1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2011-2012 Intel Corporation
5  */
6 
7 /*
8  * This file implements HW context support. On gen5+ a HW context consists of an
9  * opaque GPU object which is referenced at times of context saves and restores.
10  * With RC6 enabled, the context is also referenced as the GPU enters and exists
11  * from RC6 (GPU has it's own internal power context, except on gen5). Though
12  * something like a context does exist for the media ring, the code only
13  * supports contexts for the render ring.
14  *
15  * In software, there is a distinction between contexts created by the user,
16  * and the default HW context. The default HW context is used by GPU clients
17  * that do not request setup of their own hardware context. The default
18  * context's state is never restored to help prevent programming errors. This
19  * would happen if a client ran and piggy-backed off another clients GPU state.
20  * The default context only exists to give the GPU some offset to load as the
21  * current to invoke a save of the context we actually care about. In fact, the
22  * code could likely be constructed, albeit in a more complicated fashion, to
23  * never use the default context, though that limits the driver's ability to
24  * swap out, and/or destroy other contexts.
25  *
26  * All other contexts are created as a request by the GPU client. These contexts
27  * store GPU state, and thus allow GPU clients to not re-emit state (and
28  * potentially query certain state) at any time. The kernel driver makes
29  * certain that the appropriate commands are inserted.
30  *
31  * The context life cycle is semi-complicated in that context BOs may live
32  * longer than the context itself because of the way the hardware, and object
33  * tracking works. Below is a very crude representation of the state machine
34  * describing the context life.
35  *                                         refcount     pincount     active
36  * S0: initial state                          0            0           0
37  * S1: context created                        1            0           0
38  * S2: context is currently running           2            1           X
39  * S3: GPU referenced, but not current        2            0           1
40  * S4: context is current, but destroyed      1            1           0
41  * S5: like S3, but destroyed                 1            0           1
42  *
43  * The most common (but not all) transitions:
44  * S0->S1: client creates a context
45  * S1->S2: client submits execbuf with context
46  * S2->S3: other clients submits execbuf with context
47  * S3->S1: context object was retired
48  * S3->S2: clients submits another execbuf
49  * S2->S4: context destroy called with current context
50  * S3->S5->S0: destroy path
51  * S4->S5->S0: destroy path on current context
52  *
53  * There are two confusing terms used above:
54  *  The "current context" means the context which is currently running on the
55  *  GPU. The GPU has loaded its state already and has stored away the gtt
56  *  offset of the BO. The GPU is not actively referencing the data at this
57  *  offset, but it will on the next context switch. The only way to avoid this
58  *  is to do a GPU reset.
59  *
60  *  An "active context' is one which was previously the "current context" and is
61  *  on the active list waiting for the next context switch to occur. Until this
62  *  happens, the object must remain at the same gtt offset. It is therefore
63  *  possible to destroy a context, but it is still active.
64  *
65  */
66 
67 #include <linux/log2.h>
68 #include <linux/nospec.h>
69 
70 #include <drm/drm_syncobj.h>
71 
72 #include "gt/gen6_ppgtt.h"
73 #include "gt/intel_context.h"
74 #include "gt/intel_context_param.h"
75 #include "gt/intel_engine_heartbeat.h"
76 #include "gt/intel_engine_user.h"
77 #include "gt/intel_gpu_commands.h"
78 #include "gt/intel_ring.h"
79 
80 #include "i915_gem_context.h"
81 #include "i915_trace.h"
82 #include "i915_user_extensions.h"
83 
84 #define ALL_L3_SLICES(dev) (1 << NUM_L3_SLICES(dev)) - 1
85 
86 static struct kmem_cache *slab_luts;
87 
88 struct i915_lut_handle *i915_lut_handle_alloc(void)
89 {
90 	return kmem_cache_alloc(slab_luts, GFP_KERNEL);
91 }
92 
93 void i915_lut_handle_free(struct i915_lut_handle *lut)
94 {
95 	return kmem_cache_free(slab_luts, lut);
96 }
97 
98 static void lut_close(struct i915_gem_context *ctx)
99 {
100 	struct radix_tree_iter iter;
101 	void __rcu **slot;
102 
103 	mutex_lock(&ctx->lut_mutex);
104 	rcu_read_lock();
105 	radix_tree_for_each_slot(slot, &ctx->handles_vma, &iter, 0) {
106 		struct i915_vma *vma = rcu_dereference_raw(*slot);
107 		struct drm_i915_gem_object *obj = vma->obj;
108 		struct i915_lut_handle *lut;
109 
110 		if (!kref_get_unless_zero(&obj->base.refcount))
111 			continue;
112 
113 		spin_lock(&obj->lut_lock);
114 		list_for_each_entry(lut, &obj->lut_list, obj_link) {
115 			if (lut->ctx != ctx)
116 				continue;
117 
118 			if (lut->handle != iter.index)
119 				continue;
120 
121 			list_del(&lut->obj_link);
122 			break;
123 		}
124 		spin_unlock(&obj->lut_lock);
125 
126 		if (&lut->obj_link != &obj->lut_list) {
127 			i915_lut_handle_free(lut);
128 			radix_tree_iter_delete(&ctx->handles_vma, &iter, slot);
129 			i915_vma_close(vma);
130 			i915_gem_object_put(obj);
131 		}
132 
133 		i915_gem_object_put(obj);
134 	}
135 	rcu_read_unlock();
136 	mutex_unlock(&ctx->lut_mutex);
137 }
138 
139 static struct intel_context *
140 lookup_user_engine(struct i915_gem_context *ctx,
141 		   unsigned long flags,
142 		   const struct i915_engine_class_instance *ci)
143 #define LOOKUP_USER_INDEX BIT(0)
144 {
145 	int idx;
146 
147 	if (!!(flags & LOOKUP_USER_INDEX) != i915_gem_context_user_engines(ctx))
148 		return ERR_PTR(-EINVAL);
149 
150 	if (!i915_gem_context_user_engines(ctx)) {
151 		struct intel_engine_cs *engine;
152 
153 		engine = intel_engine_lookup_user(ctx->i915,
154 						  ci->engine_class,
155 						  ci->engine_instance);
156 		if (!engine)
157 			return ERR_PTR(-EINVAL);
158 
159 		idx = engine->legacy_idx;
160 	} else {
161 		idx = ci->engine_instance;
162 	}
163 
164 	return i915_gem_context_get_engine(ctx, idx);
165 }
166 
167 static int validate_priority(struct drm_i915_private *i915,
168 			     const struct drm_i915_gem_context_param *args)
169 {
170 	s64 priority = args->value;
171 
172 	if (args->size)
173 		return -EINVAL;
174 
175 	if (!(i915->caps.scheduler & I915_SCHEDULER_CAP_PRIORITY))
176 		return -ENODEV;
177 
178 	if (priority > I915_CONTEXT_MAX_USER_PRIORITY ||
179 	    priority < I915_CONTEXT_MIN_USER_PRIORITY)
180 		return -EINVAL;
181 
182 	if (priority > I915_CONTEXT_DEFAULT_PRIORITY &&
183 	    !capable(CAP_SYS_NICE))
184 		return -EPERM;
185 
186 	return 0;
187 }
188 
189 static void proto_context_close(struct i915_gem_proto_context *pc)
190 {
191 	int i;
192 
193 	if (pc->vm)
194 		i915_vm_put(pc->vm);
195 	if (pc->user_engines) {
196 		for (i = 0; i < pc->num_user_engines; i++)
197 			kfree(pc->user_engines[i].siblings);
198 		kfree(pc->user_engines);
199 	}
200 	kfree(pc);
201 }
202 
203 static int proto_context_set_persistence(struct drm_i915_private *i915,
204 					 struct i915_gem_proto_context *pc,
205 					 bool persist)
206 {
207 	if (persist) {
208 		/*
209 		 * Only contexts that are short-lived [that will expire or be
210 		 * reset] are allowed to survive past termination. We require
211 		 * hangcheck to ensure that the persistent requests are healthy.
212 		 */
213 		if (!i915->params.enable_hangcheck)
214 			return -EINVAL;
215 
216 		pc->user_flags |= BIT(UCONTEXT_PERSISTENCE);
217 	} else {
218 		/* To cancel a context we use "preempt-to-idle" */
219 		if (!(i915->caps.scheduler & I915_SCHEDULER_CAP_PREEMPTION))
220 			return -ENODEV;
221 
222 		/*
223 		 * If the cancel fails, we then need to reset, cleanly!
224 		 *
225 		 * If the per-engine reset fails, all hope is lost! We resort
226 		 * to a full GPU reset in that unlikely case, but realistically
227 		 * if the engine could not reset, the full reset does not fare
228 		 * much better. The damage has been done.
229 		 *
230 		 * However, if we cannot reset an engine by itself, we cannot
231 		 * cleanup a hanging persistent context without causing
232 		 * colateral damage, and we should not pretend we can by
233 		 * exposing the interface.
234 		 */
235 		if (!intel_has_reset_engine(&i915->gt))
236 			return -ENODEV;
237 
238 		pc->user_flags &= ~BIT(UCONTEXT_PERSISTENCE);
239 	}
240 
241 	return 0;
242 }
243 
244 static struct i915_gem_proto_context *
245 proto_context_create(struct drm_i915_private *i915, unsigned int flags)
246 {
247 	struct i915_gem_proto_context *pc, *err;
248 
249 	pc = kzalloc(sizeof(*pc), GFP_KERNEL);
250 	if (!pc)
251 		return ERR_PTR(-ENOMEM);
252 
253 	pc->num_user_engines = -1;
254 	pc->user_engines = NULL;
255 	pc->user_flags = BIT(UCONTEXT_BANNABLE) |
256 			 BIT(UCONTEXT_RECOVERABLE);
257 	if (i915->params.enable_hangcheck)
258 		pc->user_flags |= BIT(UCONTEXT_PERSISTENCE);
259 	pc->sched.priority = I915_PRIORITY_NORMAL;
260 
261 	if (flags & I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE) {
262 		if (!HAS_EXECLISTS(i915)) {
263 			err = ERR_PTR(-EINVAL);
264 			goto proto_close;
265 		}
266 		pc->single_timeline = true;
267 	}
268 
269 	return pc;
270 
271 proto_close:
272 	proto_context_close(pc);
273 	return err;
274 }
275 
276 static int proto_context_register_locked(struct drm_i915_file_private *fpriv,
277 					 struct i915_gem_proto_context *pc,
278 					 u32 *id)
279 {
280 	int ret;
281 	void *old;
282 
283 	lockdep_assert_held(&fpriv->proto_context_lock);
284 
285 	ret = xa_alloc(&fpriv->context_xa, id, NULL, xa_limit_32b, GFP_KERNEL);
286 	if (ret)
287 		return ret;
288 
289 	old = xa_store(&fpriv->proto_context_xa, *id, pc, GFP_KERNEL);
290 	if (xa_is_err(old)) {
291 		xa_erase(&fpriv->context_xa, *id);
292 		return xa_err(old);
293 	}
294 	WARN_ON(old);
295 
296 	return 0;
297 }
298 
299 static int proto_context_register(struct drm_i915_file_private *fpriv,
300 				  struct i915_gem_proto_context *pc,
301 				  u32 *id)
302 {
303 	int ret;
304 
305 	mutex_lock(&fpriv->proto_context_lock);
306 	ret = proto_context_register_locked(fpriv, pc, id);
307 	mutex_unlock(&fpriv->proto_context_lock);
308 
309 	return ret;
310 }
311 
312 static int set_proto_ctx_vm(struct drm_i915_file_private *fpriv,
313 			    struct i915_gem_proto_context *pc,
314 			    const struct drm_i915_gem_context_param *args)
315 {
316 	struct drm_i915_private *i915 = fpriv->dev_priv;
317 	struct i915_address_space *vm;
318 
319 	if (args->size)
320 		return -EINVAL;
321 
322 	if (!HAS_FULL_PPGTT(i915))
323 		return -ENODEV;
324 
325 	if (upper_32_bits(args->value))
326 		return -ENOENT;
327 
328 	vm = i915_gem_vm_lookup(fpriv, args->value);
329 	if (!vm)
330 		return -ENOENT;
331 
332 	if (pc->vm)
333 		i915_vm_put(pc->vm);
334 	pc->vm = vm;
335 
336 	return 0;
337 }
338 
339 struct set_proto_ctx_engines {
340 	struct drm_i915_private *i915;
341 	unsigned num_engines;
342 	struct i915_gem_proto_engine *engines;
343 };
344 
345 static int
346 set_proto_ctx_engines_balance(struct i915_user_extension __user *base,
347 			      void *data)
348 {
349 	struct i915_context_engines_load_balance __user *ext =
350 		container_of_user(base, typeof(*ext), base);
351 	const struct set_proto_ctx_engines *set = data;
352 	struct drm_i915_private *i915 = set->i915;
353 	struct intel_engine_cs **siblings;
354 	u16 num_siblings, idx;
355 	unsigned int n;
356 	int err;
357 
358 	if (!HAS_EXECLISTS(i915))
359 		return -ENODEV;
360 
361 	if (get_user(idx, &ext->engine_index))
362 		return -EFAULT;
363 
364 	if (idx >= set->num_engines) {
365 		drm_dbg(&i915->drm, "Invalid placement value, %d >= %d\n",
366 			idx, set->num_engines);
367 		return -EINVAL;
368 	}
369 
370 	idx = array_index_nospec(idx, set->num_engines);
371 	if (set->engines[idx].type != I915_GEM_ENGINE_TYPE_INVALID) {
372 		drm_dbg(&i915->drm,
373 			"Invalid placement[%d], already occupied\n", idx);
374 		return -EEXIST;
375 	}
376 
377 	if (get_user(num_siblings, &ext->num_siblings))
378 		return -EFAULT;
379 
380 	err = check_user_mbz(&ext->flags);
381 	if (err)
382 		return err;
383 
384 	err = check_user_mbz(&ext->mbz64);
385 	if (err)
386 		return err;
387 
388 	if (num_siblings == 0)
389 		return 0;
390 
391 	siblings = kmalloc_array(num_siblings, sizeof(*siblings), GFP_KERNEL);
392 	if (!siblings)
393 		return -ENOMEM;
394 
395 	for (n = 0; n < num_siblings; n++) {
396 		struct i915_engine_class_instance ci;
397 
398 		if (copy_from_user(&ci, &ext->engines[n], sizeof(ci))) {
399 			err = -EFAULT;
400 			goto err_siblings;
401 		}
402 
403 		siblings[n] = intel_engine_lookup_user(i915,
404 						       ci.engine_class,
405 						       ci.engine_instance);
406 		if (!siblings[n]) {
407 			drm_dbg(&i915->drm,
408 				"Invalid sibling[%d]: { class:%d, inst:%d }\n",
409 				n, ci.engine_class, ci.engine_instance);
410 			err = -EINVAL;
411 			goto err_siblings;
412 		}
413 	}
414 
415 	if (num_siblings == 1) {
416 		set->engines[idx].type = I915_GEM_ENGINE_TYPE_PHYSICAL;
417 		set->engines[idx].engine = siblings[0];
418 		kfree(siblings);
419 	} else {
420 		set->engines[idx].type = I915_GEM_ENGINE_TYPE_BALANCED;
421 		set->engines[idx].num_siblings = num_siblings;
422 		set->engines[idx].siblings = siblings;
423 	}
424 
425 	return 0;
426 
427 err_siblings:
428 	kfree(siblings);
429 
430 	return err;
431 }
432 
433 static int
434 set_proto_ctx_engines_bond(struct i915_user_extension __user *base, void *data)
435 {
436 	struct i915_context_engines_bond __user *ext =
437 		container_of_user(base, typeof(*ext), base);
438 	const struct set_proto_ctx_engines *set = data;
439 	struct drm_i915_private *i915 = set->i915;
440 	struct i915_engine_class_instance ci;
441 	struct intel_engine_cs *master;
442 	u16 idx, num_bonds;
443 	int err, n;
444 
445 	if (get_user(idx, &ext->virtual_index))
446 		return -EFAULT;
447 
448 	if (idx >= set->num_engines) {
449 		drm_dbg(&i915->drm,
450 			"Invalid index for virtual engine: %d >= %d\n",
451 			idx, set->num_engines);
452 		return -EINVAL;
453 	}
454 
455 	idx = array_index_nospec(idx, set->num_engines);
456 	if (set->engines[idx].type == I915_GEM_ENGINE_TYPE_INVALID) {
457 		drm_dbg(&i915->drm, "Invalid engine at %d\n", idx);
458 		return -EINVAL;
459 	}
460 
461 	if (set->engines[idx].type != I915_GEM_ENGINE_TYPE_PHYSICAL) {
462 		drm_dbg(&i915->drm,
463 			"Bonding with virtual engines not allowed\n");
464 		return -EINVAL;
465 	}
466 
467 	err = check_user_mbz(&ext->flags);
468 	if (err)
469 		return err;
470 
471 	for (n = 0; n < ARRAY_SIZE(ext->mbz64); n++) {
472 		err = check_user_mbz(&ext->mbz64[n]);
473 		if (err)
474 			return err;
475 	}
476 
477 	if (copy_from_user(&ci, &ext->master, sizeof(ci)))
478 		return -EFAULT;
479 
480 	master = intel_engine_lookup_user(i915,
481 					  ci.engine_class,
482 					  ci.engine_instance);
483 	if (!master) {
484 		drm_dbg(&i915->drm,
485 			"Unrecognised master engine: { class:%u, instance:%u }\n",
486 			ci.engine_class, ci.engine_instance);
487 		return -EINVAL;
488 	}
489 
490 	if (intel_engine_uses_guc(master)) {
491 		DRM_DEBUG("bonding extension not supported with GuC submission");
492 		return -ENODEV;
493 	}
494 
495 	if (get_user(num_bonds, &ext->num_bonds))
496 		return -EFAULT;
497 
498 	for (n = 0; n < num_bonds; n++) {
499 		struct intel_engine_cs *bond;
500 
501 		if (copy_from_user(&ci, &ext->engines[n], sizeof(ci)))
502 			return -EFAULT;
503 
504 		bond = intel_engine_lookup_user(i915,
505 						ci.engine_class,
506 						ci.engine_instance);
507 		if (!bond) {
508 			drm_dbg(&i915->drm,
509 				"Unrecognised engine[%d] for bonding: { class:%d, instance: %d }\n",
510 				n, ci.engine_class, ci.engine_instance);
511 			return -EINVAL;
512 		}
513 	}
514 
515 	return 0;
516 }
517 
518 static const i915_user_extension_fn set_proto_ctx_engines_extensions[] = {
519 	[I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE] = set_proto_ctx_engines_balance,
520 	[I915_CONTEXT_ENGINES_EXT_BOND] = set_proto_ctx_engines_bond,
521 };
522 
523 static int set_proto_ctx_engines(struct drm_i915_file_private *fpriv,
524 			         struct i915_gem_proto_context *pc,
525 			         const struct drm_i915_gem_context_param *args)
526 {
527 	struct drm_i915_private *i915 = fpriv->dev_priv;
528 	struct set_proto_ctx_engines set = { .i915 = i915 };
529 	struct i915_context_param_engines __user *user =
530 		u64_to_user_ptr(args->value);
531 	unsigned int n;
532 	u64 extensions;
533 	int err;
534 
535 	if (pc->num_user_engines >= 0) {
536 		drm_dbg(&i915->drm, "Cannot set engines twice");
537 		return -EINVAL;
538 	}
539 
540 	if (args->size < sizeof(*user) ||
541 	    !IS_ALIGNED(args->size - sizeof(*user), sizeof(*user->engines))) {
542 		drm_dbg(&i915->drm, "Invalid size for engine array: %d\n",
543 			args->size);
544 		return -EINVAL;
545 	}
546 
547 	set.num_engines = (args->size - sizeof(*user)) / sizeof(*user->engines);
548 	/* RING_MASK has no shift so we can use it directly here */
549 	if (set.num_engines > I915_EXEC_RING_MASK + 1)
550 		return -EINVAL;
551 
552 	set.engines = kmalloc_array(set.num_engines, sizeof(*set.engines), GFP_KERNEL);
553 	if (!set.engines)
554 		return -ENOMEM;
555 
556 	for (n = 0; n < set.num_engines; n++) {
557 		struct i915_engine_class_instance ci;
558 		struct intel_engine_cs *engine;
559 
560 		if (copy_from_user(&ci, &user->engines[n], sizeof(ci))) {
561 			kfree(set.engines);
562 			return -EFAULT;
563 		}
564 
565 		memset(&set.engines[n], 0, sizeof(set.engines[n]));
566 
567 		if (ci.engine_class == (u16)I915_ENGINE_CLASS_INVALID &&
568 		    ci.engine_instance == (u16)I915_ENGINE_CLASS_INVALID_NONE)
569 			continue;
570 
571 		engine = intel_engine_lookup_user(i915,
572 						  ci.engine_class,
573 						  ci.engine_instance);
574 		if (!engine) {
575 			drm_dbg(&i915->drm,
576 				"Invalid engine[%d]: { class:%d, instance:%d }\n",
577 				n, ci.engine_class, ci.engine_instance);
578 			kfree(set.engines);
579 			return -ENOENT;
580 		}
581 
582 		set.engines[n].type = I915_GEM_ENGINE_TYPE_PHYSICAL;
583 		set.engines[n].engine = engine;
584 	}
585 
586 	err = -EFAULT;
587 	if (!get_user(extensions, &user->extensions))
588 		err = i915_user_extensions(u64_to_user_ptr(extensions),
589 					   set_proto_ctx_engines_extensions,
590 					   ARRAY_SIZE(set_proto_ctx_engines_extensions),
591 					   &set);
592 	if (err) {
593 		kfree(set.engines);
594 		return err;
595 	}
596 
597 	pc->num_user_engines = set.num_engines;
598 	pc->user_engines = set.engines;
599 
600 	return 0;
601 }
602 
603 static int set_proto_ctx_sseu(struct drm_i915_file_private *fpriv,
604 			      struct i915_gem_proto_context *pc,
605 			      struct drm_i915_gem_context_param *args)
606 {
607 	struct drm_i915_private *i915 = fpriv->dev_priv;
608 	struct drm_i915_gem_context_param_sseu user_sseu;
609 	struct intel_sseu *sseu;
610 	int ret;
611 
612 	if (args->size < sizeof(user_sseu))
613 		return -EINVAL;
614 
615 	if (GRAPHICS_VER(i915) != 11)
616 		return -ENODEV;
617 
618 	if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value),
619 			   sizeof(user_sseu)))
620 		return -EFAULT;
621 
622 	if (user_sseu.rsvd)
623 		return -EINVAL;
624 
625 	if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX))
626 		return -EINVAL;
627 
628 	if (!!(user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX) != (pc->num_user_engines >= 0))
629 		return -EINVAL;
630 
631 	if (pc->num_user_engines >= 0) {
632 		int idx = user_sseu.engine.engine_instance;
633 		struct i915_gem_proto_engine *pe;
634 
635 		if (idx >= pc->num_user_engines)
636 			return -EINVAL;
637 
638 		pe = &pc->user_engines[idx];
639 
640 		/* Only render engine supports RPCS configuration. */
641 		if (pe->engine->class != RENDER_CLASS)
642 			return -EINVAL;
643 
644 		sseu = &pe->sseu;
645 	} else {
646 		/* Only render engine supports RPCS configuration. */
647 		if (user_sseu.engine.engine_class != I915_ENGINE_CLASS_RENDER)
648 			return -EINVAL;
649 
650 		/* There is only one render engine */
651 		if (user_sseu.engine.engine_instance != 0)
652 			return -EINVAL;
653 
654 		sseu = &pc->legacy_rcs_sseu;
655 	}
656 
657 	ret = i915_gem_user_to_context_sseu(&i915->gt, &user_sseu, sseu);
658 	if (ret)
659 		return ret;
660 
661 	args->size = sizeof(user_sseu);
662 
663 	return 0;
664 }
665 
666 static int set_proto_ctx_param(struct drm_i915_file_private *fpriv,
667 			       struct i915_gem_proto_context *pc,
668 			       struct drm_i915_gem_context_param *args)
669 {
670 	int ret = 0;
671 
672 	switch (args->param) {
673 	case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE:
674 		if (args->size)
675 			ret = -EINVAL;
676 		else if (args->value)
677 			pc->user_flags |= BIT(UCONTEXT_NO_ERROR_CAPTURE);
678 		else
679 			pc->user_flags &= ~BIT(UCONTEXT_NO_ERROR_CAPTURE);
680 		break;
681 
682 	case I915_CONTEXT_PARAM_BANNABLE:
683 		if (args->size)
684 			ret = -EINVAL;
685 		else if (!capable(CAP_SYS_ADMIN) && !args->value)
686 			ret = -EPERM;
687 		else if (args->value)
688 			pc->user_flags |= BIT(UCONTEXT_BANNABLE);
689 		else
690 			pc->user_flags &= ~BIT(UCONTEXT_BANNABLE);
691 		break;
692 
693 	case I915_CONTEXT_PARAM_RECOVERABLE:
694 		if (args->size)
695 			ret = -EINVAL;
696 		else if (args->value)
697 			pc->user_flags |= BIT(UCONTEXT_RECOVERABLE);
698 		else
699 			pc->user_flags &= ~BIT(UCONTEXT_RECOVERABLE);
700 		break;
701 
702 	case I915_CONTEXT_PARAM_PRIORITY:
703 		ret = validate_priority(fpriv->dev_priv, args);
704 		if (!ret)
705 			pc->sched.priority = args->value;
706 		break;
707 
708 	case I915_CONTEXT_PARAM_SSEU:
709 		ret = set_proto_ctx_sseu(fpriv, pc, args);
710 		break;
711 
712 	case I915_CONTEXT_PARAM_VM:
713 		ret = set_proto_ctx_vm(fpriv, pc, args);
714 		break;
715 
716 	case I915_CONTEXT_PARAM_ENGINES:
717 		ret = set_proto_ctx_engines(fpriv, pc, args);
718 		break;
719 
720 	case I915_CONTEXT_PARAM_PERSISTENCE:
721 		if (args->size)
722 			ret = -EINVAL;
723 		ret = proto_context_set_persistence(fpriv->dev_priv, pc,
724 						    args->value);
725 		break;
726 
727 	case I915_CONTEXT_PARAM_NO_ZEROMAP:
728 	case I915_CONTEXT_PARAM_BAN_PERIOD:
729 	case I915_CONTEXT_PARAM_RINGSIZE:
730 	default:
731 		ret = -EINVAL;
732 		break;
733 	}
734 
735 	return ret;
736 }
737 
738 static struct i915_address_space *
739 context_get_vm_rcu(struct i915_gem_context *ctx)
740 {
741 	GEM_BUG_ON(!rcu_access_pointer(ctx->vm));
742 
743 	do {
744 		struct i915_address_space *vm;
745 
746 		/*
747 		 * We do not allow downgrading from full-ppgtt [to a shared
748 		 * global gtt], so ctx->vm cannot become NULL.
749 		 */
750 		vm = rcu_dereference(ctx->vm);
751 		if (!kref_get_unless_zero(&vm->ref))
752 			continue;
753 
754 		/*
755 		 * This ppgtt may have be reallocated between
756 		 * the read and the kref, and reassigned to a third
757 		 * context. In order to avoid inadvertent sharing
758 		 * of this ppgtt with that third context (and not
759 		 * src), we have to confirm that we have the same
760 		 * ppgtt after passing through the strong memory
761 		 * barrier implied by a successful
762 		 * kref_get_unless_zero().
763 		 *
764 		 * Once we have acquired the current ppgtt of ctx,
765 		 * we no longer care if it is released from ctx, as
766 		 * it cannot be reallocated elsewhere.
767 		 */
768 
769 		if (vm == rcu_access_pointer(ctx->vm))
770 			return rcu_pointer_handoff(vm);
771 
772 		i915_vm_put(vm);
773 	} while (1);
774 }
775 
776 static int intel_context_set_gem(struct intel_context *ce,
777 				 struct i915_gem_context *ctx,
778 				 struct intel_sseu sseu)
779 {
780 	int ret = 0;
781 
782 	GEM_BUG_ON(rcu_access_pointer(ce->gem_context));
783 	RCU_INIT_POINTER(ce->gem_context, ctx);
784 
785 	ce->ring_size = SZ_16K;
786 
787 	if (rcu_access_pointer(ctx->vm)) {
788 		struct i915_address_space *vm;
789 
790 		rcu_read_lock();
791 		vm = context_get_vm_rcu(ctx); /* hmm */
792 		rcu_read_unlock();
793 
794 		i915_vm_put(ce->vm);
795 		ce->vm = vm;
796 	}
797 
798 	if (ctx->sched.priority >= I915_PRIORITY_NORMAL &&
799 	    intel_engine_has_timeslices(ce->engine) &&
800 	    intel_engine_has_semaphores(ce->engine))
801 		__set_bit(CONTEXT_USE_SEMAPHORES, &ce->flags);
802 
803 	if (IS_ACTIVE(CONFIG_DRM_I915_REQUEST_TIMEOUT) &&
804 	    ctx->i915->params.request_timeout_ms) {
805 		unsigned int timeout_ms = ctx->i915->params.request_timeout_ms;
806 
807 		intel_context_set_watchdog_us(ce, (u64)timeout_ms * 1000);
808 	}
809 
810 	/* A valid SSEU has no zero fields */
811 	if (sseu.slice_mask && !WARN_ON(ce->engine->class != RENDER_CLASS))
812 		ret = intel_context_reconfigure_sseu(ce, sseu);
813 
814 	return ret;
815 }
816 
817 static void __free_engines(struct i915_gem_engines *e, unsigned int count)
818 {
819 	while (count--) {
820 		if (!e->engines[count])
821 			continue;
822 
823 		intel_context_put(e->engines[count]);
824 	}
825 	kfree(e);
826 }
827 
828 static void free_engines(struct i915_gem_engines *e)
829 {
830 	__free_engines(e, e->num_engines);
831 }
832 
833 static void free_engines_rcu(struct rcu_head *rcu)
834 {
835 	struct i915_gem_engines *engines =
836 		container_of(rcu, struct i915_gem_engines, rcu);
837 
838 	i915_sw_fence_fini(&engines->fence);
839 	free_engines(engines);
840 }
841 
842 static int __i915_sw_fence_call
843 engines_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
844 {
845 	struct i915_gem_engines *engines =
846 		container_of(fence, typeof(*engines), fence);
847 
848 	switch (state) {
849 	case FENCE_COMPLETE:
850 		if (!list_empty(&engines->link)) {
851 			struct i915_gem_context *ctx = engines->ctx;
852 			unsigned long flags;
853 
854 			spin_lock_irqsave(&ctx->stale.lock, flags);
855 			list_del(&engines->link);
856 			spin_unlock_irqrestore(&ctx->stale.lock, flags);
857 		}
858 		i915_gem_context_put(engines->ctx);
859 		break;
860 
861 	case FENCE_FREE:
862 		init_rcu_head(&engines->rcu);
863 		call_rcu(&engines->rcu, free_engines_rcu);
864 		break;
865 	}
866 
867 	return NOTIFY_DONE;
868 }
869 
870 static struct i915_gem_engines *alloc_engines(unsigned int count)
871 {
872 	struct i915_gem_engines *e;
873 
874 	e = kzalloc(struct_size(e, engines, count), GFP_KERNEL);
875 	if (!e)
876 		return NULL;
877 
878 	i915_sw_fence_init(&e->fence, engines_notify);
879 	return e;
880 }
881 
882 static struct i915_gem_engines *default_engines(struct i915_gem_context *ctx,
883 						struct intel_sseu rcs_sseu)
884 {
885 	const struct intel_gt *gt = &ctx->i915->gt;
886 	struct intel_engine_cs *engine;
887 	struct i915_gem_engines *e, *err;
888 	enum intel_engine_id id;
889 
890 	e = alloc_engines(I915_NUM_ENGINES);
891 	if (!e)
892 		return ERR_PTR(-ENOMEM);
893 
894 	for_each_engine(engine, gt, id) {
895 		struct intel_context *ce;
896 		struct intel_sseu sseu = {};
897 		int ret;
898 
899 		if (engine->legacy_idx == INVALID_ENGINE)
900 			continue;
901 
902 		GEM_BUG_ON(engine->legacy_idx >= I915_NUM_ENGINES);
903 		GEM_BUG_ON(e->engines[engine->legacy_idx]);
904 
905 		ce = intel_context_create(engine);
906 		if (IS_ERR(ce)) {
907 			err = ERR_CAST(ce);
908 			goto free_engines;
909 		}
910 
911 		e->engines[engine->legacy_idx] = ce;
912 		e->num_engines = max(e->num_engines, engine->legacy_idx + 1);
913 
914 		if (engine->class == RENDER_CLASS)
915 			sseu = rcs_sseu;
916 
917 		ret = intel_context_set_gem(ce, ctx, sseu);
918 		if (ret) {
919 			err = ERR_PTR(ret);
920 			goto free_engines;
921 		}
922 
923 	}
924 
925 	return e;
926 
927 free_engines:
928 	free_engines(e);
929 	return err;
930 }
931 
932 static struct i915_gem_engines *user_engines(struct i915_gem_context *ctx,
933 					     unsigned int num_engines,
934 					     struct i915_gem_proto_engine *pe)
935 {
936 	struct i915_gem_engines *e, *err;
937 	unsigned int n;
938 
939 	e = alloc_engines(num_engines);
940 	if (!e)
941 		return ERR_PTR(-ENOMEM);
942 	e->num_engines = num_engines;
943 
944 	for (n = 0; n < num_engines; n++) {
945 		struct intel_context *ce;
946 		int ret;
947 
948 		switch (pe[n].type) {
949 		case I915_GEM_ENGINE_TYPE_PHYSICAL:
950 			ce = intel_context_create(pe[n].engine);
951 			break;
952 
953 		case I915_GEM_ENGINE_TYPE_BALANCED:
954 			ce = intel_engine_create_virtual(pe[n].siblings,
955 							 pe[n].num_siblings);
956 			break;
957 
958 		case I915_GEM_ENGINE_TYPE_INVALID:
959 		default:
960 			GEM_WARN_ON(pe[n].type != I915_GEM_ENGINE_TYPE_INVALID);
961 			continue;
962 		}
963 
964 		if (IS_ERR(ce)) {
965 			err = ERR_CAST(ce);
966 			goto free_engines;
967 		}
968 
969 		e->engines[n] = ce;
970 
971 		ret = intel_context_set_gem(ce, ctx, pe->sseu);
972 		if (ret) {
973 			err = ERR_PTR(ret);
974 			goto free_engines;
975 		}
976 	}
977 
978 	return e;
979 
980 free_engines:
981 	free_engines(e);
982 	return err;
983 }
984 
985 void i915_gem_context_release(struct kref *ref)
986 {
987 	struct i915_gem_context *ctx = container_of(ref, typeof(*ctx), ref);
988 
989 	trace_i915_context_free(ctx);
990 	GEM_BUG_ON(!i915_gem_context_is_closed(ctx));
991 
992 	if (ctx->syncobj)
993 		drm_syncobj_put(ctx->syncobj);
994 
995 	mutex_destroy(&ctx->engines_mutex);
996 	mutex_destroy(&ctx->lut_mutex);
997 
998 	put_pid(ctx->pid);
999 	mutex_destroy(&ctx->mutex);
1000 
1001 	kfree_rcu(ctx, rcu);
1002 }
1003 
1004 static inline struct i915_gem_engines *
1005 __context_engines_static(const struct i915_gem_context *ctx)
1006 {
1007 	return rcu_dereference_protected(ctx->engines, true);
1008 }
1009 
1010 static void __reset_context(struct i915_gem_context *ctx,
1011 			    struct intel_engine_cs *engine)
1012 {
1013 	intel_gt_handle_error(engine->gt, engine->mask, 0,
1014 			      "context closure in %s", ctx->name);
1015 }
1016 
1017 static bool __cancel_engine(struct intel_engine_cs *engine)
1018 {
1019 	/*
1020 	 * Send a "high priority pulse" down the engine to cause the
1021 	 * current request to be momentarily preempted. (If it fails to
1022 	 * be preempted, it will be reset). As we have marked our context
1023 	 * as banned, any incomplete request, including any running, will
1024 	 * be skipped following the preemption.
1025 	 *
1026 	 * If there is no hangchecking (one of the reasons why we try to
1027 	 * cancel the context) and no forced preemption, there may be no
1028 	 * means by which we reset the GPU and evict the persistent hog.
1029 	 * Ergo if we are unable to inject a preemptive pulse that can
1030 	 * kill the banned context, we fallback to doing a local reset
1031 	 * instead.
1032 	 */
1033 	return intel_engine_pulse(engine) == 0;
1034 }
1035 
1036 static struct intel_engine_cs *active_engine(struct intel_context *ce)
1037 {
1038 	struct intel_engine_cs *engine = NULL;
1039 	struct i915_request *rq;
1040 
1041 	if (intel_context_has_inflight(ce))
1042 		return intel_context_inflight(ce);
1043 
1044 	if (!ce->timeline)
1045 		return NULL;
1046 
1047 	/*
1048 	 * rq->link is only SLAB_TYPESAFE_BY_RCU, we need to hold a reference
1049 	 * to the request to prevent it being transferred to a new timeline
1050 	 * (and onto a new timeline->requests list).
1051 	 */
1052 	rcu_read_lock();
1053 	list_for_each_entry_reverse(rq, &ce->timeline->requests, link) {
1054 		bool found;
1055 
1056 		/* timeline is already completed upto this point? */
1057 		if (!i915_request_get_rcu(rq))
1058 			break;
1059 
1060 		/* Check with the backend if the request is inflight */
1061 		found = true;
1062 		if (likely(rcu_access_pointer(rq->timeline) == ce->timeline))
1063 			found = i915_request_active_engine(rq, &engine);
1064 
1065 		i915_request_put(rq);
1066 		if (found)
1067 			break;
1068 	}
1069 	rcu_read_unlock();
1070 
1071 	return engine;
1072 }
1073 
1074 static void kill_engines(struct i915_gem_engines *engines, bool ban)
1075 {
1076 	struct i915_gem_engines_iter it;
1077 	struct intel_context *ce;
1078 
1079 	/*
1080 	 * Map the user's engine back to the actual engines; one virtual
1081 	 * engine will be mapped to multiple engines, and using ctx->engine[]
1082 	 * the same engine may be have multiple instances in the user's map.
1083 	 * However, we only care about pending requests, so only include
1084 	 * engines on which there are incomplete requests.
1085 	 */
1086 	for_each_gem_engine(ce, engines, it) {
1087 		struct intel_engine_cs *engine;
1088 
1089 		if (ban && intel_context_ban(ce, NULL))
1090 			continue;
1091 
1092 		/*
1093 		 * Check the current active state of this context; if we
1094 		 * are currently executing on the GPU we need to evict
1095 		 * ourselves. On the other hand, if we haven't yet been
1096 		 * submitted to the GPU or if everything is complete,
1097 		 * we have nothing to do.
1098 		 */
1099 		engine = active_engine(ce);
1100 
1101 		/* First attempt to gracefully cancel the context */
1102 		if (engine && !__cancel_engine(engine) && ban)
1103 			/*
1104 			 * If we are unable to send a preemptive pulse to bump
1105 			 * the context from the GPU, we have to resort to a full
1106 			 * reset. We hope the collateral damage is worth it.
1107 			 */
1108 			__reset_context(engines->ctx, engine);
1109 	}
1110 }
1111 
1112 static void kill_context(struct i915_gem_context *ctx)
1113 {
1114 	bool ban = (!i915_gem_context_is_persistent(ctx) ||
1115 		    !ctx->i915->params.enable_hangcheck);
1116 	struct i915_gem_engines *pos, *next;
1117 
1118 	spin_lock_irq(&ctx->stale.lock);
1119 	GEM_BUG_ON(!i915_gem_context_is_closed(ctx));
1120 	list_for_each_entry_safe(pos, next, &ctx->stale.engines, link) {
1121 		if (!i915_sw_fence_await(&pos->fence)) {
1122 			list_del_init(&pos->link);
1123 			continue;
1124 		}
1125 
1126 		spin_unlock_irq(&ctx->stale.lock);
1127 
1128 		kill_engines(pos, ban);
1129 
1130 		spin_lock_irq(&ctx->stale.lock);
1131 		GEM_BUG_ON(i915_sw_fence_signaled(&pos->fence));
1132 		list_safe_reset_next(pos, next, link);
1133 		list_del_init(&pos->link); /* decouple from FENCE_COMPLETE */
1134 
1135 		i915_sw_fence_complete(&pos->fence);
1136 	}
1137 	spin_unlock_irq(&ctx->stale.lock);
1138 }
1139 
1140 static void engines_idle_release(struct i915_gem_context *ctx,
1141 				 struct i915_gem_engines *engines)
1142 {
1143 	struct i915_gem_engines_iter it;
1144 	struct intel_context *ce;
1145 
1146 	INIT_LIST_HEAD(&engines->link);
1147 
1148 	engines->ctx = i915_gem_context_get(ctx);
1149 
1150 	for_each_gem_engine(ce, engines, it) {
1151 		int err;
1152 
1153 		/* serialises with execbuf */
1154 		set_bit(CONTEXT_CLOSED_BIT, &ce->flags);
1155 		if (!intel_context_pin_if_active(ce))
1156 			continue;
1157 
1158 		/* Wait until context is finally scheduled out and retired */
1159 		err = i915_sw_fence_await_active(&engines->fence,
1160 						 &ce->active,
1161 						 I915_ACTIVE_AWAIT_BARRIER);
1162 		intel_context_unpin(ce);
1163 		if (err)
1164 			goto kill;
1165 	}
1166 
1167 	spin_lock_irq(&ctx->stale.lock);
1168 	if (!i915_gem_context_is_closed(ctx))
1169 		list_add_tail(&engines->link, &ctx->stale.engines);
1170 	spin_unlock_irq(&ctx->stale.lock);
1171 
1172 kill:
1173 	if (list_empty(&engines->link)) /* raced, already closed */
1174 		kill_engines(engines, true);
1175 
1176 	i915_sw_fence_commit(&engines->fence);
1177 }
1178 
1179 static void set_closed_name(struct i915_gem_context *ctx)
1180 {
1181 	char *s;
1182 
1183 	/* Replace '[]' with '<>' to indicate closed in debug prints */
1184 
1185 	s = strrchr(ctx->name, '[');
1186 	if (!s)
1187 		return;
1188 
1189 	*s = '<';
1190 
1191 	s = strchr(s + 1, ']');
1192 	if (s)
1193 		*s = '>';
1194 }
1195 
1196 static void context_close(struct i915_gem_context *ctx)
1197 {
1198 	struct i915_address_space *vm;
1199 
1200 	/* Flush any concurrent set_engines() */
1201 	mutex_lock(&ctx->engines_mutex);
1202 	engines_idle_release(ctx, rcu_replace_pointer(ctx->engines, NULL, 1));
1203 	i915_gem_context_set_closed(ctx);
1204 	mutex_unlock(&ctx->engines_mutex);
1205 
1206 	mutex_lock(&ctx->mutex);
1207 
1208 	set_closed_name(ctx);
1209 
1210 	vm = i915_gem_context_vm(ctx);
1211 	if (vm)
1212 		i915_vm_close(vm);
1213 
1214 	ctx->file_priv = ERR_PTR(-EBADF);
1215 
1216 	/*
1217 	 * The LUT uses the VMA as a backpointer to unref the object,
1218 	 * so we need to clear the LUT before we close all the VMA (inside
1219 	 * the ppgtt).
1220 	 */
1221 	lut_close(ctx);
1222 
1223 	spin_lock(&ctx->i915->gem.contexts.lock);
1224 	list_del(&ctx->link);
1225 	spin_unlock(&ctx->i915->gem.contexts.lock);
1226 
1227 	mutex_unlock(&ctx->mutex);
1228 
1229 	/*
1230 	 * If the user has disabled hangchecking, we can not be sure that
1231 	 * the batches will ever complete after the context is closed,
1232 	 * keeping the context and all resources pinned forever. So in this
1233 	 * case we opt to forcibly kill off all remaining requests on
1234 	 * context close.
1235 	 */
1236 	kill_context(ctx);
1237 
1238 	i915_gem_context_put(ctx);
1239 }
1240 
1241 static int __context_set_persistence(struct i915_gem_context *ctx, bool state)
1242 {
1243 	if (i915_gem_context_is_persistent(ctx) == state)
1244 		return 0;
1245 
1246 	if (state) {
1247 		/*
1248 		 * Only contexts that are short-lived [that will expire or be
1249 		 * reset] are allowed to survive past termination. We require
1250 		 * hangcheck to ensure that the persistent requests are healthy.
1251 		 */
1252 		if (!ctx->i915->params.enable_hangcheck)
1253 			return -EINVAL;
1254 
1255 		i915_gem_context_set_persistence(ctx);
1256 	} else {
1257 		/* To cancel a context we use "preempt-to-idle" */
1258 		if (!(ctx->i915->caps.scheduler & I915_SCHEDULER_CAP_PREEMPTION))
1259 			return -ENODEV;
1260 
1261 		/*
1262 		 * If the cancel fails, we then need to reset, cleanly!
1263 		 *
1264 		 * If the per-engine reset fails, all hope is lost! We resort
1265 		 * to a full GPU reset in that unlikely case, but realistically
1266 		 * if the engine could not reset, the full reset does not fare
1267 		 * much better. The damage has been done.
1268 		 *
1269 		 * However, if we cannot reset an engine by itself, we cannot
1270 		 * cleanup a hanging persistent context without causing
1271 		 * colateral damage, and we should not pretend we can by
1272 		 * exposing the interface.
1273 		 */
1274 		if (!intel_has_reset_engine(&ctx->i915->gt))
1275 			return -ENODEV;
1276 
1277 		i915_gem_context_clear_persistence(ctx);
1278 	}
1279 
1280 	return 0;
1281 }
1282 
1283 static inline struct i915_gem_engines *
1284 __context_engines_await(const struct i915_gem_context *ctx,
1285 			bool *user_engines)
1286 {
1287 	struct i915_gem_engines *engines;
1288 
1289 	rcu_read_lock();
1290 	do {
1291 		engines = rcu_dereference(ctx->engines);
1292 		GEM_BUG_ON(!engines);
1293 
1294 		if (user_engines)
1295 			*user_engines = i915_gem_context_user_engines(ctx);
1296 
1297 		/* successful await => strong mb */
1298 		if (unlikely(!i915_sw_fence_await(&engines->fence)))
1299 			continue;
1300 
1301 		if (likely(engines == rcu_access_pointer(ctx->engines)))
1302 			break;
1303 
1304 		i915_sw_fence_complete(&engines->fence);
1305 	} while (1);
1306 	rcu_read_unlock();
1307 
1308 	return engines;
1309 }
1310 
1311 static void
1312 context_apply_all(struct i915_gem_context *ctx,
1313 		  void (*fn)(struct intel_context *ce, void *data),
1314 		  void *data)
1315 {
1316 	struct i915_gem_engines_iter it;
1317 	struct i915_gem_engines *e;
1318 	struct intel_context *ce;
1319 
1320 	e = __context_engines_await(ctx, NULL);
1321 	for_each_gem_engine(ce, e, it)
1322 		fn(ce, data);
1323 	i915_sw_fence_complete(&e->fence);
1324 }
1325 
1326 static struct i915_gem_context *
1327 i915_gem_create_context(struct drm_i915_private *i915,
1328 			const struct i915_gem_proto_context *pc)
1329 {
1330 	struct i915_gem_context *ctx;
1331 	struct i915_address_space *vm = NULL;
1332 	struct i915_gem_engines *e;
1333 	int err;
1334 	int i;
1335 
1336 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1337 	if (!ctx)
1338 		return ERR_PTR(-ENOMEM);
1339 
1340 	kref_init(&ctx->ref);
1341 	ctx->i915 = i915;
1342 	ctx->sched = pc->sched;
1343 	mutex_init(&ctx->mutex);
1344 	INIT_LIST_HEAD(&ctx->link);
1345 
1346 	spin_lock_init(&ctx->stale.lock);
1347 	INIT_LIST_HEAD(&ctx->stale.engines);
1348 
1349 	if (pc->vm) {
1350 		vm = i915_vm_get(pc->vm);
1351 	} else if (HAS_FULL_PPGTT(i915)) {
1352 		struct i915_ppgtt *ppgtt;
1353 
1354 		ppgtt = i915_ppgtt_create(&i915->gt);
1355 		if (IS_ERR(ppgtt)) {
1356 			drm_dbg(&i915->drm, "PPGTT setup failed (%ld)\n",
1357 				PTR_ERR(ppgtt));
1358 			err = PTR_ERR(ppgtt);
1359 			goto err_ctx;
1360 		}
1361 		vm = &ppgtt->vm;
1362 	}
1363 	if (vm) {
1364 		RCU_INIT_POINTER(ctx->vm, i915_vm_open(vm));
1365 
1366 		/* i915_vm_open() takes a reference */
1367 		i915_vm_put(vm);
1368 	}
1369 
1370 	mutex_init(&ctx->engines_mutex);
1371 	if (pc->num_user_engines >= 0) {
1372 		i915_gem_context_set_user_engines(ctx);
1373 		e = user_engines(ctx, pc->num_user_engines, pc->user_engines);
1374 	} else {
1375 		i915_gem_context_clear_user_engines(ctx);
1376 		e = default_engines(ctx, pc->legacy_rcs_sseu);
1377 	}
1378 	if (IS_ERR(e)) {
1379 		err = PTR_ERR(e);
1380 		goto err_vm;
1381 	}
1382 	RCU_INIT_POINTER(ctx->engines, e);
1383 
1384 	INIT_RADIX_TREE(&ctx->handles_vma, GFP_KERNEL);
1385 	mutex_init(&ctx->lut_mutex);
1386 
1387 	/* NB: Mark all slices as needing a remap so that when the context first
1388 	 * loads it will restore whatever remap state already exists. If there
1389 	 * is no remap info, it will be a NOP. */
1390 	ctx->remap_slice = ALL_L3_SLICES(i915);
1391 
1392 	ctx->user_flags = pc->user_flags;
1393 
1394 	for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp); i++)
1395 		ctx->hang_timestamp[i] = jiffies - CONTEXT_FAST_HANG_JIFFIES;
1396 
1397 	if (pc->single_timeline) {
1398 		err = drm_syncobj_create(&ctx->syncobj,
1399 					 DRM_SYNCOBJ_CREATE_SIGNALED,
1400 					 NULL);
1401 		if (err)
1402 			goto err_engines;
1403 	}
1404 
1405 	trace_i915_context_create(ctx);
1406 
1407 	return ctx;
1408 
1409 err_engines:
1410 	free_engines(e);
1411 err_vm:
1412 	if (ctx->vm)
1413 		i915_vm_close(ctx->vm);
1414 err_ctx:
1415 	kfree(ctx);
1416 	return ERR_PTR(err);
1417 }
1418 
1419 static void init_contexts(struct i915_gem_contexts *gc)
1420 {
1421 	spin_lock_init(&gc->lock);
1422 	INIT_LIST_HEAD(&gc->list);
1423 }
1424 
1425 void i915_gem_init__contexts(struct drm_i915_private *i915)
1426 {
1427 	init_contexts(&i915->gem.contexts);
1428 }
1429 
1430 static void gem_context_register(struct i915_gem_context *ctx,
1431 				 struct drm_i915_file_private *fpriv,
1432 				 u32 id)
1433 {
1434 	struct drm_i915_private *i915 = ctx->i915;
1435 	void *old;
1436 
1437 	ctx->file_priv = fpriv;
1438 
1439 	ctx->pid = get_task_pid(current, PIDTYPE_PID);
1440 	snprintf(ctx->name, sizeof(ctx->name), "%s[%d]",
1441 		 current->comm, pid_nr(ctx->pid));
1442 
1443 	/* And finally expose ourselves to userspace via the idr */
1444 	old = xa_store(&fpriv->context_xa, id, ctx, GFP_KERNEL);
1445 	WARN_ON(old);
1446 
1447 	spin_lock(&i915->gem.contexts.lock);
1448 	list_add_tail(&ctx->link, &i915->gem.contexts.list);
1449 	spin_unlock(&i915->gem.contexts.lock);
1450 }
1451 
1452 int i915_gem_context_open(struct drm_i915_private *i915,
1453 			  struct drm_file *file)
1454 {
1455 	struct drm_i915_file_private *file_priv = file->driver_priv;
1456 	struct i915_gem_proto_context *pc;
1457 	struct i915_gem_context *ctx;
1458 	int err;
1459 
1460 	mutex_init(&file_priv->proto_context_lock);
1461 	xa_init_flags(&file_priv->proto_context_xa, XA_FLAGS_ALLOC);
1462 
1463 	/* 0 reserved for the default context */
1464 	xa_init_flags(&file_priv->context_xa, XA_FLAGS_ALLOC1);
1465 
1466 	/* 0 reserved for invalid/unassigned ppgtt */
1467 	xa_init_flags(&file_priv->vm_xa, XA_FLAGS_ALLOC1);
1468 
1469 	pc = proto_context_create(i915, 0);
1470 	if (IS_ERR(pc)) {
1471 		err = PTR_ERR(pc);
1472 		goto err;
1473 	}
1474 
1475 	ctx = i915_gem_create_context(i915, pc);
1476 	proto_context_close(pc);
1477 	if (IS_ERR(ctx)) {
1478 		err = PTR_ERR(ctx);
1479 		goto err;
1480 	}
1481 
1482 	gem_context_register(ctx, file_priv, 0);
1483 
1484 	return 0;
1485 
1486 err:
1487 	xa_destroy(&file_priv->vm_xa);
1488 	xa_destroy(&file_priv->context_xa);
1489 	xa_destroy(&file_priv->proto_context_xa);
1490 	mutex_destroy(&file_priv->proto_context_lock);
1491 	return err;
1492 }
1493 
1494 void i915_gem_context_close(struct drm_file *file)
1495 {
1496 	struct drm_i915_file_private *file_priv = file->driver_priv;
1497 	struct i915_gem_proto_context *pc;
1498 	struct i915_address_space *vm;
1499 	struct i915_gem_context *ctx;
1500 	unsigned long idx;
1501 
1502 	xa_for_each(&file_priv->proto_context_xa, idx, pc)
1503 		proto_context_close(pc);
1504 	xa_destroy(&file_priv->proto_context_xa);
1505 	mutex_destroy(&file_priv->proto_context_lock);
1506 
1507 	xa_for_each(&file_priv->context_xa, idx, ctx)
1508 		context_close(ctx);
1509 	xa_destroy(&file_priv->context_xa);
1510 
1511 	xa_for_each(&file_priv->vm_xa, idx, vm)
1512 		i915_vm_put(vm);
1513 	xa_destroy(&file_priv->vm_xa);
1514 }
1515 
1516 int i915_gem_vm_create_ioctl(struct drm_device *dev, void *data,
1517 			     struct drm_file *file)
1518 {
1519 	struct drm_i915_private *i915 = to_i915(dev);
1520 	struct drm_i915_gem_vm_control *args = data;
1521 	struct drm_i915_file_private *file_priv = file->driver_priv;
1522 	struct i915_ppgtt *ppgtt;
1523 	u32 id;
1524 	int err;
1525 
1526 	if (!HAS_FULL_PPGTT(i915))
1527 		return -ENODEV;
1528 
1529 	if (args->flags)
1530 		return -EINVAL;
1531 
1532 	ppgtt = i915_ppgtt_create(&i915->gt);
1533 	if (IS_ERR(ppgtt))
1534 		return PTR_ERR(ppgtt);
1535 
1536 	if (args->extensions) {
1537 		err = i915_user_extensions(u64_to_user_ptr(args->extensions),
1538 					   NULL, 0,
1539 					   ppgtt);
1540 		if (err)
1541 			goto err_put;
1542 	}
1543 
1544 	err = xa_alloc(&file_priv->vm_xa, &id, &ppgtt->vm,
1545 		       xa_limit_32b, GFP_KERNEL);
1546 	if (err)
1547 		goto err_put;
1548 
1549 	GEM_BUG_ON(id == 0); /* reserved for invalid/unassigned ppgtt */
1550 	args->vm_id = id;
1551 	return 0;
1552 
1553 err_put:
1554 	i915_vm_put(&ppgtt->vm);
1555 	return err;
1556 }
1557 
1558 int i915_gem_vm_destroy_ioctl(struct drm_device *dev, void *data,
1559 			      struct drm_file *file)
1560 {
1561 	struct drm_i915_file_private *file_priv = file->driver_priv;
1562 	struct drm_i915_gem_vm_control *args = data;
1563 	struct i915_address_space *vm;
1564 
1565 	if (args->flags)
1566 		return -EINVAL;
1567 
1568 	if (args->extensions)
1569 		return -EINVAL;
1570 
1571 	vm = xa_erase(&file_priv->vm_xa, args->vm_id);
1572 	if (!vm)
1573 		return -ENOENT;
1574 
1575 	i915_vm_put(vm);
1576 	return 0;
1577 }
1578 
1579 static int get_ppgtt(struct drm_i915_file_private *file_priv,
1580 		     struct i915_gem_context *ctx,
1581 		     struct drm_i915_gem_context_param *args)
1582 {
1583 	struct i915_address_space *vm;
1584 	int err;
1585 	u32 id;
1586 
1587 	if (!rcu_access_pointer(ctx->vm))
1588 		return -ENODEV;
1589 
1590 	rcu_read_lock();
1591 	vm = context_get_vm_rcu(ctx);
1592 	rcu_read_unlock();
1593 	if (!vm)
1594 		return -ENODEV;
1595 
1596 	err = xa_alloc(&file_priv->vm_xa, &id, vm, xa_limit_32b, GFP_KERNEL);
1597 	if (err)
1598 		goto err_put;
1599 
1600 	i915_vm_open(vm);
1601 
1602 	GEM_BUG_ON(id == 0); /* reserved for invalid/unassigned ppgtt */
1603 	args->value = id;
1604 	args->size = 0;
1605 
1606 err_put:
1607 	i915_vm_put(vm);
1608 	return err;
1609 }
1610 
1611 int
1612 i915_gem_user_to_context_sseu(struct intel_gt *gt,
1613 			      const struct drm_i915_gem_context_param_sseu *user,
1614 			      struct intel_sseu *context)
1615 {
1616 	const struct sseu_dev_info *device = &gt->info.sseu;
1617 	struct drm_i915_private *i915 = gt->i915;
1618 
1619 	/* No zeros in any field. */
1620 	if (!user->slice_mask || !user->subslice_mask ||
1621 	    !user->min_eus_per_subslice || !user->max_eus_per_subslice)
1622 		return -EINVAL;
1623 
1624 	/* Max > min. */
1625 	if (user->max_eus_per_subslice < user->min_eus_per_subslice)
1626 		return -EINVAL;
1627 
1628 	/*
1629 	 * Some future proofing on the types since the uAPI is wider than the
1630 	 * current internal implementation.
1631 	 */
1632 	if (overflows_type(user->slice_mask, context->slice_mask) ||
1633 	    overflows_type(user->subslice_mask, context->subslice_mask) ||
1634 	    overflows_type(user->min_eus_per_subslice,
1635 			   context->min_eus_per_subslice) ||
1636 	    overflows_type(user->max_eus_per_subslice,
1637 			   context->max_eus_per_subslice))
1638 		return -EINVAL;
1639 
1640 	/* Check validity against hardware. */
1641 	if (user->slice_mask & ~device->slice_mask)
1642 		return -EINVAL;
1643 
1644 	if (user->subslice_mask & ~device->subslice_mask[0])
1645 		return -EINVAL;
1646 
1647 	if (user->max_eus_per_subslice > device->max_eus_per_subslice)
1648 		return -EINVAL;
1649 
1650 	context->slice_mask = user->slice_mask;
1651 	context->subslice_mask = user->subslice_mask;
1652 	context->min_eus_per_subslice = user->min_eus_per_subslice;
1653 	context->max_eus_per_subslice = user->max_eus_per_subslice;
1654 
1655 	/* Part specific restrictions. */
1656 	if (GRAPHICS_VER(i915) == 11) {
1657 		unsigned int hw_s = hweight8(device->slice_mask);
1658 		unsigned int hw_ss_per_s = hweight8(device->subslice_mask[0]);
1659 		unsigned int req_s = hweight8(context->slice_mask);
1660 		unsigned int req_ss = hweight8(context->subslice_mask);
1661 
1662 		/*
1663 		 * Only full subslice enablement is possible if more than one
1664 		 * slice is turned on.
1665 		 */
1666 		if (req_s > 1 && req_ss != hw_ss_per_s)
1667 			return -EINVAL;
1668 
1669 		/*
1670 		 * If more than four (SScount bitfield limit) subslices are
1671 		 * requested then the number has to be even.
1672 		 */
1673 		if (req_ss > 4 && (req_ss & 1))
1674 			return -EINVAL;
1675 
1676 		/*
1677 		 * If only one slice is enabled and subslice count is below the
1678 		 * device full enablement, it must be at most half of the all
1679 		 * available subslices.
1680 		 */
1681 		if (req_s == 1 && req_ss < hw_ss_per_s &&
1682 		    req_ss > (hw_ss_per_s / 2))
1683 			return -EINVAL;
1684 
1685 		/* ABI restriction - VME use case only. */
1686 
1687 		/* All slices or one slice only. */
1688 		if (req_s != 1 && req_s != hw_s)
1689 			return -EINVAL;
1690 
1691 		/*
1692 		 * Half subslices or full enablement only when one slice is
1693 		 * enabled.
1694 		 */
1695 		if (req_s == 1 &&
1696 		    (req_ss != hw_ss_per_s && req_ss != (hw_ss_per_s / 2)))
1697 			return -EINVAL;
1698 
1699 		/* No EU configuration changes. */
1700 		if ((user->min_eus_per_subslice !=
1701 		     device->max_eus_per_subslice) ||
1702 		    (user->max_eus_per_subslice !=
1703 		     device->max_eus_per_subslice))
1704 			return -EINVAL;
1705 	}
1706 
1707 	return 0;
1708 }
1709 
1710 static int set_sseu(struct i915_gem_context *ctx,
1711 		    struct drm_i915_gem_context_param *args)
1712 {
1713 	struct drm_i915_private *i915 = ctx->i915;
1714 	struct drm_i915_gem_context_param_sseu user_sseu;
1715 	struct intel_context *ce;
1716 	struct intel_sseu sseu;
1717 	unsigned long lookup;
1718 	int ret;
1719 
1720 	if (args->size < sizeof(user_sseu))
1721 		return -EINVAL;
1722 
1723 	if (GRAPHICS_VER(i915) != 11)
1724 		return -ENODEV;
1725 
1726 	if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value),
1727 			   sizeof(user_sseu)))
1728 		return -EFAULT;
1729 
1730 	if (user_sseu.rsvd)
1731 		return -EINVAL;
1732 
1733 	if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX))
1734 		return -EINVAL;
1735 
1736 	lookup = 0;
1737 	if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)
1738 		lookup |= LOOKUP_USER_INDEX;
1739 
1740 	ce = lookup_user_engine(ctx, lookup, &user_sseu.engine);
1741 	if (IS_ERR(ce))
1742 		return PTR_ERR(ce);
1743 
1744 	/* Only render engine supports RPCS configuration. */
1745 	if (ce->engine->class != RENDER_CLASS) {
1746 		ret = -ENODEV;
1747 		goto out_ce;
1748 	}
1749 
1750 	ret = i915_gem_user_to_context_sseu(ce->engine->gt, &user_sseu, &sseu);
1751 	if (ret)
1752 		goto out_ce;
1753 
1754 	ret = intel_context_reconfigure_sseu(ce, sseu);
1755 	if (ret)
1756 		goto out_ce;
1757 
1758 	args->size = sizeof(user_sseu);
1759 
1760 out_ce:
1761 	intel_context_put(ce);
1762 	return ret;
1763 }
1764 
1765 static int
1766 set_persistence(struct i915_gem_context *ctx,
1767 		const struct drm_i915_gem_context_param *args)
1768 {
1769 	if (args->size)
1770 		return -EINVAL;
1771 
1772 	return __context_set_persistence(ctx, args->value);
1773 }
1774 
1775 static void __apply_priority(struct intel_context *ce, void *arg)
1776 {
1777 	struct i915_gem_context *ctx = arg;
1778 
1779 	if (!intel_engine_has_timeslices(ce->engine))
1780 		return;
1781 
1782 	if (ctx->sched.priority >= I915_PRIORITY_NORMAL &&
1783 	    intel_engine_has_semaphores(ce->engine))
1784 		intel_context_set_use_semaphores(ce);
1785 	else
1786 		intel_context_clear_use_semaphores(ce);
1787 }
1788 
1789 static int set_priority(struct i915_gem_context *ctx,
1790 			const struct drm_i915_gem_context_param *args)
1791 {
1792 	int err;
1793 
1794 	err = validate_priority(ctx->i915, args);
1795 	if (err)
1796 		return err;
1797 
1798 	ctx->sched.priority = args->value;
1799 	context_apply_all(ctx, __apply_priority, ctx);
1800 
1801 	return 0;
1802 }
1803 
1804 static int ctx_setparam(struct drm_i915_file_private *fpriv,
1805 			struct i915_gem_context *ctx,
1806 			struct drm_i915_gem_context_param *args)
1807 {
1808 	int ret = 0;
1809 
1810 	switch (args->param) {
1811 	case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE:
1812 		if (args->size)
1813 			ret = -EINVAL;
1814 		else if (args->value)
1815 			i915_gem_context_set_no_error_capture(ctx);
1816 		else
1817 			i915_gem_context_clear_no_error_capture(ctx);
1818 		break;
1819 
1820 	case I915_CONTEXT_PARAM_BANNABLE:
1821 		if (args->size)
1822 			ret = -EINVAL;
1823 		else if (!capable(CAP_SYS_ADMIN) && !args->value)
1824 			ret = -EPERM;
1825 		else if (args->value)
1826 			i915_gem_context_set_bannable(ctx);
1827 		else
1828 			i915_gem_context_clear_bannable(ctx);
1829 		break;
1830 
1831 	case I915_CONTEXT_PARAM_RECOVERABLE:
1832 		if (args->size)
1833 			ret = -EINVAL;
1834 		else if (args->value)
1835 			i915_gem_context_set_recoverable(ctx);
1836 		else
1837 			i915_gem_context_clear_recoverable(ctx);
1838 		break;
1839 
1840 	case I915_CONTEXT_PARAM_PRIORITY:
1841 		ret = set_priority(ctx, args);
1842 		break;
1843 
1844 	case I915_CONTEXT_PARAM_SSEU:
1845 		ret = set_sseu(ctx, args);
1846 		break;
1847 
1848 	case I915_CONTEXT_PARAM_PERSISTENCE:
1849 		ret = set_persistence(ctx, args);
1850 		break;
1851 
1852 	case I915_CONTEXT_PARAM_NO_ZEROMAP:
1853 	case I915_CONTEXT_PARAM_BAN_PERIOD:
1854 	case I915_CONTEXT_PARAM_RINGSIZE:
1855 	case I915_CONTEXT_PARAM_VM:
1856 	case I915_CONTEXT_PARAM_ENGINES:
1857 	default:
1858 		ret = -EINVAL;
1859 		break;
1860 	}
1861 
1862 	return ret;
1863 }
1864 
1865 struct create_ext {
1866 	struct i915_gem_proto_context *pc;
1867 	struct drm_i915_file_private *fpriv;
1868 };
1869 
1870 static int create_setparam(struct i915_user_extension __user *ext, void *data)
1871 {
1872 	struct drm_i915_gem_context_create_ext_setparam local;
1873 	const struct create_ext *arg = data;
1874 
1875 	if (copy_from_user(&local, ext, sizeof(local)))
1876 		return -EFAULT;
1877 
1878 	if (local.param.ctx_id)
1879 		return -EINVAL;
1880 
1881 	return set_proto_ctx_param(arg->fpriv, arg->pc, &local.param);
1882 }
1883 
1884 static int invalid_ext(struct i915_user_extension __user *ext, void *data)
1885 {
1886 	return -EINVAL;
1887 }
1888 
1889 static const i915_user_extension_fn create_extensions[] = {
1890 	[I915_CONTEXT_CREATE_EXT_SETPARAM] = create_setparam,
1891 	[I915_CONTEXT_CREATE_EXT_CLONE] = invalid_ext,
1892 };
1893 
1894 static bool client_is_banned(struct drm_i915_file_private *file_priv)
1895 {
1896 	return atomic_read(&file_priv->ban_score) >= I915_CLIENT_SCORE_BANNED;
1897 }
1898 
1899 static inline struct i915_gem_context *
1900 __context_lookup(struct drm_i915_file_private *file_priv, u32 id)
1901 {
1902 	struct i915_gem_context *ctx;
1903 
1904 	rcu_read_lock();
1905 	ctx = xa_load(&file_priv->context_xa, id);
1906 	if (ctx && !kref_get_unless_zero(&ctx->ref))
1907 		ctx = NULL;
1908 	rcu_read_unlock();
1909 
1910 	return ctx;
1911 }
1912 
1913 static struct i915_gem_context *
1914 finalize_create_context_locked(struct drm_i915_file_private *file_priv,
1915 			       struct i915_gem_proto_context *pc, u32 id)
1916 {
1917 	struct i915_gem_context *ctx;
1918 	void *old;
1919 
1920 	lockdep_assert_held(&file_priv->proto_context_lock);
1921 
1922 	ctx = i915_gem_create_context(file_priv->dev_priv, pc);
1923 	if (IS_ERR(ctx))
1924 		return ctx;
1925 
1926 	gem_context_register(ctx, file_priv, id);
1927 
1928 	old = xa_erase(&file_priv->proto_context_xa, id);
1929 	GEM_BUG_ON(old != pc);
1930 	proto_context_close(pc);
1931 
1932 	/* One for the xarray and one for the caller */
1933 	return i915_gem_context_get(ctx);
1934 }
1935 
1936 struct i915_gem_context *
1937 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
1938 {
1939 	struct i915_gem_proto_context *pc;
1940 	struct i915_gem_context *ctx;
1941 
1942 	ctx = __context_lookup(file_priv, id);
1943 	if (ctx)
1944 		return ctx;
1945 
1946 	mutex_lock(&file_priv->proto_context_lock);
1947 	/* Try one more time under the lock */
1948 	ctx = __context_lookup(file_priv, id);
1949 	if (!ctx) {
1950 		pc = xa_load(&file_priv->proto_context_xa, id);
1951 		if (!pc)
1952 			ctx = ERR_PTR(-ENOENT);
1953 		else
1954 			ctx = finalize_create_context_locked(file_priv, pc, id);
1955 	}
1956 	mutex_unlock(&file_priv->proto_context_lock);
1957 
1958 	return ctx;
1959 }
1960 
1961 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
1962 				  struct drm_file *file)
1963 {
1964 	struct drm_i915_private *i915 = to_i915(dev);
1965 	struct drm_i915_gem_context_create_ext *args = data;
1966 	struct create_ext ext_data;
1967 	int ret;
1968 	u32 id;
1969 
1970 	if (!DRIVER_CAPS(i915)->has_logical_contexts)
1971 		return -ENODEV;
1972 
1973 	if (args->flags & I915_CONTEXT_CREATE_FLAGS_UNKNOWN)
1974 		return -EINVAL;
1975 
1976 	ret = intel_gt_terminally_wedged(&i915->gt);
1977 	if (ret)
1978 		return ret;
1979 
1980 	ext_data.fpriv = file->driver_priv;
1981 	if (client_is_banned(ext_data.fpriv)) {
1982 		drm_dbg(&i915->drm,
1983 			"client %s[%d] banned from creating ctx\n",
1984 			current->comm, task_pid_nr(current));
1985 		return -EIO;
1986 	}
1987 
1988 	ext_data.pc = proto_context_create(i915, args->flags);
1989 	if (IS_ERR(ext_data.pc))
1990 		return PTR_ERR(ext_data.pc);
1991 
1992 	if (args->flags & I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS) {
1993 		ret = i915_user_extensions(u64_to_user_ptr(args->extensions),
1994 					   create_extensions,
1995 					   ARRAY_SIZE(create_extensions),
1996 					   &ext_data);
1997 		if (ret)
1998 			goto err_pc;
1999 	}
2000 
2001 	if (GRAPHICS_VER(i915) > 12) {
2002 		struct i915_gem_context *ctx;
2003 
2004 		/* Get ourselves a context ID */
2005 		ret = xa_alloc(&ext_data.fpriv->context_xa, &id, NULL,
2006 			       xa_limit_32b, GFP_KERNEL);
2007 		if (ret)
2008 			goto err_pc;
2009 
2010 		ctx = i915_gem_create_context(i915, ext_data.pc);
2011 		if (IS_ERR(ctx)) {
2012 			ret = PTR_ERR(ctx);
2013 			goto err_pc;
2014 		}
2015 
2016 		proto_context_close(ext_data.pc);
2017 		gem_context_register(ctx, ext_data.fpriv, id);
2018 	} else {
2019 		ret = proto_context_register(ext_data.fpriv, ext_data.pc, &id);
2020 		if (ret < 0)
2021 			goto err_pc;
2022 	}
2023 
2024 	args->ctx_id = id;
2025 	drm_dbg(&i915->drm, "HW context %d created\n", args->ctx_id);
2026 
2027 	return 0;
2028 
2029 err_pc:
2030 	proto_context_close(ext_data.pc);
2031 	return ret;
2032 }
2033 
2034 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
2035 				   struct drm_file *file)
2036 {
2037 	struct drm_i915_gem_context_destroy *args = data;
2038 	struct drm_i915_file_private *file_priv = file->driver_priv;
2039 	struct i915_gem_proto_context *pc;
2040 	struct i915_gem_context *ctx;
2041 
2042 	if (args->pad != 0)
2043 		return -EINVAL;
2044 
2045 	if (!args->ctx_id)
2046 		return -ENOENT;
2047 
2048 	/* We need to hold the proto-context lock here to prevent races
2049 	 * with finalize_create_context_locked().
2050 	 */
2051 	mutex_lock(&file_priv->proto_context_lock);
2052 	ctx = xa_erase(&file_priv->context_xa, args->ctx_id);
2053 	pc = xa_erase(&file_priv->proto_context_xa, args->ctx_id);
2054 	mutex_unlock(&file_priv->proto_context_lock);
2055 
2056 	if (!ctx && !pc)
2057 		return -ENOENT;
2058 	GEM_WARN_ON(ctx && pc);
2059 
2060 	if (pc)
2061 		proto_context_close(pc);
2062 
2063 	if (ctx)
2064 		context_close(ctx);
2065 
2066 	return 0;
2067 }
2068 
2069 static int get_sseu(struct i915_gem_context *ctx,
2070 		    struct drm_i915_gem_context_param *args)
2071 {
2072 	struct drm_i915_gem_context_param_sseu user_sseu;
2073 	struct intel_context *ce;
2074 	unsigned long lookup;
2075 	int err;
2076 
2077 	if (args->size == 0)
2078 		goto out;
2079 	else if (args->size < sizeof(user_sseu))
2080 		return -EINVAL;
2081 
2082 	if (copy_from_user(&user_sseu, u64_to_user_ptr(args->value),
2083 			   sizeof(user_sseu)))
2084 		return -EFAULT;
2085 
2086 	if (user_sseu.rsvd)
2087 		return -EINVAL;
2088 
2089 	if (user_sseu.flags & ~(I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX))
2090 		return -EINVAL;
2091 
2092 	lookup = 0;
2093 	if (user_sseu.flags & I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX)
2094 		lookup |= LOOKUP_USER_INDEX;
2095 
2096 	ce = lookup_user_engine(ctx, lookup, &user_sseu.engine);
2097 	if (IS_ERR(ce))
2098 		return PTR_ERR(ce);
2099 
2100 	err = intel_context_lock_pinned(ce); /* serialises with set_sseu */
2101 	if (err) {
2102 		intel_context_put(ce);
2103 		return err;
2104 	}
2105 
2106 	user_sseu.slice_mask = ce->sseu.slice_mask;
2107 	user_sseu.subslice_mask = ce->sseu.subslice_mask;
2108 	user_sseu.min_eus_per_subslice = ce->sseu.min_eus_per_subslice;
2109 	user_sseu.max_eus_per_subslice = ce->sseu.max_eus_per_subslice;
2110 
2111 	intel_context_unlock_pinned(ce);
2112 	intel_context_put(ce);
2113 
2114 	if (copy_to_user(u64_to_user_ptr(args->value), &user_sseu,
2115 			 sizeof(user_sseu)))
2116 		return -EFAULT;
2117 
2118 out:
2119 	args->size = sizeof(user_sseu);
2120 
2121 	return 0;
2122 }
2123 
2124 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
2125 				    struct drm_file *file)
2126 {
2127 	struct drm_i915_file_private *file_priv = file->driver_priv;
2128 	struct drm_i915_gem_context_param *args = data;
2129 	struct i915_gem_context *ctx;
2130 	int ret = 0;
2131 
2132 	ctx = i915_gem_context_lookup(file_priv, args->ctx_id);
2133 	if (IS_ERR(ctx))
2134 		return PTR_ERR(ctx);
2135 
2136 	switch (args->param) {
2137 	case I915_CONTEXT_PARAM_GTT_SIZE:
2138 		args->size = 0;
2139 		rcu_read_lock();
2140 		if (rcu_access_pointer(ctx->vm))
2141 			args->value = rcu_dereference(ctx->vm)->total;
2142 		else
2143 			args->value = to_i915(dev)->ggtt.vm.total;
2144 		rcu_read_unlock();
2145 		break;
2146 
2147 	case I915_CONTEXT_PARAM_NO_ERROR_CAPTURE:
2148 		args->size = 0;
2149 		args->value = i915_gem_context_no_error_capture(ctx);
2150 		break;
2151 
2152 	case I915_CONTEXT_PARAM_BANNABLE:
2153 		args->size = 0;
2154 		args->value = i915_gem_context_is_bannable(ctx);
2155 		break;
2156 
2157 	case I915_CONTEXT_PARAM_RECOVERABLE:
2158 		args->size = 0;
2159 		args->value = i915_gem_context_is_recoverable(ctx);
2160 		break;
2161 
2162 	case I915_CONTEXT_PARAM_PRIORITY:
2163 		args->size = 0;
2164 		args->value = ctx->sched.priority;
2165 		break;
2166 
2167 	case I915_CONTEXT_PARAM_SSEU:
2168 		ret = get_sseu(ctx, args);
2169 		break;
2170 
2171 	case I915_CONTEXT_PARAM_VM:
2172 		ret = get_ppgtt(file_priv, ctx, args);
2173 		break;
2174 
2175 	case I915_CONTEXT_PARAM_PERSISTENCE:
2176 		args->size = 0;
2177 		args->value = i915_gem_context_is_persistent(ctx);
2178 		break;
2179 
2180 	case I915_CONTEXT_PARAM_NO_ZEROMAP:
2181 	case I915_CONTEXT_PARAM_BAN_PERIOD:
2182 	case I915_CONTEXT_PARAM_ENGINES:
2183 	case I915_CONTEXT_PARAM_RINGSIZE:
2184 	default:
2185 		ret = -EINVAL;
2186 		break;
2187 	}
2188 
2189 	i915_gem_context_put(ctx);
2190 	return ret;
2191 }
2192 
2193 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
2194 				    struct drm_file *file)
2195 {
2196 	struct drm_i915_file_private *file_priv = file->driver_priv;
2197 	struct drm_i915_gem_context_param *args = data;
2198 	struct i915_gem_proto_context *pc;
2199 	struct i915_gem_context *ctx;
2200 	int ret = 0;
2201 
2202 	mutex_lock(&file_priv->proto_context_lock);
2203 	ctx = __context_lookup(file_priv, args->ctx_id);
2204 	if (!ctx) {
2205 		pc = xa_load(&file_priv->proto_context_xa, args->ctx_id);
2206 		if (pc) {
2207 			/* Contexts should be finalized inside
2208 			 * GEM_CONTEXT_CREATE starting with graphics
2209 			 * version 13.
2210 			 */
2211 			WARN_ON(GRAPHICS_VER(file_priv->dev_priv) > 12);
2212 			ret = set_proto_ctx_param(file_priv, pc, args);
2213 		} else {
2214 			ret = -ENOENT;
2215 		}
2216 	}
2217 	mutex_unlock(&file_priv->proto_context_lock);
2218 
2219 	if (ctx) {
2220 		ret = ctx_setparam(file_priv, ctx, args);
2221 		i915_gem_context_put(ctx);
2222 	}
2223 
2224 	return ret;
2225 }
2226 
2227 int i915_gem_context_reset_stats_ioctl(struct drm_device *dev,
2228 				       void *data, struct drm_file *file)
2229 {
2230 	struct drm_i915_private *i915 = to_i915(dev);
2231 	struct drm_i915_reset_stats *args = data;
2232 	struct i915_gem_context *ctx;
2233 
2234 	if (args->flags || args->pad)
2235 		return -EINVAL;
2236 
2237 	ctx = i915_gem_context_lookup(file->driver_priv, args->ctx_id);
2238 	if (IS_ERR(ctx))
2239 		return PTR_ERR(ctx);
2240 
2241 	/*
2242 	 * We opt for unserialised reads here. This may result in tearing
2243 	 * in the extremely unlikely event of a GPU hang on this context
2244 	 * as we are querying them. If we need that extra layer of protection,
2245 	 * we should wrap the hangstats with a seqlock.
2246 	 */
2247 
2248 	if (capable(CAP_SYS_ADMIN))
2249 		args->reset_count = i915_reset_count(&i915->gpu_error);
2250 	else
2251 		args->reset_count = 0;
2252 
2253 	args->batch_active = atomic_read(&ctx->guilty_count);
2254 	args->batch_pending = atomic_read(&ctx->active_count);
2255 
2256 	i915_gem_context_put(ctx);
2257 	return 0;
2258 }
2259 
2260 /* GEM context-engines iterator: for_each_gem_engine() */
2261 struct intel_context *
2262 i915_gem_engines_iter_next(struct i915_gem_engines_iter *it)
2263 {
2264 	const struct i915_gem_engines *e = it->engines;
2265 	struct intel_context *ctx;
2266 
2267 	if (unlikely(!e))
2268 		return NULL;
2269 
2270 	do {
2271 		if (it->idx >= e->num_engines)
2272 			return NULL;
2273 
2274 		ctx = e->engines[it->idx++];
2275 	} while (!ctx);
2276 
2277 	return ctx;
2278 }
2279 
2280 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2281 #include "selftests/mock_context.c"
2282 #include "selftests/i915_gem_context.c"
2283 #endif
2284 
2285 void i915_gem_context_module_exit(void)
2286 {
2287 	kmem_cache_destroy(slab_luts);
2288 }
2289 
2290 int __init i915_gem_context_module_init(void)
2291 {
2292 	slab_luts = KMEM_CACHE(i915_lut_handle, 0);
2293 	if (!slab_luts)
2294 		return -ENOMEM;
2295 
2296 	return 0;
2297 }
2298