xref: /openbmc/linux/drivers/gpu/drm/i915/gem/i915_gem_domain.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2014-2016 Intel Corporation
5  */
6 
7 #include "display/intel_frontbuffer.h"
8 
9 #include "i915_drv.h"
10 #include "i915_gem_clflush.h"
11 #include "i915_gem_gtt.h"
12 #include "i915_gem_ioctls.h"
13 #include "i915_gem_object.h"
14 #include "i915_vma.h"
15 
16 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
17 {
18 	/*
19 	 * We manually flush the CPU domain so that we can override and
20 	 * force the flush for the display, and perform it asyncrhonously.
21 	 */
22 	i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
23 	if (obj->cache_dirty)
24 		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
25 	obj->write_domain = 0;
26 }
27 
28 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
29 {
30 	if (!READ_ONCE(obj->pin_global))
31 		return;
32 
33 	i915_gem_object_lock(obj);
34 	__i915_gem_object_flush_for_display(obj);
35 	i915_gem_object_unlock(obj);
36 }
37 
38 /**
39  * Moves a single object to the WC read, and possibly write domain.
40  * @obj: object to act on
41  * @write: ask for write access or read only
42  *
43  * This function returns when the move is complete, including waiting on
44  * flushes to occur.
45  */
46 int
47 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
48 {
49 	int ret;
50 
51 	assert_object_held(obj);
52 
53 	ret = i915_gem_object_wait(obj,
54 				   I915_WAIT_INTERRUPTIBLE |
55 				   (write ? I915_WAIT_ALL : 0),
56 				   MAX_SCHEDULE_TIMEOUT);
57 	if (ret)
58 		return ret;
59 
60 	if (obj->write_domain == I915_GEM_DOMAIN_WC)
61 		return 0;
62 
63 	/* Flush and acquire obj->pages so that we are coherent through
64 	 * direct access in memory with previous cached writes through
65 	 * shmemfs and that our cache domain tracking remains valid.
66 	 * For example, if the obj->filp was moved to swap without us
67 	 * being notified and releasing the pages, we would mistakenly
68 	 * continue to assume that the obj remained out of the CPU cached
69 	 * domain.
70 	 */
71 	ret = i915_gem_object_pin_pages(obj);
72 	if (ret)
73 		return ret;
74 
75 	i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
76 
77 	/* Serialise direct access to this object with the barriers for
78 	 * coherent writes from the GPU, by effectively invalidating the
79 	 * WC domain upon first access.
80 	 */
81 	if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
82 		mb();
83 
84 	/* It should now be out of any other write domains, and we can update
85 	 * the domain values for our changes.
86 	 */
87 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
88 	obj->read_domains |= I915_GEM_DOMAIN_WC;
89 	if (write) {
90 		obj->read_domains = I915_GEM_DOMAIN_WC;
91 		obj->write_domain = I915_GEM_DOMAIN_WC;
92 		obj->mm.dirty = true;
93 	}
94 
95 	i915_gem_object_unpin_pages(obj);
96 	return 0;
97 }
98 
99 /**
100  * Moves a single object to the GTT read, and possibly write domain.
101  * @obj: object to act on
102  * @write: ask for write access or read only
103  *
104  * This function returns when the move is complete, including waiting on
105  * flushes to occur.
106  */
107 int
108 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
109 {
110 	int ret;
111 
112 	assert_object_held(obj);
113 
114 	ret = i915_gem_object_wait(obj,
115 				   I915_WAIT_INTERRUPTIBLE |
116 				   (write ? I915_WAIT_ALL : 0),
117 				   MAX_SCHEDULE_TIMEOUT);
118 	if (ret)
119 		return ret;
120 
121 	if (obj->write_domain == I915_GEM_DOMAIN_GTT)
122 		return 0;
123 
124 	/* Flush and acquire obj->pages so that we are coherent through
125 	 * direct access in memory with previous cached writes through
126 	 * shmemfs and that our cache domain tracking remains valid.
127 	 * For example, if the obj->filp was moved to swap without us
128 	 * being notified and releasing the pages, we would mistakenly
129 	 * continue to assume that the obj remained out of the CPU cached
130 	 * domain.
131 	 */
132 	ret = i915_gem_object_pin_pages(obj);
133 	if (ret)
134 		return ret;
135 
136 	i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
137 
138 	/* Serialise direct access to this object with the barriers for
139 	 * coherent writes from the GPU, by effectively invalidating the
140 	 * GTT domain upon first access.
141 	 */
142 	if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
143 		mb();
144 
145 	/* It should now be out of any other write domains, and we can update
146 	 * the domain values for our changes.
147 	 */
148 	GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
149 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
150 	if (write) {
151 		obj->read_domains = I915_GEM_DOMAIN_GTT;
152 		obj->write_domain = I915_GEM_DOMAIN_GTT;
153 		obj->mm.dirty = true;
154 	}
155 
156 	i915_gem_object_unpin_pages(obj);
157 	return 0;
158 }
159 
160 /**
161  * Changes the cache-level of an object across all VMA.
162  * @obj: object to act on
163  * @cache_level: new cache level to set for the object
164  *
165  * After this function returns, the object will be in the new cache-level
166  * across all GTT and the contents of the backing storage will be coherent,
167  * with respect to the new cache-level. In order to keep the backing storage
168  * coherent for all users, we only allow a single cache level to be set
169  * globally on the object and prevent it from being changed whilst the
170  * hardware is reading from the object. That is if the object is currently
171  * on the scanout it will be set to uncached (or equivalent display
172  * cache coherency) and all non-MOCS GPU access will also be uncached so
173  * that all direct access to the scanout remains coherent.
174  */
175 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
176 				    enum i915_cache_level cache_level)
177 {
178 	struct i915_vma *vma;
179 	int ret;
180 
181 	assert_object_held(obj);
182 
183 	if (obj->cache_level == cache_level)
184 		return 0;
185 
186 	/* Inspect the list of currently bound VMA and unbind any that would
187 	 * be invalid given the new cache-level. This is principally to
188 	 * catch the issue of the CS prefetch crossing page boundaries and
189 	 * reading an invalid PTE on older architectures.
190 	 */
191 restart:
192 	list_for_each_entry(vma, &obj->vma.list, obj_link) {
193 		if (!drm_mm_node_allocated(&vma->node))
194 			continue;
195 
196 		if (i915_vma_is_pinned(vma)) {
197 			DRM_DEBUG("can not change the cache level of pinned objects\n");
198 			return -EBUSY;
199 		}
200 
201 		if (!i915_vma_is_closed(vma) &&
202 		    i915_gem_valid_gtt_space(vma, cache_level))
203 			continue;
204 
205 		ret = i915_vma_unbind(vma);
206 		if (ret)
207 			return ret;
208 
209 		/* As unbinding may affect other elements in the
210 		 * obj->vma_list (due to side-effects from retiring
211 		 * an active vma), play safe and restart the iterator.
212 		 */
213 		goto restart;
214 	}
215 
216 	/* We can reuse the existing drm_mm nodes but need to change the
217 	 * cache-level on the PTE. We could simply unbind them all and
218 	 * rebind with the correct cache-level on next use. However since
219 	 * we already have a valid slot, dma mapping, pages etc, we may as
220 	 * rewrite the PTE in the belief that doing so tramples upon less
221 	 * state and so involves less work.
222 	 */
223 	if (atomic_read(&obj->bind_count)) {
224 		/* Before we change the PTE, the GPU must not be accessing it.
225 		 * If we wait upon the object, we know that all the bound
226 		 * VMA are no longer active.
227 		 */
228 		ret = i915_gem_object_wait(obj,
229 					   I915_WAIT_INTERRUPTIBLE |
230 					   I915_WAIT_ALL,
231 					   MAX_SCHEDULE_TIMEOUT);
232 		if (ret)
233 			return ret;
234 
235 		if (!HAS_LLC(to_i915(obj->base.dev)) &&
236 		    cache_level != I915_CACHE_NONE) {
237 			/* Access to snoopable pages through the GTT is
238 			 * incoherent and on some machines causes a hard
239 			 * lockup. Relinquish the CPU mmaping to force
240 			 * userspace to refault in the pages and we can
241 			 * then double check if the GTT mapping is still
242 			 * valid for that pointer access.
243 			 */
244 			i915_gem_object_release_mmap(obj);
245 
246 			/* As we no longer need a fence for GTT access,
247 			 * we can relinquish it now (and so prevent having
248 			 * to steal a fence from someone else on the next
249 			 * fence request). Note GPU activity would have
250 			 * dropped the fence as all snoopable access is
251 			 * supposed to be linear.
252 			 */
253 			for_each_ggtt_vma(vma, obj) {
254 				ret = i915_vma_put_fence(vma);
255 				if (ret)
256 					return ret;
257 			}
258 		} else {
259 			/* We either have incoherent backing store and
260 			 * so no GTT access or the architecture is fully
261 			 * coherent. In such cases, existing GTT mmaps
262 			 * ignore the cache bit in the PTE and we can
263 			 * rewrite it without confusing the GPU or having
264 			 * to force userspace to fault back in its mmaps.
265 			 */
266 		}
267 
268 		list_for_each_entry(vma, &obj->vma.list, obj_link) {
269 			if (!drm_mm_node_allocated(&vma->node))
270 				continue;
271 
272 			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
273 			if (ret)
274 				return ret;
275 		}
276 	}
277 
278 	list_for_each_entry(vma, &obj->vma.list, obj_link)
279 		vma->node.color = cache_level;
280 	i915_gem_object_set_cache_coherency(obj, cache_level);
281 	obj->cache_dirty = true; /* Always invalidate stale cachelines */
282 
283 	return 0;
284 }
285 
286 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
287 			       struct drm_file *file)
288 {
289 	struct drm_i915_gem_caching *args = data;
290 	struct drm_i915_gem_object *obj;
291 	int err = 0;
292 
293 	rcu_read_lock();
294 	obj = i915_gem_object_lookup_rcu(file, args->handle);
295 	if (!obj) {
296 		err = -ENOENT;
297 		goto out;
298 	}
299 
300 	switch (obj->cache_level) {
301 	case I915_CACHE_LLC:
302 	case I915_CACHE_L3_LLC:
303 		args->caching = I915_CACHING_CACHED;
304 		break;
305 
306 	case I915_CACHE_WT:
307 		args->caching = I915_CACHING_DISPLAY;
308 		break;
309 
310 	default:
311 		args->caching = I915_CACHING_NONE;
312 		break;
313 	}
314 out:
315 	rcu_read_unlock();
316 	return err;
317 }
318 
319 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
320 			       struct drm_file *file)
321 {
322 	struct drm_i915_private *i915 = to_i915(dev);
323 	struct drm_i915_gem_caching *args = data;
324 	struct drm_i915_gem_object *obj;
325 	enum i915_cache_level level;
326 	int ret = 0;
327 
328 	switch (args->caching) {
329 	case I915_CACHING_NONE:
330 		level = I915_CACHE_NONE;
331 		break;
332 	case I915_CACHING_CACHED:
333 		/*
334 		 * Due to a HW issue on BXT A stepping, GPU stores via a
335 		 * snooped mapping may leave stale data in a corresponding CPU
336 		 * cacheline, whereas normally such cachelines would get
337 		 * invalidated.
338 		 */
339 		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
340 			return -ENODEV;
341 
342 		level = I915_CACHE_LLC;
343 		break;
344 	case I915_CACHING_DISPLAY:
345 		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
346 		break;
347 	default:
348 		return -EINVAL;
349 	}
350 
351 	obj = i915_gem_object_lookup(file, args->handle);
352 	if (!obj)
353 		return -ENOENT;
354 
355 	/*
356 	 * The caching mode of proxy object is handled by its generator, and
357 	 * not allowed to be changed by userspace.
358 	 */
359 	if (i915_gem_object_is_proxy(obj)) {
360 		ret = -ENXIO;
361 		goto out;
362 	}
363 
364 	if (obj->cache_level == level)
365 		goto out;
366 
367 	ret = i915_gem_object_wait(obj,
368 				   I915_WAIT_INTERRUPTIBLE,
369 				   MAX_SCHEDULE_TIMEOUT);
370 	if (ret)
371 		goto out;
372 
373 	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
374 	if (ret)
375 		goto out;
376 
377 	ret = i915_gem_object_lock_interruptible(obj);
378 	if (ret == 0) {
379 		ret = i915_gem_object_set_cache_level(obj, level);
380 		i915_gem_object_unlock(obj);
381 	}
382 	mutex_unlock(&i915->drm.struct_mutex);
383 
384 out:
385 	i915_gem_object_put(obj);
386 	return ret;
387 }
388 
389 /*
390  * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
391  * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
392  * (for pageflips). We only flush the caches while preparing the buffer for
393  * display, the callers are responsible for frontbuffer flush.
394  */
395 struct i915_vma *
396 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
397 				     u32 alignment,
398 				     const struct i915_ggtt_view *view,
399 				     unsigned int flags)
400 {
401 	struct i915_vma *vma;
402 	int ret;
403 
404 	assert_object_held(obj);
405 
406 	/* Mark the global pin early so that we account for the
407 	 * display coherency whilst setting up the cache domains.
408 	 */
409 	obj->pin_global++;
410 
411 	/* The display engine is not coherent with the LLC cache on gen6.  As
412 	 * a result, we make sure that the pinning that is about to occur is
413 	 * done with uncached PTEs. This is lowest common denominator for all
414 	 * chipsets.
415 	 *
416 	 * However for gen6+, we could do better by using the GFDT bit instead
417 	 * of uncaching, which would allow us to flush all the LLC-cached data
418 	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
419 	 */
420 	ret = i915_gem_object_set_cache_level(obj,
421 					      HAS_WT(to_i915(obj->base.dev)) ?
422 					      I915_CACHE_WT : I915_CACHE_NONE);
423 	if (ret) {
424 		vma = ERR_PTR(ret);
425 		goto err_unpin_global;
426 	}
427 
428 	/* As the user may map the buffer once pinned in the display plane
429 	 * (e.g. libkms for the bootup splash), we have to ensure that we
430 	 * always use map_and_fenceable for all scanout buffers. However,
431 	 * it may simply be too big to fit into mappable, in which case
432 	 * put it anyway and hope that userspace can cope (but always first
433 	 * try to preserve the existing ABI).
434 	 */
435 	vma = ERR_PTR(-ENOSPC);
436 	if ((flags & PIN_MAPPABLE) == 0 &&
437 	    (!view || view->type == I915_GGTT_VIEW_NORMAL))
438 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
439 					       flags |
440 					       PIN_MAPPABLE |
441 					       PIN_NONBLOCK);
442 	if (IS_ERR(vma))
443 		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
444 	if (IS_ERR(vma))
445 		goto err_unpin_global;
446 
447 	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
448 
449 	__i915_gem_object_flush_for_display(obj);
450 
451 	/* It should now be out of any other write domains, and we can update
452 	 * the domain values for our changes.
453 	 */
454 	obj->read_domains |= I915_GEM_DOMAIN_GTT;
455 
456 	return vma;
457 
458 err_unpin_global:
459 	obj->pin_global--;
460 	return vma;
461 }
462 
463 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
464 {
465 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
466 	struct i915_vma *vma;
467 
468 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
469 
470 	mutex_lock(&i915->ggtt.vm.mutex);
471 	for_each_ggtt_vma(vma, obj) {
472 		if (!drm_mm_node_allocated(&vma->node))
473 			continue;
474 
475 		list_move_tail(&vma->vm_link, &vma->vm->bound_list);
476 	}
477 	mutex_unlock(&i915->ggtt.vm.mutex);
478 
479 	if (i915_gem_object_is_shrinkable(obj)) {
480 		unsigned long flags;
481 
482 		spin_lock_irqsave(&i915->mm.obj_lock, flags);
483 
484 		if (obj->mm.madv == I915_MADV_WILLNEED)
485 			list_move_tail(&obj->mm.link, &i915->mm.shrink_list);
486 
487 		spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
488 	}
489 }
490 
491 void
492 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
493 {
494 	struct drm_i915_gem_object *obj = vma->obj;
495 
496 	assert_object_held(obj);
497 
498 	if (WARN_ON(obj->pin_global == 0))
499 		return;
500 
501 	if (--obj->pin_global == 0)
502 		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
503 
504 	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
505 	i915_gem_object_bump_inactive_ggtt(obj);
506 
507 	i915_vma_unpin(vma);
508 }
509 
510 /**
511  * Moves a single object to the CPU read, and possibly write domain.
512  * @obj: object to act on
513  * @write: requesting write or read-only access
514  *
515  * This function returns when the move is complete, including waiting on
516  * flushes to occur.
517  */
518 int
519 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
520 {
521 	int ret;
522 
523 	assert_object_held(obj);
524 
525 	ret = i915_gem_object_wait(obj,
526 				   I915_WAIT_INTERRUPTIBLE |
527 				   (write ? I915_WAIT_ALL : 0),
528 				   MAX_SCHEDULE_TIMEOUT);
529 	if (ret)
530 		return ret;
531 
532 	i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
533 
534 	/* Flush the CPU cache if it's still invalid. */
535 	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
536 		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
537 		obj->read_domains |= I915_GEM_DOMAIN_CPU;
538 	}
539 
540 	/* It should now be out of any other write domains, and we can update
541 	 * the domain values for our changes.
542 	 */
543 	GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
544 
545 	/* If we're writing through the CPU, then the GPU read domains will
546 	 * need to be invalidated at next use.
547 	 */
548 	if (write)
549 		__start_cpu_write(obj);
550 
551 	return 0;
552 }
553 
554 static inline enum fb_op_origin
555 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
556 {
557 	return (domain == I915_GEM_DOMAIN_GTT ?
558 		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
559 }
560 
561 /**
562  * Called when user space prepares to use an object with the CPU, either
563  * through the mmap ioctl's mapping or a GTT mapping.
564  * @dev: drm device
565  * @data: ioctl data blob
566  * @file: drm file
567  */
568 int
569 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
570 			  struct drm_file *file)
571 {
572 	struct drm_i915_gem_set_domain *args = data;
573 	struct drm_i915_gem_object *obj;
574 	u32 read_domains = args->read_domains;
575 	u32 write_domain = args->write_domain;
576 	int err;
577 
578 	/* Only handle setting domains to types used by the CPU. */
579 	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
580 		return -EINVAL;
581 
582 	/*
583 	 * Having something in the write domain implies it's in the read
584 	 * domain, and only that read domain.  Enforce that in the request.
585 	 */
586 	if (write_domain && read_domains != write_domain)
587 		return -EINVAL;
588 
589 	if (!read_domains)
590 		return 0;
591 
592 	obj = i915_gem_object_lookup(file, args->handle);
593 	if (!obj)
594 		return -ENOENT;
595 
596 	/*
597 	 * Already in the desired write domain? Nothing for us to do!
598 	 *
599 	 * We apply a little bit of cunning here to catch a broader set of
600 	 * no-ops. If obj->write_domain is set, we must be in the same
601 	 * obj->read_domains, and only that domain. Therefore, if that
602 	 * obj->write_domain matches the request read_domains, we are
603 	 * already in the same read/write domain and can skip the operation,
604 	 * without having to further check the requested write_domain.
605 	 */
606 	if (READ_ONCE(obj->write_domain) == read_domains) {
607 		err = 0;
608 		goto out;
609 	}
610 
611 	/*
612 	 * Try to flush the object off the GPU without holding the lock.
613 	 * We will repeat the flush holding the lock in the normal manner
614 	 * to catch cases where we are gazumped.
615 	 */
616 	err = i915_gem_object_wait(obj,
617 				   I915_WAIT_INTERRUPTIBLE |
618 				   I915_WAIT_PRIORITY |
619 				   (write_domain ? I915_WAIT_ALL : 0),
620 				   MAX_SCHEDULE_TIMEOUT);
621 	if (err)
622 		goto out;
623 
624 	/*
625 	 * Proxy objects do not control access to the backing storage, ergo
626 	 * they cannot be used as a means to manipulate the cache domain
627 	 * tracking for that backing storage. The proxy object is always
628 	 * considered to be outside of any cache domain.
629 	 */
630 	if (i915_gem_object_is_proxy(obj)) {
631 		err = -ENXIO;
632 		goto out;
633 	}
634 
635 	/*
636 	 * Flush and acquire obj->pages so that we are coherent through
637 	 * direct access in memory with previous cached writes through
638 	 * shmemfs and that our cache domain tracking remains valid.
639 	 * For example, if the obj->filp was moved to swap without us
640 	 * being notified and releasing the pages, we would mistakenly
641 	 * continue to assume that the obj remained out of the CPU cached
642 	 * domain.
643 	 */
644 	err = i915_gem_object_pin_pages(obj);
645 	if (err)
646 		goto out;
647 
648 	err = i915_gem_object_lock_interruptible(obj);
649 	if (err)
650 		goto out_unpin;
651 
652 	if (read_domains & I915_GEM_DOMAIN_WC)
653 		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
654 	else if (read_domains & I915_GEM_DOMAIN_GTT)
655 		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
656 	else
657 		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
658 
659 	/* And bump the LRU for this access */
660 	i915_gem_object_bump_inactive_ggtt(obj);
661 
662 	i915_gem_object_unlock(obj);
663 
664 	if (write_domain != 0)
665 		intel_fb_obj_invalidate(obj,
666 					fb_write_origin(obj, write_domain));
667 
668 out_unpin:
669 	i915_gem_object_unpin_pages(obj);
670 out:
671 	i915_gem_object_put(obj);
672 	return err;
673 }
674 
675 /*
676  * Pins the specified object's pages and synchronizes the object with
677  * GPU accesses. Sets needs_clflush to non-zero if the caller should
678  * flush the object from the CPU cache.
679  */
680 int i915_gem_object_prepare_read(struct drm_i915_gem_object *obj,
681 				 unsigned int *needs_clflush)
682 {
683 	int ret;
684 
685 	*needs_clflush = 0;
686 	if (!i915_gem_object_has_struct_page(obj))
687 		return -ENODEV;
688 
689 	ret = i915_gem_object_lock_interruptible(obj);
690 	if (ret)
691 		return ret;
692 
693 	ret = i915_gem_object_wait(obj,
694 				   I915_WAIT_INTERRUPTIBLE,
695 				   MAX_SCHEDULE_TIMEOUT);
696 	if (ret)
697 		goto err_unlock;
698 
699 	ret = i915_gem_object_pin_pages(obj);
700 	if (ret)
701 		goto err_unlock;
702 
703 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
704 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
705 		ret = i915_gem_object_set_to_cpu_domain(obj, false);
706 		if (ret)
707 			goto err_unpin;
708 		else
709 			goto out;
710 	}
711 
712 	i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
713 
714 	/* If we're not in the cpu read domain, set ourself into the gtt
715 	 * read domain and manually flush cachelines (if required). This
716 	 * optimizes for the case when the gpu will dirty the data
717 	 * anyway again before the next pread happens.
718 	 */
719 	if (!obj->cache_dirty &&
720 	    !(obj->read_domains & I915_GEM_DOMAIN_CPU))
721 		*needs_clflush = CLFLUSH_BEFORE;
722 
723 out:
724 	/* return with the pages pinned */
725 	return 0;
726 
727 err_unpin:
728 	i915_gem_object_unpin_pages(obj);
729 err_unlock:
730 	i915_gem_object_unlock(obj);
731 	return ret;
732 }
733 
734 int i915_gem_object_prepare_write(struct drm_i915_gem_object *obj,
735 				  unsigned int *needs_clflush)
736 {
737 	int ret;
738 
739 	*needs_clflush = 0;
740 	if (!i915_gem_object_has_struct_page(obj))
741 		return -ENODEV;
742 
743 	ret = i915_gem_object_lock_interruptible(obj);
744 	if (ret)
745 		return ret;
746 
747 	ret = i915_gem_object_wait(obj,
748 				   I915_WAIT_INTERRUPTIBLE |
749 				   I915_WAIT_ALL,
750 				   MAX_SCHEDULE_TIMEOUT);
751 	if (ret)
752 		goto err_unlock;
753 
754 	ret = i915_gem_object_pin_pages(obj);
755 	if (ret)
756 		goto err_unlock;
757 
758 	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
759 	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
760 		ret = i915_gem_object_set_to_cpu_domain(obj, true);
761 		if (ret)
762 			goto err_unpin;
763 		else
764 			goto out;
765 	}
766 
767 	i915_gem_object_flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
768 
769 	/* If we're not in the cpu write domain, set ourself into the
770 	 * gtt write domain and manually flush cachelines (as required).
771 	 * This optimizes for the case when the gpu will use the data
772 	 * right away and we therefore have to clflush anyway.
773 	 */
774 	if (!obj->cache_dirty) {
775 		*needs_clflush |= CLFLUSH_AFTER;
776 
777 		/*
778 		 * Same trick applies to invalidate partially written
779 		 * cachelines read before writing.
780 		 */
781 		if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
782 			*needs_clflush |= CLFLUSH_BEFORE;
783 	}
784 
785 out:
786 	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
787 	obj->mm.dirty = true;
788 	/* return with the pages pinned */
789 	return 0;
790 
791 err_unpin:
792 	i915_gem_object_unpin_pages(obj);
793 err_unlock:
794 	i915_gem_object_unlock(obj);
795 	return ret;
796 }
797