1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2011-2012 Intel Corporation 5 */ 6 7 /* 8 * This file implements HW context support. On gen5+ a HW context consists of an 9 * opaque GPU object which is referenced at times of context saves and restores. 10 * With RC6 enabled, the context is also referenced as the GPU enters and exists 11 * from RC6 (GPU has it's own internal power context, except on gen5). Though 12 * something like a context does exist for the media ring, the code only 13 * supports contexts for the render ring. 14 * 15 * In software, there is a distinction between contexts created by the user, 16 * and the default HW context. The default HW context is used by GPU clients 17 * that do not request setup of their own hardware context. The default 18 * context's state is never restored to help prevent programming errors. This 19 * would happen if a client ran and piggy-backed off another clients GPU state. 20 * The default context only exists to give the GPU some offset to load as the 21 * current to invoke a save of the context we actually care about. In fact, the 22 * code could likely be constructed, albeit in a more complicated fashion, to 23 * never use the default context, though that limits the driver's ability to 24 * swap out, and/or destroy other contexts. 25 * 26 * All other contexts are created as a request by the GPU client. These contexts 27 * store GPU state, and thus allow GPU clients to not re-emit state (and 28 * potentially query certain state) at any time. The kernel driver makes 29 * certain that the appropriate commands are inserted. 30 * 31 * The context life cycle is semi-complicated in that context BOs may live 32 * longer than the context itself because of the way the hardware, and object 33 * tracking works. Below is a very crude representation of the state machine 34 * describing the context life. 35 * refcount pincount active 36 * S0: initial state 0 0 0 37 * S1: context created 1 0 0 38 * S2: context is currently running 2 1 X 39 * S3: GPU referenced, but not current 2 0 1 40 * S4: context is current, but destroyed 1 1 0 41 * S5: like S3, but destroyed 1 0 1 42 * 43 * The most common (but not all) transitions: 44 * S0->S1: client creates a context 45 * S1->S2: client submits execbuf with context 46 * S2->S3: other clients submits execbuf with context 47 * S3->S1: context object was retired 48 * S3->S2: clients submits another execbuf 49 * S2->S4: context destroy called with current context 50 * S3->S5->S0: destroy path 51 * S4->S5->S0: destroy path on current context 52 * 53 * There are two confusing terms used above: 54 * The "current context" means the context which is currently running on the 55 * GPU. The GPU has loaded its state already and has stored away the gtt 56 * offset of the BO. The GPU is not actively referencing the data at this 57 * offset, but it will on the next context switch. The only way to avoid this 58 * is to do a GPU reset. 59 * 60 * An "active context' is one which was previously the "current context" and is 61 * on the active list waiting for the next context switch to occur. Until this 62 * happens, the object must remain at the same gtt offset. It is therefore 63 * possible to destroy a context, but it is still active. 64 * 65 */ 66 67 #include <linux/log2.h> 68 #include <linux/nospec.h> 69 70 #include "gt/gen6_ppgtt.h" 71 #include "gt/intel_context.h" 72 #include "gt/intel_context_param.h" 73 #include "gt/intel_engine_heartbeat.h" 74 #include "gt/intel_engine_user.h" 75 #include "gt/intel_ring.h" 76 77 #include "i915_gem_context.h" 78 #include "i915_globals.h" 79 #include "i915_trace.h" 80 #include "i915_user_extensions.h" 81 82 #define ALL_L3_SLICES(dev) (1 << NUM_L3_SLICES(dev)) - 1 83 84 static struct i915_global_gem_context { 85 struct i915_global base; 86 struct kmem_cache *slab_luts; 87 } global; 88 89 struct i915_lut_handle *i915_lut_handle_alloc(void) 90 { 91 return kmem_cache_alloc(global.slab_luts, GFP_KERNEL); 92 } 93 94 void i915_lut_handle_free(struct i915_lut_handle *lut) 95 { 96 return kmem_cache_free(global.slab_luts, lut); 97 } 98 99 static void lut_close(struct i915_gem_context *ctx) 100 { 101 struct radix_tree_iter iter; 102 void __rcu **slot; 103 104 mutex_lock(&ctx->lut_mutex); 105 rcu_read_lock(); 106 radix_tree_for_each_slot(slot, &ctx->handles_vma, &iter, 0) { 107 struct i915_vma *vma = rcu_dereference_raw(*slot); 108 struct drm_i915_gem_object *obj = vma->obj; 109 struct i915_lut_handle *lut; 110 111 if (!kref_get_unless_zero(&obj->base.refcount)) 112 continue; 113 114 spin_lock(&obj->lut_lock); 115 list_for_each_entry(lut, &obj->lut_list, obj_link) { 116 if (lut->ctx != ctx) 117 continue; 118 119 if (lut->handle != iter.index) 120 continue; 121 122 list_del(&lut->obj_link); 123 break; 124 } 125 spin_unlock(&obj->lut_lock); 126 127 if (&lut->obj_link != &obj->lut_list) { 128 i915_lut_handle_free(lut); 129 radix_tree_iter_delete(&ctx->handles_vma, &iter, slot); 130 i915_vma_close(vma); 131 i915_gem_object_put(obj); 132 } 133 134 i915_gem_object_put(obj); 135 } 136 rcu_read_unlock(); 137 mutex_unlock(&ctx->lut_mutex); 138 } 139 140 static struct intel_context * 141 lookup_user_engine(struct i915_gem_context *ctx, 142 unsigned long flags, 143 const struct i915_engine_class_instance *ci) 144 #define LOOKUP_USER_INDEX BIT(0) 145 { 146 int idx; 147 148 if (!!(flags & LOOKUP_USER_INDEX) != i915_gem_context_user_engines(ctx)) 149 return ERR_PTR(-EINVAL); 150 151 if (!i915_gem_context_user_engines(ctx)) { 152 struct intel_engine_cs *engine; 153 154 engine = intel_engine_lookup_user(ctx->i915, 155 ci->engine_class, 156 ci->engine_instance); 157 if (!engine) 158 return ERR_PTR(-EINVAL); 159 160 idx = engine->legacy_idx; 161 } else { 162 idx = ci->engine_instance; 163 } 164 165 return i915_gem_context_get_engine(ctx, idx); 166 } 167 168 static struct i915_address_space * 169 context_get_vm_rcu(struct i915_gem_context *ctx) 170 { 171 GEM_BUG_ON(!rcu_access_pointer(ctx->vm)); 172 173 do { 174 struct i915_address_space *vm; 175 176 /* 177 * We do not allow downgrading from full-ppgtt [to a shared 178 * global gtt], so ctx->vm cannot become NULL. 179 */ 180 vm = rcu_dereference(ctx->vm); 181 if (!kref_get_unless_zero(&vm->ref)) 182 continue; 183 184 /* 185 * This ppgtt may have be reallocated between 186 * the read and the kref, and reassigned to a third 187 * context. In order to avoid inadvertent sharing 188 * of this ppgtt with that third context (and not 189 * src), we have to confirm that we have the same 190 * ppgtt after passing through the strong memory 191 * barrier implied by a successful 192 * kref_get_unless_zero(). 193 * 194 * Once we have acquired the current ppgtt of ctx, 195 * we no longer care if it is released from ctx, as 196 * it cannot be reallocated elsewhere. 197 */ 198 199 if (vm == rcu_access_pointer(ctx->vm)) 200 return rcu_pointer_handoff(vm); 201 202 i915_vm_put(vm); 203 } while (1); 204 } 205 206 static void intel_context_set_gem(struct intel_context *ce, 207 struct i915_gem_context *ctx) 208 { 209 GEM_BUG_ON(rcu_access_pointer(ce->gem_context)); 210 RCU_INIT_POINTER(ce->gem_context, ctx); 211 212 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) 213 ce->ring = __intel_context_ring_size(SZ_16K); 214 215 if (rcu_access_pointer(ctx->vm)) { 216 struct i915_address_space *vm; 217 218 rcu_read_lock(); 219 vm = context_get_vm_rcu(ctx); /* hmm */ 220 rcu_read_unlock(); 221 222 i915_vm_put(ce->vm); 223 ce->vm = vm; 224 } 225 226 GEM_BUG_ON(ce->timeline); 227 if (ctx->timeline) 228 ce->timeline = intel_timeline_get(ctx->timeline); 229 230 if (ctx->sched.priority >= I915_PRIORITY_NORMAL && 231 intel_engine_has_timeslices(ce->engine)) 232 __set_bit(CONTEXT_USE_SEMAPHORES, &ce->flags); 233 } 234 235 static void __free_engines(struct i915_gem_engines *e, unsigned int count) 236 { 237 while (count--) { 238 if (!e->engines[count]) 239 continue; 240 241 intel_context_put(e->engines[count]); 242 } 243 kfree(e); 244 } 245 246 static void free_engines(struct i915_gem_engines *e) 247 { 248 __free_engines(e, e->num_engines); 249 } 250 251 static void free_engines_rcu(struct rcu_head *rcu) 252 { 253 struct i915_gem_engines *engines = 254 container_of(rcu, struct i915_gem_engines, rcu); 255 256 i915_sw_fence_fini(&engines->fence); 257 free_engines(engines); 258 } 259 260 static int __i915_sw_fence_call 261 engines_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 262 { 263 struct i915_gem_engines *engines = 264 container_of(fence, typeof(*engines), fence); 265 266 switch (state) { 267 case FENCE_COMPLETE: 268 if (!list_empty(&engines->link)) { 269 struct i915_gem_context *ctx = engines->ctx; 270 unsigned long flags; 271 272 spin_lock_irqsave(&ctx->stale.lock, flags); 273 list_del(&engines->link); 274 spin_unlock_irqrestore(&ctx->stale.lock, flags); 275 } 276 i915_gem_context_put(engines->ctx); 277 break; 278 279 case FENCE_FREE: 280 init_rcu_head(&engines->rcu); 281 call_rcu(&engines->rcu, free_engines_rcu); 282 break; 283 } 284 285 return NOTIFY_DONE; 286 } 287 288 static struct i915_gem_engines *alloc_engines(unsigned int count) 289 { 290 struct i915_gem_engines *e; 291 292 e = kzalloc(struct_size(e, engines, count), GFP_KERNEL); 293 if (!e) 294 return NULL; 295 296 i915_sw_fence_init(&e->fence, engines_notify); 297 return e; 298 } 299 300 static struct i915_gem_engines *default_engines(struct i915_gem_context *ctx) 301 { 302 const struct intel_gt *gt = &ctx->i915->gt; 303 struct intel_engine_cs *engine; 304 struct i915_gem_engines *e; 305 enum intel_engine_id id; 306 307 e = alloc_engines(I915_NUM_ENGINES); 308 if (!e) 309 return ERR_PTR(-ENOMEM); 310 311 for_each_engine(engine, gt, id) { 312 struct intel_context *ce; 313 314 if (engine->legacy_idx == INVALID_ENGINE) 315 continue; 316 317 GEM_BUG_ON(engine->legacy_idx >= I915_NUM_ENGINES); 318 GEM_BUG_ON(e->engines[engine->legacy_idx]); 319 320 ce = intel_context_create(engine); 321 if (IS_ERR(ce)) { 322 __free_engines(e, e->num_engines + 1); 323 return ERR_CAST(ce); 324 } 325 326 intel_context_set_gem(ce, ctx); 327 328 e->engines[engine->legacy_idx] = ce; 329 e->num_engines = max(e->num_engines, engine->legacy_idx); 330 } 331 e->num_engines++; 332 333 return e; 334 } 335 336 static void i915_gem_context_free(struct i915_gem_context *ctx) 337 { 338 GEM_BUG_ON(!i915_gem_context_is_closed(ctx)); 339 340 spin_lock(&ctx->i915->gem.contexts.lock); 341 list_del(&ctx->link); 342 spin_unlock(&ctx->i915->gem.contexts.lock); 343 344 mutex_destroy(&ctx->engines_mutex); 345 mutex_destroy(&ctx->lut_mutex); 346 347 if (ctx->timeline) 348 intel_timeline_put(ctx->timeline); 349 350 put_pid(ctx->pid); 351 mutex_destroy(&ctx->mutex); 352 353 kfree_rcu(ctx, rcu); 354 } 355 356 static void contexts_free_all(struct llist_node *list) 357 { 358 struct i915_gem_context *ctx, *cn; 359 360 llist_for_each_entry_safe(ctx, cn, list, free_link) 361 i915_gem_context_free(ctx); 362 } 363 364 static void contexts_flush_free(struct i915_gem_contexts *gc) 365 { 366 contexts_free_all(llist_del_all(&gc->free_list)); 367 } 368 369 static void contexts_free_worker(struct work_struct *work) 370 { 371 struct i915_gem_contexts *gc = 372 container_of(work, typeof(*gc), free_work); 373 374 contexts_flush_free(gc); 375 } 376 377 void i915_gem_context_release(struct kref *ref) 378 { 379 struct i915_gem_context *ctx = container_of(ref, typeof(*ctx), ref); 380 struct i915_gem_contexts *gc = &ctx->i915->gem.contexts; 381 382 trace_i915_context_free(ctx); 383 if (llist_add(&ctx->free_link, &gc->free_list)) 384 schedule_work(&gc->free_work); 385 } 386 387 static inline struct i915_gem_engines * 388 __context_engines_static(const struct i915_gem_context *ctx) 389 { 390 return rcu_dereference_protected(ctx->engines, true); 391 } 392 393 static bool __reset_engine(struct intel_engine_cs *engine) 394 { 395 struct intel_gt *gt = engine->gt; 396 bool success = false; 397 398 if (!intel_has_reset_engine(gt)) 399 return false; 400 401 if (!test_and_set_bit(I915_RESET_ENGINE + engine->id, 402 >->reset.flags)) { 403 success = intel_engine_reset(engine, NULL) == 0; 404 clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id, 405 >->reset.flags); 406 } 407 408 return success; 409 } 410 411 static void __reset_context(struct i915_gem_context *ctx, 412 struct intel_engine_cs *engine) 413 { 414 intel_gt_handle_error(engine->gt, engine->mask, 0, 415 "context closure in %s", ctx->name); 416 } 417 418 static bool __cancel_engine(struct intel_engine_cs *engine) 419 { 420 /* 421 * Send a "high priority pulse" down the engine to cause the 422 * current request to be momentarily preempted. (If it fails to 423 * be preempted, it will be reset). As we have marked our context 424 * as banned, any incomplete request, including any running, will 425 * be skipped following the preemption. 426 * 427 * If there is no hangchecking (one of the reasons why we try to 428 * cancel the context) and no forced preemption, there may be no 429 * means by which we reset the GPU and evict the persistent hog. 430 * Ergo if we are unable to inject a preemptive pulse that can 431 * kill the banned context, we fallback to doing a local reset 432 * instead. 433 */ 434 if (IS_ACTIVE(CONFIG_DRM_I915_PREEMPT_TIMEOUT) && 435 !intel_engine_pulse(engine)) 436 return true; 437 438 /* If we are unable to send a pulse, try resetting this engine. */ 439 return __reset_engine(engine); 440 } 441 442 static bool 443 __active_engine(struct i915_request *rq, struct intel_engine_cs **active) 444 { 445 struct intel_engine_cs *engine, *locked; 446 bool ret = false; 447 448 /* 449 * Serialise with __i915_request_submit() so that it sees 450 * is-banned?, or we know the request is already inflight. 451 * 452 * Note that rq->engine is unstable, and so we double 453 * check that we have acquired the lock on the final engine. 454 */ 455 locked = READ_ONCE(rq->engine); 456 spin_lock_irq(&locked->active.lock); 457 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 458 spin_unlock(&locked->active.lock); 459 locked = engine; 460 spin_lock(&locked->active.lock); 461 } 462 463 if (!i915_request_completed(rq)) { 464 if (i915_request_is_active(rq) && rq->fence.error != -EIO) 465 *active = locked; 466 ret = true; 467 } 468 469 spin_unlock_irq(&locked->active.lock); 470 471 return ret; 472 } 473 474 static struct intel_engine_cs *active_engine(struct intel_context *ce) 475 { 476 struct intel_engine_cs *engine = NULL; 477 struct i915_request *rq; 478 479 if (!ce->timeline) 480 return NULL; 481 482 rcu_read_lock(); 483 list_for_each_entry_rcu(rq, &ce->timeline->requests, link) { 484 if (i915_request_is_active(rq) && i915_request_completed(rq)) 485 continue; 486 487 /* Check with the backend if the request is inflight */ 488 if (__active_engine(rq, &engine)) 489 break; 490 } 491 rcu_read_unlock(); 492 493 return engine; 494 } 495 496 static void kill_engines(struct i915_gem_engines *engines) 497 { 498 struct i915_gem_engines_iter it; 499 struct intel_context *ce; 500 501 /* 502 * Map the user's engine back to the actual engines; one virtual 503 * engine will be mapped to multiple engines, and using ctx->engine[] 504 * the same engine may be have multiple instances in the user's map. 505 * However, we only care about pending requests, so only include 506 * engines on which there are incomplete requests. 507 */ 508 for_each_gem_engine(ce, engines, it) { 509 struct intel_engine_cs *engine; 510 511 if (intel_context_set_banned(ce)) 512 continue; 513 514 /* 515 * Check the current active state of this context; if we 516 * are currently executing on the GPU we need to evict 517 * ourselves. On the other hand, if we haven't yet been 518 * submitted to the GPU or if everything is complete, 519 * we have nothing to do. 520 */ 521 engine = active_engine(ce); 522 523 /* First attempt to gracefully cancel the context */ 524 if (engine && !__cancel_engine(engine)) 525 /* 526 * If we are unable to send a preemptive pulse to bump 527 * the context from the GPU, we have to resort to a full 528 * reset. We hope the collateral damage is worth it. 529 */ 530 __reset_context(engines->ctx, engine); 531 } 532 } 533 534 static void kill_stale_engines(struct i915_gem_context *ctx) 535 { 536 struct i915_gem_engines *pos, *next; 537 538 spin_lock_irq(&ctx->stale.lock); 539 GEM_BUG_ON(!i915_gem_context_is_closed(ctx)); 540 list_for_each_entry_safe(pos, next, &ctx->stale.engines, link) { 541 if (!i915_sw_fence_await(&pos->fence)) { 542 list_del_init(&pos->link); 543 continue; 544 } 545 546 spin_unlock_irq(&ctx->stale.lock); 547 548 kill_engines(pos); 549 550 spin_lock_irq(&ctx->stale.lock); 551 GEM_BUG_ON(i915_sw_fence_signaled(&pos->fence)); 552 list_safe_reset_next(pos, next, link); 553 list_del_init(&pos->link); /* decouple from FENCE_COMPLETE */ 554 555 i915_sw_fence_complete(&pos->fence); 556 } 557 spin_unlock_irq(&ctx->stale.lock); 558 } 559 560 static void kill_context(struct i915_gem_context *ctx) 561 { 562 kill_stale_engines(ctx); 563 } 564 565 static void engines_idle_release(struct i915_gem_context *ctx, 566 struct i915_gem_engines *engines) 567 { 568 struct i915_gem_engines_iter it; 569 struct intel_context *ce; 570 571 INIT_LIST_HEAD(&engines->link); 572 573 engines->ctx = i915_gem_context_get(ctx); 574 575 for_each_gem_engine(ce, engines, it) { 576 int err; 577 578 /* serialises with execbuf */ 579 set_bit(CONTEXT_CLOSED_BIT, &ce->flags); 580 if (!intel_context_pin_if_active(ce)) 581 continue; 582 583 /* Wait until context is finally scheduled out and retired */ 584 err = i915_sw_fence_await_active(&engines->fence, 585 &ce->active, 586 I915_ACTIVE_AWAIT_BARRIER); 587 intel_context_unpin(ce); 588 if (err) 589 goto kill; 590 } 591 592 spin_lock_irq(&ctx->stale.lock); 593 if (!i915_gem_context_is_closed(ctx)) 594 list_add_tail(&engines->link, &ctx->stale.engines); 595 spin_unlock_irq(&ctx->stale.lock); 596 597 kill: 598 if (list_empty(&engines->link)) /* raced, already closed */ 599 kill_engines(engines); 600 601 i915_sw_fence_commit(&engines->fence); 602 } 603 604 static void set_closed_name(struct i915_gem_context *ctx) 605 { 606 char *s; 607 608 /* Replace '[]' with '<>' to indicate closed in debug prints */ 609 610 s = strrchr(ctx->name, '['); 611 if (!s) 612 return; 613 614 *s = '<'; 615 616 s = strchr(s + 1, ']'); 617 if (s) 618 *s = '>'; 619 } 620 621 static void context_close(struct i915_gem_context *ctx) 622 { 623 struct i915_address_space *vm; 624 625 /* Flush any concurrent set_engines() */ 626 mutex_lock(&ctx->engines_mutex); 627 engines_idle_release(ctx, rcu_replace_pointer(ctx->engines, NULL, 1)); 628 i915_gem_context_set_closed(ctx); 629 mutex_unlock(&ctx->engines_mutex); 630 631 mutex_lock(&ctx->mutex); 632 633 set_closed_name(ctx); 634 635 vm = i915_gem_context_vm(ctx); 636 if (vm) 637 i915_vm_close(vm); 638 639 ctx->file_priv = ERR_PTR(-EBADF); 640 641 /* 642 * The LUT uses the VMA as a backpointer to unref the object, 643 * so we need to clear the LUT before we close all the VMA (inside 644 * the ppgtt). 645 */ 646 lut_close(ctx); 647 648 mutex_unlock(&ctx->mutex); 649 650 /* 651 * If the user has disabled hangchecking, we can not be sure that 652 * the batches will ever complete after the context is closed, 653 * keeping the context and all resources pinned forever. So in this 654 * case we opt to forcibly kill off all remaining requests on 655 * context close. 656 */ 657 if (!i915_gem_context_is_persistent(ctx) || 658 !ctx->i915->params.enable_hangcheck) 659 kill_context(ctx); 660 661 i915_gem_context_put(ctx); 662 } 663 664 static int __context_set_persistence(struct i915_gem_context *ctx, bool state) 665 { 666 if (i915_gem_context_is_persistent(ctx) == state) 667 return 0; 668 669 if (state) { 670 /* 671 * Only contexts that are short-lived [that will expire or be 672 * reset] are allowed to survive past termination. We require 673 * hangcheck to ensure that the persistent requests are healthy. 674 */ 675 if (!ctx->i915->params.enable_hangcheck) 676 return -EINVAL; 677 678 i915_gem_context_set_persistence(ctx); 679 } else { 680 /* To cancel a context we use "preempt-to-idle" */ 681 if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PREEMPTION)) 682 return -ENODEV; 683 684 /* 685 * If the cancel fails, we then need to reset, cleanly! 686 * 687 * If the per-engine reset fails, all hope is lost! We resort 688 * to a full GPU reset in that unlikely case, but realistically 689 * if the engine could not reset, the full reset does not fare 690 * much better. The damage has been done. 691 * 692 * However, if we cannot reset an engine by itself, we cannot 693 * cleanup a hanging persistent context without causing 694 * colateral damage, and we should not pretend we can by 695 * exposing the interface. 696 */ 697 if (!intel_has_reset_engine(&ctx->i915->gt)) 698 return -ENODEV; 699 700 i915_gem_context_clear_persistence(ctx); 701 } 702 703 return 0; 704 } 705 706 static struct i915_gem_context * 707 __create_context(struct drm_i915_private *i915) 708 { 709 struct i915_gem_context *ctx; 710 struct i915_gem_engines *e; 711 int err; 712 int i; 713 714 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 715 if (!ctx) 716 return ERR_PTR(-ENOMEM); 717 718 kref_init(&ctx->ref); 719 ctx->i915 = i915; 720 ctx->sched.priority = I915_USER_PRIORITY(I915_PRIORITY_NORMAL); 721 mutex_init(&ctx->mutex); 722 INIT_LIST_HEAD(&ctx->link); 723 724 spin_lock_init(&ctx->stale.lock); 725 INIT_LIST_HEAD(&ctx->stale.engines); 726 727 mutex_init(&ctx->engines_mutex); 728 e = default_engines(ctx); 729 if (IS_ERR(e)) { 730 err = PTR_ERR(e); 731 goto err_free; 732 } 733 RCU_INIT_POINTER(ctx->engines, e); 734 735 INIT_RADIX_TREE(&ctx->handles_vma, GFP_KERNEL); 736 mutex_init(&ctx->lut_mutex); 737 738 /* NB: Mark all slices as needing a remap so that when the context first 739 * loads it will restore whatever remap state already exists. If there 740 * is no remap info, it will be a NOP. */ 741 ctx->remap_slice = ALL_L3_SLICES(i915); 742 743 i915_gem_context_set_bannable(ctx); 744 i915_gem_context_set_recoverable(ctx); 745 __context_set_persistence(ctx, true /* cgroup hook? */); 746 747 for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp); i++) 748 ctx->hang_timestamp[i] = jiffies - CONTEXT_FAST_HANG_JIFFIES; 749 750 return ctx; 751 752 err_free: 753 kfree(ctx); 754 return ERR_PTR(err); 755 } 756 757 static inline struct i915_gem_engines * 758 __context_engines_await(const struct i915_gem_context *ctx) 759 { 760 struct i915_gem_engines *engines; 761 762 rcu_read_lock(); 763 do { 764 engines = rcu_dereference(ctx->engines); 765 GEM_BUG_ON(!engines); 766 767 if (unlikely(!i915_sw_fence_await(&engines->fence))) 768 continue; 769 770 if (likely(engines == rcu_access_pointer(ctx->engines))) 771 break; 772 773 i915_sw_fence_complete(&engines->fence); 774 } while (1); 775 rcu_read_unlock(); 776 777 return engines; 778 } 779 780 static int 781 context_apply_all(struct i915_gem_context *ctx, 782 int (*fn)(struct intel_context *ce, void *data), 783 void *data) 784 { 785 struct i915_gem_engines_iter it; 786 struct i915_gem_engines *e; 787 struct intel_context *ce; 788 int err = 0; 789 790 e = __context_engines_await(ctx); 791 for_each_gem_engine(ce, e, it) { 792 err = fn(ce, data); 793 if (err) 794 break; 795 } 796 i915_sw_fence_complete(&e->fence); 797 798 return err; 799 } 800 801 static int __apply_ppgtt(struct intel_context *ce, void *vm) 802 { 803 i915_vm_put(ce->vm); 804 ce->vm = i915_vm_get(vm); 805 return 0; 806 } 807 808 static struct i915_address_space * 809 __set_ppgtt(struct i915_gem_context *ctx, struct i915_address_space *vm) 810 { 811 struct i915_address_space *old; 812 813 old = rcu_replace_pointer(ctx->vm, 814 i915_vm_open(vm), 815 lockdep_is_held(&ctx->mutex)); 816 GEM_BUG_ON(old && i915_vm_is_4lvl(vm) != i915_vm_is_4lvl(old)); 817 818 context_apply_all(ctx, __apply_ppgtt, vm); 819 820 return old; 821 } 822 823 static void __assign_ppgtt(struct i915_gem_context *ctx, 824 struct i915_address_space *vm) 825 { 826 if (vm == rcu_access_pointer(ctx->vm)) 827 return; 828 829 vm = __set_ppgtt(ctx, vm); 830 if (vm) 831 i915_vm_close(vm); 832 } 833 834 static void __set_timeline(struct intel_timeline **dst, 835 struct intel_timeline *src) 836 { 837 struct intel_timeline *old = *dst; 838 839 *dst = src ? intel_timeline_get(src) : NULL; 840 841 if (old) 842 intel_timeline_put(old); 843 } 844 845 static int __apply_timeline(struct intel_context *ce, void *timeline) 846 { 847 __set_timeline(&ce->timeline, timeline); 848 return 0; 849 } 850 851 static void __assign_timeline(struct i915_gem_context *ctx, 852 struct intel_timeline *timeline) 853 { 854 __set_timeline(&ctx->timeline, timeline); 855 context_apply_all(ctx, __apply_timeline, timeline); 856 } 857 858 static struct i915_gem_context * 859 i915_gem_create_context(struct drm_i915_private *i915, unsigned int flags) 860 { 861 struct i915_gem_context *ctx; 862 863 if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE && 864 !HAS_EXECLISTS(i915)) 865 return ERR_PTR(-EINVAL); 866 867 /* Reap the stale contexts */ 868 contexts_flush_free(&i915->gem.contexts); 869 870 ctx = __create_context(i915); 871 if (IS_ERR(ctx)) 872 return ctx; 873 874 if (HAS_FULL_PPGTT(i915)) { 875 struct i915_ppgtt *ppgtt; 876 877 ppgtt = i915_ppgtt_create(&i915->gt); 878 if (IS_ERR(ppgtt)) { 879 drm_dbg(&i915->drm, "PPGTT setup failed (%ld)\n", 880 PTR_ERR(ppgtt)); 881 context_close(ctx); 882 return ERR_CAST(ppgtt); 883 } 884 885 mutex_lock(&ctx->mutex); 886 __assign_ppgtt(ctx, &ppgtt->vm); 887 mutex_unlock(&ctx->mutex); 888 889 i915_vm_put(&ppgtt->vm); 890 } 891 892 if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE) { 893 struct intel_timeline *timeline; 894 895 timeline = intel_timeline_create(&i915->gt, NULL); 896 if (IS_ERR(timeline)) { 897 context_close(ctx); 898 return ERR_CAST(timeline); 899 } 900 901 __assign_timeline(ctx, timeline); 902 intel_timeline_put(timeline); 903 } 904 905 trace_i915_context_create(ctx); 906 907 return ctx; 908 } 909 910 static void init_contexts(struct i915_gem_contexts *gc) 911 { 912 spin_lock_init(&gc->lock); 913 INIT_LIST_HEAD(&gc->list); 914 915 INIT_WORK(&gc->free_work, contexts_free_worker); 916 init_llist_head(&gc->free_list); 917 } 918 919 void i915_gem_init__contexts(struct drm_i915_private *i915) 920 { 921 init_contexts(&i915->gem.contexts); 922 drm_dbg(&i915->drm, "%s context support initialized\n", 923 DRIVER_CAPS(i915)->has_logical_contexts ? 924 "logical" : "fake"); 925 } 926 927 void i915_gem_driver_release__contexts(struct drm_i915_private *i915) 928 { 929 flush_work(&i915->gem.contexts.free_work); 930 rcu_barrier(); /* and flush the left over RCU frees */ 931 } 932 933 static int gem_context_register(struct i915_gem_context *ctx, 934 struct drm_i915_file_private *fpriv, 935 u32 *id) 936 { 937 struct drm_i915_private *i915 = ctx->i915; 938 struct i915_address_space *vm; 939 int ret; 940 941 ctx->file_priv = fpriv; 942 943 mutex_lock(&ctx->mutex); 944 vm = i915_gem_context_vm(ctx); 945 if (vm) 946 WRITE_ONCE(vm->file, fpriv); /* XXX */ 947 mutex_unlock(&ctx->mutex); 948 949 ctx->pid = get_task_pid(current, PIDTYPE_PID); 950 snprintf(ctx->name, sizeof(ctx->name), "%s[%d]", 951 current->comm, pid_nr(ctx->pid)); 952 953 /* And finally expose ourselves to userspace via the idr */ 954 ret = xa_alloc(&fpriv->context_xa, id, ctx, xa_limit_32b, GFP_KERNEL); 955 if (ret) 956 goto err_pid; 957 958 spin_lock(&i915->gem.contexts.lock); 959 list_add_tail(&ctx->link, &i915->gem.contexts.list); 960 spin_unlock(&i915->gem.contexts.lock); 961 962 return 0; 963 964 err_pid: 965 put_pid(fetch_and_zero(&ctx->pid)); 966 return ret; 967 } 968 969 int i915_gem_context_open(struct drm_i915_private *i915, 970 struct drm_file *file) 971 { 972 struct drm_i915_file_private *file_priv = file->driver_priv; 973 struct i915_gem_context *ctx; 974 int err; 975 u32 id; 976 977 xa_init_flags(&file_priv->context_xa, XA_FLAGS_ALLOC); 978 979 /* 0 reserved for invalid/unassigned ppgtt */ 980 xa_init_flags(&file_priv->vm_xa, XA_FLAGS_ALLOC1); 981 982 ctx = i915_gem_create_context(i915, 0); 983 if (IS_ERR(ctx)) { 984 err = PTR_ERR(ctx); 985 goto err; 986 } 987 988 err = gem_context_register(ctx, file_priv, &id); 989 if (err < 0) 990 goto err_ctx; 991 992 GEM_BUG_ON(id); 993 return 0; 994 995 err_ctx: 996 context_close(ctx); 997 err: 998 xa_destroy(&file_priv->vm_xa); 999 xa_destroy(&file_priv->context_xa); 1000 return err; 1001 } 1002 1003 void i915_gem_context_close(struct drm_file *file) 1004 { 1005 struct drm_i915_file_private *file_priv = file->driver_priv; 1006 struct drm_i915_private *i915 = file_priv->dev_priv; 1007 struct i915_address_space *vm; 1008 struct i915_gem_context *ctx; 1009 unsigned long idx; 1010 1011 xa_for_each(&file_priv->context_xa, idx, ctx) 1012 context_close(ctx); 1013 xa_destroy(&file_priv->context_xa); 1014 1015 xa_for_each(&file_priv->vm_xa, idx, vm) 1016 i915_vm_put(vm); 1017 xa_destroy(&file_priv->vm_xa); 1018 1019 contexts_flush_free(&i915->gem.contexts); 1020 } 1021 1022 int i915_gem_vm_create_ioctl(struct drm_device *dev, void *data, 1023 struct drm_file *file) 1024 { 1025 struct drm_i915_private *i915 = to_i915(dev); 1026 struct drm_i915_gem_vm_control *args = data; 1027 struct drm_i915_file_private *file_priv = file->driver_priv; 1028 struct i915_ppgtt *ppgtt; 1029 u32 id; 1030 int err; 1031 1032 if (!HAS_FULL_PPGTT(i915)) 1033 return -ENODEV; 1034 1035 if (args->flags) 1036 return -EINVAL; 1037 1038 ppgtt = i915_ppgtt_create(&i915->gt); 1039 if (IS_ERR(ppgtt)) 1040 return PTR_ERR(ppgtt); 1041 1042 ppgtt->vm.file = file_priv; 1043 1044 if (args->extensions) { 1045 err = i915_user_extensions(u64_to_user_ptr(args->extensions), 1046 NULL, 0, 1047 ppgtt); 1048 if (err) 1049 goto err_put; 1050 } 1051 1052 err = xa_alloc(&file_priv->vm_xa, &id, &ppgtt->vm, 1053 xa_limit_32b, GFP_KERNEL); 1054 if (err) 1055 goto err_put; 1056 1057 GEM_BUG_ON(id == 0); /* reserved for invalid/unassigned ppgtt */ 1058 args->vm_id = id; 1059 return 0; 1060 1061 err_put: 1062 i915_vm_put(&ppgtt->vm); 1063 return err; 1064 } 1065 1066 int i915_gem_vm_destroy_ioctl(struct drm_device *dev, void *data, 1067 struct drm_file *file) 1068 { 1069 struct drm_i915_file_private *file_priv = file->driver_priv; 1070 struct drm_i915_gem_vm_control *args = data; 1071 struct i915_address_space *vm; 1072 1073 if (args->flags) 1074 return -EINVAL; 1075 1076 if (args->extensions) 1077 return -EINVAL; 1078 1079 vm = xa_erase(&file_priv->vm_xa, args->vm_id); 1080 if (!vm) 1081 return -ENOENT; 1082 1083 i915_vm_put(vm); 1084 return 0; 1085 } 1086 1087 struct context_barrier_task { 1088 struct i915_active base; 1089 void (*task)(void *data); 1090 void *data; 1091 }; 1092 1093 __i915_active_call 1094 static void cb_retire(struct i915_active *base) 1095 { 1096 struct context_barrier_task *cb = container_of(base, typeof(*cb), base); 1097 1098 if (cb->task) 1099 cb->task(cb->data); 1100 1101 i915_active_fini(&cb->base); 1102 kfree(cb); 1103 } 1104 1105 I915_SELFTEST_DECLARE(static intel_engine_mask_t context_barrier_inject_fault); 1106 static int context_barrier_task(struct i915_gem_context *ctx, 1107 intel_engine_mask_t engines, 1108 bool (*skip)(struct intel_context *ce, void *data), 1109 int (*emit)(struct i915_request *rq, void *data), 1110 void (*task)(void *data), 1111 void *data) 1112 { 1113 struct context_barrier_task *cb; 1114 struct i915_gem_engines_iter it; 1115 struct i915_gem_engines *e; 1116 struct intel_context *ce; 1117 int err = 0; 1118 1119 GEM_BUG_ON(!task); 1120 1121 cb = kmalloc(sizeof(*cb), GFP_KERNEL); 1122 if (!cb) 1123 return -ENOMEM; 1124 1125 i915_active_init(&cb->base, NULL, cb_retire); 1126 err = i915_active_acquire(&cb->base); 1127 if (err) { 1128 kfree(cb); 1129 return err; 1130 } 1131 1132 e = __context_engines_await(ctx); 1133 if (!e) { 1134 i915_active_release(&cb->base); 1135 return -ENOENT; 1136 } 1137 1138 for_each_gem_engine(ce, e, it) { 1139 struct i915_request *rq; 1140 1141 if (I915_SELFTEST_ONLY(context_barrier_inject_fault & 1142 ce->engine->mask)) { 1143 err = -ENXIO; 1144 break; 1145 } 1146 1147 if (!(ce->engine->mask & engines)) 1148 continue; 1149 1150 if (skip && skip(ce, data)) 1151 continue; 1152 1153 rq = intel_context_create_request(ce); 1154 if (IS_ERR(rq)) { 1155 err = PTR_ERR(rq); 1156 break; 1157 } 1158 1159 err = 0; 1160 if (emit) 1161 err = emit(rq, data); 1162 if (err == 0) 1163 err = i915_active_add_request(&cb->base, rq); 1164 1165 i915_request_add(rq); 1166 if (err) 1167 break; 1168 } 1169 i915_sw_fence_complete(&e->fence); 1170 1171 cb->task = err ? NULL : task; /* caller needs to unwind instead */ 1172 cb->data = data; 1173 1174 i915_active_release(&cb->base); 1175 1176 return err; 1177 } 1178 1179 static int get_ppgtt(struct drm_i915_file_private *file_priv, 1180 struct i915_gem_context *ctx, 1181 struct drm_i915_gem_context_param *args) 1182 { 1183 struct i915_address_space *vm; 1184 int err; 1185 u32 id; 1186 1187 if (!rcu_access_pointer(ctx->vm)) 1188 return -ENODEV; 1189 1190 rcu_read_lock(); 1191 vm = context_get_vm_rcu(ctx); 1192 rcu_read_unlock(); 1193 if (!vm) 1194 return -ENODEV; 1195 1196 err = xa_alloc(&file_priv->vm_xa, &id, vm, xa_limit_32b, GFP_KERNEL); 1197 if (err) 1198 goto err_put; 1199 1200 i915_vm_open(vm); 1201 1202 GEM_BUG_ON(id == 0); /* reserved for invalid/unassigned ppgtt */ 1203 args->value = id; 1204 args->size = 0; 1205 1206 err_put: 1207 i915_vm_put(vm); 1208 return err; 1209 } 1210 1211 static void set_ppgtt_barrier(void *data) 1212 { 1213 struct i915_address_space *old = data; 1214 1215 if (INTEL_GEN(old->i915) < 8) 1216 gen6_ppgtt_unpin_all(i915_vm_to_ppgtt(old)); 1217 1218 i915_vm_close(old); 1219 } 1220 1221 static int emit_ppgtt_update(struct i915_request *rq, void *data) 1222 { 1223 struct i915_address_space *vm = rq->context->vm; 1224 struct intel_engine_cs *engine = rq->engine; 1225 u32 base = engine->mmio_base; 1226 u32 *cs; 1227 int i; 1228 1229 if (i915_vm_is_4lvl(vm)) { 1230 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1231 const dma_addr_t pd_daddr = px_dma(ppgtt->pd); 1232 1233 cs = intel_ring_begin(rq, 6); 1234 if (IS_ERR(cs)) 1235 return PTR_ERR(cs); 1236 1237 *cs++ = MI_LOAD_REGISTER_IMM(2); 1238 1239 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0)); 1240 *cs++ = upper_32_bits(pd_daddr); 1241 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0)); 1242 *cs++ = lower_32_bits(pd_daddr); 1243 1244 *cs++ = MI_NOOP; 1245 intel_ring_advance(rq, cs); 1246 } else if (HAS_LOGICAL_RING_CONTEXTS(engine->i915)) { 1247 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1248 int err; 1249 1250 /* Magic required to prevent forcewake errors! */ 1251 err = engine->emit_flush(rq, EMIT_INVALIDATE); 1252 if (err) 1253 return err; 1254 1255 cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2); 1256 if (IS_ERR(cs)) 1257 return PTR_ERR(cs); 1258 1259 *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED; 1260 for (i = GEN8_3LVL_PDPES; i--; ) { 1261 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i); 1262 1263 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i)); 1264 *cs++ = upper_32_bits(pd_daddr); 1265 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i)); 1266 *cs++ = lower_32_bits(pd_daddr); 1267 } 1268 *cs++ = MI_NOOP; 1269 intel_ring_advance(rq, cs); 1270 } 1271 1272 return 0; 1273 } 1274 1275 static bool skip_ppgtt_update(struct intel_context *ce, void *data) 1276 { 1277 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) 1278 return true; 1279 1280 if (HAS_LOGICAL_RING_CONTEXTS(ce->engine->i915)) 1281 return false; 1282 1283 if (!atomic_read(&ce->pin_count)) 1284 return true; 1285 1286 /* ppGTT is not part of the legacy context image */ 1287 if (gen6_ppgtt_pin(i915_vm_to_ppgtt(ce->vm))) 1288 return true; 1289 1290 return false; 1291 } 1292 1293 static int set_ppgtt(struct drm_i915_file_private *file_priv, 1294 struct i915_gem_context *ctx, 1295 struct drm_i915_gem_context_param *args) 1296 { 1297 struct i915_address_space *vm, *old; 1298 int err; 1299 1300 if (args->size) 1301 return -EINVAL; 1302 1303 if (!rcu_access_pointer(ctx->vm)) 1304 return -ENODEV; 1305 1306 if (upper_32_bits(args->value)) 1307 return -ENOENT; 1308 1309 rcu_read_lock(); 1310 vm = xa_load(&file_priv->vm_xa, args->value); 1311 if (vm && !kref_get_unless_zero(&vm->ref)) 1312 vm = NULL; 1313 rcu_read_unlock(); 1314 if (!vm) 1315 return -ENOENT; 1316 1317 err = mutex_lock_interruptible(&ctx->mutex); 1318 if (err) 1319 goto out; 1320 1321 if (i915_gem_context_is_closed(ctx)) { 1322 err = -ENOENT; 1323 goto unlock; 1324 } 1325 1326 if (vm == rcu_access_pointer(ctx->vm)) 1327 goto unlock; 1328 1329 old = __set_ppgtt(ctx, vm); 1330 1331 /* Teardown the existing obj:vma cache, it will have to be rebuilt. */ 1332 lut_close(ctx); 1333 1334 /* 1335 * We need to flush any requests using the current ppgtt before 1336 * we release it as the requests do not hold a reference themselves, 1337 * only indirectly through the context. 1338 */ 1339 err = context_barrier_task(ctx, ALL_ENGINES, 1340 skip_ppgtt_update, 1341 emit_ppgtt_update, 1342 set_ppgtt_barrier, 1343 old); 1344 if (err) { 1345 i915_vm_close(__set_ppgtt(ctx, old)); 1346 i915_vm_close(old); 1347 lut_close(ctx); /* force a rebuild of the old obj:vma cache */ 1348 } 1349 1350 unlock: 1351 mutex_unlock(&ctx->mutex); 1352 out: 1353 i915_vm_put(vm); 1354 return err; 1355 } 1356 1357 static int __apply_ringsize(struct intel_context *ce, void *sz) 1358 { 1359 return intel_context_set_ring_size(ce, (unsigned long)sz); 1360 } 1361 1362 static int set_ringsize(struct i915_gem_context *ctx, 1363 struct drm_i915_gem_context_param *args) 1364 { 1365 if (!HAS_LOGICAL_RING_CONTEXTS(ctx->i915)) 1366 return -ENODEV; 1367 1368 if (args->size) 1369 return -EINVAL; 1370 1371 if (!IS_ALIGNED(args->value, I915_GTT_PAGE_SIZE)) 1372 return -EINVAL; 1373 1374 if (args->value < I915_GTT_PAGE_SIZE) 1375 return -EINVAL; 1376 1377 if (args->value > 128 * I915_GTT_PAGE_SIZE) 1378 return -EINVAL; 1379 1380 return context_apply_all(ctx, 1381 __apply_ringsize, 1382 __intel_context_ring_size(args->value)); 1383 } 1384 1385 static int __get_ringsize(struct intel_context *ce, void *arg) 1386 { 1387 long sz; 1388 1389 sz = intel_context_get_ring_size(ce); 1390 GEM_BUG_ON(sz > INT_MAX); 1391 1392 return sz; /* stop on first engine */ 1393 } 1394 1395 static int get_ringsize(struct i915_gem_context *ctx, 1396 struct drm_i915_gem_context_param *args) 1397 { 1398 int sz; 1399 1400 if (!HAS_LOGICAL_RING_CONTEXTS(ctx->i915)) 1401 return -ENODEV; 1402 1403 if (args->size) 1404 return -EINVAL; 1405 1406 sz = context_apply_all(ctx, __get_ringsize, NULL); 1407 if (sz < 0) 1408 return sz; 1409 1410 args->value = sz; 1411 return 0; 1412 } 1413 1414 int 1415 i915_gem_user_to_context_sseu(struct intel_gt *gt, 1416 const struct drm_i915_gem_context_param_sseu *user, 1417 struct intel_sseu *context) 1418 { 1419 const struct sseu_dev_info *device = >->info.sseu; 1420 struct drm_i915_private *i915 = gt->i915; 1421 1422 /* No zeros in any field. */ 1423 if (!user->slice_mask || !user->subslice_mask || 1424 !user->min_eus_per_subslice || !user->max_eus_per_subslice) 1425 return -EINVAL; 1426 1427 /* Max > min. */ 1428 if (user->max_eus_per_subslice < user->min_eus_per_subslice) 1429 return -EINVAL; 1430 1431 /* 1432 * Some future proofing on the types since the uAPI is wider than the 1433 * current internal implementation. 1434 */ 1435 if (overflows_type(user->slice_mask, context->slice_mask) || 1436 overflows_type(user->subslice_mask, context->subslice_mask) || 1437 overflows_type(user->min_eus_per_subslice, 1438 context->min_eus_per_subslice) || 1439 overflows_type(user->max_eus_per_subslice, 1440 context->max_eus_per_subslice)) 1441 return -EINVAL; 1442 1443 /* Check validity against hardware. */ 1444 if (user->slice_mask & ~device->slice_mask) 1445 return -EINVAL; 1446 1447 if (user->subslice_mask & ~device->subslice_mask[0]) 1448 return -EINVAL; 1449 1450 if (user->max_eus_per_subslice > device->max_eus_per_subslice) 1451 return -EINVAL; 1452 1453 context->slice_mask = user->slice_mask; 1454 context->subslice_mask = user->subslice_mask; 1455 context->min_eus_per_subslice = user->min_eus_per_subslice; 1456 context->max_eus_per_subslice = user->max_eus_per_subslice; 1457 1458 /* Part specific restrictions. */ 1459 if (IS_GEN(i915, 11)) { 1460 unsigned int hw_s = hweight8(device->slice_mask); 1461 unsigned int hw_ss_per_s = hweight8(device->subslice_mask[0]); 1462 unsigned int req_s = hweight8(context->slice_mask); 1463 unsigned int req_ss = hweight8(context->subslice_mask); 1464 1465 /* 1466 * Only full subslice enablement is possible if more than one 1467 * slice is turned on. 1468 */ 1469 if (req_s > 1 && req_ss != hw_ss_per_s) 1470 return -EINVAL; 1471 1472 /* 1473 * If more than four (SScount bitfield limit) subslices are 1474 * requested then the number has to be even. 1475 */ 1476 if (req_ss > 4 && (req_ss & 1)) 1477 return -EINVAL; 1478 1479 /* 1480 * If only one slice is enabled and subslice count is below the 1481 * device full enablement, it must be at most half of the all 1482 * available subslices. 1483 */ 1484 if (req_s == 1 && req_ss < hw_ss_per_s && 1485 req_ss > (hw_ss_per_s / 2)) 1486 return -EINVAL; 1487 1488 /* ABI restriction - VME use case only. */ 1489 1490 /* All slices or one slice only. */ 1491 if (req_s != 1 && req_s != hw_s) 1492 return -EINVAL; 1493 1494 /* 1495 * Half subslices or full enablement only when one slice is 1496 * enabled. 1497 */ 1498 if (req_s == 1 && 1499 (req_ss != hw_ss_per_s && req_ss != (hw_ss_per_s / 2))) 1500 return -EINVAL; 1501 1502 /* No EU configuration changes. */ 1503 if ((user->min_eus_per_subslice != 1504 device->max_eus_per_subslice) || 1505 (user->max_eus_per_subslice != 1506 device->max_eus_per_subslice)) 1507 return -EINVAL; 1508 } 1509 1510 return 0; 1511 } 1512 1513 static int set_sseu(struct i915_gem_context *ctx, 1514 struct drm_i915_gem_context_param *args) 1515 { 1516 struct drm_i915_private *i915 = ctx->i915; 1517 struct drm_i915_gem_context_param_sseu user_sseu; 1518 struct intel_context *ce; 1519 struct intel_sseu sseu; 1520 unsigned long lookup; 1521 int ret; 1522 1523 if (args->size < sizeof(user_sseu)) 1524 return -EINVAL; 1525 1526 if (!IS_GEN(i915, 11)) 1527 return -ENODEV; 1528 1529 if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value), 1530 sizeof(user_sseu))) 1531 return -EFAULT; 1532 1533 if (user_sseu.rsvd) 1534 return -EINVAL; 1535 1536 if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)) 1537 return -EINVAL; 1538 1539 lookup = 0; 1540 if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX) 1541 lookup |= LOOKUP_USER_INDEX; 1542 1543 ce = lookup_user_engine(ctx, lookup, &user_sseu.engine); 1544 if (IS_ERR(ce)) 1545 return PTR_ERR(ce); 1546 1547 /* Only render engine supports RPCS configuration. */ 1548 if (ce->engine->class != RENDER_CLASS) { 1549 ret = -ENODEV; 1550 goto out_ce; 1551 } 1552 1553 ret = i915_gem_user_to_context_sseu(ce->engine->gt, &user_sseu, &sseu); 1554 if (ret) 1555 goto out_ce; 1556 1557 ret = intel_context_reconfigure_sseu(ce, sseu); 1558 if (ret) 1559 goto out_ce; 1560 1561 args->size = sizeof(user_sseu); 1562 1563 out_ce: 1564 intel_context_put(ce); 1565 return ret; 1566 } 1567 1568 struct set_engines { 1569 struct i915_gem_context *ctx; 1570 struct i915_gem_engines *engines; 1571 }; 1572 1573 static int 1574 set_engines__load_balance(struct i915_user_extension __user *base, void *data) 1575 { 1576 struct i915_context_engines_load_balance __user *ext = 1577 container_of_user(base, typeof(*ext), base); 1578 const struct set_engines *set = data; 1579 struct drm_i915_private *i915 = set->ctx->i915; 1580 struct intel_engine_cs *stack[16]; 1581 struct intel_engine_cs **siblings; 1582 struct intel_context *ce; 1583 u16 num_siblings, idx; 1584 unsigned int n; 1585 int err; 1586 1587 if (!HAS_EXECLISTS(i915)) 1588 return -ENODEV; 1589 1590 if (intel_uc_uses_guc_submission(&i915->gt.uc)) 1591 return -ENODEV; /* not implement yet */ 1592 1593 if (get_user(idx, &ext->engine_index)) 1594 return -EFAULT; 1595 1596 if (idx >= set->engines->num_engines) { 1597 drm_dbg(&i915->drm, "Invalid placement value, %d >= %d\n", 1598 idx, set->engines->num_engines); 1599 return -EINVAL; 1600 } 1601 1602 idx = array_index_nospec(idx, set->engines->num_engines); 1603 if (set->engines->engines[idx]) { 1604 drm_dbg(&i915->drm, 1605 "Invalid placement[%d], already occupied\n", idx); 1606 return -EEXIST; 1607 } 1608 1609 if (get_user(num_siblings, &ext->num_siblings)) 1610 return -EFAULT; 1611 1612 err = check_user_mbz(&ext->flags); 1613 if (err) 1614 return err; 1615 1616 err = check_user_mbz(&ext->mbz64); 1617 if (err) 1618 return err; 1619 1620 siblings = stack; 1621 if (num_siblings > ARRAY_SIZE(stack)) { 1622 siblings = kmalloc_array(num_siblings, 1623 sizeof(*siblings), 1624 GFP_KERNEL); 1625 if (!siblings) 1626 return -ENOMEM; 1627 } 1628 1629 for (n = 0; n < num_siblings; n++) { 1630 struct i915_engine_class_instance ci; 1631 1632 if (copy_from_user(&ci, &ext->engines[n], sizeof(ci))) { 1633 err = -EFAULT; 1634 goto out_siblings; 1635 } 1636 1637 siblings[n] = intel_engine_lookup_user(i915, 1638 ci.engine_class, 1639 ci.engine_instance); 1640 if (!siblings[n]) { 1641 drm_dbg(&i915->drm, 1642 "Invalid sibling[%d]: { class:%d, inst:%d }\n", 1643 n, ci.engine_class, ci.engine_instance); 1644 err = -EINVAL; 1645 goto out_siblings; 1646 } 1647 } 1648 1649 ce = intel_execlists_create_virtual(siblings, n); 1650 if (IS_ERR(ce)) { 1651 err = PTR_ERR(ce); 1652 goto out_siblings; 1653 } 1654 1655 intel_context_set_gem(ce, set->ctx); 1656 1657 if (cmpxchg(&set->engines->engines[idx], NULL, ce)) { 1658 intel_context_put(ce); 1659 err = -EEXIST; 1660 goto out_siblings; 1661 } 1662 1663 out_siblings: 1664 if (siblings != stack) 1665 kfree(siblings); 1666 1667 return err; 1668 } 1669 1670 static int 1671 set_engines__bond(struct i915_user_extension __user *base, void *data) 1672 { 1673 struct i915_context_engines_bond __user *ext = 1674 container_of_user(base, typeof(*ext), base); 1675 const struct set_engines *set = data; 1676 struct drm_i915_private *i915 = set->ctx->i915; 1677 struct i915_engine_class_instance ci; 1678 struct intel_engine_cs *virtual; 1679 struct intel_engine_cs *master; 1680 u16 idx, num_bonds; 1681 int err, n; 1682 1683 if (get_user(idx, &ext->virtual_index)) 1684 return -EFAULT; 1685 1686 if (idx >= set->engines->num_engines) { 1687 drm_dbg(&i915->drm, 1688 "Invalid index for virtual engine: %d >= %d\n", 1689 idx, set->engines->num_engines); 1690 return -EINVAL; 1691 } 1692 1693 idx = array_index_nospec(idx, set->engines->num_engines); 1694 if (!set->engines->engines[idx]) { 1695 drm_dbg(&i915->drm, "Invalid engine at %d\n", idx); 1696 return -EINVAL; 1697 } 1698 virtual = set->engines->engines[idx]->engine; 1699 1700 err = check_user_mbz(&ext->flags); 1701 if (err) 1702 return err; 1703 1704 for (n = 0; n < ARRAY_SIZE(ext->mbz64); n++) { 1705 err = check_user_mbz(&ext->mbz64[n]); 1706 if (err) 1707 return err; 1708 } 1709 1710 if (copy_from_user(&ci, &ext->master, sizeof(ci))) 1711 return -EFAULT; 1712 1713 master = intel_engine_lookup_user(i915, 1714 ci.engine_class, ci.engine_instance); 1715 if (!master) { 1716 drm_dbg(&i915->drm, 1717 "Unrecognised master engine: { class:%u, instance:%u }\n", 1718 ci.engine_class, ci.engine_instance); 1719 return -EINVAL; 1720 } 1721 1722 if (get_user(num_bonds, &ext->num_bonds)) 1723 return -EFAULT; 1724 1725 for (n = 0; n < num_bonds; n++) { 1726 struct intel_engine_cs *bond; 1727 1728 if (copy_from_user(&ci, &ext->engines[n], sizeof(ci))) 1729 return -EFAULT; 1730 1731 bond = intel_engine_lookup_user(i915, 1732 ci.engine_class, 1733 ci.engine_instance); 1734 if (!bond) { 1735 drm_dbg(&i915->drm, 1736 "Unrecognised engine[%d] for bonding: { class:%d, instance: %d }\n", 1737 n, ci.engine_class, ci.engine_instance); 1738 return -EINVAL; 1739 } 1740 1741 /* 1742 * A non-virtual engine has no siblings to choose between; and 1743 * a submit fence will always be directed to the one engine. 1744 */ 1745 if (intel_engine_is_virtual(virtual)) { 1746 err = intel_virtual_engine_attach_bond(virtual, 1747 master, 1748 bond); 1749 if (err) 1750 return err; 1751 } 1752 } 1753 1754 return 0; 1755 } 1756 1757 static const i915_user_extension_fn set_engines__extensions[] = { 1758 [I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE] = set_engines__load_balance, 1759 [I915_CONTEXT_ENGINES_EXT_BOND] = set_engines__bond, 1760 }; 1761 1762 static int 1763 set_engines(struct i915_gem_context *ctx, 1764 const struct drm_i915_gem_context_param *args) 1765 { 1766 struct drm_i915_private *i915 = ctx->i915; 1767 struct i915_context_param_engines __user *user = 1768 u64_to_user_ptr(args->value); 1769 struct set_engines set = { .ctx = ctx }; 1770 unsigned int num_engines, n; 1771 u64 extensions; 1772 int err; 1773 1774 if (!args->size) { /* switch back to legacy user_ring_map */ 1775 if (!i915_gem_context_user_engines(ctx)) 1776 return 0; 1777 1778 set.engines = default_engines(ctx); 1779 if (IS_ERR(set.engines)) 1780 return PTR_ERR(set.engines); 1781 1782 goto replace; 1783 } 1784 1785 BUILD_BUG_ON(!IS_ALIGNED(sizeof(*user), sizeof(*user->engines))); 1786 if (args->size < sizeof(*user) || 1787 !IS_ALIGNED(args->size, sizeof(*user->engines))) { 1788 drm_dbg(&i915->drm, "Invalid size for engine array: %d\n", 1789 args->size); 1790 return -EINVAL; 1791 } 1792 1793 /* 1794 * Note that I915_EXEC_RING_MASK limits execbuf to only using the 1795 * first 64 engines defined here. 1796 */ 1797 num_engines = (args->size - sizeof(*user)) / sizeof(*user->engines); 1798 set.engines = alloc_engines(num_engines); 1799 if (!set.engines) 1800 return -ENOMEM; 1801 1802 for (n = 0; n < num_engines; n++) { 1803 struct i915_engine_class_instance ci; 1804 struct intel_engine_cs *engine; 1805 struct intel_context *ce; 1806 1807 if (copy_from_user(&ci, &user->engines[n], sizeof(ci))) { 1808 __free_engines(set.engines, n); 1809 return -EFAULT; 1810 } 1811 1812 if (ci.engine_class == (u16)I915_ENGINE_CLASS_INVALID && 1813 ci.engine_instance == (u16)I915_ENGINE_CLASS_INVALID_NONE) { 1814 set.engines->engines[n] = NULL; 1815 continue; 1816 } 1817 1818 engine = intel_engine_lookup_user(ctx->i915, 1819 ci.engine_class, 1820 ci.engine_instance); 1821 if (!engine) { 1822 drm_dbg(&i915->drm, 1823 "Invalid engine[%d]: { class:%d, instance:%d }\n", 1824 n, ci.engine_class, ci.engine_instance); 1825 __free_engines(set.engines, n); 1826 return -ENOENT; 1827 } 1828 1829 ce = intel_context_create(engine); 1830 if (IS_ERR(ce)) { 1831 __free_engines(set.engines, n); 1832 return PTR_ERR(ce); 1833 } 1834 1835 intel_context_set_gem(ce, ctx); 1836 1837 set.engines->engines[n] = ce; 1838 } 1839 set.engines->num_engines = num_engines; 1840 1841 err = -EFAULT; 1842 if (!get_user(extensions, &user->extensions)) 1843 err = i915_user_extensions(u64_to_user_ptr(extensions), 1844 set_engines__extensions, 1845 ARRAY_SIZE(set_engines__extensions), 1846 &set); 1847 if (err) { 1848 free_engines(set.engines); 1849 return err; 1850 } 1851 1852 replace: 1853 mutex_lock(&ctx->engines_mutex); 1854 if (i915_gem_context_is_closed(ctx)) { 1855 mutex_unlock(&ctx->engines_mutex); 1856 free_engines(set.engines); 1857 return -ENOENT; 1858 } 1859 if (args->size) 1860 i915_gem_context_set_user_engines(ctx); 1861 else 1862 i915_gem_context_clear_user_engines(ctx); 1863 set.engines = rcu_replace_pointer(ctx->engines, set.engines, 1); 1864 mutex_unlock(&ctx->engines_mutex); 1865 1866 /* Keep track of old engine sets for kill_context() */ 1867 engines_idle_release(ctx, set.engines); 1868 1869 return 0; 1870 } 1871 1872 static struct i915_gem_engines * 1873 __copy_engines(struct i915_gem_engines *e) 1874 { 1875 struct i915_gem_engines *copy; 1876 unsigned int n; 1877 1878 copy = alloc_engines(e->num_engines); 1879 if (!copy) 1880 return ERR_PTR(-ENOMEM); 1881 1882 for (n = 0; n < e->num_engines; n++) { 1883 if (e->engines[n]) 1884 copy->engines[n] = intel_context_get(e->engines[n]); 1885 else 1886 copy->engines[n] = NULL; 1887 } 1888 copy->num_engines = n; 1889 1890 return copy; 1891 } 1892 1893 static int 1894 get_engines(struct i915_gem_context *ctx, 1895 struct drm_i915_gem_context_param *args) 1896 { 1897 struct i915_context_param_engines __user *user; 1898 struct i915_gem_engines *e; 1899 size_t n, count, size; 1900 int err = 0; 1901 1902 err = mutex_lock_interruptible(&ctx->engines_mutex); 1903 if (err) 1904 return err; 1905 1906 e = NULL; 1907 if (i915_gem_context_user_engines(ctx)) 1908 e = __copy_engines(i915_gem_context_engines(ctx)); 1909 mutex_unlock(&ctx->engines_mutex); 1910 if (IS_ERR_OR_NULL(e)) { 1911 args->size = 0; 1912 return PTR_ERR_OR_ZERO(e); 1913 } 1914 1915 count = e->num_engines; 1916 1917 /* Be paranoid in case we have an impedance mismatch */ 1918 if (!check_struct_size(user, engines, count, &size)) { 1919 err = -EINVAL; 1920 goto err_free; 1921 } 1922 if (overflows_type(size, args->size)) { 1923 err = -EINVAL; 1924 goto err_free; 1925 } 1926 1927 if (!args->size) { 1928 args->size = size; 1929 goto err_free; 1930 } 1931 1932 if (args->size < size) { 1933 err = -EINVAL; 1934 goto err_free; 1935 } 1936 1937 user = u64_to_user_ptr(args->value); 1938 if (put_user(0, &user->extensions)) { 1939 err = -EFAULT; 1940 goto err_free; 1941 } 1942 1943 for (n = 0; n < count; n++) { 1944 struct i915_engine_class_instance ci = { 1945 .engine_class = I915_ENGINE_CLASS_INVALID, 1946 .engine_instance = I915_ENGINE_CLASS_INVALID_NONE, 1947 }; 1948 1949 if (e->engines[n]) { 1950 ci.engine_class = e->engines[n]->engine->uabi_class; 1951 ci.engine_instance = e->engines[n]->engine->uabi_instance; 1952 } 1953 1954 if (copy_to_user(&user->engines[n], &ci, sizeof(ci))) { 1955 err = -EFAULT; 1956 goto err_free; 1957 } 1958 } 1959 1960 args->size = size; 1961 1962 err_free: 1963 free_engines(e); 1964 return err; 1965 } 1966 1967 static int 1968 set_persistence(struct i915_gem_context *ctx, 1969 const struct drm_i915_gem_context_param *args) 1970 { 1971 if (args->size) 1972 return -EINVAL; 1973 1974 return __context_set_persistence(ctx, args->value); 1975 } 1976 1977 static int __apply_priority(struct intel_context *ce, void *arg) 1978 { 1979 struct i915_gem_context *ctx = arg; 1980 1981 if (!intel_engine_has_timeslices(ce->engine)) 1982 return 0; 1983 1984 if (ctx->sched.priority >= I915_PRIORITY_NORMAL) 1985 intel_context_set_use_semaphores(ce); 1986 else 1987 intel_context_clear_use_semaphores(ce); 1988 1989 return 0; 1990 } 1991 1992 static int set_priority(struct i915_gem_context *ctx, 1993 const struct drm_i915_gem_context_param *args) 1994 { 1995 s64 priority = args->value; 1996 1997 if (args->size) 1998 return -EINVAL; 1999 2000 if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PRIORITY)) 2001 return -ENODEV; 2002 2003 if (priority > I915_CONTEXT_MAX_USER_PRIORITY || 2004 priority < I915_CONTEXT_MIN_USER_PRIORITY) 2005 return -EINVAL; 2006 2007 if (priority > I915_CONTEXT_DEFAULT_PRIORITY && 2008 !capable(CAP_SYS_NICE)) 2009 return -EPERM; 2010 2011 ctx->sched.priority = I915_USER_PRIORITY(priority); 2012 context_apply_all(ctx, __apply_priority, ctx); 2013 2014 return 0; 2015 } 2016 2017 static int ctx_setparam(struct drm_i915_file_private *fpriv, 2018 struct i915_gem_context *ctx, 2019 struct drm_i915_gem_context_param *args) 2020 { 2021 int ret = 0; 2022 2023 switch (args->param) { 2024 case I915_CONTEXT_PARAM_NO_ZEROMAP: 2025 if (args->size) 2026 ret = -EINVAL; 2027 else if (args->value) 2028 set_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags); 2029 else 2030 clear_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags); 2031 break; 2032 2033 case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE: 2034 if (args->size) 2035 ret = -EINVAL; 2036 else if (args->value) 2037 i915_gem_context_set_no_error_capture(ctx); 2038 else 2039 i915_gem_context_clear_no_error_capture(ctx); 2040 break; 2041 2042 case I915_CONTEXT_PARAM_BANNABLE: 2043 if (args->size) 2044 ret = -EINVAL; 2045 else if (!capable(CAP_SYS_ADMIN) && !args->value) 2046 ret = -EPERM; 2047 else if (args->value) 2048 i915_gem_context_set_bannable(ctx); 2049 else 2050 i915_gem_context_clear_bannable(ctx); 2051 break; 2052 2053 case I915_CONTEXT_PARAM_RECOVERABLE: 2054 if (args->size) 2055 ret = -EINVAL; 2056 else if (args->value) 2057 i915_gem_context_set_recoverable(ctx); 2058 else 2059 i915_gem_context_clear_recoverable(ctx); 2060 break; 2061 2062 case I915_CONTEXT_PARAM_PRIORITY: 2063 ret = set_priority(ctx, args); 2064 break; 2065 2066 case I915_CONTEXT_PARAM_SSEU: 2067 ret = set_sseu(ctx, args); 2068 break; 2069 2070 case I915_CONTEXT_PARAM_VM: 2071 ret = set_ppgtt(fpriv, ctx, args); 2072 break; 2073 2074 case I915_CONTEXT_PARAM_ENGINES: 2075 ret = set_engines(ctx, args); 2076 break; 2077 2078 case I915_CONTEXT_PARAM_PERSISTENCE: 2079 ret = set_persistence(ctx, args); 2080 break; 2081 2082 case I915_CONTEXT_PARAM_RINGSIZE: 2083 ret = set_ringsize(ctx, args); 2084 break; 2085 2086 case I915_CONTEXT_PARAM_BAN_PERIOD: 2087 default: 2088 ret = -EINVAL; 2089 break; 2090 } 2091 2092 return ret; 2093 } 2094 2095 struct create_ext { 2096 struct i915_gem_context *ctx; 2097 struct drm_i915_file_private *fpriv; 2098 }; 2099 2100 static int create_setparam(struct i915_user_extension __user *ext, void *data) 2101 { 2102 struct drm_i915_gem_context_create_ext_setparam local; 2103 const struct create_ext *arg = data; 2104 2105 if (copy_from_user(&local, ext, sizeof(local))) 2106 return -EFAULT; 2107 2108 if (local.param.ctx_id) 2109 return -EINVAL; 2110 2111 return ctx_setparam(arg->fpriv, arg->ctx, &local.param); 2112 } 2113 2114 static int copy_ring_size(struct intel_context *dst, 2115 struct intel_context *src) 2116 { 2117 long sz; 2118 2119 sz = intel_context_get_ring_size(src); 2120 if (sz < 0) 2121 return sz; 2122 2123 return intel_context_set_ring_size(dst, sz); 2124 } 2125 2126 static int clone_engines(struct i915_gem_context *dst, 2127 struct i915_gem_context *src) 2128 { 2129 struct i915_gem_engines *e = i915_gem_context_lock_engines(src); 2130 struct i915_gem_engines *clone; 2131 bool user_engines; 2132 unsigned long n; 2133 2134 clone = alloc_engines(e->num_engines); 2135 if (!clone) 2136 goto err_unlock; 2137 2138 for (n = 0; n < e->num_engines; n++) { 2139 struct intel_engine_cs *engine; 2140 2141 if (!e->engines[n]) { 2142 clone->engines[n] = NULL; 2143 continue; 2144 } 2145 engine = e->engines[n]->engine; 2146 2147 /* 2148 * Virtual engines are singletons; they can only exist 2149 * inside a single context, because they embed their 2150 * HW context... As each virtual context implies a single 2151 * timeline (each engine can only dequeue a single request 2152 * at any time), it would be surprising for two contexts 2153 * to use the same engine. So let's create a copy of 2154 * the virtual engine instead. 2155 */ 2156 if (intel_engine_is_virtual(engine)) 2157 clone->engines[n] = 2158 intel_execlists_clone_virtual(engine); 2159 else 2160 clone->engines[n] = intel_context_create(engine); 2161 if (IS_ERR_OR_NULL(clone->engines[n])) { 2162 __free_engines(clone, n); 2163 goto err_unlock; 2164 } 2165 2166 intel_context_set_gem(clone->engines[n], dst); 2167 2168 /* Copy across the preferred ringsize */ 2169 if (copy_ring_size(clone->engines[n], e->engines[n])) { 2170 __free_engines(clone, n + 1); 2171 goto err_unlock; 2172 } 2173 } 2174 clone->num_engines = n; 2175 2176 user_engines = i915_gem_context_user_engines(src); 2177 i915_gem_context_unlock_engines(src); 2178 2179 /* Serialised by constructor */ 2180 engines_idle_release(dst, rcu_replace_pointer(dst->engines, clone, 1)); 2181 if (user_engines) 2182 i915_gem_context_set_user_engines(dst); 2183 else 2184 i915_gem_context_clear_user_engines(dst); 2185 return 0; 2186 2187 err_unlock: 2188 i915_gem_context_unlock_engines(src); 2189 return -ENOMEM; 2190 } 2191 2192 static int clone_flags(struct i915_gem_context *dst, 2193 struct i915_gem_context *src) 2194 { 2195 dst->user_flags = src->user_flags; 2196 return 0; 2197 } 2198 2199 static int clone_schedattr(struct i915_gem_context *dst, 2200 struct i915_gem_context *src) 2201 { 2202 dst->sched = src->sched; 2203 return 0; 2204 } 2205 2206 static int clone_sseu(struct i915_gem_context *dst, 2207 struct i915_gem_context *src) 2208 { 2209 struct i915_gem_engines *e = i915_gem_context_lock_engines(src); 2210 struct i915_gem_engines *clone; 2211 unsigned long n; 2212 int err; 2213 2214 /* no locking required; sole access under constructor*/ 2215 clone = __context_engines_static(dst); 2216 if (e->num_engines != clone->num_engines) { 2217 err = -EINVAL; 2218 goto unlock; 2219 } 2220 2221 for (n = 0; n < e->num_engines; n++) { 2222 struct intel_context *ce = e->engines[n]; 2223 2224 if (clone->engines[n]->engine->class != ce->engine->class) { 2225 /* Must have compatible engine maps! */ 2226 err = -EINVAL; 2227 goto unlock; 2228 } 2229 2230 /* serialises with set_sseu */ 2231 err = intel_context_lock_pinned(ce); 2232 if (err) 2233 goto unlock; 2234 2235 clone->engines[n]->sseu = ce->sseu; 2236 intel_context_unlock_pinned(ce); 2237 } 2238 2239 err = 0; 2240 unlock: 2241 i915_gem_context_unlock_engines(src); 2242 return err; 2243 } 2244 2245 static int clone_timeline(struct i915_gem_context *dst, 2246 struct i915_gem_context *src) 2247 { 2248 if (src->timeline) 2249 __assign_timeline(dst, src->timeline); 2250 2251 return 0; 2252 } 2253 2254 static int clone_vm(struct i915_gem_context *dst, 2255 struct i915_gem_context *src) 2256 { 2257 struct i915_address_space *vm; 2258 int err = 0; 2259 2260 if (!rcu_access_pointer(src->vm)) 2261 return 0; 2262 2263 rcu_read_lock(); 2264 vm = context_get_vm_rcu(src); 2265 rcu_read_unlock(); 2266 2267 if (!mutex_lock_interruptible(&dst->mutex)) { 2268 __assign_ppgtt(dst, vm); 2269 mutex_unlock(&dst->mutex); 2270 } else { 2271 err = -EINTR; 2272 } 2273 2274 i915_vm_put(vm); 2275 return err; 2276 } 2277 2278 static int create_clone(struct i915_user_extension __user *ext, void *data) 2279 { 2280 static int (* const fn[])(struct i915_gem_context *dst, 2281 struct i915_gem_context *src) = { 2282 #define MAP(x, y) [ilog2(I915_CONTEXT_CLONE_##x)] = y 2283 MAP(ENGINES, clone_engines), 2284 MAP(FLAGS, clone_flags), 2285 MAP(SCHEDATTR, clone_schedattr), 2286 MAP(SSEU, clone_sseu), 2287 MAP(TIMELINE, clone_timeline), 2288 MAP(VM, clone_vm), 2289 #undef MAP 2290 }; 2291 struct drm_i915_gem_context_create_ext_clone local; 2292 const struct create_ext *arg = data; 2293 struct i915_gem_context *dst = arg->ctx; 2294 struct i915_gem_context *src; 2295 int err, bit; 2296 2297 if (copy_from_user(&local, ext, sizeof(local))) 2298 return -EFAULT; 2299 2300 BUILD_BUG_ON(GENMASK(BITS_PER_TYPE(local.flags) - 1, ARRAY_SIZE(fn)) != 2301 I915_CONTEXT_CLONE_UNKNOWN); 2302 2303 if (local.flags & I915_CONTEXT_CLONE_UNKNOWN) 2304 return -EINVAL; 2305 2306 if (local.rsvd) 2307 return -EINVAL; 2308 2309 rcu_read_lock(); 2310 src = __i915_gem_context_lookup_rcu(arg->fpriv, local.clone_id); 2311 rcu_read_unlock(); 2312 if (!src) 2313 return -ENOENT; 2314 2315 GEM_BUG_ON(src == dst); 2316 2317 for (bit = 0; bit < ARRAY_SIZE(fn); bit++) { 2318 if (!(local.flags & BIT(bit))) 2319 continue; 2320 2321 err = fn[bit](dst, src); 2322 if (err) 2323 return err; 2324 } 2325 2326 return 0; 2327 } 2328 2329 static const i915_user_extension_fn create_extensions[] = { 2330 [I915_CONTEXT_CREATE_EXT_SETPARAM] = create_setparam, 2331 [I915_CONTEXT_CREATE_EXT_CLONE] = create_clone, 2332 }; 2333 2334 static bool client_is_banned(struct drm_i915_file_private *file_priv) 2335 { 2336 return atomic_read(&file_priv->ban_score) >= I915_CLIENT_SCORE_BANNED; 2337 } 2338 2339 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data, 2340 struct drm_file *file) 2341 { 2342 struct drm_i915_private *i915 = to_i915(dev); 2343 struct drm_i915_gem_context_create_ext *args = data; 2344 struct create_ext ext_data; 2345 int ret; 2346 u32 id; 2347 2348 if (!DRIVER_CAPS(i915)->has_logical_contexts) 2349 return -ENODEV; 2350 2351 if (args->flags & I915_CONTEXT_CREATE_FLAGS_UNKNOWN) 2352 return -EINVAL; 2353 2354 ret = intel_gt_terminally_wedged(&i915->gt); 2355 if (ret) 2356 return ret; 2357 2358 ext_data.fpriv = file->driver_priv; 2359 if (client_is_banned(ext_data.fpriv)) { 2360 drm_dbg(&i915->drm, 2361 "client %s[%d] banned from creating ctx\n", 2362 current->comm, task_pid_nr(current)); 2363 return -EIO; 2364 } 2365 2366 ext_data.ctx = i915_gem_create_context(i915, args->flags); 2367 if (IS_ERR(ext_data.ctx)) 2368 return PTR_ERR(ext_data.ctx); 2369 2370 if (args->flags & I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS) { 2371 ret = i915_user_extensions(u64_to_user_ptr(args->extensions), 2372 create_extensions, 2373 ARRAY_SIZE(create_extensions), 2374 &ext_data); 2375 if (ret) 2376 goto err_ctx; 2377 } 2378 2379 ret = gem_context_register(ext_data.ctx, ext_data.fpriv, &id); 2380 if (ret < 0) 2381 goto err_ctx; 2382 2383 args->ctx_id = id; 2384 drm_dbg(&i915->drm, "HW context %d created\n", args->ctx_id); 2385 2386 return 0; 2387 2388 err_ctx: 2389 context_close(ext_data.ctx); 2390 return ret; 2391 } 2392 2393 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data, 2394 struct drm_file *file) 2395 { 2396 struct drm_i915_gem_context_destroy *args = data; 2397 struct drm_i915_file_private *file_priv = file->driver_priv; 2398 struct i915_gem_context *ctx; 2399 2400 if (args->pad != 0) 2401 return -EINVAL; 2402 2403 if (!args->ctx_id) 2404 return -ENOENT; 2405 2406 ctx = xa_erase(&file_priv->context_xa, args->ctx_id); 2407 if (!ctx) 2408 return -ENOENT; 2409 2410 context_close(ctx); 2411 return 0; 2412 } 2413 2414 static int get_sseu(struct i915_gem_context *ctx, 2415 struct drm_i915_gem_context_param *args) 2416 { 2417 struct drm_i915_gem_context_param_sseu user_sseu; 2418 struct intel_context *ce; 2419 unsigned long lookup; 2420 int err; 2421 2422 if (args->size == 0) 2423 goto out; 2424 else if (args->size < sizeof(user_sseu)) 2425 return -EINVAL; 2426 2427 if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value), 2428 sizeof(user_sseu))) 2429 return -EFAULT; 2430 2431 if (user_sseu.rsvd) 2432 return -EINVAL; 2433 2434 if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)) 2435 return -EINVAL; 2436 2437 lookup = 0; 2438 if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX) 2439 lookup |= LOOKUP_USER_INDEX; 2440 2441 ce = lookup_user_engine(ctx, lookup, &user_sseu.engine); 2442 if (IS_ERR(ce)) 2443 return PTR_ERR(ce); 2444 2445 err = intel_context_lock_pinned(ce); /* serialises with set_sseu */ 2446 if (err) { 2447 intel_context_put(ce); 2448 return err; 2449 } 2450 2451 user_sseu.slice_mask = ce->sseu.slice_mask; 2452 user_sseu.subslice_mask = ce->sseu.subslice_mask; 2453 user_sseu.min_eus_per_subslice = ce->sseu.min_eus_per_subslice; 2454 user_sseu.max_eus_per_subslice = ce->sseu.max_eus_per_subslice; 2455 2456 intel_context_unlock_pinned(ce); 2457 intel_context_put(ce); 2458 2459 if (copy_to_user(u64_to_user_ptr(args->value), &user_sseu, 2460 sizeof(user_sseu))) 2461 return -EFAULT; 2462 2463 out: 2464 args->size = sizeof(user_sseu); 2465 2466 return 0; 2467 } 2468 2469 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data, 2470 struct drm_file *file) 2471 { 2472 struct drm_i915_file_private *file_priv = file->driver_priv; 2473 struct drm_i915_gem_context_param *args = data; 2474 struct i915_gem_context *ctx; 2475 int ret = 0; 2476 2477 ctx = i915_gem_context_lookup(file_priv, args->ctx_id); 2478 if (!ctx) 2479 return -ENOENT; 2480 2481 switch (args->param) { 2482 case I915_CONTEXT_PARAM_NO_ZEROMAP: 2483 args->size = 0; 2484 args->value = test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags); 2485 break; 2486 2487 case I915_CONTEXT_PARAM_GTT_SIZE: 2488 args->size = 0; 2489 rcu_read_lock(); 2490 if (rcu_access_pointer(ctx->vm)) 2491 args->value = rcu_dereference(ctx->vm)->total; 2492 else 2493 args->value = to_i915(dev)->ggtt.vm.total; 2494 rcu_read_unlock(); 2495 break; 2496 2497 case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE: 2498 args->size = 0; 2499 args->value = i915_gem_context_no_error_capture(ctx); 2500 break; 2501 2502 case I915_CONTEXT_PARAM_BANNABLE: 2503 args->size = 0; 2504 args->value = i915_gem_context_is_bannable(ctx); 2505 break; 2506 2507 case I915_CONTEXT_PARAM_RECOVERABLE: 2508 args->size = 0; 2509 args->value = i915_gem_context_is_recoverable(ctx); 2510 break; 2511 2512 case I915_CONTEXT_PARAM_PRIORITY: 2513 args->size = 0; 2514 args->value = ctx->sched.priority >> I915_USER_PRIORITY_SHIFT; 2515 break; 2516 2517 case I915_CONTEXT_PARAM_SSEU: 2518 ret = get_sseu(ctx, args); 2519 break; 2520 2521 case I915_CONTEXT_PARAM_VM: 2522 ret = get_ppgtt(file_priv, ctx, args); 2523 break; 2524 2525 case I915_CONTEXT_PARAM_ENGINES: 2526 ret = get_engines(ctx, args); 2527 break; 2528 2529 case I915_CONTEXT_PARAM_PERSISTENCE: 2530 args->size = 0; 2531 args->value = i915_gem_context_is_persistent(ctx); 2532 break; 2533 2534 case I915_CONTEXT_PARAM_RINGSIZE: 2535 ret = get_ringsize(ctx, args); 2536 break; 2537 2538 case I915_CONTEXT_PARAM_BAN_PERIOD: 2539 default: 2540 ret = -EINVAL; 2541 break; 2542 } 2543 2544 i915_gem_context_put(ctx); 2545 return ret; 2546 } 2547 2548 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data, 2549 struct drm_file *file) 2550 { 2551 struct drm_i915_file_private *file_priv = file->driver_priv; 2552 struct drm_i915_gem_context_param *args = data; 2553 struct i915_gem_context *ctx; 2554 int ret; 2555 2556 ctx = i915_gem_context_lookup(file_priv, args->ctx_id); 2557 if (!ctx) 2558 return -ENOENT; 2559 2560 ret = ctx_setparam(file_priv, ctx, args); 2561 2562 i915_gem_context_put(ctx); 2563 return ret; 2564 } 2565 2566 int i915_gem_context_reset_stats_ioctl(struct drm_device *dev, 2567 void *data, struct drm_file *file) 2568 { 2569 struct drm_i915_private *i915 = to_i915(dev); 2570 struct drm_i915_reset_stats *args = data; 2571 struct i915_gem_context *ctx; 2572 int ret; 2573 2574 if (args->flags || args->pad) 2575 return -EINVAL; 2576 2577 ret = -ENOENT; 2578 rcu_read_lock(); 2579 ctx = __i915_gem_context_lookup_rcu(file->driver_priv, args->ctx_id); 2580 if (!ctx) 2581 goto out; 2582 2583 /* 2584 * We opt for unserialised reads here. This may result in tearing 2585 * in the extremely unlikely event of a GPU hang on this context 2586 * as we are querying them. If we need that extra layer of protection, 2587 * we should wrap the hangstats with a seqlock. 2588 */ 2589 2590 if (capable(CAP_SYS_ADMIN)) 2591 args->reset_count = i915_reset_count(&i915->gpu_error); 2592 else 2593 args->reset_count = 0; 2594 2595 args->batch_active = atomic_read(&ctx->guilty_count); 2596 args->batch_pending = atomic_read(&ctx->active_count); 2597 2598 ret = 0; 2599 out: 2600 rcu_read_unlock(); 2601 return ret; 2602 } 2603 2604 /* GEM context-engines iterator: for_each_gem_engine() */ 2605 struct intel_context * 2606 i915_gem_engines_iter_next(struct i915_gem_engines_iter *it) 2607 { 2608 const struct i915_gem_engines *e = it->engines; 2609 struct intel_context *ctx; 2610 2611 if (unlikely(!e)) 2612 return NULL; 2613 2614 do { 2615 if (it->idx >= e->num_engines) 2616 return NULL; 2617 2618 ctx = e->engines[it->idx++]; 2619 } while (!ctx); 2620 2621 return ctx; 2622 } 2623 2624 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2625 #include "selftests/mock_context.c" 2626 #include "selftests/i915_gem_context.c" 2627 #endif 2628 2629 static void i915_global_gem_context_shrink(void) 2630 { 2631 kmem_cache_shrink(global.slab_luts); 2632 } 2633 2634 static void i915_global_gem_context_exit(void) 2635 { 2636 kmem_cache_destroy(global.slab_luts); 2637 } 2638 2639 static struct i915_global_gem_context global = { { 2640 .shrink = i915_global_gem_context_shrink, 2641 .exit = i915_global_gem_context_exit, 2642 } }; 2643 2644 int __init i915_global_gem_context_init(void) 2645 { 2646 global.slab_luts = KMEM_CACHE(i915_lut_handle, 0); 2647 if (!global.slab_luts) 2648 return -ENOMEM; 2649 2650 i915_global_register(&global.base); 2651 return 0; 2652 } 2653