1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2011-2012 Intel Corporation
5  */
6 
7 /*
8  * This file implements HW context support. On gen5+ a HW context consists of an
9  * opaque GPU object which is referenced at times of context saves and restores.
10  * With RC6 enabled, the context is also referenced as the GPU enters and exists
11  * from RC6 (GPU has it's own internal power context, except on gen5). Though
12  * something like a context does exist for the media ring, the code only
13  * supports contexts for the render ring.
14  *
15  * In software, there is a distinction between contexts created by the user,
16  * and the default HW context. The default HW context is used by GPU clients
17  * that do not request setup of their own hardware context. The default
18  * context's state is never restored to help prevent programming errors. This
19  * would happen if a client ran and piggy-backed off another clients GPU state.
20  * The default context only exists to give the GPU some offset to load as the
21  * current to invoke a save of the context we actually care about. In fact, the
22  * code could likely be constructed, albeit in a more complicated fashion, to
23  * never use the default context, though that limits the driver's ability to
24  * swap out, and/or destroy other contexts.
25  *
26  * All other contexts are created as a request by the GPU client. These contexts
27  * store GPU state, and thus allow GPU clients to not re-emit state (and
28  * potentially query certain state) at any time. The kernel driver makes
29  * certain that the appropriate commands are inserted.
30  *
31  * The context life cycle is semi-complicated in that context BOs may live
32  * longer than the context itself because of the way the hardware, and object
33  * tracking works. Below is a very crude representation of the state machine
34  * describing the context life.
35  *                                         refcount     pincount     active
36  * S0: initial state                          0            0           0
37  * S1: context created                        1            0           0
38  * S2: context is currently running           2            1           X
39  * S3: GPU referenced, but not current        2            0           1
40  * S4: context is current, but destroyed      1            1           0
41  * S5: like S3, but destroyed                 1            0           1
42  *
43  * The most common (but not all) transitions:
44  * S0->S1: client creates a context
45  * S1->S2: client submits execbuf with context
46  * S2->S3: other clients submits execbuf with context
47  * S3->S1: context object was retired
48  * S3->S2: clients submits another execbuf
49  * S2->S4: context destroy called with current context
50  * S3->S5->S0: destroy path
51  * S4->S5->S0: destroy path on current context
52  *
53  * There are two confusing terms used above:
54  *  The "current context" means the context which is currently running on the
55  *  GPU. The GPU has loaded its state already and has stored away the gtt
56  *  offset of the BO. The GPU is not actively referencing the data at this
57  *  offset, but it will on the next context switch. The only way to avoid this
58  *  is to do a GPU reset.
59  *
60  *  An "active context' is one which was previously the "current context" and is
61  *  on the active list waiting for the next context switch to occur. Until this
62  *  happens, the object must remain at the same gtt offset. It is therefore
63  *  possible to destroy a context, but it is still active.
64  *
65  */
66 
67 #include <linux/log2.h>
68 #include <linux/nospec.h>
69 
70 #include <drm/i915_drm.h>
71 
72 #include "gt/gen6_ppgtt.h"
73 #include "gt/intel_context.h"
74 #include "gt/intel_engine_heartbeat.h"
75 #include "gt/intel_engine_pm.h"
76 #include "gt/intel_engine_user.h"
77 #include "gt/intel_lrc_reg.h"
78 #include "gt/intel_ring.h"
79 
80 #include "i915_gem_context.h"
81 #include "i915_globals.h"
82 #include "i915_trace.h"
83 #include "i915_user_extensions.h"
84 
85 #define ALL_L3_SLICES(dev) (1 << NUM_L3_SLICES(dev)) - 1
86 
87 static struct i915_global_gem_context {
88 	struct i915_global base;
89 	struct kmem_cache *slab_luts;
90 } global;
91 
92 struct i915_lut_handle *i915_lut_handle_alloc(void)
93 {
94 	return kmem_cache_alloc(global.slab_luts, GFP_KERNEL);
95 }
96 
97 void i915_lut_handle_free(struct i915_lut_handle *lut)
98 {
99 	return kmem_cache_free(global.slab_luts, lut);
100 }
101 
102 static void lut_close(struct i915_gem_context *ctx)
103 {
104 	struct radix_tree_iter iter;
105 	void __rcu **slot;
106 
107 	lockdep_assert_held(&ctx->mutex);
108 
109 	rcu_read_lock();
110 	radix_tree_for_each_slot(slot, &ctx->handles_vma, &iter, 0) {
111 		struct i915_vma *vma = rcu_dereference_raw(*slot);
112 		struct drm_i915_gem_object *obj = vma->obj;
113 		struct i915_lut_handle *lut;
114 
115 		if (!kref_get_unless_zero(&obj->base.refcount))
116 			continue;
117 
118 		rcu_read_unlock();
119 		i915_gem_object_lock(obj);
120 		list_for_each_entry(lut, &obj->lut_list, obj_link) {
121 			if (lut->ctx != ctx)
122 				continue;
123 
124 			if (lut->handle != iter.index)
125 				continue;
126 
127 			list_del(&lut->obj_link);
128 			break;
129 		}
130 		i915_gem_object_unlock(obj);
131 		rcu_read_lock();
132 
133 		if (&lut->obj_link != &obj->lut_list) {
134 			i915_lut_handle_free(lut);
135 			radix_tree_iter_delete(&ctx->handles_vma, &iter, slot);
136 			if (atomic_dec_and_test(&vma->open_count) &&
137 			    !i915_vma_is_ggtt(vma))
138 				i915_vma_close(vma);
139 			i915_gem_object_put(obj);
140 		}
141 
142 		i915_gem_object_put(obj);
143 	}
144 	rcu_read_unlock();
145 }
146 
147 static struct intel_context *
148 lookup_user_engine(struct i915_gem_context *ctx,
149 		   unsigned long flags,
150 		   const struct i915_engine_class_instance *ci)
151 #define LOOKUP_USER_INDEX BIT(0)
152 {
153 	int idx;
154 
155 	if (!!(flags & LOOKUP_USER_INDEX) != i915_gem_context_user_engines(ctx))
156 		return ERR_PTR(-EINVAL);
157 
158 	if (!i915_gem_context_user_engines(ctx)) {
159 		struct intel_engine_cs *engine;
160 
161 		engine = intel_engine_lookup_user(ctx->i915,
162 						  ci->engine_class,
163 						  ci->engine_instance);
164 		if (!engine)
165 			return ERR_PTR(-EINVAL);
166 
167 		idx = engine->legacy_idx;
168 	} else {
169 		idx = ci->engine_instance;
170 	}
171 
172 	return i915_gem_context_get_engine(ctx, idx);
173 }
174 
175 static struct i915_address_space *
176 context_get_vm_rcu(struct i915_gem_context *ctx)
177 {
178 	GEM_BUG_ON(!rcu_access_pointer(ctx->vm));
179 
180 	do {
181 		struct i915_address_space *vm;
182 
183 		/*
184 		 * We do not allow downgrading from full-ppgtt [to a shared
185 		 * global gtt], so ctx->vm cannot become NULL.
186 		 */
187 		vm = rcu_dereference(ctx->vm);
188 		if (!kref_get_unless_zero(&vm->ref))
189 			continue;
190 
191 		/*
192 		 * This ppgtt may have be reallocated between
193 		 * the read and the kref, and reassigned to a third
194 		 * context. In order to avoid inadvertent sharing
195 		 * of this ppgtt with that third context (and not
196 		 * src), we have to confirm that we have the same
197 		 * ppgtt after passing through the strong memory
198 		 * barrier implied by a successful
199 		 * kref_get_unless_zero().
200 		 *
201 		 * Once we have acquired the current ppgtt of ctx,
202 		 * we no longer care if it is released from ctx, as
203 		 * it cannot be reallocated elsewhere.
204 		 */
205 
206 		if (vm == rcu_access_pointer(ctx->vm))
207 			return rcu_pointer_handoff(vm);
208 
209 		i915_vm_put(vm);
210 	} while (1);
211 }
212 
213 static void intel_context_set_gem(struct intel_context *ce,
214 				  struct i915_gem_context *ctx)
215 {
216 	GEM_BUG_ON(rcu_access_pointer(ce->gem_context));
217 	RCU_INIT_POINTER(ce->gem_context, ctx);
218 
219 	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags))
220 		ce->ring = __intel_context_ring_size(SZ_16K);
221 
222 	if (rcu_access_pointer(ctx->vm)) {
223 		struct i915_address_space *vm;
224 
225 		rcu_read_lock();
226 		vm = context_get_vm_rcu(ctx); /* hmm */
227 		rcu_read_unlock();
228 
229 		i915_vm_put(ce->vm);
230 		ce->vm = vm;
231 	}
232 
233 	GEM_BUG_ON(ce->timeline);
234 	if (ctx->timeline)
235 		ce->timeline = intel_timeline_get(ctx->timeline);
236 
237 	if (ctx->sched.priority >= I915_PRIORITY_NORMAL &&
238 	    intel_engine_has_semaphores(ce->engine))
239 		__set_bit(CONTEXT_USE_SEMAPHORES, &ce->flags);
240 }
241 
242 static void __free_engines(struct i915_gem_engines *e, unsigned int count)
243 {
244 	while (count--) {
245 		if (!e->engines[count])
246 			continue;
247 
248 		RCU_INIT_POINTER(e->engines[count]->gem_context, NULL);
249 		intel_context_put(e->engines[count]);
250 	}
251 	kfree(e);
252 }
253 
254 static void free_engines(struct i915_gem_engines *e)
255 {
256 	__free_engines(e, e->num_engines);
257 }
258 
259 static void free_engines_rcu(struct rcu_head *rcu)
260 {
261 	free_engines(container_of(rcu, struct i915_gem_engines, rcu));
262 }
263 
264 static struct i915_gem_engines *default_engines(struct i915_gem_context *ctx)
265 {
266 	const struct intel_gt *gt = &ctx->i915->gt;
267 	struct intel_engine_cs *engine;
268 	struct i915_gem_engines *e;
269 	enum intel_engine_id id;
270 
271 	e = kzalloc(struct_size(e, engines, I915_NUM_ENGINES), GFP_KERNEL);
272 	if (!e)
273 		return ERR_PTR(-ENOMEM);
274 
275 	init_rcu_head(&e->rcu);
276 	for_each_engine(engine, gt, id) {
277 		struct intel_context *ce;
278 
279 		if (engine->legacy_idx == INVALID_ENGINE)
280 			continue;
281 
282 		GEM_BUG_ON(engine->legacy_idx >= I915_NUM_ENGINES);
283 		GEM_BUG_ON(e->engines[engine->legacy_idx]);
284 
285 		ce = intel_context_create(engine);
286 		if (IS_ERR(ce)) {
287 			__free_engines(e, e->num_engines + 1);
288 			return ERR_CAST(ce);
289 		}
290 
291 		intel_context_set_gem(ce, ctx);
292 
293 		e->engines[engine->legacy_idx] = ce;
294 		e->num_engines = max(e->num_engines, engine->legacy_idx);
295 	}
296 	e->num_engines++;
297 
298 	return e;
299 }
300 
301 static void i915_gem_context_free(struct i915_gem_context *ctx)
302 {
303 	GEM_BUG_ON(!i915_gem_context_is_closed(ctx));
304 
305 	spin_lock(&ctx->i915->gem.contexts.lock);
306 	list_del(&ctx->link);
307 	spin_unlock(&ctx->i915->gem.contexts.lock);
308 
309 	free_engines(rcu_access_pointer(ctx->engines));
310 	mutex_destroy(&ctx->engines_mutex);
311 
312 	if (ctx->timeline)
313 		intel_timeline_put(ctx->timeline);
314 
315 	put_pid(ctx->pid);
316 	mutex_destroy(&ctx->mutex);
317 
318 	kfree_rcu(ctx, rcu);
319 }
320 
321 static void contexts_free_all(struct llist_node *list)
322 {
323 	struct i915_gem_context *ctx, *cn;
324 
325 	llist_for_each_entry_safe(ctx, cn, list, free_link)
326 		i915_gem_context_free(ctx);
327 }
328 
329 static void contexts_flush_free(struct i915_gem_contexts *gc)
330 {
331 	contexts_free_all(llist_del_all(&gc->free_list));
332 }
333 
334 static void contexts_free_worker(struct work_struct *work)
335 {
336 	struct i915_gem_contexts *gc =
337 		container_of(work, typeof(*gc), free_work);
338 
339 	contexts_flush_free(gc);
340 }
341 
342 void i915_gem_context_release(struct kref *ref)
343 {
344 	struct i915_gem_context *ctx = container_of(ref, typeof(*ctx), ref);
345 	struct i915_gem_contexts *gc = &ctx->i915->gem.contexts;
346 
347 	trace_i915_context_free(ctx);
348 	if (llist_add(&ctx->free_link, &gc->free_list))
349 		schedule_work(&gc->free_work);
350 }
351 
352 static inline struct i915_gem_engines *
353 __context_engines_static(const struct i915_gem_context *ctx)
354 {
355 	return rcu_dereference_protected(ctx->engines, true);
356 }
357 
358 static bool __reset_engine(struct intel_engine_cs *engine)
359 {
360 	struct intel_gt *gt = engine->gt;
361 	bool success = false;
362 
363 	if (!intel_has_reset_engine(gt))
364 		return false;
365 
366 	if (!test_and_set_bit(I915_RESET_ENGINE + engine->id,
367 			      &gt->reset.flags)) {
368 		success = intel_engine_reset(engine, NULL) == 0;
369 		clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id,
370 				      &gt->reset.flags);
371 	}
372 
373 	return success;
374 }
375 
376 static void __reset_context(struct i915_gem_context *ctx,
377 			    struct intel_engine_cs *engine)
378 {
379 	intel_gt_handle_error(engine->gt, engine->mask, 0,
380 			      "context closure in %s", ctx->name);
381 }
382 
383 static bool __cancel_engine(struct intel_engine_cs *engine)
384 {
385 	/*
386 	 * Send a "high priority pulse" down the engine to cause the
387 	 * current request to be momentarily preempted. (If it fails to
388 	 * be preempted, it will be reset). As we have marked our context
389 	 * as banned, any incomplete request, including any running, will
390 	 * be skipped following the preemption.
391 	 *
392 	 * If there is no hangchecking (one of the reasons why we try to
393 	 * cancel the context) and no forced preemption, there may be no
394 	 * means by which we reset the GPU and evict the persistent hog.
395 	 * Ergo if we are unable to inject a preemptive pulse that can
396 	 * kill the banned context, we fallback to doing a local reset
397 	 * instead.
398 	 */
399 	if (IS_ACTIVE(CONFIG_DRM_I915_PREEMPT_TIMEOUT) &&
400 	    !intel_engine_pulse(engine))
401 		return true;
402 
403 	/* If we are unable to send a pulse, try resetting this engine. */
404 	return __reset_engine(engine);
405 }
406 
407 static struct intel_engine_cs *__active_engine(struct i915_request *rq)
408 {
409 	struct intel_engine_cs *engine, *locked;
410 
411 	/*
412 	 * Serialise with __i915_request_submit() so that it sees
413 	 * is-banned?, or we know the request is already inflight.
414 	 */
415 	locked = READ_ONCE(rq->engine);
416 	spin_lock_irq(&locked->active.lock);
417 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
418 		spin_unlock(&locked->active.lock);
419 		spin_lock(&engine->active.lock);
420 		locked = engine;
421 	}
422 
423 	engine = NULL;
424 	if (i915_request_is_active(rq) && !rq->fence.error)
425 		engine = rq->engine;
426 
427 	spin_unlock_irq(&locked->active.lock);
428 
429 	return engine;
430 }
431 
432 static struct intel_engine_cs *active_engine(struct intel_context *ce)
433 {
434 	struct intel_engine_cs *engine = NULL;
435 	struct i915_request *rq;
436 
437 	if (!ce->timeline)
438 		return NULL;
439 
440 	mutex_lock(&ce->timeline->mutex);
441 	list_for_each_entry_reverse(rq, &ce->timeline->requests, link) {
442 		if (i915_request_completed(rq))
443 			break;
444 
445 		/* Check with the backend if the request is inflight */
446 		engine = __active_engine(rq);
447 		if (engine)
448 			break;
449 	}
450 	mutex_unlock(&ce->timeline->mutex);
451 
452 	return engine;
453 }
454 
455 static void kill_context(struct i915_gem_context *ctx)
456 {
457 	struct i915_gem_engines_iter it;
458 	struct intel_context *ce;
459 
460 	/*
461 	 * Map the user's engine back to the actual engines; one virtual
462 	 * engine will be mapped to multiple engines, and using ctx->engine[]
463 	 * the same engine may be have multiple instances in the user's map.
464 	 * However, we only care about pending requests, so only include
465 	 * engines on which there are incomplete requests.
466 	 */
467 	for_each_gem_engine(ce, __context_engines_static(ctx), it) {
468 		struct intel_engine_cs *engine;
469 
470 		if (intel_context_set_banned(ce))
471 			continue;
472 
473 		/*
474 		 * Check the current active state of this context; if we
475 		 * are currently executing on the GPU we need to evict
476 		 * ourselves. On the other hand, if we haven't yet been
477 		 * submitted to the GPU or if everything is complete,
478 		 * we have nothing to do.
479 		 */
480 		engine = active_engine(ce);
481 
482 		/* First attempt to gracefully cancel the context */
483 		if (engine && !__cancel_engine(engine))
484 			/*
485 			 * If we are unable to send a preemptive pulse to bump
486 			 * the context from the GPU, we have to resort to a full
487 			 * reset. We hope the collateral damage is worth it.
488 			 */
489 			__reset_context(ctx, engine);
490 	}
491 }
492 
493 static void set_closed_name(struct i915_gem_context *ctx)
494 {
495 	char *s;
496 
497 	/* Replace '[]' with '<>' to indicate closed in debug prints */
498 
499 	s = strrchr(ctx->name, '[');
500 	if (!s)
501 		return;
502 
503 	*s = '<';
504 
505 	s = strchr(s + 1, ']');
506 	if (s)
507 		*s = '>';
508 }
509 
510 static void context_close(struct i915_gem_context *ctx)
511 {
512 	struct i915_address_space *vm;
513 
514 	i915_gem_context_set_closed(ctx);
515 	set_closed_name(ctx);
516 
517 	mutex_lock(&ctx->mutex);
518 
519 	vm = i915_gem_context_vm(ctx);
520 	if (vm)
521 		i915_vm_close(vm);
522 
523 	ctx->file_priv = ERR_PTR(-EBADF);
524 
525 	/*
526 	 * The LUT uses the VMA as a backpointer to unref the object,
527 	 * so we need to clear the LUT before we close all the VMA (inside
528 	 * the ppgtt).
529 	 */
530 	lut_close(ctx);
531 
532 	mutex_unlock(&ctx->mutex);
533 
534 	/*
535 	 * If the user has disabled hangchecking, we can not be sure that
536 	 * the batches will ever complete after the context is closed,
537 	 * keeping the context and all resources pinned forever. So in this
538 	 * case we opt to forcibly kill off all remaining requests on
539 	 * context close.
540 	 */
541 	if (!i915_gem_context_is_persistent(ctx) ||
542 	    !i915_modparams.enable_hangcheck)
543 		kill_context(ctx);
544 
545 	i915_gem_context_put(ctx);
546 }
547 
548 static int __context_set_persistence(struct i915_gem_context *ctx, bool state)
549 {
550 	if (i915_gem_context_is_persistent(ctx) == state)
551 		return 0;
552 
553 	if (state) {
554 		/*
555 		 * Only contexts that are short-lived [that will expire or be
556 		 * reset] are allowed to survive past termination. We require
557 		 * hangcheck to ensure that the persistent requests are healthy.
558 		 */
559 		if (!i915_modparams.enable_hangcheck)
560 			return -EINVAL;
561 
562 		i915_gem_context_set_persistence(ctx);
563 	} else {
564 		/* To cancel a context we use "preempt-to-idle" */
565 		if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PREEMPTION))
566 			return -ENODEV;
567 
568 		i915_gem_context_clear_persistence(ctx);
569 	}
570 
571 	return 0;
572 }
573 
574 static struct i915_gem_context *
575 __create_context(struct drm_i915_private *i915)
576 {
577 	struct i915_gem_context *ctx;
578 	struct i915_gem_engines *e;
579 	int err;
580 	int i;
581 
582 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
583 	if (!ctx)
584 		return ERR_PTR(-ENOMEM);
585 
586 	kref_init(&ctx->ref);
587 	ctx->i915 = i915;
588 	ctx->sched.priority = I915_USER_PRIORITY(I915_PRIORITY_NORMAL);
589 	mutex_init(&ctx->mutex);
590 
591 	mutex_init(&ctx->engines_mutex);
592 	e = default_engines(ctx);
593 	if (IS_ERR(e)) {
594 		err = PTR_ERR(e);
595 		goto err_free;
596 	}
597 	RCU_INIT_POINTER(ctx->engines, e);
598 
599 	INIT_RADIX_TREE(&ctx->handles_vma, GFP_KERNEL);
600 
601 	/* NB: Mark all slices as needing a remap so that when the context first
602 	 * loads it will restore whatever remap state already exists. If there
603 	 * is no remap info, it will be a NOP. */
604 	ctx->remap_slice = ALL_L3_SLICES(i915);
605 
606 	i915_gem_context_set_bannable(ctx);
607 	i915_gem_context_set_recoverable(ctx);
608 	__context_set_persistence(ctx, true /* cgroup hook? */);
609 
610 	for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp); i++)
611 		ctx->hang_timestamp[i] = jiffies - CONTEXT_FAST_HANG_JIFFIES;
612 
613 	spin_lock(&i915->gem.contexts.lock);
614 	list_add_tail(&ctx->link, &i915->gem.contexts.list);
615 	spin_unlock(&i915->gem.contexts.lock);
616 
617 	return ctx;
618 
619 err_free:
620 	kfree(ctx);
621 	return ERR_PTR(err);
622 }
623 
624 static void
625 context_apply_all(struct i915_gem_context *ctx,
626 		  void (*fn)(struct intel_context *ce, void *data),
627 		  void *data)
628 {
629 	struct i915_gem_engines_iter it;
630 	struct intel_context *ce;
631 
632 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it)
633 		fn(ce, data);
634 	i915_gem_context_unlock_engines(ctx);
635 }
636 
637 static void __apply_ppgtt(struct intel_context *ce, void *vm)
638 {
639 	i915_vm_put(ce->vm);
640 	ce->vm = i915_vm_get(vm);
641 }
642 
643 static struct i915_address_space *
644 __set_ppgtt(struct i915_gem_context *ctx, struct i915_address_space *vm)
645 {
646 	struct i915_address_space *old = i915_gem_context_vm(ctx);
647 
648 	GEM_BUG_ON(old && i915_vm_is_4lvl(vm) != i915_vm_is_4lvl(old));
649 
650 	rcu_assign_pointer(ctx->vm, i915_vm_open(vm));
651 	context_apply_all(ctx, __apply_ppgtt, vm);
652 
653 	return old;
654 }
655 
656 static void __assign_ppgtt(struct i915_gem_context *ctx,
657 			   struct i915_address_space *vm)
658 {
659 	if (vm == rcu_access_pointer(ctx->vm))
660 		return;
661 
662 	vm = __set_ppgtt(ctx, vm);
663 	if (vm)
664 		i915_vm_close(vm);
665 }
666 
667 static void __set_timeline(struct intel_timeline **dst,
668 			   struct intel_timeline *src)
669 {
670 	struct intel_timeline *old = *dst;
671 
672 	*dst = src ? intel_timeline_get(src) : NULL;
673 
674 	if (old)
675 		intel_timeline_put(old);
676 }
677 
678 static void __apply_timeline(struct intel_context *ce, void *timeline)
679 {
680 	__set_timeline(&ce->timeline, timeline);
681 }
682 
683 static void __assign_timeline(struct i915_gem_context *ctx,
684 			      struct intel_timeline *timeline)
685 {
686 	__set_timeline(&ctx->timeline, timeline);
687 	context_apply_all(ctx, __apply_timeline, timeline);
688 }
689 
690 static struct i915_gem_context *
691 i915_gem_create_context(struct drm_i915_private *i915, unsigned int flags)
692 {
693 	struct i915_gem_context *ctx;
694 
695 	if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE &&
696 	    !HAS_EXECLISTS(i915))
697 		return ERR_PTR(-EINVAL);
698 
699 	/* Reap the stale contexts */
700 	contexts_flush_free(&i915->gem.contexts);
701 
702 	ctx = __create_context(i915);
703 	if (IS_ERR(ctx))
704 		return ctx;
705 
706 	if (HAS_FULL_PPGTT(i915)) {
707 		struct i915_ppgtt *ppgtt;
708 
709 		ppgtt = i915_ppgtt_create(&i915->gt);
710 		if (IS_ERR(ppgtt)) {
711 			DRM_DEBUG_DRIVER("PPGTT setup failed (%ld)\n",
712 					 PTR_ERR(ppgtt));
713 			context_close(ctx);
714 			return ERR_CAST(ppgtt);
715 		}
716 
717 		mutex_lock(&ctx->mutex);
718 		__assign_ppgtt(ctx, &ppgtt->vm);
719 		mutex_unlock(&ctx->mutex);
720 
721 		i915_vm_put(&ppgtt->vm);
722 	}
723 
724 	if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE) {
725 		struct intel_timeline *timeline;
726 
727 		timeline = intel_timeline_create(&i915->gt, NULL);
728 		if (IS_ERR(timeline)) {
729 			context_close(ctx);
730 			return ERR_CAST(timeline);
731 		}
732 
733 		__assign_timeline(ctx, timeline);
734 		intel_timeline_put(timeline);
735 	}
736 
737 	trace_i915_context_create(ctx);
738 
739 	return ctx;
740 }
741 
742 static void init_contexts(struct i915_gem_contexts *gc)
743 {
744 	spin_lock_init(&gc->lock);
745 	INIT_LIST_HEAD(&gc->list);
746 
747 	INIT_WORK(&gc->free_work, contexts_free_worker);
748 	init_llist_head(&gc->free_list);
749 }
750 
751 void i915_gem_init__contexts(struct drm_i915_private *i915)
752 {
753 	init_contexts(&i915->gem.contexts);
754 	DRM_DEBUG_DRIVER("%s context support initialized\n",
755 			 DRIVER_CAPS(i915)->has_logical_contexts ?
756 			 "logical" : "fake");
757 }
758 
759 void i915_gem_driver_release__contexts(struct drm_i915_private *i915)
760 {
761 	flush_work(&i915->gem.contexts.free_work);
762 }
763 
764 static int vm_idr_cleanup(int id, void *p, void *data)
765 {
766 	i915_vm_put(p);
767 	return 0;
768 }
769 
770 static int gem_context_register(struct i915_gem_context *ctx,
771 				struct drm_i915_file_private *fpriv,
772 				u32 *id)
773 {
774 	struct i915_address_space *vm;
775 	int ret;
776 
777 	ctx->file_priv = fpriv;
778 
779 	mutex_lock(&ctx->mutex);
780 	vm = i915_gem_context_vm(ctx);
781 	if (vm)
782 		WRITE_ONCE(vm->file, fpriv); /* XXX */
783 	mutex_unlock(&ctx->mutex);
784 
785 	ctx->pid = get_task_pid(current, PIDTYPE_PID);
786 	snprintf(ctx->name, sizeof(ctx->name), "%s[%d]",
787 		 current->comm, pid_nr(ctx->pid));
788 
789 	/* And finally expose ourselves to userspace via the idr */
790 	ret = xa_alloc(&fpriv->context_xa, id, ctx, xa_limit_32b, GFP_KERNEL);
791 	if (ret)
792 		put_pid(fetch_and_zero(&ctx->pid));
793 
794 	return ret;
795 }
796 
797 int i915_gem_context_open(struct drm_i915_private *i915,
798 			  struct drm_file *file)
799 {
800 	struct drm_i915_file_private *file_priv = file->driver_priv;
801 	struct i915_gem_context *ctx;
802 	int err;
803 	u32 id;
804 
805 	xa_init_flags(&file_priv->context_xa, XA_FLAGS_ALLOC);
806 
807 	mutex_init(&file_priv->vm_idr_lock);
808 	idr_init_base(&file_priv->vm_idr, 1);
809 
810 	ctx = i915_gem_create_context(i915, 0);
811 	if (IS_ERR(ctx)) {
812 		err = PTR_ERR(ctx);
813 		goto err;
814 	}
815 
816 	err = gem_context_register(ctx, file_priv, &id);
817 	if (err < 0)
818 		goto err_ctx;
819 
820 	GEM_BUG_ON(id);
821 	return 0;
822 
823 err_ctx:
824 	context_close(ctx);
825 err:
826 	idr_destroy(&file_priv->vm_idr);
827 	xa_destroy(&file_priv->context_xa);
828 	mutex_destroy(&file_priv->vm_idr_lock);
829 	return err;
830 }
831 
832 void i915_gem_context_close(struct drm_file *file)
833 {
834 	struct drm_i915_file_private *file_priv = file->driver_priv;
835 	struct drm_i915_private *i915 = file_priv->dev_priv;
836 	struct i915_gem_context *ctx;
837 	unsigned long idx;
838 
839 	xa_for_each(&file_priv->context_xa, idx, ctx)
840 		context_close(ctx);
841 	xa_destroy(&file_priv->context_xa);
842 
843 	idr_for_each(&file_priv->vm_idr, vm_idr_cleanup, NULL);
844 	idr_destroy(&file_priv->vm_idr);
845 	mutex_destroy(&file_priv->vm_idr_lock);
846 
847 	contexts_flush_free(&i915->gem.contexts);
848 }
849 
850 int i915_gem_vm_create_ioctl(struct drm_device *dev, void *data,
851 			     struct drm_file *file)
852 {
853 	struct drm_i915_private *i915 = to_i915(dev);
854 	struct drm_i915_gem_vm_control *args = data;
855 	struct drm_i915_file_private *file_priv = file->driver_priv;
856 	struct i915_ppgtt *ppgtt;
857 	int err;
858 
859 	if (!HAS_FULL_PPGTT(i915))
860 		return -ENODEV;
861 
862 	if (args->flags)
863 		return -EINVAL;
864 
865 	ppgtt = i915_ppgtt_create(&i915->gt);
866 	if (IS_ERR(ppgtt))
867 		return PTR_ERR(ppgtt);
868 
869 	ppgtt->vm.file = file_priv;
870 
871 	if (args->extensions) {
872 		err = i915_user_extensions(u64_to_user_ptr(args->extensions),
873 					   NULL, 0,
874 					   ppgtt);
875 		if (err)
876 			goto err_put;
877 	}
878 
879 	err = mutex_lock_interruptible(&file_priv->vm_idr_lock);
880 	if (err)
881 		goto err_put;
882 
883 	err = idr_alloc(&file_priv->vm_idr, &ppgtt->vm, 0, 0, GFP_KERNEL);
884 	if (err < 0)
885 		goto err_unlock;
886 
887 	GEM_BUG_ON(err == 0); /* reserved for invalid/unassigned ppgtt */
888 
889 	mutex_unlock(&file_priv->vm_idr_lock);
890 
891 	args->vm_id = err;
892 	return 0;
893 
894 err_unlock:
895 	mutex_unlock(&file_priv->vm_idr_lock);
896 err_put:
897 	i915_vm_put(&ppgtt->vm);
898 	return err;
899 }
900 
901 int i915_gem_vm_destroy_ioctl(struct drm_device *dev, void *data,
902 			      struct drm_file *file)
903 {
904 	struct drm_i915_file_private *file_priv = file->driver_priv;
905 	struct drm_i915_gem_vm_control *args = data;
906 	struct i915_address_space *vm;
907 	int err;
908 	u32 id;
909 
910 	if (args->flags)
911 		return -EINVAL;
912 
913 	if (args->extensions)
914 		return -EINVAL;
915 
916 	id = args->vm_id;
917 	if (!id)
918 		return -ENOENT;
919 
920 	err = mutex_lock_interruptible(&file_priv->vm_idr_lock);
921 	if (err)
922 		return err;
923 
924 	vm = idr_remove(&file_priv->vm_idr, id);
925 
926 	mutex_unlock(&file_priv->vm_idr_lock);
927 	if (!vm)
928 		return -ENOENT;
929 
930 	i915_vm_put(vm);
931 	return 0;
932 }
933 
934 struct context_barrier_task {
935 	struct i915_active base;
936 	void (*task)(void *data);
937 	void *data;
938 };
939 
940 __i915_active_call
941 static void cb_retire(struct i915_active *base)
942 {
943 	struct context_barrier_task *cb = container_of(base, typeof(*cb), base);
944 
945 	if (cb->task)
946 		cb->task(cb->data);
947 
948 	i915_active_fini(&cb->base);
949 	kfree(cb);
950 }
951 
952 I915_SELFTEST_DECLARE(static intel_engine_mask_t context_barrier_inject_fault);
953 static int context_barrier_task(struct i915_gem_context *ctx,
954 				intel_engine_mask_t engines,
955 				bool (*skip)(struct intel_context *ce, void *data),
956 				int (*emit)(struct i915_request *rq, void *data),
957 				void (*task)(void *data),
958 				void *data)
959 {
960 	struct context_barrier_task *cb;
961 	struct i915_gem_engines_iter it;
962 	struct intel_context *ce;
963 	int err = 0;
964 
965 	GEM_BUG_ON(!task);
966 
967 	cb = kmalloc(sizeof(*cb), GFP_KERNEL);
968 	if (!cb)
969 		return -ENOMEM;
970 
971 	i915_active_init(&cb->base, NULL, cb_retire);
972 	err = i915_active_acquire(&cb->base);
973 	if (err) {
974 		kfree(cb);
975 		return err;
976 	}
977 
978 	for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
979 		struct i915_request *rq;
980 
981 		if (I915_SELFTEST_ONLY(context_barrier_inject_fault &
982 				       ce->engine->mask)) {
983 			err = -ENXIO;
984 			break;
985 		}
986 
987 		if (!(ce->engine->mask & engines))
988 			continue;
989 
990 		if (skip && skip(ce, data))
991 			continue;
992 
993 		rq = intel_context_create_request(ce);
994 		if (IS_ERR(rq)) {
995 			err = PTR_ERR(rq);
996 			break;
997 		}
998 
999 		err = 0;
1000 		if (emit)
1001 			err = emit(rq, data);
1002 		if (err == 0)
1003 			err = i915_active_add_request(&cb->base, rq);
1004 
1005 		i915_request_add(rq);
1006 		if (err)
1007 			break;
1008 	}
1009 	i915_gem_context_unlock_engines(ctx);
1010 
1011 	cb->task = err ? NULL : task; /* caller needs to unwind instead */
1012 	cb->data = data;
1013 
1014 	i915_active_release(&cb->base);
1015 
1016 	return err;
1017 }
1018 
1019 static int get_ppgtt(struct drm_i915_file_private *file_priv,
1020 		     struct i915_gem_context *ctx,
1021 		     struct drm_i915_gem_context_param *args)
1022 {
1023 	struct i915_address_space *vm;
1024 	int ret;
1025 
1026 	if (!rcu_access_pointer(ctx->vm))
1027 		return -ENODEV;
1028 
1029 	rcu_read_lock();
1030 	vm = context_get_vm_rcu(ctx);
1031 	rcu_read_unlock();
1032 
1033 	ret = mutex_lock_interruptible(&file_priv->vm_idr_lock);
1034 	if (ret)
1035 		goto err_put;
1036 
1037 	ret = idr_alloc(&file_priv->vm_idr, vm, 0, 0, GFP_KERNEL);
1038 	GEM_BUG_ON(!ret);
1039 	if (ret < 0)
1040 		goto err_unlock;
1041 
1042 	i915_vm_open(vm);
1043 
1044 	args->size = 0;
1045 	args->value = ret;
1046 
1047 	ret = 0;
1048 err_unlock:
1049 	mutex_unlock(&file_priv->vm_idr_lock);
1050 err_put:
1051 	i915_vm_put(vm);
1052 	return ret;
1053 }
1054 
1055 static void set_ppgtt_barrier(void *data)
1056 {
1057 	struct i915_address_space *old = data;
1058 
1059 	if (INTEL_GEN(old->i915) < 8)
1060 		gen6_ppgtt_unpin_all(i915_vm_to_ppgtt(old));
1061 
1062 	i915_vm_close(old);
1063 }
1064 
1065 static int emit_ppgtt_update(struct i915_request *rq, void *data)
1066 {
1067 	struct i915_address_space *vm = rq->context->vm;
1068 	struct intel_engine_cs *engine = rq->engine;
1069 	u32 base = engine->mmio_base;
1070 	u32 *cs;
1071 	int i;
1072 
1073 	if (i915_vm_is_4lvl(vm)) {
1074 		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1075 		const dma_addr_t pd_daddr = px_dma(ppgtt->pd);
1076 
1077 		cs = intel_ring_begin(rq, 6);
1078 		if (IS_ERR(cs))
1079 			return PTR_ERR(cs);
1080 
1081 		*cs++ = MI_LOAD_REGISTER_IMM(2);
1082 
1083 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
1084 		*cs++ = upper_32_bits(pd_daddr);
1085 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));
1086 		*cs++ = lower_32_bits(pd_daddr);
1087 
1088 		*cs++ = MI_NOOP;
1089 		intel_ring_advance(rq, cs);
1090 	} else if (HAS_LOGICAL_RING_CONTEXTS(engine->i915)) {
1091 		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1092 		int err;
1093 
1094 		/* Magic required to prevent forcewake errors! */
1095 		err = engine->emit_flush(rq, EMIT_INVALIDATE);
1096 		if (err)
1097 			return err;
1098 
1099 		cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
1100 		if (IS_ERR(cs))
1101 			return PTR_ERR(cs);
1102 
1103 		*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
1104 		for (i = GEN8_3LVL_PDPES; i--; ) {
1105 			const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1106 
1107 			*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1108 			*cs++ = upper_32_bits(pd_daddr);
1109 			*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1110 			*cs++ = lower_32_bits(pd_daddr);
1111 		}
1112 		*cs++ = MI_NOOP;
1113 		intel_ring_advance(rq, cs);
1114 	}
1115 
1116 	return 0;
1117 }
1118 
1119 static bool skip_ppgtt_update(struct intel_context *ce, void *data)
1120 {
1121 	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags))
1122 		return true;
1123 
1124 	if (HAS_LOGICAL_RING_CONTEXTS(ce->engine->i915))
1125 		return false;
1126 
1127 	if (!atomic_read(&ce->pin_count))
1128 		return true;
1129 
1130 	/* ppGTT is not part of the legacy context image */
1131 	if (gen6_ppgtt_pin(i915_vm_to_ppgtt(ce->vm)))
1132 		return true;
1133 
1134 	return false;
1135 }
1136 
1137 static int set_ppgtt(struct drm_i915_file_private *file_priv,
1138 		     struct i915_gem_context *ctx,
1139 		     struct drm_i915_gem_context_param *args)
1140 {
1141 	struct i915_address_space *vm, *old;
1142 	int err;
1143 
1144 	if (args->size)
1145 		return -EINVAL;
1146 
1147 	if (!rcu_access_pointer(ctx->vm))
1148 		return -ENODEV;
1149 
1150 	if (upper_32_bits(args->value))
1151 		return -ENOENT;
1152 
1153 	rcu_read_lock();
1154 	vm = idr_find(&file_priv->vm_idr, args->value);
1155 	if (vm && !kref_get_unless_zero(&vm->ref))
1156 		vm = NULL;
1157 	rcu_read_unlock();
1158 	if (!vm)
1159 		return -ENOENT;
1160 
1161 	err = mutex_lock_interruptible(&ctx->mutex);
1162 	if (err)
1163 		goto out;
1164 
1165 	if (i915_gem_context_is_closed(ctx)) {
1166 		err = -ENOENT;
1167 		goto unlock;
1168 	}
1169 
1170 	if (vm == rcu_access_pointer(ctx->vm))
1171 		goto unlock;
1172 
1173 	/* Teardown the existing obj:vma cache, it will have to be rebuilt. */
1174 	lut_close(ctx);
1175 
1176 	old = __set_ppgtt(ctx, vm);
1177 
1178 	/*
1179 	 * We need to flush any requests using the current ppgtt before
1180 	 * we release it as the requests do not hold a reference themselves,
1181 	 * only indirectly through the context.
1182 	 */
1183 	err = context_barrier_task(ctx, ALL_ENGINES,
1184 				   skip_ppgtt_update,
1185 				   emit_ppgtt_update,
1186 				   set_ppgtt_barrier,
1187 				   old);
1188 	if (err) {
1189 		i915_vm_close(__set_ppgtt(ctx, old));
1190 		i915_vm_close(old);
1191 	}
1192 
1193 unlock:
1194 	mutex_unlock(&ctx->mutex);
1195 out:
1196 	i915_vm_put(vm);
1197 	return err;
1198 }
1199 
1200 static int gen8_emit_rpcs_config(struct i915_request *rq,
1201 				 struct intel_context *ce,
1202 				 struct intel_sseu sseu)
1203 {
1204 	u64 offset;
1205 	u32 *cs;
1206 
1207 	cs = intel_ring_begin(rq, 4);
1208 	if (IS_ERR(cs))
1209 		return PTR_ERR(cs);
1210 
1211 	offset = i915_ggtt_offset(ce->state) +
1212 		 LRC_STATE_PN * PAGE_SIZE +
1213 		 CTX_R_PWR_CLK_STATE * 4;
1214 
1215 	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1216 	*cs++ = lower_32_bits(offset);
1217 	*cs++ = upper_32_bits(offset);
1218 	*cs++ = intel_sseu_make_rpcs(rq->i915, &sseu);
1219 
1220 	intel_ring_advance(rq, cs);
1221 
1222 	return 0;
1223 }
1224 
1225 static int
1226 gen8_modify_rpcs(struct intel_context *ce, struct intel_sseu sseu)
1227 {
1228 	struct i915_request *rq;
1229 	int ret;
1230 
1231 	lockdep_assert_held(&ce->pin_mutex);
1232 
1233 	/*
1234 	 * If the context is not idle, we have to submit an ordered request to
1235 	 * modify its context image via the kernel context (writing to our own
1236 	 * image, or into the registers directory, does not stick). Pristine
1237 	 * and idle contexts will be configured on pinning.
1238 	 */
1239 	if (!intel_context_pin_if_active(ce))
1240 		return 0;
1241 
1242 	rq = intel_engine_create_kernel_request(ce->engine);
1243 	if (IS_ERR(rq)) {
1244 		ret = PTR_ERR(rq);
1245 		goto out_unpin;
1246 	}
1247 
1248 	/* Serialise with the remote context */
1249 	ret = intel_context_prepare_remote_request(ce, rq);
1250 	if (ret == 0)
1251 		ret = gen8_emit_rpcs_config(rq, ce, sseu);
1252 
1253 	i915_request_add(rq);
1254 out_unpin:
1255 	intel_context_unpin(ce);
1256 	return ret;
1257 }
1258 
1259 static int
1260 intel_context_reconfigure_sseu(struct intel_context *ce, struct intel_sseu sseu)
1261 {
1262 	int ret;
1263 
1264 	GEM_BUG_ON(INTEL_GEN(ce->engine->i915) < 8);
1265 
1266 	ret = intel_context_lock_pinned(ce);
1267 	if (ret)
1268 		return ret;
1269 
1270 	/* Nothing to do if unmodified. */
1271 	if (!memcmp(&ce->sseu, &sseu, sizeof(sseu)))
1272 		goto unlock;
1273 
1274 	ret = gen8_modify_rpcs(ce, sseu);
1275 	if (!ret)
1276 		ce->sseu = sseu;
1277 
1278 unlock:
1279 	intel_context_unlock_pinned(ce);
1280 	return ret;
1281 }
1282 
1283 static int
1284 user_to_context_sseu(struct drm_i915_private *i915,
1285 		     const struct drm_i915_gem_context_param_sseu *user,
1286 		     struct intel_sseu *context)
1287 {
1288 	const struct sseu_dev_info *device = &RUNTIME_INFO(i915)->sseu;
1289 
1290 	/* No zeros in any field. */
1291 	if (!user->slice_mask || !user->subslice_mask ||
1292 	    !user->min_eus_per_subslice || !user->max_eus_per_subslice)
1293 		return -EINVAL;
1294 
1295 	/* Max > min. */
1296 	if (user->max_eus_per_subslice < user->min_eus_per_subslice)
1297 		return -EINVAL;
1298 
1299 	/*
1300 	 * Some future proofing on the types since the uAPI is wider than the
1301 	 * current internal implementation.
1302 	 */
1303 	if (overflows_type(user->slice_mask, context->slice_mask) ||
1304 	    overflows_type(user->subslice_mask, context->subslice_mask) ||
1305 	    overflows_type(user->min_eus_per_subslice,
1306 			   context->min_eus_per_subslice) ||
1307 	    overflows_type(user->max_eus_per_subslice,
1308 			   context->max_eus_per_subslice))
1309 		return -EINVAL;
1310 
1311 	/* Check validity against hardware. */
1312 	if (user->slice_mask & ~device->slice_mask)
1313 		return -EINVAL;
1314 
1315 	if (user->subslice_mask & ~device->subslice_mask[0])
1316 		return -EINVAL;
1317 
1318 	if (user->max_eus_per_subslice > device->max_eus_per_subslice)
1319 		return -EINVAL;
1320 
1321 	context->slice_mask = user->slice_mask;
1322 	context->subslice_mask = user->subslice_mask;
1323 	context->min_eus_per_subslice = user->min_eus_per_subslice;
1324 	context->max_eus_per_subslice = user->max_eus_per_subslice;
1325 
1326 	/* Part specific restrictions. */
1327 	if (IS_GEN(i915, 11)) {
1328 		unsigned int hw_s = hweight8(device->slice_mask);
1329 		unsigned int hw_ss_per_s = hweight8(device->subslice_mask[0]);
1330 		unsigned int req_s = hweight8(context->slice_mask);
1331 		unsigned int req_ss = hweight8(context->subslice_mask);
1332 
1333 		/*
1334 		 * Only full subslice enablement is possible if more than one
1335 		 * slice is turned on.
1336 		 */
1337 		if (req_s > 1 && req_ss != hw_ss_per_s)
1338 			return -EINVAL;
1339 
1340 		/*
1341 		 * If more than four (SScount bitfield limit) subslices are
1342 		 * requested then the number has to be even.
1343 		 */
1344 		if (req_ss > 4 && (req_ss & 1))
1345 			return -EINVAL;
1346 
1347 		/*
1348 		 * If only one slice is enabled and subslice count is below the
1349 		 * device full enablement, it must be at most half of the all
1350 		 * available subslices.
1351 		 */
1352 		if (req_s == 1 && req_ss < hw_ss_per_s &&
1353 		    req_ss > (hw_ss_per_s / 2))
1354 			return -EINVAL;
1355 
1356 		/* ABI restriction - VME use case only. */
1357 
1358 		/* All slices or one slice only. */
1359 		if (req_s != 1 && req_s != hw_s)
1360 			return -EINVAL;
1361 
1362 		/*
1363 		 * Half subslices or full enablement only when one slice is
1364 		 * enabled.
1365 		 */
1366 		if (req_s == 1 &&
1367 		    (req_ss != hw_ss_per_s && req_ss != (hw_ss_per_s / 2)))
1368 			return -EINVAL;
1369 
1370 		/* No EU configuration changes. */
1371 		if ((user->min_eus_per_subslice !=
1372 		     device->max_eus_per_subslice) ||
1373 		    (user->max_eus_per_subslice !=
1374 		     device->max_eus_per_subslice))
1375 			return -EINVAL;
1376 	}
1377 
1378 	return 0;
1379 }
1380 
1381 static int set_sseu(struct i915_gem_context *ctx,
1382 		    struct drm_i915_gem_context_param *args)
1383 {
1384 	struct drm_i915_private *i915 = ctx->i915;
1385 	struct drm_i915_gem_context_param_sseu user_sseu;
1386 	struct intel_context *ce;
1387 	struct intel_sseu sseu;
1388 	unsigned long lookup;
1389 	int ret;
1390 
1391 	if (args->size < sizeof(user_sseu))
1392 		return -EINVAL;
1393 
1394 	if (!IS_GEN(i915, 11))
1395 		return -ENODEV;
1396 
1397 	if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value),
1398 			   sizeof(user_sseu)))
1399 		return -EFAULT;
1400 
1401 	if (user_sseu.rsvd)
1402 		return -EINVAL;
1403 
1404 	if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX))
1405 		return -EINVAL;
1406 
1407 	lookup = 0;
1408 	if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)
1409 		lookup |= LOOKUP_USER_INDEX;
1410 
1411 	ce = lookup_user_engine(ctx, lookup, &user_sseu.engine);
1412 	if (IS_ERR(ce))
1413 		return PTR_ERR(ce);
1414 
1415 	/* Only render engine supports RPCS configuration. */
1416 	if (ce->engine->class != RENDER_CLASS) {
1417 		ret = -ENODEV;
1418 		goto out_ce;
1419 	}
1420 
1421 	ret = user_to_context_sseu(i915, &user_sseu, &sseu);
1422 	if (ret)
1423 		goto out_ce;
1424 
1425 	ret = intel_context_reconfigure_sseu(ce, sseu);
1426 	if (ret)
1427 		goto out_ce;
1428 
1429 	args->size = sizeof(user_sseu);
1430 
1431 out_ce:
1432 	intel_context_put(ce);
1433 	return ret;
1434 }
1435 
1436 struct set_engines {
1437 	struct i915_gem_context *ctx;
1438 	struct i915_gem_engines *engines;
1439 };
1440 
1441 static int
1442 set_engines__load_balance(struct i915_user_extension __user *base, void *data)
1443 {
1444 	struct i915_context_engines_load_balance __user *ext =
1445 		container_of_user(base, typeof(*ext), base);
1446 	const struct set_engines *set = data;
1447 	struct intel_engine_cs *stack[16];
1448 	struct intel_engine_cs **siblings;
1449 	struct intel_context *ce;
1450 	u16 num_siblings, idx;
1451 	unsigned int n;
1452 	int err;
1453 
1454 	if (!HAS_EXECLISTS(set->ctx->i915))
1455 		return -ENODEV;
1456 
1457 	if (USES_GUC_SUBMISSION(set->ctx->i915))
1458 		return -ENODEV; /* not implement yet */
1459 
1460 	if (get_user(idx, &ext->engine_index))
1461 		return -EFAULT;
1462 
1463 	if (idx >= set->engines->num_engines) {
1464 		DRM_DEBUG("Invalid placement value, %d >= %d\n",
1465 			  idx, set->engines->num_engines);
1466 		return -EINVAL;
1467 	}
1468 
1469 	idx = array_index_nospec(idx, set->engines->num_engines);
1470 	if (set->engines->engines[idx]) {
1471 		DRM_DEBUG("Invalid placement[%d], already occupied\n", idx);
1472 		return -EEXIST;
1473 	}
1474 
1475 	if (get_user(num_siblings, &ext->num_siblings))
1476 		return -EFAULT;
1477 
1478 	err = check_user_mbz(&ext->flags);
1479 	if (err)
1480 		return err;
1481 
1482 	err = check_user_mbz(&ext->mbz64);
1483 	if (err)
1484 		return err;
1485 
1486 	siblings = stack;
1487 	if (num_siblings > ARRAY_SIZE(stack)) {
1488 		siblings = kmalloc_array(num_siblings,
1489 					 sizeof(*siblings),
1490 					 GFP_KERNEL);
1491 		if (!siblings)
1492 			return -ENOMEM;
1493 	}
1494 
1495 	for (n = 0; n < num_siblings; n++) {
1496 		struct i915_engine_class_instance ci;
1497 
1498 		if (copy_from_user(&ci, &ext->engines[n], sizeof(ci))) {
1499 			err = -EFAULT;
1500 			goto out_siblings;
1501 		}
1502 
1503 		siblings[n] = intel_engine_lookup_user(set->ctx->i915,
1504 						       ci.engine_class,
1505 						       ci.engine_instance);
1506 		if (!siblings[n]) {
1507 			DRM_DEBUG("Invalid sibling[%d]: { class:%d, inst:%d }\n",
1508 				  n, ci.engine_class, ci.engine_instance);
1509 			err = -EINVAL;
1510 			goto out_siblings;
1511 		}
1512 	}
1513 
1514 	ce = intel_execlists_create_virtual(siblings, n);
1515 	if (IS_ERR(ce)) {
1516 		err = PTR_ERR(ce);
1517 		goto out_siblings;
1518 	}
1519 
1520 	intel_context_set_gem(ce, set->ctx);
1521 
1522 	if (cmpxchg(&set->engines->engines[idx], NULL, ce)) {
1523 		intel_context_put(ce);
1524 		err = -EEXIST;
1525 		goto out_siblings;
1526 	}
1527 
1528 out_siblings:
1529 	if (siblings != stack)
1530 		kfree(siblings);
1531 
1532 	return err;
1533 }
1534 
1535 static int
1536 set_engines__bond(struct i915_user_extension __user *base, void *data)
1537 {
1538 	struct i915_context_engines_bond __user *ext =
1539 		container_of_user(base, typeof(*ext), base);
1540 	const struct set_engines *set = data;
1541 	struct i915_engine_class_instance ci;
1542 	struct intel_engine_cs *virtual;
1543 	struct intel_engine_cs *master;
1544 	u16 idx, num_bonds;
1545 	int err, n;
1546 
1547 	if (get_user(idx, &ext->virtual_index))
1548 		return -EFAULT;
1549 
1550 	if (idx >= set->engines->num_engines) {
1551 		DRM_DEBUG("Invalid index for virtual engine: %d >= %d\n",
1552 			  idx, set->engines->num_engines);
1553 		return -EINVAL;
1554 	}
1555 
1556 	idx = array_index_nospec(idx, set->engines->num_engines);
1557 	if (!set->engines->engines[idx]) {
1558 		DRM_DEBUG("Invalid engine at %d\n", idx);
1559 		return -EINVAL;
1560 	}
1561 	virtual = set->engines->engines[idx]->engine;
1562 
1563 	err = check_user_mbz(&ext->flags);
1564 	if (err)
1565 		return err;
1566 
1567 	for (n = 0; n < ARRAY_SIZE(ext->mbz64); n++) {
1568 		err = check_user_mbz(&ext->mbz64[n]);
1569 		if (err)
1570 			return err;
1571 	}
1572 
1573 	if (copy_from_user(&ci, &ext->master, sizeof(ci)))
1574 		return -EFAULT;
1575 
1576 	master = intel_engine_lookup_user(set->ctx->i915,
1577 					  ci.engine_class, ci.engine_instance);
1578 	if (!master) {
1579 		DRM_DEBUG("Unrecognised master engine: { class:%u, instance:%u }\n",
1580 			  ci.engine_class, ci.engine_instance);
1581 		return -EINVAL;
1582 	}
1583 
1584 	if (get_user(num_bonds, &ext->num_bonds))
1585 		return -EFAULT;
1586 
1587 	for (n = 0; n < num_bonds; n++) {
1588 		struct intel_engine_cs *bond;
1589 
1590 		if (copy_from_user(&ci, &ext->engines[n], sizeof(ci)))
1591 			return -EFAULT;
1592 
1593 		bond = intel_engine_lookup_user(set->ctx->i915,
1594 						ci.engine_class,
1595 						ci.engine_instance);
1596 		if (!bond) {
1597 			DRM_DEBUG("Unrecognised engine[%d] for bonding: { class:%d, instance: %d }\n",
1598 				  n, ci.engine_class, ci.engine_instance);
1599 			return -EINVAL;
1600 		}
1601 
1602 		/*
1603 		 * A non-virtual engine has no siblings to choose between; and
1604 		 * a submit fence will always be directed to the one engine.
1605 		 */
1606 		if (intel_engine_is_virtual(virtual)) {
1607 			err = intel_virtual_engine_attach_bond(virtual,
1608 							       master,
1609 							       bond);
1610 			if (err)
1611 				return err;
1612 		}
1613 	}
1614 
1615 	return 0;
1616 }
1617 
1618 static const i915_user_extension_fn set_engines__extensions[] = {
1619 	[I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE] = set_engines__load_balance,
1620 	[I915_CONTEXT_ENGINES_EXT_BOND] = set_engines__bond,
1621 };
1622 
1623 static int
1624 set_engines(struct i915_gem_context *ctx,
1625 	    const struct drm_i915_gem_context_param *args)
1626 {
1627 	struct i915_context_param_engines __user *user =
1628 		u64_to_user_ptr(args->value);
1629 	struct set_engines set = { .ctx = ctx };
1630 	unsigned int num_engines, n;
1631 	u64 extensions;
1632 	int err;
1633 
1634 	if (!args->size) { /* switch back to legacy user_ring_map */
1635 		if (!i915_gem_context_user_engines(ctx))
1636 			return 0;
1637 
1638 		set.engines = default_engines(ctx);
1639 		if (IS_ERR(set.engines))
1640 			return PTR_ERR(set.engines);
1641 
1642 		goto replace;
1643 	}
1644 
1645 	BUILD_BUG_ON(!IS_ALIGNED(sizeof(*user), sizeof(*user->engines)));
1646 	if (args->size < sizeof(*user) ||
1647 	    !IS_ALIGNED(args->size, sizeof(*user->engines))) {
1648 		DRM_DEBUG("Invalid size for engine array: %d\n",
1649 			  args->size);
1650 		return -EINVAL;
1651 	}
1652 
1653 	/*
1654 	 * Note that I915_EXEC_RING_MASK limits execbuf to only using the
1655 	 * first 64 engines defined here.
1656 	 */
1657 	num_engines = (args->size - sizeof(*user)) / sizeof(*user->engines);
1658 
1659 	set.engines = kmalloc(struct_size(set.engines, engines, num_engines),
1660 			      GFP_KERNEL);
1661 	if (!set.engines)
1662 		return -ENOMEM;
1663 
1664 	init_rcu_head(&set.engines->rcu);
1665 	for (n = 0; n < num_engines; n++) {
1666 		struct i915_engine_class_instance ci;
1667 		struct intel_engine_cs *engine;
1668 		struct intel_context *ce;
1669 
1670 		if (copy_from_user(&ci, &user->engines[n], sizeof(ci))) {
1671 			__free_engines(set.engines, n);
1672 			return -EFAULT;
1673 		}
1674 
1675 		if (ci.engine_class == (u16)I915_ENGINE_CLASS_INVALID &&
1676 		    ci.engine_instance == (u16)I915_ENGINE_CLASS_INVALID_NONE) {
1677 			set.engines->engines[n] = NULL;
1678 			continue;
1679 		}
1680 
1681 		engine = intel_engine_lookup_user(ctx->i915,
1682 						  ci.engine_class,
1683 						  ci.engine_instance);
1684 		if (!engine) {
1685 			DRM_DEBUG("Invalid engine[%d]: { class:%d, instance:%d }\n",
1686 				  n, ci.engine_class, ci.engine_instance);
1687 			__free_engines(set.engines, n);
1688 			return -ENOENT;
1689 		}
1690 
1691 		ce = intel_context_create(engine);
1692 		if (IS_ERR(ce)) {
1693 			__free_engines(set.engines, n);
1694 			return PTR_ERR(ce);
1695 		}
1696 
1697 		intel_context_set_gem(ce, ctx);
1698 
1699 		set.engines->engines[n] = ce;
1700 	}
1701 	set.engines->num_engines = num_engines;
1702 
1703 	err = -EFAULT;
1704 	if (!get_user(extensions, &user->extensions))
1705 		err = i915_user_extensions(u64_to_user_ptr(extensions),
1706 					   set_engines__extensions,
1707 					   ARRAY_SIZE(set_engines__extensions),
1708 					   &set);
1709 	if (err) {
1710 		free_engines(set.engines);
1711 		return err;
1712 	}
1713 
1714 replace:
1715 	mutex_lock(&ctx->engines_mutex);
1716 	if (args->size)
1717 		i915_gem_context_set_user_engines(ctx);
1718 	else
1719 		i915_gem_context_clear_user_engines(ctx);
1720 	set.engines = rcu_replace_pointer(ctx->engines, set.engines, 1);
1721 	mutex_unlock(&ctx->engines_mutex);
1722 
1723 	call_rcu(&set.engines->rcu, free_engines_rcu);
1724 
1725 	return 0;
1726 }
1727 
1728 static struct i915_gem_engines *
1729 __copy_engines(struct i915_gem_engines *e)
1730 {
1731 	struct i915_gem_engines *copy;
1732 	unsigned int n;
1733 
1734 	copy = kmalloc(struct_size(e, engines, e->num_engines), GFP_KERNEL);
1735 	if (!copy)
1736 		return ERR_PTR(-ENOMEM);
1737 
1738 	init_rcu_head(&copy->rcu);
1739 	for (n = 0; n < e->num_engines; n++) {
1740 		if (e->engines[n])
1741 			copy->engines[n] = intel_context_get(e->engines[n]);
1742 		else
1743 			copy->engines[n] = NULL;
1744 	}
1745 	copy->num_engines = n;
1746 
1747 	return copy;
1748 }
1749 
1750 static int
1751 get_engines(struct i915_gem_context *ctx,
1752 	    struct drm_i915_gem_context_param *args)
1753 {
1754 	struct i915_context_param_engines __user *user;
1755 	struct i915_gem_engines *e;
1756 	size_t n, count, size;
1757 	int err = 0;
1758 
1759 	err = mutex_lock_interruptible(&ctx->engines_mutex);
1760 	if (err)
1761 		return err;
1762 
1763 	e = NULL;
1764 	if (i915_gem_context_user_engines(ctx))
1765 		e = __copy_engines(i915_gem_context_engines(ctx));
1766 	mutex_unlock(&ctx->engines_mutex);
1767 	if (IS_ERR_OR_NULL(e)) {
1768 		args->size = 0;
1769 		return PTR_ERR_OR_ZERO(e);
1770 	}
1771 
1772 	count = e->num_engines;
1773 
1774 	/* Be paranoid in case we have an impedance mismatch */
1775 	if (!check_struct_size(user, engines, count, &size)) {
1776 		err = -EINVAL;
1777 		goto err_free;
1778 	}
1779 	if (overflows_type(size, args->size)) {
1780 		err = -EINVAL;
1781 		goto err_free;
1782 	}
1783 
1784 	if (!args->size) {
1785 		args->size = size;
1786 		goto err_free;
1787 	}
1788 
1789 	if (args->size < size) {
1790 		err = -EINVAL;
1791 		goto err_free;
1792 	}
1793 
1794 	user = u64_to_user_ptr(args->value);
1795 	if (!access_ok(user, size)) {
1796 		err = -EFAULT;
1797 		goto err_free;
1798 	}
1799 
1800 	if (put_user(0, &user->extensions)) {
1801 		err = -EFAULT;
1802 		goto err_free;
1803 	}
1804 
1805 	for (n = 0; n < count; n++) {
1806 		struct i915_engine_class_instance ci = {
1807 			.engine_class = I915_ENGINE_CLASS_INVALID,
1808 			.engine_instance = I915_ENGINE_CLASS_INVALID_NONE,
1809 		};
1810 
1811 		if (e->engines[n]) {
1812 			ci.engine_class = e->engines[n]->engine->uabi_class;
1813 			ci.engine_instance = e->engines[n]->engine->uabi_instance;
1814 		}
1815 
1816 		if (copy_to_user(&user->engines[n], &ci, sizeof(ci))) {
1817 			err = -EFAULT;
1818 			goto err_free;
1819 		}
1820 	}
1821 
1822 	args->size = size;
1823 
1824 err_free:
1825 	free_engines(e);
1826 	return err;
1827 }
1828 
1829 static int
1830 set_persistence(struct i915_gem_context *ctx,
1831 		const struct drm_i915_gem_context_param *args)
1832 {
1833 	if (args->size)
1834 		return -EINVAL;
1835 
1836 	return __context_set_persistence(ctx, args->value);
1837 }
1838 
1839 static void __apply_priority(struct intel_context *ce, void *arg)
1840 {
1841 	struct i915_gem_context *ctx = arg;
1842 
1843 	if (!intel_engine_has_semaphores(ce->engine))
1844 		return;
1845 
1846 	if (ctx->sched.priority >= I915_PRIORITY_NORMAL)
1847 		intel_context_set_use_semaphores(ce);
1848 	else
1849 		intel_context_clear_use_semaphores(ce);
1850 }
1851 
1852 static int set_priority(struct i915_gem_context *ctx,
1853 			const struct drm_i915_gem_context_param *args)
1854 {
1855 	s64 priority = args->value;
1856 
1857 	if (args->size)
1858 		return -EINVAL;
1859 
1860 	if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PRIORITY))
1861 		return -ENODEV;
1862 
1863 	if (priority > I915_CONTEXT_MAX_USER_PRIORITY ||
1864 	    priority < I915_CONTEXT_MIN_USER_PRIORITY)
1865 		return -EINVAL;
1866 
1867 	if (priority > I915_CONTEXT_DEFAULT_PRIORITY &&
1868 	    !capable(CAP_SYS_NICE))
1869 		return -EPERM;
1870 
1871 	ctx->sched.priority = I915_USER_PRIORITY(priority);
1872 	context_apply_all(ctx, __apply_priority, ctx);
1873 
1874 	return 0;
1875 }
1876 
1877 static int ctx_setparam(struct drm_i915_file_private *fpriv,
1878 			struct i915_gem_context *ctx,
1879 			struct drm_i915_gem_context_param *args)
1880 {
1881 	int ret = 0;
1882 
1883 	switch (args->param) {
1884 	case I915_CONTEXT_PARAM_NO_ZEROMAP:
1885 		if (args->size)
1886 			ret = -EINVAL;
1887 		else if (args->value)
1888 			set_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
1889 		else
1890 			clear_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
1891 		break;
1892 
1893 	case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE:
1894 		if (args->size)
1895 			ret = -EINVAL;
1896 		else if (args->value)
1897 			i915_gem_context_set_no_error_capture(ctx);
1898 		else
1899 			i915_gem_context_clear_no_error_capture(ctx);
1900 		break;
1901 
1902 	case I915_CONTEXT_PARAM_BANNABLE:
1903 		if (args->size)
1904 			ret = -EINVAL;
1905 		else if (!capable(CAP_SYS_ADMIN) && !args->value)
1906 			ret = -EPERM;
1907 		else if (args->value)
1908 			i915_gem_context_set_bannable(ctx);
1909 		else
1910 			i915_gem_context_clear_bannable(ctx);
1911 		break;
1912 
1913 	case I915_CONTEXT_PARAM_RECOVERABLE:
1914 		if (args->size)
1915 			ret = -EINVAL;
1916 		else if (args->value)
1917 			i915_gem_context_set_recoverable(ctx);
1918 		else
1919 			i915_gem_context_clear_recoverable(ctx);
1920 		break;
1921 
1922 	case I915_CONTEXT_PARAM_PRIORITY:
1923 		ret = set_priority(ctx, args);
1924 		break;
1925 
1926 	case I915_CONTEXT_PARAM_SSEU:
1927 		ret = set_sseu(ctx, args);
1928 		break;
1929 
1930 	case I915_CONTEXT_PARAM_VM:
1931 		ret = set_ppgtt(fpriv, ctx, args);
1932 		break;
1933 
1934 	case I915_CONTEXT_PARAM_ENGINES:
1935 		ret = set_engines(ctx, args);
1936 		break;
1937 
1938 	case I915_CONTEXT_PARAM_PERSISTENCE:
1939 		ret = set_persistence(ctx, args);
1940 		break;
1941 
1942 	case I915_CONTEXT_PARAM_BAN_PERIOD:
1943 	default:
1944 		ret = -EINVAL;
1945 		break;
1946 	}
1947 
1948 	return ret;
1949 }
1950 
1951 struct create_ext {
1952 	struct i915_gem_context *ctx;
1953 	struct drm_i915_file_private *fpriv;
1954 };
1955 
1956 static int create_setparam(struct i915_user_extension __user *ext, void *data)
1957 {
1958 	struct drm_i915_gem_context_create_ext_setparam local;
1959 	const struct create_ext *arg = data;
1960 
1961 	if (copy_from_user(&local, ext, sizeof(local)))
1962 		return -EFAULT;
1963 
1964 	if (local.param.ctx_id)
1965 		return -EINVAL;
1966 
1967 	return ctx_setparam(arg->fpriv, arg->ctx, &local.param);
1968 }
1969 
1970 static int clone_engines(struct i915_gem_context *dst,
1971 			 struct i915_gem_context *src)
1972 {
1973 	struct i915_gem_engines *e = i915_gem_context_lock_engines(src);
1974 	struct i915_gem_engines *clone;
1975 	bool user_engines;
1976 	unsigned long n;
1977 
1978 	clone = kmalloc(struct_size(e, engines, e->num_engines), GFP_KERNEL);
1979 	if (!clone)
1980 		goto err_unlock;
1981 
1982 	init_rcu_head(&clone->rcu);
1983 	for (n = 0; n < e->num_engines; n++) {
1984 		struct intel_engine_cs *engine;
1985 
1986 		if (!e->engines[n]) {
1987 			clone->engines[n] = NULL;
1988 			continue;
1989 		}
1990 		engine = e->engines[n]->engine;
1991 
1992 		/*
1993 		 * Virtual engines are singletons; they can only exist
1994 		 * inside a single context, because they embed their
1995 		 * HW context... As each virtual context implies a single
1996 		 * timeline (each engine can only dequeue a single request
1997 		 * at any time), it would be surprising for two contexts
1998 		 * to use the same engine. So let's create a copy of
1999 		 * the virtual engine instead.
2000 		 */
2001 		if (intel_engine_is_virtual(engine))
2002 			clone->engines[n] =
2003 				intel_execlists_clone_virtual(engine);
2004 		else
2005 			clone->engines[n] = intel_context_create(engine);
2006 		if (IS_ERR_OR_NULL(clone->engines[n])) {
2007 			__free_engines(clone, n);
2008 			goto err_unlock;
2009 		}
2010 
2011 		intel_context_set_gem(clone->engines[n], dst);
2012 	}
2013 	clone->num_engines = n;
2014 
2015 	user_engines = i915_gem_context_user_engines(src);
2016 	i915_gem_context_unlock_engines(src);
2017 
2018 	/* Serialised by constructor */
2019 	free_engines(__context_engines_static(dst));
2020 	RCU_INIT_POINTER(dst->engines, clone);
2021 	if (user_engines)
2022 		i915_gem_context_set_user_engines(dst);
2023 	else
2024 		i915_gem_context_clear_user_engines(dst);
2025 	return 0;
2026 
2027 err_unlock:
2028 	i915_gem_context_unlock_engines(src);
2029 	return -ENOMEM;
2030 }
2031 
2032 static int clone_flags(struct i915_gem_context *dst,
2033 		       struct i915_gem_context *src)
2034 {
2035 	dst->user_flags = src->user_flags;
2036 	return 0;
2037 }
2038 
2039 static int clone_schedattr(struct i915_gem_context *dst,
2040 			   struct i915_gem_context *src)
2041 {
2042 	dst->sched = src->sched;
2043 	return 0;
2044 }
2045 
2046 static int clone_sseu(struct i915_gem_context *dst,
2047 		      struct i915_gem_context *src)
2048 {
2049 	struct i915_gem_engines *e = i915_gem_context_lock_engines(src);
2050 	struct i915_gem_engines *clone;
2051 	unsigned long n;
2052 	int err;
2053 
2054 	/* no locking required; sole access under constructor*/
2055 	clone = __context_engines_static(dst);
2056 	if (e->num_engines != clone->num_engines) {
2057 		err = -EINVAL;
2058 		goto unlock;
2059 	}
2060 
2061 	for (n = 0; n < e->num_engines; n++) {
2062 		struct intel_context *ce = e->engines[n];
2063 
2064 		if (clone->engines[n]->engine->class != ce->engine->class) {
2065 			/* Must have compatible engine maps! */
2066 			err = -EINVAL;
2067 			goto unlock;
2068 		}
2069 
2070 		/* serialises with set_sseu */
2071 		err = intel_context_lock_pinned(ce);
2072 		if (err)
2073 			goto unlock;
2074 
2075 		clone->engines[n]->sseu = ce->sseu;
2076 		intel_context_unlock_pinned(ce);
2077 	}
2078 
2079 	err = 0;
2080 unlock:
2081 	i915_gem_context_unlock_engines(src);
2082 	return err;
2083 }
2084 
2085 static int clone_timeline(struct i915_gem_context *dst,
2086 			  struct i915_gem_context *src)
2087 {
2088 	if (src->timeline)
2089 		__assign_timeline(dst, src->timeline);
2090 
2091 	return 0;
2092 }
2093 
2094 static int clone_vm(struct i915_gem_context *dst,
2095 		    struct i915_gem_context *src)
2096 {
2097 	struct i915_address_space *vm;
2098 	int err = 0;
2099 
2100 	if (!rcu_access_pointer(src->vm))
2101 		return 0;
2102 
2103 	rcu_read_lock();
2104 	vm = context_get_vm_rcu(src);
2105 	rcu_read_unlock();
2106 
2107 	if (!mutex_lock_interruptible(&dst->mutex)) {
2108 		__assign_ppgtt(dst, vm);
2109 		mutex_unlock(&dst->mutex);
2110 	} else {
2111 		err = -EINTR;
2112 	}
2113 
2114 	i915_vm_put(vm);
2115 	return err;
2116 }
2117 
2118 static int create_clone(struct i915_user_extension __user *ext, void *data)
2119 {
2120 	static int (* const fn[])(struct i915_gem_context *dst,
2121 				  struct i915_gem_context *src) = {
2122 #define MAP(x, y) [ilog2(I915_CONTEXT_CLONE_##x)] = y
2123 		MAP(ENGINES, clone_engines),
2124 		MAP(FLAGS, clone_flags),
2125 		MAP(SCHEDATTR, clone_schedattr),
2126 		MAP(SSEU, clone_sseu),
2127 		MAP(TIMELINE, clone_timeline),
2128 		MAP(VM, clone_vm),
2129 #undef MAP
2130 	};
2131 	struct drm_i915_gem_context_create_ext_clone local;
2132 	const struct create_ext *arg = data;
2133 	struct i915_gem_context *dst = arg->ctx;
2134 	struct i915_gem_context *src;
2135 	int err, bit;
2136 
2137 	if (copy_from_user(&local, ext, sizeof(local)))
2138 		return -EFAULT;
2139 
2140 	BUILD_BUG_ON(GENMASK(BITS_PER_TYPE(local.flags) - 1, ARRAY_SIZE(fn)) !=
2141 		     I915_CONTEXT_CLONE_UNKNOWN);
2142 
2143 	if (local.flags & I915_CONTEXT_CLONE_UNKNOWN)
2144 		return -EINVAL;
2145 
2146 	if (local.rsvd)
2147 		return -EINVAL;
2148 
2149 	rcu_read_lock();
2150 	src = __i915_gem_context_lookup_rcu(arg->fpriv, local.clone_id);
2151 	rcu_read_unlock();
2152 	if (!src)
2153 		return -ENOENT;
2154 
2155 	GEM_BUG_ON(src == dst);
2156 
2157 	for (bit = 0; bit < ARRAY_SIZE(fn); bit++) {
2158 		if (!(local.flags & BIT(bit)))
2159 			continue;
2160 
2161 		err = fn[bit](dst, src);
2162 		if (err)
2163 			return err;
2164 	}
2165 
2166 	return 0;
2167 }
2168 
2169 static const i915_user_extension_fn create_extensions[] = {
2170 	[I915_CONTEXT_CREATE_EXT_SETPARAM] = create_setparam,
2171 	[I915_CONTEXT_CREATE_EXT_CLONE] = create_clone,
2172 };
2173 
2174 static bool client_is_banned(struct drm_i915_file_private *file_priv)
2175 {
2176 	return atomic_read(&file_priv->ban_score) >= I915_CLIENT_SCORE_BANNED;
2177 }
2178 
2179 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
2180 				  struct drm_file *file)
2181 {
2182 	struct drm_i915_private *i915 = to_i915(dev);
2183 	struct drm_i915_gem_context_create_ext *args = data;
2184 	struct create_ext ext_data;
2185 	int ret;
2186 	u32 id;
2187 
2188 	if (!DRIVER_CAPS(i915)->has_logical_contexts)
2189 		return -ENODEV;
2190 
2191 	if (args->flags & I915_CONTEXT_CREATE_FLAGS_UNKNOWN)
2192 		return -EINVAL;
2193 
2194 	ret = intel_gt_terminally_wedged(&i915->gt);
2195 	if (ret)
2196 		return ret;
2197 
2198 	ext_data.fpriv = file->driver_priv;
2199 	if (client_is_banned(ext_data.fpriv)) {
2200 		DRM_DEBUG("client %s[%d] banned from creating ctx\n",
2201 			  current->comm, task_pid_nr(current));
2202 		return -EIO;
2203 	}
2204 
2205 	ext_data.ctx = i915_gem_create_context(i915, args->flags);
2206 	if (IS_ERR(ext_data.ctx))
2207 		return PTR_ERR(ext_data.ctx);
2208 
2209 	if (args->flags & I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS) {
2210 		ret = i915_user_extensions(u64_to_user_ptr(args->extensions),
2211 					   create_extensions,
2212 					   ARRAY_SIZE(create_extensions),
2213 					   &ext_data);
2214 		if (ret)
2215 			goto err_ctx;
2216 	}
2217 
2218 	ret = gem_context_register(ext_data.ctx, ext_data.fpriv, &id);
2219 	if (ret < 0)
2220 		goto err_ctx;
2221 
2222 	args->ctx_id = id;
2223 	DRM_DEBUG("HW context %d created\n", args->ctx_id);
2224 
2225 	return 0;
2226 
2227 err_ctx:
2228 	context_close(ext_data.ctx);
2229 	return ret;
2230 }
2231 
2232 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
2233 				   struct drm_file *file)
2234 {
2235 	struct drm_i915_gem_context_destroy *args = data;
2236 	struct drm_i915_file_private *file_priv = file->driver_priv;
2237 	struct i915_gem_context *ctx;
2238 
2239 	if (args->pad != 0)
2240 		return -EINVAL;
2241 
2242 	if (!args->ctx_id)
2243 		return -ENOENT;
2244 
2245 	ctx = xa_erase(&file_priv->context_xa, args->ctx_id);
2246 	if (!ctx)
2247 		return -ENOENT;
2248 
2249 	context_close(ctx);
2250 	return 0;
2251 }
2252 
2253 static int get_sseu(struct i915_gem_context *ctx,
2254 		    struct drm_i915_gem_context_param *args)
2255 {
2256 	struct drm_i915_gem_context_param_sseu user_sseu;
2257 	struct intel_context *ce;
2258 	unsigned long lookup;
2259 	int err;
2260 
2261 	if (args->size == 0)
2262 		goto out;
2263 	else if (args->size < sizeof(user_sseu))
2264 		return -EINVAL;
2265 
2266 	if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value),
2267 			   sizeof(user_sseu)))
2268 		return -EFAULT;
2269 
2270 	if (user_sseu.rsvd)
2271 		return -EINVAL;
2272 
2273 	if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX))
2274 		return -EINVAL;
2275 
2276 	lookup = 0;
2277 	if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)
2278 		lookup |= LOOKUP_USER_INDEX;
2279 
2280 	ce = lookup_user_engine(ctx, lookup, &user_sseu.engine);
2281 	if (IS_ERR(ce))
2282 		return PTR_ERR(ce);
2283 
2284 	err = intel_context_lock_pinned(ce); /* serialises with set_sseu */
2285 	if (err) {
2286 		intel_context_put(ce);
2287 		return err;
2288 	}
2289 
2290 	user_sseu.slice_mask = ce->sseu.slice_mask;
2291 	user_sseu.subslice_mask = ce->sseu.subslice_mask;
2292 	user_sseu.min_eus_per_subslice = ce->sseu.min_eus_per_subslice;
2293 	user_sseu.max_eus_per_subslice = ce->sseu.max_eus_per_subslice;
2294 
2295 	intel_context_unlock_pinned(ce);
2296 	intel_context_put(ce);
2297 
2298 	if (copy_to_user(u64_to_user_ptr(args->value), &user_sseu,
2299 			 sizeof(user_sseu)))
2300 		return -EFAULT;
2301 
2302 out:
2303 	args->size = sizeof(user_sseu);
2304 
2305 	return 0;
2306 }
2307 
2308 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
2309 				    struct drm_file *file)
2310 {
2311 	struct drm_i915_file_private *file_priv = file->driver_priv;
2312 	struct drm_i915_gem_context_param *args = data;
2313 	struct i915_gem_context *ctx;
2314 	int ret = 0;
2315 
2316 	ctx = i915_gem_context_lookup(file_priv, args->ctx_id);
2317 	if (!ctx)
2318 		return -ENOENT;
2319 
2320 	switch (args->param) {
2321 	case I915_CONTEXT_PARAM_NO_ZEROMAP:
2322 		args->size = 0;
2323 		args->value = test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
2324 		break;
2325 
2326 	case I915_CONTEXT_PARAM_GTT_SIZE:
2327 		args->size = 0;
2328 		rcu_read_lock();
2329 		if (rcu_access_pointer(ctx->vm))
2330 			args->value = rcu_dereference(ctx->vm)->total;
2331 		else
2332 			args->value = to_i915(dev)->ggtt.vm.total;
2333 		rcu_read_unlock();
2334 		break;
2335 
2336 	case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE:
2337 		args->size = 0;
2338 		args->value = i915_gem_context_no_error_capture(ctx);
2339 		break;
2340 
2341 	case I915_CONTEXT_PARAM_BANNABLE:
2342 		args->size = 0;
2343 		args->value = i915_gem_context_is_bannable(ctx);
2344 		break;
2345 
2346 	case I915_CONTEXT_PARAM_RECOVERABLE:
2347 		args->size = 0;
2348 		args->value = i915_gem_context_is_recoverable(ctx);
2349 		break;
2350 
2351 	case I915_CONTEXT_PARAM_PRIORITY:
2352 		args->size = 0;
2353 		args->value = ctx->sched.priority >> I915_USER_PRIORITY_SHIFT;
2354 		break;
2355 
2356 	case I915_CONTEXT_PARAM_SSEU:
2357 		ret = get_sseu(ctx, args);
2358 		break;
2359 
2360 	case I915_CONTEXT_PARAM_VM:
2361 		ret = get_ppgtt(file_priv, ctx, args);
2362 		break;
2363 
2364 	case I915_CONTEXT_PARAM_ENGINES:
2365 		ret = get_engines(ctx, args);
2366 		break;
2367 
2368 	case I915_CONTEXT_PARAM_PERSISTENCE:
2369 		args->size = 0;
2370 		args->value = i915_gem_context_is_persistent(ctx);
2371 		break;
2372 
2373 	case I915_CONTEXT_PARAM_BAN_PERIOD:
2374 	default:
2375 		ret = -EINVAL;
2376 		break;
2377 	}
2378 
2379 	i915_gem_context_put(ctx);
2380 	return ret;
2381 }
2382 
2383 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
2384 				    struct drm_file *file)
2385 {
2386 	struct drm_i915_file_private *file_priv = file->driver_priv;
2387 	struct drm_i915_gem_context_param *args = data;
2388 	struct i915_gem_context *ctx;
2389 	int ret;
2390 
2391 	ctx = i915_gem_context_lookup(file_priv, args->ctx_id);
2392 	if (!ctx)
2393 		return -ENOENT;
2394 
2395 	ret = ctx_setparam(file_priv, ctx, args);
2396 
2397 	i915_gem_context_put(ctx);
2398 	return ret;
2399 }
2400 
2401 int i915_gem_context_reset_stats_ioctl(struct drm_device *dev,
2402 				       void *data, struct drm_file *file)
2403 {
2404 	struct drm_i915_private *i915 = to_i915(dev);
2405 	struct drm_i915_reset_stats *args = data;
2406 	struct i915_gem_context *ctx;
2407 	int ret;
2408 
2409 	if (args->flags || args->pad)
2410 		return -EINVAL;
2411 
2412 	ret = -ENOENT;
2413 	rcu_read_lock();
2414 	ctx = __i915_gem_context_lookup_rcu(file->driver_priv, args->ctx_id);
2415 	if (!ctx)
2416 		goto out;
2417 
2418 	/*
2419 	 * We opt for unserialised reads here. This may result in tearing
2420 	 * in the extremely unlikely event of a GPU hang on this context
2421 	 * as we are querying them. If we need that extra layer of protection,
2422 	 * we should wrap the hangstats with a seqlock.
2423 	 */
2424 
2425 	if (capable(CAP_SYS_ADMIN))
2426 		args->reset_count = i915_reset_count(&i915->gpu_error);
2427 	else
2428 		args->reset_count = 0;
2429 
2430 	args->batch_active = atomic_read(&ctx->guilty_count);
2431 	args->batch_pending = atomic_read(&ctx->active_count);
2432 
2433 	ret = 0;
2434 out:
2435 	rcu_read_unlock();
2436 	return ret;
2437 }
2438 
2439 /* GEM context-engines iterator: for_each_gem_engine() */
2440 struct intel_context *
2441 i915_gem_engines_iter_next(struct i915_gem_engines_iter *it)
2442 {
2443 	const struct i915_gem_engines *e = it->engines;
2444 	struct intel_context *ctx;
2445 
2446 	do {
2447 		if (it->idx >= e->num_engines)
2448 			return NULL;
2449 
2450 		ctx = e->engines[it->idx++];
2451 	} while (!ctx);
2452 
2453 	return ctx;
2454 }
2455 
2456 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2457 #include "selftests/mock_context.c"
2458 #include "selftests/i915_gem_context.c"
2459 #endif
2460 
2461 static void i915_global_gem_context_shrink(void)
2462 {
2463 	kmem_cache_shrink(global.slab_luts);
2464 }
2465 
2466 static void i915_global_gem_context_exit(void)
2467 {
2468 	kmem_cache_destroy(global.slab_luts);
2469 }
2470 
2471 static struct i915_global_gem_context global = { {
2472 	.shrink = i915_global_gem_context_shrink,
2473 	.exit = i915_global_gem_context_exit,
2474 } };
2475 
2476 int __init i915_global_gem_context_init(void)
2477 {
2478 	global.slab_luts = KMEM_CACHE(i915_lut_handle, 0);
2479 	if (!global.slab_luts)
2480 		return -ENOMEM;
2481 
2482 	i915_global_register(&global.base);
2483 	return 0;
2484 }
2485