1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2011-2012 Intel Corporation
5  */
6 
7 /*
8  * This file implements HW context support. On gen5+ a HW context consists of an
9  * opaque GPU object which is referenced at times of context saves and restores.
10  * With RC6 enabled, the context is also referenced as the GPU enters and exists
11  * from RC6 (GPU has it's own internal power context, except on gen5). Though
12  * something like a context does exist for the media ring, the code only
13  * supports contexts for the render ring.
14  *
15  * In software, there is a distinction between contexts created by the user,
16  * and the default HW context. The default HW context is used by GPU clients
17  * that do not request setup of their own hardware context. The default
18  * context's state is never restored to help prevent programming errors. This
19  * would happen if a client ran and piggy-backed off another clients GPU state.
20  * The default context only exists to give the GPU some offset to load as the
21  * current to invoke a save of the context we actually care about. In fact, the
22  * code could likely be constructed, albeit in a more complicated fashion, to
23  * never use the default context, though that limits the driver's ability to
24  * swap out, and/or destroy other contexts.
25  *
26  * All other contexts are created as a request by the GPU client. These contexts
27  * store GPU state, and thus allow GPU clients to not re-emit state (and
28  * potentially query certain state) at any time. The kernel driver makes
29  * certain that the appropriate commands are inserted.
30  *
31  * The context life cycle is semi-complicated in that context BOs may live
32  * longer than the context itself because of the way the hardware, and object
33  * tracking works. Below is a very crude representation of the state machine
34  * describing the context life.
35  *                                         refcount     pincount     active
36  * S0: initial state                          0            0           0
37  * S1: context created                        1            0           0
38  * S2: context is currently running           2            1           X
39  * S3: GPU referenced, but not current        2            0           1
40  * S4: context is current, but destroyed      1            1           0
41  * S5: like S3, but destroyed                 1            0           1
42  *
43  * The most common (but not all) transitions:
44  * S0->S1: client creates a context
45  * S1->S2: client submits execbuf with context
46  * S2->S3: other clients submits execbuf with context
47  * S3->S1: context object was retired
48  * S3->S2: clients submits another execbuf
49  * S2->S4: context destroy called with current context
50  * S3->S5->S0: destroy path
51  * S4->S5->S0: destroy path on current context
52  *
53  * There are two confusing terms used above:
54  *  The "current context" means the context which is currently running on the
55  *  GPU. The GPU has loaded its state already and has stored away the gtt
56  *  offset of the BO. The GPU is not actively referencing the data at this
57  *  offset, but it will on the next context switch. The only way to avoid this
58  *  is to do a GPU reset.
59  *
60  *  An "active context' is one which was previously the "current context" and is
61  *  on the active list waiting for the next context switch to occur. Until this
62  *  happens, the object must remain at the same gtt offset. It is therefore
63  *  possible to destroy a context, but it is still active.
64  *
65  */
66 
67 #include <linux/log2.h>
68 #include <linux/nospec.h>
69 
70 #include "gt/gen6_ppgtt.h"
71 #include "gt/intel_context.h"
72 #include "gt/intel_context_param.h"
73 #include "gt/intel_engine_heartbeat.h"
74 #include "gt/intel_engine_user.h"
75 #include "gt/intel_ring.h"
76 
77 #include "i915_gem_context.h"
78 #include "i915_globals.h"
79 #include "i915_trace.h"
80 #include "i915_user_extensions.h"
81 
82 #define ALL_L3_SLICES(dev) (1 << NUM_L3_SLICES(dev)) - 1
83 
84 static struct i915_global_gem_context {
85 	struct i915_global base;
86 	struct kmem_cache *slab_luts;
87 } global;
88 
89 struct i915_lut_handle *i915_lut_handle_alloc(void)
90 {
91 	return kmem_cache_alloc(global.slab_luts, GFP_KERNEL);
92 }
93 
94 void i915_lut_handle_free(struct i915_lut_handle *lut)
95 {
96 	return kmem_cache_free(global.slab_luts, lut);
97 }
98 
99 static void lut_close(struct i915_gem_context *ctx)
100 {
101 	struct radix_tree_iter iter;
102 	void __rcu **slot;
103 
104 	mutex_lock(&ctx->lut_mutex);
105 	rcu_read_lock();
106 	radix_tree_for_each_slot(slot, &ctx->handles_vma, &iter, 0) {
107 		struct i915_vma *vma = rcu_dereference_raw(*slot);
108 		struct drm_i915_gem_object *obj = vma->obj;
109 		struct i915_lut_handle *lut;
110 
111 		if (!kref_get_unless_zero(&obj->base.refcount))
112 			continue;
113 
114 		spin_lock(&obj->lut_lock);
115 		list_for_each_entry(lut, &obj->lut_list, obj_link) {
116 			if (lut->ctx != ctx)
117 				continue;
118 
119 			if (lut->handle != iter.index)
120 				continue;
121 
122 			list_del(&lut->obj_link);
123 			break;
124 		}
125 		spin_unlock(&obj->lut_lock);
126 
127 		if (&lut->obj_link != &obj->lut_list) {
128 			i915_lut_handle_free(lut);
129 			radix_tree_iter_delete(&ctx->handles_vma, &iter, slot);
130 			i915_vma_close(vma);
131 			i915_gem_object_put(obj);
132 		}
133 
134 		i915_gem_object_put(obj);
135 	}
136 	rcu_read_unlock();
137 	mutex_unlock(&ctx->lut_mutex);
138 }
139 
140 static struct intel_context *
141 lookup_user_engine(struct i915_gem_context *ctx,
142 		   unsigned long flags,
143 		   const struct i915_engine_class_instance *ci)
144 #define LOOKUP_USER_INDEX BIT(0)
145 {
146 	int idx;
147 
148 	if (!!(flags & LOOKUP_USER_INDEX) != i915_gem_context_user_engines(ctx))
149 		return ERR_PTR(-EINVAL);
150 
151 	if (!i915_gem_context_user_engines(ctx)) {
152 		struct intel_engine_cs *engine;
153 
154 		engine = intel_engine_lookup_user(ctx->i915,
155 						  ci->engine_class,
156 						  ci->engine_instance);
157 		if (!engine)
158 			return ERR_PTR(-EINVAL);
159 
160 		idx = engine->legacy_idx;
161 	} else {
162 		idx = ci->engine_instance;
163 	}
164 
165 	return i915_gem_context_get_engine(ctx, idx);
166 }
167 
168 static struct i915_address_space *
169 context_get_vm_rcu(struct i915_gem_context *ctx)
170 {
171 	GEM_BUG_ON(!rcu_access_pointer(ctx->vm));
172 
173 	do {
174 		struct i915_address_space *vm;
175 
176 		/*
177 		 * We do not allow downgrading from full-ppgtt [to a shared
178 		 * global gtt], so ctx->vm cannot become NULL.
179 		 */
180 		vm = rcu_dereference(ctx->vm);
181 		if (!kref_get_unless_zero(&vm->ref))
182 			continue;
183 
184 		/*
185 		 * This ppgtt may have be reallocated between
186 		 * the read and the kref, and reassigned to a third
187 		 * context. In order to avoid inadvertent sharing
188 		 * of this ppgtt with that third context (and not
189 		 * src), we have to confirm that we have the same
190 		 * ppgtt after passing through the strong memory
191 		 * barrier implied by a successful
192 		 * kref_get_unless_zero().
193 		 *
194 		 * Once we have acquired the current ppgtt of ctx,
195 		 * we no longer care if it is released from ctx, as
196 		 * it cannot be reallocated elsewhere.
197 		 */
198 
199 		if (vm == rcu_access_pointer(ctx->vm))
200 			return rcu_pointer_handoff(vm);
201 
202 		i915_vm_put(vm);
203 	} while (1);
204 }
205 
206 static void intel_context_set_gem(struct intel_context *ce,
207 				  struct i915_gem_context *ctx)
208 {
209 	GEM_BUG_ON(rcu_access_pointer(ce->gem_context));
210 	RCU_INIT_POINTER(ce->gem_context, ctx);
211 
212 	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags))
213 		ce->ring = __intel_context_ring_size(SZ_16K);
214 
215 	if (rcu_access_pointer(ctx->vm)) {
216 		struct i915_address_space *vm;
217 
218 		rcu_read_lock();
219 		vm = context_get_vm_rcu(ctx); /* hmm */
220 		rcu_read_unlock();
221 
222 		i915_vm_put(ce->vm);
223 		ce->vm = vm;
224 	}
225 
226 	GEM_BUG_ON(ce->timeline);
227 	if (ctx->timeline)
228 		ce->timeline = intel_timeline_get(ctx->timeline);
229 
230 	if (ctx->sched.priority >= I915_PRIORITY_NORMAL &&
231 	    intel_engine_has_timeslices(ce->engine))
232 		__set_bit(CONTEXT_USE_SEMAPHORES, &ce->flags);
233 }
234 
235 static void __free_engines(struct i915_gem_engines *e, unsigned int count)
236 {
237 	while (count--) {
238 		if (!e->engines[count])
239 			continue;
240 
241 		intel_context_put(e->engines[count]);
242 	}
243 	kfree(e);
244 }
245 
246 static void free_engines(struct i915_gem_engines *e)
247 {
248 	__free_engines(e, e->num_engines);
249 }
250 
251 static void free_engines_rcu(struct rcu_head *rcu)
252 {
253 	struct i915_gem_engines *engines =
254 		container_of(rcu, struct i915_gem_engines, rcu);
255 
256 	i915_sw_fence_fini(&engines->fence);
257 	free_engines(engines);
258 }
259 
260 static int __i915_sw_fence_call
261 engines_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
262 {
263 	struct i915_gem_engines *engines =
264 		container_of(fence, typeof(*engines), fence);
265 
266 	switch (state) {
267 	case FENCE_COMPLETE:
268 		if (!list_empty(&engines->link)) {
269 			struct i915_gem_context *ctx = engines->ctx;
270 			unsigned long flags;
271 
272 			spin_lock_irqsave(&ctx->stale.lock, flags);
273 			list_del(&engines->link);
274 			spin_unlock_irqrestore(&ctx->stale.lock, flags);
275 		}
276 		i915_gem_context_put(engines->ctx);
277 		break;
278 
279 	case FENCE_FREE:
280 		init_rcu_head(&engines->rcu);
281 		call_rcu(&engines->rcu, free_engines_rcu);
282 		break;
283 	}
284 
285 	return NOTIFY_DONE;
286 }
287 
288 static struct i915_gem_engines *alloc_engines(unsigned int count)
289 {
290 	struct i915_gem_engines *e;
291 
292 	e = kzalloc(struct_size(e, engines, count), GFP_KERNEL);
293 	if (!e)
294 		return NULL;
295 
296 	i915_sw_fence_init(&e->fence, engines_notify);
297 	return e;
298 }
299 
300 static struct i915_gem_engines *default_engines(struct i915_gem_context *ctx)
301 {
302 	const struct intel_gt *gt = &ctx->i915->gt;
303 	struct intel_engine_cs *engine;
304 	struct i915_gem_engines *e;
305 	enum intel_engine_id id;
306 
307 	e = alloc_engines(I915_NUM_ENGINES);
308 	if (!e)
309 		return ERR_PTR(-ENOMEM);
310 
311 	for_each_engine(engine, gt, id) {
312 		struct intel_context *ce;
313 
314 		if (engine->legacy_idx == INVALID_ENGINE)
315 			continue;
316 
317 		GEM_BUG_ON(engine->legacy_idx >= I915_NUM_ENGINES);
318 		GEM_BUG_ON(e->engines[engine->legacy_idx]);
319 
320 		ce = intel_context_create(engine);
321 		if (IS_ERR(ce)) {
322 			__free_engines(e, e->num_engines + 1);
323 			return ERR_CAST(ce);
324 		}
325 
326 		intel_context_set_gem(ce, ctx);
327 
328 		e->engines[engine->legacy_idx] = ce;
329 		e->num_engines = max(e->num_engines, engine->legacy_idx);
330 	}
331 	e->num_engines++;
332 
333 	return e;
334 }
335 
336 static void i915_gem_context_free(struct i915_gem_context *ctx)
337 {
338 	GEM_BUG_ON(!i915_gem_context_is_closed(ctx));
339 
340 	spin_lock(&ctx->i915->gem.contexts.lock);
341 	list_del(&ctx->link);
342 	spin_unlock(&ctx->i915->gem.contexts.lock);
343 
344 	mutex_destroy(&ctx->engines_mutex);
345 	mutex_destroy(&ctx->lut_mutex);
346 
347 	if (ctx->timeline)
348 		intel_timeline_put(ctx->timeline);
349 
350 	put_pid(ctx->pid);
351 	mutex_destroy(&ctx->mutex);
352 
353 	kfree_rcu(ctx, rcu);
354 }
355 
356 static void contexts_free_all(struct llist_node *list)
357 {
358 	struct i915_gem_context *ctx, *cn;
359 
360 	llist_for_each_entry_safe(ctx, cn, list, free_link)
361 		i915_gem_context_free(ctx);
362 }
363 
364 static void contexts_flush_free(struct i915_gem_contexts *gc)
365 {
366 	contexts_free_all(llist_del_all(&gc->free_list));
367 }
368 
369 static void contexts_free_worker(struct work_struct *work)
370 {
371 	struct i915_gem_contexts *gc =
372 		container_of(work, typeof(*gc), free_work);
373 
374 	contexts_flush_free(gc);
375 }
376 
377 void i915_gem_context_release(struct kref *ref)
378 {
379 	struct i915_gem_context *ctx = container_of(ref, typeof(*ctx), ref);
380 	struct i915_gem_contexts *gc = &ctx->i915->gem.contexts;
381 
382 	trace_i915_context_free(ctx);
383 	if (llist_add(&ctx->free_link, &gc->free_list))
384 		schedule_work(&gc->free_work);
385 }
386 
387 static inline struct i915_gem_engines *
388 __context_engines_static(const struct i915_gem_context *ctx)
389 {
390 	return rcu_dereference_protected(ctx->engines, true);
391 }
392 
393 static bool __reset_engine(struct intel_engine_cs *engine)
394 {
395 	struct intel_gt *gt = engine->gt;
396 	bool success = false;
397 
398 	if (!intel_has_reset_engine(gt))
399 		return false;
400 
401 	if (!test_and_set_bit(I915_RESET_ENGINE + engine->id,
402 			      &gt->reset.flags)) {
403 		success = intel_engine_reset(engine, NULL) == 0;
404 		clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id,
405 				      &gt->reset.flags);
406 	}
407 
408 	return success;
409 }
410 
411 static void __reset_context(struct i915_gem_context *ctx,
412 			    struct intel_engine_cs *engine)
413 {
414 	intel_gt_handle_error(engine->gt, engine->mask, 0,
415 			      "context closure in %s", ctx->name);
416 }
417 
418 static bool __cancel_engine(struct intel_engine_cs *engine)
419 {
420 	/*
421 	 * Send a "high priority pulse" down the engine to cause the
422 	 * current request to be momentarily preempted. (If it fails to
423 	 * be preempted, it will be reset). As we have marked our context
424 	 * as banned, any incomplete request, including any running, will
425 	 * be skipped following the preemption.
426 	 *
427 	 * If there is no hangchecking (one of the reasons why we try to
428 	 * cancel the context) and no forced preemption, there may be no
429 	 * means by which we reset the GPU and evict the persistent hog.
430 	 * Ergo if we are unable to inject a preemptive pulse that can
431 	 * kill the banned context, we fallback to doing a local reset
432 	 * instead.
433 	 */
434 	if (IS_ACTIVE(CONFIG_DRM_I915_PREEMPT_TIMEOUT) &&
435 	    !intel_engine_pulse(engine))
436 		return true;
437 
438 	/* If we are unable to send a pulse, try resetting this engine. */
439 	return __reset_engine(engine);
440 }
441 
442 static bool
443 __active_engine(struct i915_request *rq, struct intel_engine_cs **active)
444 {
445 	struct intel_engine_cs *engine, *locked;
446 	bool ret = false;
447 
448 	/*
449 	 * Serialise with __i915_request_submit() so that it sees
450 	 * is-banned?, or we know the request is already inflight.
451 	 *
452 	 * Note that rq->engine is unstable, and so we double
453 	 * check that we have acquired the lock on the final engine.
454 	 */
455 	locked = READ_ONCE(rq->engine);
456 	spin_lock_irq(&locked->active.lock);
457 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
458 		spin_unlock(&locked->active.lock);
459 		locked = engine;
460 		spin_lock(&locked->active.lock);
461 	}
462 
463 	if (!i915_request_completed(rq)) {
464 		if (i915_request_is_active(rq) && rq->fence.error != -EIO)
465 			*active = locked;
466 		ret = true;
467 	}
468 
469 	spin_unlock_irq(&locked->active.lock);
470 
471 	return ret;
472 }
473 
474 static struct intel_engine_cs *active_engine(struct intel_context *ce)
475 {
476 	struct intel_engine_cs *engine = NULL;
477 	struct i915_request *rq;
478 
479 	if (!ce->timeline)
480 		return NULL;
481 
482 	rcu_read_lock();
483 	list_for_each_entry_rcu(rq, &ce->timeline->requests, link) {
484 		if (i915_request_is_active(rq) && i915_request_completed(rq))
485 			continue;
486 
487 		/* Check with the backend if the request is inflight */
488 		if (__active_engine(rq, &engine))
489 			break;
490 	}
491 	rcu_read_unlock();
492 
493 	return engine;
494 }
495 
496 static void kill_engines(struct i915_gem_engines *engines)
497 {
498 	struct i915_gem_engines_iter it;
499 	struct intel_context *ce;
500 
501 	/*
502 	 * Map the user's engine back to the actual engines; one virtual
503 	 * engine will be mapped to multiple engines, and using ctx->engine[]
504 	 * the same engine may be have multiple instances in the user's map.
505 	 * However, we only care about pending requests, so only include
506 	 * engines on which there are incomplete requests.
507 	 */
508 	for_each_gem_engine(ce, engines, it) {
509 		struct intel_engine_cs *engine;
510 
511 		if (intel_context_set_banned(ce))
512 			continue;
513 
514 		/*
515 		 * Check the current active state of this context; if we
516 		 * are currently executing on the GPU we need to evict
517 		 * ourselves. On the other hand, if we haven't yet been
518 		 * submitted to the GPU or if everything is complete,
519 		 * we have nothing to do.
520 		 */
521 		engine = active_engine(ce);
522 
523 		/* First attempt to gracefully cancel the context */
524 		if (engine && !__cancel_engine(engine))
525 			/*
526 			 * If we are unable to send a preemptive pulse to bump
527 			 * the context from the GPU, we have to resort to a full
528 			 * reset. We hope the collateral damage is worth it.
529 			 */
530 			__reset_context(engines->ctx, engine);
531 	}
532 }
533 
534 static void kill_stale_engines(struct i915_gem_context *ctx)
535 {
536 	struct i915_gem_engines *pos, *next;
537 
538 	spin_lock_irq(&ctx->stale.lock);
539 	GEM_BUG_ON(!i915_gem_context_is_closed(ctx));
540 	list_for_each_entry_safe(pos, next, &ctx->stale.engines, link) {
541 		if (!i915_sw_fence_await(&pos->fence)) {
542 			list_del_init(&pos->link);
543 			continue;
544 		}
545 
546 		spin_unlock_irq(&ctx->stale.lock);
547 
548 		kill_engines(pos);
549 
550 		spin_lock_irq(&ctx->stale.lock);
551 		GEM_BUG_ON(i915_sw_fence_signaled(&pos->fence));
552 		list_safe_reset_next(pos, next, link);
553 		list_del_init(&pos->link); /* decouple from FENCE_COMPLETE */
554 
555 		i915_sw_fence_complete(&pos->fence);
556 	}
557 	spin_unlock_irq(&ctx->stale.lock);
558 }
559 
560 static void kill_context(struct i915_gem_context *ctx)
561 {
562 	kill_stale_engines(ctx);
563 }
564 
565 static void engines_idle_release(struct i915_gem_context *ctx,
566 				 struct i915_gem_engines *engines)
567 {
568 	struct i915_gem_engines_iter it;
569 	struct intel_context *ce;
570 
571 	INIT_LIST_HEAD(&engines->link);
572 
573 	engines->ctx = i915_gem_context_get(ctx);
574 
575 	for_each_gem_engine(ce, engines, it) {
576 		int err;
577 
578 		/* serialises with execbuf */
579 		set_bit(CONTEXT_CLOSED_BIT, &ce->flags);
580 		if (!intel_context_pin_if_active(ce))
581 			continue;
582 
583 		/* Wait until context is finally scheduled out and retired */
584 		err = i915_sw_fence_await_active(&engines->fence,
585 						 &ce->active,
586 						 I915_ACTIVE_AWAIT_BARRIER);
587 		intel_context_unpin(ce);
588 		if (err)
589 			goto kill;
590 	}
591 
592 	spin_lock_irq(&ctx->stale.lock);
593 	if (!i915_gem_context_is_closed(ctx))
594 		list_add_tail(&engines->link, &ctx->stale.engines);
595 	spin_unlock_irq(&ctx->stale.lock);
596 
597 kill:
598 	if (list_empty(&engines->link)) /* raced, already closed */
599 		kill_engines(engines);
600 
601 	i915_sw_fence_commit(&engines->fence);
602 }
603 
604 static void set_closed_name(struct i915_gem_context *ctx)
605 {
606 	char *s;
607 
608 	/* Replace '[]' with '<>' to indicate closed in debug prints */
609 
610 	s = strrchr(ctx->name, '[');
611 	if (!s)
612 		return;
613 
614 	*s = '<';
615 
616 	s = strchr(s + 1, ']');
617 	if (s)
618 		*s = '>';
619 }
620 
621 static void context_close(struct i915_gem_context *ctx)
622 {
623 	struct i915_address_space *vm;
624 
625 	/* Flush any concurrent set_engines() */
626 	mutex_lock(&ctx->engines_mutex);
627 	engines_idle_release(ctx, rcu_replace_pointer(ctx->engines, NULL, 1));
628 	i915_gem_context_set_closed(ctx);
629 	mutex_unlock(&ctx->engines_mutex);
630 
631 	mutex_lock(&ctx->mutex);
632 
633 	set_closed_name(ctx);
634 
635 	vm = i915_gem_context_vm(ctx);
636 	if (vm)
637 		i915_vm_close(vm);
638 
639 	ctx->file_priv = ERR_PTR(-EBADF);
640 
641 	/*
642 	 * The LUT uses the VMA as a backpointer to unref the object,
643 	 * so we need to clear the LUT before we close all the VMA (inside
644 	 * the ppgtt).
645 	 */
646 	lut_close(ctx);
647 
648 	mutex_unlock(&ctx->mutex);
649 
650 	/*
651 	 * If the user has disabled hangchecking, we can not be sure that
652 	 * the batches will ever complete after the context is closed,
653 	 * keeping the context and all resources pinned forever. So in this
654 	 * case we opt to forcibly kill off all remaining requests on
655 	 * context close.
656 	 */
657 	if (!i915_gem_context_is_persistent(ctx) ||
658 	    !ctx->i915->params.enable_hangcheck)
659 		kill_context(ctx);
660 
661 	i915_gem_context_put(ctx);
662 }
663 
664 static int __context_set_persistence(struct i915_gem_context *ctx, bool state)
665 {
666 	if (i915_gem_context_is_persistent(ctx) == state)
667 		return 0;
668 
669 	if (state) {
670 		/*
671 		 * Only contexts that are short-lived [that will expire or be
672 		 * reset] are allowed to survive past termination. We require
673 		 * hangcheck to ensure that the persistent requests are healthy.
674 		 */
675 		if (!ctx->i915->params.enable_hangcheck)
676 			return -EINVAL;
677 
678 		i915_gem_context_set_persistence(ctx);
679 	} else {
680 		/* To cancel a context we use "preempt-to-idle" */
681 		if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PREEMPTION))
682 			return -ENODEV;
683 
684 		/*
685 		 * If the cancel fails, we then need to reset, cleanly!
686 		 *
687 		 * If the per-engine reset fails, all hope is lost! We resort
688 		 * to a full GPU reset in that unlikely case, but realistically
689 		 * if the engine could not reset, the full reset does not fare
690 		 * much better. The damage has been done.
691 		 *
692 		 * However, if we cannot reset an engine by itself, we cannot
693 		 * cleanup a hanging persistent context without causing
694 		 * colateral damage, and we should not pretend we can by
695 		 * exposing the interface.
696 		 */
697 		if (!intel_has_reset_engine(&ctx->i915->gt))
698 			return -ENODEV;
699 
700 		i915_gem_context_clear_persistence(ctx);
701 	}
702 
703 	return 0;
704 }
705 
706 static struct i915_gem_context *
707 __create_context(struct drm_i915_private *i915)
708 {
709 	struct i915_gem_context *ctx;
710 	struct i915_gem_engines *e;
711 	int err;
712 	int i;
713 
714 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
715 	if (!ctx)
716 		return ERR_PTR(-ENOMEM);
717 
718 	kref_init(&ctx->ref);
719 	ctx->i915 = i915;
720 	ctx->sched.priority = I915_USER_PRIORITY(I915_PRIORITY_NORMAL);
721 	mutex_init(&ctx->mutex);
722 	INIT_LIST_HEAD(&ctx->link);
723 
724 	spin_lock_init(&ctx->stale.lock);
725 	INIT_LIST_HEAD(&ctx->stale.engines);
726 
727 	mutex_init(&ctx->engines_mutex);
728 	e = default_engines(ctx);
729 	if (IS_ERR(e)) {
730 		err = PTR_ERR(e);
731 		goto err_free;
732 	}
733 	RCU_INIT_POINTER(ctx->engines, e);
734 
735 	INIT_RADIX_TREE(&ctx->handles_vma, GFP_KERNEL);
736 	mutex_init(&ctx->lut_mutex);
737 
738 	/* NB: Mark all slices as needing a remap so that when the context first
739 	 * loads it will restore whatever remap state already exists. If there
740 	 * is no remap info, it will be a NOP. */
741 	ctx->remap_slice = ALL_L3_SLICES(i915);
742 
743 	i915_gem_context_set_bannable(ctx);
744 	i915_gem_context_set_recoverable(ctx);
745 	__context_set_persistence(ctx, true /* cgroup hook? */);
746 
747 	for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp); i++)
748 		ctx->hang_timestamp[i] = jiffies - CONTEXT_FAST_HANG_JIFFIES;
749 
750 	return ctx;
751 
752 err_free:
753 	kfree(ctx);
754 	return ERR_PTR(err);
755 }
756 
757 static inline struct i915_gem_engines *
758 __context_engines_await(const struct i915_gem_context *ctx)
759 {
760 	struct i915_gem_engines *engines;
761 
762 	rcu_read_lock();
763 	do {
764 		engines = rcu_dereference(ctx->engines);
765 		GEM_BUG_ON(!engines);
766 
767 		if (unlikely(!i915_sw_fence_await(&engines->fence)))
768 			continue;
769 
770 		if (likely(engines == rcu_access_pointer(ctx->engines)))
771 			break;
772 
773 		i915_sw_fence_complete(&engines->fence);
774 	} while (1);
775 	rcu_read_unlock();
776 
777 	return engines;
778 }
779 
780 static int
781 context_apply_all(struct i915_gem_context *ctx,
782 		  int (*fn)(struct intel_context *ce, void *data),
783 		  void *data)
784 {
785 	struct i915_gem_engines_iter it;
786 	struct i915_gem_engines *e;
787 	struct intel_context *ce;
788 	int err = 0;
789 
790 	e = __context_engines_await(ctx);
791 	for_each_gem_engine(ce, e, it) {
792 		err = fn(ce, data);
793 		if (err)
794 			break;
795 	}
796 	i915_sw_fence_complete(&e->fence);
797 
798 	return err;
799 }
800 
801 static int __apply_ppgtt(struct intel_context *ce, void *vm)
802 {
803 	i915_vm_put(ce->vm);
804 	ce->vm = i915_vm_get(vm);
805 	return 0;
806 }
807 
808 static struct i915_address_space *
809 __set_ppgtt(struct i915_gem_context *ctx, struct i915_address_space *vm)
810 {
811 	struct i915_address_space *old;
812 
813 	old = rcu_replace_pointer(ctx->vm,
814 				  i915_vm_open(vm),
815 				  lockdep_is_held(&ctx->mutex));
816 	GEM_BUG_ON(old && i915_vm_is_4lvl(vm) != i915_vm_is_4lvl(old));
817 
818 	context_apply_all(ctx, __apply_ppgtt, vm);
819 
820 	return old;
821 }
822 
823 static void __assign_ppgtt(struct i915_gem_context *ctx,
824 			   struct i915_address_space *vm)
825 {
826 	if (vm == rcu_access_pointer(ctx->vm))
827 		return;
828 
829 	vm = __set_ppgtt(ctx, vm);
830 	if (vm)
831 		i915_vm_close(vm);
832 }
833 
834 static void __set_timeline(struct intel_timeline **dst,
835 			   struct intel_timeline *src)
836 {
837 	struct intel_timeline *old = *dst;
838 
839 	*dst = src ? intel_timeline_get(src) : NULL;
840 
841 	if (old)
842 		intel_timeline_put(old);
843 }
844 
845 static int __apply_timeline(struct intel_context *ce, void *timeline)
846 {
847 	__set_timeline(&ce->timeline, timeline);
848 	return 0;
849 }
850 
851 static void __assign_timeline(struct i915_gem_context *ctx,
852 			      struct intel_timeline *timeline)
853 {
854 	__set_timeline(&ctx->timeline, timeline);
855 	context_apply_all(ctx, __apply_timeline, timeline);
856 }
857 
858 static struct i915_gem_context *
859 i915_gem_create_context(struct drm_i915_private *i915, unsigned int flags)
860 {
861 	struct i915_gem_context *ctx;
862 
863 	if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE &&
864 	    !HAS_EXECLISTS(i915))
865 		return ERR_PTR(-EINVAL);
866 
867 	/* Reap the stale contexts */
868 	contexts_flush_free(&i915->gem.contexts);
869 
870 	ctx = __create_context(i915);
871 	if (IS_ERR(ctx))
872 		return ctx;
873 
874 	if (HAS_FULL_PPGTT(i915)) {
875 		struct i915_ppgtt *ppgtt;
876 
877 		ppgtt = i915_ppgtt_create(&i915->gt);
878 		if (IS_ERR(ppgtt)) {
879 			drm_dbg(&i915->drm, "PPGTT setup failed (%ld)\n",
880 				PTR_ERR(ppgtt));
881 			context_close(ctx);
882 			return ERR_CAST(ppgtt);
883 		}
884 
885 		mutex_lock(&ctx->mutex);
886 		__assign_ppgtt(ctx, &ppgtt->vm);
887 		mutex_unlock(&ctx->mutex);
888 
889 		i915_vm_put(&ppgtt->vm);
890 	}
891 
892 	if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE) {
893 		struct intel_timeline *timeline;
894 
895 		timeline = intel_timeline_create(&i915->gt);
896 		if (IS_ERR(timeline)) {
897 			context_close(ctx);
898 			return ERR_CAST(timeline);
899 		}
900 
901 		__assign_timeline(ctx, timeline);
902 		intel_timeline_put(timeline);
903 	}
904 
905 	trace_i915_context_create(ctx);
906 
907 	return ctx;
908 }
909 
910 static void init_contexts(struct i915_gem_contexts *gc)
911 {
912 	spin_lock_init(&gc->lock);
913 	INIT_LIST_HEAD(&gc->list);
914 
915 	INIT_WORK(&gc->free_work, contexts_free_worker);
916 	init_llist_head(&gc->free_list);
917 }
918 
919 void i915_gem_init__contexts(struct drm_i915_private *i915)
920 {
921 	init_contexts(&i915->gem.contexts);
922 	drm_dbg(&i915->drm, "%s context support initialized\n",
923 		DRIVER_CAPS(i915)->has_logical_contexts ?
924 		"logical" : "fake");
925 }
926 
927 void i915_gem_driver_release__contexts(struct drm_i915_private *i915)
928 {
929 	flush_work(&i915->gem.contexts.free_work);
930 	rcu_barrier(); /* and flush the left over RCU frees */
931 }
932 
933 static int gem_context_register(struct i915_gem_context *ctx,
934 				struct drm_i915_file_private *fpriv,
935 				u32 *id)
936 {
937 	struct drm_i915_private *i915 = ctx->i915;
938 	struct i915_address_space *vm;
939 	int ret;
940 
941 	ctx->file_priv = fpriv;
942 
943 	mutex_lock(&ctx->mutex);
944 	vm = i915_gem_context_vm(ctx);
945 	if (vm)
946 		WRITE_ONCE(vm->file, fpriv); /* XXX */
947 	mutex_unlock(&ctx->mutex);
948 
949 	ctx->pid = get_task_pid(current, PIDTYPE_PID);
950 	snprintf(ctx->name, sizeof(ctx->name), "%s[%d]",
951 		 current->comm, pid_nr(ctx->pid));
952 
953 	/* And finally expose ourselves to userspace via the idr */
954 	ret = xa_alloc(&fpriv->context_xa, id, ctx, xa_limit_32b, GFP_KERNEL);
955 	if (ret)
956 		goto err_pid;
957 
958 	spin_lock(&i915->gem.contexts.lock);
959 	list_add_tail(&ctx->link, &i915->gem.contexts.list);
960 	spin_unlock(&i915->gem.contexts.lock);
961 
962 	return 0;
963 
964 err_pid:
965 	put_pid(fetch_and_zero(&ctx->pid));
966 	return ret;
967 }
968 
969 int i915_gem_context_open(struct drm_i915_private *i915,
970 			  struct drm_file *file)
971 {
972 	struct drm_i915_file_private *file_priv = file->driver_priv;
973 	struct i915_gem_context *ctx;
974 	int err;
975 	u32 id;
976 
977 	xa_init_flags(&file_priv->context_xa, XA_FLAGS_ALLOC);
978 
979 	/* 0 reserved for invalid/unassigned ppgtt */
980 	xa_init_flags(&file_priv->vm_xa, XA_FLAGS_ALLOC1);
981 
982 	ctx = i915_gem_create_context(i915, 0);
983 	if (IS_ERR(ctx)) {
984 		err = PTR_ERR(ctx);
985 		goto err;
986 	}
987 
988 	err = gem_context_register(ctx, file_priv, &id);
989 	if (err < 0)
990 		goto err_ctx;
991 
992 	GEM_BUG_ON(id);
993 	return 0;
994 
995 err_ctx:
996 	context_close(ctx);
997 err:
998 	xa_destroy(&file_priv->vm_xa);
999 	xa_destroy(&file_priv->context_xa);
1000 	return err;
1001 }
1002 
1003 void i915_gem_context_close(struct drm_file *file)
1004 {
1005 	struct drm_i915_file_private *file_priv = file->driver_priv;
1006 	struct drm_i915_private *i915 = file_priv->dev_priv;
1007 	struct i915_address_space *vm;
1008 	struct i915_gem_context *ctx;
1009 	unsigned long idx;
1010 
1011 	xa_for_each(&file_priv->context_xa, idx, ctx)
1012 		context_close(ctx);
1013 	xa_destroy(&file_priv->context_xa);
1014 
1015 	xa_for_each(&file_priv->vm_xa, idx, vm)
1016 		i915_vm_put(vm);
1017 	xa_destroy(&file_priv->vm_xa);
1018 
1019 	contexts_flush_free(&i915->gem.contexts);
1020 }
1021 
1022 int i915_gem_vm_create_ioctl(struct drm_device *dev, void *data,
1023 			     struct drm_file *file)
1024 {
1025 	struct drm_i915_private *i915 = to_i915(dev);
1026 	struct drm_i915_gem_vm_control *args = data;
1027 	struct drm_i915_file_private *file_priv = file->driver_priv;
1028 	struct i915_ppgtt *ppgtt;
1029 	u32 id;
1030 	int err;
1031 
1032 	if (!HAS_FULL_PPGTT(i915))
1033 		return -ENODEV;
1034 
1035 	if (args->flags)
1036 		return -EINVAL;
1037 
1038 	ppgtt = i915_ppgtt_create(&i915->gt);
1039 	if (IS_ERR(ppgtt))
1040 		return PTR_ERR(ppgtt);
1041 
1042 	ppgtt->vm.file = file_priv;
1043 
1044 	if (args->extensions) {
1045 		err = i915_user_extensions(u64_to_user_ptr(args->extensions),
1046 					   NULL, 0,
1047 					   ppgtt);
1048 		if (err)
1049 			goto err_put;
1050 	}
1051 
1052 	err = xa_alloc(&file_priv->vm_xa, &id, &ppgtt->vm,
1053 		       xa_limit_32b, GFP_KERNEL);
1054 	if (err)
1055 		goto err_put;
1056 
1057 	GEM_BUG_ON(id == 0); /* reserved for invalid/unassigned ppgtt */
1058 	args->vm_id = id;
1059 	return 0;
1060 
1061 err_put:
1062 	i915_vm_put(&ppgtt->vm);
1063 	return err;
1064 }
1065 
1066 int i915_gem_vm_destroy_ioctl(struct drm_device *dev, void *data,
1067 			      struct drm_file *file)
1068 {
1069 	struct drm_i915_file_private *file_priv = file->driver_priv;
1070 	struct drm_i915_gem_vm_control *args = data;
1071 	struct i915_address_space *vm;
1072 
1073 	if (args->flags)
1074 		return -EINVAL;
1075 
1076 	if (args->extensions)
1077 		return -EINVAL;
1078 
1079 	vm = xa_erase(&file_priv->vm_xa, args->vm_id);
1080 	if (!vm)
1081 		return -ENOENT;
1082 
1083 	i915_vm_put(vm);
1084 	return 0;
1085 }
1086 
1087 struct context_barrier_task {
1088 	struct i915_active base;
1089 	void (*task)(void *data);
1090 	void *data;
1091 };
1092 
1093 __i915_active_call
1094 static void cb_retire(struct i915_active *base)
1095 {
1096 	struct context_barrier_task *cb = container_of(base, typeof(*cb), base);
1097 
1098 	if (cb->task)
1099 		cb->task(cb->data);
1100 
1101 	i915_active_fini(&cb->base);
1102 	kfree(cb);
1103 }
1104 
1105 I915_SELFTEST_DECLARE(static intel_engine_mask_t context_barrier_inject_fault);
1106 static int context_barrier_task(struct i915_gem_context *ctx,
1107 				intel_engine_mask_t engines,
1108 				bool (*skip)(struct intel_context *ce, void *data),
1109 				int (*pin)(struct intel_context *ce, struct i915_gem_ww_ctx *ww, void *data),
1110 				int (*emit)(struct i915_request *rq, void *data),
1111 				void (*task)(void *data),
1112 				void *data)
1113 {
1114 	struct context_barrier_task *cb;
1115 	struct i915_gem_engines_iter it;
1116 	struct i915_gem_engines *e;
1117 	struct i915_gem_ww_ctx ww;
1118 	struct intel_context *ce;
1119 	int err = 0;
1120 
1121 	GEM_BUG_ON(!task);
1122 
1123 	cb = kmalloc(sizeof(*cb), GFP_KERNEL);
1124 	if (!cb)
1125 		return -ENOMEM;
1126 
1127 	i915_active_init(&cb->base, NULL, cb_retire);
1128 	err = i915_active_acquire(&cb->base);
1129 	if (err) {
1130 		kfree(cb);
1131 		return err;
1132 	}
1133 
1134 	e = __context_engines_await(ctx);
1135 	if (!e) {
1136 		i915_active_release(&cb->base);
1137 		return -ENOENT;
1138 	}
1139 
1140 	for_each_gem_engine(ce, e, it) {
1141 		struct i915_request *rq;
1142 
1143 		if (I915_SELFTEST_ONLY(context_barrier_inject_fault &
1144 				       ce->engine->mask)) {
1145 			err = -ENXIO;
1146 			break;
1147 		}
1148 
1149 		if (!(ce->engine->mask & engines))
1150 			continue;
1151 
1152 		if (skip && skip(ce, data))
1153 			continue;
1154 
1155 		i915_gem_ww_ctx_init(&ww, true);
1156 retry:
1157 		err = intel_context_pin_ww(ce, &ww);
1158 		if (err)
1159 			goto err;
1160 
1161 		if (pin)
1162 			err = pin(ce, &ww, data);
1163 		if (err)
1164 			goto err_unpin;
1165 
1166 		rq = i915_request_create(ce);
1167 		if (IS_ERR(rq)) {
1168 			err = PTR_ERR(rq);
1169 			goto err_unpin;
1170 		}
1171 
1172 		err = 0;
1173 		if (emit)
1174 			err = emit(rq, data);
1175 		if (err == 0)
1176 			err = i915_active_add_request(&cb->base, rq);
1177 
1178 		i915_request_add(rq);
1179 err_unpin:
1180 		intel_context_unpin(ce);
1181 err:
1182 		if (err == -EDEADLK) {
1183 			err = i915_gem_ww_ctx_backoff(&ww);
1184 			if (!err)
1185 				goto retry;
1186 		}
1187 		i915_gem_ww_ctx_fini(&ww);
1188 
1189 		if (err)
1190 			break;
1191 	}
1192 	i915_sw_fence_complete(&e->fence);
1193 
1194 	cb->task = err ? NULL : task; /* caller needs to unwind instead */
1195 	cb->data = data;
1196 
1197 	i915_active_release(&cb->base);
1198 
1199 	return err;
1200 }
1201 
1202 static int get_ppgtt(struct drm_i915_file_private *file_priv,
1203 		     struct i915_gem_context *ctx,
1204 		     struct drm_i915_gem_context_param *args)
1205 {
1206 	struct i915_address_space *vm;
1207 	int err;
1208 	u32 id;
1209 
1210 	if (!rcu_access_pointer(ctx->vm))
1211 		return -ENODEV;
1212 
1213 	rcu_read_lock();
1214 	vm = context_get_vm_rcu(ctx);
1215 	rcu_read_unlock();
1216 	if (!vm)
1217 		return -ENODEV;
1218 
1219 	err = xa_alloc(&file_priv->vm_xa, &id, vm, xa_limit_32b, GFP_KERNEL);
1220 	if (err)
1221 		goto err_put;
1222 
1223 	i915_vm_open(vm);
1224 
1225 	GEM_BUG_ON(id == 0); /* reserved for invalid/unassigned ppgtt */
1226 	args->value = id;
1227 	args->size = 0;
1228 
1229 err_put:
1230 	i915_vm_put(vm);
1231 	return err;
1232 }
1233 
1234 static void set_ppgtt_barrier(void *data)
1235 {
1236 	struct i915_address_space *old = data;
1237 
1238 	if (INTEL_GEN(old->i915) < 8)
1239 		gen6_ppgtt_unpin_all(i915_vm_to_ppgtt(old));
1240 
1241 	i915_vm_close(old);
1242 }
1243 
1244 static int pin_ppgtt_update(struct intel_context *ce, struct i915_gem_ww_ctx *ww, void *data)
1245 {
1246 	struct i915_address_space *vm = ce->vm;
1247 
1248 	if (!HAS_LOGICAL_RING_CONTEXTS(vm->i915))
1249 		/* ppGTT is not part of the legacy context image */
1250 		return gen6_ppgtt_pin(i915_vm_to_ppgtt(vm), ww);
1251 
1252 	return 0;
1253 }
1254 
1255 static int emit_ppgtt_update(struct i915_request *rq, void *data)
1256 {
1257 	struct i915_address_space *vm = rq->context->vm;
1258 	struct intel_engine_cs *engine = rq->engine;
1259 	u32 base = engine->mmio_base;
1260 	u32 *cs;
1261 	int i;
1262 
1263 	if (i915_vm_is_4lvl(vm)) {
1264 		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1265 		const dma_addr_t pd_daddr = px_dma(ppgtt->pd);
1266 
1267 		cs = intel_ring_begin(rq, 6);
1268 		if (IS_ERR(cs))
1269 			return PTR_ERR(cs);
1270 
1271 		*cs++ = MI_LOAD_REGISTER_IMM(2);
1272 
1273 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
1274 		*cs++ = upper_32_bits(pd_daddr);
1275 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));
1276 		*cs++ = lower_32_bits(pd_daddr);
1277 
1278 		*cs++ = MI_NOOP;
1279 		intel_ring_advance(rq, cs);
1280 	} else if (HAS_LOGICAL_RING_CONTEXTS(engine->i915)) {
1281 		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1282 		int err;
1283 
1284 		/* Magic required to prevent forcewake errors! */
1285 		err = engine->emit_flush(rq, EMIT_INVALIDATE);
1286 		if (err)
1287 			return err;
1288 
1289 		cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
1290 		if (IS_ERR(cs))
1291 			return PTR_ERR(cs);
1292 
1293 		*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
1294 		for (i = GEN8_3LVL_PDPES; i--; ) {
1295 			const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1296 
1297 			*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1298 			*cs++ = upper_32_bits(pd_daddr);
1299 			*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1300 			*cs++ = lower_32_bits(pd_daddr);
1301 		}
1302 		*cs++ = MI_NOOP;
1303 		intel_ring_advance(rq, cs);
1304 	}
1305 
1306 	return 0;
1307 }
1308 
1309 static bool skip_ppgtt_update(struct intel_context *ce, void *data)
1310 {
1311 	if (HAS_LOGICAL_RING_CONTEXTS(ce->engine->i915))
1312 		return !ce->state;
1313 	else
1314 		return !atomic_read(&ce->pin_count);
1315 }
1316 
1317 static int set_ppgtt(struct drm_i915_file_private *file_priv,
1318 		     struct i915_gem_context *ctx,
1319 		     struct drm_i915_gem_context_param *args)
1320 {
1321 	struct i915_address_space *vm, *old;
1322 	int err;
1323 
1324 	if (args->size)
1325 		return -EINVAL;
1326 
1327 	if (!rcu_access_pointer(ctx->vm))
1328 		return -ENODEV;
1329 
1330 	if (upper_32_bits(args->value))
1331 		return -ENOENT;
1332 
1333 	rcu_read_lock();
1334 	vm = xa_load(&file_priv->vm_xa, args->value);
1335 	if (vm && !kref_get_unless_zero(&vm->ref))
1336 		vm = NULL;
1337 	rcu_read_unlock();
1338 	if (!vm)
1339 		return -ENOENT;
1340 
1341 	err = mutex_lock_interruptible(&ctx->mutex);
1342 	if (err)
1343 		goto out;
1344 
1345 	if (i915_gem_context_is_closed(ctx)) {
1346 		err = -ENOENT;
1347 		goto unlock;
1348 	}
1349 
1350 	if (vm == rcu_access_pointer(ctx->vm))
1351 		goto unlock;
1352 
1353 	old = __set_ppgtt(ctx, vm);
1354 
1355 	/* Teardown the existing obj:vma cache, it will have to be rebuilt. */
1356 	lut_close(ctx);
1357 
1358 	/*
1359 	 * We need to flush any requests using the current ppgtt before
1360 	 * we release it as the requests do not hold a reference themselves,
1361 	 * only indirectly through the context.
1362 	 */
1363 	err = context_barrier_task(ctx, ALL_ENGINES,
1364 				   skip_ppgtt_update,
1365 				   pin_ppgtt_update,
1366 				   emit_ppgtt_update,
1367 				   set_ppgtt_barrier,
1368 				   old);
1369 	if (err) {
1370 		i915_vm_close(__set_ppgtt(ctx, old));
1371 		i915_vm_close(old);
1372 		lut_close(ctx); /* force a rebuild of the old obj:vma cache */
1373 	}
1374 
1375 unlock:
1376 	mutex_unlock(&ctx->mutex);
1377 out:
1378 	i915_vm_put(vm);
1379 	return err;
1380 }
1381 
1382 static int __apply_ringsize(struct intel_context *ce, void *sz)
1383 {
1384 	return intel_context_set_ring_size(ce, (unsigned long)sz);
1385 }
1386 
1387 static int set_ringsize(struct i915_gem_context *ctx,
1388 			struct drm_i915_gem_context_param *args)
1389 {
1390 	if (!HAS_LOGICAL_RING_CONTEXTS(ctx->i915))
1391 		return -ENODEV;
1392 
1393 	if (args->size)
1394 		return -EINVAL;
1395 
1396 	if (!IS_ALIGNED(args->value, I915_GTT_PAGE_SIZE))
1397 		return -EINVAL;
1398 
1399 	if (args->value < I915_GTT_PAGE_SIZE)
1400 		return -EINVAL;
1401 
1402 	if (args->value > 128 * I915_GTT_PAGE_SIZE)
1403 		return -EINVAL;
1404 
1405 	return context_apply_all(ctx,
1406 				 __apply_ringsize,
1407 				 __intel_context_ring_size(args->value));
1408 }
1409 
1410 static int __get_ringsize(struct intel_context *ce, void *arg)
1411 {
1412 	long sz;
1413 
1414 	sz = intel_context_get_ring_size(ce);
1415 	GEM_BUG_ON(sz > INT_MAX);
1416 
1417 	return sz; /* stop on first engine */
1418 }
1419 
1420 static int get_ringsize(struct i915_gem_context *ctx,
1421 			struct drm_i915_gem_context_param *args)
1422 {
1423 	int sz;
1424 
1425 	if (!HAS_LOGICAL_RING_CONTEXTS(ctx->i915))
1426 		return -ENODEV;
1427 
1428 	if (args->size)
1429 		return -EINVAL;
1430 
1431 	sz = context_apply_all(ctx, __get_ringsize, NULL);
1432 	if (sz < 0)
1433 		return sz;
1434 
1435 	args->value = sz;
1436 	return 0;
1437 }
1438 
1439 int
1440 i915_gem_user_to_context_sseu(struct intel_gt *gt,
1441 			      const struct drm_i915_gem_context_param_sseu *user,
1442 			      struct intel_sseu *context)
1443 {
1444 	const struct sseu_dev_info *device = &gt->info.sseu;
1445 	struct drm_i915_private *i915 = gt->i915;
1446 
1447 	/* No zeros in any field. */
1448 	if (!user->slice_mask || !user->subslice_mask ||
1449 	    !user->min_eus_per_subslice || !user->max_eus_per_subslice)
1450 		return -EINVAL;
1451 
1452 	/* Max > min. */
1453 	if (user->max_eus_per_subslice < user->min_eus_per_subslice)
1454 		return -EINVAL;
1455 
1456 	/*
1457 	 * Some future proofing on the types since the uAPI is wider than the
1458 	 * current internal implementation.
1459 	 */
1460 	if (overflows_type(user->slice_mask, context->slice_mask) ||
1461 	    overflows_type(user->subslice_mask, context->subslice_mask) ||
1462 	    overflows_type(user->min_eus_per_subslice,
1463 			   context->min_eus_per_subslice) ||
1464 	    overflows_type(user->max_eus_per_subslice,
1465 			   context->max_eus_per_subslice))
1466 		return -EINVAL;
1467 
1468 	/* Check validity against hardware. */
1469 	if (user->slice_mask & ~device->slice_mask)
1470 		return -EINVAL;
1471 
1472 	if (user->subslice_mask & ~device->subslice_mask[0])
1473 		return -EINVAL;
1474 
1475 	if (user->max_eus_per_subslice > device->max_eus_per_subslice)
1476 		return -EINVAL;
1477 
1478 	context->slice_mask = user->slice_mask;
1479 	context->subslice_mask = user->subslice_mask;
1480 	context->min_eus_per_subslice = user->min_eus_per_subslice;
1481 	context->max_eus_per_subslice = user->max_eus_per_subslice;
1482 
1483 	/* Part specific restrictions. */
1484 	if (IS_GEN(i915, 11)) {
1485 		unsigned int hw_s = hweight8(device->slice_mask);
1486 		unsigned int hw_ss_per_s = hweight8(device->subslice_mask[0]);
1487 		unsigned int req_s = hweight8(context->slice_mask);
1488 		unsigned int req_ss = hweight8(context->subslice_mask);
1489 
1490 		/*
1491 		 * Only full subslice enablement is possible if more than one
1492 		 * slice is turned on.
1493 		 */
1494 		if (req_s > 1 && req_ss != hw_ss_per_s)
1495 			return -EINVAL;
1496 
1497 		/*
1498 		 * If more than four (SScount bitfield limit) subslices are
1499 		 * requested then the number has to be even.
1500 		 */
1501 		if (req_ss > 4 && (req_ss & 1))
1502 			return -EINVAL;
1503 
1504 		/*
1505 		 * If only one slice is enabled and subslice count is below the
1506 		 * device full enablement, it must be at most half of the all
1507 		 * available subslices.
1508 		 */
1509 		if (req_s == 1 && req_ss < hw_ss_per_s &&
1510 		    req_ss > (hw_ss_per_s / 2))
1511 			return -EINVAL;
1512 
1513 		/* ABI restriction - VME use case only. */
1514 
1515 		/* All slices or one slice only. */
1516 		if (req_s != 1 && req_s != hw_s)
1517 			return -EINVAL;
1518 
1519 		/*
1520 		 * Half subslices or full enablement only when one slice is
1521 		 * enabled.
1522 		 */
1523 		if (req_s == 1 &&
1524 		    (req_ss != hw_ss_per_s && req_ss != (hw_ss_per_s / 2)))
1525 			return -EINVAL;
1526 
1527 		/* No EU configuration changes. */
1528 		if ((user->min_eus_per_subslice !=
1529 		     device->max_eus_per_subslice) ||
1530 		    (user->max_eus_per_subslice !=
1531 		     device->max_eus_per_subslice))
1532 			return -EINVAL;
1533 	}
1534 
1535 	return 0;
1536 }
1537 
1538 static int set_sseu(struct i915_gem_context *ctx,
1539 		    struct drm_i915_gem_context_param *args)
1540 {
1541 	struct drm_i915_private *i915 = ctx->i915;
1542 	struct drm_i915_gem_context_param_sseu user_sseu;
1543 	struct intel_context *ce;
1544 	struct intel_sseu sseu;
1545 	unsigned long lookup;
1546 	int ret;
1547 
1548 	if (args->size < sizeof(user_sseu))
1549 		return -EINVAL;
1550 
1551 	if (!IS_GEN(i915, 11))
1552 		return -ENODEV;
1553 
1554 	if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value),
1555 			   sizeof(user_sseu)))
1556 		return -EFAULT;
1557 
1558 	if (user_sseu.rsvd)
1559 		return -EINVAL;
1560 
1561 	if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX))
1562 		return -EINVAL;
1563 
1564 	lookup = 0;
1565 	if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)
1566 		lookup |= LOOKUP_USER_INDEX;
1567 
1568 	ce = lookup_user_engine(ctx, lookup, &user_sseu.engine);
1569 	if (IS_ERR(ce))
1570 		return PTR_ERR(ce);
1571 
1572 	/* Only render engine supports RPCS configuration. */
1573 	if (ce->engine->class != RENDER_CLASS) {
1574 		ret = -ENODEV;
1575 		goto out_ce;
1576 	}
1577 
1578 	ret = i915_gem_user_to_context_sseu(ce->engine->gt, &user_sseu, &sseu);
1579 	if (ret)
1580 		goto out_ce;
1581 
1582 	ret = intel_context_reconfigure_sseu(ce, sseu);
1583 	if (ret)
1584 		goto out_ce;
1585 
1586 	args->size = sizeof(user_sseu);
1587 
1588 out_ce:
1589 	intel_context_put(ce);
1590 	return ret;
1591 }
1592 
1593 struct set_engines {
1594 	struct i915_gem_context *ctx;
1595 	struct i915_gem_engines *engines;
1596 };
1597 
1598 static int
1599 set_engines__load_balance(struct i915_user_extension __user *base, void *data)
1600 {
1601 	struct i915_context_engines_load_balance __user *ext =
1602 		container_of_user(base, typeof(*ext), base);
1603 	const struct set_engines *set = data;
1604 	struct drm_i915_private *i915 = set->ctx->i915;
1605 	struct intel_engine_cs *stack[16];
1606 	struct intel_engine_cs **siblings;
1607 	struct intel_context *ce;
1608 	u16 num_siblings, idx;
1609 	unsigned int n;
1610 	int err;
1611 
1612 	if (!HAS_EXECLISTS(i915))
1613 		return -ENODEV;
1614 
1615 	if (intel_uc_uses_guc_submission(&i915->gt.uc))
1616 		return -ENODEV; /* not implement yet */
1617 
1618 	if (get_user(idx, &ext->engine_index))
1619 		return -EFAULT;
1620 
1621 	if (idx >= set->engines->num_engines) {
1622 		drm_dbg(&i915->drm, "Invalid placement value, %d >= %d\n",
1623 			idx, set->engines->num_engines);
1624 		return -EINVAL;
1625 	}
1626 
1627 	idx = array_index_nospec(idx, set->engines->num_engines);
1628 	if (set->engines->engines[idx]) {
1629 		drm_dbg(&i915->drm,
1630 			"Invalid placement[%d], already occupied\n", idx);
1631 		return -EEXIST;
1632 	}
1633 
1634 	if (get_user(num_siblings, &ext->num_siblings))
1635 		return -EFAULT;
1636 
1637 	err = check_user_mbz(&ext->flags);
1638 	if (err)
1639 		return err;
1640 
1641 	err = check_user_mbz(&ext->mbz64);
1642 	if (err)
1643 		return err;
1644 
1645 	siblings = stack;
1646 	if (num_siblings > ARRAY_SIZE(stack)) {
1647 		siblings = kmalloc_array(num_siblings,
1648 					 sizeof(*siblings),
1649 					 GFP_KERNEL);
1650 		if (!siblings)
1651 			return -ENOMEM;
1652 	}
1653 
1654 	for (n = 0; n < num_siblings; n++) {
1655 		struct i915_engine_class_instance ci;
1656 
1657 		if (copy_from_user(&ci, &ext->engines[n], sizeof(ci))) {
1658 			err = -EFAULT;
1659 			goto out_siblings;
1660 		}
1661 
1662 		siblings[n] = intel_engine_lookup_user(i915,
1663 						       ci.engine_class,
1664 						       ci.engine_instance);
1665 		if (!siblings[n]) {
1666 			drm_dbg(&i915->drm,
1667 				"Invalid sibling[%d]: { class:%d, inst:%d }\n",
1668 				n, ci.engine_class, ci.engine_instance);
1669 			err = -EINVAL;
1670 			goto out_siblings;
1671 		}
1672 	}
1673 
1674 	ce = intel_execlists_create_virtual(siblings, n);
1675 	if (IS_ERR(ce)) {
1676 		err = PTR_ERR(ce);
1677 		goto out_siblings;
1678 	}
1679 
1680 	intel_context_set_gem(ce, set->ctx);
1681 
1682 	if (cmpxchg(&set->engines->engines[idx], NULL, ce)) {
1683 		intel_context_put(ce);
1684 		err = -EEXIST;
1685 		goto out_siblings;
1686 	}
1687 
1688 out_siblings:
1689 	if (siblings != stack)
1690 		kfree(siblings);
1691 
1692 	return err;
1693 }
1694 
1695 static int
1696 set_engines__bond(struct i915_user_extension __user *base, void *data)
1697 {
1698 	struct i915_context_engines_bond __user *ext =
1699 		container_of_user(base, typeof(*ext), base);
1700 	const struct set_engines *set = data;
1701 	struct drm_i915_private *i915 = set->ctx->i915;
1702 	struct i915_engine_class_instance ci;
1703 	struct intel_engine_cs *virtual;
1704 	struct intel_engine_cs *master;
1705 	u16 idx, num_bonds;
1706 	int err, n;
1707 
1708 	if (get_user(idx, &ext->virtual_index))
1709 		return -EFAULT;
1710 
1711 	if (idx >= set->engines->num_engines) {
1712 		drm_dbg(&i915->drm,
1713 			"Invalid index for virtual engine: %d >= %d\n",
1714 			idx, set->engines->num_engines);
1715 		return -EINVAL;
1716 	}
1717 
1718 	idx = array_index_nospec(idx, set->engines->num_engines);
1719 	if (!set->engines->engines[idx]) {
1720 		drm_dbg(&i915->drm, "Invalid engine at %d\n", idx);
1721 		return -EINVAL;
1722 	}
1723 	virtual = set->engines->engines[idx]->engine;
1724 
1725 	err = check_user_mbz(&ext->flags);
1726 	if (err)
1727 		return err;
1728 
1729 	for (n = 0; n < ARRAY_SIZE(ext->mbz64); n++) {
1730 		err = check_user_mbz(&ext->mbz64[n]);
1731 		if (err)
1732 			return err;
1733 	}
1734 
1735 	if (copy_from_user(&ci, &ext->master, sizeof(ci)))
1736 		return -EFAULT;
1737 
1738 	master = intel_engine_lookup_user(i915,
1739 					  ci.engine_class, ci.engine_instance);
1740 	if (!master) {
1741 		drm_dbg(&i915->drm,
1742 			"Unrecognised master engine: { class:%u, instance:%u }\n",
1743 			ci.engine_class, ci.engine_instance);
1744 		return -EINVAL;
1745 	}
1746 
1747 	if (get_user(num_bonds, &ext->num_bonds))
1748 		return -EFAULT;
1749 
1750 	for (n = 0; n < num_bonds; n++) {
1751 		struct intel_engine_cs *bond;
1752 
1753 		if (copy_from_user(&ci, &ext->engines[n], sizeof(ci)))
1754 			return -EFAULT;
1755 
1756 		bond = intel_engine_lookup_user(i915,
1757 						ci.engine_class,
1758 						ci.engine_instance);
1759 		if (!bond) {
1760 			drm_dbg(&i915->drm,
1761 				"Unrecognised engine[%d] for bonding: { class:%d, instance: %d }\n",
1762 				n, ci.engine_class, ci.engine_instance);
1763 			return -EINVAL;
1764 		}
1765 
1766 		/*
1767 		 * A non-virtual engine has no siblings to choose between; and
1768 		 * a submit fence will always be directed to the one engine.
1769 		 */
1770 		if (intel_engine_is_virtual(virtual)) {
1771 			err = intel_virtual_engine_attach_bond(virtual,
1772 							       master,
1773 							       bond);
1774 			if (err)
1775 				return err;
1776 		}
1777 	}
1778 
1779 	return 0;
1780 }
1781 
1782 static const i915_user_extension_fn set_engines__extensions[] = {
1783 	[I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE] = set_engines__load_balance,
1784 	[I915_CONTEXT_ENGINES_EXT_BOND] = set_engines__bond,
1785 };
1786 
1787 static int
1788 set_engines(struct i915_gem_context *ctx,
1789 	    const struct drm_i915_gem_context_param *args)
1790 {
1791 	struct drm_i915_private *i915 = ctx->i915;
1792 	struct i915_context_param_engines __user *user =
1793 		u64_to_user_ptr(args->value);
1794 	struct set_engines set = { .ctx = ctx };
1795 	unsigned int num_engines, n;
1796 	u64 extensions;
1797 	int err;
1798 
1799 	if (!args->size) { /* switch back to legacy user_ring_map */
1800 		if (!i915_gem_context_user_engines(ctx))
1801 			return 0;
1802 
1803 		set.engines = default_engines(ctx);
1804 		if (IS_ERR(set.engines))
1805 			return PTR_ERR(set.engines);
1806 
1807 		goto replace;
1808 	}
1809 
1810 	BUILD_BUG_ON(!IS_ALIGNED(sizeof(*user), sizeof(*user->engines)));
1811 	if (args->size < sizeof(*user) ||
1812 	    !IS_ALIGNED(args->size, sizeof(*user->engines))) {
1813 		drm_dbg(&i915->drm, "Invalid size for engine array: %d\n",
1814 			args->size);
1815 		return -EINVAL;
1816 	}
1817 
1818 	/*
1819 	 * Note that I915_EXEC_RING_MASK limits execbuf to only using the
1820 	 * first 64 engines defined here.
1821 	 */
1822 	num_engines = (args->size - sizeof(*user)) / sizeof(*user->engines);
1823 	set.engines = alloc_engines(num_engines);
1824 	if (!set.engines)
1825 		return -ENOMEM;
1826 
1827 	for (n = 0; n < num_engines; n++) {
1828 		struct i915_engine_class_instance ci;
1829 		struct intel_engine_cs *engine;
1830 		struct intel_context *ce;
1831 
1832 		if (copy_from_user(&ci, &user->engines[n], sizeof(ci))) {
1833 			__free_engines(set.engines, n);
1834 			return -EFAULT;
1835 		}
1836 
1837 		if (ci.engine_class == (u16)I915_ENGINE_CLASS_INVALID &&
1838 		    ci.engine_instance == (u16)I915_ENGINE_CLASS_INVALID_NONE) {
1839 			set.engines->engines[n] = NULL;
1840 			continue;
1841 		}
1842 
1843 		engine = intel_engine_lookup_user(ctx->i915,
1844 						  ci.engine_class,
1845 						  ci.engine_instance);
1846 		if (!engine) {
1847 			drm_dbg(&i915->drm,
1848 				"Invalid engine[%d]: { class:%d, instance:%d }\n",
1849 				n, ci.engine_class, ci.engine_instance);
1850 			__free_engines(set.engines, n);
1851 			return -ENOENT;
1852 		}
1853 
1854 		ce = intel_context_create(engine);
1855 		if (IS_ERR(ce)) {
1856 			__free_engines(set.engines, n);
1857 			return PTR_ERR(ce);
1858 		}
1859 
1860 		intel_context_set_gem(ce, ctx);
1861 
1862 		set.engines->engines[n] = ce;
1863 	}
1864 	set.engines->num_engines = num_engines;
1865 
1866 	err = -EFAULT;
1867 	if (!get_user(extensions, &user->extensions))
1868 		err = i915_user_extensions(u64_to_user_ptr(extensions),
1869 					   set_engines__extensions,
1870 					   ARRAY_SIZE(set_engines__extensions),
1871 					   &set);
1872 	if (err) {
1873 		free_engines(set.engines);
1874 		return err;
1875 	}
1876 
1877 replace:
1878 	mutex_lock(&ctx->engines_mutex);
1879 	if (i915_gem_context_is_closed(ctx)) {
1880 		mutex_unlock(&ctx->engines_mutex);
1881 		free_engines(set.engines);
1882 		return -ENOENT;
1883 	}
1884 	if (args->size)
1885 		i915_gem_context_set_user_engines(ctx);
1886 	else
1887 		i915_gem_context_clear_user_engines(ctx);
1888 	set.engines = rcu_replace_pointer(ctx->engines, set.engines, 1);
1889 	mutex_unlock(&ctx->engines_mutex);
1890 
1891 	/* Keep track of old engine sets for kill_context() */
1892 	engines_idle_release(ctx, set.engines);
1893 
1894 	return 0;
1895 }
1896 
1897 static struct i915_gem_engines *
1898 __copy_engines(struct i915_gem_engines *e)
1899 {
1900 	struct i915_gem_engines *copy;
1901 	unsigned int n;
1902 
1903 	copy = alloc_engines(e->num_engines);
1904 	if (!copy)
1905 		return ERR_PTR(-ENOMEM);
1906 
1907 	for (n = 0; n < e->num_engines; n++) {
1908 		if (e->engines[n])
1909 			copy->engines[n] = intel_context_get(e->engines[n]);
1910 		else
1911 			copy->engines[n] = NULL;
1912 	}
1913 	copy->num_engines = n;
1914 
1915 	return copy;
1916 }
1917 
1918 static int
1919 get_engines(struct i915_gem_context *ctx,
1920 	    struct drm_i915_gem_context_param *args)
1921 {
1922 	struct i915_context_param_engines __user *user;
1923 	struct i915_gem_engines *e;
1924 	size_t n, count, size;
1925 	int err = 0;
1926 
1927 	err = mutex_lock_interruptible(&ctx->engines_mutex);
1928 	if (err)
1929 		return err;
1930 
1931 	e = NULL;
1932 	if (i915_gem_context_user_engines(ctx))
1933 		e = __copy_engines(i915_gem_context_engines(ctx));
1934 	mutex_unlock(&ctx->engines_mutex);
1935 	if (IS_ERR_OR_NULL(e)) {
1936 		args->size = 0;
1937 		return PTR_ERR_OR_ZERO(e);
1938 	}
1939 
1940 	count = e->num_engines;
1941 
1942 	/* Be paranoid in case we have an impedance mismatch */
1943 	if (!check_struct_size(user, engines, count, &size)) {
1944 		err = -EINVAL;
1945 		goto err_free;
1946 	}
1947 	if (overflows_type(size, args->size)) {
1948 		err = -EINVAL;
1949 		goto err_free;
1950 	}
1951 
1952 	if (!args->size) {
1953 		args->size = size;
1954 		goto err_free;
1955 	}
1956 
1957 	if (args->size < size) {
1958 		err = -EINVAL;
1959 		goto err_free;
1960 	}
1961 
1962 	user = u64_to_user_ptr(args->value);
1963 	if (put_user(0, &user->extensions)) {
1964 		err = -EFAULT;
1965 		goto err_free;
1966 	}
1967 
1968 	for (n = 0; n < count; n++) {
1969 		struct i915_engine_class_instance ci = {
1970 			.engine_class = I915_ENGINE_CLASS_INVALID,
1971 			.engine_instance = I915_ENGINE_CLASS_INVALID_NONE,
1972 		};
1973 
1974 		if (e->engines[n]) {
1975 			ci.engine_class = e->engines[n]->engine->uabi_class;
1976 			ci.engine_instance = e->engines[n]->engine->uabi_instance;
1977 		}
1978 
1979 		if (copy_to_user(&user->engines[n], &ci, sizeof(ci))) {
1980 			err = -EFAULT;
1981 			goto err_free;
1982 		}
1983 	}
1984 
1985 	args->size = size;
1986 
1987 err_free:
1988 	free_engines(e);
1989 	return err;
1990 }
1991 
1992 static int
1993 set_persistence(struct i915_gem_context *ctx,
1994 		const struct drm_i915_gem_context_param *args)
1995 {
1996 	if (args->size)
1997 		return -EINVAL;
1998 
1999 	return __context_set_persistence(ctx, args->value);
2000 }
2001 
2002 static int __apply_priority(struct intel_context *ce, void *arg)
2003 {
2004 	struct i915_gem_context *ctx = arg;
2005 
2006 	if (!intel_engine_has_timeslices(ce->engine))
2007 		return 0;
2008 
2009 	if (ctx->sched.priority >= I915_PRIORITY_NORMAL)
2010 		intel_context_set_use_semaphores(ce);
2011 	else
2012 		intel_context_clear_use_semaphores(ce);
2013 
2014 	return 0;
2015 }
2016 
2017 static int set_priority(struct i915_gem_context *ctx,
2018 			const struct drm_i915_gem_context_param *args)
2019 {
2020 	s64 priority = args->value;
2021 
2022 	if (args->size)
2023 		return -EINVAL;
2024 
2025 	if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PRIORITY))
2026 		return -ENODEV;
2027 
2028 	if (priority > I915_CONTEXT_MAX_USER_PRIORITY ||
2029 	    priority < I915_CONTEXT_MIN_USER_PRIORITY)
2030 		return -EINVAL;
2031 
2032 	if (priority > I915_CONTEXT_DEFAULT_PRIORITY &&
2033 	    !capable(CAP_SYS_NICE))
2034 		return -EPERM;
2035 
2036 	ctx->sched.priority = I915_USER_PRIORITY(priority);
2037 	context_apply_all(ctx, __apply_priority, ctx);
2038 
2039 	return 0;
2040 }
2041 
2042 static int ctx_setparam(struct drm_i915_file_private *fpriv,
2043 			struct i915_gem_context *ctx,
2044 			struct drm_i915_gem_context_param *args)
2045 {
2046 	int ret = 0;
2047 
2048 	switch (args->param) {
2049 	case I915_CONTEXT_PARAM_NO_ZEROMAP:
2050 		if (args->size)
2051 			ret = -EINVAL;
2052 		else if (args->value)
2053 			set_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
2054 		else
2055 			clear_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
2056 		break;
2057 
2058 	case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE:
2059 		if (args->size)
2060 			ret = -EINVAL;
2061 		else if (args->value)
2062 			i915_gem_context_set_no_error_capture(ctx);
2063 		else
2064 			i915_gem_context_clear_no_error_capture(ctx);
2065 		break;
2066 
2067 	case I915_CONTEXT_PARAM_BANNABLE:
2068 		if (args->size)
2069 			ret = -EINVAL;
2070 		else if (!capable(CAP_SYS_ADMIN) && !args->value)
2071 			ret = -EPERM;
2072 		else if (args->value)
2073 			i915_gem_context_set_bannable(ctx);
2074 		else
2075 			i915_gem_context_clear_bannable(ctx);
2076 		break;
2077 
2078 	case I915_CONTEXT_PARAM_RECOVERABLE:
2079 		if (args->size)
2080 			ret = -EINVAL;
2081 		else if (args->value)
2082 			i915_gem_context_set_recoverable(ctx);
2083 		else
2084 			i915_gem_context_clear_recoverable(ctx);
2085 		break;
2086 
2087 	case I915_CONTEXT_PARAM_PRIORITY:
2088 		ret = set_priority(ctx, args);
2089 		break;
2090 
2091 	case I915_CONTEXT_PARAM_SSEU:
2092 		ret = set_sseu(ctx, args);
2093 		break;
2094 
2095 	case I915_CONTEXT_PARAM_VM:
2096 		ret = set_ppgtt(fpriv, ctx, args);
2097 		break;
2098 
2099 	case I915_CONTEXT_PARAM_ENGINES:
2100 		ret = set_engines(ctx, args);
2101 		break;
2102 
2103 	case I915_CONTEXT_PARAM_PERSISTENCE:
2104 		ret = set_persistence(ctx, args);
2105 		break;
2106 
2107 	case I915_CONTEXT_PARAM_RINGSIZE:
2108 		ret = set_ringsize(ctx, args);
2109 		break;
2110 
2111 	case I915_CONTEXT_PARAM_BAN_PERIOD:
2112 	default:
2113 		ret = -EINVAL;
2114 		break;
2115 	}
2116 
2117 	return ret;
2118 }
2119 
2120 struct create_ext {
2121 	struct i915_gem_context *ctx;
2122 	struct drm_i915_file_private *fpriv;
2123 };
2124 
2125 static int create_setparam(struct i915_user_extension __user *ext, void *data)
2126 {
2127 	struct drm_i915_gem_context_create_ext_setparam local;
2128 	const struct create_ext *arg = data;
2129 
2130 	if (copy_from_user(&local, ext, sizeof(local)))
2131 		return -EFAULT;
2132 
2133 	if (local.param.ctx_id)
2134 		return -EINVAL;
2135 
2136 	return ctx_setparam(arg->fpriv, arg->ctx, &local.param);
2137 }
2138 
2139 static int copy_ring_size(struct intel_context *dst,
2140 			  struct intel_context *src)
2141 {
2142 	long sz;
2143 
2144 	sz = intel_context_get_ring_size(src);
2145 	if (sz < 0)
2146 		return sz;
2147 
2148 	return intel_context_set_ring_size(dst, sz);
2149 }
2150 
2151 static int clone_engines(struct i915_gem_context *dst,
2152 			 struct i915_gem_context *src)
2153 {
2154 	struct i915_gem_engines *e = i915_gem_context_lock_engines(src);
2155 	struct i915_gem_engines *clone;
2156 	bool user_engines;
2157 	unsigned long n;
2158 
2159 	clone = alloc_engines(e->num_engines);
2160 	if (!clone)
2161 		goto err_unlock;
2162 
2163 	for (n = 0; n < e->num_engines; n++) {
2164 		struct intel_engine_cs *engine;
2165 
2166 		if (!e->engines[n]) {
2167 			clone->engines[n] = NULL;
2168 			continue;
2169 		}
2170 		engine = e->engines[n]->engine;
2171 
2172 		/*
2173 		 * Virtual engines are singletons; they can only exist
2174 		 * inside a single context, because they embed their
2175 		 * HW context... As each virtual context implies a single
2176 		 * timeline (each engine can only dequeue a single request
2177 		 * at any time), it would be surprising for two contexts
2178 		 * to use the same engine. So let's create a copy of
2179 		 * the virtual engine instead.
2180 		 */
2181 		if (intel_engine_is_virtual(engine))
2182 			clone->engines[n] =
2183 				intel_execlists_clone_virtual(engine);
2184 		else
2185 			clone->engines[n] = intel_context_create(engine);
2186 		if (IS_ERR_OR_NULL(clone->engines[n])) {
2187 			__free_engines(clone, n);
2188 			goto err_unlock;
2189 		}
2190 
2191 		intel_context_set_gem(clone->engines[n], dst);
2192 
2193 		/* Copy across the preferred ringsize */
2194 		if (copy_ring_size(clone->engines[n], e->engines[n])) {
2195 			__free_engines(clone, n + 1);
2196 			goto err_unlock;
2197 		}
2198 	}
2199 	clone->num_engines = n;
2200 
2201 	user_engines = i915_gem_context_user_engines(src);
2202 	i915_gem_context_unlock_engines(src);
2203 
2204 	/* Serialised by constructor */
2205 	engines_idle_release(dst, rcu_replace_pointer(dst->engines, clone, 1));
2206 	if (user_engines)
2207 		i915_gem_context_set_user_engines(dst);
2208 	else
2209 		i915_gem_context_clear_user_engines(dst);
2210 	return 0;
2211 
2212 err_unlock:
2213 	i915_gem_context_unlock_engines(src);
2214 	return -ENOMEM;
2215 }
2216 
2217 static int clone_flags(struct i915_gem_context *dst,
2218 		       struct i915_gem_context *src)
2219 {
2220 	dst->user_flags = src->user_flags;
2221 	return 0;
2222 }
2223 
2224 static int clone_schedattr(struct i915_gem_context *dst,
2225 			   struct i915_gem_context *src)
2226 {
2227 	dst->sched = src->sched;
2228 	return 0;
2229 }
2230 
2231 static int clone_sseu(struct i915_gem_context *dst,
2232 		      struct i915_gem_context *src)
2233 {
2234 	struct i915_gem_engines *e = i915_gem_context_lock_engines(src);
2235 	struct i915_gem_engines *clone;
2236 	unsigned long n;
2237 	int err;
2238 
2239 	/* no locking required; sole access under constructor*/
2240 	clone = __context_engines_static(dst);
2241 	if (e->num_engines != clone->num_engines) {
2242 		err = -EINVAL;
2243 		goto unlock;
2244 	}
2245 
2246 	for (n = 0; n < e->num_engines; n++) {
2247 		struct intel_context *ce = e->engines[n];
2248 
2249 		if (clone->engines[n]->engine->class != ce->engine->class) {
2250 			/* Must have compatible engine maps! */
2251 			err = -EINVAL;
2252 			goto unlock;
2253 		}
2254 
2255 		/* serialises with set_sseu */
2256 		err = intel_context_lock_pinned(ce);
2257 		if (err)
2258 			goto unlock;
2259 
2260 		clone->engines[n]->sseu = ce->sseu;
2261 		intel_context_unlock_pinned(ce);
2262 	}
2263 
2264 	err = 0;
2265 unlock:
2266 	i915_gem_context_unlock_engines(src);
2267 	return err;
2268 }
2269 
2270 static int clone_timeline(struct i915_gem_context *dst,
2271 			  struct i915_gem_context *src)
2272 {
2273 	if (src->timeline)
2274 		__assign_timeline(dst, src->timeline);
2275 
2276 	return 0;
2277 }
2278 
2279 static int clone_vm(struct i915_gem_context *dst,
2280 		    struct i915_gem_context *src)
2281 {
2282 	struct i915_address_space *vm;
2283 	int err = 0;
2284 
2285 	if (!rcu_access_pointer(src->vm))
2286 		return 0;
2287 
2288 	rcu_read_lock();
2289 	vm = context_get_vm_rcu(src);
2290 	rcu_read_unlock();
2291 
2292 	if (!mutex_lock_interruptible(&dst->mutex)) {
2293 		__assign_ppgtt(dst, vm);
2294 		mutex_unlock(&dst->mutex);
2295 	} else {
2296 		err = -EINTR;
2297 	}
2298 
2299 	i915_vm_put(vm);
2300 	return err;
2301 }
2302 
2303 static int create_clone(struct i915_user_extension __user *ext, void *data)
2304 {
2305 	static int (* const fn[])(struct i915_gem_context *dst,
2306 				  struct i915_gem_context *src) = {
2307 #define MAP(x, y) [ilog2(I915_CONTEXT_CLONE_##x)] = y
2308 		MAP(ENGINES, clone_engines),
2309 		MAP(FLAGS, clone_flags),
2310 		MAP(SCHEDATTR, clone_schedattr),
2311 		MAP(SSEU, clone_sseu),
2312 		MAP(TIMELINE, clone_timeline),
2313 		MAP(VM, clone_vm),
2314 #undef MAP
2315 	};
2316 	struct drm_i915_gem_context_create_ext_clone local;
2317 	const struct create_ext *arg = data;
2318 	struct i915_gem_context *dst = arg->ctx;
2319 	struct i915_gem_context *src;
2320 	int err, bit;
2321 
2322 	if (copy_from_user(&local, ext, sizeof(local)))
2323 		return -EFAULT;
2324 
2325 	BUILD_BUG_ON(GENMASK(BITS_PER_TYPE(local.flags) - 1, ARRAY_SIZE(fn)) !=
2326 		     I915_CONTEXT_CLONE_UNKNOWN);
2327 
2328 	if (local.flags & I915_CONTEXT_CLONE_UNKNOWN)
2329 		return -EINVAL;
2330 
2331 	if (local.rsvd)
2332 		return -EINVAL;
2333 
2334 	rcu_read_lock();
2335 	src = __i915_gem_context_lookup_rcu(arg->fpriv, local.clone_id);
2336 	rcu_read_unlock();
2337 	if (!src)
2338 		return -ENOENT;
2339 
2340 	GEM_BUG_ON(src == dst);
2341 
2342 	for (bit = 0; bit < ARRAY_SIZE(fn); bit++) {
2343 		if (!(local.flags & BIT(bit)))
2344 			continue;
2345 
2346 		err = fn[bit](dst, src);
2347 		if (err)
2348 			return err;
2349 	}
2350 
2351 	return 0;
2352 }
2353 
2354 static const i915_user_extension_fn create_extensions[] = {
2355 	[I915_CONTEXT_CREATE_EXT_SETPARAM] = create_setparam,
2356 	[I915_CONTEXT_CREATE_EXT_CLONE] = create_clone,
2357 };
2358 
2359 static bool client_is_banned(struct drm_i915_file_private *file_priv)
2360 {
2361 	return atomic_read(&file_priv->ban_score) >= I915_CLIENT_SCORE_BANNED;
2362 }
2363 
2364 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
2365 				  struct drm_file *file)
2366 {
2367 	struct drm_i915_private *i915 = to_i915(dev);
2368 	struct drm_i915_gem_context_create_ext *args = data;
2369 	struct create_ext ext_data;
2370 	int ret;
2371 	u32 id;
2372 
2373 	if (!DRIVER_CAPS(i915)->has_logical_contexts)
2374 		return -ENODEV;
2375 
2376 	if (args->flags & I915_CONTEXT_CREATE_FLAGS_UNKNOWN)
2377 		return -EINVAL;
2378 
2379 	ret = intel_gt_terminally_wedged(&i915->gt);
2380 	if (ret)
2381 		return ret;
2382 
2383 	ext_data.fpriv = file->driver_priv;
2384 	if (client_is_banned(ext_data.fpriv)) {
2385 		drm_dbg(&i915->drm,
2386 			"client %s[%d] banned from creating ctx\n",
2387 			current->comm, task_pid_nr(current));
2388 		return -EIO;
2389 	}
2390 
2391 	ext_data.ctx = i915_gem_create_context(i915, args->flags);
2392 	if (IS_ERR(ext_data.ctx))
2393 		return PTR_ERR(ext_data.ctx);
2394 
2395 	if (args->flags & I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS) {
2396 		ret = i915_user_extensions(u64_to_user_ptr(args->extensions),
2397 					   create_extensions,
2398 					   ARRAY_SIZE(create_extensions),
2399 					   &ext_data);
2400 		if (ret)
2401 			goto err_ctx;
2402 	}
2403 
2404 	ret = gem_context_register(ext_data.ctx, ext_data.fpriv, &id);
2405 	if (ret < 0)
2406 		goto err_ctx;
2407 
2408 	args->ctx_id = id;
2409 	drm_dbg(&i915->drm, "HW context %d created\n", args->ctx_id);
2410 
2411 	return 0;
2412 
2413 err_ctx:
2414 	context_close(ext_data.ctx);
2415 	return ret;
2416 }
2417 
2418 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
2419 				   struct drm_file *file)
2420 {
2421 	struct drm_i915_gem_context_destroy *args = data;
2422 	struct drm_i915_file_private *file_priv = file->driver_priv;
2423 	struct i915_gem_context *ctx;
2424 
2425 	if (args->pad != 0)
2426 		return -EINVAL;
2427 
2428 	if (!args->ctx_id)
2429 		return -ENOENT;
2430 
2431 	ctx = xa_erase(&file_priv->context_xa, args->ctx_id);
2432 	if (!ctx)
2433 		return -ENOENT;
2434 
2435 	context_close(ctx);
2436 	return 0;
2437 }
2438 
2439 static int get_sseu(struct i915_gem_context *ctx,
2440 		    struct drm_i915_gem_context_param *args)
2441 {
2442 	struct drm_i915_gem_context_param_sseu user_sseu;
2443 	struct intel_context *ce;
2444 	unsigned long lookup;
2445 	int err;
2446 
2447 	if (args->size == 0)
2448 		goto out;
2449 	else if (args->size < sizeof(user_sseu))
2450 		return -EINVAL;
2451 
2452 	if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value),
2453 			   sizeof(user_sseu)))
2454 		return -EFAULT;
2455 
2456 	if (user_sseu.rsvd)
2457 		return -EINVAL;
2458 
2459 	if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX))
2460 		return -EINVAL;
2461 
2462 	lookup = 0;
2463 	if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)
2464 		lookup |= LOOKUP_USER_INDEX;
2465 
2466 	ce = lookup_user_engine(ctx, lookup, &user_sseu.engine);
2467 	if (IS_ERR(ce))
2468 		return PTR_ERR(ce);
2469 
2470 	err = intel_context_lock_pinned(ce); /* serialises with set_sseu */
2471 	if (err) {
2472 		intel_context_put(ce);
2473 		return err;
2474 	}
2475 
2476 	user_sseu.slice_mask = ce->sseu.slice_mask;
2477 	user_sseu.subslice_mask = ce->sseu.subslice_mask;
2478 	user_sseu.min_eus_per_subslice = ce->sseu.min_eus_per_subslice;
2479 	user_sseu.max_eus_per_subslice = ce->sseu.max_eus_per_subslice;
2480 
2481 	intel_context_unlock_pinned(ce);
2482 	intel_context_put(ce);
2483 
2484 	if (copy_to_user(u64_to_user_ptr(args->value), &user_sseu,
2485 			 sizeof(user_sseu)))
2486 		return -EFAULT;
2487 
2488 out:
2489 	args->size = sizeof(user_sseu);
2490 
2491 	return 0;
2492 }
2493 
2494 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
2495 				    struct drm_file *file)
2496 {
2497 	struct drm_i915_file_private *file_priv = file->driver_priv;
2498 	struct drm_i915_gem_context_param *args = data;
2499 	struct i915_gem_context *ctx;
2500 	int ret = 0;
2501 
2502 	ctx = i915_gem_context_lookup(file_priv, args->ctx_id);
2503 	if (!ctx)
2504 		return -ENOENT;
2505 
2506 	switch (args->param) {
2507 	case I915_CONTEXT_PARAM_NO_ZEROMAP:
2508 		args->size = 0;
2509 		args->value = test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags);
2510 		break;
2511 
2512 	case I915_CONTEXT_PARAM_GTT_SIZE:
2513 		args->size = 0;
2514 		rcu_read_lock();
2515 		if (rcu_access_pointer(ctx->vm))
2516 			args->value = rcu_dereference(ctx->vm)->total;
2517 		else
2518 			args->value = to_i915(dev)->ggtt.vm.total;
2519 		rcu_read_unlock();
2520 		break;
2521 
2522 	case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE:
2523 		args->size = 0;
2524 		args->value = i915_gem_context_no_error_capture(ctx);
2525 		break;
2526 
2527 	case I915_CONTEXT_PARAM_BANNABLE:
2528 		args->size = 0;
2529 		args->value = i915_gem_context_is_bannable(ctx);
2530 		break;
2531 
2532 	case I915_CONTEXT_PARAM_RECOVERABLE:
2533 		args->size = 0;
2534 		args->value = i915_gem_context_is_recoverable(ctx);
2535 		break;
2536 
2537 	case I915_CONTEXT_PARAM_PRIORITY:
2538 		args->size = 0;
2539 		args->value = ctx->sched.priority >> I915_USER_PRIORITY_SHIFT;
2540 		break;
2541 
2542 	case I915_CONTEXT_PARAM_SSEU:
2543 		ret = get_sseu(ctx, args);
2544 		break;
2545 
2546 	case I915_CONTEXT_PARAM_VM:
2547 		ret = get_ppgtt(file_priv, ctx, args);
2548 		break;
2549 
2550 	case I915_CONTEXT_PARAM_ENGINES:
2551 		ret = get_engines(ctx, args);
2552 		break;
2553 
2554 	case I915_CONTEXT_PARAM_PERSISTENCE:
2555 		args->size = 0;
2556 		args->value = i915_gem_context_is_persistent(ctx);
2557 		break;
2558 
2559 	case I915_CONTEXT_PARAM_RINGSIZE:
2560 		ret = get_ringsize(ctx, args);
2561 		break;
2562 
2563 	case I915_CONTEXT_PARAM_BAN_PERIOD:
2564 	default:
2565 		ret = -EINVAL;
2566 		break;
2567 	}
2568 
2569 	i915_gem_context_put(ctx);
2570 	return ret;
2571 }
2572 
2573 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
2574 				    struct drm_file *file)
2575 {
2576 	struct drm_i915_file_private *file_priv = file->driver_priv;
2577 	struct drm_i915_gem_context_param *args = data;
2578 	struct i915_gem_context *ctx;
2579 	int ret;
2580 
2581 	ctx = i915_gem_context_lookup(file_priv, args->ctx_id);
2582 	if (!ctx)
2583 		return -ENOENT;
2584 
2585 	ret = ctx_setparam(file_priv, ctx, args);
2586 
2587 	i915_gem_context_put(ctx);
2588 	return ret;
2589 }
2590 
2591 int i915_gem_context_reset_stats_ioctl(struct drm_device *dev,
2592 				       void *data, struct drm_file *file)
2593 {
2594 	struct drm_i915_private *i915 = to_i915(dev);
2595 	struct drm_i915_reset_stats *args = data;
2596 	struct i915_gem_context *ctx;
2597 	int ret;
2598 
2599 	if (args->flags || args->pad)
2600 		return -EINVAL;
2601 
2602 	ret = -ENOENT;
2603 	rcu_read_lock();
2604 	ctx = __i915_gem_context_lookup_rcu(file->driver_priv, args->ctx_id);
2605 	if (!ctx)
2606 		goto out;
2607 
2608 	/*
2609 	 * We opt for unserialised reads here. This may result in tearing
2610 	 * in the extremely unlikely event of a GPU hang on this context
2611 	 * as we are querying them. If we need that extra layer of protection,
2612 	 * we should wrap the hangstats with a seqlock.
2613 	 */
2614 
2615 	if (capable(CAP_SYS_ADMIN))
2616 		args->reset_count = i915_reset_count(&i915->gpu_error);
2617 	else
2618 		args->reset_count = 0;
2619 
2620 	args->batch_active = atomic_read(&ctx->guilty_count);
2621 	args->batch_pending = atomic_read(&ctx->active_count);
2622 
2623 	ret = 0;
2624 out:
2625 	rcu_read_unlock();
2626 	return ret;
2627 }
2628 
2629 /* GEM context-engines iterator: for_each_gem_engine() */
2630 struct intel_context *
2631 i915_gem_engines_iter_next(struct i915_gem_engines_iter *it)
2632 {
2633 	const struct i915_gem_engines *e = it->engines;
2634 	struct intel_context *ctx;
2635 
2636 	if (unlikely(!e))
2637 		return NULL;
2638 
2639 	do {
2640 		if (it->idx >= e->num_engines)
2641 			return NULL;
2642 
2643 		ctx = e->engines[it->idx++];
2644 	} while (!ctx);
2645 
2646 	return ctx;
2647 }
2648 
2649 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2650 #include "selftests/mock_context.c"
2651 #include "selftests/i915_gem_context.c"
2652 #endif
2653 
2654 static void i915_global_gem_context_shrink(void)
2655 {
2656 	kmem_cache_shrink(global.slab_luts);
2657 }
2658 
2659 static void i915_global_gem_context_exit(void)
2660 {
2661 	kmem_cache_destroy(global.slab_luts);
2662 }
2663 
2664 static struct i915_global_gem_context global = { {
2665 	.shrink = i915_global_gem_context_shrink,
2666 	.exit = i915_global_gem_context_exit,
2667 } };
2668 
2669 int __init i915_global_gem_context_init(void)
2670 {
2671 	global.slab_luts = KMEM_CACHE(i915_lut_handle, 0);
2672 	if (!global.slab_luts)
2673 		return -ENOMEM;
2674 
2675 	i915_global_register(&global.base);
2676 	return 0;
2677 }
2678