX_SCHEDULE_TIMEOUT);
665 	if (ret)
666 		return ret;
667 
668 	ret = i915_gem_object_pin_pages(obj);
669 	if (ret)
670 		return ret;
671 
672 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
673 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
674 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
675 		if (ret)
676 			goto err_unpin;
677 		else
678 			goto out;
679 	}
680 
681 	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
682 
683 	/* If we're not in the cpu write domain, set ourself into the
684 	 * gtt write domain and manually flush cachelines (as required).
685 	 * This optimizes for the case when the gpu will use the data
686 	 * right away and we therefore have to clflush anyway.
687 	 */
688 	if (!obj->cache_dirty) {
689 		*needs_clflush |= CLFLUSH_AFTER;
690 
691 		/*
692 		 * Same trick applies to invalidate partially written
693 		 * cachelines read before writing.
694 		 */
695 		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
696 			*needs_clflush |= CLFLUSH_BEFORE;
697 	}
698 
699 out:
700 	i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
701 	obj->mm.dirty = true;
702 	/* return with the pages pinned */
703 	return 0;
704 
705 err_unpin:
706 	i915_gem_object_unpin_pages(obj);
707 	return ret;
708 }
709