1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2011-2012 Intel Corporation
5  */
6 
7 /*
8  * This file implements HW context support. On gen5+ a HW context consists of an
9  * opaque GPU object which is referenced at times of context saves and restores.
10  * With RC6 enabled, the context is also referenced as the GPU enters and exists
11  * from RC6 (GPU has it's own internal power context, except on gen5). Though
12  * something like a context does exist for the media ring, the code only
13  * supports contexts for the render ring.
14  *
15  * In software, there is a distinction between contexts created by the user,
16  * and the default HW context. The default HW context is used by GPU clients
17  * that do not request setup of their own hardware context. The default
18  * context's state is never restored to help prevent programming errors. This
19  * would happen if a client ran and piggy-backed off another clients GPU state.
20  * The default context only exists to give the GPU some offset to load as the
21  * current to invoke a save of the context we actually care about. In fact, the
22  * code could likely be constructed, albeit in a more complicated fashion, to
23  * never use the default context, though that limits the driver's ability to
24  * swap out, and/or destroy other contexts.
25  *
26  * All other contexts are created as a request by the GPU client. These contexts
27  * store GPU state, and thus allow GPU clients to not re-emit state (and
28  * potentially query certain state) at any time. The kernel driver makes
29  * certain that the appropriate commands are inserted.
30  *
31  * The context life cycle is semi-complicated in that context BOs may live
32  * longer than the context itself because of the way the hardware, and object
33  * tracking works. Below is a very crude representation of the state machine
34  * describing the context life.
35  *                                         refcount     pincount     active
36  * S0: initial state                          0            0           0
37  * S1: context created                        1            0           0
38  * S2: context is currently running           2            1           X
39  * S3: GPU referenced, but not current        2            0           1
40  * S4: context is current, but destroyed      1            1           0
41  * S5: like S3, but destroyed                 1            0           1
42  *
43  * The most common (but not all) transitions:
44  * S0->S1: client creates a context
45  * S1->S2: client submits execbuf with context
46  * S2->S3: other clients submits execbuf with context
47  * S3->S1: context object was retired
48  * S3->S2: clients submits another execbuf
49  * S2->S4: context destroy called with current context
50  * S3->S5->S0: destroy path
51  * S4->S5->S0: destroy path on current context
52  *
53  * There are two confusing terms used above:
54  *  The "current context" means the context which is currently running on the
55  *  GPU. The GPU has loaded its state already and has stored away the gtt
56  *  offset of the BO. The GPU is not actively referencing the data at this
57  *  offset, but it will on the next context switch. The only way to avoid this
58  *  is to do a GPU reset.
59  *
60  *  An "active context' is one which was previously the "current context" and is
61  *  on the active list waiting for the next context switch to occur. Until this
62  *  happens, the object must remain at the same gtt offset. It is therefore
63  *  possible to destroy a context, but it is still active.
64  *
65  */
66 
67 #include <linux/log2.h>
68 #include <linux/nospec.h>
69 
70 #include "gt/gen6_ppgtt.h"
71 #include "gt/intel_context.h"
72 #include "gt/intel_context_param.h"
73 #include "gt/intel_engine_heartbeat.h"
74 #include "gt/intel_engine_user.h"
75 #include "gt/intel_execlists_submission.h" /* virtual_engine */
76 #include "gt/intel_gpu_commands.h"
77 #include "gt/intel_ring.h"
78 
79 #include "i915_gem_context.h"
80 #include "i915_globals.h"
81 #include "i915_trace.h"
82 #include "i915_user_extensions.h"
83 
84 #define ALL_L3_SLICES(dev) (1 << NUM_L3_SLICES(dev)) - 1
85 
86 static struct i915_global_gem_context {
87 	struct i915_global base;
88 	struct kmem_cache *slab_luts;
89 } global;
90 
91 struct i915_lut_handle *i915_lut_handle_alloc(void)
92 {
93 	return kmem_cache_alloc(global.slab_luts, GFP_KERNEL);
94 }
95 
96 void i915_lut_handle_free(struct i915_lut_handle *lut)
97 {
98 	return kmem_cache_free(global.slab_luts, lut);
99 }
100 
101 static void lut_close(struct i915_gem_context *ctx)
102 {
103 	struct radix_tree_iter iter;
104 	void __rcu **slot;
105 
106 	mutex_lock(&ctx->lut_mutex);
107 	rcu_read_lock();
108 	radix_tree_for_each_slot(slot, &ctx->handles_vma, &iter, 0) {
109 		struct i915_vma *vma = rcu_dereference_raw(*slot);
110 		struct drm_i915_gem_object *obj = vma->obj;
111 		struct i915_lut_handle *lut;
112 
113 		if (!kref_get_unless_zero(&obj->base.refcount))
114 			continue;
115 
116 		spin_lock(&obj->lut_lock);
117 		list_for_each_entry(lut, &obj->lut_list, obj_link) {
118 			if (lut->ctx != ctx)
119 				continue;
120 
121 			if (lut->handle != iter.index)
122 				continue;
123 
124 			list_del(&lut->obj_link);
125 			break;
126 		}
127 		spin_unlock(&obj->lut_lock);
128 
129 		if (&lut->obj_link != &obj->lut_list) {
130 			i915_lut_handle_free(lut);
131 			radix_tree_iter_delete(&ctx->handles_vma, &iter, slot);
132 			i915_vma_close(vma);
133 			i915_gem_object_put(obj);
134 		}
135 
136 		i915_gem_object_put(obj);
137 	}
138 	rcu_read_unlock();
139 	mutex_unlock(&ctx->lut_mutex);
140 }
141 
142 static struct intel_context *
143 lookup_user_engine(struct i915_gem_context *ctx,
144 		   unsigned long flags,
145 		   const struct i915_engine_class_instance *ci)
146 #define LOOKUP_USER_INDEX BIT(0)
147 {
148 	int idx;
149 
150 	if (!!(flags & LOOKUP_USER_INDEX) != i915_gem_context_user_engines(ctx))
151 		return ERR_PTR(-EINVAL);
152 
153 	if (!i915_gem_context_user_engines(ctx)) {
154 		struct intel_engine_cs *engine;
155 
156 		engine = intel_engine_lookup_user(ctx->i915,
157 						  ci->engine_class,
158 						  ci->engine_instance);
159 		if (!engine)
160 			return ERR_PTR(-EINVAL);
161 
162 		idx = engine->legacy_idx;
163 	} else {
164 		idx = ci->engine_instance;
165 	}
166 
167 	return i915_gem_context_get_engine(ctx, idx);
168 }
169 
170 static struct i915_address_space *
171 context_get_vm_rcu(struct i915_gem_context *ctx)
172 {
173 	GEM_BUG_ON(!rcu_access_pointer(ctx->vm));
174 
175 	do {
176 		struct i915_address_space *vm;
177 
178 		/*
179 		 * We do not allow downgrading from full-ppgtt [to a shared
180 		 * global gtt], so ctx->vm cannot become NULL.
181 		 */
182 		vm = rcu_dereference(ctx->vm);
183 		if (!kref_get_unless_zero(&vm->ref))
184 			continue;
185 
186 		/*
187 		 * This ppgtt may have be reallocated between
188 		 * the read and the kref, and reassigned to a third
189 		 * context. In order to avoid inadvertent sharing
190 		 * of this ppgtt with that third context (and not
191 		 * src), we have to confirm that we have the same
192 		 * ppgtt after passing through the strong memory
193 		 * barrier implied by a successful
194 		 * kref_get_unless_zero().
195 		 *
196 		 * Once we have acquired the current ppgtt of ctx,
197 		 * we no longer care if it is released from ctx, as
198 		 * it cannot be reallocated elsewhere.
199 		 */
200 
201 		if (vm == rcu_access_pointer(ctx->vm))
202 			return rcu_pointer_handoff(vm);
203 
204 		i915_vm_put(vm);
205 	} while (1);
206 }
207 
208 static void intel_context_set_gem(struct intel_context *ce,
209 				  struct i915_gem_context *ctx)
210 {
211 	GEM_BUG_ON(rcu_access_pointer(ce->gem_context));
212 	RCU_INIT_POINTER(ce->gem_context, ctx);
213 
214 	ce->ring_size = SZ_16K;
215 
216 	if (rcu_access_pointer(ctx->vm)) {
217 		struct i915_address_space *vm;
218 
219 		rcu_read_lock();
220 		vm = context_get_vm_rcu(ctx); /* hmm */
221 		rcu_read_unlock();
222 
223 		i915_vm_put(ce->vm);
224 		ce->vm = vm;
225 	}
226 
227 	GEM_BUG_ON(ce->timeline);
228 	if (ctx->timeline)
229 		ce->timeline = intel_timeline_get(ctx->timeline);
230 
231 	if (ctx->sched.priority >= I915_PRIORITY_NORMAL &&
232 	    intel_engine_has_timeslices(ce->engine))
233 		__set_bit(CONTEXT_USE_SEMAPHORES, &ce->flags);
234 
235 	if (IS_ACTIVE(CONFIG_DRM_I915_REQUEST_TIMEOUT) &&
236 	    ctx->i915->params.request_timeout_ms) {
237 		unsigned int timeout_ms = ctx->i915->params.request_timeout_ms;
238 
239 		intel_context_set_watchdog_us(ce, (u64)timeout_ms * 1000);
240 	}
241 }
242 
243 static void __free_engines(struct i915_gem_engines *e, unsigned int count)
244 {
245 	while (count--) {
246 		if (!e->engines[count])
247 			continue;
248 
249 		intel_context_put(e->engines[count]);
250 	}
251 	kfree(e);
252 }
253 
254 static void free_engines(struct i915_gem_engines *e)
255 {
256 	__free_engines(e, e->num_engines);
257 }
258 
259 static void free_engines_rcu(struct rcu_head *rcu)
260 {
261 	struct i915_gem_engines *engines =
262 		container_of(rcu, struct i915_gem_engines, rcu);
263 
264 	i915_sw_fence_fini(&engines->fence);
265 	free_engines(engines);
266 }
267 
268 static int __i915_sw_fence_call
269 engines_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
270 {
271 	struct i915_gem_engines *engines =
272 		container_of(fence, typeof(*engines), fence);
273 
274 	switch (state) {
275 	case FENCE_COMPLETE:
276 		if (!list_empty(&engines->link)) {
277 			struct i915_gem_context *ctx = engines->ctx;
278 			unsigned long flags;
279 
280 			spin_lock_irqsave(&ctx->stale.lock, flags);
281 			list_del(&engines->link);
282 			spin_unlock_irqrestore(&ctx->stale.lock, flags);
283 		}
284 		i915_gem_context_put(engines->ctx);
285 		break;
286 
287 	case FENCE_FREE:
288 		init_rcu_head(&engines->rcu);
289 		call_rcu(&engines->rcu, free_engines_rcu);
290 		break;
291 	}
292 
293 	return NOTIFY_DONE;
294 }
295 
296 static struct i915_gem_engines *alloc_engines(unsigned int count)
297 {
298 	struct i915_gem_engines *e;
299 
300 	e = kzalloc(struct_size(e, engines, count), GFP_KERNEL);
301 	if (!e)
302 		return NULL;
303 
304 	i915_sw_fence_init(&e->fence, engines_notify);
305 	return e;
306 }
307 
308 static struct i915_gem_engines *default_engines(struct i915_gem_context *ctx)
309 {
310 	const struct intel_gt *gt = &ctx->i915->gt;
311 	struct intel_engine_cs *engine;
312 	struct i915_gem_engines *e;
313 	enum intel_engine_id id;
314 
315 	e = alloc_engines(I915_NUM_ENGINES);
316 	if (!e)
317 		return ERR_PTR(-ENOMEM);
318 
319 	for_each_engine(engine, gt, id) {
320 		struct intel_context *ce;
321 
322 		if (engine->legacy_idx == INVALID_ENGINE)
323 			continue;
324 
325 		GEM_BUG_ON(engine->legacy_idx >= I915_NUM_ENGINES);
326 		GEM_BUG_ON(e->engines[engine->legacy_idx]);
327 
328 		ce = intel_context_create(engine);
329 		if (IS_ERR(ce)) {
330 			__free_engines(e, e->num_engines + 1);
331 			return ERR_CAST(ce);
332 		}
333 
334 		intel_context_set_gem(ce, ctx);
335 
336 		e->engines[engine->legacy_idx] = ce;
337 		e->num_engines = max(e->num_engines, engine->legacy_idx);
338 	}
339 	e->num_engines++;
340 
341 	return e;
342 }
343 
344 void i915_gem_context_release(struct kref *ref)
345 {
346 	struct i915_gem_context *ctx = container_of(ref, typeof(*ctx), ref);
347 
348 	trace_i915_context_free(ctx);
349 	GEM_BUG_ON(!i915_gem_context_is_closed(ctx));
350 
351 	mutex_destroy(&ctx->engines_mutex);
352 	mutex_destroy(&ctx->lut_mutex);
353 
354 	if (ctx->timeline)
355 		intel_timeline_put(ctx->timeline);
356 
357 	put_pid(ctx->pid);
358 	mutex_destroy(&ctx->mutex);
359 
360 	kfree_rcu(ctx, rcu);
361 }
362 
363 static inline struct i915_gem_engines *
364 __context_engines_static(const struct i915_gem_context *ctx)
365 {
366 	return rcu_dereference_protected(ctx->engines, true);
367 }
368 
369 static void __reset_context(struct i915_gem_context *ctx,
370 			    struct intel_engine_cs *engine)
371 {
372 	intel_gt_handle_error(engine->gt, engine->mask, 0,
373 			      "context closure in %s", ctx->name);
374 }
375 
376 static bool __cancel_engine(struct intel_engine_cs *engine)
377 {
378 	/*
379 	 * Send a "high priority pulse" down the engine to cause the
380 	 * current request to be momentarily preempted. (If it fails to
381 	 * be preempted, it will be reset). As we have marked our context
382 	 * as banned, any incomplete request, including any running, will
383 	 * be skipped following the preemption.
384 	 *
385 	 * If there is no hangchecking (one of the reasons why we try to
386 	 * cancel the context) and no forced preemption, there may be no
387 	 * means by which we reset the GPU and evict the persistent hog.
388 	 * Ergo if we are unable to inject a preemptive pulse that can
389 	 * kill the banned context, we fallback to doing a local reset
390 	 * instead.
391 	 */
392 	return intel_engine_pulse(engine) == 0;
393 }
394 
395 static struct intel_engine_cs *active_engine(struct intel_context *ce)
396 {
397 	struct intel_engine_cs *engine = NULL;
398 	struct i915_request *rq;
399 
400 	if (intel_context_has_inflight(ce))
401 		return intel_context_inflight(ce);
402 
403 	if (!ce->timeline)
404 		return NULL;
405 
406 	/*
407 	 * rq->link is only SLAB_TYPESAFE_BY_RCU, we need to hold a reference
408 	 * to the request to prevent it being transferred to a new timeline
409 	 * (and onto a new timeline->requests list).
410 	 */
411 	rcu_read_lock();
412 	list_for_each_entry_reverse(rq, &ce->timeline->requests, link) {
413 		bool found;
414 
415 		/* timeline is already completed upto this point? */
416 		if (!i915_request_get_rcu(rq))
417 			break;
418 
419 		/* Check with the backend if the request is inflight */
420 		found = true;
421 		if (likely(rcu_access_pointer(rq->timeline) == ce->timeline))
422 			found = i915_request_active_engine(rq, &engine);
423 
424 		i915_request_put(rq);
425 		if (found)
426 			break;
427 	}
428 	rcu_read_unlock();
429 
430 	return engine;
431 }
432 
433 static void kill_engines(struct i915_gem_engines *engines, bool ban)
434 {
435 	struct i915_gem_engines_iter it;
436 	struct intel_context *ce;
437 
438 	/*
439 	 * Map the user's engine back to the actual engines; one virtual
440 	 * engine will be mapped to multiple engines, and using ctx->engine[]
441 	 * the same engine may be have multiple instances in the user's map.
442 	 * However, we only care about pending requests, so only include
443 	 * engines on which there are incomplete requests.
444 	 */
445 	for_each_gem_engine(ce, engines, it) {
446 		struct intel_engine_cs *engine;
447 
448 		if (ban && intel_context_set_banned(ce))
449 			continue;
450 
451 		/*
452 		 * Check the current active state of this context; if we
453 		 * are currently executing on the GPU we need to evict
454 		 * ourselves. On the other hand, if we haven't yet been
455 		 * submitted to the GPU or if everything is complete,
456 		 * we have nothing to do.
457 		 */
458 		engine = active_engine(ce);
459 
460 		/* First attempt to gracefully cancel the context */
461 		if (engine && !__cancel_engine(engine) && ban)
462 			/*
463 			 * If we are unable to send a preemptive pulse to bump
464 			 * the context from the GPU, we have to resort to a full
465 			 * reset. We hope the collateral damage is worth it.
466 			 */
467 			__reset_context(engines->ctx, engine);
468 	}
469 }
470 
471 static void kill_context(struct i915_gem_context *ctx)
472 {
473 	bool ban = (!i915_gem_context_is_persistent(ctx) ||
474 		    !ctx->i915->params.enable_hangcheck);
475 	struct i915_gem_engines *pos, *next;
476 
477 	spin_lock_irq(&ctx->stale.lock);
478 	GEM_BUG_ON(!i915_gem_context_is_closed(ctx));
479 	list_for_each_entry_safe(pos, next, &ctx->stale.engines, link) {
480 		if (!i915_sw_fence_await(&pos->fence)) {
481 			list_del_init(&pos->link);
482 			continue;
483 		}
484 
485 		spin_unlock_irq(&ctx->stale.lock);
486 
487 		kill_engines(pos, ban);
488 
489 		spin_lock_irq(&ctx->stale.lock);
490 		GEM_BUG_ON(i915_sw_fence_signaled(&pos->fence));
491 		list_safe_reset_next(pos, next, link);
492 		list_del_init(&pos->link); /* decouple from FENCE_COMPLETE */
493 
494 		i915_sw_fence_complete(&pos->fence);
495 	}
496 	spin_unlock_irq(&ctx->stale.lock);
497 }
498 
499 static void engines_idle_release(struct i915_gem_context *ctx,
500 				 struct i915_gem_engines *engines)
501 {
502 	struct i915_gem_engines_iter it;
503 	struct intel_context *ce;
504 
505 	INIT_LIST_HEAD(&engines->link);
506 
507 	engines->ctx = i915_gem_context_get(ctx);
508 
509 	for_each_gem_engine(ce, engines, it) {
510 		int err;
511 
512 		/* serialises with execbuf */
513 		set_bit(CONTEXT_CLOSED_BIT, &ce->flags);
514 		if (!intel_context_pin_if_active(ce))
515 			continue;
516 
517 		/* Wait until context is finally scheduled out and retired */
518 		err = i915_sw_fence_await_active(&engines->fence,
519 						 &ce->active,
520 						 I915_ACTIVE_AWAIT_BARRIER);
521 		intel_context_unpin(ce);
522 		if (err)
523 			goto kill;
524 	}
525 
526 	spin_lock_irq(&ctx->stale.lock);
527 	if (!i915_gem_context_is_closed(ctx))
528 		list_add_tail(&engines->link, &ctx->stale.engines);
529 	spin_unlock_irq(&ctx->stale.lock);
530 
531 kill:
532 	if (list_empty(&engines->link)) /* raced, already closed */
533 		kill_engines(engines, true);
534 
535 	i915_sw_fence_commit(&engines->fence);
536 }
537 
538 static void set_closed_name(struct i915_gem_context *ctx)
539 {
540 	char *s;
541 
542 	/* Replace '[]' with '<>' to indicate closed in debug prints */
543 
544 	s = strrchr(ctx->name, '[');
545 	if (!s)
546 		return;
547 
548 	*s = '<';
549 
550 	s = strchr(s + 1, ']');
551 	if (s)
552 		*s = '>';
553 }
554 
555 static void context_close(struct i915_gem_context *ctx)
556 {
557 	struct i915_address_space *vm;
558 
559 	/* Flush any concurrent set_engines() */
560 	mutex_lock(&ctx->engines_mutex);
561 	engines_idle_release(ctx, rcu_replace_pointer(ctx->engines, NULL, 1));
562 	i915_gem_context_set_closed(ctx);
563 	mutex_unlock(&ctx->engines_mutex);
564 
565 	mutex_lock(&ctx->mutex);
566 
567 	set_closed_name(ctx);
568 
569 	vm = i915_gem_context_vm(ctx);
570 	if (vm)
571 		i915_vm_close(vm);
572 
573 	ctx->file_priv = ERR_PTR(-EBADF);
574 
575 	/*
576 	 * The LUT uses the VMA as a backpointer to unref the object,
577 	 * so we need to clear the LUT before we close all the VMA (inside
578 	 * the ppgtt).
579 	 */
580 	lut_close(ctx);
581 
582 	spin_lock(&ctx->i915->gem.contexts.lock);
583 	list_del(&ctx->link);
584 	spin_unlock(&ctx->i915->gem.contexts.lock);
585 
586 	mutex_unlock(&ctx->mutex);
587 
588 	/*
589 	 * If the user has disabled hangchecking, we can not be sure that
590 	 * the batches will ever complete after the context is closed,
591 	 * keeping the context and all resources pinned forever. So in this
592 	 * case we opt to forcibly kill off all remaining requests on
593 	 * context close.
594 	 */
595 	kill_context(ctx);
596 
597 	i915_gem_context_put(ctx);
598 }
599 
600 static int __context_set_persistence(struct i915_gem_context *ctx, bool state)
601 {
602 	if (i915_gem_context_is_persistent(ctx) == state)
603 		return 0;
604 
605 	if (state) {
606 		/*
607 		 * Only contexts that are short-lived [that will expire or be
608 		 * reset] are allowed to survive past termination. We require
609 		 * hangcheck to ensure that the persistent requests are healthy.
610 		 */
611 		if (!ctx->i915->params.enable_hangcheck)
612 			return -EINVAL;
613 
614 		i915_gem_context_set_persistence(ctx);
615 	} else {
616 		/* To cancel a context we use "preempt-to-idle" */
617 		if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PREEMPTION))
618 			return -ENODEV;
619 
620 		/*
621 		 * If the cancel fails, we then need to reset, cleanly!
622 		 *
623 		 * If the per-engine reset fails, all hope is lost! We resort
624 		 * to a full GPU reset in that unlikely case, but realistically
625 		 * if the engine could not reset, the full reset does not fare
626 		 * much better. The damage has been done.
627 		 *
628 		 * However, if we cannot reset an engine by itself, we cannot
629 		 * cleanup a hanging persistent context without causing
630 		 * colateral damage, and we should not pretend we can by
631 		 * exposing the interface.
632 		 */
633 		if (!intel_has_reset_engine(&ctx->i915->gt))
634 			return -ENODEV;
635 
636 		i915_gem_context_clear_persistence(ctx);
637 	}
638 
639 	return 0;
640 }
641 
642 static struct i915_gem_context *
643 __create_context(struct drm_i915_private *i915)
644 {
645 	struct i915_gem_context *ctx;
646 	struct i915_gem_engines *e;
647 	int err;
648 	int i;
649 
650 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
651 	if (!ctx)
652 		return ERR_PTR(-ENOMEM);
653 
654 	kref_init(&ctx->ref);
655 	ctx->i915 = i915;
656 	ctx->sched.priority = I915_PRIORITY_NORMAL;
657 	mutex_init(&ctx->mutex);
658 	INIT_LIST_HEAD(&ctx->link);
659 
660 	spin_lock_init(&ctx->stale.lock);
661 	INIT_LIST_HEAD(&ctx->stale.engines);
662 
663 	mutex_init(&ctx->engines_mutex);
664 	e = default_engines(ctx);
665 	if (IS_ERR(e)) {
666 		err = PTR_ERR(e);
667 		goto err_free;
668 	}
669 	RCU_INIT_POINTER(ctx->engines, e);
670 
671 	INIT_RADIX_TREE(&ctx->handles_vma, GFP_KERNEL);
672 	mutex_init(&ctx->lut_mutex);
673 
674 	/* NB: Mark all slices as needing a remap so that when the context first
675 	 * loads it will restore whatever remap state already exists. If there
676 	 * is no remap info, it will be a NOP. */
677 	ctx->remap_slice = ALL_L3_SLICES(i915);
678 
679 	i915_gem_context_set_bannable(ctx);
680 	i915_gem_context_set_recoverable(ctx);
681 	__context_set_persistence(ctx, true /* cgroup hook? */);
682 
683 	for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp); i++)
684 		ctx->hang_timestamp[i] = jiffies - CONTEXT_FAST_HANG_JIFFIES;
685 
686 	return ctx;
687 
688 err_free:
689 	kfree(ctx);
690 	return ERR_PTR(err);
691 }
692 
693 static inline struct i915_gem_engines *
694 __context_engines_await(const struct i915_gem_context *ctx,
695 			bool *user_engines)
696 {
697 	struct i915_gem_engines *engines;
698 
699 	rcu_read_lock();
700 	do {
701 		engines = rcu_dereference(ctx->engines);
702 		GEM_BUG_ON(!engines);
703 
704 		if (user_engines)
705 			*user_engines = i915_gem_context_user_engines(ctx);
706 
707 		/* successful await => strong mb */
708 		if (unlikely(!i915_sw_fence_await(&engines->fence)))
709 			continue;
710 
711 		if (likely(engines == rcu_access_pointer(ctx->engines)))
712 			break;
713 
714 		i915_sw_fence_complete(&engines->fence);
715 	} while (1);
716 	rcu_read_unlock();
717 
718 	return engines;
719 }
720 
721 static int
722 context_apply_all(struct i915_gem_context *ctx,
723 		  int (*fn)(struct intel_context *ce, void *data),
724 		  void *data)
725 {
726 	struct i915_gem_engines_iter it;
727 	struct i915_gem_engines *e;
728 	struct intel_context *ce;
729 	int err = 0;
730 
731 	e = __context_engines_await(ctx, NULL);
732 	for_each_gem_engine(ce, e, it) {
733 		err = fn(ce, data);
734 		if (err)
735 			break;
736 	}
737 	i915_sw_fence_complete(&e->fence);
738 
739 	return err;
740 }
741 
742 static int __apply_ppgtt(struct intel_context *ce, void *vm)
743 {
744 	i915_vm_put(ce->vm);
745 	ce->vm = i915_vm_get(vm);
746 	return 0;
747 }
748 
749 static struct i915_address_space *
750 __set_ppgtt(struct i915_gem_context *ctx, struct i915_address_space *vm)
751 {
752 	struct i915_address_space *old;
753 
754 	old = rcu_replace_pointer(ctx->vm,
755 				  i915_vm_open(vm),
756 				  lockdep_is_held(&ctx->mutex));
757 	GEM_BUG_ON(old && i915_vm_is_4lvl(vm) != i915_vm_is_4lvl(old));
758 
759 	context_apply_all(ctx, __apply_ppgtt, vm);
760 
761 	return old;
762 }
763 
764 static void __assign_ppgtt(struct i915_gem_context *ctx,
765 			   struct i915_address_space *vm)
766 {
767 	if (vm == rcu_access_pointer(ctx->vm))
768 		return;
769 
770 	vm = __set_ppgtt(ctx, vm);
771 	if (vm)
772 		i915_vm_close(vm);
773 }
774 
775 static void __set_timeline(struct intel_timeline **dst,
776 			   struct intel_timeline *src)
777 {
778 	struct intel_timeline *old = *dst;
779 
780 	*dst = src ? intel_timeline_get(src) : NULL;
781 
782 	if (old)
783 		intel_timeline_put(old);
784 }
785 
786 static int __apply_timeline(struct intel_context *ce, void *timeline)
787 {
788 	__set_timeline(&ce->timeline, timeline);
789 	return 0;
790 }
791 
792 static void __assign_timeline(struct i915_gem_context *ctx,
793 			      struct intel_timeline *timeline)
794 {
795 	__set_timeline(&ctx->timeline, timeline);
796 	context_apply_all(ctx, __apply_timeline, timeline);
797 }
798 
799 static struct i915_gem_context *
800 i915_gem_create_context(struct drm_i915_private *i915, unsigned int flags)
801 {
802 	struct i915_gem_context *ctx;
803 
804 	if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE &&
805 	    !HAS_EXECLISTS(i915))
806 		return ERR_PTR(-EINVAL);
807 
808 	ctx = __create_context(i915);
809 	if (IS_ERR(ctx))
810 		return ctx;
811 
812 	if (HAS_FULL_PPGTT(i915)) {
813 		struct i915_ppgtt *ppgtt;
814 
815 		ppgtt = i915_ppgtt_create(&i915->gt);
816 		if (IS_ERR(ppgtt)) {
817 			drm_dbg(&i915->drm, "PPGTT setup failed (%ld)\n",
818 				PTR_ERR(ppgtt));
819 			context_close(ctx);
820 			return ERR_CAST(ppgtt);
821 		}
822 
823 		mutex_lock(&ctx->mutex);
824 		__assign_ppgtt(ctx, &ppgtt->vm);
825 		mutex_unlock(&ctx->mutex);
826 
827 		i915_vm_put(&ppgtt->vm);
828 	}
829 
830 	if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE) {
831 		struct intel_timeline *timeline;
832 
833 		timeline = intel_timeline_create(&i915->gt);
834 		if (IS_ERR(timeline)) {
835 			context_close(ctx);
836 			return ERR_CAST(timeline);
837 		}
838 
839 		__assign_timeline(ctx, timeline);
840 		intel_timeline_put(timeline);
841 	}
842 
843 	trace_i915_context_create(ctx);
844 
845 	return ctx;
846 }
847 
848 static void init_contexts(struct i915_gem_contexts *gc)
849 {
850 	spin_lock_init(&gc->lock);
851 	INIT_LIST_HEAD(&gc->list);
852 }
853 
854 void i915_gem_init__contexts(struct drm_i915_private *i915)
855 {
856 	init_contexts(&i915->gem.contexts);
857 }
858 
859 static int gem_context_register(struct i915_gem_context *ctx,
860 				struct drm_i915_file_private *fpriv,
861 				u32 *id)
862 {
863 	struct drm_i915_private *i915 = ctx->i915;
864 	struct i915_address_space *vm;
865 	int ret;
866 
867 	ctx->file_priv = fpriv;
868 
869 	mutex_lock(&ctx->mutex);
870 	vm = i915_gem_context_vm(ctx);
871 	if (vm)
872 		WRITE_ONCE(vm->file, fpriv); /* XXX */
873 	mutex_unlock(&ctx->mutex);
874 
875 	ctx->pid = get_task_pid(current, PIDTYPE_PID);
876 	snprintf(ctx->name, sizeof(ctx->name), "%s[%d]",
877 		 current->comm, pid_nr(ctx->pid));
878 
879 	/* And finally expose ourselves to userspace via the idr */
880 	ret = xa_alloc(&fpriv->context_xa, id, ctx, xa_limit_32b, GFP_KERNEL);
881 	if (ret)
882 		goto err_pid;
883 
884 	spin_lock(&i915->gem.contexts.lock);
885 	list_add_tail(&ctx->link, &i915->gem.contexts.list);
886 	spin_unlock(&i915->gem.contexts.lock);
887 
888 	return 0;
889 
890 err_pid:
891 	put_pid(fetch_and_zero(&ctx->pid));
892 	return ret;
893 }
894 
895 int i915_gem_context_open(struct drm_i915_private *i915,
896 			  struct drm_file *file)
897 {
898 	struct drm_i915_file_private *file_priv = file->driver_priv;
899 	struct i915_gem_context *ctx;
900 	int err;
901 	u32 id;
902 
903 	xa_init_flags(&file_priv->context_xa, XA_FLAGS_ALLOC);
904 
905 	/* 0 reserved for invalid/unassigned ppgtt */
906 	xa_init_flags(&file_priv->vm_xa, XA_FLAGS_ALLOC1);
907 
908 	ctx = i915_gem_create_context(i915, 0);
909 	if (IS_ERR(ctx)) {
910 		err = PTR_ERR(ctx);
911 		goto err;
912 	}
913 
914 	err = gem_context_register(ctx, file_priv, &id);
915 	if (err < 0)
916 		goto err_ctx;
917 
918 	GEM_BUG_ON(id);
919 	return 0;
920 
921 err_ctx:
922 	context_close(ctx);
923 err:
924 	xa_destroy(&file_priv->vm_xa);
925 	xa_destroy(&file_priv->context_xa);
926 	return err;
927 }
928 
929 void i915_gem_context_close(struct drm_file *file)
930 {
931 	struct drm_i915_file_private *file_priv = file->driver_priv;
932 	struct i915_address_space *vm;
933 	struct i915_gem_context *ctx;
934 	unsigned long idx;
935 
936 	xa_for_each(&file_priv->context_xa, idx, ctx)
937 		context_close(ctx);
938 	xa_destroy(&file_priv->context_xa);
939 
940 	xa_for_each(&file_priv->vm_xa, idx, vm)
941 		i915_vm_put(vm);
942 	xa_destroy(&file_priv->vm_xa);
943 }
944 
945 int i915_gem_vm_create_ioctl(struct drm_device *dev, void *data,
946 			     struct drm_file *file)
947 {
948 	struct drm_i915_private *i915 = to_i915(dev);
949 	struct drm_i915_gem_vm_control *args = data;
950 	struct drm_i915_file_private *file_priv = file->driver_priv;
951 	struct i915_ppgtt *ppgtt;
952 	u32 id;
953 	int err;
954 
955 	if (!HAS_FULL_PPGTT(i915))
956 		return -ENODEV;
957 
958 	if (args->flags)
959 		return -EINVAL;
960 
961 	ppgtt = i915_ppgtt_create(&i915->gt);
962 	if (IS_ERR(ppgtt))
963 		return PTR_ERR(ppgtt);
964 
965 	ppgtt->vm.file = file_priv;
966 
967 	if (args->extensions) {
968 		err = i915_user_extensions(u64_to_user_ptr(args->extensions),
969 					   NULL, 0,
970 					   ppgtt);
971 		if (err)
972 			goto err_put;
973 	}
974 
975 	err = xa_alloc(&file_priv->vm_xa, &id, &ppgtt->vm,
976 		       xa_limit_32b, GFP_KERNEL);
977 	if (err)
978 		goto err_put;
979 
980 	GEM_BUG_ON(id == 0); /* reserved for invalid/unassigned ppgtt */
981 	args->vm_id = id;
982 	return 0;
983 
984 err_put:
985 	i915_vm_put(&ppgtt->vm);
986 	return err;
987 }
988 
989 int i915_gem_vm_destroy_ioctl(struct drm_device *dev, void *data,
990 			      struct drm_file *file)
991 {
992 	struct drm_i915_file_private *file_priv = file->driver_priv;
993 	struct drm_i915_gem_vm_control *args = data;
994 	struct i915_address_space *vm;
995 
996 	if (args->flags)
997 		return -EINVAL;
998 
999 	if (args->extensions)
1000 		return -EINVAL;
1001 
1002 	vm = xa_erase(&file_priv->vm_xa, args->vm_id);
1003 	if (!vm)
1004 		return -ENOENT;
1005 
1006 	i915_vm_put(vm);
1007 	return 0;
1008 }
1009 
1010 struct context_barrier_task {
1011 	struct i915_active base;
1012 	void (*task)(void *data);
1013 	void *data;
1014 };
1015 
1016 static void cb_retire(struct i915_active *base)
1017 {
1018 	struct context_barrier_task *cb = container_of(base, typeof(*cb), base);
1019 
1020 	if (cb->task)
1021 		cb->task(cb->data);
1022 
1023 	i915_active_fini(&cb->base);
1024 	kfree(cb);
1025 }
1026 
1027 I915_SELFTEST_DECLARE(static intel_engine_mask_t context_barrier_inject_fault);
1028 static int context_barrier_task(struct i915_gem_context *ctx,
1029 				intel_engine_mask_t engines,
1030 				bool (*skip)(struct intel_context *ce, void *data),
1031 				int (*pin)(struct intel_context *ce, struct i915_gem_ww_ctx *ww, void *data),
1032 				int (*emit)(struct i915_request *rq, void *data),
1033 				void (*task)(void *data),
1034 				void *data)
1035 {
1036 	struct context_barrier_task *cb;
1037 	struct i915_gem_engines_iter it;
1038 	struct i915_gem_engines *e;
1039 	struct i915_gem_ww_ctx ww;
1040 	struct intel_context *ce;
1041 	int err = 0;
1042 
1043 	GEM_BUG_ON(!task);
1044 
1045 	cb = kmalloc(sizeof(*cb), GFP_KERNEL);
1046 	if (!cb)
1047 		return -ENOMEM;
1048 
1049 	i915_active_init(&cb->base, NULL, cb_retire, 0);
1050 	err = i915_active_acquire(&cb->base);
1051 	if (err) {
1052 		kfree(cb);
1053 		return err;
1054 	}
1055 
1056 	e = __context_engines_await(ctx, NULL);
1057 	if (!e) {
1058 		i915_active_release(&cb->base);
1059 		return -ENOENT;
1060 	}
1061 
1062 	for_each_gem_engine(ce, e, it) {
1063 		struct i915_request *rq;
1064 
1065 		if (I915_SELFTEST_ONLY(context_barrier_inject_fault &
1066 				       ce->engine->mask)) {
1067 			err = -ENXIO;
1068 			break;
1069 		}
1070 
1071 		if (!(ce->engine->mask & engines))
1072 			continue;
1073 
1074 		if (skip && skip(ce, data))
1075 			continue;
1076 
1077 		i915_gem_ww_ctx_init(&ww, true);
1078 retry:
1079 		err = intel_context_pin_ww(ce, &ww);
1080 		if (err)
1081 			goto err;
1082 
1083 		if (pin)
1084 			err = pin(ce, &ww, data);
1085 		if (err)
1086 			goto err_unpin;
1087 
1088 		rq = i915_request_create(ce);
1089 		if (IS_ERR(rq)) {
1090 			err = PTR_ERR(rq);
1091 			goto err_unpin;
1092 		}
1093 
1094 		err = 0;
1095 		if (emit)
1096 			err = emit(rq, data);
1097 		if (err == 0)
1098 			err = i915_active_add_request(&cb->base, rq);
1099 
1100 		i915_request_add(rq);
1101 err_unpin:
1102 		intel_context_unpin(ce);
1103 err:
1104 		if (err == -EDEADLK) {
1105 			err = i915_gem_ww_ctx_backoff(&ww);
1106 			if (!err)
1107 				goto retry;
1108 		}
1109 		i915_gem_ww_ctx_fini(&ww);
1110 
1111 		if (err)
1112 			break;
1113 	}
1114 	i915_sw_fence_complete(&e->fence);
1115 
1116 	cb->task = err ? NULL : task; /* caller needs to unwind instead */
1117 	cb->data = data;
1118 
1119 	i915_active_release(&cb->base);
1120 
1121 	return err;
1122 }
1123 
1124 static int get_ppgtt(struct drm_i915_file_private *file_priv,
1125 		     struct i915_gem_context *ctx,
1126 		     struct drm_i915_gem_context_param *args)
1127 {
1128 	struct i915_address_space *vm;
1129 	int err;
1130 	u32 id;
1131 
1132 	if (!rcu_access_pointer(ctx->vm))
1133 		return -ENODEV;
1134 
1135 	rcu_read_lock();
1136 	vm = context_get_vm_rcu(ctx);
1137 	rcu_read_unlock();
1138 	if (!vm)
1139 		return -ENODEV;
1140 
1141 	err = xa_alloc(&file_priv->vm_xa, &id, vm, xa_limit_32b, GFP_KERNEL);
1142 	if (err)
1143 		goto err_put;
1144 
1145 	i915_vm_open(vm);
1146 
1147 	GEM_BUG_ON(id == 0); /* reserved for invalid/unassigned ppgtt */
1148 	args->value = id;
1149 	args->size = 0;
1150 
1151 err_put:
1152 	i915_vm_put(vm);
1153 	return err;
1154 }
1155 
1156 static void set_ppgtt_barrier(void *data)
1157 {
1158 	struct i915_address_space *old = data;
1159 
1160 	if (GRAPHICS_VER(old->i915) < 8)
1161 		gen6_ppgtt_unpin_all(i915_vm_to_ppgtt(old));
1162 
1163 	i915_vm_close(old);
1164 }
1165 
1166 static int pin_ppgtt_update(struct intel_context *ce, struct i915_gem_ww_ctx *ww, void *data)
1167 {
1168 	struct i915_address_space *vm = ce->vm;
1169 
1170 	if (!HAS_LOGICAL_RING_CONTEXTS(vm->i915))
1171 		/* ppGTT is not part of the legacy context image */
1172 		return gen6_ppgtt_pin(i915_vm_to_ppgtt(vm), ww);
1173 
1174 	return 0;
1175 }
1176 
1177 static int emit_ppgtt_update(struct i915_request *rq, void *data)
1178 {
1179 	struct i915_address_space *vm = rq->context->vm;
1180 	struct intel_engine_cs *engine = rq->engine;
1181 	u32 base = engine->mmio_base;
1182 	u32 *cs;
1183 	int i;
1184 
1185 	if (i915_vm_is_4lvl(vm)) {
1186 		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1187 		const dma_addr_t pd_daddr = px_dma(ppgtt->pd);
1188 
1189 		cs = intel_ring_begin(rq, 6);
1190 		if (IS_ERR(cs))
1191 			return PTR_ERR(cs);
1192 
1193 		*cs++ = MI_LOAD_REGISTER_IMM(2);
1194 
1195 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
1196 		*cs++ = upper_32_bits(pd_daddr);
1197 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));
1198 		*cs++ = lower_32_bits(pd_daddr);
1199 
1200 		*cs++ = MI_NOOP;
1201 		intel_ring_advance(rq, cs);
1202 	} else if (HAS_LOGICAL_RING_CONTEXTS(engine->i915)) {
1203 		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1204 		int err;
1205 
1206 		/* Magic required to prevent forcewake errors! */
1207 		err = engine->emit_flush(rq, EMIT_INVALIDATE);
1208 		if (err)
1209 			return err;
1210 
1211 		cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
1212 		if (IS_ERR(cs))
1213 			return PTR_ERR(cs);
1214 
1215 		*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
1216 		for (i = GEN8_3LVL_PDPES; i--; ) {
1217 			const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1218 
1219 			*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1220 			*cs++ = upper_32_bits(pd_daddr);
1221 			*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1222 			*cs++ = lower_32_bits(pd_daddr);
1223 		}
1224 		*cs++ = MI_NOOP;
1225 		intel_ring_advance(rq, cs);
1226 	}
1227 
1228 	return 0;
1229 }
1230 
1231 static bool skip_ppgtt_update(struct intel_context *ce, void *data)
1232 {
1233 	if (HAS_LOGICAL_RING_CONTEXTS(ce->engine->i915))
1234 		return !ce->state;
1235 	else
1236 		return !atomic_read(&ce->pin_count);
1237 }
1238 
1239 static int set_ppgtt(struct drm_i915_file_private *file_priv,
1240 		     struct i915_gem_context *ctx,
1241 		     struct drm_i915_gem_context_param *args)
1242 {
1243 	struct i915_address_space *vm, *old;
1244 	int err;
1245 
1246 	if (args->size)
1247 		return -EINVAL;
1248 
1249 	if (!rcu_access_pointer(ctx->vm))
1250 		return -ENODEV;
1251 
1252 	if (upper_32_bits(args->value))
1253 		return -ENOENT;
1254 
1255 	rcu_read_lock();
1256 	vm = xa_load(&file_priv->vm_xa, args->value);
1257 	if (vm && !kref_get_unless_zero(&vm->ref))
1258 		vm = NULL;
1259 	rcu_read_unlock();
1260 	if (!vm)
1261 		return -ENOENT;
1262 
1263 	err = mutex_lock_interruptible(&ctx->mutex);
1264 	if (err)
1265 		goto out;
1266 
1267 	if (i915_gem_context_is_closed(ctx)) {
1268 		err = -ENOENT;
1269 		goto unlock;
1270 	}
1271 
1272 	if (vm == rcu_access_pointer(ctx->vm))
1273 		goto unlock;
1274 
1275 	old = __set_ppgtt(ctx, vm);
1276 
1277 	/* Teardown the existing obj:vma cache, it will have to be rebuilt. */
1278 	lut_close(ctx);
1279 
1280 	/*
1281 	 * We need to flush any requests using the current ppgtt before
1282 	 * we release it as the requests do not hold a reference themselves,
1283 	 * only indirectly through the context.
1284 	 */
1285 	err = context_barrier_task(ctx, ALL_ENGINES,
1286 				   skip_ppgtt_update,
1287 				   pin_ppgtt_update,
1288 				   emit_ppgtt_update,
1289 				   set_ppgtt_barrier,
1290 				   old);
1291 	if (err) {
1292 		i915_vm_close(__set_ppgtt(ctx, old));
1293 		i915_vm_close(old);
1294 		lut_close(ctx); /* force a rebuild of the old obj:vma cache */
1295 	}
1296 
1297 unlock:
1298 	mutex_unlock(&ctx->mutex);
1299 out:
1300 	i915_vm_put(vm);
1301 	return err;
1302 }
1303 
1304 int
1305 i915_gem_user_to_context_sseu(struct intel_gt *gt,
1306 			      const struct drm_i915_gem_context_param_sseu *user,
1307 			      struct intel_sseu *context)
1308 {
1309 	const struct sseu_dev_info *device = &gt->info.sseu;
1310 	struct drm_i915_private *i915 = gt->i915;
1311 
1312 	/* No zeros in any field. */
1313 	if (!user->slice_mask || !user->subslice_mask ||
1314 	    !user->min_eus_per_subslice || !user->max_eus_per_subslice)
1315 		return -EINVAL;
1316 
1317 	/* Max > min. */
1318 	if (user->max_eus_per_subslice < user->min_eus_per_subslice)
1319 		return -EINVAL;
1320 
1321 	/*
1322 	 * Some future proofing on the types since the uAPI is wider than the
1323 	 * current internal implementation.
1324 	 */
1325 	if (overflows_type(user->slice_mask, context->slice_mask) ||
1326 	    overflows_type(user->subslice_mask, context->subslice_mask) ||
1327 	    overflows_type(user->min_eus_per_subslice,
1328 			   context->min_eus_per_subslice) ||
1329 	    overflows_type(user->max_eus_per_subslice,
1330 			   context->max_eus_per_subslice))
1331 		return -EINVAL;
1332 
1333 	/* Check validity against hardware. */
1334 	if (user->slice_mask & ~device->slice_mask)
1335 		return -EINVAL;
1336 
1337 	if (user->subslice_mask & ~device->subslice_mask[0])
1338 		return -EINVAL;
1339 
1340 	if (user->max_eus_per_subslice > device->max_eus_per_subslice)
1341 		return -EINVAL;
1342 
1343 	context->slice_mask = user->slice_mask;
1344 	context->subslice_mask = user->subslice_mask;
1345 	context->min_eus_per_subslice = user->min_eus_per_subslice;
1346 	context->max_eus_per_subslice = user->max_eus_per_subslice;
1347 
1348 	/* Part specific restrictions. */
1349 	if (GRAPHICS_VER(i915) == 11) {
1350 		unsigned int hw_s = hweight8(device->slice_mask);
1351 		unsigned int hw_ss_per_s = hweight8(device->subslice_mask[0]);
1352 		unsigned int req_s = hweight8(context->slice_mask);
1353 		unsigned int req_ss = hweight8(context->subslice_mask);
1354 
1355 		/*
1356 		 * Only full subslice enablement is possible if more than one
1357 		 * slice is turned on.
1358 		 */
1359 		if (req_s > 1 && req_ss != hw_ss_per_s)
1360 			return -EINVAL;
1361 
1362 		/*
1363 		 * If more than four (SScount bitfield limit) subslices are
1364 		 * requested then the number has to be even.
1365 		 */
1366 		if (req_ss > 4 && (req_ss & 1))
1367 			return -EINVAL;
1368 
1369 		/*
1370 		 * If only one slice is enabled and subslice count is below the
1371 		 * device full enablement, it must be at most half of the all
1372 		 * available subslices.
1373 		 */
1374 		if (req_s == 1 && req_ss < hw_ss_per_s &&
1375 		    req_ss > (hw_ss_per_s / 2))
1376 			return -EINVAL;
1377 
1378 		/* ABI restriction - VME use case only. */
1379 
1380 		/* All slices or one slice only. */
1381 		if (req_s != 1 && req_s != hw_s)
1382 			return -EINVAL;
1383 
1384 		/*
1385 		 * Half subslices or full enablement only when one slice is
1386 		 * enabled.
1387 		 */
1388 		if (req_s == 1 &&
1389 		    (req_ss != hw_ss_per_s && req_ss != (hw_ss_per_s / 2)))
1390 			return -EINVAL;
1391 
1392 		/* No EU configuration changes. */
1393 		if ((user->min_eus_per_subslice !=
1394 		     device->max_eus_per_subslice) ||
1395 		    (user->max_eus_per_subslice !=
1396 		     device->max_eus_per_subslice))
1397 			return -EINVAL;
1398 	}
1399 
1400 	return 0;
1401 }
1402 
1403 static int set_sseu(struct i915_gem_context *ctx,
1404 		    struct drm_i915_gem_context_param *args)
1405 {
1406 	struct drm_i915_private *i915 = ctx->i915;
1407 	struct drm_i915_gem_context_param_sseu user_sseu;
1408 	struct intel_context *ce;
1409 	struct intel_sseu sseu;
1410 	unsigned long lookup;
1411 	int ret;
1412 
1413 	if (args->size < sizeof(user_sseu))
1414 		return -EINVAL;
1415 
1416 	if (GRAPHICS_VER(i915) != 11)
1417 		return -ENODEV;
1418 
1419 	if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value),
1420 			   sizeof(user_sseu)))
1421 		return -EFAULT;
1422 
1423 	if (user_sseu.rsvd)
1424 		return -EINVAL;
1425 
1426 	if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX))
1427 		return -EINVAL;
1428 
1429 	lookup = 0;
1430 	if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)
1431 		lookup |= LOOKUP_USER_INDEX;
1432 
1433 	ce = lookup_user_engine(ctx, lookup, &user_sseu.engine);
1434 	if (IS_ERR(ce))
1435 		return PTR_ERR(ce);
1436 
1437 	/* Only render engine supports RPCS configuration. */
1438 	if (ce->engine->class != RENDER_CLASS) {
1439 		ret = -ENODEV;
1440 		goto out_ce;
1441 	}
1442 
1443 	ret = i915_gem_user_to_context_sseu(ce->engine->gt, &user_sseu, &sseu);
1444 	if (ret)
1445 		goto out_ce;
1446 
1447 	ret = intel_context_reconfigure_sseu(ce, sseu);
1448 	if (ret)
1449 		goto out_ce;
1450 
1451 	args->size = sizeof(user_sseu);
1452 
1453 out_ce:
1454 	intel_context_put(ce);
1455 	return ret;
1456 }
1457 
1458 struct set_engines {
1459 	struct i915_gem_context *ctx;
1460 	struct i915_gem_engines *engines;
1461 };
1462 
1463 static int
1464 set_engines__load_balance(struct i915_user_extension __user *base, void *data)
1465 {
1466 	struct i915_context_engines_load_balance __user *ext =
1467 		container_of_user(base, typeof(*ext), base);
1468 	const struct set_engines *set = data;
1469 	struct drm_i915_private *i915 = set->ctx->i915;
1470 	struct intel_engine_cs *stack[16];
1471 	struct intel_engine_cs **siblings;
1472 	struct intel_context *ce;
1473 	u16 num_siblings, idx;
1474 	unsigned int n;
1475 	int err;
1476 
1477 	if (!HAS_EXECLISTS(i915))
1478 		return -ENODEV;
1479 
1480 	if (intel_uc_uses_guc_submission(&i915->gt.uc))
1481 		return -ENODEV; /* not implement yet */
1482 
1483 	if (get_user(idx, &ext->engine_index))
1484 		return -EFAULT;
1485 
1486 	if (idx >= set->engines->num_engines) {
1487 		drm_dbg(&i915->drm, "Invalid placement value, %d >= %d\n",
1488 			idx, set->engines->num_engines);
1489 		return -EINVAL;
1490 	}
1491 
1492 	idx = array_index_nospec(idx, set->engines->num_engines);
1493 	if (set->engines->engines[idx]) {
1494 		drm_dbg(&i915->drm,
1495 			"Invalid placement[%d], already occupied\n", idx);
1496 		return -EEXIST;
1497 	}
1498 
1499 	if (get_user(num_siblings, &ext->num_siblings))
1500 		return -EFAULT;
1501 
1502 	err = check_user_mbz(&ext->flags);
1503 	if (err)
1504 		return err;
1505 
1506 	err = check_user_mbz(&ext->mbz64);
1507 	if (err)
1508 		return err;
1509 
1510 	siblings = stack;
1511 	if (num_siblings > ARRAY_SIZE(stack)) {
1512 		siblings = kmalloc_array(num_siblings,
1513 					 sizeof(*siblings),
1514 					 GFP_KERNEL);
1515 		if (!siblings)
1516 			return -ENOMEM;
1517 	}
1518 
1519 	for (n = 0; n < num_siblings; n++) {
1520 		struct i915_engine_class_instance ci;
1521 
1522 		if (copy_from_user(&ci, &ext->engines[n], sizeof(ci))) {
1523 			err = -EFAULT;
1524 			goto out_siblings;
1525 		}
1526 
1527 		siblings[n] = intel_engine_lookup_user(i915,
1528 						       ci.engine_class,
1529 						       ci.engine_instance);
1530 		if (!siblings[n]) {
1531 			drm_dbg(&i915->drm,
1532 				"Invalid sibling[%d]: { class:%d, inst:%d }\n",
1533 				n, ci.engine_class, ci.engine_instance);
1534 			err = -EINVAL;
1535 			goto out_siblings;
1536 		}
1537 	}
1538 
1539 	ce = intel_execlists_create_virtual(siblings, n);
1540 	if (IS_ERR(ce)) {
1541 		err = PTR_ERR(ce);
1542 		goto out_siblings;
1543 	}
1544 
1545 	intel_context_set_gem(ce, set->ctx);
1546 
1547 	if (cmpxchg(&set->engines->engines[idx], NULL, ce)) {
1548 		intel_context_put(ce);
1549 		err = -EEXIST;
1550 		goto out_siblings;
1551 	}
1552 
1553 out_siblings:
1554 	if (siblings != stack)
1555 		kfree(siblings);
1556 
1557 	return err;
1558 }
1559 
1560 static int
1561 set_engines__bond(struct i915_user_extension __user *base, void *data)
1562 {
1563 	struct i915_context_engines_bond __user *ext =
1564 		container_of_user(base, typeof(*ext), base);
1565 	const struct set_engines *set = data;
1566 	struct drm_i915_private *i915 = set->ctx->i915;
1567 	struct i915_engine_class_instance ci;
1568 	struct intel_engine_cs *virtual;
1569 	struct intel_engine_cs *master;
1570 	u16 idx, num_bonds;
1571 	int err, n;
1572 
1573 	if (get_user(idx, &ext->virtual_index))
1574 		return -EFAULT;
1575 
1576 	if (idx >= set->engines->num_engines) {
1577 		drm_dbg(&i915->drm,
1578 			"Invalid index for virtual engine: %d >= %d\n",
1579 			idx, set->engines->num_engines);
1580 		return -EINVAL;
1581 	}
1582 
1583 	idx = array_index_nospec(idx, set->engines->num_engines);
1584 	if (!set->engines->engines[idx]) {
1585 		drm_dbg(&i915->drm, "Invalid engine at %d\n", idx);
1586 		return -EINVAL;
1587 	}
1588 	virtual = set->engines->engines[idx]->engine;
1589 
1590 	err = check_user_mbz(&ext->flags);
1591 	if (err)
1592 		return err;
1593 
1594 	for (n = 0; n < ARRAY_SIZE(ext->mbz64); n++) {
1595 		err = check_user_mbz(&ext->mbz64[n]);
1596 		if (err)
1597 			return err;
1598 	}
1599 
1600 	if (copy_from_user(&ci, &ext->master, sizeof(ci)))
1601 		return -EFAULT;
1602 
1603 	master = intel_engine_lookup_user(i915,
1604 					  ci.engine_class, ci.engine_instance);
1605 	if (!master) {
1606 		drm_dbg(&i915->drm,
1607 			"Unrecognised master engine: { class:%u, instance:%u }\n",
1608 			ci.engine_class, ci.engine_instance);
1609 		return -EINVAL;
1610 	}
1611 
1612 	if (get_user(num_bonds, &ext->num_bonds))
1613 		return -EFAULT;
1614 
1615 	for (n = 0; n < num_bonds; n++) {
1616 		struct intel_engine_cs *bond;
1617 
1618 		if (copy_from_user(&ci, &ext->engines[n], sizeof(ci)))
1619 			return -EFAULT;
1620 
1621 		bond = intel_engine_lookup_user(i915,
1622 						ci.engine_class,
1623 						ci.engine_instance);
1624 		if (!bond) {
1625 			drm_dbg(&i915->drm,
1626 				"Unrecognised engine[%d] for bonding: { class:%d, instance: %d }\n",
1627 				n, ci.engine_class, ci.engine_instance);
1628 			return -EINVAL;
1629 		}
1630 
1631 		/*
1632 		 * A non-virtual engine has no siblings to choose between; and
1633 		 * a submit fence will always be directed to the one engine.
1634 		 */
1635 		if (intel_engine_is_virtual(virtual)) {
1636 			err = intel_virtual_engine_attach_bond(virtual,
1637 							       master,
1638 							       bond);
1639 			if (err)
1640 				return err;
1641 		}
1642 	}
1643 
1644 	return 0;
1645 }
1646 
1647 static const i915_user_extension_fn set_engines__extensions[] = {
1648 	[I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE] = set_engines__load_balance,
1649 	[I915_CONTEXT_ENGINES_EXT_BOND] = set_engines__bond,
1650 };
1651 
1652 static int
1653 set_engines(struct i915_gem_context *ctx,
1654 	    const struct drm_i915_gem_context_param *args)
1655 {
1656 	struct drm_i915_private *i915 = ctx->i915;
1657 	struct i915_context_param_engines __user *user =
1658 		u64_to_user_ptr(args->value);
1659 	struct set_engines set = { .ctx = ctx };
1660 	unsigned int num_engines, n;
1661 	u64 extensions;
1662 	int err;
1663 
1664 	if (!args->size) { /* switch back to legacy user_ring_map */
1665 		if (!i915_gem_context_user_engines(ctx))
1666 			return 0;
1667 
1668 		set.engines = default_engines(ctx);
1669 		if (IS_ERR(set.engines))
1670 			return PTR_ERR(set.engines);
1671 
1672 		goto replace;
1673 	}
1674 
1675 	BUILD_BUG_ON(!IS_ALIGNED(sizeof(*user), sizeof(*user->engines)));
1676 	if (args->size < sizeof(*user) ||
1677 	    !IS_ALIGNED(args->size, sizeof(*user->engines))) {
1678 		drm_dbg(&i915->drm, "Invalid size for engine array: %d\n",
1679 			args->size);
1680 		return -EINVAL;
1681 	}
1682 
1683 	/*
1684 	 * Note that I915_EXEC_RING_MASK limits execbuf to only using the
1685 	 * first 64 engines defined here.
1686 	 */
1687 	num_engines = (args->size - sizeof(*user)) / sizeof(*user->engines);
1688 	set.engines = alloc_engines(num_engines);
1689 	if (!set.engines)
1690 		return -ENOMEM;
1691 
1692 	for (n = 0; n < num_engines; n++) {
1693 		struct i915_engine_class_instance ci;
1694 		struct intel_engine_cs *engine;
1695 		struct intel_context *ce;
1696 
1697 		if (copy_from_user(&ci, &user->engines[n], sizeof(ci))) {
1698 			__free_engines(set.engines, n);
1699 			return -EFAULT;
1700 		}
1701 
1702 		if (ci.engine_class == (u16)I915_ENGINE_CLASS_INVALID &&
1703 		    ci.engine_instance == (u16)I915_ENGINE_CLASS_INVALID_NONE) {
1704 			set.engines->engines[n] = NULL;
1705 			continue;
1706 		}
1707 
1708 		engine = intel_engine_lookup_user(ctx->i915,
1709 						  ci.engine_class,
1710 						  ci.engine_instance);
1711 		if (!engine) {
1712 			drm_dbg(&i915->drm,
1713 				"Invalid engine[%d]: { class:%d, instance:%d }\n",
1714 				n, ci.engine_class, ci.engine_instance);
1715 			__free_engines(set.engines, n);
1716 			return -ENOENT;
1717 		}
1718 
1719 		ce = intel_context_create(engine);
1720 		if (IS_ERR(ce)) {
1721 			__free_engines(set.engines, n);
1722 			return PTR_ERR(ce);
1723 		}
1724 
1725 		intel_context_set_gem(ce, ctx);
1726 
1727 		set.engines->engines[n] = ce;
1728 	}
1729 	set.engines->num_engines = num_engines;
1730 
1731 	err = -EFAULT;
1732 	if (!get_user(extensions, &user->extensions))
1733 		err = i915_user_extensions(u64_to_user_ptr(extensions),
1734 					   set_engines__extensions,
1735 					   ARRAY_SIZE(set_engines__extensions),
1736 					   &set);
1737 	if (err) {
1738 		free_engines(set.engines);
1739 		return err;
1740 	}
1741 
1742 replace:
1743 	mutex_lock(&ctx->engines_mutex);
1744 	if (i915_gem_context_is_closed(ctx)) {
1745 		mutex_unlock(&ctx->engines_mutex);
1746 		free_engines(set.engines);
1747 		return -ENOENT;
1748 	}
1749 	if (args->size)
1750 		i915_gem_context_set_user_engines(ctx);
1751 	else
1752 		i915_gem_context_clear_user_engines(ctx);
1753 	set.engines = rcu_replace_pointer(ctx->engines, set.engines, 1);
1754 	mutex_unlock(&ctx->engines_mutex);
1755 
1756 	/* Keep track of old engine sets for kill_context() */
1757 	engines_idle_release(ctx, set.engines);
1758 
1759 	return 0;
1760 }
1761 
1762 static int
1763 get_engines(struct i915_gem_context *ctx,
1764 	    struct drm_i915_gem_context_param *args)
1765 {
1766 	struct i915_context_param_engines __user *user;
1767 	struct i915_gem_engines *e;
1768 	size_t n, count, size;
1769 	bool user_engines;
1770 	int err = 0;
1771 
1772 	e = __context_engines_await(ctx, &user_engines);
1773 	if (!e)
1774 		return -ENOENT;
1775 
1776 	if (!user_engines) {
1777 		i915_sw_fence_complete(&e->fence);
1778 		args->size = 0;
1779 		return 0;
1780 	}
1781 
1782 	count = e->num_engines;
1783 
1784 	/* Be paranoid in case we have an impedance mismatch */
1785 	if (!check_struct_size(user, engines, count, &size)) {
1786 		err = -EINVAL;
1787 		goto err_free;
1788 	}
1789 	if (overflows_type(size, args->size)) {
1790 		err = -EINVAL;
1791 		goto err_free;
1792 	}
1793 
1794 	if (!args->size) {
1795 		args->size = size;
1796 		goto err_free;
1797 	}
1798 
1799 	if (args->size < size) {
1800 		err = -EINVAL;
1801 		goto err_free;
1802 	}
1803 
1804 	user = u64_to_user_ptr(args->value);
1805 	if (put_user(0, &user->extensions)) {
1806 		err = -EFAULT;
1807 		goto err_free;
1808 	}
1809 
1810 	for (n = 0; n < count; n++) {
1811 		struct i915_engine_class_instance ci = {
1812 			.engine_class = I915_ENGINE_CLASS_INVALID,
1813 			.engine_instance = I915_ENGINE_CLASS_INVALID_NONE,
1814 		};
1815 
1816 		if (e->engines[n]) {
1817 			ci.engine_class = e->engines[n]->engine->uabi_class;
1818 			ci.engine_instance = e->engines[n]->engine->uabi_instance;
1819 		}
1820 
1821 		if (copy_to_user(&user->engines[n], &ci, sizeof(ci))) {
1822 			err = -EFAULT;
1823 			goto err_free;
1824 		}
1825 	}
1826 
1827 	args->size = size;
1828 
1829 err_free:
1830 	i915_sw_fence_complete(&e->fence);
1831 	return err;
1832 }
1833 
1834 static int
1835 set_persistence(struct i915_gem_context *ctx,
1836 		const struct drm_i915_gem_context_param *args)
1837 {
1838 	if (args->size)
1839 		return -EINVAL;
1840 
1841 	return __context_set_persistence(ctx, args->value);
1842 }
1843 
1844 static int __apply_priority(struct intel_context *ce, void *arg)
1845 {
1846 	struct i915_gem_context *ctx = arg;
1847 
1848 	if (!intel_engine_has_timeslices(ce->engine))
1849 		return 0;
1850 
1851 	if (ctx->sched.priority >= I915_PRIORITY_NORMAL)
1852 		intel_context_set_use_semaphores(ce);
1853 	else
1854 		intel_context_clear_use_semaphores(ce);
1855 
1856 	return 0;
1857 }
1858 
1859 static int set_priority(struct i915_gem_context *ctx,
1860 			const struct drm_i915_gem_context_param *args)
1861 {
1862 	s64 priority = args->value;
1863 
1864 	if (args->size)
1865 		return -EINVAL;
1866 
1867 	if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PRIORITY))
1868 		return -ENODEV;
1869 
1870 	if (priority > I915_CONTEXT_MAX_USER_PRIORITY ||
1871 	    priority < I915_CONTEXT_MIN_USER_PRIORITY)
1872 		return -EINVAL;
1873 
1874 	if (priority > I915_CONTEXT_DEFAULT_PRIORITY &&
1875 	    !capable(CAP_SYS_NICE))
1876 		return -EPERM;
1877 
1878 	ctx->sched.priority = priority;
1879 	context_apply_all(ctx, __apply_priority, ctx);
1880 
1881 	return 0;
1882 }
1883 
1884 static int ctx_setparam(struct drm_i915_file_private *fpriv,
1885 			struct i915_gem_context *ctx,
1886 			struct drm_i915_gem_context_param *args)
1887 {
1888 	int ret = 0;
1889 
1890 	switch (args->param) {
1891 	case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE:
1892 		if (args->size)
1893 			ret = -EINVAL;
1894 		else if (args->value)
1895 			i915_gem_context_set_no_error_capture(ctx);
1896 		else
1897 			i915_gem_context_clear_no_error_capture(ctx);
1898 		break;
1899 
1900 	case I915_CONTEXT_PARAM_BANNABLE:
1901 		if (args->size)
1902 			ret = -EINVAL;
1903 		else if (!capable(CAP_SYS_ADMIN) && !args->value)
1904 			ret = -EPERM;
1905 		else if (args->value)
1906 			i915_gem_context_set_bannable(ctx);
1907 		else
1908 			i915_gem_context_clear_bannable(ctx);
1909 		break;
1910 
1911 	case I915_CONTEXT_PARAM_RECOVERABLE:
1912 		if (args->size)
1913 			ret = -EINVAL;
1914 		else if (args->value)
1915 			i915_gem_context_set_recoverable(ctx);
1916 		else
1917 			i915_gem_context_clear_recoverable(ctx);
1918 		break;
1919 
1920 	case I915_CONTEXT_PARAM_PRIORITY:
1921 		ret = set_priority(ctx, args);
1922 		break;
1923 
1924 	case I915_CONTEXT_PARAM_SSEU:
1925 		ret = set_sseu(ctx, args);
1926 		break;
1927 
1928 	case I915_CONTEXT_PARAM_VM:
1929 		ret = set_ppgtt(fpriv, ctx, args);
1930 		break;
1931 
1932 	case I915_CONTEXT_PARAM_ENGINES:
1933 		ret = set_engines(ctx, args);
1934 		break;
1935 
1936 	case I915_CONTEXT_PARAM_PERSISTENCE:
1937 		ret = set_persistence(ctx, args);
1938 		break;
1939 
1940 	case I915_CONTEXT_PARAM_NO_ZEROMAP:
1941 	case I915_CONTEXT_PARAM_BAN_PERIOD:
1942 	case I915_CONTEXT_PARAM_RINGSIZE:
1943 	default:
1944 		ret = -EINVAL;
1945 		break;
1946 	}
1947 
1948 	return ret;
1949 }
1950 
1951 struct create_ext {
1952 	struct i915_gem_context *ctx;
1953 	struct drm_i915_file_private *fpriv;
1954 };
1955 
1956 static int create_setparam(struct i915_user_extension __user *ext, void *data)
1957 {
1958 	struct drm_i915_gem_context_create_ext_setparam local;
1959 	const struct create_ext *arg = data;
1960 
1961 	if (copy_from_user(&local, ext, sizeof(local)))
1962 		return -EFAULT;
1963 
1964 	if (local.param.ctx_id)
1965 		return -EINVAL;
1966 
1967 	return ctx_setparam(arg->fpriv, arg->ctx, &local.param);
1968 }
1969 
1970 static int clone_engines(struct i915_gem_context *dst,
1971 			 struct i915_gem_context *src)
1972 {
1973 	struct i915_gem_engines *clone, *e;
1974 	bool user_engines;
1975 	unsigned long n;
1976 
1977 	e = __context_engines_await(src, &user_engines);
1978 	if (!e)
1979 		return -ENOENT;
1980 
1981 	clone = alloc_engines(e->num_engines);
1982 	if (!clone)
1983 		goto err_unlock;
1984 
1985 	for (n = 0; n < e->num_engines; n++) {
1986 		struct intel_engine_cs *engine;
1987 
1988 		if (!e->engines[n]) {
1989 			clone->engines[n] = NULL;
1990 			continue;
1991 		}
1992 		engine = e->engines[n]->engine;
1993 
1994 		/*
1995 		 * Virtual engines are singletons; they can only exist
1996 		 * inside a single context, because they embed their
1997 		 * HW context... As each virtual context implies a single
1998 		 * timeline (each engine can only dequeue a single request
1999 		 * at any time), it would be surprising for two contexts
2000 		 * to use the same engine. So let's create a copy of
2001 		 * the virtual engine instead.
2002 		 */
2003 		if (intel_engine_is_virtual(engine))
2004 			clone->engines[n] =
2005 				intel_execlists_clone_virtual(engine);
2006 		else
2007 			clone->engines[n] = intel_context_create(engine);
2008 		if (IS_ERR_OR_NULL(clone->engines[n])) {
2009 			__free_engines(clone, n);
2010 			goto err_unlock;
2011 		}
2012 
2013 		intel_context_set_gem(clone->engines[n], dst);
2014 	}
2015 	clone->num_engines = n;
2016 	i915_sw_fence_complete(&e->fence);
2017 
2018 	/* Serialised by constructor */
2019 	engines_idle_release(dst, rcu_replace_pointer(dst->engines, clone, 1));
2020 	if (user_engines)
2021 		i915_gem_context_set_user_engines(dst);
2022 	else
2023 		i915_gem_context_clear_user_engines(dst);
2024 	return 0;
2025 
2026 err_unlock:
2027 	i915_sw_fence_complete(&e->fence);
2028 	return -ENOMEM;
2029 }
2030 
2031 static int clone_flags(struct i915_gem_context *dst,
2032 		       struct i915_gem_context *src)
2033 {
2034 	dst->user_flags = src->user_flags;
2035 	return 0;
2036 }
2037 
2038 static int clone_schedattr(struct i915_gem_context *dst,
2039 			   struct i915_gem_context *src)
2040 {
2041 	dst->sched = src->sched;
2042 	return 0;
2043 }
2044 
2045 static int clone_sseu(struct i915_gem_context *dst,
2046 		      struct i915_gem_context *src)
2047 {
2048 	struct i915_gem_engines *e = i915_gem_context_lock_engines(src);
2049 	struct i915_gem_engines *clone;
2050 	unsigned long n;
2051 	int err;
2052 
2053 	/* no locking required; sole access under constructor*/
2054 	clone = __context_engines_static(dst);
2055 	if (e->num_engines != clone->num_engines) {
2056 		err = -EINVAL;
2057 		goto unlock;
2058 	}
2059 
2060 	for (n = 0; n < e->num_engines; n++) {
2061 		struct intel_context *ce = e->engines[n];
2062 
2063 		if (clone->engines[n]->engine->class != ce->engine->class) {
2064 			/* Must have compatible engine maps! */
2065 			err = -EINVAL;
2066 			goto unlock;
2067 		}
2068 
2069 		/* serialises with set_sseu */
2070 		err = intel_context_lock_pinned(ce);
2071 		if (err)
2072 			goto unlock;
2073 
2074 		clone->engines[n]->sseu = ce->sseu;
2075 		intel_context_unlock_pinned(ce);
2076 	}
2077 
2078 	err = 0;
2079 unlock:
2080 	i915_gem_context_unlock_engines(src);
2081 	return err;
2082 }
2083 
2084 static int clone_timeline(struct i915_gem_context *dst,
2085 			  struct i915_gem_context *src)
2086 {
2087 	if (src->timeline)
2088 		__assign_timeline(dst, src->timeline);
2089 
2090 	return 0;
2091 }
2092 
2093 static int clone_vm(struct i915_gem_context *dst,
2094 		    struct i915_gem_context *src)
2095 {
2096 	struct i915_address_space *vm;
2097 	int err = 0;
2098 
2099 	if (!rcu_access_pointer(src->vm))
2100 		return 0;
2101 
2102 	rcu_read_lock();
2103 	vm = context_get_vm_rcu(src);
2104 	rcu_read_unlock();
2105 
2106 	if (!mutex_lock_interruptible(&dst->mutex)) {
2107 		__assign_ppgtt(dst, vm);
2108 		mutex_unlock(&dst->mutex);
2109 	} else {
2110 		err = -EINTR;
2111 	}
2112 
2113 	i915_vm_put(vm);
2114 	return err;
2115 }
2116 
2117 static int create_clone(struct i915_user_extension __user *ext, void *data)
2118 {
2119 	static int (* const fn[])(struct i915_gem_context *dst,
2120 				  struct i915_gem_context *src) = {
2121 #define MAP(x, y) [ilog2(I915_CONTEXT_CLONE_##x)] = y
2122 		MAP(ENGINES, clone_engines),
2123 		MAP(FLAGS, clone_flags),
2124 		MAP(SCHEDATTR, clone_schedattr),
2125 		MAP(SSEU, clone_sseu),
2126 		MAP(TIMELINE, clone_timeline),
2127 		MAP(VM, clone_vm),
2128 #undef MAP
2129 	};
2130 	struct drm_i915_gem_context_create_ext_clone local;
2131 	const struct create_ext *arg = data;
2132 	struct i915_gem_context *dst = arg->ctx;
2133 	struct i915_gem_context *src;
2134 	int err, bit;
2135 
2136 	if (copy_from_user(&local, ext, sizeof(local)))
2137 		return -EFAULT;
2138 
2139 	BUILD_BUG_ON(GENMASK(BITS_PER_TYPE(local.flags) - 1, ARRAY_SIZE(fn)) !=
2140 		     I915_CONTEXT_CLONE_UNKNOWN);
2141 
2142 	if (local.flags & I915_CONTEXT_CLONE_UNKNOWN)
2143 		return -EINVAL;
2144 
2145 	if (local.rsvd)
2146 		return -EINVAL;
2147 
2148 	rcu_read_lock();
2149 	src = __i915_gem_context_lookup_rcu(arg->fpriv, local.clone_id);
2150 	rcu_read_unlock();
2151 	if (!src)
2152 		return -ENOENT;
2153 
2154 	GEM_BUG_ON(src == dst);
2155 
2156 	for (bit = 0; bit < ARRAY_SIZE(fn); bit++) {
2157 		if (!(local.flags & BIT(bit)))
2158 			continue;
2159 
2160 		err = fn[bit](dst, src);
2161 		if (err)
2162 			return err;
2163 	}
2164 
2165 	return 0;
2166 }
2167 
2168 static const i915_user_extension_fn create_extensions[] = {
2169 	[I915_CONTEXT_CREATE_EXT_SETPARAM] = create_setparam,
2170 	[I915_CONTEXT_CREATE_EXT_CLONE] = create_clone,
2171 };
2172 
2173 static bool client_is_banned(struct drm_i915_file_private *file_priv)
2174 {
2175 	return atomic_read(&file_priv->ban_score) >= I915_CLIENT_SCORE_BANNED;
2176 }
2177 
2178 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
2179 				  struct drm_file *file)
2180 {
2181 	struct drm_i915_private *i915 = to_i915(dev);
2182 	struct drm_i915_gem_context_create_ext *args = data;
2183 	struct create_ext ext_data;
2184 	int ret;
2185 	u32 id;
2186 
2187 	if (!DRIVER_CAPS(i915)->has_logical_contexts)
2188 		return -ENODEV;
2189 
2190 	if (args->flags & I915_CONTEXT_CREATE_FLAGS_UNKNOWN)
2191 		return -EINVAL;
2192 
2193 	ret = intel_gt_terminally_wedged(&i915->gt);
2194 	if (ret)
2195 		return ret;
2196 
2197 	ext_data.fpriv = file->driver_priv;
2198 	if (client_is_banned(ext_data.fpriv)) {
2199 		drm_dbg(&i915->drm,
2200 			"client %s[%d] banned from creating ctx\n",
2201 			current->comm, task_pid_nr(current));
2202 		return -EIO;
2203 	}
2204 
2205 	ext_data.ctx = i915_gem_create_context(i915, args->flags);
2206 	if (IS_ERR(ext_data.ctx))
2207 		return PTR_ERR(ext_data.ctx);
2208 
2209 	if (args->flags & I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS) {
2210 		ret = i915_user_extensions(u64_to_user_ptr(args->extensions),
2211 					   create_extensions,
2212 					   ARRAY_SIZE(create_extensions),
2213 					   &ext_data);
2214 		if (ret)
2215 			goto err_ctx;
2216 	}
2217 
2218 	ret = gem_context_register(ext_data.ctx, ext_data.fpriv, &id);
2219 	if (ret < 0)
2220 		goto err_ctx;
2221 
2222 	args->ctx_id = id;
2223 	drm_dbg(&i915->drm, "HW context %d created\n", args->ctx_id);
2224 
2225 	return 0;
2226 
2227 err_ctx:
2228 	context_close(ext_data.ctx);
2229 	return ret;
2230 }
2231 
2232 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
2233 				   struct drm_file *file)
2234 {
2235 	struct drm_i915_gem_context_destroy *args = data;
2236 	struct drm_i915_file_private *file_priv = file->driver_priv;
2237 	struct i915_gem_context *ctx;
2238 
2239 	if (args->pad != 0)
2240 		return -EINVAL;
2241 
2242 	if (!args->ctx_id)
2243 		return -ENOENT;
2244 
2245 	ctx = xa_erase(&file_priv->context_xa, args->ctx_id);
2246 	if (!ctx)
2247 		return -ENOENT;
2248 
2249 	context_close(ctx);
2250 	return 0;
2251 }
2252 
2253 static int get_sseu(struct i915_gem_context *ctx,
2254 		    struct drm_i915_gem_context_param *args)
2255 {
2256 	struct drm_i915_gem_context_param_sseu user_sseu;
2257 	struct intel_context *ce;
2258 	unsigned long lookup;
2259 	int err;
2260 
2261 	if (args->size == 0)
2262 		goto out;
2263 	else if (args->size < sizeof(user_sseu))
2264 		return -EINVAL;
2265 
2266 	if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value),
2267 			   sizeof(user_sseu)))
2268 		return -EFAULT;
2269 
2270 	if (user_sseu.rsvd)
2271 		return -EINVAL;
2272 
2273 	if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX))
2274 		return -EINVAL;
2275 
2276 	lookup = 0;
2277 	if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)
2278 		lookup |= LOOKUP_USER_INDEX;
2279 
2280 	ce = lookup_user_engine(ctx, lookup, &user_sseu.engine);
2281 	if (IS_ERR(ce))
2282 		return PTR_ERR(ce);
2283 
2284 	err = intel_context_lock_pinned(ce); /* serialises with set_sseu */
2285 	if (err) {
2286 		intel_context_put(ce);
2287 		return err;
2288 	}
2289 
2290 	user_sseu.slice_mask = ce->sseu.slice_mask;
2291 	user_sseu.subslice_mask = ce->sseu.subslice_mask;
2292 	user_sseu.min_eus_per_subslice = ce->sseu.min_eus_per_subslice;
2293 	user_sseu.max_eus_per_subslice = ce->sseu.max_eus_per_subslice;
2294 
2295 	intel_context_unlock_pinned(ce);
2296 	intel_context_put(ce);
2297 
2298 	if (copy_to_user(u64_to_user_ptr(args->value), &user_sseu,
2299 			 sizeof(user_sseu)))
2300 		return -EFAULT;
2301 
2302 out:
2303 	args->size = sizeof(user_sseu);
2304 
2305 	return 0;
2306 }
2307 
2308 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
2309 				    struct drm_file *file)
2310 {
2311 	struct drm_i915_file_private *file_priv = file->driver_priv;
2312 	struct drm_i915_gem_context_param *args = data;
2313 	struct i915_gem_context *ctx;
2314 	int ret = 0;
2315 
2316 	ctx = i915_gem_context_lookup(file_priv, args->ctx_id);
2317 	if (!ctx)
2318 		return -ENOENT;
2319 
2320 	switch (args->param) {
2321 	case I915_CONTEXT_PARAM_GTT_SIZE:
2322 		args->size = 0;
2323 		rcu_read_lock();
2324 		if (rcu_access_pointer(ctx->vm))
2325 			args->value = rcu_dereference(ctx->vm)->total;
2326 		else
2327 			args->value = to_i915(dev)->ggtt.vm.total;
2328 		rcu_read_unlock();
2329 		break;
2330 
2331 	case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE:
2332 		args->size = 0;
2333 		args->value = i915_gem_context_no_error_capture(ctx);
2334 		break;
2335 
2336 	case I915_CONTEXT_PARAM_BANNABLE:
2337 		args->size = 0;
2338 		args->value = i915_gem_context_is_bannable(ctx);
2339 		break;
2340 
2341 	case I915_CONTEXT_PARAM_RECOVERABLE:
2342 		args->size = 0;
2343 		args->value = i915_gem_context_is_recoverable(ctx);
2344 		break;
2345 
2346 	case I915_CONTEXT_PARAM_PRIORITY:
2347 		args->size = 0;
2348 		args->value = ctx->sched.priority;
2349 		break;
2350 
2351 	case I915_CONTEXT_PARAM_SSEU:
2352 		ret = get_sseu(ctx, args);
2353 		break;
2354 
2355 	case I915_CONTEXT_PARAM_VM:
2356 		ret = get_ppgtt(file_priv, ctx, args);
2357 		break;
2358 
2359 	case I915_CONTEXT_PARAM_ENGINES:
2360 		ret = get_engines(ctx, args);
2361 		break;
2362 
2363 	case I915_CONTEXT_PARAM_PERSISTENCE:
2364 		args->size = 0;
2365 		args->value = i915_gem_context_is_persistent(ctx);
2366 		break;
2367 
2368 	case I915_CONTEXT_PARAM_NO_ZEROMAP:
2369 	case I915_CONTEXT_PARAM_BAN_PERIOD:
2370 	case I915_CONTEXT_PARAM_RINGSIZE:
2371 	default:
2372 		ret = -EINVAL;
2373 		break;
2374 	}
2375 
2376 	i915_gem_context_put(ctx);
2377 	return ret;
2378 }
2379 
2380 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
2381 				    struct drm_file *file)
2382 {
2383 	struct drm_i915_file_private *file_priv = file->driver_priv;
2384 	struct drm_i915_gem_context_param *args = data;
2385 	struct i915_gem_context *ctx;
2386 	int ret;
2387 
2388 	ctx = i915_gem_context_lookup(file_priv, args->ctx_id);
2389 	if (!ctx)
2390 		return -ENOENT;
2391 
2392 	ret = ctx_setparam(file_priv, ctx, args);
2393 
2394 	i915_gem_context_put(ctx);
2395 	return ret;
2396 }
2397 
2398 int i915_gem_context_reset_stats_ioctl(struct drm_device *dev,
2399 				       void *data, struct drm_file *file)
2400 {
2401 	struct drm_i915_private *i915 = to_i915(dev);
2402 	struct drm_i915_reset_stats *args = data;
2403 	struct i915_gem_context *ctx;
2404 	int ret;
2405 
2406 	if (args->flags || args->pad)
2407 		return -EINVAL;
2408 
2409 	ret = -ENOENT;
2410 	rcu_read_lock();
2411 	ctx = __i915_gem_context_lookup_rcu(file->driver_priv, args->ctx_id);
2412 	if (!ctx)
2413 		goto out;
2414 
2415 	/*
2416 	 * We opt for unserialised reads here. This may result in tearing
2417 	 * in the extremely unlikely event of a GPU hang on this context
2418 	 * as we are querying them. If we need that extra layer of protection,
2419 	 * we should wrap the hangstats with a seqlock.
2420 	 */
2421 
2422 	if (capable(CAP_SYS_ADMIN))
2423 		args->reset_count = i915_reset_count(&i915->gpu_error);
2424 	else
2425 		args->reset_count = 0;
2426 
2427 	args->batch_active = atomic_read(&ctx->guilty_count);
2428 	args->batch_pending = atomic_read(&ctx->active_count);
2429 
2430 	ret = 0;
2431 out:
2432 	rcu_read_unlock();
2433 	return ret;
2434 }
2435 
2436 /* GEM context-engines iterator: for_each_gem_engine() */
2437 struct intel_context *
2438 i915_gem_engines_iter_next(struct i915_gem_engines_iter *it)
2439 {
2440 	const struct i915_gem_engines *e = it->engines;
2441 	struct intel_context *ctx;
2442 
2443 	if (unlikely(!e))
2444 		return NULL;
2445 
2446 	do {
2447 		if (it->idx >= e->num_engines)
2448 			return NULL;
2449 
2450 		ctx = e->engines[it->idx++];
2451 	} while (!ctx);
2452 
2453 	return ctx;
2454 }
2455 
2456 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2457 #include "selftests/mock_context.c"
2458 #include "selftests/i915_gem_context.c"
2459 #endif
2460 
2461 static void i915_global_gem_context_shrink(void)
2462 {
2463 	kmem_cache_shrink(global.slab_luts);
2464 }
2465 
2466 static void i915_global_gem_context_exit(void)
2467 {
2468 	kmem_cache_destroy(global.slab_luts);
2469 }
2470 
2471 static struct i915_global_gem_context global = { {
2472 	.shrink = i915_global_gem_context_shrink,
2473 	.exit = i915_global_gem_context_exit,
2474 } };
2475 
2476 int __init i915_global_gem_context_init(void)
2477 {
2478 	global.slab_luts = KMEM_CACHE(i915_lut_handle, 0);
2479 	if (!global.slab_luts)
2480 		return -ENOMEM;
2481 
2482 	i915_global_register(&global.base);
2483 	return 0;
2484 }
2485