1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2011-2012 Intel Corporation 5 */ 6 7 /* 8 * This file implements HW context support. On gen5+ a HW context consists of an 9 * opaque GPU object which is referenced at times of context saves and restores. 10 * With RC6 enabled, the context is also referenced as the GPU enters and exists 11 * from RC6 (GPU has it's own internal power context, except on gen5). Though 12 * something like a context does exist for the media ring, the code only 13 * supports contexts for the render ring. 14 * 15 * In software, there is a distinction between contexts created by the user, 16 * and the default HW context. The default HW context is used by GPU clients 17 * that do not request setup of their own hardware context. The default 18 * context's state is never restored to help prevent programming errors. This 19 * would happen if a client ran and piggy-backed off another clients GPU state. 20 * The default context only exists to give the GPU some offset to load as the 21 * current to invoke a save of the context we actually care about. In fact, the 22 * code could likely be constructed, albeit in a more complicated fashion, to 23 * never use the default context, though that limits the driver's ability to 24 * swap out, and/or destroy other contexts. 25 * 26 * All other contexts are created as a request by the GPU client. These contexts 27 * store GPU state, and thus allow GPU clients to not re-emit state (and 28 * potentially query certain state) at any time. The kernel driver makes 29 * certain that the appropriate commands are inserted. 30 * 31 * The context life cycle is semi-complicated in that context BOs may live 32 * longer than the context itself because of the way the hardware, and object 33 * tracking works. Below is a very crude representation of the state machine 34 * describing the context life. 35 * refcount pincount active 36 * S0: initial state 0 0 0 37 * S1: context created 1 0 0 38 * S2: context is currently running 2 1 X 39 * S3: GPU referenced, but not current 2 0 1 40 * S4: context is current, but destroyed 1 1 0 41 * S5: like S3, but destroyed 1 0 1 42 * 43 * The most common (but not all) transitions: 44 * S0->S1: client creates a context 45 * S1->S2: client submits execbuf with context 46 * S2->S3: other clients submits execbuf with context 47 * S3->S1: context object was retired 48 * S3->S2: clients submits another execbuf 49 * S2->S4: context destroy called with current context 50 * S3->S5->S0: destroy path 51 * S4->S5->S0: destroy path on current context 52 * 53 * There are two confusing terms used above: 54 * The "current context" means the context which is currently running on the 55 * GPU. The GPU has loaded its state already and has stored away the gtt 56 * offset of the BO. The GPU is not actively referencing the data at this 57 * offset, but it will on the next context switch. The only way to avoid this 58 * is to do a GPU reset. 59 * 60 * An "active context' is one which was previously the "current context" and is 61 * on the active list waiting for the next context switch to occur. Until this 62 * happens, the object must remain at the same gtt offset. It is therefore 63 * possible to destroy a context, but it is still active. 64 * 65 */ 66 67 #include <linux/log2.h> 68 #include <linux/nospec.h> 69 70 #include <drm/i915_drm.h> 71 72 #include "gt/gen6_ppgtt.h" 73 #include "gt/intel_context.h" 74 #include "gt/intel_engine_heartbeat.h" 75 #include "gt/intel_engine_pm.h" 76 #include "gt/intel_engine_user.h" 77 #include "gt/intel_lrc_reg.h" 78 #include "gt/intel_ring.h" 79 80 #include "i915_gem_context.h" 81 #include "i915_globals.h" 82 #include "i915_trace.h" 83 #include "i915_user_extensions.h" 84 85 #define ALL_L3_SLICES(dev) (1 << NUM_L3_SLICES(dev)) - 1 86 87 static struct i915_global_gem_context { 88 struct i915_global base; 89 struct kmem_cache *slab_luts; 90 } global; 91 92 struct i915_lut_handle *i915_lut_handle_alloc(void) 93 { 94 return kmem_cache_alloc(global.slab_luts, GFP_KERNEL); 95 } 96 97 void i915_lut_handle_free(struct i915_lut_handle *lut) 98 { 99 return kmem_cache_free(global.slab_luts, lut); 100 } 101 102 static void lut_close(struct i915_gem_context *ctx) 103 { 104 struct radix_tree_iter iter; 105 void __rcu **slot; 106 107 lockdep_assert_held(&ctx->mutex); 108 109 rcu_read_lock(); 110 radix_tree_for_each_slot(slot, &ctx->handles_vma, &iter, 0) { 111 struct i915_vma *vma = rcu_dereference_raw(*slot); 112 struct drm_i915_gem_object *obj = vma->obj; 113 struct i915_lut_handle *lut; 114 115 if (!kref_get_unless_zero(&obj->base.refcount)) 116 continue; 117 118 rcu_read_unlock(); 119 i915_gem_object_lock(obj); 120 list_for_each_entry(lut, &obj->lut_list, obj_link) { 121 if (lut->ctx != ctx) 122 continue; 123 124 if (lut->handle != iter.index) 125 continue; 126 127 list_del(&lut->obj_link); 128 break; 129 } 130 i915_gem_object_unlock(obj); 131 rcu_read_lock(); 132 133 if (&lut->obj_link != &obj->lut_list) { 134 i915_lut_handle_free(lut); 135 radix_tree_iter_delete(&ctx->handles_vma, &iter, slot); 136 if (atomic_dec_and_test(&vma->open_count) && 137 !i915_vma_is_ggtt(vma)) 138 i915_vma_close(vma); 139 i915_gem_object_put(obj); 140 } 141 142 i915_gem_object_put(obj); 143 } 144 rcu_read_unlock(); 145 } 146 147 static struct intel_context * 148 lookup_user_engine(struct i915_gem_context *ctx, 149 unsigned long flags, 150 const struct i915_engine_class_instance *ci) 151 #define LOOKUP_USER_INDEX BIT(0) 152 { 153 int idx; 154 155 if (!!(flags & LOOKUP_USER_INDEX) != i915_gem_context_user_engines(ctx)) 156 return ERR_PTR(-EINVAL); 157 158 if (!i915_gem_context_user_engines(ctx)) { 159 struct intel_engine_cs *engine; 160 161 engine = intel_engine_lookup_user(ctx->i915, 162 ci->engine_class, 163 ci->engine_instance); 164 if (!engine) 165 return ERR_PTR(-EINVAL); 166 167 idx = engine->legacy_idx; 168 } else { 169 idx = ci->engine_instance; 170 } 171 172 return i915_gem_context_get_engine(ctx, idx); 173 } 174 175 static struct i915_address_space * 176 context_get_vm_rcu(struct i915_gem_context *ctx) 177 { 178 GEM_BUG_ON(!rcu_access_pointer(ctx->vm)); 179 180 do { 181 struct i915_address_space *vm; 182 183 /* 184 * We do not allow downgrading from full-ppgtt [to a shared 185 * global gtt], so ctx->vm cannot become NULL. 186 */ 187 vm = rcu_dereference(ctx->vm); 188 if (!kref_get_unless_zero(&vm->ref)) 189 continue; 190 191 /* 192 * This ppgtt may have be reallocated between 193 * the read and the kref, and reassigned to a third 194 * context. In order to avoid inadvertent sharing 195 * of this ppgtt with that third context (and not 196 * src), we have to confirm that we have the same 197 * ppgtt after passing through the strong memory 198 * barrier implied by a successful 199 * kref_get_unless_zero(). 200 * 201 * Once we have acquired the current ppgtt of ctx, 202 * we no longer care if it is released from ctx, as 203 * it cannot be reallocated elsewhere. 204 */ 205 206 if (vm == rcu_access_pointer(ctx->vm)) 207 return rcu_pointer_handoff(vm); 208 209 i915_vm_put(vm); 210 } while (1); 211 } 212 213 static void intel_context_set_gem(struct intel_context *ce, 214 struct i915_gem_context *ctx) 215 { 216 GEM_BUG_ON(rcu_access_pointer(ce->gem_context)); 217 RCU_INIT_POINTER(ce->gem_context, ctx); 218 219 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) 220 ce->ring = __intel_context_ring_size(SZ_16K); 221 222 if (rcu_access_pointer(ctx->vm)) { 223 struct i915_address_space *vm; 224 225 rcu_read_lock(); 226 vm = context_get_vm_rcu(ctx); /* hmm */ 227 rcu_read_unlock(); 228 229 i915_vm_put(ce->vm); 230 ce->vm = vm; 231 } 232 233 GEM_BUG_ON(ce->timeline); 234 if (ctx->timeline) 235 ce->timeline = intel_timeline_get(ctx->timeline); 236 237 if (ctx->sched.priority >= I915_PRIORITY_NORMAL && 238 intel_engine_has_semaphores(ce->engine)) 239 __set_bit(CONTEXT_USE_SEMAPHORES, &ce->flags); 240 } 241 242 static void __free_engines(struct i915_gem_engines *e, unsigned int count) 243 { 244 while (count--) { 245 if (!e->engines[count]) 246 continue; 247 248 RCU_INIT_POINTER(e->engines[count]->gem_context, NULL); 249 intel_context_put(e->engines[count]); 250 } 251 kfree(e); 252 } 253 254 static void free_engines(struct i915_gem_engines *e) 255 { 256 __free_engines(e, e->num_engines); 257 } 258 259 static void free_engines_rcu(struct rcu_head *rcu) 260 { 261 free_engines(container_of(rcu, struct i915_gem_engines, rcu)); 262 } 263 264 static struct i915_gem_engines *default_engines(struct i915_gem_context *ctx) 265 { 266 const struct intel_gt *gt = &ctx->i915->gt; 267 struct intel_engine_cs *engine; 268 struct i915_gem_engines *e; 269 enum intel_engine_id id; 270 271 e = kzalloc(struct_size(e, engines, I915_NUM_ENGINES), GFP_KERNEL); 272 if (!e) 273 return ERR_PTR(-ENOMEM); 274 275 init_rcu_head(&e->rcu); 276 for_each_engine(engine, gt, id) { 277 struct intel_context *ce; 278 279 if (engine->legacy_idx == INVALID_ENGINE) 280 continue; 281 282 GEM_BUG_ON(engine->legacy_idx >= I915_NUM_ENGINES); 283 GEM_BUG_ON(e->engines[engine->legacy_idx]); 284 285 ce = intel_context_create(engine); 286 if (IS_ERR(ce)) { 287 __free_engines(e, e->num_engines + 1); 288 return ERR_CAST(ce); 289 } 290 291 intel_context_set_gem(ce, ctx); 292 293 e->engines[engine->legacy_idx] = ce; 294 e->num_engines = max(e->num_engines, engine->legacy_idx); 295 } 296 e->num_engines++; 297 298 return e; 299 } 300 301 static void i915_gem_context_free(struct i915_gem_context *ctx) 302 { 303 GEM_BUG_ON(!i915_gem_context_is_closed(ctx)); 304 305 spin_lock(&ctx->i915->gem.contexts.lock); 306 list_del(&ctx->link); 307 spin_unlock(&ctx->i915->gem.contexts.lock); 308 309 free_engines(rcu_access_pointer(ctx->engines)); 310 mutex_destroy(&ctx->engines_mutex); 311 312 if (ctx->timeline) 313 intel_timeline_put(ctx->timeline); 314 315 put_pid(ctx->pid); 316 mutex_destroy(&ctx->mutex); 317 318 kfree_rcu(ctx, rcu); 319 } 320 321 static void contexts_free_all(struct llist_node *list) 322 { 323 struct i915_gem_context *ctx, *cn; 324 325 llist_for_each_entry_safe(ctx, cn, list, free_link) 326 i915_gem_context_free(ctx); 327 } 328 329 static void contexts_flush_free(struct i915_gem_contexts *gc) 330 { 331 contexts_free_all(llist_del_all(&gc->free_list)); 332 } 333 334 static void contexts_free_worker(struct work_struct *work) 335 { 336 struct i915_gem_contexts *gc = 337 container_of(work, typeof(*gc), free_work); 338 339 contexts_flush_free(gc); 340 } 341 342 void i915_gem_context_release(struct kref *ref) 343 { 344 struct i915_gem_context *ctx = container_of(ref, typeof(*ctx), ref); 345 struct i915_gem_contexts *gc = &ctx->i915->gem.contexts; 346 347 trace_i915_context_free(ctx); 348 if (llist_add(&ctx->free_link, &gc->free_list)) 349 schedule_work(&gc->free_work); 350 } 351 352 static inline struct i915_gem_engines * 353 __context_engines_static(const struct i915_gem_context *ctx) 354 { 355 return rcu_dereference_protected(ctx->engines, true); 356 } 357 358 static bool __reset_engine(struct intel_engine_cs *engine) 359 { 360 struct intel_gt *gt = engine->gt; 361 bool success = false; 362 363 if (!intel_has_reset_engine(gt)) 364 return false; 365 366 if (!test_and_set_bit(I915_RESET_ENGINE + engine->id, 367 >->reset.flags)) { 368 success = intel_engine_reset(engine, NULL) == 0; 369 clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id, 370 >->reset.flags); 371 } 372 373 return success; 374 } 375 376 static void __reset_context(struct i915_gem_context *ctx, 377 struct intel_engine_cs *engine) 378 { 379 intel_gt_handle_error(engine->gt, engine->mask, 0, 380 "context closure in %s", ctx->name); 381 } 382 383 static bool __cancel_engine(struct intel_engine_cs *engine) 384 { 385 /* 386 * Send a "high priority pulse" down the engine to cause the 387 * current request to be momentarily preempted. (If it fails to 388 * be preempted, it will be reset). As we have marked our context 389 * as banned, any incomplete request, including any running, will 390 * be skipped following the preemption. 391 * 392 * If there is no hangchecking (one of the reasons why we try to 393 * cancel the context) and no forced preemption, there may be no 394 * means by which we reset the GPU and evict the persistent hog. 395 * Ergo if we are unable to inject a preemptive pulse that can 396 * kill the banned context, we fallback to doing a local reset 397 * instead. 398 */ 399 if (IS_ACTIVE(CONFIG_DRM_I915_PREEMPT_TIMEOUT) && 400 !intel_engine_pulse(engine)) 401 return true; 402 403 /* If we are unable to send a pulse, try resetting this engine. */ 404 return __reset_engine(engine); 405 } 406 407 static struct intel_engine_cs *__active_engine(struct i915_request *rq) 408 { 409 struct intel_engine_cs *engine, *locked; 410 411 /* 412 * Serialise with __i915_request_submit() so that it sees 413 * is-banned?, or we know the request is already inflight. 414 */ 415 locked = READ_ONCE(rq->engine); 416 spin_lock_irq(&locked->active.lock); 417 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 418 spin_unlock(&locked->active.lock); 419 spin_lock(&engine->active.lock); 420 locked = engine; 421 } 422 423 engine = NULL; 424 if (i915_request_is_active(rq) && !rq->fence.error) 425 engine = rq->engine; 426 427 spin_unlock_irq(&locked->active.lock); 428 429 return engine; 430 } 431 432 static struct intel_engine_cs *active_engine(struct intel_context *ce) 433 { 434 struct intel_engine_cs *engine = NULL; 435 struct i915_request *rq; 436 437 if (!ce->timeline) 438 return NULL; 439 440 mutex_lock(&ce->timeline->mutex); 441 list_for_each_entry_reverse(rq, &ce->timeline->requests, link) { 442 if (i915_request_completed(rq)) 443 break; 444 445 /* Check with the backend if the request is inflight */ 446 engine = __active_engine(rq); 447 if (engine) 448 break; 449 } 450 mutex_unlock(&ce->timeline->mutex); 451 452 return engine; 453 } 454 455 static void kill_context(struct i915_gem_context *ctx) 456 { 457 struct i915_gem_engines_iter it; 458 struct intel_context *ce; 459 460 /* 461 * Map the user's engine back to the actual engines; one virtual 462 * engine will be mapped to multiple engines, and using ctx->engine[] 463 * the same engine may be have multiple instances in the user's map. 464 * However, we only care about pending requests, so only include 465 * engines on which there are incomplete requests. 466 */ 467 for_each_gem_engine(ce, __context_engines_static(ctx), it) { 468 struct intel_engine_cs *engine; 469 470 if (intel_context_set_banned(ce)) 471 continue; 472 473 /* 474 * Check the current active state of this context; if we 475 * are currently executing on the GPU we need to evict 476 * ourselves. On the other hand, if we haven't yet been 477 * submitted to the GPU or if everything is complete, 478 * we have nothing to do. 479 */ 480 engine = active_engine(ce); 481 482 /* First attempt to gracefully cancel the context */ 483 if (engine && !__cancel_engine(engine)) 484 /* 485 * If we are unable to send a preemptive pulse to bump 486 * the context from the GPU, we have to resort to a full 487 * reset. We hope the collateral damage is worth it. 488 */ 489 __reset_context(ctx, engine); 490 } 491 } 492 493 static void set_closed_name(struct i915_gem_context *ctx) 494 { 495 char *s; 496 497 /* Replace '[]' with '<>' to indicate closed in debug prints */ 498 499 s = strrchr(ctx->name, '['); 500 if (!s) 501 return; 502 503 *s = '<'; 504 505 s = strchr(s + 1, ']'); 506 if (s) 507 *s = '>'; 508 } 509 510 static void context_close(struct i915_gem_context *ctx) 511 { 512 struct i915_address_space *vm; 513 514 i915_gem_context_set_closed(ctx); 515 set_closed_name(ctx); 516 517 mutex_lock(&ctx->mutex); 518 519 vm = i915_gem_context_vm(ctx); 520 if (vm) 521 i915_vm_close(vm); 522 523 ctx->file_priv = ERR_PTR(-EBADF); 524 525 /* 526 * The LUT uses the VMA as a backpointer to unref the object, 527 * so we need to clear the LUT before we close all the VMA (inside 528 * the ppgtt). 529 */ 530 lut_close(ctx); 531 532 mutex_unlock(&ctx->mutex); 533 534 /* 535 * If the user has disabled hangchecking, we can not be sure that 536 * the batches will ever complete after the context is closed, 537 * keeping the context and all resources pinned forever. So in this 538 * case we opt to forcibly kill off all remaining requests on 539 * context close. 540 */ 541 if (!i915_gem_context_is_persistent(ctx) || 542 !i915_modparams.enable_hangcheck) 543 kill_context(ctx); 544 545 i915_gem_context_put(ctx); 546 } 547 548 static int __context_set_persistence(struct i915_gem_context *ctx, bool state) 549 { 550 if (i915_gem_context_is_persistent(ctx) == state) 551 return 0; 552 553 if (state) { 554 /* 555 * Only contexts that are short-lived [that will expire or be 556 * reset] are allowed to survive past termination. We require 557 * hangcheck to ensure that the persistent requests are healthy. 558 */ 559 if (!i915_modparams.enable_hangcheck) 560 return -EINVAL; 561 562 i915_gem_context_set_persistence(ctx); 563 } else { 564 /* To cancel a context we use "preempt-to-idle" */ 565 if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PREEMPTION)) 566 return -ENODEV; 567 568 i915_gem_context_clear_persistence(ctx); 569 } 570 571 return 0; 572 } 573 574 static struct i915_gem_context * 575 __create_context(struct drm_i915_private *i915) 576 { 577 struct i915_gem_context *ctx; 578 struct i915_gem_engines *e; 579 int err; 580 int i; 581 582 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 583 if (!ctx) 584 return ERR_PTR(-ENOMEM); 585 586 kref_init(&ctx->ref); 587 ctx->i915 = i915; 588 ctx->sched.priority = I915_USER_PRIORITY(I915_PRIORITY_NORMAL); 589 mutex_init(&ctx->mutex); 590 591 mutex_init(&ctx->engines_mutex); 592 e = default_engines(ctx); 593 if (IS_ERR(e)) { 594 err = PTR_ERR(e); 595 goto err_free; 596 } 597 RCU_INIT_POINTER(ctx->engines, e); 598 599 INIT_RADIX_TREE(&ctx->handles_vma, GFP_KERNEL); 600 601 /* NB: Mark all slices as needing a remap so that when the context first 602 * loads it will restore whatever remap state already exists. If there 603 * is no remap info, it will be a NOP. */ 604 ctx->remap_slice = ALL_L3_SLICES(i915); 605 606 i915_gem_context_set_bannable(ctx); 607 i915_gem_context_set_recoverable(ctx); 608 __context_set_persistence(ctx, true /* cgroup hook? */); 609 610 for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp); i++) 611 ctx->hang_timestamp[i] = jiffies - CONTEXT_FAST_HANG_JIFFIES; 612 613 spin_lock(&i915->gem.contexts.lock); 614 list_add_tail(&ctx->link, &i915->gem.contexts.list); 615 spin_unlock(&i915->gem.contexts.lock); 616 617 return ctx; 618 619 err_free: 620 kfree(ctx); 621 return ERR_PTR(err); 622 } 623 624 static void 625 context_apply_all(struct i915_gem_context *ctx, 626 void (*fn)(struct intel_context *ce, void *data), 627 void *data) 628 { 629 struct i915_gem_engines_iter it; 630 struct intel_context *ce; 631 632 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) 633 fn(ce, data); 634 i915_gem_context_unlock_engines(ctx); 635 } 636 637 static void __apply_ppgtt(struct intel_context *ce, void *vm) 638 { 639 i915_vm_put(ce->vm); 640 ce->vm = i915_vm_get(vm); 641 } 642 643 static struct i915_address_space * 644 __set_ppgtt(struct i915_gem_context *ctx, struct i915_address_space *vm) 645 { 646 struct i915_address_space *old = i915_gem_context_vm(ctx); 647 648 GEM_BUG_ON(old && i915_vm_is_4lvl(vm) != i915_vm_is_4lvl(old)); 649 650 rcu_assign_pointer(ctx->vm, i915_vm_open(vm)); 651 context_apply_all(ctx, __apply_ppgtt, vm); 652 653 return old; 654 } 655 656 static void __assign_ppgtt(struct i915_gem_context *ctx, 657 struct i915_address_space *vm) 658 { 659 if (vm == rcu_access_pointer(ctx->vm)) 660 return; 661 662 vm = __set_ppgtt(ctx, vm); 663 if (vm) 664 i915_vm_close(vm); 665 } 666 667 static void __set_timeline(struct intel_timeline **dst, 668 struct intel_timeline *src) 669 { 670 struct intel_timeline *old = *dst; 671 672 *dst = src ? intel_timeline_get(src) : NULL; 673 674 if (old) 675 intel_timeline_put(old); 676 } 677 678 static void __apply_timeline(struct intel_context *ce, void *timeline) 679 { 680 __set_timeline(&ce->timeline, timeline); 681 } 682 683 static void __assign_timeline(struct i915_gem_context *ctx, 684 struct intel_timeline *timeline) 685 { 686 __set_timeline(&ctx->timeline, timeline); 687 context_apply_all(ctx, __apply_timeline, timeline); 688 } 689 690 static struct i915_gem_context * 691 i915_gem_create_context(struct drm_i915_private *i915, unsigned int flags) 692 { 693 struct i915_gem_context *ctx; 694 695 if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE && 696 !HAS_EXECLISTS(i915)) 697 return ERR_PTR(-EINVAL); 698 699 /* Reap the stale contexts */ 700 contexts_flush_free(&i915->gem.contexts); 701 702 ctx = __create_context(i915); 703 if (IS_ERR(ctx)) 704 return ctx; 705 706 if (HAS_FULL_PPGTT(i915)) { 707 struct i915_ppgtt *ppgtt; 708 709 ppgtt = i915_ppgtt_create(&i915->gt); 710 if (IS_ERR(ppgtt)) { 711 DRM_DEBUG_DRIVER("PPGTT setup failed (%ld)\n", 712 PTR_ERR(ppgtt)); 713 context_close(ctx); 714 return ERR_CAST(ppgtt); 715 } 716 717 mutex_lock(&ctx->mutex); 718 __assign_ppgtt(ctx, &ppgtt->vm); 719 mutex_unlock(&ctx->mutex); 720 721 i915_vm_put(&ppgtt->vm); 722 } 723 724 if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE) { 725 struct intel_timeline *timeline; 726 727 timeline = intel_timeline_create(&i915->gt, NULL); 728 if (IS_ERR(timeline)) { 729 context_close(ctx); 730 return ERR_CAST(timeline); 731 } 732 733 __assign_timeline(ctx, timeline); 734 intel_timeline_put(timeline); 735 } 736 737 trace_i915_context_create(ctx); 738 739 return ctx; 740 } 741 742 static void init_contexts(struct i915_gem_contexts *gc) 743 { 744 spin_lock_init(&gc->lock); 745 INIT_LIST_HEAD(&gc->list); 746 747 INIT_WORK(&gc->free_work, contexts_free_worker); 748 init_llist_head(&gc->free_list); 749 } 750 751 void i915_gem_init__contexts(struct drm_i915_private *i915) 752 { 753 init_contexts(&i915->gem.contexts); 754 DRM_DEBUG_DRIVER("%s context support initialized\n", 755 DRIVER_CAPS(i915)->has_logical_contexts ? 756 "logical" : "fake"); 757 } 758 759 void i915_gem_driver_release__contexts(struct drm_i915_private *i915) 760 { 761 flush_work(&i915->gem.contexts.free_work); 762 } 763 764 static int vm_idr_cleanup(int id, void *p, void *data) 765 { 766 i915_vm_put(p); 767 return 0; 768 } 769 770 static int gem_context_register(struct i915_gem_context *ctx, 771 struct drm_i915_file_private *fpriv, 772 u32 *id) 773 { 774 struct i915_address_space *vm; 775 int ret; 776 777 ctx->file_priv = fpriv; 778 779 mutex_lock(&ctx->mutex); 780 vm = i915_gem_context_vm(ctx); 781 if (vm) 782 WRITE_ONCE(vm->file, fpriv); /* XXX */ 783 mutex_unlock(&ctx->mutex); 784 785 ctx->pid = get_task_pid(current, PIDTYPE_PID); 786 snprintf(ctx->name, sizeof(ctx->name), "%s[%d]", 787 current->comm, pid_nr(ctx->pid)); 788 789 /* And finally expose ourselves to userspace via the idr */ 790 ret = xa_alloc(&fpriv->context_xa, id, ctx, xa_limit_32b, GFP_KERNEL); 791 if (ret) 792 put_pid(fetch_and_zero(&ctx->pid)); 793 794 return ret; 795 } 796 797 int i915_gem_context_open(struct drm_i915_private *i915, 798 struct drm_file *file) 799 { 800 struct drm_i915_file_private *file_priv = file->driver_priv; 801 struct i915_gem_context *ctx; 802 int err; 803 u32 id; 804 805 xa_init_flags(&file_priv->context_xa, XA_FLAGS_ALLOC); 806 807 mutex_init(&file_priv->vm_idr_lock); 808 idr_init_base(&file_priv->vm_idr, 1); 809 810 ctx = i915_gem_create_context(i915, 0); 811 if (IS_ERR(ctx)) { 812 err = PTR_ERR(ctx); 813 goto err; 814 } 815 816 err = gem_context_register(ctx, file_priv, &id); 817 if (err < 0) 818 goto err_ctx; 819 820 GEM_BUG_ON(id); 821 return 0; 822 823 err_ctx: 824 context_close(ctx); 825 err: 826 idr_destroy(&file_priv->vm_idr); 827 xa_destroy(&file_priv->context_xa); 828 mutex_destroy(&file_priv->vm_idr_lock); 829 return err; 830 } 831 832 void i915_gem_context_close(struct drm_file *file) 833 { 834 struct drm_i915_file_private *file_priv = file->driver_priv; 835 struct drm_i915_private *i915 = file_priv->dev_priv; 836 struct i915_gem_context *ctx; 837 unsigned long idx; 838 839 xa_for_each(&file_priv->context_xa, idx, ctx) 840 context_close(ctx); 841 xa_destroy(&file_priv->context_xa); 842 843 idr_for_each(&file_priv->vm_idr, vm_idr_cleanup, NULL); 844 idr_destroy(&file_priv->vm_idr); 845 mutex_destroy(&file_priv->vm_idr_lock); 846 847 contexts_flush_free(&i915->gem.contexts); 848 } 849 850 int i915_gem_vm_create_ioctl(struct drm_device *dev, void *data, 851 struct drm_file *file) 852 { 853 struct drm_i915_private *i915 = to_i915(dev); 854 struct drm_i915_gem_vm_control *args = data; 855 struct drm_i915_file_private *file_priv = file->driver_priv; 856 struct i915_ppgtt *ppgtt; 857 int err; 858 859 if (!HAS_FULL_PPGTT(i915)) 860 return -ENODEV; 861 862 if (args->flags) 863 return -EINVAL; 864 865 ppgtt = i915_ppgtt_create(&i915->gt); 866 if (IS_ERR(ppgtt)) 867 return PTR_ERR(ppgtt); 868 869 ppgtt->vm.file = file_priv; 870 871 if (args->extensions) { 872 err = i915_user_extensions(u64_to_user_ptr(args->extensions), 873 NULL, 0, 874 ppgtt); 875 if (err) 876 goto err_put; 877 } 878 879 err = mutex_lock_interruptible(&file_priv->vm_idr_lock); 880 if (err) 881 goto err_put; 882 883 err = idr_alloc(&file_priv->vm_idr, &ppgtt->vm, 0, 0, GFP_KERNEL); 884 if (err < 0) 885 goto err_unlock; 886 887 GEM_BUG_ON(err == 0); /* reserved for invalid/unassigned ppgtt */ 888 889 mutex_unlock(&file_priv->vm_idr_lock); 890 891 args->vm_id = err; 892 return 0; 893 894 err_unlock: 895 mutex_unlock(&file_priv->vm_idr_lock); 896 err_put: 897 i915_vm_put(&ppgtt->vm); 898 return err; 899 } 900 901 int i915_gem_vm_destroy_ioctl(struct drm_device *dev, void *data, 902 struct drm_file *file) 903 { 904 struct drm_i915_file_private *file_priv = file->driver_priv; 905 struct drm_i915_gem_vm_control *args = data; 906 struct i915_address_space *vm; 907 int err; 908 u32 id; 909 910 if (args->flags) 911 return -EINVAL; 912 913 if (args->extensions) 914 return -EINVAL; 915 916 id = args->vm_id; 917 if (!id) 918 return -ENOENT; 919 920 err = mutex_lock_interruptible(&file_priv->vm_idr_lock); 921 if (err) 922 return err; 923 924 vm = idr_remove(&file_priv->vm_idr, id); 925 926 mutex_unlock(&file_priv->vm_idr_lock); 927 if (!vm) 928 return -ENOENT; 929 930 i915_vm_put(vm); 931 return 0; 932 } 933 934 struct context_barrier_task { 935 struct i915_active base; 936 void (*task)(void *data); 937 void *data; 938 }; 939 940 __i915_active_call 941 static void cb_retire(struct i915_active *base) 942 { 943 struct context_barrier_task *cb = container_of(base, typeof(*cb), base); 944 945 if (cb->task) 946 cb->task(cb->data); 947 948 i915_active_fini(&cb->base); 949 kfree(cb); 950 } 951 952 I915_SELFTEST_DECLARE(static intel_engine_mask_t context_barrier_inject_fault); 953 static int context_barrier_task(struct i915_gem_context *ctx, 954 intel_engine_mask_t engines, 955 bool (*skip)(struct intel_context *ce, void *data), 956 int (*emit)(struct i915_request *rq, void *data), 957 void (*task)(void *data), 958 void *data) 959 { 960 struct context_barrier_task *cb; 961 struct i915_gem_engines_iter it; 962 struct intel_context *ce; 963 int err = 0; 964 965 GEM_BUG_ON(!task); 966 967 cb = kmalloc(sizeof(*cb), GFP_KERNEL); 968 if (!cb) 969 return -ENOMEM; 970 971 i915_active_init(&cb->base, NULL, cb_retire); 972 err = i915_active_acquire(&cb->base); 973 if (err) { 974 kfree(cb); 975 return err; 976 } 977 978 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) { 979 struct i915_request *rq; 980 981 if (I915_SELFTEST_ONLY(context_barrier_inject_fault & 982 ce->engine->mask)) { 983 err = -ENXIO; 984 break; 985 } 986 987 if (!(ce->engine->mask & engines)) 988 continue; 989 990 if (skip && skip(ce, data)) 991 continue; 992 993 rq = intel_context_create_request(ce); 994 if (IS_ERR(rq)) { 995 err = PTR_ERR(rq); 996 break; 997 } 998 999 err = 0; 1000 if (emit) 1001 err = emit(rq, data); 1002 if (err == 0) 1003 err = i915_active_add_request(&cb->base, rq); 1004 1005 i915_request_add(rq); 1006 if (err) 1007 break; 1008 } 1009 i915_gem_context_unlock_engines(ctx); 1010 1011 cb->task = err ? NULL : task; /* caller needs to unwind instead */ 1012 cb->data = data; 1013 1014 i915_active_release(&cb->base); 1015 1016 return err; 1017 } 1018 1019 static int get_ppgtt(struct drm_i915_file_private *file_priv, 1020 struct i915_gem_context *ctx, 1021 struct drm_i915_gem_context_param *args) 1022 { 1023 struct i915_address_space *vm; 1024 int ret; 1025 1026 if (!rcu_access_pointer(ctx->vm)) 1027 return -ENODEV; 1028 1029 rcu_read_lock(); 1030 vm = context_get_vm_rcu(ctx); 1031 rcu_read_unlock(); 1032 1033 ret = mutex_lock_interruptible(&file_priv->vm_idr_lock); 1034 if (ret) 1035 goto err_put; 1036 1037 ret = idr_alloc(&file_priv->vm_idr, vm, 0, 0, GFP_KERNEL); 1038 GEM_BUG_ON(!ret); 1039 if (ret < 0) 1040 goto err_unlock; 1041 1042 i915_vm_open(vm); 1043 1044 args->size = 0; 1045 args->value = ret; 1046 1047 ret = 0; 1048 err_unlock: 1049 mutex_unlock(&file_priv->vm_idr_lock); 1050 err_put: 1051 i915_vm_put(vm); 1052 return ret; 1053 } 1054 1055 static void set_ppgtt_barrier(void *data) 1056 { 1057 struct i915_address_space *old = data; 1058 1059 if (INTEL_GEN(old->i915) < 8) 1060 gen6_ppgtt_unpin_all(i915_vm_to_ppgtt(old)); 1061 1062 i915_vm_close(old); 1063 } 1064 1065 static int emit_ppgtt_update(struct i915_request *rq, void *data) 1066 { 1067 struct i915_address_space *vm = rq->context->vm; 1068 struct intel_engine_cs *engine = rq->engine; 1069 u32 base = engine->mmio_base; 1070 u32 *cs; 1071 int i; 1072 1073 if (i915_vm_is_4lvl(vm)) { 1074 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1075 const dma_addr_t pd_daddr = px_dma(ppgtt->pd); 1076 1077 cs = intel_ring_begin(rq, 6); 1078 if (IS_ERR(cs)) 1079 return PTR_ERR(cs); 1080 1081 *cs++ = MI_LOAD_REGISTER_IMM(2); 1082 1083 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0)); 1084 *cs++ = upper_32_bits(pd_daddr); 1085 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0)); 1086 *cs++ = lower_32_bits(pd_daddr); 1087 1088 *cs++ = MI_NOOP; 1089 intel_ring_advance(rq, cs); 1090 } else if (HAS_LOGICAL_RING_CONTEXTS(engine->i915)) { 1091 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1092 int err; 1093 1094 /* Magic required to prevent forcewake errors! */ 1095 err = engine->emit_flush(rq, EMIT_INVALIDATE); 1096 if (err) 1097 return err; 1098 1099 cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2); 1100 if (IS_ERR(cs)) 1101 return PTR_ERR(cs); 1102 1103 *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED; 1104 for (i = GEN8_3LVL_PDPES; i--; ) { 1105 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i); 1106 1107 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i)); 1108 *cs++ = upper_32_bits(pd_daddr); 1109 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i)); 1110 *cs++ = lower_32_bits(pd_daddr); 1111 } 1112 *cs++ = MI_NOOP; 1113 intel_ring_advance(rq, cs); 1114 } 1115 1116 return 0; 1117 } 1118 1119 static bool skip_ppgtt_update(struct intel_context *ce, void *data) 1120 { 1121 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) 1122 return true; 1123 1124 if (HAS_LOGICAL_RING_CONTEXTS(ce->engine->i915)) 1125 return false; 1126 1127 if (!atomic_read(&ce->pin_count)) 1128 return true; 1129 1130 /* ppGTT is not part of the legacy context image */ 1131 if (gen6_ppgtt_pin(i915_vm_to_ppgtt(ce->vm))) 1132 return true; 1133 1134 return false; 1135 } 1136 1137 static int set_ppgtt(struct drm_i915_file_private *file_priv, 1138 struct i915_gem_context *ctx, 1139 struct drm_i915_gem_context_param *args) 1140 { 1141 struct i915_address_space *vm, *old; 1142 int err; 1143 1144 if (args->size) 1145 return -EINVAL; 1146 1147 if (!rcu_access_pointer(ctx->vm)) 1148 return -ENODEV; 1149 1150 if (upper_32_bits(args->value)) 1151 return -ENOENT; 1152 1153 rcu_read_lock(); 1154 vm = idr_find(&file_priv->vm_idr, args->value); 1155 if (vm && !kref_get_unless_zero(&vm->ref)) 1156 vm = NULL; 1157 rcu_read_unlock(); 1158 if (!vm) 1159 return -ENOENT; 1160 1161 err = mutex_lock_interruptible(&ctx->mutex); 1162 if (err) 1163 goto out; 1164 1165 if (i915_gem_context_is_closed(ctx)) { 1166 err = -ENOENT; 1167 goto unlock; 1168 } 1169 1170 if (vm == rcu_access_pointer(ctx->vm)) 1171 goto unlock; 1172 1173 /* Teardown the existing obj:vma cache, it will have to be rebuilt. */ 1174 lut_close(ctx); 1175 1176 old = __set_ppgtt(ctx, vm); 1177 1178 /* 1179 * We need to flush any requests using the current ppgtt before 1180 * we release it as the requests do not hold a reference themselves, 1181 * only indirectly through the context. 1182 */ 1183 err = context_barrier_task(ctx, ALL_ENGINES, 1184 skip_ppgtt_update, 1185 emit_ppgtt_update, 1186 set_ppgtt_barrier, 1187 old); 1188 if (err) { 1189 i915_vm_close(__set_ppgtt(ctx, old)); 1190 i915_vm_close(old); 1191 } 1192 1193 unlock: 1194 mutex_unlock(&ctx->mutex); 1195 out: 1196 i915_vm_put(vm); 1197 return err; 1198 } 1199 1200 static int gen8_emit_rpcs_config(struct i915_request *rq, 1201 struct intel_context *ce, 1202 struct intel_sseu sseu) 1203 { 1204 u64 offset; 1205 u32 *cs; 1206 1207 cs = intel_ring_begin(rq, 4); 1208 if (IS_ERR(cs)) 1209 return PTR_ERR(cs); 1210 1211 offset = i915_ggtt_offset(ce->state) + 1212 LRC_STATE_PN * PAGE_SIZE + 1213 CTX_R_PWR_CLK_STATE * 4; 1214 1215 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 1216 *cs++ = lower_32_bits(offset); 1217 *cs++ = upper_32_bits(offset); 1218 *cs++ = intel_sseu_make_rpcs(rq->i915, &sseu); 1219 1220 intel_ring_advance(rq, cs); 1221 1222 return 0; 1223 } 1224 1225 static int 1226 gen8_modify_rpcs(struct intel_context *ce, struct intel_sseu sseu) 1227 { 1228 struct i915_request *rq; 1229 int ret; 1230 1231 lockdep_assert_held(&ce->pin_mutex); 1232 1233 /* 1234 * If the context is not idle, we have to submit an ordered request to 1235 * modify its context image via the kernel context (writing to our own 1236 * image, or into the registers directory, does not stick). Pristine 1237 * and idle contexts will be configured on pinning. 1238 */ 1239 if (!intel_context_pin_if_active(ce)) 1240 return 0; 1241 1242 rq = intel_engine_create_kernel_request(ce->engine); 1243 if (IS_ERR(rq)) { 1244 ret = PTR_ERR(rq); 1245 goto out_unpin; 1246 } 1247 1248 /* Serialise with the remote context */ 1249 ret = intel_context_prepare_remote_request(ce, rq); 1250 if (ret == 0) 1251 ret = gen8_emit_rpcs_config(rq, ce, sseu); 1252 1253 i915_request_add(rq); 1254 out_unpin: 1255 intel_context_unpin(ce); 1256 return ret; 1257 } 1258 1259 static int 1260 intel_context_reconfigure_sseu(struct intel_context *ce, struct intel_sseu sseu) 1261 { 1262 int ret; 1263 1264 GEM_BUG_ON(INTEL_GEN(ce->engine->i915) < 8); 1265 1266 ret = intel_context_lock_pinned(ce); 1267 if (ret) 1268 return ret; 1269 1270 /* Nothing to do if unmodified. */ 1271 if (!memcmp(&ce->sseu, &sseu, sizeof(sseu))) 1272 goto unlock; 1273 1274 ret = gen8_modify_rpcs(ce, sseu); 1275 if (!ret) 1276 ce->sseu = sseu; 1277 1278 unlock: 1279 intel_context_unlock_pinned(ce); 1280 return ret; 1281 } 1282 1283 static int 1284 user_to_context_sseu(struct drm_i915_private *i915, 1285 const struct drm_i915_gem_context_param_sseu *user, 1286 struct intel_sseu *context) 1287 { 1288 const struct sseu_dev_info *device = &RUNTIME_INFO(i915)->sseu; 1289 1290 /* No zeros in any field. */ 1291 if (!user->slice_mask || !user->subslice_mask || 1292 !user->min_eus_per_subslice || !user->max_eus_per_subslice) 1293 return -EINVAL; 1294 1295 /* Max > min. */ 1296 if (user->max_eus_per_subslice < user->min_eus_per_subslice) 1297 return -EINVAL; 1298 1299 /* 1300 * Some future proofing on the types since the uAPI is wider than the 1301 * current internal implementation. 1302 */ 1303 if (overflows_type(user->slice_mask, context->slice_mask) || 1304 overflows_type(user->subslice_mask, context->subslice_mask) || 1305 overflows_type(user->min_eus_per_subslice, 1306 context->min_eus_per_subslice) || 1307 overflows_type(user->max_eus_per_subslice, 1308 context->max_eus_per_subslice)) 1309 return -EINVAL; 1310 1311 /* Check validity against hardware. */ 1312 if (user->slice_mask & ~device->slice_mask) 1313 return -EINVAL; 1314 1315 if (user->subslice_mask & ~device->subslice_mask[0]) 1316 return -EINVAL; 1317 1318 if (user->max_eus_per_subslice > device->max_eus_per_subslice) 1319 return -EINVAL; 1320 1321 context->slice_mask = user->slice_mask; 1322 context->subslice_mask = user->subslice_mask; 1323 context->min_eus_per_subslice = user->min_eus_per_subslice; 1324 context->max_eus_per_subslice = user->max_eus_per_subslice; 1325 1326 /* Part specific restrictions. */ 1327 if (IS_GEN(i915, 11)) { 1328 unsigned int hw_s = hweight8(device->slice_mask); 1329 unsigned int hw_ss_per_s = hweight8(device->subslice_mask[0]); 1330 unsigned int req_s = hweight8(context->slice_mask); 1331 unsigned int req_ss = hweight8(context->subslice_mask); 1332 1333 /* 1334 * Only full subslice enablement is possible if more than one 1335 * slice is turned on. 1336 */ 1337 if (req_s > 1 && req_ss != hw_ss_per_s) 1338 return -EINVAL; 1339 1340 /* 1341 * If more than four (SScount bitfield limit) subslices are 1342 * requested then the number has to be even. 1343 */ 1344 if (req_ss > 4 && (req_ss & 1)) 1345 return -EINVAL; 1346 1347 /* 1348 * If only one slice is enabled and subslice count is below the 1349 * device full enablement, it must be at most half of the all 1350 * available subslices. 1351 */ 1352 if (req_s == 1 && req_ss < hw_ss_per_s && 1353 req_ss > (hw_ss_per_s / 2)) 1354 return -EINVAL; 1355 1356 /* ABI restriction - VME use case only. */ 1357 1358 /* All slices or one slice only. */ 1359 if (req_s != 1 && req_s != hw_s) 1360 return -EINVAL; 1361 1362 /* 1363 * Half subslices or full enablement only when one slice is 1364 * enabled. 1365 */ 1366 if (req_s == 1 && 1367 (req_ss != hw_ss_per_s && req_ss != (hw_ss_per_s / 2))) 1368 return -EINVAL; 1369 1370 /* No EU configuration changes. */ 1371 if ((user->min_eus_per_subslice != 1372 device->max_eus_per_subslice) || 1373 (user->max_eus_per_subslice != 1374 device->max_eus_per_subslice)) 1375 return -EINVAL; 1376 } 1377 1378 return 0; 1379 } 1380 1381 static int set_sseu(struct i915_gem_context *ctx, 1382 struct drm_i915_gem_context_param *args) 1383 { 1384 struct drm_i915_private *i915 = ctx->i915; 1385 struct drm_i915_gem_context_param_sseu user_sseu; 1386 struct intel_context *ce; 1387 struct intel_sseu sseu; 1388 unsigned long lookup; 1389 int ret; 1390 1391 if (args->size < sizeof(user_sseu)) 1392 return -EINVAL; 1393 1394 if (!IS_GEN(i915, 11)) 1395 return -ENODEV; 1396 1397 if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value), 1398 sizeof(user_sseu))) 1399 return -EFAULT; 1400 1401 if (user_sseu.rsvd) 1402 return -EINVAL; 1403 1404 if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)) 1405 return -EINVAL; 1406 1407 lookup = 0; 1408 if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX) 1409 lookup |= LOOKUP_USER_INDEX; 1410 1411 ce = lookup_user_engine(ctx, lookup, &user_sseu.engine); 1412 if (IS_ERR(ce)) 1413 return PTR_ERR(ce); 1414 1415 /* Only render engine supports RPCS configuration. */ 1416 if (ce->engine->class != RENDER_CLASS) { 1417 ret = -ENODEV; 1418 goto out_ce; 1419 } 1420 1421 ret = user_to_context_sseu(i915, &user_sseu, &sseu); 1422 if (ret) 1423 goto out_ce; 1424 1425 ret = intel_context_reconfigure_sseu(ce, sseu); 1426 if (ret) 1427 goto out_ce; 1428 1429 args->size = sizeof(user_sseu); 1430 1431 out_ce: 1432 intel_context_put(ce); 1433 return ret; 1434 } 1435 1436 struct set_engines { 1437 struct i915_gem_context *ctx; 1438 struct i915_gem_engines *engines; 1439 }; 1440 1441 static int 1442 set_engines__load_balance(struct i915_user_extension __user *base, void *data) 1443 { 1444 struct i915_context_engines_load_balance __user *ext = 1445 container_of_user(base, typeof(*ext), base); 1446 const struct set_engines *set = data; 1447 struct intel_engine_cs *stack[16]; 1448 struct intel_engine_cs **siblings; 1449 struct intel_context *ce; 1450 u16 num_siblings, idx; 1451 unsigned int n; 1452 int err; 1453 1454 if (!HAS_EXECLISTS(set->ctx->i915)) 1455 return -ENODEV; 1456 1457 if (USES_GUC_SUBMISSION(set->ctx->i915)) 1458 return -ENODEV; /* not implement yet */ 1459 1460 if (get_user(idx, &ext->engine_index)) 1461 return -EFAULT; 1462 1463 if (idx >= set->engines->num_engines) { 1464 DRM_DEBUG("Invalid placement value, %d >= %d\n", 1465 idx, set->engines->num_engines); 1466 return -EINVAL; 1467 } 1468 1469 idx = array_index_nospec(idx, set->engines->num_engines); 1470 if (set->engines->engines[idx]) { 1471 DRM_DEBUG("Invalid placement[%d], already occupied\n", idx); 1472 return -EEXIST; 1473 } 1474 1475 if (get_user(num_siblings, &ext->num_siblings)) 1476 return -EFAULT; 1477 1478 err = check_user_mbz(&ext->flags); 1479 if (err) 1480 return err; 1481 1482 err = check_user_mbz(&ext->mbz64); 1483 if (err) 1484 return err; 1485 1486 siblings = stack; 1487 if (num_siblings > ARRAY_SIZE(stack)) { 1488 siblings = kmalloc_array(num_siblings, 1489 sizeof(*siblings), 1490 GFP_KERNEL); 1491 if (!siblings) 1492 return -ENOMEM; 1493 } 1494 1495 for (n = 0; n < num_siblings; n++) { 1496 struct i915_engine_class_instance ci; 1497 1498 if (copy_from_user(&ci, &ext->engines[n], sizeof(ci))) { 1499 err = -EFAULT; 1500 goto out_siblings; 1501 } 1502 1503 siblings[n] = intel_engine_lookup_user(set->ctx->i915, 1504 ci.engine_class, 1505 ci.engine_instance); 1506 if (!siblings[n]) { 1507 DRM_DEBUG("Invalid sibling[%d]: { class:%d, inst:%d }\n", 1508 n, ci.engine_class, ci.engine_instance); 1509 err = -EINVAL; 1510 goto out_siblings; 1511 } 1512 } 1513 1514 ce = intel_execlists_create_virtual(siblings, n); 1515 if (IS_ERR(ce)) { 1516 err = PTR_ERR(ce); 1517 goto out_siblings; 1518 } 1519 1520 intel_context_set_gem(ce, set->ctx); 1521 1522 if (cmpxchg(&set->engines->engines[idx], NULL, ce)) { 1523 intel_context_put(ce); 1524 err = -EEXIST; 1525 goto out_siblings; 1526 } 1527 1528 out_siblings: 1529 if (siblings != stack) 1530 kfree(siblings); 1531 1532 return err; 1533 } 1534 1535 static int 1536 set_engines__bond(struct i915_user_extension __user *base, void *data) 1537 { 1538 struct i915_context_engines_bond __user *ext = 1539 container_of_user(base, typeof(*ext), base); 1540 const struct set_engines *set = data; 1541 struct i915_engine_class_instance ci; 1542 struct intel_engine_cs *virtual; 1543 struct intel_engine_cs *master; 1544 u16 idx, num_bonds; 1545 int err, n; 1546 1547 if (get_user(idx, &ext->virtual_index)) 1548 return -EFAULT; 1549 1550 if (idx >= set->engines->num_engines) { 1551 DRM_DEBUG("Invalid index for virtual engine: %d >= %d\n", 1552 idx, set->engines->num_engines); 1553 return -EINVAL; 1554 } 1555 1556 idx = array_index_nospec(idx, set->engines->num_engines); 1557 if (!set->engines->engines[idx]) { 1558 DRM_DEBUG("Invalid engine at %d\n", idx); 1559 return -EINVAL; 1560 } 1561 virtual = set->engines->engines[idx]->engine; 1562 1563 err = check_user_mbz(&ext->flags); 1564 if (err) 1565 return err; 1566 1567 for (n = 0; n < ARRAY_SIZE(ext->mbz64); n++) { 1568 err = check_user_mbz(&ext->mbz64[n]); 1569 if (err) 1570 return err; 1571 } 1572 1573 if (copy_from_user(&ci, &ext->master, sizeof(ci))) 1574 return -EFAULT; 1575 1576 master = intel_engine_lookup_user(set->ctx->i915, 1577 ci.engine_class, ci.engine_instance); 1578 if (!master) { 1579 DRM_DEBUG("Unrecognised master engine: { class:%u, instance:%u }\n", 1580 ci.engine_class, ci.engine_instance); 1581 return -EINVAL; 1582 } 1583 1584 if (get_user(num_bonds, &ext->num_bonds)) 1585 return -EFAULT; 1586 1587 for (n = 0; n < num_bonds; n++) { 1588 struct intel_engine_cs *bond; 1589 1590 if (copy_from_user(&ci, &ext->engines[n], sizeof(ci))) 1591 return -EFAULT; 1592 1593 bond = intel_engine_lookup_user(set->ctx->i915, 1594 ci.engine_class, 1595 ci.engine_instance); 1596 if (!bond) { 1597 DRM_DEBUG("Unrecognised engine[%d] for bonding: { class:%d, instance: %d }\n", 1598 n, ci.engine_class, ci.engine_instance); 1599 return -EINVAL; 1600 } 1601 1602 /* 1603 * A non-virtual engine has no siblings to choose between; and 1604 * a submit fence will always be directed to the one engine. 1605 */ 1606 if (intel_engine_is_virtual(virtual)) { 1607 err = intel_virtual_engine_attach_bond(virtual, 1608 master, 1609 bond); 1610 if (err) 1611 return err; 1612 } 1613 } 1614 1615 return 0; 1616 } 1617 1618 static const i915_user_extension_fn set_engines__extensions[] = { 1619 [I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE] = set_engines__load_balance, 1620 [I915_CONTEXT_ENGINES_EXT_BOND] = set_engines__bond, 1621 }; 1622 1623 static int 1624 set_engines(struct i915_gem_context *ctx, 1625 const struct drm_i915_gem_context_param *args) 1626 { 1627 struct i915_context_param_engines __user *user = 1628 u64_to_user_ptr(args->value); 1629 struct set_engines set = { .ctx = ctx }; 1630 unsigned int num_engines, n; 1631 u64 extensions; 1632 int err; 1633 1634 if (!args->size) { /* switch back to legacy user_ring_map */ 1635 if (!i915_gem_context_user_engines(ctx)) 1636 return 0; 1637 1638 set.engines = default_engines(ctx); 1639 if (IS_ERR(set.engines)) 1640 return PTR_ERR(set.engines); 1641 1642 goto replace; 1643 } 1644 1645 BUILD_BUG_ON(!IS_ALIGNED(sizeof(*user), sizeof(*user->engines))); 1646 if (args->size < sizeof(*user) || 1647 !IS_ALIGNED(args->size, sizeof(*user->engines))) { 1648 DRM_DEBUG("Invalid size for engine array: %d\n", 1649 args->size); 1650 return -EINVAL; 1651 } 1652 1653 /* 1654 * Note that I915_EXEC_RING_MASK limits execbuf to only using the 1655 * first 64 engines defined here. 1656 */ 1657 num_engines = (args->size - sizeof(*user)) / sizeof(*user->engines); 1658 1659 set.engines = kmalloc(struct_size(set.engines, engines, num_engines), 1660 GFP_KERNEL); 1661 if (!set.engines) 1662 return -ENOMEM; 1663 1664 init_rcu_head(&set.engines->rcu); 1665 for (n = 0; n < num_engines; n++) { 1666 struct i915_engine_class_instance ci; 1667 struct intel_engine_cs *engine; 1668 struct intel_context *ce; 1669 1670 if (copy_from_user(&ci, &user->engines[n], sizeof(ci))) { 1671 __free_engines(set.engines, n); 1672 return -EFAULT; 1673 } 1674 1675 if (ci.engine_class == (u16)I915_ENGINE_CLASS_INVALID && 1676 ci.engine_instance == (u16)I915_ENGINE_CLASS_INVALID_NONE) { 1677 set.engines->engines[n] = NULL; 1678 continue; 1679 } 1680 1681 engine = intel_engine_lookup_user(ctx->i915, 1682 ci.engine_class, 1683 ci.engine_instance); 1684 if (!engine) { 1685 DRM_DEBUG("Invalid engine[%d]: { class:%d, instance:%d }\n", 1686 n, ci.engine_class, ci.engine_instance); 1687 __free_engines(set.engines, n); 1688 return -ENOENT; 1689 } 1690 1691 ce = intel_context_create(engine); 1692 if (IS_ERR(ce)) { 1693 __free_engines(set.engines, n); 1694 return PTR_ERR(ce); 1695 } 1696 1697 intel_context_set_gem(ce, ctx); 1698 1699 set.engines->engines[n] = ce; 1700 } 1701 set.engines->num_engines = num_engines; 1702 1703 err = -EFAULT; 1704 if (!get_user(extensions, &user->extensions)) 1705 err = i915_user_extensions(u64_to_user_ptr(extensions), 1706 set_engines__extensions, 1707 ARRAY_SIZE(set_engines__extensions), 1708 &set); 1709 if (err) { 1710 free_engines(set.engines); 1711 return err; 1712 } 1713 1714 replace: 1715 mutex_lock(&ctx->engines_mutex); 1716 if (args->size) 1717 i915_gem_context_set_user_engines(ctx); 1718 else 1719 i915_gem_context_clear_user_engines(ctx); 1720 set.engines = rcu_replace_pointer(ctx->engines, set.engines, 1); 1721 mutex_unlock(&ctx->engines_mutex); 1722 1723 call_rcu(&set.engines->rcu, free_engines_rcu); 1724 1725 return 0; 1726 } 1727 1728 static struct i915_gem_engines * 1729 __copy_engines(struct i915_gem_engines *e) 1730 { 1731 struct i915_gem_engines *copy; 1732 unsigned int n; 1733 1734 copy = kmalloc(struct_size(e, engines, e->num_engines), GFP_KERNEL); 1735 if (!copy) 1736 return ERR_PTR(-ENOMEM); 1737 1738 init_rcu_head(©->rcu); 1739 for (n = 0; n < e->num_engines; n++) { 1740 if (e->engines[n]) 1741 copy->engines[n] = intel_context_get(e->engines[n]); 1742 else 1743 copy->engines[n] = NULL; 1744 } 1745 copy->num_engines = n; 1746 1747 return copy; 1748 } 1749 1750 static int 1751 get_engines(struct i915_gem_context *ctx, 1752 struct drm_i915_gem_context_param *args) 1753 { 1754 struct i915_context_param_engines __user *user; 1755 struct i915_gem_engines *e; 1756 size_t n, count, size; 1757 int err = 0; 1758 1759 err = mutex_lock_interruptible(&ctx->engines_mutex); 1760 if (err) 1761 return err; 1762 1763 e = NULL; 1764 if (i915_gem_context_user_engines(ctx)) 1765 e = __copy_engines(i915_gem_context_engines(ctx)); 1766 mutex_unlock(&ctx->engines_mutex); 1767 if (IS_ERR_OR_NULL(e)) { 1768 args->size = 0; 1769 return PTR_ERR_OR_ZERO(e); 1770 } 1771 1772 count = e->num_engines; 1773 1774 /* Be paranoid in case we have an impedance mismatch */ 1775 if (!check_struct_size(user, engines, count, &size)) { 1776 err = -EINVAL; 1777 goto err_free; 1778 } 1779 if (overflows_type(size, args->size)) { 1780 err = -EINVAL; 1781 goto err_free; 1782 } 1783 1784 if (!args->size) { 1785 args->size = size; 1786 goto err_free; 1787 } 1788 1789 if (args->size < size) { 1790 err = -EINVAL; 1791 goto err_free; 1792 } 1793 1794 user = u64_to_user_ptr(args->value); 1795 if (!access_ok(user, size)) { 1796 err = -EFAULT; 1797 goto err_free; 1798 } 1799 1800 if (put_user(0, &user->extensions)) { 1801 err = -EFAULT; 1802 goto err_free; 1803 } 1804 1805 for (n = 0; n < count; n++) { 1806 struct i915_engine_class_instance ci = { 1807 .engine_class = I915_ENGINE_CLASS_INVALID, 1808 .engine_instance = I915_ENGINE_CLASS_INVALID_NONE, 1809 }; 1810 1811 if (e->engines[n]) { 1812 ci.engine_class = e->engines[n]->engine->uabi_class; 1813 ci.engine_instance = e->engines[n]->engine->uabi_instance; 1814 } 1815 1816 if (copy_to_user(&user->engines[n], &ci, sizeof(ci))) { 1817 err = -EFAULT; 1818 goto err_free; 1819 } 1820 } 1821 1822 args->size = size; 1823 1824 err_free: 1825 free_engines(e); 1826 return err; 1827 } 1828 1829 static int 1830 set_persistence(struct i915_gem_context *ctx, 1831 const struct drm_i915_gem_context_param *args) 1832 { 1833 if (args->size) 1834 return -EINVAL; 1835 1836 return __context_set_persistence(ctx, args->value); 1837 } 1838 1839 static void __apply_priority(struct intel_context *ce, void *arg) 1840 { 1841 struct i915_gem_context *ctx = arg; 1842 1843 if (!intel_engine_has_semaphores(ce->engine)) 1844 return; 1845 1846 if (ctx->sched.priority >= I915_PRIORITY_NORMAL) 1847 intel_context_set_use_semaphores(ce); 1848 else 1849 intel_context_clear_use_semaphores(ce); 1850 } 1851 1852 static int set_priority(struct i915_gem_context *ctx, 1853 const struct drm_i915_gem_context_param *args) 1854 { 1855 s64 priority = args->value; 1856 1857 if (args->size) 1858 return -EINVAL; 1859 1860 if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PRIORITY)) 1861 return -ENODEV; 1862 1863 if (priority > I915_CONTEXT_MAX_USER_PRIORITY || 1864 priority < I915_CONTEXT_MIN_USER_PRIORITY) 1865 return -EINVAL; 1866 1867 if (priority > I915_CONTEXT_DEFAULT_PRIORITY && 1868 !capable(CAP_SYS_NICE)) 1869 return -EPERM; 1870 1871 ctx->sched.priority = I915_USER_PRIORITY(priority); 1872 context_apply_all(ctx, __apply_priority, ctx); 1873 1874 return 0; 1875 } 1876 1877 static int ctx_setparam(struct drm_i915_file_private *fpriv, 1878 struct i915_gem_context *ctx, 1879 struct drm_i915_gem_context_param *args) 1880 { 1881 int ret = 0; 1882 1883 switch (args->param) { 1884 case I915_CONTEXT_PARAM_NO_ZEROMAP: 1885 if (args->size) 1886 ret = -EINVAL; 1887 else if (args->value) 1888 set_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags); 1889 else 1890 clear_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags); 1891 break; 1892 1893 case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE: 1894 if (args->size) 1895 ret = -EINVAL; 1896 else if (args->value) 1897 i915_gem_context_set_no_error_capture(ctx); 1898 else 1899 i915_gem_context_clear_no_error_capture(ctx); 1900 break; 1901 1902 case I915_CONTEXT_PARAM_BANNABLE: 1903 if (args->size) 1904 ret = -EINVAL; 1905 else if (!capable(CAP_SYS_ADMIN) && !args->value) 1906 ret = -EPERM; 1907 else if (args->value) 1908 i915_gem_context_set_bannable(ctx); 1909 else 1910 i915_gem_context_clear_bannable(ctx); 1911 break; 1912 1913 case I915_CONTEXT_PARAM_RECOVERABLE: 1914 if (args->size) 1915 ret = -EINVAL; 1916 else if (args->value) 1917 i915_gem_context_set_recoverable(ctx); 1918 else 1919 i915_gem_context_clear_recoverable(ctx); 1920 break; 1921 1922 case I915_CONTEXT_PARAM_PRIORITY: 1923 ret = set_priority(ctx, args); 1924 break; 1925 1926 case I915_CONTEXT_PARAM_SSEU: 1927 ret = set_sseu(ctx, args); 1928 break; 1929 1930 case I915_CONTEXT_PARAM_VM: 1931 ret = set_ppgtt(fpriv, ctx, args); 1932 break; 1933 1934 case I915_CONTEXT_PARAM_ENGINES: 1935 ret = set_engines(ctx, args); 1936 break; 1937 1938 case I915_CONTEXT_PARAM_PERSISTENCE: 1939 ret = set_persistence(ctx, args); 1940 break; 1941 1942 case I915_CONTEXT_PARAM_BAN_PERIOD: 1943 default: 1944 ret = -EINVAL; 1945 break; 1946 } 1947 1948 return ret; 1949 } 1950 1951 struct create_ext { 1952 struct i915_gem_context *ctx; 1953 struct drm_i915_file_private *fpriv; 1954 }; 1955 1956 static int create_setparam(struct i915_user_extension __user *ext, void *data) 1957 { 1958 struct drm_i915_gem_context_create_ext_setparam local; 1959 const struct create_ext *arg = data; 1960 1961 if (copy_from_user(&local, ext, sizeof(local))) 1962 return -EFAULT; 1963 1964 if (local.param.ctx_id) 1965 return -EINVAL; 1966 1967 return ctx_setparam(arg->fpriv, arg->ctx, &local.param); 1968 } 1969 1970 static int clone_engines(struct i915_gem_context *dst, 1971 struct i915_gem_context *src) 1972 { 1973 struct i915_gem_engines *e = i915_gem_context_lock_engines(src); 1974 struct i915_gem_engines *clone; 1975 bool user_engines; 1976 unsigned long n; 1977 1978 clone = kmalloc(struct_size(e, engines, e->num_engines), GFP_KERNEL); 1979 if (!clone) 1980 goto err_unlock; 1981 1982 init_rcu_head(&clone->rcu); 1983 for (n = 0; n < e->num_engines; n++) { 1984 struct intel_engine_cs *engine; 1985 1986 if (!e->engines[n]) { 1987 clone->engines[n] = NULL; 1988 continue; 1989 } 1990 engine = e->engines[n]->engine; 1991 1992 /* 1993 * Virtual engines are singletons; they can only exist 1994 * inside a single context, because they embed their 1995 * HW context... As each virtual context implies a single 1996 * timeline (each engine can only dequeue a single request 1997 * at any time), it would be surprising for two contexts 1998 * to use the same engine. So let's create a copy of 1999 * the virtual engine instead. 2000 */ 2001 if (intel_engine_is_virtual(engine)) 2002 clone->engines[n] = 2003 intel_execlists_clone_virtual(engine); 2004 else 2005 clone->engines[n] = intel_context_create(engine); 2006 if (IS_ERR_OR_NULL(clone->engines[n])) { 2007 __free_engines(clone, n); 2008 goto err_unlock; 2009 } 2010 2011 intel_context_set_gem(clone->engines[n], dst); 2012 } 2013 clone->num_engines = n; 2014 2015 user_engines = i915_gem_context_user_engines(src); 2016 i915_gem_context_unlock_engines(src); 2017 2018 /* Serialised by constructor */ 2019 free_engines(__context_engines_static(dst)); 2020 RCU_INIT_POINTER(dst->engines, clone); 2021 if (user_engines) 2022 i915_gem_context_set_user_engines(dst); 2023 else 2024 i915_gem_context_clear_user_engines(dst); 2025 return 0; 2026 2027 err_unlock: 2028 i915_gem_context_unlock_engines(src); 2029 return -ENOMEM; 2030 } 2031 2032 static int clone_flags(struct i915_gem_context *dst, 2033 struct i915_gem_context *src) 2034 { 2035 dst->user_flags = src->user_flags; 2036 return 0; 2037 } 2038 2039 static int clone_schedattr(struct i915_gem_context *dst, 2040 struct i915_gem_context *src) 2041 { 2042 dst->sched = src->sched; 2043 return 0; 2044 } 2045 2046 static int clone_sseu(struct i915_gem_context *dst, 2047 struct i915_gem_context *src) 2048 { 2049 struct i915_gem_engines *e = i915_gem_context_lock_engines(src); 2050 struct i915_gem_engines *clone; 2051 unsigned long n; 2052 int err; 2053 2054 /* no locking required; sole access under constructor*/ 2055 clone = __context_engines_static(dst); 2056 if (e->num_engines != clone->num_engines) { 2057 err = -EINVAL; 2058 goto unlock; 2059 } 2060 2061 for (n = 0; n < e->num_engines; n++) { 2062 struct intel_context *ce = e->engines[n]; 2063 2064 if (clone->engines[n]->engine->class != ce->engine->class) { 2065 /* Must have compatible engine maps! */ 2066 err = -EINVAL; 2067 goto unlock; 2068 } 2069 2070 /* serialises with set_sseu */ 2071 err = intel_context_lock_pinned(ce); 2072 if (err) 2073 goto unlock; 2074 2075 clone->engines[n]->sseu = ce->sseu; 2076 intel_context_unlock_pinned(ce); 2077 } 2078 2079 err = 0; 2080 unlock: 2081 i915_gem_context_unlock_engines(src); 2082 return err; 2083 } 2084 2085 static int clone_timeline(struct i915_gem_context *dst, 2086 struct i915_gem_context *src) 2087 { 2088 if (src->timeline) 2089 __assign_timeline(dst, src->timeline); 2090 2091 return 0; 2092 } 2093 2094 static int clone_vm(struct i915_gem_context *dst, 2095 struct i915_gem_context *src) 2096 { 2097 struct i915_address_space *vm; 2098 int err = 0; 2099 2100 if (!rcu_access_pointer(src->vm)) 2101 return 0; 2102 2103 rcu_read_lock(); 2104 vm = context_get_vm_rcu(src); 2105 rcu_read_unlock(); 2106 2107 if (!mutex_lock_interruptible(&dst->mutex)) { 2108 __assign_ppgtt(dst, vm); 2109 mutex_unlock(&dst->mutex); 2110 } else { 2111 err = -EINTR; 2112 } 2113 2114 i915_vm_put(vm); 2115 return err; 2116 } 2117 2118 static int create_clone(struct i915_user_extension __user *ext, void *data) 2119 { 2120 static int (* const fn[])(struct i915_gem_context *dst, 2121 struct i915_gem_context *src) = { 2122 #define MAP(x, y) [ilog2(I915_CONTEXT_CLONE_##x)] = y 2123 MAP(ENGINES, clone_engines), 2124 MAP(FLAGS, clone_flags), 2125 MAP(SCHEDATTR, clone_schedattr), 2126 MAP(SSEU, clone_sseu), 2127 MAP(TIMELINE, clone_timeline), 2128 MAP(VM, clone_vm), 2129 #undef MAP 2130 }; 2131 struct drm_i915_gem_context_create_ext_clone local; 2132 const struct create_ext *arg = data; 2133 struct i915_gem_context *dst = arg->ctx; 2134 struct i915_gem_context *src; 2135 int err, bit; 2136 2137 if (copy_from_user(&local, ext, sizeof(local))) 2138 return -EFAULT; 2139 2140 BUILD_BUG_ON(GENMASK(BITS_PER_TYPE(local.flags) - 1, ARRAY_SIZE(fn)) != 2141 I915_CONTEXT_CLONE_UNKNOWN); 2142 2143 if (local.flags & I915_CONTEXT_CLONE_UNKNOWN) 2144 return -EINVAL; 2145 2146 if (local.rsvd) 2147 return -EINVAL; 2148 2149 rcu_read_lock(); 2150 src = __i915_gem_context_lookup_rcu(arg->fpriv, local.clone_id); 2151 rcu_read_unlock(); 2152 if (!src) 2153 return -ENOENT; 2154 2155 GEM_BUG_ON(src == dst); 2156 2157 for (bit = 0; bit < ARRAY_SIZE(fn); bit++) { 2158 if (!(local.flags & BIT(bit))) 2159 continue; 2160 2161 err = fn[bit](dst, src); 2162 if (err) 2163 return err; 2164 } 2165 2166 return 0; 2167 } 2168 2169 static const i915_user_extension_fn create_extensions[] = { 2170 [I915_CONTEXT_CREATE_EXT_SETPARAM] = create_setparam, 2171 [I915_CONTEXT_CREATE_EXT_CLONE] = create_clone, 2172 }; 2173 2174 static bool client_is_banned(struct drm_i915_file_private *file_priv) 2175 { 2176 return atomic_read(&file_priv->ban_score) >= I915_CLIENT_SCORE_BANNED; 2177 } 2178 2179 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data, 2180 struct drm_file *file) 2181 { 2182 struct drm_i915_private *i915 = to_i915(dev); 2183 struct drm_i915_gem_context_create_ext *args = data; 2184 struct create_ext ext_data; 2185 int ret; 2186 u32 id; 2187 2188 if (!DRIVER_CAPS(i915)->has_logical_contexts) 2189 return -ENODEV; 2190 2191 if (args->flags & I915_CONTEXT_CREATE_FLAGS_UNKNOWN) 2192 return -EINVAL; 2193 2194 ret = intel_gt_terminally_wedged(&i915->gt); 2195 if (ret) 2196 return ret; 2197 2198 ext_data.fpriv = file->driver_priv; 2199 if (client_is_banned(ext_data.fpriv)) { 2200 DRM_DEBUG("client %s[%d] banned from creating ctx\n", 2201 current->comm, task_pid_nr(current)); 2202 return -EIO; 2203 } 2204 2205 ext_data.ctx = i915_gem_create_context(i915, args->flags); 2206 if (IS_ERR(ext_data.ctx)) 2207 return PTR_ERR(ext_data.ctx); 2208 2209 if (args->flags & I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS) { 2210 ret = i915_user_extensions(u64_to_user_ptr(args->extensions), 2211 create_extensions, 2212 ARRAY_SIZE(create_extensions), 2213 &ext_data); 2214 if (ret) 2215 goto err_ctx; 2216 } 2217 2218 ret = gem_context_register(ext_data.ctx, ext_data.fpriv, &id); 2219 if (ret < 0) 2220 goto err_ctx; 2221 2222 args->ctx_id = id; 2223 DRM_DEBUG("HW context %d created\n", args->ctx_id); 2224 2225 return 0; 2226 2227 err_ctx: 2228 context_close(ext_data.ctx); 2229 return ret; 2230 } 2231 2232 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data, 2233 struct drm_file *file) 2234 { 2235 struct drm_i915_gem_context_destroy *args = data; 2236 struct drm_i915_file_private *file_priv = file->driver_priv; 2237 struct i915_gem_context *ctx; 2238 2239 if (args->pad != 0) 2240 return -EINVAL; 2241 2242 if (!args->ctx_id) 2243 return -ENOENT; 2244 2245 ctx = xa_erase(&file_priv->context_xa, args->ctx_id); 2246 if (!ctx) 2247 return -ENOENT; 2248 2249 context_close(ctx); 2250 return 0; 2251 } 2252 2253 static int get_sseu(struct i915_gem_context *ctx, 2254 struct drm_i915_gem_context_param *args) 2255 { 2256 struct drm_i915_gem_context_param_sseu user_sseu; 2257 struct intel_context *ce; 2258 unsigned long lookup; 2259 int err; 2260 2261 if (args->size == 0) 2262 goto out; 2263 else if (args->size < sizeof(user_sseu)) 2264 return -EINVAL; 2265 2266 if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value), 2267 sizeof(user_sseu))) 2268 return -EFAULT; 2269 2270 if (user_sseu.rsvd) 2271 return -EINVAL; 2272 2273 if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)) 2274 return -EINVAL; 2275 2276 lookup = 0; 2277 if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX) 2278 lookup |= LOOKUP_USER_INDEX; 2279 2280 ce = lookup_user_engine(ctx, lookup, &user_sseu.engine); 2281 if (IS_ERR(ce)) 2282 return PTR_ERR(ce); 2283 2284 err = intel_context_lock_pinned(ce); /* serialises with set_sseu */ 2285 if (err) { 2286 intel_context_put(ce); 2287 return err; 2288 } 2289 2290 user_sseu.slice_mask = ce->sseu.slice_mask; 2291 user_sseu.subslice_mask = ce->sseu.subslice_mask; 2292 user_sseu.min_eus_per_subslice = ce->sseu.min_eus_per_subslice; 2293 user_sseu.max_eus_per_subslice = ce->sseu.max_eus_per_subslice; 2294 2295 intel_context_unlock_pinned(ce); 2296 intel_context_put(ce); 2297 2298 if (copy_to_user(u64_to_user_ptr(args->value), &user_sseu, 2299 sizeof(user_sseu))) 2300 return -EFAULT; 2301 2302 out: 2303 args->size = sizeof(user_sseu); 2304 2305 return 0; 2306 } 2307 2308 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data, 2309 struct drm_file *file) 2310 { 2311 struct drm_i915_file_private *file_priv = file->driver_priv; 2312 struct drm_i915_gem_context_param *args = data; 2313 struct i915_gem_context *ctx; 2314 int ret = 0; 2315 2316 ctx = i915_gem_context_lookup(file_priv, args->ctx_id); 2317 if (!ctx) 2318 return -ENOENT; 2319 2320 switch (args->param) { 2321 case I915_CONTEXT_PARAM_NO_ZEROMAP: 2322 args->size = 0; 2323 args->value = test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags); 2324 break; 2325 2326 case I915_CONTEXT_PARAM_GTT_SIZE: 2327 args->size = 0; 2328 rcu_read_lock(); 2329 if (rcu_access_pointer(ctx->vm)) 2330 args->value = rcu_dereference(ctx->vm)->total; 2331 else 2332 args->value = to_i915(dev)->ggtt.vm.total; 2333 rcu_read_unlock(); 2334 break; 2335 2336 case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE: 2337 args->size = 0; 2338 args->value = i915_gem_context_no_error_capture(ctx); 2339 break; 2340 2341 case I915_CONTEXT_PARAM_BANNABLE: 2342 args->size = 0; 2343 args->value = i915_gem_context_is_bannable(ctx); 2344 break; 2345 2346 case I915_CONTEXT_PARAM_RECOVERABLE: 2347 args->size = 0; 2348 args->value = i915_gem_context_is_recoverable(ctx); 2349 break; 2350 2351 case I915_CONTEXT_PARAM_PRIORITY: 2352 args->size = 0; 2353 args->value = ctx->sched.priority >> I915_USER_PRIORITY_SHIFT; 2354 break; 2355 2356 case I915_CONTEXT_PARAM_SSEU: 2357 ret = get_sseu(ctx, args); 2358 break; 2359 2360 case I915_CONTEXT_PARAM_VM: 2361 ret = get_ppgtt(file_priv, ctx, args); 2362 break; 2363 2364 case I915_CONTEXT_PARAM_ENGINES: 2365 ret = get_engines(ctx, args); 2366 break; 2367 2368 case I915_CONTEXT_PARAM_PERSISTENCE: 2369 args->size = 0; 2370 args->value = i915_gem_context_is_persistent(ctx); 2371 break; 2372 2373 case I915_CONTEXT_PARAM_BAN_PERIOD: 2374 default: 2375 ret = -EINVAL; 2376 break; 2377 } 2378 2379 i915_gem_context_put(ctx); 2380 return ret; 2381 } 2382 2383 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data, 2384 struct drm_file *file) 2385 { 2386 struct drm_i915_file_private *file_priv = file->driver_priv; 2387 struct drm_i915_gem_context_param *args = data; 2388 struct i915_gem_context *ctx; 2389 int ret; 2390 2391 ctx = i915_gem_context_lookup(file_priv, args->ctx_id); 2392 if (!ctx) 2393 return -ENOENT; 2394 2395 ret = ctx_setparam(file_priv, ctx, args); 2396 2397 i915_gem_context_put(ctx); 2398 return ret; 2399 } 2400 2401 int i915_gem_context_reset_stats_ioctl(struct drm_device *dev, 2402 void *data, struct drm_file *file) 2403 { 2404 struct drm_i915_private *i915 = to_i915(dev); 2405 struct drm_i915_reset_stats *args = data; 2406 struct i915_gem_context *ctx; 2407 int ret; 2408 2409 if (args->flags || args->pad) 2410 return -EINVAL; 2411 2412 ret = -ENOENT; 2413 rcu_read_lock(); 2414 ctx = __i915_gem_context_lookup_rcu(file->driver_priv, args->ctx_id); 2415 if (!ctx) 2416 goto out; 2417 2418 /* 2419 * We opt for unserialised reads here. This may result in tearing 2420 * in the extremely unlikely event of a GPU hang on this context 2421 * as we are querying them. If we need that extra layer of protection, 2422 * we should wrap the hangstats with a seqlock. 2423 */ 2424 2425 if (capable(CAP_SYS_ADMIN)) 2426 args->reset_count = i915_reset_count(&i915->gpu_error); 2427 else 2428 args->reset_count = 0; 2429 2430 args->batch_active = atomic_read(&ctx->guilty_count); 2431 args->batch_pending = atomic_read(&ctx->active_count); 2432 2433 ret = 0; 2434 out: 2435 rcu_read_unlock(); 2436 return ret; 2437 } 2438 2439 /* GEM context-engines iterator: for_each_gem_engine() */ 2440 struct intel_context * 2441 i915_gem_engines_iter_next(struct i915_gem_engines_iter *it) 2442 { 2443 const struct i915_gem_engines *e = it->engines; 2444 struct intel_context *ctx; 2445 2446 do { 2447 if (it->idx >= e->num_engines) 2448 return NULL; 2449 2450 ctx = e->engines[it->idx++]; 2451 } while (!ctx); 2452 2453 return ctx; 2454 } 2455 2456 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2457 #include "selftests/mock_context.c" 2458 #include "selftests/i915_gem_context.c" 2459 #endif 2460 2461 static void i915_global_gem_context_shrink(void) 2462 { 2463 kmem_cache_shrink(global.slab_luts); 2464 } 2465 2466 static void i915_global_gem_context_exit(void) 2467 { 2468 kmem_cache_destroy(global.slab_luts); 2469 } 2470 2471 static struct i915_global_gem_context global = { { 2472 .shrink = i915_global_gem_context_shrink, 2473 .exit = i915_global_gem_context_exit, 2474 } }; 2475 2476 int __init i915_global_gem_context_init(void) 2477 { 2478 global.slab_luts = KMEM_CACHE(i915_lut_handle, 0); 2479 if (!global.slab_luts) 2480 return -ENOMEM; 2481 2482 i915_global_register(&global.base); 2483 return 0; 2484 } 2485