1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2011-2012 Intel Corporation 5 */ 6 7 /* 8 * This file implements HW context support. On gen5+ a HW context consists of an 9 * opaque GPU object which is referenced at times of context saves and restores. 10 * With RC6 enabled, the context is also referenced as the GPU enters and exists 11 * from RC6 (GPU has it's own internal power context, except on gen5). Though 12 * something like a context does exist for the media ring, the code only 13 * supports contexts for the render ring. 14 * 15 * In software, there is a distinction between contexts created by the user, 16 * and the default HW context. The default HW context is used by GPU clients 17 * that do not request setup of their own hardware context. The default 18 * context's state is never restored to help prevent programming errors. This 19 * would happen if a client ran and piggy-backed off another clients GPU state. 20 * The default context only exists to give the GPU some offset to load as the 21 * current to invoke a save of the context we actually care about. In fact, the 22 * code could likely be constructed, albeit in a more complicated fashion, to 23 * never use the default context, though that limits the driver's ability to 24 * swap out, and/or destroy other contexts. 25 * 26 * All other contexts are created as a request by the GPU client. These contexts 27 * store GPU state, and thus allow GPU clients to not re-emit state (and 28 * potentially query certain state) at any time. The kernel driver makes 29 * certain that the appropriate commands are inserted. 30 * 31 * The context life cycle is semi-complicated in that context BOs may live 32 * longer than the context itself because of the way the hardware, and object 33 * tracking works. Below is a very crude representation of the state machine 34 * describing the context life. 35 * refcount pincount active 36 * S0: initial state 0 0 0 37 * S1: context created 1 0 0 38 * S2: context is currently running 2 1 X 39 * S3: GPU referenced, but not current 2 0 1 40 * S4: context is current, but destroyed 1 1 0 41 * S5: like S3, but destroyed 1 0 1 42 * 43 * The most common (but not all) transitions: 44 * S0->S1: client creates a context 45 * S1->S2: client submits execbuf with context 46 * S2->S3: other clients submits execbuf with context 47 * S3->S1: context object was retired 48 * S3->S2: clients submits another execbuf 49 * S2->S4: context destroy called with current context 50 * S3->S5->S0: destroy path 51 * S4->S5->S0: destroy path on current context 52 * 53 * There are two confusing terms used above: 54 * The "current context" means the context which is currently running on the 55 * GPU. The GPU has loaded its state already and has stored away the gtt 56 * offset of the BO. The GPU is not actively referencing the data at this 57 * offset, but it will on the next context switch. The only way to avoid this 58 * is to do a GPU reset. 59 * 60 * An "active context' is one which was previously the "current context" and is 61 * on the active list waiting for the next context switch to occur. Until this 62 * happens, the object must remain at the same gtt offset. It is therefore 63 * possible to destroy a context, but it is still active. 64 * 65 */ 66 67 #include <linux/log2.h> 68 #include <linux/nospec.h> 69 70 #include "gt/gen6_ppgtt.h" 71 #include "gt/intel_context.h" 72 #include "gt/intel_context_param.h" 73 #include "gt/intel_engine_heartbeat.h" 74 #include "gt/intel_engine_user.h" 75 #include "gt/intel_ring.h" 76 77 #include "i915_gem_context.h" 78 #include "i915_globals.h" 79 #include "i915_trace.h" 80 #include "i915_user_extensions.h" 81 82 #define ALL_L3_SLICES(dev) (1 << NUM_L3_SLICES(dev)) - 1 83 84 static struct i915_global_gem_context { 85 struct i915_global base; 86 struct kmem_cache *slab_luts; 87 } global; 88 89 struct i915_lut_handle *i915_lut_handle_alloc(void) 90 { 91 return kmem_cache_alloc(global.slab_luts, GFP_KERNEL); 92 } 93 94 void i915_lut_handle_free(struct i915_lut_handle *lut) 95 { 96 return kmem_cache_free(global.slab_luts, lut); 97 } 98 99 static void lut_close(struct i915_gem_context *ctx) 100 { 101 struct radix_tree_iter iter; 102 void __rcu **slot; 103 104 lockdep_assert_held(&ctx->mutex); 105 106 rcu_read_lock(); 107 radix_tree_for_each_slot(slot, &ctx->handles_vma, &iter, 0) { 108 struct i915_vma *vma = rcu_dereference_raw(*slot); 109 struct drm_i915_gem_object *obj = vma->obj; 110 struct i915_lut_handle *lut; 111 112 if (!kref_get_unless_zero(&obj->base.refcount)) 113 continue; 114 115 rcu_read_unlock(); 116 i915_gem_object_lock(obj); 117 list_for_each_entry(lut, &obj->lut_list, obj_link) { 118 if (lut->ctx != ctx) 119 continue; 120 121 if (lut->handle != iter.index) 122 continue; 123 124 list_del(&lut->obj_link); 125 break; 126 } 127 i915_gem_object_unlock(obj); 128 rcu_read_lock(); 129 130 if (&lut->obj_link != &obj->lut_list) { 131 i915_lut_handle_free(lut); 132 radix_tree_iter_delete(&ctx->handles_vma, &iter, slot); 133 i915_vma_close(vma); 134 i915_gem_object_put(obj); 135 } 136 137 i915_gem_object_put(obj); 138 } 139 rcu_read_unlock(); 140 } 141 142 static struct intel_context * 143 lookup_user_engine(struct i915_gem_context *ctx, 144 unsigned long flags, 145 const struct i915_engine_class_instance *ci) 146 #define LOOKUP_USER_INDEX BIT(0) 147 { 148 int idx; 149 150 if (!!(flags & LOOKUP_USER_INDEX) != i915_gem_context_user_engines(ctx)) 151 return ERR_PTR(-EINVAL); 152 153 if (!i915_gem_context_user_engines(ctx)) { 154 struct intel_engine_cs *engine; 155 156 engine = intel_engine_lookup_user(ctx->i915, 157 ci->engine_class, 158 ci->engine_instance); 159 if (!engine) 160 return ERR_PTR(-EINVAL); 161 162 idx = engine->legacy_idx; 163 } else { 164 idx = ci->engine_instance; 165 } 166 167 return i915_gem_context_get_engine(ctx, idx); 168 } 169 170 static struct i915_address_space * 171 context_get_vm_rcu(struct i915_gem_context *ctx) 172 { 173 GEM_BUG_ON(!rcu_access_pointer(ctx->vm)); 174 175 do { 176 struct i915_address_space *vm; 177 178 /* 179 * We do not allow downgrading from full-ppgtt [to a shared 180 * global gtt], so ctx->vm cannot become NULL. 181 */ 182 vm = rcu_dereference(ctx->vm); 183 if (!kref_get_unless_zero(&vm->ref)) 184 continue; 185 186 /* 187 * This ppgtt may have be reallocated between 188 * the read and the kref, and reassigned to a third 189 * context. In order to avoid inadvertent sharing 190 * of this ppgtt with that third context (and not 191 * src), we have to confirm that we have the same 192 * ppgtt after passing through the strong memory 193 * barrier implied by a successful 194 * kref_get_unless_zero(). 195 * 196 * Once we have acquired the current ppgtt of ctx, 197 * we no longer care if it is released from ctx, as 198 * it cannot be reallocated elsewhere. 199 */ 200 201 if (vm == rcu_access_pointer(ctx->vm)) 202 return rcu_pointer_handoff(vm); 203 204 i915_vm_put(vm); 205 } while (1); 206 } 207 208 static void intel_context_set_gem(struct intel_context *ce, 209 struct i915_gem_context *ctx) 210 { 211 GEM_BUG_ON(rcu_access_pointer(ce->gem_context)); 212 RCU_INIT_POINTER(ce->gem_context, ctx); 213 214 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) 215 ce->ring = __intel_context_ring_size(SZ_16K); 216 217 if (rcu_access_pointer(ctx->vm)) { 218 struct i915_address_space *vm; 219 220 rcu_read_lock(); 221 vm = context_get_vm_rcu(ctx); /* hmm */ 222 rcu_read_unlock(); 223 224 i915_vm_put(ce->vm); 225 ce->vm = vm; 226 } 227 228 GEM_BUG_ON(ce->timeline); 229 if (ctx->timeline) 230 ce->timeline = intel_timeline_get(ctx->timeline); 231 232 if (ctx->sched.priority >= I915_PRIORITY_NORMAL && 233 intel_engine_has_timeslices(ce->engine)) 234 __set_bit(CONTEXT_USE_SEMAPHORES, &ce->flags); 235 } 236 237 static void __free_engines(struct i915_gem_engines *e, unsigned int count) 238 { 239 while (count--) { 240 if (!e->engines[count]) 241 continue; 242 243 intel_context_put(e->engines[count]); 244 } 245 kfree(e); 246 } 247 248 static void free_engines(struct i915_gem_engines *e) 249 { 250 __free_engines(e, e->num_engines); 251 } 252 253 static void free_engines_rcu(struct rcu_head *rcu) 254 { 255 struct i915_gem_engines *engines = 256 container_of(rcu, struct i915_gem_engines, rcu); 257 258 i915_sw_fence_fini(&engines->fence); 259 free_engines(engines); 260 } 261 262 static int __i915_sw_fence_call 263 engines_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state) 264 { 265 struct i915_gem_engines *engines = 266 container_of(fence, typeof(*engines), fence); 267 268 switch (state) { 269 case FENCE_COMPLETE: 270 if (!list_empty(&engines->link)) { 271 struct i915_gem_context *ctx = engines->ctx; 272 unsigned long flags; 273 274 spin_lock_irqsave(&ctx->stale.lock, flags); 275 list_del(&engines->link); 276 spin_unlock_irqrestore(&ctx->stale.lock, flags); 277 } 278 i915_gem_context_put(engines->ctx); 279 break; 280 281 case FENCE_FREE: 282 init_rcu_head(&engines->rcu); 283 call_rcu(&engines->rcu, free_engines_rcu); 284 break; 285 } 286 287 return NOTIFY_DONE; 288 } 289 290 static struct i915_gem_engines *alloc_engines(unsigned int count) 291 { 292 struct i915_gem_engines *e; 293 294 e = kzalloc(struct_size(e, engines, count), GFP_KERNEL); 295 if (!e) 296 return NULL; 297 298 i915_sw_fence_init(&e->fence, engines_notify); 299 return e; 300 } 301 302 static struct i915_gem_engines *default_engines(struct i915_gem_context *ctx) 303 { 304 const struct intel_gt *gt = &ctx->i915->gt; 305 struct intel_engine_cs *engine; 306 struct i915_gem_engines *e; 307 enum intel_engine_id id; 308 309 e = alloc_engines(I915_NUM_ENGINES); 310 if (!e) 311 return ERR_PTR(-ENOMEM); 312 313 for_each_engine(engine, gt, id) { 314 struct intel_context *ce; 315 316 if (engine->legacy_idx == INVALID_ENGINE) 317 continue; 318 319 GEM_BUG_ON(engine->legacy_idx >= I915_NUM_ENGINES); 320 GEM_BUG_ON(e->engines[engine->legacy_idx]); 321 322 ce = intel_context_create(engine); 323 if (IS_ERR(ce)) { 324 __free_engines(e, e->num_engines + 1); 325 return ERR_CAST(ce); 326 } 327 328 intel_context_set_gem(ce, ctx); 329 330 e->engines[engine->legacy_idx] = ce; 331 e->num_engines = max(e->num_engines, engine->legacy_idx); 332 } 333 e->num_engines++; 334 335 return e; 336 } 337 338 static void i915_gem_context_free(struct i915_gem_context *ctx) 339 { 340 GEM_BUG_ON(!i915_gem_context_is_closed(ctx)); 341 342 spin_lock(&ctx->i915->gem.contexts.lock); 343 list_del(&ctx->link); 344 spin_unlock(&ctx->i915->gem.contexts.lock); 345 346 mutex_destroy(&ctx->engines_mutex); 347 348 if (ctx->timeline) 349 intel_timeline_put(ctx->timeline); 350 351 put_pid(ctx->pid); 352 mutex_destroy(&ctx->mutex); 353 354 kfree_rcu(ctx, rcu); 355 } 356 357 static void contexts_free_all(struct llist_node *list) 358 { 359 struct i915_gem_context *ctx, *cn; 360 361 llist_for_each_entry_safe(ctx, cn, list, free_link) 362 i915_gem_context_free(ctx); 363 } 364 365 static void contexts_flush_free(struct i915_gem_contexts *gc) 366 { 367 contexts_free_all(llist_del_all(&gc->free_list)); 368 } 369 370 static void contexts_free_worker(struct work_struct *work) 371 { 372 struct i915_gem_contexts *gc = 373 container_of(work, typeof(*gc), free_work); 374 375 contexts_flush_free(gc); 376 } 377 378 void i915_gem_context_release(struct kref *ref) 379 { 380 struct i915_gem_context *ctx = container_of(ref, typeof(*ctx), ref); 381 struct i915_gem_contexts *gc = &ctx->i915->gem.contexts; 382 383 trace_i915_context_free(ctx); 384 if (llist_add(&ctx->free_link, &gc->free_list)) 385 schedule_work(&gc->free_work); 386 } 387 388 static inline struct i915_gem_engines * 389 __context_engines_static(const struct i915_gem_context *ctx) 390 { 391 return rcu_dereference_protected(ctx->engines, true); 392 } 393 394 static bool __reset_engine(struct intel_engine_cs *engine) 395 { 396 struct intel_gt *gt = engine->gt; 397 bool success = false; 398 399 if (!intel_has_reset_engine(gt)) 400 return false; 401 402 if (!test_and_set_bit(I915_RESET_ENGINE + engine->id, 403 >->reset.flags)) { 404 success = intel_engine_reset(engine, NULL) == 0; 405 clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id, 406 >->reset.flags); 407 } 408 409 return success; 410 } 411 412 static void __reset_context(struct i915_gem_context *ctx, 413 struct intel_engine_cs *engine) 414 { 415 intel_gt_handle_error(engine->gt, engine->mask, 0, 416 "context closure in %s", ctx->name); 417 } 418 419 static bool __cancel_engine(struct intel_engine_cs *engine) 420 { 421 /* 422 * Send a "high priority pulse" down the engine to cause the 423 * current request to be momentarily preempted. (If it fails to 424 * be preempted, it will be reset). As we have marked our context 425 * as banned, any incomplete request, including any running, will 426 * be skipped following the preemption. 427 * 428 * If there is no hangchecking (one of the reasons why we try to 429 * cancel the context) and no forced preemption, there may be no 430 * means by which we reset the GPU and evict the persistent hog. 431 * Ergo if we are unable to inject a preemptive pulse that can 432 * kill the banned context, we fallback to doing a local reset 433 * instead. 434 */ 435 if (IS_ACTIVE(CONFIG_DRM_I915_PREEMPT_TIMEOUT) && 436 !intel_engine_pulse(engine)) 437 return true; 438 439 /* If we are unable to send a pulse, try resetting this engine. */ 440 return __reset_engine(engine); 441 } 442 443 static struct intel_engine_cs *__active_engine(struct i915_request *rq) 444 { 445 struct intel_engine_cs *engine, *locked; 446 447 /* 448 * Serialise with __i915_request_submit() so that it sees 449 * is-banned?, or we know the request is already inflight. 450 */ 451 locked = READ_ONCE(rq->engine); 452 spin_lock_irq(&locked->active.lock); 453 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { 454 spin_unlock(&locked->active.lock); 455 spin_lock(&engine->active.lock); 456 locked = engine; 457 } 458 459 engine = NULL; 460 if (i915_request_is_active(rq) && rq->fence.error != -EIO) 461 engine = rq->engine; 462 463 spin_unlock_irq(&locked->active.lock); 464 465 return engine; 466 } 467 468 static struct intel_engine_cs *active_engine(struct intel_context *ce) 469 { 470 struct intel_engine_cs *engine = NULL; 471 struct i915_request *rq; 472 473 if (!ce->timeline) 474 return NULL; 475 476 mutex_lock(&ce->timeline->mutex); 477 list_for_each_entry_reverse(rq, &ce->timeline->requests, link) { 478 if (i915_request_completed(rq)) 479 break; 480 481 /* Check with the backend if the request is inflight */ 482 engine = __active_engine(rq); 483 if (engine) 484 break; 485 } 486 mutex_unlock(&ce->timeline->mutex); 487 488 return engine; 489 } 490 491 static void kill_engines(struct i915_gem_engines *engines) 492 { 493 struct i915_gem_engines_iter it; 494 struct intel_context *ce; 495 496 /* 497 * Map the user's engine back to the actual engines; one virtual 498 * engine will be mapped to multiple engines, and using ctx->engine[] 499 * the same engine may be have multiple instances in the user's map. 500 * However, we only care about pending requests, so only include 501 * engines on which there are incomplete requests. 502 */ 503 for_each_gem_engine(ce, engines, it) { 504 struct intel_engine_cs *engine; 505 506 if (intel_context_set_banned(ce)) 507 continue; 508 509 /* 510 * Check the current active state of this context; if we 511 * are currently executing on the GPU we need to evict 512 * ourselves. On the other hand, if we haven't yet been 513 * submitted to the GPU or if everything is complete, 514 * we have nothing to do. 515 */ 516 engine = active_engine(ce); 517 518 /* First attempt to gracefully cancel the context */ 519 if (engine && !__cancel_engine(engine)) 520 /* 521 * If we are unable to send a preemptive pulse to bump 522 * the context from the GPU, we have to resort to a full 523 * reset. We hope the collateral damage is worth it. 524 */ 525 __reset_context(engines->ctx, engine); 526 } 527 } 528 529 static void kill_stale_engines(struct i915_gem_context *ctx) 530 { 531 struct i915_gem_engines *pos, *next; 532 533 spin_lock_irq(&ctx->stale.lock); 534 GEM_BUG_ON(!i915_gem_context_is_closed(ctx)); 535 list_for_each_entry_safe(pos, next, &ctx->stale.engines, link) { 536 if (!i915_sw_fence_await(&pos->fence)) { 537 list_del_init(&pos->link); 538 continue; 539 } 540 541 spin_unlock_irq(&ctx->stale.lock); 542 543 kill_engines(pos); 544 545 spin_lock_irq(&ctx->stale.lock); 546 GEM_BUG_ON(i915_sw_fence_signaled(&pos->fence)); 547 list_safe_reset_next(pos, next, link); 548 list_del_init(&pos->link); /* decouple from FENCE_COMPLETE */ 549 550 i915_sw_fence_complete(&pos->fence); 551 } 552 spin_unlock_irq(&ctx->stale.lock); 553 } 554 555 static void kill_context(struct i915_gem_context *ctx) 556 { 557 kill_stale_engines(ctx); 558 } 559 560 static void engines_idle_release(struct i915_gem_context *ctx, 561 struct i915_gem_engines *engines) 562 { 563 struct i915_gem_engines_iter it; 564 struct intel_context *ce; 565 566 INIT_LIST_HEAD(&engines->link); 567 568 engines->ctx = i915_gem_context_get(ctx); 569 570 for_each_gem_engine(ce, engines, it) { 571 int err; 572 573 /* serialises with execbuf */ 574 set_bit(CONTEXT_CLOSED_BIT, &ce->flags); 575 if (!intel_context_pin_if_active(ce)) 576 continue; 577 578 /* Wait until context is finally scheduled out and retired */ 579 err = i915_sw_fence_await_active(&engines->fence, 580 &ce->active, 581 I915_ACTIVE_AWAIT_BARRIER); 582 intel_context_unpin(ce); 583 if (err) 584 goto kill; 585 } 586 587 spin_lock_irq(&ctx->stale.lock); 588 if (!i915_gem_context_is_closed(ctx)) 589 list_add_tail(&engines->link, &ctx->stale.engines); 590 spin_unlock_irq(&ctx->stale.lock); 591 592 kill: 593 if (list_empty(&engines->link)) /* raced, already closed */ 594 kill_engines(engines); 595 596 i915_sw_fence_commit(&engines->fence); 597 } 598 599 static void set_closed_name(struct i915_gem_context *ctx) 600 { 601 char *s; 602 603 /* Replace '[]' with '<>' to indicate closed in debug prints */ 604 605 s = strrchr(ctx->name, '['); 606 if (!s) 607 return; 608 609 *s = '<'; 610 611 s = strchr(s + 1, ']'); 612 if (s) 613 *s = '>'; 614 } 615 616 static void context_close(struct i915_gem_context *ctx) 617 { 618 struct i915_address_space *vm; 619 620 /* Flush any concurrent set_engines() */ 621 mutex_lock(&ctx->engines_mutex); 622 engines_idle_release(ctx, rcu_replace_pointer(ctx->engines, NULL, 1)); 623 i915_gem_context_set_closed(ctx); 624 mutex_unlock(&ctx->engines_mutex); 625 626 mutex_lock(&ctx->mutex); 627 628 set_closed_name(ctx); 629 630 vm = i915_gem_context_vm(ctx); 631 if (vm) 632 i915_vm_close(vm); 633 634 ctx->file_priv = ERR_PTR(-EBADF); 635 636 /* 637 * The LUT uses the VMA as a backpointer to unref the object, 638 * so we need to clear the LUT before we close all the VMA (inside 639 * the ppgtt). 640 */ 641 lut_close(ctx); 642 643 mutex_unlock(&ctx->mutex); 644 645 /* 646 * If the user has disabled hangchecking, we can not be sure that 647 * the batches will ever complete after the context is closed, 648 * keeping the context and all resources pinned forever. So in this 649 * case we opt to forcibly kill off all remaining requests on 650 * context close. 651 */ 652 if (!i915_gem_context_is_persistent(ctx) || 653 !i915_modparams.enable_hangcheck) 654 kill_context(ctx); 655 656 i915_gem_context_put(ctx); 657 } 658 659 static int __context_set_persistence(struct i915_gem_context *ctx, bool state) 660 { 661 if (i915_gem_context_is_persistent(ctx) == state) 662 return 0; 663 664 if (state) { 665 /* 666 * Only contexts that are short-lived [that will expire or be 667 * reset] are allowed to survive past termination. We require 668 * hangcheck to ensure that the persistent requests are healthy. 669 */ 670 if (!i915_modparams.enable_hangcheck) 671 return -EINVAL; 672 673 i915_gem_context_set_persistence(ctx); 674 } else { 675 /* To cancel a context we use "preempt-to-idle" */ 676 if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PREEMPTION)) 677 return -ENODEV; 678 679 /* 680 * If the cancel fails, we then need to reset, cleanly! 681 * 682 * If the per-engine reset fails, all hope is lost! We resort 683 * to a full GPU reset in that unlikely case, but realistically 684 * if the engine could not reset, the full reset does not fare 685 * much better. The damage has been done. 686 * 687 * However, if we cannot reset an engine by itself, we cannot 688 * cleanup a hanging persistent context without causing 689 * colateral damage, and we should not pretend we can by 690 * exposing the interface. 691 */ 692 if (!intel_has_reset_engine(&ctx->i915->gt)) 693 return -ENODEV; 694 695 i915_gem_context_clear_persistence(ctx); 696 } 697 698 return 0; 699 } 700 701 static struct i915_gem_context * 702 __create_context(struct drm_i915_private *i915) 703 { 704 struct i915_gem_context *ctx; 705 struct i915_gem_engines *e; 706 int err; 707 int i; 708 709 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 710 if (!ctx) 711 return ERR_PTR(-ENOMEM); 712 713 kref_init(&ctx->ref); 714 ctx->i915 = i915; 715 ctx->sched.priority = I915_USER_PRIORITY(I915_PRIORITY_NORMAL); 716 mutex_init(&ctx->mutex); 717 718 spin_lock_init(&ctx->stale.lock); 719 INIT_LIST_HEAD(&ctx->stale.engines); 720 721 mutex_init(&ctx->engines_mutex); 722 e = default_engines(ctx); 723 if (IS_ERR(e)) { 724 err = PTR_ERR(e); 725 goto err_free; 726 } 727 RCU_INIT_POINTER(ctx->engines, e); 728 729 INIT_RADIX_TREE(&ctx->handles_vma, GFP_KERNEL); 730 731 /* NB: Mark all slices as needing a remap so that when the context first 732 * loads it will restore whatever remap state already exists. If there 733 * is no remap info, it will be a NOP. */ 734 ctx->remap_slice = ALL_L3_SLICES(i915); 735 736 i915_gem_context_set_bannable(ctx); 737 i915_gem_context_set_recoverable(ctx); 738 __context_set_persistence(ctx, true /* cgroup hook? */); 739 740 for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp); i++) 741 ctx->hang_timestamp[i] = jiffies - CONTEXT_FAST_HANG_JIFFIES; 742 743 spin_lock(&i915->gem.contexts.lock); 744 list_add_tail(&ctx->link, &i915->gem.contexts.list); 745 spin_unlock(&i915->gem.contexts.lock); 746 747 return ctx; 748 749 err_free: 750 kfree(ctx); 751 return ERR_PTR(err); 752 } 753 754 static inline struct i915_gem_engines * 755 __context_engines_await(const struct i915_gem_context *ctx) 756 { 757 struct i915_gem_engines *engines; 758 759 rcu_read_lock(); 760 do { 761 engines = rcu_dereference(ctx->engines); 762 GEM_BUG_ON(!engines); 763 764 if (unlikely(!i915_sw_fence_await(&engines->fence))) 765 continue; 766 767 if (likely(engines == rcu_access_pointer(ctx->engines))) 768 break; 769 770 i915_sw_fence_complete(&engines->fence); 771 } while (1); 772 rcu_read_unlock(); 773 774 return engines; 775 } 776 777 static int 778 context_apply_all(struct i915_gem_context *ctx, 779 int (*fn)(struct intel_context *ce, void *data), 780 void *data) 781 { 782 struct i915_gem_engines_iter it; 783 struct i915_gem_engines *e; 784 struct intel_context *ce; 785 int err = 0; 786 787 e = __context_engines_await(ctx); 788 for_each_gem_engine(ce, e, it) { 789 err = fn(ce, data); 790 if (err) 791 break; 792 } 793 i915_sw_fence_complete(&e->fence); 794 795 return err; 796 } 797 798 static int __apply_ppgtt(struct intel_context *ce, void *vm) 799 { 800 i915_vm_put(ce->vm); 801 ce->vm = i915_vm_get(vm); 802 return 0; 803 } 804 805 static struct i915_address_space * 806 __set_ppgtt(struct i915_gem_context *ctx, struct i915_address_space *vm) 807 { 808 struct i915_address_space *old; 809 810 old = rcu_replace_pointer(ctx->vm, 811 i915_vm_open(vm), 812 lockdep_is_held(&ctx->mutex)); 813 GEM_BUG_ON(old && i915_vm_is_4lvl(vm) != i915_vm_is_4lvl(old)); 814 815 context_apply_all(ctx, __apply_ppgtt, vm); 816 817 return old; 818 } 819 820 static void __assign_ppgtt(struct i915_gem_context *ctx, 821 struct i915_address_space *vm) 822 { 823 if (vm == rcu_access_pointer(ctx->vm)) 824 return; 825 826 vm = __set_ppgtt(ctx, vm); 827 if (vm) 828 i915_vm_close(vm); 829 } 830 831 static void __set_timeline(struct intel_timeline **dst, 832 struct intel_timeline *src) 833 { 834 struct intel_timeline *old = *dst; 835 836 *dst = src ? intel_timeline_get(src) : NULL; 837 838 if (old) 839 intel_timeline_put(old); 840 } 841 842 static int __apply_timeline(struct intel_context *ce, void *timeline) 843 { 844 __set_timeline(&ce->timeline, timeline); 845 return 0; 846 } 847 848 static void __assign_timeline(struct i915_gem_context *ctx, 849 struct intel_timeline *timeline) 850 { 851 __set_timeline(&ctx->timeline, timeline); 852 context_apply_all(ctx, __apply_timeline, timeline); 853 } 854 855 static struct i915_gem_context * 856 i915_gem_create_context(struct drm_i915_private *i915, unsigned int flags) 857 { 858 struct i915_gem_context *ctx; 859 860 if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE && 861 !HAS_EXECLISTS(i915)) 862 return ERR_PTR(-EINVAL); 863 864 /* Reap the stale contexts */ 865 contexts_flush_free(&i915->gem.contexts); 866 867 ctx = __create_context(i915); 868 if (IS_ERR(ctx)) 869 return ctx; 870 871 if (HAS_FULL_PPGTT(i915)) { 872 struct i915_ppgtt *ppgtt; 873 874 ppgtt = i915_ppgtt_create(&i915->gt); 875 if (IS_ERR(ppgtt)) { 876 drm_dbg(&i915->drm, "PPGTT setup failed (%ld)\n", 877 PTR_ERR(ppgtt)); 878 context_close(ctx); 879 return ERR_CAST(ppgtt); 880 } 881 882 mutex_lock(&ctx->mutex); 883 __assign_ppgtt(ctx, &ppgtt->vm); 884 mutex_unlock(&ctx->mutex); 885 886 i915_vm_put(&ppgtt->vm); 887 } 888 889 if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE) { 890 struct intel_timeline *timeline; 891 892 timeline = intel_timeline_create(&i915->gt, NULL); 893 if (IS_ERR(timeline)) { 894 context_close(ctx); 895 return ERR_CAST(timeline); 896 } 897 898 __assign_timeline(ctx, timeline); 899 intel_timeline_put(timeline); 900 } 901 902 trace_i915_context_create(ctx); 903 904 return ctx; 905 } 906 907 static void init_contexts(struct i915_gem_contexts *gc) 908 { 909 spin_lock_init(&gc->lock); 910 INIT_LIST_HEAD(&gc->list); 911 912 INIT_WORK(&gc->free_work, contexts_free_worker); 913 init_llist_head(&gc->free_list); 914 } 915 916 void i915_gem_init__contexts(struct drm_i915_private *i915) 917 { 918 init_contexts(&i915->gem.contexts); 919 drm_dbg(&i915->drm, "%s context support initialized\n", 920 DRIVER_CAPS(i915)->has_logical_contexts ? 921 "logical" : "fake"); 922 } 923 924 void i915_gem_driver_release__contexts(struct drm_i915_private *i915) 925 { 926 flush_work(&i915->gem.contexts.free_work); 927 rcu_barrier(); /* and flush the left over RCU frees */ 928 } 929 930 static int gem_context_register(struct i915_gem_context *ctx, 931 struct drm_i915_file_private *fpriv, 932 u32 *id) 933 { 934 struct i915_address_space *vm; 935 int ret; 936 937 ctx->file_priv = fpriv; 938 939 mutex_lock(&ctx->mutex); 940 vm = i915_gem_context_vm(ctx); 941 if (vm) 942 WRITE_ONCE(vm->file, fpriv); /* XXX */ 943 mutex_unlock(&ctx->mutex); 944 945 ctx->pid = get_task_pid(current, PIDTYPE_PID); 946 snprintf(ctx->name, sizeof(ctx->name), "%s[%d]", 947 current->comm, pid_nr(ctx->pid)); 948 949 /* And finally expose ourselves to userspace via the idr */ 950 ret = xa_alloc(&fpriv->context_xa, id, ctx, xa_limit_32b, GFP_KERNEL); 951 if (ret) 952 put_pid(fetch_and_zero(&ctx->pid)); 953 954 return ret; 955 } 956 957 int i915_gem_context_open(struct drm_i915_private *i915, 958 struct drm_file *file) 959 { 960 struct drm_i915_file_private *file_priv = file->driver_priv; 961 struct i915_gem_context *ctx; 962 int err; 963 u32 id; 964 965 xa_init_flags(&file_priv->context_xa, XA_FLAGS_ALLOC); 966 967 /* 0 reserved for invalid/unassigned ppgtt */ 968 xa_init_flags(&file_priv->vm_xa, XA_FLAGS_ALLOC1); 969 970 ctx = i915_gem_create_context(i915, 0); 971 if (IS_ERR(ctx)) { 972 err = PTR_ERR(ctx); 973 goto err; 974 } 975 976 err = gem_context_register(ctx, file_priv, &id); 977 if (err < 0) 978 goto err_ctx; 979 980 GEM_BUG_ON(id); 981 return 0; 982 983 err_ctx: 984 context_close(ctx); 985 err: 986 xa_destroy(&file_priv->vm_xa); 987 xa_destroy(&file_priv->context_xa); 988 return err; 989 } 990 991 void i915_gem_context_close(struct drm_file *file) 992 { 993 struct drm_i915_file_private *file_priv = file->driver_priv; 994 struct drm_i915_private *i915 = file_priv->dev_priv; 995 struct i915_address_space *vm; 996 struct i915_gem_context *ctx; 997 unsigned long idx; 998 999 xa_for_each(&file_priv->context_xa, idx, ctx) 1000 context_close(ctx); 1001 xa_destroy(&file_priv->context_xa); 1002 1003 xa_for_each(&file_priv->vm_xa, idx, vm) 1004 i915_vm_put(vm); 1005 xa_destroy(&file_priv->vm_xa); 1006 1007 contexts_flush_free(&i915->gem.contexts); 1008 } 1009 1010 int i915_gem_vm_create_ioctl(struct drm_device *dev, void *data, 1011 struct drm_file *file) 1012 { 1013 struct drm_i915_private *i915 = to_i915(dev); 1014 struct drm_i915_gem_vm_control *args = data; 1015 struct drm_i915_file_private *file_priv = file->driver_priv; 1016 struct i915_ppgtt *ppgtt; 1017 u32 id; 1018 int err; 1019 1020 if (!HAS_FULL_PPGTT(i915)) 1021 return -ENODEV; 1022 1023 if (args->flags) 1024 return -EINVAL; 1025 1026 ppgtt = i915_ppgtt_create(&i915->gt); 1027 if (IS_ERR(ppgtt)) 1028 return PTR_ERR(ppgtt); 1029 1030 ppgtt->vm.file = file_priv; 1031 1032 if (args->extensions) { 1033 err = i915_user_extensions(u64_to_user_ptr(args->extensions), 1034 NULL, 0, 1035 ppgtt); 1036 if (err) 1037 goto err_put; 1038 } 1039 1040 err = xa_alloc(&file_priv->vm_xa, &id, &ppgtt->vm, 1041 xa_limit_32b, GFP_KERNEL); 1042 if (err) 1043 goto err_put; 1044 1045 GEM_BUG_ON(id == 0); /* reserved for invalid/unassigned ppgtt */ 1046 args->vm_id = id; 1047 return 0; 1048 1049 err_put: 1050 i915_vm_put(&ppgtt->vm); 1051 return err; 1052 } 1053 1054 int i915_gem_vm_destroy_ioctl(struct drm_device *dev, void *data, 1055 struct drm_file *file) 1056 { 1057 struct drm_i915_file_private *file_priv = file->driver_priv; 1058 struct drm_i915_gem_vm_control *args = data; 1059 struct i915_address_space *vm; 1060 1061 if (args->flags) 1062 return -EINVAL; 1063 1064 if (args->extensions) 1065 return -EINVAL; 1066 1067 vm = xa_erase(&file_priv->vm_xa, args->vm_id); 1068 if (!vm) 1069 return -ENOENT; 1070 1071 i915_vm_put(vm); 1072 return 0; 1073 } 1074 1075 struct context_barrier_task { 1076 struct i915_active base; 1077 void (*task)(void *data); 1078 void *data; 1079 }; 1080 1081 __i915_active_call 1082 static void cb_retire(struct i915_active *base) 1083 { 1084 struct context_barrier_task *cb = container_of(base, typeof(*cb), base); 1085 1086 if (cb->task) 1087 cb->task(cb->data); 1088 1089 i915_active_fini(&cb->base); 1090 kfree(cb); 1091 } 1092 1093 I915_SELFTEST_DECLARE(static intel_engine_mask_t context_barrier_inject_fault); 1094 static int context_barrier_task(struct i915_gem_context *ctx, 1095 intel_engine_mask_t engines, 1096 bool (*skip)(struct intel_context *ce, void *data), 1097 int (*emit)(struct i915_request *rq, void *data), 1098 void (*task)(void *data), 1099 void *data) 1100 { 1101 struct context_barrier_task *cb; 1102 struct i915_gem_engines_iter it; 1103 struct i915_gem_engines *e; 1104 struct intel_context *ce; 1105 int err = 0; 1106 1107 GEM_BUG_ON(!task); 1108 1109 cb = kmalloc(sizeof(*cb), GFP_KERNEL); 1110 if (!cb) 1111 return -ENOMEM; 1112 1113 i915_active_init(&cb->base, NULL, cb_retire); 1114 err = i915_active_acquire(&cb->base); 1115 if (err) { 1116 kfree(cb); 1117 return err; 1118 } 1119 1120 e = __context_engines_await(ctx); 1121 if (!e) { 1122 i915_active_release(&cb->base); 1123 return -ENOENT; 1124 } 1125 1126 for_each_gem_engine(ce, e, it) { 1127 struct i915_request *rq; 1128 1129 if (I915_SELFTEST_ONLY(context_barrier_inject_fault & 1130 ce->engine->mask)) { 1131 err = -ENXIO; 1132 break; 1133 } 1134 1135 if (!(ce->engine->mask & engines)) 1136 continue; 1137 1138 if (skip && skip(ce, data)) 1139 continue; 1140 1141 rq = intel_context_create_request(ce); 1142 if (IS_ERR(rq)) { 1143 err = PTR_ERR(rq); 1144 break; 1145 } 1146 1147 err = 0; 1148 if (emit) 1149 err = emit(rq, data); 1150 if (err == 0) 1151 err = i915_active_add_request(&cb->base, rq); 1152 1153 i915_request_add(rq); 1154 if (err) 1155 break; 1156 } 1157 i915_sw_fence_complete(&e->fence); 1158 1159 cb->task = err ? NULL : task; /* caller needs to unwind instead */ 1160 cb->data = data; 1161 1162 i915_active_release(&cb->base); 1163 1164 return err; 1165 } 1166 1167 static int get_ppgtt(struct drm_i915_file_private *file_priv, 1168 struct i915_gem_context *ctx, 1169 struct drm_i915_gem_context_param *args) 1170 { 1171 struct i915_address_space *vm; 1172 int err; 1173 u32 id; 1174 1175 if (!rcu_access_pointer(ctx->vm)) 1176 return -ENODEV; 1177 1178 rcu_read_lock(); 1179 vm = context_get_vm_rcu(ctx); 1180 rcu_read_unlock(); 1181 if (!vm) 1182 return -ENODEV; 1183 1184 err = xa_alloc(&file_priv->vm_xa, &id, vm, xa_limit_32b, GFP_KERNEL); 1185 if (err) 1186 goto err_put; 1187 1188 i915_vm_open(vm); 1189 1190 GEM_BUG_ON(id == 0); /* reserved for invalid/unassigned ppgtt */ 1191 args->value = id; 1192 args->size = 0; 1193 1194 err_put: 1195 i915_vm_put(vm); 1196 return err; 1197 } 1198 1199 static void set_ppgtt_barrier(void *data) 1200 { 1201 struct i915_address_space *old = data; 1202 1203 if (INTEL_GEN(old->i915) < 8) 1204 gen6_ppgtt_unpin_all(i915_vm_to_ppgtt(old)); 1205 1206 i915_vm_close(old); 1207 } 1208 1209 static int emit_ppgtt_update(struct i915_request *rq, void *data) 1210 { 1211 struct i915_address_space *vm = rq->context->vm; 1212 struct intel_engine_cs *engine = rq->engine; 1213 u32 base = engine->mmio_base; 1214 u32 *cs; 1215 int i; 1216 1217 if (i915_vm_is_4lvl(vm)) { 1218 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1219 const dma_addr_t pd_daddr = px_dma(ppgtt->pd); 1220 1221 cs = intel_ring_begin(rq, 6); 1222 if (IS_ERR(cs)) 1223 return PTR_ERR(cs); 1224 1225 *cs++ = MI_LOAD_REGISTER_IMM(2); 1226 1227 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0)); 1228 *cs++ = upper_32_bits(pd_daddr); 1229 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0)); 1230 *cs++ = lower_32_bits(pd_daddr); 1231 1232 *cs++ = MI_NOOP; 1233 intel_ring_advance(rq, cs); 1234 } else if (HAS_LOGICAL_RING_CONTEXTS(engine->i915)) { 1235 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); 1236 int err; 1237 1238 /* Magic required to prevent forcewake errors! */ 1239 err = engine->emit_flush(rq, EMIT_INVALIDATE); 1240 if (err) 1241 return err; 1242 1243 cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2); 1244 if (IS_ERR(cs)) 1245 return PTR_ERR(cs); 1246 1247 *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED; 1248 for (i = GEN8_3LVL_PDPES; i--; ) { 1249 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i); 1250 1251 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i)); 1252 *cs++ = upper_32_bits(pd_daddr); 1253 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i)); 1254 *cs++ = lower_32_bits(pd_daddr); 1255 } 1256 *cs++ = MI_NOOP; 1257 intel_ring_advance(rq, cs); 1258 } 1259 1260 return 0; 1261 } 1262 1263 static bool skip_ppgtt_update(struct intel_context *ce, void *data) 1264 { 1265 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) 1266 return true; 1267 1268 if (HAS_LOGICAL_RING_CONTEXTS(ce->engine->i915)) 1269 return false; 1270 1271 if (!atomic_read(&ce->pin_count)) 1272 return true; 1273 1274 /* ppGTT is not part of the legacy context image */ 1275 if (gen6_ppgtt_pin(i915_vm_to_ppgtt(ce->vm))) 1276 return true; 1277 1278 return false; 1279 } 1280 1281 static int set_ppgtt(struct drm_i915_file_private *file_priv, 1282 struct i915_gem_context *ctx, 1283 struct drm_i915_gem_context_param *args) 1284 { 1285 struct i915_address_space *vm, *old; 1286 int err; 1287 1288 if (args->size) 1289 return -EINVAL; 1290 1291 if (!rcu_access_pointer(ctx->vm)) 1292 return -ENODEV; 1293 1294 if (upper_32_bits(args->value)) 1295 return -ENOENT; 1296 1297 rcu_read_lock(); 1298 vm = xa_load(&file_priv->vm_xa, args->value); 1299 if (vm && !kref_get_unless_zero(&vm->ref)) 1300 vm = NULL; 1301 rcu_read_unlock(); 1302 if (!vm) 1303 return -ENOENT; 1304 1305 err = mutex_lock_interruptible(&ctx->mutex); 1306 if (err) 1307 goto out; 1308 1309 if (i915_gem_context_is_closed(ctx)) { 1310 err = -ENOENT; 1311 goto unlock; 1312 } 1313 1314 if (vm == rcu_access_pointer(ctx->vm)) 1315 goto unlock; 1316 1317 /* Teardown the existing obj:vma cache, it will have to be rebuilt. */ 1318 lut_close(ctx); 1319 1320 old = __set_ppgtt(ctx, vm); 1321 1322 /* 1323 * We need to flush any requests using the current ppgtt before 1324 * we release it as the requests do not hold a reference themselves, 1325 * only indirectly through the context. 1326 */ 1327 err = context_barrier_task(ctx, ALL_ENGINES, 1328 skip_ppgtt_update, 1329 emit_ppgtt_update, 1330 set_ppgtt_barrier, 1331 old); 1332 if (err) { 1333 i915_vm_close(__set_ppgtt(ctx, old)); 1334 i915_vm_close(old); 1335 } 1336 1337 unlock: 1338 mutex_unlock(&ctx->mutex); 1339 out: 1340 i915_vm_put(vm); 1341 return err; 1342 } 1343 1344 static int __apply_ringsize(struct intel_context *ce, void *sz) 1345 { 1346 return intel_context_set_ring_size(ce, (unsigned long)sz); 1347 } 1348 1349 static int set_ringsize(struct i915_gem_context *ctx, 1350 struct drm_i915_gem_context_param *args) 1351 { 1352 if (!HAS_LOGICAL_RING_CONTEXTS(ctx->i915)) 1353 return -ENODEV; 1354 1355 if (args->size) 1356 return -EINVAL; 1357 1358 if (!IS_ALIGNED(args->value, I915_GTT_PAGE_SIZE)) 1359 return -EINVAL; 1360 1361 if (args->value < I915_GTT_PAGE_SIZE) 1362 return -EINVAL; 1363 1364 if (args->value > 128 * I915_GTT_PAGE_SIZE) 1365 return -EINVAL; 1366 1367 return context_apply_all(ctx, 1368 __apply_ringsize, 1369 __intel_context_ring_size(args->value)); 1370 } 1371 1372 static int __get_ringsize(struct intel_context *ce, void *arg) 1373 { 1374 long sz; 1375 1376 sz = intel_context_get_ring_size(ce); 1377 GEM_BUG_ON(sz > INT_MAX); 1378 1379 return sz; /* stop on first engine */ 1380 } 1381 1382 static int get_ringsize(struct i915_gem_context *ctx, 1383 struct drm_i915_gem_context_param *args) 1384 { 1385 int sz; 1386 1387 if (!HAS_LOGICAL_RING_CONTEXTS(ctx->i915)) 1388 return -ENODEV; 1389 1390 if (args->size) 1391 return -EINVAL; 1392 1393 sz = context_apply_all(ctx, __get_ringsize, NULL); 1394 if (sz < 0) 1395 return sz; 1396 1397 args->value = sz; 1398 return 0; 1399 } 1400 1401 int 1402 i915_gem_user_to_context_sseu(struct drm_i915_private *i915, 1403 const struct drm_i915_gem_context_param_sseu *user, 1404 struct intel_sseu *context) 1405 { 1406 const struct sseu_dev_info *device = &RUNTIME_INFO(i915)->sseu; 1407 1408 /* No zeros in any field. */ 1409 if (!user->slice_mask || !user->subslice_mask || 1410 !user->min_eus_per_subslice || !user->max_eus_per_subslice) 1411 return -EINVAL; 1412 1413 /* Max > min. */ 1414 if (user->max_eus_per_subslice < user->min_eus_per_subslice) 1415 return -EINVAL; 1416 1417 /* 1418 * Some future proofing on the types since the uAPI is wider than the 1419 * current internal implementation. 1420 */ 1421 if (overflows_type(user->slice_mask, context->slice_mask) || 1422 overflows_type(user->subslice_mask, context->subslice_mask) || 1423 overflows_type(user->min_eus_per_subslice, 1424 context->min_eus_per_subslice) || 1425 overflows_type(user->max_eus_per_subslice, 1426 context->max_eus_per_subslice)) 1427 return -EINVAL; 1428 1429 /* Check validity against hardware. */ 1430 if (user->slice_mask & ~device->slice_mask) 1431 return -EINVAL; 1432 1433 if (user->subslice_mask & ~device->subslice_mask[0]) 1434 return -EINVAL; 1435 1436 if (user->max_eus_per_subslice > device->max_eus_per_subslice) 1437 return -EINVAL; 1438 1439 context->slice_mask = user->slice_mask; 1440 context->subslice_mask = user->subslice_mask; 1441 context->min_eus_per_subslice = user->min_eus_per_subslice; 1442 context->max_eus_per_subslice = user->max_eus_per_subslice; 1443 1444 /* Part specific restrictions. */ 1445 if (IS_GEN(i915, 11)) { 1446 unsigned int hw_s = hweight8(device->slice_mask); 1447 unsigned int hw_ss_per_s = hweight8(device->subslice_mask[0]); 1448 unsigned int req_s = hweight8(context->slice_mask); 1449 unsigned int req_ss = hweight8(context->subslice_mask); 1450 1451 /* 1452 * Only full subslice enablement is possible if more than one 1453 * slice is turned on. 1454 */ 1455 if (req_s > 1 && req_ss != hw_ss_per_s) 1456 return -EINVAL; 1457 1458 /* 1459 * If more than four (SScount bitfield limit) subslices are 1460 * requested then the number has to be even. 1461 */ 1462 if (req_ss > 4 && (req_ss & 1)) 1463 return -EINVAL; 1464 1465 /* 1466 * If only one slice is enabled and subslice count is below the 1467 * device full enablement, it must be at most half of the all 1468 * available subslices. 1469 */ 1470 if (req_s == 1 && req_ss < hw_ss_per_s && 1471 req_ss > (hw_ss_per_s / 2)) 1472 return -EINVAL; 1473 1474 /* ABI restriction - VME use case only. */ 1475 1476 /* All slices or one slice only. */ 1477 if (req_s != 1 && req_s != hw_s) 1478 return -EINVAL; 1479 1480 /* 1481 * Half subslices or full enablement only when one slice is 1482 * enabled. 1483 */ 1484 if (req_s == 1 && 1485 (req_ss != hw_ss_per_s && req_ss != (hw_ss_per_s / 2))) 1486 return -EINVAL; 1487 1488 /* No EU configuration changes. */ 1489 if ((user->min_eus_per_subslice != 1490 device->max_eus_per_subslice) || 1491 (user->max_eus_per_subslice != 1492 device->max_eus_per_subslice)) 1493 return -EINVAL; 1494 } 1495 1496 return 0; 1497 } 1498 1499 static int set_sseu(struct i915_gem_context *ctx, 1500 struct drm_i915_gem_context_param *args) 1501 { 1502 struct drm_i915_private *i915 = ctx->i915; 1503 struct drm_i915_gem_context_param_sseu user_sseu; 1504 struct intel_context *ce; 1505 struct intel_sseu sseu; 1506 unsigned long lookup; 1507 int ret; 1508 1509 if (args->size < sizeof(user_sseu)) 1510 return -EINVAL; 1511 1512 if (!IS_GEN(i915, 11)) 1513 return -ENODEV; 1514 1515 if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value), 1516 sizeof(user_sseu))) 1517 return -EFAULT; 1518 1519 if (user_sseu.rsvd) 1520 return -EINVAL; 1521 1522 if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)) 1523 return -EINVAL; 1524 1525 lookup = 0; 1526 if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX) 1527 lookup |= LOOKUP_USER_INDEX; 1528 1529 ce = lookup_user_engine(ctx, lookup, &user_sseu.engine); 1530 if (IS_ERR(ce)) 1531 return PTR_ERR(ce); 1532 1533 /* Only render engine supports RPCS configuration. */ 1534 if (ce->engine->class != RENDER_CLASS) { 1535 ret = -ENODEV; 1536 goto out_ce; 1537 } 1538 1539 ret = i915_gem_user_to_context_sseu(i915, &user_sseu, &sseu); 1540 if (ret) 1541 goto out_ce; 1542 1543 ret = intel_context_reconfigure_sseu(ce, sseu); 1544 if (ret) 1545 goto out_ce; 1546 1547 args->size = sizeof(user_sseu); 1548 1549 out_ce: 1550 intel_context_put(ce); 1551 return ret; 1552 } 1553 1554 struct set_engines { 1555 struct i915_gem_context *ctx; 1556 struct i915_gem_engines *engines; 1557 }; 1558 1559 static int 1560 set_engines__load_balance(struct i915_user_extension __user *base, void *data) 1561 { 1562 struct i915_context_engines_load_balance __user *ext = 1563 container_of_user(base, typeof(*ext), base); 1564 const struct set_engines *set = data; 1565 struct drm_i915_private *i915 = set->ctx->i915; 1566 struct intel_engine_cs *stack[16]; 1567 struct intel_engine_cs **siblings; 1568 struct intel_context *ce; 1569 u16 num_siblings, idx; 1570 unsigned int n; 1571 int err; 1572 1573 if (!HAS_EXECLISTS(i915)) 1574 return -ENODEV; 1575 1576 if (intel_uc_uses_guc_submission(&i915->gt.uc)) 1577 return -ENODEV; /* not implement yet */ 1578 1579 if (get_user(idx, &ext->engine_index)) 1580 return -EFAULT; 1581 1582 if (idx >= set->engines->num_engines) { 1583 drm_dbg(&i915->drm, "Invalid placement value, %d >= %d\n", 1584 idx, set->engines->num_engines); 1585 return -EINVAL; 1586 } 1587 1588 idx = array_index_nospec(idx, set->engines->num_engines); 1589 if (set->engines->engines[idx]) { 1590 drm_dbg(&i915->drm, 1591 "Invalid placement[%d], already occupied\n", idx); 1592 return -EEXIST; 1593 } 1594 1595 if (get_user(num_siblings, &ext->num_siblings)) 1596 return -EFAULT; 1597 1598 err = check_user_mbz(&ext->flags); 1599 if (err) 1600 return err; 1601 1602 err = check_user_mbz(&ext->mbz64); 1603 if (err) 1604 return err; 1605 1606 siblings = stack; 1607 if (num_siblings > ARRAY_SIZE(stack)) { 1608 siblings = kmalloc_array(num_siblings, 1609 sizeof(*siblings), 1610 GFP_KERNEL); 1611 if (!siblings) 1612 return -ENOMEM; 1613 } 1614 1615 for (n = 0; n < num_siblings; n++) { 1616 struct i915_engine_class_instance ci; 1617 1618 if (copy_from_user(&ci, &ext->engines[n], sizeof(ci))) { 1619 err = -EFAULT; 1620 goto out_siblings; 1621 } 1622 1623 siblings[n] = intel_engine_lookup_user(i915, 1624 ci.engine_class, 1625 ci.engine_instance); 1626 if (!siblings[n]) { 1627 drm_dbg(&i915->drm, 1628 "Invalid sibling[%d]: { class:%d, inst:%d }\n", 1629 n, ci.engine_class, ci.engine_instance); 1630 err = -EINVAL; 1631 goto out_siblings; 1632 } 1633 } 1634 1635 ce = intel_execlists_create_virtual(siblings, n); 1636 if (IS_ERR(ce)) { 1637 err = PTR_ERR(ce); 1638 goto out_siblings; 1639 } 1640 1641 intel_context_set_gem(ce, set->ctx); 1642 1643 if (cmpxchg(&set->engines->engines[idx], NULL, ce)) { 1644 intel_context_put(ce); 1645 err = -EEXIST; 1646 goto out_siblings; 1647 } 1648 1649 out_siblings: 1650 if (siblings != stack) 1651 kfree(siblings); 1652 1653 return err; 1654 } 1655 1656 static int 1657 set_engines__bond(struct i915_user_extension __user *base, void *data) 1658 { 1659 struct i915_context_engines_bond __user *ext = 1660 container_of_user(base, typeof(*ext), base); 1661 const struct set_engines *set = data; 1662 struct drm_i915_private *i915 = set->ctx->i915; 1663 struct i915_engine_class_instance ci; 1664 struct intel_engine_cs *virtual; 1665 struct intel_engine_cs *master; 1666 u16 idx, num_bonds; 1667 int err, n; 1668 1669 if (get_user(idx, &ext->virtual_index)) 1670 return -EFAULT; 1671 1672 if (idx >= set->engines->num_engines) { 1673 drm_dbg(&i915->drm, 1674 "Invalid index for virtual engine: %d >= %d\n", 1675 idx, set->engines->num_engines); 1676 return -EINVAL; 1677 } 1678 1679 idx = array_index_nospec(idx, set->engines->num_engines); 1680 if (!set->engines->engines[idx]) { 1681 drm_dbg(&i915->drm, "Invalid engine at %d\n", idx); 1682 return -EINVAL; 1683 } 1684 virtual = set->engines->engines[idx]->engine; 1685 1686 err = check_user_mbz(&ext->flags); 1687 if (err) 1688 return err; 1689 1690 for (n = 0; n < ARRAY_SIZE(ext->mbz64); n++) { 1691 err = check_user_mbz(&ext->mbz64[n]); 1692 if (err) 1693 return err; 1694 } 1695 1696 if (copy_from_user(&ci, &ext->master, sizeof(ci))) 1697 return -EFAULT; 1698 1699 master = intel_engine_lookup_user(i915, 1700 ci.engine_class, ci.engine_instance); 1701 if (!master) { 1702 drm_dbg(&i915->drm, 1703 "Unrecognised master engine: { class:%u, instance:%u }\n", 1704 ci.engine_class, ci.engine_instance); 1705 return -EINVAL; 1706 } 1707 1708 if (get_user(num_bonds, &ext->num_bonds)) 1709 return -EFAULT; 1710 1711 for (n = 0; n < num_bonds; n++) { 1712 struct intel_engine_cs *bond; 1713 1714 if (copy_from_user(&ci, &ext->engines[n], sizeof(ci))) 1715 return -EFAULT; 1716 1717 bond = intel_engine_lookup_user(i915, 1718 ci.engine_class, 1719 ci.engine_instance); 1720 if (!bond) { 1721 drm_dbg(&i915->drm, 1722 "Unrecognised engine[%d] for bonding: { class:%d, instance: %d }\n", 1723 n, ci.engine_class, ci.engine_instance); 1724 return -EINVAL; 1725 } 1726 1727 /* 1728 * A non-virtual engine has no siblings to choose between; and 1729 * a submit fence will always be directed to the one engine. 1730 */ 1731 if (intel_engine_is_virtual(virtual)) { 1732 err = intel_virtual_engine_attach_bond(virtual, 1733 master, 1734 bond); 1735 if (err) 1736 return err; 1737 } 1738 } 1739 1740 return 0; 1741 } 1742 1743 static const i915_user_extension_fn set_engines__extensions[] = { 1744 [I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE] = set_engines__load_balance, 1745 [I915_CONTEXT_ENGINES_EXT_BOND] = set_engines__bond, 1746 }; 1747 1748 static int 1749 set_engines(struct i915_gem_context *ctx, 1750 const struct drm_i915_gem_context_param *args) 1751 { 1752 struct drm_i915_private *i915 = ctx->i915; 1753 struct i915_context_param_engines __user *user = 1754 u64_to_user_ptr(args->value); 1755 struct set_engines set = { .ctx = ctx }; 1756 unsigned int num_engines, n; 1757 u64 extensions; 1758 int err; 1759 1760 if (!args->size) { /* switch back to legacy user_ring_map */ 1761 if (!i915_gem_context_user_engines(ctx)) 1762 return 0; 1763 1764 set.engines = default_engines(ctx); 1765 if (IS_ERR(set.engines)) 1766 return PTR_ERR(set.engines); 1767 1768 goto replace; 1769 } 1770 1771 BUILD_BUG_ON(!IS_ALIGNED(sizeof(*user), sizeof(*user->engines))); 1772 if (args->size < sizeof(*user) || 1773 !IS_ALIGNED(args->size, sizeof(*user->engines))) { 1774 drm_dbg(&i915->drm, "Invalid size for engine array: %d\n", 1775 args->size); 1776 return -EINVAL; 1777 } 1778 1779 /* 1780 * Note that I915_EXEC_RING_MASK limits execbuf to only using the 1781 * first 64 engines defined here. 1782 */ 1783 num_engines = (args->size - sizeof(*user)) / sizeof(*user->engines); 1784 set.engines = alloc_engines(num_engines); 1785 if (!set.engines) 1786 return -ENOMEM; 1787 1788 for (n = 0; n < num_engines; n++) { 1789 struct i915_engine_class_instance ci; 1790 struct intel_engine_cs *engine; 1791 struct intel_context *ce; 1792 1793 if (copy_from_user(&ci, &user->engines[n], sizeof(ci))) { 1794 __free_engines(set.engines, n); 1795 return -EFAULT; 1796 } 1797 1798 if (ci.engine_class == (u16)I915_ENGINE_CLASS_INVALID && 1799 ci.engine_instance == (u16)I915_ENGINE_CLASS_INVALID_NONE) { 1800 set.engines->engines[n] = NULL; 1801 continue; 1802 } 1803 1804 engine = intel_engine_lookup_user(ctx->i915, 1805 ci.engine_class, 1806 ci.engine_instance); 1807 if (!engine) { 1808 drm_dbg(&i915->drm, 1809 "Invalid engine[%d]: { class:%d, instance:%d }\n", 1810 n, ci.engine_class, ci.engine_instance); 1811 __free_engines(set.engines, n); 1812 return -ENOENT; 1813 } 1814 1815 ce = intel_context_create(engine); 1816 if (IS_ERR(ce)) { 1817 __free_engines(set.engines, n); 1818 return PTR_ERR(ce); 1819 } 1820 1821 intel_context_set_gem(ce, ctx); 1822 1823 set.engines->engines[n] = ce; 1824 } 1825 set.engines->num_engines = num_engines; 1826 1827 err = -EFAULT; 1828 if (!get_user(extensions, &user->extensions)) 1829 err = i915_user_extensions(u64_to_user_ptr(extensions), 1830 set_engines__extensions, 1831 ARRAY_SIZE(set_engines__extensions), 1832 &set); 1833 if (err) { 1834 free_engines(set.engines); 1835 return err; 1836 } 1837 1838 replace: 1839 mutex_lock(&ctx->engines_mutex); 1840 if (i915_gem_context_is_closed(ctx)) { 1841 mutex_unlock(&ctx->engines_mutex); 1842 free_engines(set.engines); 1843 return -ENOENT; 1844 } 1845 if (args->size) 1846 i915_gem_context_set_user_engines(ctx); 1847 else 1848 i915_gem_context_clear_user_engines(ctx); 1849 set.engines = rcu_replace_pointer(ctx->engines, set.engines, 1); 1850 mutex_unlock(&ctx->engines_mutex); 1851 1852 /* Keep track of old engine sets for kill_context() */ 1853 engines_idle_release(ctx, set.engines); 1854 1855 return 0; 1856 } 1857 1858 static struct i915_gem_engines * 1859 __copy_engines(struct i915_gem_engines *e) 1860 { 1861 struct i915_gem_engines *copy; 1862 unsigned int n; 1863 1864 copy = alloc_engines(e->num_engines); 1865 if (!copy) 1866 return ERR_PTR(-ENOMEM); 1867 1868 for (n = 0; n < e->num_engines; n++) { 1869 if (e->engines[n]) 1870 copy->engines[n] = intel_context_get(e->engines[n]); 1871 else 1872 copy->engines[n] = NULL; 1873 } 1874 copy->num_engines = n; 1875 1876 return copy; 1877 } 1878 1879 static int 1880 get_engines(struct i915_gem_context *ctx, 1881 struct drm_i915_gem_context_param *args) 1882 { 1883 struct i915_context_param_engines __user *user; 1884 struct i915_gem_engines *e; 1885 size_t n, count, size; 1886 int err = 0; 1887 1888 err = mutex_lock_interruptible(&ctx->engines_mutex); 1889 if (err) 1890 return err; 1891 1892 e = NULL; 1893 if (i915_gem_context_user_engines(ctx)) 1894 e = __copy_engines(i915_gem_context_engines(ctx)); 1895 mutex_unlock(&ctx->engines_mutex); 1896 if (IS_ERR_OR_NULL(e)) { 1897 args->size = 0; 1898 return PTR_ERR_OR_ZERO(e); 1899 } 1900 1901 count = e->num_engines; 1902 1903 /* Be paranoid in case we have an impedance mismatch */ 1904 if (!check_struct_size(user, engines, count, &size)) { 1905 err = -EINVAL; 1906 goto err_free; 1907 } 1908 if (overflows_type(size, args->size)) { 1909 err = -EINVAL; 1910 goto err_free; 1911 } 1912 1913 if (!args->size) { 1914 args->size = size; 1915 goto err_free; 1916 } 1917 1918 if (args->size < size) { 1919 err = -EINVAL; 1920 goto err_free; 1921 } 1922 1923 user = u64_to_user_ptr(args->value); 1924 if (put_user(0, &user->extensions)) { 1925 err = -EFAULT; 1926 goto err_free; 1927 } 1928 1929 for (n = 0; n < count; n++) { 1930 struct i915_engine_class_instance ci = { 1931 .engine_class = I915_ENGINE_CLASS_INVALID, 1932 .engine_instance = I915_ENGINE_CLASS_INVALID_NONE, 1933 }; 1934 1935 if (e->engines[n]) { 1936 ci.engine_class = e->engines[n]->engine->uabi_class; 1937 ci.engine_instance = e->engines[n]->engine->uabi_instance; 1938 } 1939 1940 if (copy_to_user(&user->engines[n], &ci, sizeof(ci))) { 1941 err = -EFAULT; 1942 goto err_free; 1943 } 1944 } 1945 1946 args->size = size; 1947 1948 err_free: 1949 free_engines(e); 1950 return err; 1951 } 1952 1953 static int 1954 set_persistence(struct i915_gem_context *ctx, 1955 const struct drm_i915_gem_context_param *args) 1956 { 1957 if (args->size) 1958 return -EINVAL; 1959 1960 return __context_set_persistence(ctx, args->value); 1961 } 1962 1963 static int __apply_priority(struct intel_context *ce, void *arg) 1964 { 1965 struct i915_gem_context *ctx = arg; 1966 1967 if (!intel_engine_has_timeslices(ce->engine)) 1968 return 0; 1969 1970 if (ctx->sched.priority >= I915_PRIORITY_NORMAL) 1971 intel_context_set_use_semaphores(ce); 1972 else 1973 intel_context_clear_use_semaphores(ce); 1974 1975 return 0; 1976 } 1977 1978 static int set_priority(struct i915_gem_context *ctx, 1979 const struct drm_i915_gem_context_param *args) 1980 { 1981 s64 priority = args->value; 1982 1983 if (args->size) 1984 return -EINVAL; 1985 1986 if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PRIORITY)) 1987 return -ENODEV; 1988 1989 if (priority > I915_CONTEXT_MAX_USER_PRIORITY || 1990 priority < I915_CONTEXT_MIN_USER_PRIORITY) 1991 return -EINVAL; 1992 1993 if (priority > I915_CONTEXT_DEFAULT_PRIORITY && 1994 !capable(CAP_SYS_NICE)) 1995 return -EPERM; 1996 1997 ctx->sched.priority = I915_USER_PRIORITY(priority); 1998 context_apply_all(ctx, __apply_priority, ctx); 1999 2000 return 0; 2001 } 2002 2003 static int ctx_setparam(struct drm_i915_file_private *fpriv, 2004 struct i915_gem_context *ctx, 2005 struct drm_i915_gem_context_param *args) 2006 { 2007 int ret = 0; 2008 2009 switch (args->param) { 2010 case I915_CONTEXT_PARAM_NO_ZEROMAP: 2011 if (args->size) 2012 ret = -EINVAL; 2013 else if (args->value) 2014 set_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags); 2015 else 2016 clear_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags); 2017 break; 2018 2019 case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE: 2020 if (args->size) 2021 ret = -EINVAL; 2022 else if (args->value) 2023 i915_gem_context_set_no_error_capture(ctx); 2024 else 2025 i915_gem_context_clear_no_error_capture(ctx); 2026 break; 2027 2028 case I915_CONTEXT_PARAM_BANNABLE: 2029 if (args->size) 2030 ret = -EINVAL; 2031 else if (!capable(CAP_SYS_ADMIN) && !args->value) 2032 ret = -EPERM; 2033 else if (args->value) 2034 i915_gem_context_set_bannable(ctx); 2035 else 2036 i915_gem_context_clear_bannable(ctx); 2037 break; 2038 2039 case I915_CONTEXT_PARAM_RECOVERABLE: 2040 if (args->size) 2041 ret = -EINVAL; 2042 else if (args->value) 2043 i915_gem_context_set_recoverable(ctx); 2044 else 2045 i915_gem_context_clear_recoverable(ctx); 2046 break; 2047 2048 case I915_CONTEXT_PARAM_PRIORITY: 2049 ret = set_priority(ctx, args); 2050 break; 2051 2052 case I915_CONTEXT_PARAM_SSEU: 2053 ret = set_sseu(ctx, args); 2054 break; 2055 2056 case I915_CONTEXT_PARAM_VM: 2057 ret = set_ppgtt(fpriv, ctx, args); 2058 break; 2059 2060 case I915_CONTEXT_PARAM_ENGINES: 2061 ret = set_engines(ctx, args); 2062 break; 2063 2064 case I915_CONTEXT_PARAM_PERSISTENCE: 2065 ret = set_persistence(ctx, args); 2066 break; 2067 2068 case I915_CONTEXT_PARAM_RINGSIZE: 2069 ret = set_ringsize(ctx, args); 2070 break; 2071 2072 case I915_CONTEXT_PARAM_BAN_PERIOD: 2073 default: 2074 ret = -EINVAL; 2075 break; 2076 } 2077 2078 return ret; 2079 } 2080 2081 struct create_ext { 2082 struct i915_gem_context *ctx; 2083 struct drm_i915_file_private *fpriv; 2084 }; 2085 2086 static int create_setparam(struct i915_user_extension __user *ext, void *data) 2087 { 2088 struct drm_i915_gem_context_create_ext_setparam local; 2089 const struct create_ext *arg = data; 2090 2091 if (copy_from_user(&local, ext, sizeof(local))) 2092 return -EFAULT; 2093 2094 if (local.param.ctx_id) 2095 return -EINVAL; 2096 2097 return ctx_setparam(arg->fpriv, arg->ctx, &local.param); 2098 } 2099 2100 static int copy_ring_size(struct intel_context *dst, 2101 struct intel_context *src) 2102 { 2103 long sz; 2104 2105 sz = intel_context_get_ring_size(src); 2106 if (sz < 0) 2107 return sz; 2108 2109 return intel_context_set_ring_size(dst, sz); 2110 } 2111 2112 static int clone_engines(struct i915_gem_context *dst, 2113 struct i915_gem_context *src) 2114 { 2115 struct i915_gem_engines *e = i915_gem_context_lock_engines(src); 2116 struct i915_gem_engines *clone; 2117 bool user_engines; 2118 unsigned long n; 2119 2120 clone = alloc_engines(e->num_engines); 2121 if (!clone) 2122 goto err_unlock; 2123 2124 for (n = 0; n < e->num_engines; n++) { 2125 struct intel_engine_cs *engine; 2126 2127 if (!e->engines[n]) { 2128 clone->engines[n] = NULL; 2129 continue; 2130 } 2131 engine = e->engines[n]->engine; 2132 2133 /* 2134 * Virtual engines are singletons; they can only exist 2135 * inside a single context, because they embed their 2136 * HW context... As each virtual context implies a single 2137 * timeline (each engine can only dequeue a single request 2138 * at any time), it would be surprising for two contexts 2139 * to use the same engine. So let's create a copy of 2140 * the virtual engine instead. 2141 */ 2142 if (intel_engine_is_virtual(engine)) 2143 clone->engines[n] = 2144 intel_execlists_clone_virtual(engine); 2145 else 2146 clone->engines[n] = intel_context_create(engine); 2147 if (IS_ERR_OR_NULL(clone->engines[n])) { 2148 __free_engines(clone, n); 2149 goto err_unlock; 2150 } 2151 2152 intel_context_set_gem(clone->engines[n], dst); 2153 2154 /* Copy across the preferred ringsize */ 2155 if (copy_ring_size(clone->engines[n], e->engines[n])) { 2156 __free_engines(clone, n + 1); 2157 goto err_unlock; 2158 } 2159 } 2160 clone->num_engines = n; 2161 2162 user_engines = i915_gem_context_user_engines(src); 2163 i915_gem_context_unlock_engines(src); 2164 2165 /* Serialised by constructor */ 2166 engines_idle_release(dst, rcu_replace_pointer(dst->engines, clone, 1)); 2167 if (user_engines) 2168 i915_gem_context_set_user_engines(dst); 2169 else 2170 i915_gem_context_clear_user_engines(dst); 2171 return 0; 2172 2173 err_unlock: 2174 i915_gem_context_unlock_engines(src); 2175 return -ENOMEM; 2176 } 2177 2178 static int clone_flags(struct i915_gem_context *dst, 2179 struct i915_gem_context *src) 2180 { 2181 dst->user_flags = src->user_flags; 2182 return 0; 2183 } 2184 2185 static int clone_schedattr(struct i915_gem_context *dst, 2186 struct i915_gem_context *src) 2187 { 2188 dst->sched = src->sched; 2189 return 0; 2190 } 2191 2192 static int clone_sseu(struct i915_gem_context *dst, 2193 struct i915_gem_context *src) 2194 { 2195 struct i915_gem_engines *e = i915_gem_context_lock_engines(src); 2196 struct i915_gem_engines *clone; 2197 unsigned long n; 2198 int err; 2199 2200 /* no locking required; sole access under constructor*/ 2201 clone = __context_engines_static(dst); 2202 if (e->num_engines != clone->num_engines) { 2203 err = -EINVAL; 2204 goto unlock; 2205 } 2206 2207 for (n = 0; n < e->num_engines; n++) { 2208 struct intel_context *ce = e->engines[n]; 2209 2210 if (clone->engines[n]->engine->class != ce->engine->class) { 2211 /* Must have compatible engine maps! */ 2212 err = -EINVAL; 2213 goto unlock; 2214 } 2215 2216 /* serialises with set_sseu */ 2217 err = intel_context_lock_pinned(ce); 2218 if (err) 2219 goto unlock; 2220 2221 clone->engines[n]->sseu = ce->sseu; 2222 intel_context_unlock_pinned(ce); 2223 } 2224 2225 err = 0; 2226 unlock: 2227 i915_gem_context_unlock_engines(src); 2228 return err; 2229 } 2230 2231 static int clone_timeline(struct i915_gem_context *dst, 2232 struct i915_gem_context *src) 2233 { 2234 if (src->timeline) 2235 __assign_timeline(dst, src->timeline); 2236 2237 return 0; 2238 } 2239 2240 static int clone_vm(struct i915_gem_context *dst, 2241 struct i915_gem_context *src) 2242 { 2243 struct i915_address_space *vm; 2244 int err = 0; 2245 2246 if (!rcu_access_pointer(src->vm)) 2247 return 0; 2248 2249 rcu_read_lock(); 2250 vm = context_get_vm_rcu(src); 2251 rcu_read_unlock(); 2252 2253 if (!mutex_lock_interruptible(&dst->mutex)) { 2254 __assign_ppgtt(dst, vm); 2255 mutex_unlock(&dst->mutex); 2256 } else { 2257 err = -EINTR; 2258 } 2259 2260 i915_vm_put(vm); 2261 return err; 2262 } 2263 2264 static int create_clone(struct i915_user_extension __user *ext, void *data) 2265 { 2266 static int (* const fn[])(struct i915_gem_context *dst, 2267 struct i915_gem_context *src) = { 2268 #define MAP(x, y) [ilog2(I915_CONTEXT_CLONE_##x)] = y 2269 MAP(ENGINES, clone_engines), 2270 MAP(FLAGS, clone_flags), 2271 MAP(SCHEDATTR, clone_schedattr), 2272 MAP(SSEU, clone_sseu), 2273 MAP(TIMELINE, clone_timeline), 2274 MAP(VM, clone_vm), 2275 #undef MAP 2276 }; 2277 struct drm_i915_gem_context_create_ext_clone local; 2278 const struct create_ext *arg = data; 2279 struct i915_gem_context *dst = arg->ctx; 2280 struct i915_gem_context *src; 2281 int err, bit; 2282 2283 if (copy_from_user(&local, ext, sizeof(local))) 2284 return -EFAULT; 2285 2286 BUILD_BUG_ON(GENMASK(BITS_PER_TYPE(local.flags) - 1, ARRAY_SIZE(fn)) != 2287 I915_CONTEXT_CLONE_UNKNOWN); 2288 2289 if (local.flags & I915_CONTEXT_CLONE_UNKNOWN) 2290 return -EINVAL; 2291 2292 if (local.rsvd) 2293 return -EINVAL; 2294 2295 rcu_read_lock(); 2296 src = __i915_gem_context_lookup_rcu(arg->fpriv, local.clone_id); 2297 rcu_read_unlock(); 2298 if (!src) 2299 return -ENOENT; 2300 2301 GEM_BUG_ON(src == dst); 2302 2303 for (bit = 0; bit < ARRAY_SIZE(fn); bit++) { 2304 if (!(local.flags & BIT(bit))) 2305 continue; 2306 2307 err = fn[bit](dst, src); 2308 if (err) 2309 return err; 2310 } 2311 2312 return 0; 2313 } 2314 2315 static const i915_user_extension_fn create_extensions[] = { 2316 [I915_CONTEXT_CREATE_EXT_SETPARAM] = create_setparam, 2317 [I915_CONTEXT_CREATE_EXT_CLONE] = create_clone, 2318 }; 2319 2320 static bool client_is_banned(struct drm_i915_file_private *file_priv) 2321 { 2322 return atomic_read(&file_priv->ban_score) >= I915_CLIENT_SCORE_BANNED; 2323 } 2324 2325 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data, 2326 struct drm_file *file) 2327 { 2328 struct drm_i915_private *i915 = to_i915(dev); 2329 struct drm_i915_gem_context_create_ext *args = data; 2330 struct create_ext ext_data; 2331 int ret; 2332 u32 id; 2333 2334 if (!DRIVER_CAPS(i915)->has_logical_contexts) 2335 return -ENODEV; 2336 2337 if (args->flags & I915_CONTEXT_CREATE_FLAGS_UNKNOWN) 2338 return -EINVAL; 2339 2340 ret = intel_gt_terminally_wedged(&i915->gt); 2341 if (ret) 2342 return ret; 2343 2344 ext_data.fpriv = file->driver_priv; 2345 if (client_is_banned(ext_data.fpriv)) { 2346 drm_dbg(&i915->drm, 2347 "client %s[%d] banned from creating ctx\n", 2348 current->comm, task_pid_nr(current)); 2349 return -EIO; 2350 } 2351 2352 ext_data.ctx = i915_gem_create_context(i915, args->flags); 2353 if (IS_ERR(ext_data.ctx)) 2354 return PTR_ERR(ext_data.ctx); 2355 2356 if (args->flags & I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS) { 2357 ret = i915_user_extensions(u64_to_user_ptr(args->extensions), 2358 create_extensions, 2359 ARRAY_SIZE(create_extensions), 2360 &ext_data); 2361 if (ret) 2362 goto err_ctx; 2363 } 2364 2365 ret = gem_context_register(ext_data.ctx, ext_data.fpriv, &id); 2366 if (ret < 0) 2367 goto err_ctx; 2368 2369 args->ctx_id = id; 2370 drm_dbg(&i915->drm, "HW context %d created\n", args->ctx_id); 2371 2372 return 0; 2373 2374 err_ctx: 2375 context_close(ext_data.ctx); 2376 return ret; 2377 } 2378 2379 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data, 2380 struct drm_file *file) 2381 { 2382 struct drm_i915_gem_context_destroy *args = data; 2383 struct drm_i915_file_private *file_priv = file->driver_priv; 2384 struct i915_gem_context *ctx; 2385 2386 if (args->pad != 0) 2387 return -EINVAL; 2388 2389 if (!args->ctx_id) 2390 return -ENOENT; 2391 2392 ctx = xa_erase(&file_priv->context_xa, args->ctx_id); 2393 if (!ctx) 2394 return -ENOENT; 2395 2396 context_close(ctx); 2397 return 0; 2398 } 2399 2400 static int get_sseu(struct i915_gem_context *ctx, 2401 struct drm_i915_gem_context_param *args) 2402 { 2403 struct drm_i915_gem_context_param_sseu user_sseu; 2404 struct intel_context *ce; 2405 unsigned long lookup; 2406 int err; 2407 2408 if (args->size == 0) 2409 goto out; 2410 else if (args->size < sizeof(user_sseu)) 2411 return -EINVAL; 2412 2413 if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value), 2414 sizeof(user_sseu))) 2415 return -EFAULT; 2416 2417 if (user_sseu.rsvd) 2418 return -EINVAL; 2419 2420 if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)) 2421 return -EINVAL; 2422 2423 lookup = 0; 2424 if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX) 2425 lookup |= LOOKUP_USER_INDEX; 2426 2427 ce = lookup_user_engine(ctx, lookup, &user_sseu.engine); 2428 if (IS_ERR(ce)) 2429 return PTR_ERR(ce); 2430 2431 err = intel_context_lock_pinned(ce); /* serialises with set_sseu */ 2432 if (err) { 2433 intel_context_put(ce); 2434 return err; 2435 } 2436 2437 user_sseu.slice_mask = ce->sseu.slice_mask; 2438 user_sseu.subslice_mask = ce->sseu.subslice_mask; 2439 user_sseu.min_eus_per_subslice = ce->sseu.min_eus_per_subslice; 2440 user_sseu.max_eus_per_subslice = ce->sseu.max_eus_per_subslice; 2441 2442 intel_context_unlock_pinned(ce); 2443 intel_context_put(ce); 2444 2445 if (copy_to_user(u64_to_user_ptr(args->value), &user_sseu, 2446 sizeof(user_sseu))) 2447 return -EFAULT; 2448 2449 out: 2450 args->size = sizeof(user_sseu); 2451 2452 return 0; 2453 } 2454 2455 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data, 2456 struct drm_file *file) 2457 { 2458 struct drm_i915_file_private *file_priv = file->driver_priv; 2459 struct drm_i915_gem_context_param *args = data; 2460 struct i915_gem_context *ctx; 2461 int ret = 0; 2462 2463 ctx = i915_gem_context_lookup(file_priv, args->ctx_id); 2464 if (!ctx) 2465 return -ENOENT; 2466 2467 switch (args->param) { 2468 case I915_CONTEXT_PARAM_NO_ZEROMAP: 2469 args->size = 0; 2470 args->value = test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags); 2471 break; 2472 2473 case I915_CONTEXT_PARAM_GTT_SIZE: 2474 args->size = 0; 2475 rcu_read_lock(); 2476 if (rcu_access_pointer(ctx->vm)) 2477 args->value = rcu_dereference(ctx->vm)->total; 2478 else 2479 args->value = to_i915(dev)->ggtt.vm.total; 2480 rcu_read_unlock(); 2481 break; 2482 2483 case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE: 2484 args->size = 0; 2485 args->value = i915_gem_context_no_error_capture(ctx); 2486 break; 2487 2488 case I915_CONTEXT_PARAM_BANNABLE: 2489 args->size = 0; 2490 args->value = i915_gem_context_is_bannable(ctx); 2491 break; 2492 2493 case I915_CONTEXT_PARAM_RECOVERABLE: 2494 args->size = 0; 2495 args->value = i915_gem_context_is_recoverable(ctx); 2496 break; 2497 2498 case I915_CONTEXT_PARAM_PRIORITY: 2499 args->size = 0; 2500 args->value = ctx->sched.priority >> I915_USER_PRIORITY_SHIFT; 2501 break; 2502 2503 case I915_CONTEXT_PARAM_SSEU: 2504 ret = get_sseu(ctx, args); 2505 break; 2506 2507 case I915_CONTEXT_PARAM_VM: 2508 ret = get_ppgtt(file_priv, ctx, args); 2509 break; 2510 2511 case I915_CONTEXT_PARAM_ENGINES: 2512 ret = get_engines(ctx, args); 2513 break; 2514 2515 case I915_CONTEXT_PARAM_PERSISTENCE: 2516 args->size = 0; 2517 args->value = i915_gem_context_is_persistent(ctx); 2518 break; 2519 2520 case I915_CONTEXT_PARAM_RINGSIZE: 2521 ret = get_ringsize(ctx, args); 2522 break; 2523 2524 case I915_CONTEXT_PARAM_BAN_PERIOD: 2525 default: 2526 ret = -EINVAL; 2527 break; 2528 } 2529 2530 i915_gem_context_put(ctx); 2531 return ret; 2532 } 2533 2534 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data, 2535 struct drm_file *file) 2536 { 2537 struct drm_i915_file_private *file_priv = file->driver_priv; 2538 struct drm_i915_gem_context_param *args = data; 2539 struct i915_gem_context *ctx; 2540 int ret; 2541 2542 ctx = i915_gem_context_lookup(file_priv, args->ctx_id); 2543 if (!ctx) 2544 return -ENOENT; 2545 2546 ret = ctx_setparam(file_priv, ctx, args); 2547 2548 i915_gem_context_put(ctx); 2549 return ret; 2550 } 2551 2552 int i915_gem_context_reset_stats_ioctl(struct drm_device *dev, 2553 void *data, struct drm_file *file) 2554 { 2555 struct drm_i915_private *i915 = to_i915(dev); 2556 struct drm_i915_reset_stats *args = data; 2557 struct i915_gem_context *ctx; 2558 int ret; 2559 2560 if (args->flags || args->pad) 2561 return -EINVAL; 2562 2563 ret = -ENOENT; 2564 rcu_read_lock(); 2565 ctx = __i915_gem_context_lookup_rcu(file->driver_priv, args->ctx_id); 2566 if (!ctx) 2567 goto out; 2568 2569 /* 2570 * We opt for unserialised reads here. This may result in tearing 2571 * in the extremely unlikely event of a GPU hang on this context 2572 * as we are querying them. If we need that extra layer of protection, 2573 * we should wrap the hangstats with a seqlock. 2574 */ 2575 2576 if (capable(CAP_SYS_ADMIN)) 2577 args->reset_count = i915_reset_count(&i915->gpu_error); 2578 else 2579 args->reset_count = 0; 2580 2581 args->batch_active = atomic_read(&ctx->guilty_count); 2582 args->batch_pending = atomic_read(&ctx->active_count); 2583 2584 ret = 0; 2585 out: 2586 rcu_read_unlock(); 2587 return ret; 2588 } 2589 2590 /* GEM context-engines iterator: for_each_gem_engine() */ 2591 struct intel_context * 2592 i915_gem_engines_iter_next(struct i915_gem_engines_iter *it) 2593 { 2594 const struct i915_gem_engines *e = it->engines; 2595 struct intel_context *ctx; 2596 2597 if (unlikely(!e)) 2598 return NULL; 2599 2600 do { 2601 if (it->idx >= e->num_engines) 2602 return NULL; 2603 2604 ctx = e->engines[it->idx++]; 2605 } while (!ctx); 2606 2607 return ctx; 2608 } 2609 2610 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 2611 #include "selftests/mock_context.c" 2612 #include "selftests/i915_gem_context.c" 2613 #endif 2614 2615 static void i915_global_gem_context_shrink(void) 2616 { 2617 kmem_cache_shrink(global.slab_luts); 2618 } 2619 2620 static void i915_global_gem_context_exit(void) 2621 { 2622 kmem_cache_destroy(global.slab_luts); 2623 } 2624 2625 static struct i915_global_gem_context global = { { 2626 .shrink = i915_global_gem_context_shrink, 2627 .exit = i915_global_gem_context_exit, 2628 } }; 2629 2630 int __init i915_global_gem_context_init(void) 2631 { 2632 global.slab_luts = KMEM_CACHE(i915_lut_handle, 0); 2633 if (!global.slab_luts) 2634 return -ENOMEM; 2635 2636 i915_global_register(&global.base); 2637 return 0; 2638 } 2639