1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2011-2012 Intel Corporation 5 */ 6 7 /* 8 * This file implements HW context support. On gen5+ a HW context consists of an 9 * opaque GPU object which is referenced at times of context saves and restores. 10 * With RC6 enabled, the context is also referenced as the GPU enters and exists 11 * from RC6 (GPU has it's own internal power context, except on gen5). Though 12 * something like a context does exist for the media ring, the code only 13 * supports contexts for the render ring. 14 * 15 * In software, there is a distinction between contexts created by the user, 16 * and the default HW context. The default HW context is used by GPU clients 17 * that do not request setup of their own hardware context. The default 18 * context's state is never restored to help prevent programming errors. This 19 * would happen if a client ran and piggy-backed off another clients GPU state. 20 * The default context only exists to give the GPU some offset to load as the 21 * current to invoke a save of the context we actually care about. In fact, the 22 * code could likely be constructed, albeit in a more complicated fashion, to 23 * never use the default context, though that limits the driver's ability to 24 * swap out, and/or destroy other contexts. 25 * 26 * All other contexts are created as a request by the GPU client. These contexts 27 * store GPU state, and thus allow GPU clients to not re-emit state (and 28 * potentially query certain state) at any time. The kernel driver makes 29 * certain that the appropriate commands are inserted. 30 * 31 * The context life cycle is semi-complicated in that context BOs may live 32 * longer than the context itself because of the way the hardware, and object 33 * tracking works. Below is a very crude representation of the state machine 34 * describing the context life. 35 * refcount pincount active 36 * S0: initial state 0 0 0 37 * S1: context created 1 0 0 38 * S2: context is currently running 2 1 X 39 * S3: GPU referenced, but not current 2 0 1 40 * S4: context is current, but destroyed 1 1 0 41 * S5: like S3, but destroyed 1 0 1 42 * 43 * The most common (but not all) transitions: 44 * S0->S1: client creates a context 45 * S1->S2: client submits execbuf with context 46 * S2->S3: other clients submits execbuf with context 47 * S3->S1: context object was retired 48 * S3->S2: clients submits another execbuf 49 * S2->S4: context destroy called with current context 50 * S3->S5->S0: destroy path 51 * S4->S5->S0: destroy path on current context 52 * 53 * There are two confusing terms used above: 54 * The "current context" means the context which is currently running on the 55 * GPU. The GPU has loaded its state already and has stored away the gtt 56 * offset of the BO. The GPU is not actively referencing the data at this 57 * offset, but it will on the next context switch. The only way to avoid this 58 * is to do a GPU reset. 59 * 60 * An "active context' is one which was previously the "current context" and is 61 * on the active list waiting for the next context switch to occur. Until this 62 * happens, the object must remain at the same gtt offset. It is therefore 63 * possible to destroy a context, but it is still active. 64 * 65 */ 66 67 #include <linux/log2.h> 68 #include <linux/nospec.h> 69 70 #include "gt/gen6_ppgtt.h" 71 #include "gt/intel_context.h" 72 #include "gt/intel_context_param.h" 73 #include "gt/intel_engine_heartbeat.h" 74 #include "gt/intel_engine_user.h" 75 #include "gt/intel_execlists_submission.h" /* virtual_engine */ 76 #include "gt/intel_gpu_commands.h" 77 #include "gt/intel_ring.h" 78 79 #include "i915_gem_context.h" 80 #include "i915_globals.h" 81 #include "i915_trace.h" 82 #include "i915_user_extensions.h" 83 84 #define ALL_L3_SLICES(dev) (1 << NUM_L3_SLICES(dev)) - 1 85 86 static struct i915_global_gem_context { 87 struct i915_global base; 88 struct kmem_cache *slab_luts; 89 } global; 90 91 struct i915_lut_handle *i915_lut_handle_alloc(void) 92 { 93 return kmem_cache_alloc(global.slab_luts, GFP_KERNEL); 94 } 95 96 void i915_lut_handle_free(struct i915_lut_handle *lut) 97 { 98 return kmem_cache_free(global.slab_luts, lut); 99 } 100 101 static void lut_close(struct i915_gem_context *ctx) 102 { 103 struct radix_tree_iter iter; 104 void __rcu **slot; 105 106 mutex_lock(&ctx->lut_mutex); 107 rcu_read_lock(); 108 radix_tree_for_each_slot(slot, &ctx->handles_vma, &iter, 0) { 109 struct i915_vma *vma = rcu_dereference_raw(*slot); 110 struct drm_i915_gem_object *obj = vma->obj; 111 struct i915_lut_handle *lut; 112 113 if (!kref_get_unless_zero(&obj->base.refcount)) 114 continue; 115 116 spin_lock(&obj->lut_lock); 117 list_for_each_entry(lut, &obj->lut_list, obj_link) { 118 if (lut->ctx != ctx) 119 continue; 120 121 if (lut->handle != iter.index) 122 continue; 123 124 list_del(&lut->obj_link); 125 break; 126 } 127 spin_unlock(&obj->lut_lock); 128 129 if (&lut->obj_link != &obj->lut_list) { 130 i915_lut_handle_free(lut); 131 radix_tree_iter_delete(&ctx->handles_vma, &iter, slot); 132 i915_vma_close(vma); 133 i915_gem_object_put(obj); 134 } 135 136 i915_gem_object_put(obj); 137 } 138 rcu_read_unlock(); 139 mutex_unlock(&ctx->lut_mutex); 140 } 141 142 static struct intel_context * 143 lookup_user_engine(struct i915_gem_context *ctx, 144 unsigned long flags, 145 const struct i915_engine_class_instance *ci) 146 #define LOOKUP_USER_INDEX BIT(0) 147 { 148 int idx; 149 150 if (!!(flags & LOOKUP_USER_INDEX) != i915_gem_context_user_engines(ctx)) 151 return ERR_PTR(-EINVAL); 152 153 if (!i915_gem_context_user_engines(ctx)) { 154 struct intel_engine_cs *engine; 155 156 engine = intel_engine_lookup_user(ctx->i915, 157 ci->engine_class, 158 ci->engine_instance); 159 if (!engine) 160 return ERR_PTR(-EINVAL); 161 162 idx = engine->legacy_idx; 163 } else { 164 idx = ci->engine_instance; 165 } 166 167 return i915_gem_context_get_engine(ctx, idx); 168 } 169 170 static struct i915_address_space * 171 context_get_vm_rcu(struct i915_gem_context *ctx) 172 { 173 GEM_BUG_ON(!rcu_access_pointer(ctx->vm)); 174 175 do { 176 struct i915_address_space *vm; 177 178 /* 179 * We do not allow downgrading from full-ppgtt [to a shared 180 * global gtt], so ctx->vm cannot become NULL. 181 */ 182 vm = rcu_dereference(ctx->vm); 183 if (!kref_get_unless_zero(&vm->ref)) 184 continue; 185 186 /* 187 * This ppgtt may have be reallocated between 188 * the read and the kref, and reassigned to a third 189 * context. In order to avoid inadvertent sharing 190 * of this ppgtt with that third context (and not 191 * src), we have to confirm that we have the same 192 * ppgtt after passing through the strong memory 193 * barrier implied by a successful 194 * kref_get_unless_zero(). 195 * 196 * Once we have acquired the current ppgtt of ctx, 197 * we no longer care if it is released from ctx, as 198 * it cannot be reallocated elsewhere. 199 */ 200 201 if (vm == rcu_access_pointer(ctx->vm)) 202 return rcu_pointer_handoff(vm); 203 204 i915_vm_put(vm); 205 } while (1); 206 } 207 208 static void intel_context_set_gem(struct intel_context *ce, 209 struct i915_gem_context *ctx) 210 { 211 GEM_BUG_ON(rcu_access_pointer(ce->gem_context)); 212 RCU_INIT_POINTER(ce->gem_context, ctx); 213 214 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) 215 ce->ring = __intel_context_ring_size(SZ_16K); 216 217 if (rcu_access_pointer(ctx->vm)) { 218 struct i915_address_space *vm; 219 220 rcu_read_lock(); 221 vm = context_get_vm_rcu(ctx); /* hmm */ 222 rcu_read_unlock(); 223 224 i915_vm_put(ce->vm); 225 ce->vm = vm; 226 } 227 228 GEM_BUG_ON(ce->timeline); 229 if (ctx->timeline) 230 ce->timeline = intel_timeline_get(ctx->timeline); 231 232 if (ctx->sched.priority >= I915_PRIORITY_NORMAL && 233 intel_engine_has_timeslices(ce->engine)) 234 __set_bit(CONTEXT_USE_SEMAPHORES, &ce->flags); 235 } 236 237 static void __free_engines(struct i915_gem_engines *e, unsigned int count) 238 { 239 while (count--) { 240 if (!e->engines[count]) 241 continue; 242 243 intel_context_put(e->engines[count]); 244 } 245 kfree(e); 246 } 247 248 static void free_engines(struct i915_gem_engines *e) 249 { 250 __free_engines(e, e->num_engines); 251 } 252 253 static void free_engines_rcu(struct rcu_head *rcu) 254 { 255 struct i915_gem_engines *engines = 256 container_of(rcu, struct i915_gem_engines, rcu); 257 258 i915_sw_fence_fini(&engines->fence); 259 free_engines(engines); 260 } 261 262 static int __i915_sw_fence_call 263 engines_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 264 { 265 struct i915_gem_engines *engines = 266 container_of(fence, typeof(*engines), fence); 267 268 switch (state) { 269 case FENCE_COMPLETE: 270 if (!list_empty(&engines->link)) { 271 struct i915_gem_context *ctx = engines->ctx; 272 unsigned long flags; 273 274 spin_lock_irqsave(&ctx->stale.lock, flags); 275 list_del(&engines->link); 276 spin_unlock_irqrestore(&ctx->stale.lock, flags); 277 } 278 i915_gem_context_put(engines->ctx); 279 break; 280 281 case FENCE_FREE: 282 init_rcu_head(&engines->rcu); 283 call_rcu(&engines->rcu, free_engines_rcu); 284 break; 285 } 286 287 return NOTIFY_DONE; 288 } 289 290 static struct i915_gem_engines *alloc_engines(unsigned int count) 291 { 292 struct i915_gem_engines *e; 293 294 e = kzalloc(struct_size(e, engines, count), GFP_KERNEL); 295 if (!e) 296 return NULL; 297 298 i915_sw_fence_init(&e->fence, engines_notify); 299 return e; 300 } 301 302 static struct i915_gem_engines *default_engines(struct i915_gem_context *ctx) 303 { 304 const struct intel_gt *gt = &ctx->i915->gt; 305 struct intel_engine_cs *engine; 306 struct i915_gem_engines *e; 307 enum intel_engine_id id; 308 309 e = alloc_engines(I915_NUM_ENGINES); 310 if (!e) 311 return ERR_PTR(-ENOMEM); 312 313 for_each_engine(engine, gt, id) { 314 struct intel_context *ce; 315 316 if (engine->legacy_idx == INVALID_ENGINE) 317 continue; 318 319 GEM_BUG_ON(engine->legacy_idx >= I915_NUM_ENGINES); 320 GEM_BUG_ON(e->engines[engine->legacy_idx]); 321 322 ce = intel_context_create(engine); 323 if (IS_ERR(ce)) { 324 __free_engines(e, e->num_engines + 1); 325 return ERR_CAST(ce); 326 } 327 328 intel_context_set_gem(ce, ctx); 329 330 e->engines[engine->legacy_idx] = ce; 331 e->num_engines = max(e->num_engines, engine->legacy_idx); 332 } 333 e->num_engines++; 334 335 return e; 336 } 337 338 void i915_gem_context_release(struct kref *ref) 339 { 340 struct i915_gem_context *ctx = container_of(ref, typeof(*ctx), ref); 341 342 trace_i915_context_free(ctx); 343 GEM_BUG_ON(!i915_gem_context_is_closed(ctx)); 344 345 mutex_destroy(&ctx->engines_mutex); 346 mutex_destroy(&ctx->lut_mutex); 347 348 if (ctx->timeline) 349 intel_timeline_put(ctx->timeline); 350 351 put_pid(ctx->pid); 352 mutex_destroy(&ctx->mutex); 353 354 kfree_rcu(ctx, rcu); 355 } 356 357 static inline struct i915_gem_engines * 358 __context_engines_static(const struct i915_gem_context *ctx) 359 { 360 return rcu_dereference_protected(ctx->engines, true); 361 } 362 363 static void __reset_context(struct i915_gem_context *ctx, 364 struct intel_engine_cs *engine) 365 { 366 intel_gt_handle_error(engine->gt, engine->mask, 0, 367 "context closure in %s", ctx->name); 368 } 369 370 static bool __cancel_engine(struct intel_engine_cs *engine) 371 { 372 /* 373 * Send a "high priority pulse" down the engine to cause the 374 * current request to be momentarily preempted. (If it fails to 375 * be preempted, it will be reset). As we have marked our context 376 * as banned, any incomplete request, including any running, will 377 * be skipped following the preemption. 378 * 379 * If there is no hangchecking (one of the reasons why we try to 380 * cancel the context) and no forced preemption, there may be no 381 * means by which we reset the GPU and evict the persistent hog. 382 * Ergo if we are unable to inject a preemptive pulse that can 383 * kill the banned context, we fallback to doing a local reset 384 * instead. 385 */ 386 return intel_engine_pulse(engine) == 0; 387 } 388 389 static bool 390 __active_engine(struct i915_request *rq, struct intel_engine_cs **active) 391 { 392 struct intel_engine_cs *engine, *locked; 393 bool ret = false; 394 395 /* 396 * Serialise with __i915_request_submit() so that it sees 397 * is-banned?, or we know the request is already inflight. 398 * 399 * Note that rq->engine is unstable, and so we double 400 * check that we have acquired the lock on the final engine. 401 */ 402 locked = READ_ONCE(rq->engine); 403 spin_lock_irq(&locked->active.lock); 404 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 405 spin_unlock(&locked->active.lock); 406 locked = engine; 407 spin_lock(&locked->active.lock); 408 } 409 410 if (i915_request_is_active(rq)) { 411 if (!__i915_request_is_complete(rq)) 412 *active = locked; 413 ret = true; 414 } 415 416 spin_unlock_irq(&locked->active.lock); 417 418 return ret; 419 } 420 421 static struct intel_engine_cs *active_engine(struct intel_context *ce) 422 { 423 struct intel_engine_cs *engine = NULL; 424 struct i915_request *rq; 425 426 if (intel_context_has_inflight(ce)) 427 return intel_context_inflight(ce); 428 429 if (!ce->timeline) 430 return NULL; 431 432 /* 433 * rq->link is only SLAB_TYPESAFE_BY_RCU, we need to hold a reference 434 * to the request to prevent it being transferred to a new timeline 435 * (and onto a new timeline->requests list). 436 */ 437 rcu_read_lock(); 438 list_for_each_entry_reverse(rq, &ce->timeline->requests, link) { 439 bool found; 440 441 /* timeline is already completed upto this point? */ 442 if (!i915_request_get_rcu(rq)) 443 break; 444 445 /* Check with the backend if the request is inflight */ 446 found = true; 447 if (likely(rcu_access_pointer(rq->timeline) == ce->timeline)) 448 found = __active_engine(rq, &engine); 449 450 i915_request_put(rq); 451 if (found) 452 break; 453 } 454 rcu_read_unlock(); 455 456 return engine; 457 } 458 459 static void kill_engines(struct i915_gem_engines *engines, bool ban) 460 { 461 struct i915_gem_engines_iter it; 462 struct intel_context *ce; 463 464 /* 465 * Map the user's engine back to the actual engines; one virtual 466 * engine will be mapped to multiple engines, and using ctx->engine[] 467 * the same engine may be have multiple instances in the user's map. 468 * However, we only care about pending requests, so only include 469 * engines on which there are incomplete requests. 470 */ 471 for_each_gem_engine(ce, engines, it) { 472 struct intel_engine_cs *engine; 473 474 if (ban && intel_context_set_banned(ce)) 475 continue; 476 477 /* 478 * Check the current active state of this context; if we 479 * are currently executing on the GPU we need to evict 480 * ourselves. On the other hand, if we haven't yet been 481 * submitted to the GPU or if everything is complete, 482 * we have nothing to do. 483 */ 484 engine = active_engine(ce); 485 486 /* First attempt to gracefully cancel the context */ 487 if (engine && !__cancel_engine(engine) && ban) 488 /* 489 * If we are unable to send a preemptive pulse to bump 490 * the context from the GPU, we have to resort to a full 491 * reset. We hope the collateral damage is worth it. 492 */ 493 __reset_context(engines->ctx, engine); 494 } 495 } 496 497 static void kill_context(struct i915_gem_context *ctx) 498 { 499 bool ban = (!i915_gem_context_is_persistent(ctx) || 500 !ctx->i915->params.enable_hangcheck); 501 struct i915_gem_engines *pos, *next; 502 503 spin_lock_irq(&ctx->stale.lock); 504 GEM_BUG_ON(!i915_gem_context_is_closed(ctx)); 505 list_for_each_entry_safe(pos, next, &ctx->stale.engines, link) { 506 if (!i915_sw_fence_await(&pos->fence)) { 507 list_del_init(&pos->link); 508 continue; 509 } 510 511 spin_unlock_irq(&ctx->stale.lock); 512 513 kill_engines(pos, ban); 514 515 spin_lock_irq(&ctx->stale.lock); 516 GEM_BUG_ON(i915_sw_fence_signaled(&pos->fence)); 517 list_safe_reset_next(pos, next, link); 518 list_del_init(&pos->link); /* decouple from FENCE_COMPLETE */ 519 520 i915_sw_fence_complete(&pos->fence); 521 } 522 spin_unlock_irq(&ctx->stale.lock); 523 } 524 525 static void engines_idle_release(struct i915_gem_context *ctx, 526 struct i915_gem_engines *engines) 527 { 528 struct i915_gem_engines_iter it; 529 struct intel_context *ce; 530 531 INIT_LIST_HEAD(&engines->link); 532 533 engines->ctx = i915_gem_context_get(ctx); 534 535 for_each_gem_engine(ce, engines, it) { 536 int err; 537 538 /* serialises with execbuf */ 539 set_bit(CONTEXT_CLOSED_BIT, &ce->flags); 540 if (!intel_context_pin_if_active(ce)) 541 continue; 542 543 /* Wait until context is finally scheduled out and retired */ 544 err = i915_sw_fence_await_active(&engines->fence, 545 &ce->active, 546 I915_ACTIVE_AWAIT_BARRIER); 547 intel_context_unpin(ce); 548 if (err) 549 goto kill; 550 } 551 552 spin_lock_irq(&ctx->stale.lock); 553 if (!i915_gem_context_is_closed(ctx)) 554 list_add_tail(&engines->link, &ctx->stale.engines); 555 spin_unlock_irq(&ctx->stale.lock); 556 557 kill: 558 if (list_empty(&engines->link)) /* raced, already closed */ 559 kill_engines(engines, true); 560 561 i915_sw_fence_commit(&engines->fence); 562 } 563 564 static void set_closed_name(struct i915_gem_context *ctx) 565 { 566 char *s; 567 568 /* Replace '[]' with '<>' to indicate closed in debug prints */ 569 570 s = strrchr(ctx->name, '['); 571 if (!s) 572 return; 573 574 *s = '<'; 575 576 s = strchr(s + 1, ']'); 577 if (s) 578 *s = '>'; 579 } 580 581 static void context_close(struct i915_gem_context *ctx) 582 { 583 struct i915_address_space *vm; 584 585 /* Flush any concurrent set_engines() */ 586 mutex_lock(&ctx->engines_mutex); 587 engines_idle_release(ctx, rcu_replace_pointer(ctx->engines, NULL, 1)); 588 i915_gem_context_set_closed(ctx); 589 mutex_unlock(&ctx->engines_mutex); 590 591 mutex_lock(&ctx->mutex); 592 593 set_closed_name(ctx); 594 595 vm = i915_gem_context_vm(ctx); 596 if (vm) 597 i915_vm_close(vm); 598 599 ctx->file_priv = ERR_PTR(-EBADF); 600 601 /* 602 * The LUT uses the VMA as a backpointer to unref the object, 603 * so we need to clear the LUT before we close all the VMA (inside 604 * the ppgtt). 605 */ 606 lut_close(ctx); 607 608 spin_lock(&ctx->i915->gem.contexts.lock); 609 list_del(&ctx->link); 610 spin_unlock(&ctx->i915->gem.contexts.lock); 611 612 mutex_unlock(&ctx->mutex); 613 614 /* 615 * If the user has disabled hangchecking, we can not be sure that 616 * the batches will ever complete after the context is closed, 617 * keeping the context and all resources pinned forever. So in this 618 * case we opt to forcibly kill off all remaining requests on 619 * context close. 620 */ 621 kill_context(ctx); 622 623 i915_gem_context_put(ctx); 624 } 625 626 static int __context_set_persistence(struct i915_gem_context *ctx, bool state) 627 { 628 if (i915_gem_context_is_persistent(ctx) == state) 629 return 0; 630 631 if (state) { 632 /* 633 * Only contexts that are short-lived [that will expire or be 634 * reset] are allowed to survive past termination. We require 635 * hangcheck to ensure that the persistent requests are healthy. 636 */ 637 if (!ctx->i915->params.enable_hangcheck) 638 return -EINVAL; 639 640 i915_gem_context_set_persistence(ctx); 641 } else { 642 /* To cancel a context we use "preempt-to-idle" */ 643 if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PREEMPTION)) 644 return -ENODEV; 645 646 /* 647 * If the cancel fails, we then need to reset, cleanly! 648 * 649 * If the per-engine reset fails, all hope is lost! We resort 650 * to a full GPU reset in that unlikely case, but realistically 651 * if the engine could not reset, the full reset does not fare 652 * much better. The damage has been done. 653 * 654 * However, if we cannot reset an engine by itself, we cannot 655 * cleanup a hanging persistent context without causing 656 * colateral damage, and we should not pretend we can by 657 * exposing the interface. 658 */ 659 if (!intel_has_reset_engine(&ctx->i915->gt)) 660 return -ENODEV; 661 662 i915_gem_context_clear_persistence(ctx); 663 } 664 665 return 0; 666 } 667 668 static struct i915_gem_context * 669 __create_context(struct drm_i915_private *i915) 670 { 671 struct i915_gem_context *ctx; 672 struct i915_gem_engines *e; 673 int err; 674 int i; 675 676 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 677 if (!ctx) 678 return ERR_PTR(-ENOMEM); 679 680 kref_init(&ctx->ref); 681 ctx->i915 = i915; 682 ctx->sched.priority = I915_USER_PRIORITY(I915_PRIORITY_NORMAL); 683 mutex_init(&ctx->mutex); 684 INIT_LIST_HEAD(&ctx->link); 685 686 spin_lock_init(&ctx->stale.lock); 687 INIT_LIST_HEAD(&ctx->stale.engines); 688 689 mutex_init(&ctx->engines_mutex); 690 e = default_engines(ctx); 691 if (IS_ERR(e)) { 692 err = PTR_ERR(e); 693 goto err_free; 694 } 695 RCU_INIT_POINTER(ctx->engines, e); 696 697 INIT_RADIX_TREE(&ctx->handles_vma, GFP_KERNEL); 698 mutex_init(&ctx->lut_mutex); 699 700 /* NB: Mark all slices as needing a remap so that when the context first 701 * loads it will restore whatever remap state already exists. If there 702 * is no remap info, it will be a NOP. */ 703 ctx->remap_slice = ALL_L3_SLICES(i915); 704 705 i915_gem_context_set_bannable(ctx); 706 i915_gem_context_set_recoverable(ctx); 707 __context_set_persistence(ctx, true /* cgroup hook? */); 708 709 for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp); i++) 710 ctx->hang_timestamp[i] = jiffies - CONTEXT_FAST_HANG_JIFFIES; 711 712 return ctx; 713 714 err_free: 715 kfree(ctx); 716 return ERR_PTR(err); 717 } 718 719 static inline struct i915_gem_engines * 720 __context_engines_await(const struct i915_gem_context *ctx, 721 bool *user_engines) 722 { 723 struct i915_gem_engines *engines; 724 725 rcu_read_lock(); 726 do { 727 engines = rcu_dereference(ctx->engines); 728 GEM_BUG_ON(!engines); 729 730 if (user_engines) 731 *user_engines = i915_gem_context_user_engines(ctx); 732 733 /* successful await => strong mb */ 734 if (unlikely(!i915_sw_fence_await(&engines->fence))) 735 continue; 736 737 if (likely(engines == rcu_access_pointer(ctx->engines))) 738 break; 739 740 i915_sw_fence_complete(&engines->fence); 741 } while (1); 742 rcu_read_unlock(); 743 744 return engines; 745 } 746 747 static int 748 context_apply_all(struct i915_gem_context *ctx, 749 int (*fn)(struct intel_context *ce, void *data), 750 void *data) 751 { 752 struct i915_gem_engines_iter it; 753 struct i915_gem_engines *e; 754 struct intel_context *ce; 755 int err = 0; 756 757 e = __context_engines_await(ctx, NULL); 758 for_each_gem_engine(ce, e, it) { 759 err = fn(ce, data); 760 if (err) 761 break; 762 } 763 i915_sw_fence_complete(&e->fence); 764 765 return err; 766 } 767 768 static int __apply_ppgtt(struct intel_context *ce, void *vm) 769 { 770 i915_vm_put(ce->vm); 771 ce->vm = i915_vm_get(vm); 772 return 0; 773 } 774 775 static struct i915_address_space * 776 __set_ppgtt(struct i915_gem_context *ctx, struct i915_address_space *vm) 777 { 778 struct i915_address_space *old; 779 780 old = rcu_replace_pointer(ctx->vm, 781 i915_vm_open(vm), 782 lockdep_is_held(&ctx->mutex)); 783 GEM_BUG_ON(old && i915_vm_is_4lvl(vm) != i915_vm_is_4lvl(old)); 784 785 context_apply_all(ctx, __apply_ppgtt, vm); 786 787 return old; 788 } 789 790 static void __assign_ppgtt(struct i915_gem_context *ctx, 791 struct i915_address_space *vm) 792 { 793 if (vm == rcu_access_pointer(ctx->vm)) 794 return; 795 796 vm = __set_ppgtt(ctx, vm); 797 if (vm) 798 i915_vm_close(vm); 799 } 800 801 static void __set_timeline(struct intel_timeline **dst, 802 struct intel_timeline *src) 803 { 804 struct intel_timeline *old = *dst; 805 806 *dst = src ? intel_timeline_get(src) : NULL; 807 808 if (old) 809 intel_timeline_put(old); 810 } 811 812 static int __apply_timeline(struct intel_context *ce, void *timeline) 813 { 814 __set_timeline(&ce->timeline, timeline); 815 return 0; 816 } 817 818 static void __assign_timeline(struct i915_gem_context *ctx, 819 struct intel_timeline *timeline) 820 { 821 __set_timeline(&ctx->timeline, timeline); 822 context_apply_all(ctx, __apply_timeline, timeline); 823 } 824 825 static struct i915_gem_context * 826 i915_gem_create_context(struct drm_i915_private *i915, unsigned int flags) 827 { 828 struct i915_gem_context *ctx; 829 830 if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE && 831 !HAS_EXECLISTS(i915)) 832 return ERR_PTR(-EINVAL); 833 834 ctx = __create_context(i915); 835 if (IS_ERR(ctx)) 836 return ctx; 837 838 if (HAS_FULL_PPGTT(i915)) { 839 struct i915_ppgtt *ppgtt; 840 841 ppgtt = i915_ppgtt_create(&i915->gt); 842 if (IS_ERR(ppgtt)) { 843 drm_dbg(&i915->drm, "PPGTT setup failed (%ld)\n", 844 PTR_ERR(ppgtt)); 845 context_close(ctx); 846 return ERR_CAST(ppgtt); 847 } 848 849 mutex_lock(&ctx->mutex); 850 __assign_ppgtt(ctx, &ppgtt->vm); 851 mutex_unlock(&ctx->mutex); 852 853 i915_vm_put(&ppgtt->vm); 854 } 855 856 if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE) { 857 struct intel_timeline *timeline; 858 859 timeline = intel_timeline_create(&i915->gt); 860 if (IS_ERR(timeline)) { 861 context_close(ctx); 862 return ERR_CAST(timeline); 863 } 864 865 __assign_timeline(ctx, timeline); 866 intel_timeline_put(timeline); 867 } 868 869 trace_i915_context_create(ctx); 870 871 return ctx; 872 } 873 874 static void init_contexts(struct i915_gem_contexts *gc) 875 { 876 spin_lock_init(&gc->lock); 877 INIT_LIST_HEAD(&gc->list); 878 } 879 880 void i915_gem_init__contexts(struct drm_i915_private *i915) 881 { 882 init_contexts(&i915->gem.contexts); 883 } 884 885 static int gem_context_register(struct i915_gem_context *ctx, 886 struct drm_i915_file_private *fpriv, 887 u32 *id) 888 { 889 struct drm_i915_private *i915 = ctx->i915; 890 struct i915_address_space *vm; 891 int ret; 892 893 ctx->file_priv = fpriv; 894 895 mutex_lock(&ctx->mutex); 896 vm = i915_gem_context_vm(ctx); 897 if (vm) 898 WRITE_ONCE(vm->file, fpriv); /* XXX */ 899 mutex_unlock(&ctx->mutex); 900 901 ctx->pid = get_task_pid(current, PIDTYPE_PID); 902 snprintf(ctx->name, sizeof(ctx->name), "%s[%d]", 903 current->comm, pid_nr(ctx->pid)); 904 905 /* And finally expose ourselves to userspace via the idr */ 906 ret = xa_alloc(&fpriv->context_xa, id, ctx, xa_limit_32b, GFP_KERNEL); 907 if (ret) 908 goto err_pid; 909 910 spin_lock(&i915->gem.contexts.lock); 911 list_add_tail(&ctx->link, &i915->gem.contexts.list); 912 spin_unlock(&i915->gem.contexts.lock); 913 914 return 0; 915 916 err_pid: 917 put_pid(fetch_and_zero(&ctx->pid)); 918 return ret; 919 } 920 921 int i915_gem_context_open(struct drm_i915_private *i915, 922 struct drm_file *file) 923 { 924 struct drm_i915_file_private *file_priv = file->driver_priv; 925 struct i915_gem_context *ctx; 926 int err; 927 u32 id; 928 929 xa_init_flags(&file_priv->context_xa, XA_FLAGS_ALLOC); 930 931 /* 0 reserved for invalid/unassigned ppgtt */ 932 xa_init_flags(&file_priv->vm_xa, XA_FLAGS_ALLOC1); 933 934 ctx = i915_gem_create_context(i915, 0); 935 if (IS_ERR(ctx)) { 936 err = PTR_ERR(ctx); 937 goto err; 938 } 939 940 err = gem_context_register(ctx, file_priv, &id); 941 if (err < 0) 942 goto err_ctx; 943 944 GEM_BUG_ON(id); 945 return 0; 946 947 err_ctx: 948 context_close(ctx); 949 err: 950 xa_destroy(&file_priv->vm_xa); 951 xa_destroy(&file_priv->context_xa); 952 return err; 953 } 954 955 void i915_gem_context_close(struct drm_file *file) 956 { 957 struct drm_i915_file_private *file_priv = file->driver_priv; 958 struct i915_address_space *vm; 959 struct i915_gem_context *ctx; 960 unsigned long idx; 961 962 xa_for_each(&file_priv->context_xa, idx, ctx) 963 context_close(ctx); 964 xa_destroy(&file_priv->context_xa); 965 966 xa_for_each(&file_priv->vm_xa, idx, vm) 967 i915_vm_put(vm); 968 xa_destroy(&file_priv->vm_xa); 969 } 970 971 int i915_gem_vm_create_ioctl(struct drm_device *dev, void *data, 972 struct drm_file *file) 973 { 974 struct drm_i915_private *i915 = to_i915(dev); 975 struct drm_i915_gem_vm_control *args = data; 976 struct drm_i915_file_private *file_priv = file->driver_priv; 977 struct i915_ppgtt *ppgtt; 978 u32 id; 979 int err; 980 981 if (!HAS_FULL_PPGTT(i915)) 982 return -ENODEV; 983 984 if (args->flags) 985 return -EINVAL; 986 987 ppgtt = i915_ppgtt_create(&i915->gt); 988 if (IS_ERR(ppgtt)) 989 return PTR_ERR(ppgtt); 990 991 ppgtt->vm.file = file_priv; 992 993 if (args->extensions) { 994 err = i915_user_extensions(u64_to_user_ptr(args->extensions), 995 NULL, 0, 996 ppgtt); 997 if (err) 998 goto err_put; 999 } 1000 1001 err = xa_alloc(&file_priv->vm_xa, &id, &ppgtt->vm, 1002 xa_limit_32b, GFP_KERNEL); 1003 if (err) 1004 goto err_put; 1005 1006 GEM_BUG_ON(id == 0); /* reserved for invalid/unassigned ppgtt */ 1007 args->vm_id = id; 1008 return 0; 1009 1010 err_put: 1011 i915_vm_put(&ppgtt->vm); 1012 return err; 1013 } 1014 1015 int i915_gem_vm_destroy_ioctl(struct drm_device *dev, void *data, 1016 struct drm_file *file) 1017 { 1018 struct drm_i915_file_private *file_priv = file->driver_priv; 1019 struct drm_i915_gem_vm_control *args = data; 1020 struct i915_address_space *vm; 1021 1022 if (args->flags) 1023 return -EINVAL; 1024 1025 if (args->extensions) 1026 return -EINVAL; 1027 1028 vm = xa_erase(&file_priv->vm_xa, args->vm_id); 1029 if (!vm) 1030 return -ENOENT; 1031 1032 i915_vm_put(vm); 1033 return 0; 1034 } 1035 1036 struct context_barrier_task { 1037 struct i915_active base; 1038 void (*task)(void *data); 1039 void *data; 1040 }; 1041 1042 __i915_active_call 1043 static void cb_retire(struct i915_active *base) 1044 { 1045 struct context_barrier_task *cb = container_of(base, typeof(*cb), base); 1046 1047 if (cb->task) 1048 cb->task(cb->data); 1049 1050 i915_active_fini(&cb->base); 1051 kfree(cb); 1052 } 1053 1054 I915_SELFTEST_DECLARE(static intel_engine_mask_t context_barrier_inject_fault); 1055 static int context_barrier_task(struct i915_gem_context *ctx, 1056 intel_engine_mask_t engines, 1057 bool (*skip)(struct intel_context *ce, void *data), 1058 int (*pin)(struct intel_context *ce, struct i915_gem_ww_ctx *ww, void *data), 1059 int (*emit)(struct i915_request *rq, void *data), 1060 void (*task)(void *data), 1061 void *data) 1062 { 1063 struct context_barrier_task *cb; 1064 struct i915_gem_engines_iter it; 1065 struct i915_gem_engines *e; 1066 struct i915_gem_ww_ctx ww; 1067 struct intel_context *ce; 1068 int err = 0; 1069 1070 GEM_BUG_ON(!task); 1071 1072 cb = kmalloc(sizeof(*cb), GFP_KERNEL); 1073 if (!cb) 1074 return -ENOMEM; 1075 1076 i915_active_init(&cb->base, NULL, cb_retire); 1077 err = i915_active_acquire(&cb->base); 1078 if (err) { 1079 kfree(cb); 1080 return err; 1081 } 1082 1083 e = __context_engines_await(ctx, NULL); 1084 if (!e) { 1085 i915_active_release(&cb->base); 1086 return -ENOENT; 1087 } 1088 1089 for_each_gem_engine(ce, e, it) { 1090 struct i915_request *rq; 1091 1092 if (I915_SELFTEST_ONLY(context_barrier_inject_fault & 1093 ce->engine->mask)) { 1094 err = -ENXIO; 1095 break; 1096 } 1097 1098 if (!(ce->engine->mask & engines)) 1099 continue; 1100 1101 if (skip && skip(ce, data)) 1102 continue; 1103 1104 i915_gem_ww_ctx_init(&ww, true); 1105 retry: 1106 err = intel_context_pin_ww(ce, &ww); 1107 if (err) 1108 goto err; 1109 1110 if (pin) 1111 err = pin(ce, &ww, data); 1112 if (err) 1113 goto err_unpin; 1114 1115 rq = i915_request_create(ce); 1116 if (IS_ERR(rq)) { 1117 err = PTR_ERR(rq); 1118 goto err_unpin; 1119 } 1120 1121 err = 0; 1122 if (emit) 1123 err = emit(rq, data); 1124 if (err == 0) 1125 err = i915_active_add_request(&cb->base, rq); 1126 1127 i915_request_add(rq); 1128 err_unpin: 1129 intel_context_unpin(ce); 1130 err: 1131 if (err == -EDEADLK) { 1132 err = i915_gem_ww_ctx_backoff(&ww); 1133 if (!err) 1134 goto retry; 1135 } 1136 i915_gem_ww_ctx_fini(&ww); 1137 1138 if (err) 1139 break; 1140 } 1141 i915_sw_fence_complete(&e->fence); 1142 1143 cb->task = err ? NULL : task; /* caller needs to unwind instead */ 1144 cb->data = data; 1145 1146 i915_active_release(&cb->base); 1147 1148 return err; 1149 } 1150 1151 static int get_ppgtt(struct drm_i915_file_private *file_priv, 1152 struct i915_gem_context *ctx, 1153 struct drm_i915_gem_context_param *args) 1154 { 1155 struct i915_address_space *vm; 1156 int err; 1157 u32 id; 1158 1159 if (!rcu_access_pointer(ctx->vm)) 1160 return -ENODEV; 1161 1162 rcu_read_lock(); 1163 vm = context_get_vm_rcu(ctx); 1164 rcu_read_unlock(); 1165 if (!vm) 1166 return -ENODEV; 1167 1168 err = xa_alloc(&file_priv->vm_xa, &id, vm, xa_limit_32b, GFP_KERNEL); 1169 if (err) 1170 goto err_put; 1171 1172 i915_vm_open(vm); 1173 1174 GEM_BUG_ON(id == 0); /* reserved for invalid/unassigned ppgtt */ 1175 args->value = id; 1176 args->size = 0; 1177 1178 err_put: 1179 i915_vm_put(vm); 1180 return err; 1181 } 1182 1183 static void set_ppgtt_barrier(void *data) 1184 { 1185 struct i915_address_space *old = data; 1186 1187 if (INTEL_GEN(old->i915) < 8) 1188 gen6_ppgtt_unpin_all(i915_vm_to_ppgtt(old)); 1189 1190 i915_vm_close(old); 1191 } 1192 1193 static int pin_ppgtt_update(struct intel_context *ce, struct i915_gem_ww_ctx *ww, void *data) 1194 { 1195 struct i915_address_space *vm = ce->vm; 1196 1197 if (!HAS_LOGICAL_RING_CONTEXTS(vm->i915)) 1198 /* ppGTT is not part of the legacy context image */ 1199 return gen6_ppgtt_pin(i915_vm_to_ppgtt(vm), ww); 1200 1201 return 0; 1202 } 1203 1204 static int emit_ppgtt_update(struct i915_request *rq, void *data) 1205 { 1206 struct i915_address_space *vm = rq->context->vm; 1207 struct intel_engine_cs *engine = rq->engine; 1208 u32 base = engine->mmio_base; 1209 u32 *cs; 1210 int i; 1211 1212 if (i915_vm_is_4lvl(vm)) { 1213 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1214 const dma_addr_t pd_daddr = px_dma(ppgtt->pd); 1215 1216 cs = intel_ring_begin(rq, 6); 1217 if (IS_ERR(cs)) 1218 return PTR_ERR(cs); 1219 1220 *cs++ = MI_LOAD_REGISTER_IMM(2); 1221 1222 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0)); 1223 *cs++ = upper_32_bits(pd_daddr); 1224 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0)); 1225 *cs++ = lower_32_bits(pd_daddr); 1226 1227 *cs++ = MI_NOOP; 1228 intel_ring_advance(rq, cs); 1229 } else if (HAS_LOGICAL_RING_CONTEXTS(engine->i915)) { 1230 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1231 int err; 1232 1233 /* Magic required to prevent forcewake errors! */ 1234 err = engine->emit_flush(rq, EMIT_INVALIDATE); 1235 if (err) 1236 return err; 1237 1238 cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2); 1239 if (IS_ERR(cs)) 1240 return PTR_ERR(cs); 1241 1242 *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED; 1243 for (i = GEN8_3LVL_PDPES; i--; ) { 1244 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i); 1245 1246 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i)); 1247 *cs++ = upper_32_bits(pd_daddr); 1248 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i)); 1249 *cs++ = lower_32_bits(pd_daddr); 1250 } 1251 *cs++ = MI_NOOP; 1252 intel_ring_advance(rq, cs); 1253 } 1254 1255 return 0; 1256 } 1257 1258 static bool skip_ppgtt_update(struct intel_context *ce, void *data) 1259 { 1260 if (HAS_LOGICAL_RING_CONTEXTS(ce->engine->i915)) 1261 return !ce->state; 1262 else 1263 return !atomic_read(&ce->pin_count); 1264 } 1265 1266 static int set_ppgtt(struct drm_i915_file_private *file_priv, 1267 struct i915_gem_context *ctx, 1268 struct drm_i915_gem_context_param *args) 1269 { 1270 struct i915_address_space *vm, *old; 1271 int err; 1272 1273 if (args->size) 1274 return -EINVAL; 1275 1276 if (!rcu_access_pointer(ctx->vm)) 1277 return -ENODEV; 1278 1279 if (upper_32_bits(args->value)) 1280 return -ENOENT; 1281 1282 rcu_read_lock(); 1283 vm = xa_load(&file_priv->vm_xa, args->value); 1284 if (vm && !kref_get_unless_zero(&vm->ref)) 1285 vm = NULL; 1286 rcu_read_unlock(); 1287 if (!vm) 1288 return -ENOENT; 1289 1290 err = mutex_lock_interruptible(&ctx->mutex); 1291 if (err) 1292 goto out; 1293 1294 if (i915_gem_context_is_closed(ctx)) { 1295 err = -ENOENT; 1296 goto unlock; 1297 } 1298 1299 if (vm == rcu_access_pointer(ctx->vm)) 1300 goto unlock; 1301 1302 old = __set_ppgtt(ctx, vm); 1303 1304 /* Teardown the existing obj:vma cache, it will have to be rebuilt. */ 1305 lut_close(ctx); 1306 1307 /* 1308 * We need to flush any requests using the current ppgtt before 1309 * we release it as the requests do not hold a reference themselves, 1310 * only indirectly through the context. 1311 */ 1312 err = context_barrier_task(ctx, ALL_ENGINES, 1313 skip_ppgtt_update, 1314 pin_ppgtt_update, 1315 emit_ppgtt_update, 1316 set_ppgtt_barrier, 1317 old); 1318 if (err) { 1319 i915_vm_close(__set_ppgtt(ctx, old)); 1320 i915_vm_close(old); 1321 lut_close(ctx); /* force a rebuild of the old obj:vma cache */ 1322 } 1323 1324 unlock: 1325 mutex_unlock(&ctx->mutex); 1326 out: 1327 i915_vm_put(vm); 1328 return err; 1329 } 1330 1331 static int __apply_ringsize(struct intel_context *ce, void *sz) 1332 { 1333 return intel_context_set_ring_size(ce, (unsigned long)sz); 1334 } 1335 1336 static int set_ringsize(struct i915_gem_context *ctx, 1337 struct drm_i915_gem_context_param *args) 1338 { 1339 if (!HAS_LOGICAL_RING_CONTEXTS(ctx->i915)) 1340 return -ENODEV; 1341 1342 if (args->size) 1343 return -EINVAL; 1344 1345 if (!IS_ALIGNED(args->value, I915_GTT_PAGE_SIZE)) 1346 return -EINVAL; 1347 1348 if (args->value < I915_GTT_PAGE_SIZE) 1349 return -EINVAL; 1350 1351 if (args->value > 128 * I915_GTT_PAGE_SIZE) 1352 return -EINVAL; 1353 1354 return context_apply_all(ctx, 1355 __apply_ringsize, 1356 __intel_context_ring_size(args->value)); 1357 } 1358 1359 static int __get_ringsize(struct intel_context *ce, void *arg) 1360 { 1361 long sz; 1362 1363 sz = intel_context_get_ring_size(ce); 1364 GEM_BUG_ON(sz > INT_MAX); 1365 1366 return sz; /* stop on first engine */ 1367 } 1368 1369 static int get_ringsize(struct i915_gem_context *ctx, 1370 struct drm_i915_gem_context_param *args) 1371 { 1372 int sz; 1373 1374 if (!HAS_LOGICAL_RING_CONTEXTS(ctx->i915)) 1375 return -ENODEV; 1376 1377 if (args->size) 1378 return -EINVAL; 1379 1380 sz = context_apply_all(ctx, __get_ringsize, NULL); 1381 if (sz < 0) 1382 return sz; 1383 1384 args->value = sz; 1385 return 0; 1386 } 1387 1388 int 1389 i915_gem_user_to_context_sseu(struct intel_gt *gt, 1390 const struct drm_i915_gem_context_param_sseu *user, 1391 struct intel_sseu *context) 1392 { 1393 const struct sseu_dev_info *device = >->info.sseu; 1394 struct drm_i915_private *i915 = gt->i915; 1395 1396 /* No zeros in any field. */ 1397 if (!user->slice_mask || !user->subslice_mask || 1398 !user->min_eus_per_subslice || !user->max_eus_per_subslice) 1399 return -EINVAL; 1400 1401 /* Max > min. */ 1402 if (user->max_eus_per_subslice < user->min_eus_per_subslice) 1403 return -EINVAL; 1404 1405 /* 1406 * Some future proofing on the types since the uAPI is wider than the 1407 * current internal implementation. 1408 */ 1409 if (overflows_type(user->slice_mask, context->slice_mask) || 1410 overflows_type(user->subslice_mask, context->subslice_mask) || 1411 overflows_type(user->min_eus_per_subslice, 1412 context->min_eus_per_subslice) || 1413 overflows_type(user->max_eus_per_subslice, 1414 context->max_eus_per_subslice)) 1415 return -EINVAL; 1416 1417 /* Check validity against hardware. */ 1418 if (user->slice_mask & ~device->slice_mask) 1419 return -EINVAL; 1420 1421 if (user->subslice_mask & ~device->subslice_mask[0]) 1422 return -EINVAL; 1423 1424 if (user->max_eus_per_subslice > device->max_eus_per_subslice) 1425 return -EINVAL; 1426 1427 context->slice_mask = user->slice_mask; 1428 context->subslice_mask = user->subslice_mask; 1429 context->min_eus_per_subslice = user->min_eus_per_subslice; 1430 context->max_eus_per_subslice = user->max_eus_per_subslice; 1431 1432 /* Part specific restrictions. */ 1433 if (IS_GEN(i915, 11)) { 1434 unsigned int hw_s = hweight8(device->slice_mask); 1435 unsigned int hw_ss_per_s = hweight8(device->subslice_mask[0]); 1436 unsigned int req_s = hweight8(context->slice_mask); 1437 unsigned int req_ss = hweight8(context->subslice_mask); 1438 1439 /* 1440 * Only full subslice enablement is possible if more than one 1441 * slice is turned on. 1442 */ 1443 if (req_s > 1 && req_ss != hw_ss_per_s) 1444 return -EINVAL; 1445 1446 /* 1447 * If more than four (SScount bitfield limit) subslices are 1448 * requested then the number has to be even. 1449 */ 1450 if (req_ss > 4 && (req_ss & 1)) 1451 return -EINVAL; 1452 1453 /* 1454 * If only one slice is enabled and subslice count is below the 1455 * device full enablement, it must be at most half of the all 1456 * available subslices. 1457 */ 1458 if (req_s == 1 && req_ss < hw_ss_per_s && 1459 req_ss > (hw_ss_per_s / 2)) 1460 return -EINVAL; 1461 1462 /* ABI restriction - VME use case only. */ 1463 1464 /* All slices or one slice only. */ 1465 if (req_s != 1 && req_s != hw_s) 1466 return -EINVAL; 1467 1468 /* 1469 * Half subslices or full enablement only when one slice is 1470 * enabled. 1471 */ 1472 if (req_s == 1 && 1473 (req_ss != hw_ss_per_s && req_ss != (hw_ss_per_s / 2))) 1474 return -EINVAL; 1475 1476 /* No EU configuration changes. */ 1477 if ((user->min_eus_per_subslice != 1478 device->max_eus_per_subslice) || 1479 (user->max_eus_per_subslice != 1480 device->max_eus_per_subslice)) 1481 return -EINVAL; 1482 } 1483 1484 return 0; 1485 } 1486 1487 static int set_sseu(struct i915_gem_context *ctx, 1488 struct drm_i915_gem_context_param *args) 1489 { 1490 struct drm_i915_private *i915 = ctx->i915; 1491 struct drm_i915_gem_context_param_sseu user_sseu; 1492 struct intel_context *ce; 1493 struct intel_sseu sseu; 1494 unsigned long lookup; 1495 int ret; 1496 1497 if (args->size < sizeof(user_sseu)) 1498 return -EINVAL; 1499 1500 if (!IS_GEN(i915, 11)) 1501 return -ENODEV; 1502 1503 if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value), 1504 sizeof(user_sseu))) 1505 return -EFAULT; 1506 1507 if (user_sseu.rsvd) 1508 return -EINVAL; 1509 1510 if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)) 1511 return -EINVAL; 1512 1513 lookup = 0; 1514 if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX) 1515 lookup |= LOOKUP_USER_INDEX; 1516 1517 ce = lookup_user_engine(ctx, lookup, &user_sseu.engine); 1518 if (IS_ERR(ce)) 1519 return PTR_ERR(ce); 1520 1521 /* Only render engine supports RPCS configuration. */ 1522 if (ce->engine->class != RENDER_CLASS) { 1523 ret = -ENODEV; 1524 goto out_ce; 1525 } 1526 1527 ret = i915_gem_user_to_context_sseu(ce->engine->gt, &user_sseu, &sseu); 1528 if (ret) 1529 goto out_ce; 1530 1531 ret = intel_context_reconfigure_sseu(ce, sseu); 1532 if (ret) 1533 goto out_ce; 1534 1535 args->size = sizeof(user_sseu); 1536 1537 out_ce: 1538 intel_context_put(ce); 1539 return ret; 1540 } 1541 1542 struct set_engines { 1543 struct i915_gem_context *ctx; 1544 struct i915_gem_engines *engines; 1545 }; 1546 1547 static int 1548 set_engines__load_balance(struct i915_user_extension __user *base, void *data) 1549 { 1550 struct i915_context_engines_load_balance __user *ext = 1551 container_of_user(base, typeof(*ext), base); 1552 const struct set_engines *set = data; 1553 struct drm_i915_private *i915 = set->ctx->i915; 1554 struct intel_engine_cs *stack[16]; 1555 struct intel_engine_cs **siblings; 1556 struct intel_context *ce; 1557 u16 num_siblings, idx; 1558 unsigned int n; 1559 int err; 1560 1561 if (!HAS_EXECLISTS(i915)) 1562 return -ENODEV; 1563 1564 if (intel_uc_uses_guc_submission(&i915->gt.uc)) 1565 return -ENODEV; /* not implement yet */ 1566 1567 if (get_user(idx, &ext->engine_index)) 1568 return -EFAULT; 1569 1570 if (idx >= set->engines->num_engines) { 1571 drm_dbg(&i915->drm, "Invalid placement value, %d >= %d\n", 1572 idx, set->engines->num_engines); 1573 return -EINVAL; 1574 } 1575 1576 idx = array_index_nospec(idx, set->engines->num_engines); 1577 if (set->engines->engines[idx]) { 1578 drm_dbg(&i915->drm, 1579 "Invalid placement[%d], already occupied\n", idx); 1580 return -EEXIST; 1581 } 1582 1583 if (get_user(num_siblings, &ext->num_siblings)) 1584 return -EFAULT; 1585 1586 err = check_user_mbz(&ext->flags); 1587 if (err) 1588 return err; 1589 1590 err = check_user_mbz(&ext->mbz64); 1591 if (err) 1592 return err; 1593 1594 siblings = stack; 1595 if (num_siblings > ARRAY_SIZE(stack)) { 1596 siblings = kmalloc_array(num_siblings, 1597 sizeof(*siblings), 1598 GFP_KERNEL); 1599 if (!siblings) 1600 return -ENOMEM; 1601 } 1602 1603 for (n = 0; n < num_siblings; n++) { 1604 struct i915_engine_class_instance ci; 1605 1606 if (copy_from_user(&ci, &ext->engines[n], sizeof(ci))) { 1607 err = -EFAULT; 1608 goto out_siblings; 1609 } 1610 1611 siblings[n] = intel_engine_lookup_user(i915, 1612 ci.engine_class, 1613 ci.engine_instance); 1614 if (!siblings[n]) { 1615 drm_dbg(&i915->drm, 1616 "Invalid sibling[%d]: { class:%d, inst:%d }\n", 1617 n, ci.engine_class, ci.engine_instance); 1618 err = -EINVAL; 1619 goto out_siblings; 1620 } 1621 } 1622 1623 ce = intel_execlists_create_virtual(siblings, n); 1624 if (IS_ERR(ce)) { 1625 err = PTR_ERR(ce); 1626 goto out_siblings; 1627 } 1628 1629 intel_context_set_gem(ce, set->ctx); 1630 1631 if (cmpxchg(&set->engines->engines[idx], NULL, ce)) { 1632 intel_context_put(ce); 1633 err = -EEXIST; 1634 goto out_siblings; 1635 } 1636 1637 out_siblings: 1638 if (siblings != stack) 1639 kfree(siblings); 1640 1641 return err; 1642 } 1643 1644 static int 1645 set_engines__bond(struct i915_user_extension __user *base, void *data) 1646 { 1647 struct i915_context_engines_bond __user *ext = 1648 container_of_user(base, typeof(*ext), base); 1649 const struct set_engines *set = data; 1650 struct drm_i915_private *i915 = set->ctx->i915; 1651 struct i915_engine_class_instance ci; 1652 struct intel_engine_cs *virtual; 1653 struct intel_engine_cs *master; 1654 u16 idx, num_bonds; 1655 int err, n; 1656 1657 if (get_user(idx, &ext->virtual_index)) 1658 return -EFAULT; 1659 1660 if (idx >= set->engines->num_engines) { 1661 drm_dbg(&i915->drm, 1662 "Invalid index for virtual engine: %d >= %d\n", 1663 idx, set->engines->num_engines); 1664 return -EINVAL; 1665 } 1666 1667 idx = array_index_nospec(idx, set->engines->num_engines); 1668 if (!set->engines->engines[idx]) { 1669 drm_dbg(&i915->drm, "Invalid engine at %d\n", idx); 1670 return -EINVAL; 1671 } 1672 virtual = set->engines->engines[idx]->engine; 1673 1674 err = check_user_mbz(&ext->flags); 1675 if (err) 1676 return err; 1677 1678 for (n = 0; n < ARRAY_SIZE(ext->mbz64); n++) { 1679 err = check_user_mbz(&ext->mbz64[n]); 1680 if (err) 1681 return err; 1682 } 1683 1684 if (copy_from_user(&ci, &ext->master, sizeof(ci))) 1685 return -EFAULT; 1686 1687 master = intel_engine_lookup_user(i915, 1688 ci.engine_class, ci.engine_instance); 1689 if (!master) { 1690 drm_dbg(&i915->drm, 1691 "Unrecognised master engine: { class:%u, instance:%u }\n", 1692 ci.engine_class, ci.engine_instance); 1693 return -EINVAL; 1694 } 1695 1696 if (get_user(num_bonds, &ext->num_bonds)) 1697 return -EFAULT; 1698 1699 for (n = 0; n < num_bonds; n++) { 1700 struct intel_engine_cs *bond; 1701 1702 if (copy_from_user(&ci, &ext->engines[n], sizeof(ci))) 1703 return -EFAULT; 1704 1705 bond = intel_engine_lookup_user(i915, 1706 ci.engine_class, 1707 ci.engine_instance); 1708 if (!bond) { 1709 drm_dbg(&i915->drm, 1710 "Unrecognised engine[%d] for bonding: { class:%d, instance: %d }\n", 1711 n, ci.engine_class, ci.engine_instance); 1712 return -EINVAL; 1713 } 1714 1715 /* 1716 * A non-virtual engine has no siblings to choose between; and 1717 * a submit fence will always be directed to the one engine. 1718 */ 1719 if (intel_engine_is_virtual(virtual)) { 1720 err = intel_virtual_engine_attach_bond(virtual, 1721 master, 1722 bond); 1723 if (err) 1724 return err; 1725 } 1726 } 1727 1728 return 0; 1729 } 1730 1731 static const i915_user_extension_fn set_engines__extensions[] = { 1732 [I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE] = set_engines__load_balance, 1733 [I915_CONTEXT_ENGINES_EXT_BOND] = set_engines__bond, 1734 }; 1735 1736 static int 1737 set_engines(struct i915_gem_context *ctx, 1738 const struct drm_i915_gem_context_param *args) 1739 { 1740 struct drm_i915_private *i915 = ctx->i915; 1741 struct i915_context_param_engines __user *user = 1742 u64_to_user_ptr(args->value); 1743 struct set_engines set = { .ctx = ctx }; 1744 unsigned int num_engines, n; 1745 u64 extensions; 1746 int err; 1747 1748 if (!args->size) { /* switch back to legacy user_ring_map */ 1749 if (!i915_gem_context_user_engines(ctx)) 1750 return 0; 1751 1752 set.engines = default_engines(ctx); 1753 if (IS_ERR(set.engines)) 1754 return PTR_ERR(set.engines); 1755 1756 goto replace; 1757 } 1758 1759 BUILD_BUG_ON(!IS_ALIGNED(sizeof(*user), sizeof(*user->engines))); 1760 if (args->size < sizeof(*user) || 1761 !IS_ALIGNED(args->size, sizeof(*user->engines))) { 1762 drm_dbg(&i915->drm, "Invalid size for engine array: %d\n", 1763 args->size); 1764 return -EINVAL; 1765 } 1766 1767 /* 1768 * Note that I915_EXEC_RING_MASK limits execbuf to only using the 1769 * first 64 engines defined here. 1770 */ 1771 num_engines = (args->size - sizeof(*user)) / sizeof(*user->engines); 1772 set.engines = alloc_engines(num_engines); 1773 if (!set.engines) 1774 return -ENOMEM; 1775 1776 for (n = 0; n < num_engines; n++) { 1777 struct i915_engine_class_instance ci; 1778 struct intel_engine_cs *engine; 1779 struct intel_context *ce; 1780 1781 if (copy_from_user(&ci, &user->engines[n], sizeof(ci))) { 1782 __free_engines(set.engines, n); 1783 return -EFAULT; 1784 } 1785 1786 if (ci.engine_class == (u16)I915_ENGINE_CLASS_INVALID && 1787 ci.engine_instance == (u16)I915_ENGINE_CLASS_INVALID_NONE) { 1788 set.engines->engines[n] = NULL; 1789 continue; 1790 } 1791 1792 engine = intel_engine_lookup_user(ctx->i915, 1793 ci.engine_class, 1794 ci.engine_instance); 1795 if (!engine) { 1796 drm_dbg(&i915->drm, 1797 "Invalid engine[%d]: { class:%d, instance:%d }\n", 1798 n, ci.engine_class, ci.engine_instance); 1799 __free_engines(set.engines, n); 1800 return -ENOENT; 1801 } 1802 1803 ce = intel_context_create(engine); 1804 if (IS_ERR(ce)) { 1805 __free_engines(set.engines, n); 1806 return PTR_ERR(ce); 1807 } 1808 1809 intel_context_set_gem(ce, ctx); 1810 1811 set.engines->engines[n] = ce; 1812 } 1813 set.engines->num_engines = num_engines; 1814 1815 err = -EFAULT; 1816 if (!get_user(extensions, &user->extensions)) 1817 err = i915_user_extensions(u64_to_user_ptr(extensions), 1818 set_engines__extensions, 1819 ARRAY_SIZE(set_engines__extensions), 1820 &set); 1821 if (err) { 1822 free_engines(set.engines); 1823 return err; 1824 } 1825 1826 replace: 1827 mutex_lock(&ctx->engines_mutex); 1828 if (i915_gem_context_is_closed(ctx)) { 1829 mutex_unlock(&ctx->engines_mutex); 1830 free_engines(set.engines); 1831 return -ENOENT; 1832 } 1833 if (args->size) 1834 i915_gem_context_set_user_engines(ctx); 1835 else 1836 i915_gem_context_clear_user_engines(ctx); 1837 set.engines = rcu_replace_pointer(ctx->engines, set.engines, 1); 1838 mutex_unlock(&ctx->engines_mutex); 1839 1840 /* Keep track of old engine sets for kill_context() */ 1841 engines_idle_release(ctx, set.engines); 1842 1843 return 0; 1844 } 1845 1846 static int 1847 get_engines(struct i915_gem_context *ctx, 1848 struct drm_i915_gem_context_param *args) 1849 { 1850 struct i915_context_param_engines __user *user; 1851 struct i915_gem_engines *e; 1852 size_t n, count, size; 1853 bool user_engines; 1854 int err = 0; 1855 1856 e = __context_engines_await(ctx, &user_engines); 1857 if (!e) 1858 return -ENOENT; 1859 1860 if (!user_engines) { 1861 i915_sw_fence_complete(&e->fence); 1862 args->size = 0; 1863 return 0; 1864 } 1865 1866 count = e->num_engines; 1867 1868 /* Be paranoid in case we have an impedance mismatch */ 1869 if (!check_struct_size(user, engines, count, &size)) { 1870 err = -EINVAL; 1871 goto err_free; 1872 } 1873 if (overflows_type(size, args->size)) { 1874 err = -EINVAL; 1875 goto err_free; 1876 } 1877 1878 if (!args->size) { 1879 args->size = size; 1880 goto err_free; 1881 } 1882 1883 if (args->size < size) { 1884 err = -EINVAL; 1885 goto err_free; 1886 } 1887 1888 user = u64_to_user_ptr(args->value); 1889 if (put_user(0, &user->extensions)) { 1890 err = -EFAULT; 1891 goto err_free; 1892 } 1893 1894 for (n = 0; n < count; n++) { 1895 struct i915_engine_class_instance ci = { 1896 .engine_class = I915_ENGINE_CLASS_INVALID, 1897 .engine_instance = I915_ENGINE_CLASS_INVALID_NONE, 1898 }; 1899 1900 if (e->engines[n]) { 1901 ci.engine_class = e->engines[n]->engine->uabi_class; 1902 ci.engine_instance = e->engines[n]->engine->uabi_instance; 1903 } 1904 1905 if (copy_to_user(&user->engines[n], &ci, sizeof(ci))) { 1906 err = -EFAULT; 1907 goto err_free; 1908 } 1909 } 1910 1911 args->size = size; 1912 1913 err_free: 1914 i915_sw_fence_complete(&e->fence); 1915 return err; 1916 } 1917 1918 static int 1919 set_persistence(struct i915_gem_context *ctx, 1920 const struct drm_i915_gem_context_param *args) 1921 { 1922 if (args->size) 1923 return -EINVAL; 1924 1925 return __context_set_persistence(ctx, args->value); 1926 } 1927 1928 static int __apply_priority(struct intel_context *ce, void *arg) 1929 { 1930 struct i915_gem_context *ctx = arg; 1931 1932 if (!intel_engine_has_timeslices(ce->engine)) 1933 return 0; 1934 1935 if (ctx->sched.priority >= I915_PRIORITY_NORMAL) 1936 intel_context_set_use_semaphores(ce); 1937 else 1938 intel_context_clear_use_semaphores(ce); 1939 1940 return 0; 1941 } 1942 1943 static int set_priority(struct i915_gem_context *ctx, 1944 const struct drm_i915_gem_context_param *args) 1945 { 1946 s64 priority = args->value; 1947 1948 if (args->size) 1949 return -EINVAL; 1950 1951 if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PRIORITY)) 1952 return -ENODEV; 1953 1954 if (priority > I915_CONTEXT_MAX_USER_PRIORITY || 1955 priority < I915_CONTEXT_MIN_USER_PRIORITY) 1956 return -EINVAL; 1957 1958 if (priority > I915_CONTEXT_DEFAULT_PRIORITY && 1959 !capable(CAP_SYS_NICE)) 1960 return -EPERM; 1961 1962 ctx->sched.priority = I915_USER_PRIORITY(priority); 1963 context_apply_all(ctx, __apply_priority, ctx); 1964 1965 return 0; 1966 } 1967 1968 static int ctx_setparam(struct drm_i915_file_private *fpriv, 1969 struct i915_gem_context *ctx, 1970 struct drm_i915_gem_context_param *args) 1971 { 1972 int ret = 0; 1973 1974 switch (args->param) { 1975 case I915_CONTEXT_PARAM_NO_ZEROMAP: 1976 if (args->size) 1977 ret = -EINVAL; 1978 else if (args->value) 1979 set_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags); 1980 else 1981 clear_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags); 1982 break; 1983 1984 case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE: 1985 if (args->size) 1986 ret = -EINVAL; 1987 else if (args->value) 1988 i915_gem_context_set_no_error_capture(ctx); 1989 else 1990 i915_gem_context_clear_no_error_capture(ctx); 1991 break; 1992 1993 case I915_CONTEXT_PARAM_BANNABLE: 1994 if (args->size) 1995 ret = -EINVAL; 1996 else if (!capable(CAP_SYS_ADMIN) && !args->value) 1997 ret = -EPERM; 1998 else if (args->value) 1999 i915_gem_context_set_bannable(ctx); 2000 else 2001 i915_gem_context_clear_bannable(ctx); 2002 break; 2003 2004 case I915_CONTEXT_PARAM_RECOVERABLE: 2005 if (args->size) 2006 ret = -EINVAL; 2007 else if (args->value) 2008 i915_gem_context_set_recoverable(ctx); 2009 else 2010 i915_gem_context_clear_recoverable(ctx); 2011 break; 2012 2013 case I915_CONTEXT_PARAM_PRIORITY: 2014 ret = set_priority(ctx, args); 2015 break; 2016 2017 case I915_CONTEXT_PARAM_SSEU: 2018 ret = set_sseu(ctx, args); 2019 break; 2020 2021 case I915_CONTEXT_PARAM_VM: 2022 ret = set_ppgtt(fpriv, ctx, args); 2023 break; 2024 2025 case I915_CONTEXT_PARAM_ENGINES: 2026 ret = set_engines(ctx, args); 2027 break; 2028 2029 case I915_CONTEXT_PARAM_PERSISTENCE: 2030 ret = set_persistence(ctx, args); 2031 break; 2032 2033 case I915_CONTEXT_PARAM_RINGSIZE: 2034 ret = set_ringsize(ctx, args); 2035 break; 2036 2037 case I915_CONTEXT_PARAM_BAN_PERIOD: 2038 default: 2039 ret = -EINVAL; 2040 break; 2041 } 2042 2043 return ret; 2044 } 2045 2046 struct create_ext { 2047 struct i915_gem_context *ctx; 2048 struct drm_i915_file_private *fpriv; 2049 }; 2050 2051 static int create_setparam(struct i915_user_extension __user *ext, void *data) 2052 { 2053 struct drm_i915_gem_context_create_ext_setparam local; 2054 const struct create_ext *arg = data; 2055 2056 if (copy_from_user(&local, ext, sizeof(local))) 2057 return -EFAULT; 2058 2059 if (local.param.ctx_id) 2060 return -EINVAL; 2061 2062 return ctx_setparam(arg->fpriv, arg->ctx, &local.param); 2063 } 2064 2065 static int copy_ring_size(struct intel_context *dst, 2066 struct intel_context *src) 2067 { 2068 long sz; 2069 2070 sz = intel_context_get_ring_size(src); 2071 if (sz < 0) 2072 return sz; 2073 2074 return intel_context_set_ring_size(dst, sz); 2075 } 2076 2077 static int clone_engines(struct i915_gem_context *dst, 2078 struct i915_gem_context *src) 2079 { 2080 struct i915_gem_engines *clone, *e; 2081 bool user_engines; 2082 unsigned long n; 2083 2084 e = __context_engines_await(src, &user_engines); 2085 if (!e) 2086 return -ENOENT; 2087 2088 clone = alloc_engines(e->num_engines); 2089 if (!clone) 2090 goto err_unlock; 2091 2092 for (n = 0; n < e->num_engines; n++) { 2093 struct intel_engine_cs *engine; 2094 2095 if (!e->engines[n]) { 2096 clone->engines[n] = NULL; 2097 continue; 2098 } 2099 engine = e->engines[n]->engine; 2100 2101 /* 2102 * Virtual engines are singletons; they can only exist 2103 * inside a single context, because they embed their 2104 * HW context... As each virtual context implies a single 2105 * timeline (each engine can only dequeue a single request 2106 * at any time), it would be surprising for two contexts 2107 * to use the same engine. So let's create a copy of 2108 * the virtual engine instead. 2109 */ 2110 if (intel_engine_is_virtual(engine)) 2111 clone->engines[n] = 2112 intel_execlists_clone_virtual(engine); 2113 else 2114 clone->engines[n] = intel_context_create(engine); 2115 if (IS_ERR_OR_NULL(clone->engines[n])) { 2116 __free_engines(clone, n); 2117 goto err_unlock; 2118 } 2119 2120 intel_context_set_gem(clone->engines[n], dst); 2121 2122 /* Copy across the preferred ringsize */ 2123 if (copy_ring_size(clone->engines[n], e->engines[n])) { 2124 __free_engines(clone, n + 1); 2125 goto err_unlock; 2126 } 2127 } 2128 clone->num_engines = n; 2129 i915_sw_fence_complete(&e->fence); 2130 2131 /* Serialised by constructor */ 2132 engines_idle_release(dst, rcu_replace_pointer(dst->engines, clone, 1)); 2133 if (user_engines) 2134 i915_gem_context_set_user_engines(dst); 2135 else 2136 i915_gem_context_clear_user_engines(dst); 2137 return 0; 2138 2139 err_unlock: 2140 i915_sw_fence_complete(&e->fence); 2141 return -ENOMEM; 2142 } 2143 2144 static int clone_flags(struct i915_gem_context *dst, 2145 struct i915_gem_context *src) 2146 { 2147 dst->user_flags = src->user_flags; 2148 return 0; 2149 } 2150 2151 static int clone_schedattr(struct i915_gem_context *dst, 2152 struct i915_gem_context *src) 2153 { 2154 dst->sched = src->sched; 2155 return 0; 2156 } 2157 2158 static int clone_sseu(struct i915_gem_context *dst, 2159 struct i915_gem_context *src) 2160 { 2161 struct i915_gem_engines *e = i915_gem_context_lock_engines(src); 2162 struct i915_gem_engines *clone; 2163 unsigned long n; 2164 int err; 2165 2166 /* no locking required; sole access under constructor*/ 2167 clone = __context_engines_static(dst); 2168 if (e->num_engines != clone->num_engines) { 2169 err = -EINVAL; 2170 goto unlock; 2171 } 2172 2173 for (n = 0; n < e->num_engines; n++) { 2174 struct intel_context *ce = e->engines[n]; 2175 2176 if (clone->engines[n]->engine->class != ce->engine->class) { 2177 /* Must have compatible engine maps! */ 2178 err = -EINVAL; 2179 goto unlock; 2180 } 2181 2182 /* serialises with set_sseu */ 2183 err = intel_context_lock_pinned(ce); 2184 if (err) 2185 goto unlock; 2186 2187 clone->engines[n]->sseu = ce->sseu; 2188 intel_context_unlock_pinned(ce); 2189 } 2190 2191 err = 0; 2192 unlock: 2193 i915_gem_context_unlock_engines(src); 2194 return err; 2195 } 2196 2197 static int clone_timeline(struct i915_gem_context *dst, 2198 struct i915_gem_context *src) 2199 { 2200 if (src->timeline) 2201 __assign_timeline(dst, src->timeline); 2202 2203 return 0; 2204 } 2205 2206 static int clone_vm(struct i915_gem_context *dst, 2207 struct i915_gem_context *src) 2208 { 2209 struct i915_address_space *vm; 2210 int err = 0; 2211 2212 if (!rcu_access_pointer(src->vm)) 2213 return 0; 2214 2215 rcu_read_lock(); 2216 vm = context_get_vm_rcu(src); 2217 rcu_read_unlock(); 2218 2219 if (!mutex_lock_interruptible(&dst->mutex)) { 2220 __assign_ppgtt(dst, vm); 2221 mutex_unlock(&dst->mutex); 2222 } else { 2223 err = -EINTR; 2224 } 2225 2226 i915_vm_put(vm); 2227 return err; 2228 } 2229 2230 static int create_clone(struct i915_user_extension __user *ext, void *data) 2231 { 2232 static int (* const fn[])(struct i915_gem_context *dst, 2233 struct i915_gem_context *src) = { 2234 #define MAP(x, y) [ilog2(I915_CONTEXT_CLONE_##x)] = y 2235 MAP(ENGINES, clone_engines), 2236 MAP(FLAGS, clone_flags), 2237 MAP(SCHEDATTR, clone_schedattr), 2238 MAP(SSEU, clone_sseu), 2239 MAP(TIMELINE, clone_timeline), 2240 MAP(VM, clone_vm), 2241 #undef MAP 2242 }; 2243 struct drm_i915_gem_context_create_ext_clone local; 2244 const struct create_ext *arg = data; 2245 struct i915_gem_context *dst = arg->ctx; 2246 struct i915_gem_context *src; 2247 int err, bit; 2248 2249 if (copy_from_user(&local, ext, sizeof(local))) 2250 return -EFAULT; 2251 2252 BUILD_BUG_ON(GENMASK(BITS_PER_TYPE(local.flags) - 1, ARRAY_SIZE(fn)) != 2253 I915_CONTEXT_CLONE_UNKNOWN); 2254 2255 if (local.flags & I915_CONTEXT_CLONE_UNKNOWN) 2256 return -EINVAL; 2257 2258 if (local.rsvd) 2259 return -EINVAL; 2260 2261 rcu_read_lock(); 2262 src = __i915_gem_context_lookup_rcu(arg->fpriv, local.clone_id); 2263 rcu_read_unlock(); 2264 if (!src) 2265 return -ENOENT; 2266 2267 GEM_BUG_ON(src == dst); 2268 2269 for (bit = 0; bit < ARRAY_SIZE(fn); bit++) { 2270 if (!(local.flags & BIT(bit))) 2271 continue; 2272 2273 err = fn[bit](dst, src); 2274 if (err) 2275 return err; 2276 } 2277 2278 return 0; 2279 } 2280 2281 static const i915_user_extension_fn create_extensions[] = { 2282 [I915_CONTEXT_CREATE_EXT_SETPARAM] = create_setparam, 2283 [I915_CONTEXT_CREATE_EXT_CLONE] = create_clone, 2284 }; 2285 2286 static bool client_is_banned(struct drm_i915_file_private *file_priv) 2287 { 2288 return atomic_read(&file_priv->ban_score) >= I915_CLIENT_SCORE_BANNED; 2289 } 2290 2291 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data, 2292 struct drm_file *file) 2293 { 2294 struct drm_i915_private *i915 = to_i915(dev); 2295 struct drm_i915_gem_context_create_ext *args = data; 2296 struct create_ext ext_data; 2297 int ret; 2298 u32 id; 2299 2300 if (!DRIVER_CAPS(i915)->has_logical_contexts) 2301 return -ENODEV; 2302 2303 if (args->flags & I915_CONTEXT_CREATE_FLAGS_UNKNOWN) 2304 return -EINVAL; 2305 2306 ret = intel_gt_terminally_wedged(&i915->gt); 2307 if (ret) 2308 return ret; 2309 2310 ext_data.fpriv = file->driver_priv; 2311 if (client_is_banned(ext_data.fpriv)) { 2312 drm_dbg(&i915->drm, 2313 "client %s[%d] banned from creating ctx\n", 2314 current->comm, task_pid_nr(current)); 2315 return -EIO; 2316 } 2317 2318 ext_data.ctx = i915_gem_create_context(i915, args->flags); 2319 if (IS_ERR(ext_data.ctx)) 2320 return PTR_ERR(ext_data.ctx); 2321 2322 if (args->flags & I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS) { 2323 ret = i915_user_extensions(u64_to_user_ptr(args->extensions), 2324 create_extensions, 2325 ARRAY_SIZE(create_extensions), 2326 &ext_data); 2327 if (ret) 2328 goto err_ctx; 2329 } 2330 2331 ret = gem_context_register(ext_data.ctx, ext_data.fpriv, &id); 2332 if (ret < 0) 2333 goto err_ctx; 2334 2335 args->ctx_id = id; 2336 drm_dbg(&i915->drm, "HW context %d created\n", args->ctx_id); 2337 2338 return 0; 2339 2340 err_ctx: 2341 context_close(ext_data.ctx); 2342 return ret; 2343 } 2344 2345 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data, 2346 struct drm_file *file) 2347 { 2348 struct drm_i915_gem_context_destroy *args = data; 2349 struct drm_i915_file_private *file_priv = file->driver_priv; 2350 struct i915_gem_context *ctx; 2351 2352 if (args->pad != 0) 2353 return -EINVAL; 2354 2355 if (!args->ctx_id) 2356 return -ENOENT; 2357 2358 ctx = xa_erase(&file_priv->context_xa, args->ctx_id); 2359 if (!ctx) 2360 return -ENOENT; 2361 2362 context_close(ctx); 2363 return 0; 2364 } 2365 2366 static int get_sseu(struct i915_gem_context *ctx, 2367 struct drm_i915_gem_context_param *args) 2368 { 2369 struct drm_i915_gem_context_param_sseu user_sseu; 2370 struct intel_context *ce; 2371 unsigned long lookup; 2372 int err; 2373 2374 if (args->size == 0) 2375 goto out; 2376 else if (args->size < sizeof(user_sseu)) 2377 return -EINVAL; 2378 2379 if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value), 2380 sizeof(user_sseu))) 2381 return -EFAULT; 2382 2383 if (user_sseu.rsvd) 2384 return -EINVAL; 2385 2386 if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)) 2387 return -EINVAL; 2388 2389 lookup = 0; 2390 if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX) 2391 lookup |= LOOKUP_USER_INDEX; 2392 2393 ce = lookup_user_engine(ctx, lookup, &user_sseu.engine); 2394 if (IS_ERR(ce)) 2395 return PTR_ERR(ce); 2396 2397 err = intel_context_lock_pinned(ce); /* serialises with set_sseu */ 2398 if (err) { 2399 intel_context_put(ce); 2400 return err; 2401 } 2402 2403 user_sseu.slice_mask = ce->sseu.slice_mask; 2404 user_sseu.subslice_mask = ce->sseu.subslice_mask; 2405 user_sseu.min_eus_per_subslice = ce->sseu.min_eus_per_subslice; 2406 user_sseu.max_eus_per_subslice = ce->sseu.max_eus_per_subslice; 2407 2408 intel_context_unlock_pinned(ce); 2409 intel_context_put(ce); 2410 2411 if (copy_to_user(u64_to_user_ptr(args->value), &user_sseu, 2412 sizeof(user_sseu))) 2413 return -EFAULT; 2414 2415 out: 2416 args->size = sizeof(user_sseu); 2417 2418 return 0; 2419 } 2420 2421 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data, 2422 struct drm_file *file) 2423 { 2424 struct drm_i915_file_private *file_priv = file->driver_priv; 2425 struct drm_i915_gem_context_param *args = data; 2426 struct i915_gem_context *ctx; 2427 int ret = 0; 2428 2429 ctx = i915_gem_context_lookup(file_priv, args->ctx_id); 2430 if (!ctx) 2431 return -ENOENT; 2432 2433 switch (args->param) { 2434 case I915_CONTEXT_PARAM_NO_ZEROMAP: 2435 args->size = 0; 2436 args->value = test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags); 2437 break; 2438 2439 case I915_CONTEXT_PARAM_GTT_SIZE: 2440 args->size = 0; 2441 rcu_read_lock(); 2442 if (rcu_access_pointer(ctx->vm)) 2443 args->value = rcu_dereference(ctx->vm)->total; 2444 else 2445 args->value = to_i915(dev)->ggtt.vm.total; 2446 rcu_read_unlock(); 2447 break; 2448 2449 case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE: 2450 args->size = 0; 2451 args->value = i915_gem_context_no_error_capture(ctx); 2452 break; 2453 2454 case I915_CONTEXT_PARAM_BANNABLE: 2455 args->size = 0; 2456 args->value = i915_gem_context_is_bannable(ctx); 2457 break; 2458 2459 case I915_CONTEXT_PARAM_RECOVERABLE: 2460 args->size = 0; 2461 args->value = i915_gem_context_is_recoverable(ctx); 2462 break; 2463 2464 case I915_CONTEXT_PARAM_PRIORITY: 2465 args->size = 0; 2466 args->value = ctx->sched.priority >> I915_USER_PRIORITY_SHIFT; 2467 break; 2468 2469 case I915_CONTEXT_PARAM_SSEU: 2470 ret = get_sseu(ctx, args); 2471 break; 2472 2473 case I915_CONTEXT_PARAM_VM: 2474 ret = get_ppgtt(file_priv, ctx, args); 2475 break; 2476 2477 case I915_CONTEXT_PARAM_ENGINES: 2478 ret = get_engines(ctx, args); 2479 break; 2480 2481 case I915_CONTEXT_PARAM_PERSISTENCE: 2482 args->size = 0; 2483 args->value = i915_gem_context_is_persistent(ctx); 2484 break; 2485 2486 case I915_CONTEXT_PARAM_RINGSIZE: 2487 ret = get_ringsize(ctx, args); 2488 break; 2489 2490 case I915_CONTEXT_PARAM_BAN_PERIOD: 2491 default: 2492 ret = -EINVAL; 2493 break; 2494 } 2495 2496 i915_gem_context_put(ctx); 2497 return ret; 2498 } 2499 2500 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data, 2501 struct drm_file *file) 2502 { 2503 struct drm_i915_file_private *file_priv = file->driver_priv; 2504 struct drm_i915_gem_context_param *args = data; 2505 struct i915_gem_context *ctx; 2506 int ret; 2507 2508 ctx = i915_gem_context_lookup(file_priv, args->ctx_id); 2509 if (!ctx) 2510 return -ENOENT; 2511 2512 ret = ctx_setparam(file_priv, ctx, args); 2513 2514 i915_gem_context_put(ctx); 2515 return ret; 2516 } 2517 2518 int i915_gem_context_reset_stats_ioctl(struct drm_device *dev, 2519 void *data, struct drm_file *file) 2520 { 2521 struct drm_i915_private *i915 = to_i915(dev); 2522 struct drm_i915_reset_stats *args = data; 2523 struct i915_gem_context *ctx; 2524 int ret; 2525 2526 if (args->flags || args->pad) 2527 return -EINVAL; 2528 2529 ret = -ENOENT; 2530 rcu_read_lock(); 2531 ctx = __i915_gem_context_lookup_rcu(file->driver_priv, args->ctx_id); 2532 if (!ctx) 2533 goto out; 2534 2535 /* 2536 * We opt for unserialised reads here. This may result in tearing 2537 * in the extremely unlikely event of a GPU hang on this context 2538 * as we are querying them. If we need that extra layer of protection, 2539 * we should wrap the hangstats with a seqlock. 2540 */ 2541 2542 if (capable(CAP_SYS_ADMIN)) 2543 args->reset_count = i915_reset_count(&i915->gpu_error); 2544 else 2545 args->reset_count = 0; 2546 2547 args->batch_active = atomic_read(&ctx->guilty_count); 2548 args->batch_pending = atomic_read(&ctx->active_count); 2549 2550 ret = 0; 2551 out: 2552 rcu_read_unlock(); 2553 return ret; 2554 } 2555 2556 /* GEM context-engines iterator: for_each_gem_engine() */ 2557 struct intel_context * 2558 i915_gem_engines_iter_next(struct i915_gem_engines_iter *it) 2559 { 2560 const struct i915_gem_engines *e = it->engines; 2561 struct intel_context *ctx; 2562 2563 if (unlikely(!e)) 2564 return NULL; 2565 2566 do { 2567 if (it->idx >= e->num_engines) 2568 return NULL; 2569 2570 ctx = e->engines[it->idx++]; 2571 } while (!ctx); 2572 2573 return ctx; 2574 } 2575 2576 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2577 #include "selftests/mock_context.c" 2578 #include "selftests/i915_gem_context.c" 2579 #endif 2580 2581 static void i915_global_gem_context_shrink(void) 2582 { 2583 kmem_cache_shrink(global.slab_luts); 2584 } 2585 2586 static void i915_global_gem_context_exit(void) 2587 { 2588 kmem_cache_destroy(global.slab_luts); 2589 } 2590 2591 static struct i915_global_gem_context global = { { 2592 .shrink = i915_global_gem_context_shrink, 2593 .exit = i915_global_gem_context_exit, 2594 } }; 2595 2596 int __init i915_global_gem_context_init(void) 2597 { 2598 global.slab_luts = KMEM_CACHE(i915_lut_handle, 0); 2599 if (!global.slab_luts) 2600 return -ENOMEM; 2601 2602 i915_global_register(&global.base); 2603 return 0; 2604 } 2605