1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include <drm/drm_blend.h> 7 8 #include "i915_drv.h" 9 #include "i915_fixed.h" 10 #include "i915_reg.h" 11 #include "i9xx_wm.h" 12 #include "intel_atomic.h" 13 #include "intel_atomic_plane.h" 14 #include "intel_bw.h" 15 #include "intel_crtc.h" 16 #include "intel_de.h" 17 #include "intel_display.h" 18 #include "intel_display_power.h" 19 #include "intel_display_types.h" 20 #include "intel_fb.h" 21 #include "intel_pcode.h" 22 #include "intel_wm.h" 23 #include "skl_watermark.h" 24 #include "skl_watermark_regs.h" 25 26 static void skl_sagv_disable(struct drm_i915_private *i915); 27 28 /* Stores plane specific WM parameters */ 29 struct skl_wm_params { 30 bool x_tiled, y_tiled; 31 bool rc_surface; 32 bool is_planar; 33 u32 width; 34 u8 cpp; 35 u32 plane_pixel_rate; 36 u32 y_min_scanlines; 37 u32 plane_bytes_per_line; 38 uint_fixed_16_16_t plane_blocks_per_line; 39 uint_fixed_16_16_t y_tile_minimum; 40 u32 linetime_us; 41 u32 dbuf_block_size; 42 }; 43 44 u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *i915) 45 { 46 u8 enabled_slices = 0; 47 enum dbuf_slice slice; 48 49 for_each_dbuf_slice(i915, slice) { 50 if (intel_de_read(i915, DBUF_CTL_S(slice)) & DBUF_POWER_STATE) 51 enabled_slices |= BIT(slice); 52 } 53 54 return enabled_slices; 55 } 56 57 /* 58 * FIXME: We still don't have the proper code detect if we need to apply the WA, 59 * so assume we'll always need it in order to avoid underruns. 60 */ 61 static bool skl_needs_memory_bw_wa(struct drm_i915_private *i915) 62 { 63 return DISPLAY_VER(i915) == 9; 64 } 65 66 static bool 67 intel_has_sagv(struct drm_i915_private *i915) 68 { 69 return HAS_SAGV(i915) && 70 i915->display.sagv.status != I915_SAGV_NOT_CONTROLLED; 71 } 72 73 static u32 74 intel_sagv_block_time(struct drm_i915_private *i915) 75 { 76 if (DISPLAY_VER(i915) >= 14) { 77 u32 val; 78 79 val = intel_de_read(i915, MTL_LATENCY_SAGV); 80 81 return REG_FIELD_GET(MTL_LATENCY_QCLK_SAGV, val); 82 } else if (DISPLAY_VER(i915) >= 12) { 83 u32 val = 0; 84 int ret; 85 86 ret = snb_pcode_read(&i915->uncore, 87 GEN12_PCODE_READ_SAGV_BLOCK_TIME_US, 88 &val, NULL); 89 if (ret) { 90 drm_dbg_kms(&i915->drm, "Couldn't read SAGV block time!\n"); 91 return 0; 92 } 93 94 return val; 95 } else if (DISPLAY_VER(i915) == 11) { 96 return 10; 97 } else if (HAS_SAGV(i915)) { 98 return 30; 99 } else { 100 return 0; 101 } 102 } 103 104 static void intel_sagv_init(struct drm_i915_private *i915) 105 { 106 if (!HAS_SAGV(i915)) 107 i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED; 108 109 /* 110 * Probe to see if we have working SAGV control. 111 * For icl+ this was already determined by intel_bw_init_hw(). 112 */ 113 if (DISPLAY_VER(i915) < 11) 114 skl_sagv_disable(i915); 115 116 drm_WARN_ON(&i915->drm, i915->display.sagv.status == I915_SAGV_UNKNOWN); 117 118 i915->display.sagv.block_time_us = intel_sagv_block_time(i915); 119 120 drm_dbg_kms(&i915->drm, "SAGV supported: %s, original SAGV block time: %u us\n", 121 str_yes_no(intel_has_sagv(i915)), i915->display.sagv.block_time_us); 122 123 /* avoid overflow when adding with wm0 latency/etc. */ 124 if (drm_WARN(&i915->drm, i915->display.sagv.block_time_us > U16_MAX, 125 "Excessive SAGV block time %u, ignoring\n", 126 i915->display.sagv.block_time_us)) 127 i915->display.sagv.block_time_us = 0; 128 129 if (!intel_has_sagv(i915)) 130 i915->display.sagv.block_time_us = 0; 131 } 132 133 /* 134 * SAGV dynamically adjusts the system agent voltage and clock frequencies 135 * depending on power and performance requirements. The display engine access 136 * to system memory is blocked during the adjustment time. Because of the 137 * blocking time, having this enabled can cause full system hangs and/or pipe 138 * underruns if we don't meet all of the following requirements: 139 * 140 * - <= 1 pipe enabled 141 * - All planes can enable watermarks for latencies >= SAGV engine block time 142 * - We're not using an interlaced display configuration 143 */ 144 static void skl_sagv_enable(struct drm_i915_private *i915) 145 { 146 int ret; 147 148 if (!intel_has_sagv(i915)) 149 return; 150 151 if (i915->display.sagv.status == I915_SAGV_ENABLED) 152 return; 153 154 drm_dbg_kms(&i915->drm, "Enabling SAGV\n"); 155 ret = snb_pcode_write(&i915->uncore, GEN9_PCODE_SAGV_CONTROL, 156 GEN9_SAGV_ENABLE); 157 158 /* We don't need to wait for SAGV when enabling */ 159 160 /* 161 * Some skl systems, pre-release machines in particular, 162 * don't actually have SAGV. 163 */ 164 if (IS_SKYLAKE(i915) && ret == -ENXIO) { 165 drm_dbg(&i915->drm, "No SAGV found on system, ignoring\n"); 166 i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED; 167 return; 168 } else if (ret < 0) { 169 drm_err(&i915->drm, "Failed to enable SAGV\n"); 170 return; 171 } 172 173 i915->display.sagv.status = I915_SAGV_ENABLED; 174 } 175 176 static void skl_sagv_disable(struct drm_i915_private *i915) 177 { 178 int ret; 179 180 if (!intel_has_sagv(i915)) 181 return; 182 183 if (i915->display.sagv.status == I915_SAGV_DISABLED) 184 return; 185 186 drm_dbg_kms(&i915->drm, "Disabling SAGV\n"); 187 /* bspec says to keep retrying for at least 1 ms */ 188 ret = skl_pcode_request(&i915->uncore, GEN9_PCODE_SAGV_CONTROL, 189 GEN9_SAGV_DISABLE, 190 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED, 191 1); 192 /* 193 * Some skl systems, pre-release machines in particular, 194 * don't actually have SAGV. 195 */ 196 if (IS_SKYLAKE(i915) && ret == -ENXIO) { 197 drm_dbg(&i915->drm, "No SAGV found on system, ignoring\n"); 198 i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED; 199 return; 200 } else if (ret < 0) { 201 drm_err(&i915->drm, "Failed to disable SAGV (%d)\n", ret); 202 return; 203 } 204 205 i915->display.sagv.status = I915_SAGV_DISABLED; 206 } 207 208 static void skl_sagv_pre_plane_update(struct intel_atomic_state *state) 209 { 210 struct drm_i915_private *i915 = to_i915(state->base.dev); 211 const struct intel_bw_state *new_bw_state = 212 intel_atomic_get_new_bw_state(state); 213 214 if (!new_bw_state) 215 return; 216 217 if (!intel_can_enable_sagv(i915, new_bw_state)) 218 skl_sagv_disable(i915); 219 } 220 221 static void skl_sagv_post_plane_update(struct intel_atomic_state *state) 222 { 223 struct drm_i915_private *i915 = to_i915(state->base.dev); 224 const struct intel_bw_state *new_bw_state = 225 intel_atomic_get_new_bw_state(state); 226 227 if (!new_bw_state) 228 return; 229 230 if (intel_can_enable_sagv(i915, new_bw_state)) 231 skl_sagv_enable(i915); 232 } 233 234 static void icl_sagv_pre_plane_update(struct intel_atomic_state *state) 235 { 236 struct drm_i915_private *i915 = to_i915(state->base.dev); 237 const struct intel_bw_state *old_bw_state = 238 intel_atomic_get_old_bw_state(state); 239 const struct intel_bw_state *new_bw_state = 240 intel_atomic_get_new_bw_state(state); 241 u16 old_mask, new_mask; 242 243 if (!new_bw_state) 244 return; 245 246 old_mask = old_bw_state->qgv_points_mask; 247 new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask; 248 249 if (old_mask == new_mask) 250 return; 251 252 WARN_ON(!new_bw_state->base.changed); 253 254 drm_dbg_kms(&i915->drm, "Restricting QGV points: 0x%x -> 0x%x\n", 255 old_mask, new_mask); 256 257 /* 258 * Restrict required qgv points before updating the configuration. 259 * According to BSpec we can't mask and unmask qgv points at the same 260 * time. Also masking should be done before updating the configuration 261 * and unmasking afterwards. 262 */ 263 icl_pcode_restrict_qgv_points(i915, new_mask); 264 } 265 266 static void icl_sagv_post_plane_update(struct intel_atomic_state *state) 267 { 268 struct drm_i915_private *i915 = to_i915(state->base.dev); 269 const struct intel_bw_state *old_bw_state = 270 intel_atomic_get_old_bw_state(state); 271 const struct intel_bw_state *new_bw_state = 272 intel_atomic_get_new_bw_state(state); 273 u16 old_mask, new_mask; 274 275 if (!new_bw_state) 276 return; 277 278 old_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask; 279 new_mask = new_bw_state->qgv_points_mask; 280 281 if (old_mask == new_mask) 282 return; 283 284 WARN_ON(!new_bw_state->base.changed); 285 286 drm_dbg_kms(&i915->drm, "Relaxing QGV points: 0x%x -> 0x%x\n", 287 old_mask, new_mask); 288 289 /* 290 * Allow required qgv points after updating the configuration. 291 * According to BSpec we can't mask and unmask qgv points at the same 292 * time. Also masking should be done before updating the configuration 293 * and unmasking afterwards. 294 */ 295 icl_pcode_restrict_qgv_points(i915, new_mask); 296 } 297 298 void intel_sagv_pre_plane_update(struct intel_atomic_state *state) 299 { 300 struct drm_i915_private *i915 = to_i915(state->base.dev); 301 302 /* 303 * Just return if we can't control SAGV or don't have it. 304 * This is different from situation when we have SAGV but just can't 305 * afford it due to DBuf limitation - in case if SAGV is completely 306 * disabled in a BIOS, we are not even allowed to send a PCode request, 307 * as it will throw an error. So have to check it here. 308 */ 309 if (!intel_has_sagv(i915)) 310 return; 311 312 if (DISPLAY_VER(i915) >= 11) 313 icl_sagv_pre_plane_update(state); 314 else 315 skl_sagv_pre_plane_update(state); 316 } 317 318 void intel_sagv_post_plane_update(struct intel_atomic_state *state) 319 { 320 struct drm_i915_private *i915 = to_i915(state->base.dev); 321 322 /* 323 * Just return if we can't control SAGV or don't have it. 324 * This is different from situation when we have SAGV but just can't 325 * afford it due to DBuf limitation - in case if SAGV is completely 326 * disabled in a BIOS, we are not even allowed to send a PCode request, 327 * as it will throw an error. So have to check it here. 328 */ 329 if (!intel_has_sagv(i915)) 330 return; 331 332 if (DISPLAY_VER(i915) >= 11) 333 icl_sagv_post_plane_update(state); 334 else 335 skl_sagv_post_plane_update(state); 336 } 337 338 static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state) 339 { 340 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 341 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 342 enum plane_id plane_id; 343 int max_level = INT_MAX; 344 345 if (!intel_has_sagv(i915)) 346 return false; 347 348 if (!crtc_state->hw.active) 349 return true; 350 351 if (crtc_state->hw.pipe_mode.flags & DRM_MODE_FLAG_INTERLACE) 352 return false; 353 354 for_each_plane_id_on_crtc(crtc, plane_id) { 355 const struct skl_plane_wm *wm = 356 &crtc_state->wm.skl.optimal.planes[plane_id]; 357 int level; 358 359 /* Skip this plane if it's not enabled */ 360 if (!wm->wm[0].enable) 361 continue; 362 363 /* Find the highest enabled wm level for this plane */ 364 for (level = i915->display.wm.num_levels - 1; 365 !wm->wm[level].enable; --level) 366 { } 367 368 /* Highest common enabled wm level for all planes */ 369 max_level = min(level, max_level); 370 } 371 372 /* No enabled planes? */ 373 if (max_level == INT_MAX) 374 return true; 375 376 for_each_plane_id_on_crtc(crtc, plane_id) { 377 const struct skl_plane_wm *wm = 378 &crtc_state->wm.skl.optimal.planes[plane_id]; 379 380 /* 381 * All enabled planes must have enabled a common wm level that 382 * can tolerate memory latencies higher than sagv_block_time_us 383 */ 384 if (wm->wm[0].enable && !wm->wm[max_level].can_sagv) 385 return false; 386 } 387 388 return true; 389 } 390 391 static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state) 392 { 393 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 394 enum plane_id plane_id; 395 396 if (!crtc_state->hw.active) 397 return true; 398 399 for_each_plane_id_on_crtc(crtc, plane_id) { 400 const struct skl_plane_wm *wm = 401 &crtc_state->wm.skl.optimal.planes[plane_id]; 402 403 if (wm->wm[0].enable && !wm->sagv.wm0.enable) 404 return false; 405 } 406 407 return true; 408 } 409 410 static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state) 411 { 412 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 413 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 414 415 if (!i915->params.enable_sagv) 416 return false; 417 418 if (DISPLAY_VER(i915) >= 12) 419 return tgl_crtc_can_enable_sagv(crtc_state); 420 else 421 return skl_crtc_can_enable_sagv(crtc_state); 422 } 423 424 bool intel_can_enable_sagv(struct drm_i915_private *i915, 425 const struct intel_bw_state *bw_state) 426 { 427 if (DISPLAY_VER(i915) < 11 && 428 bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes)) 429 return false; 430 431 return bw_state->pipe_sagv_reject == 0; 432 } 433 434 static int intel_compute_sagv_mask(struct intel_atomic_state *state) 435 { 436 struct drm_i915_private *i915 = to_i915(state->base.dev); 437 int ret; 438 struct intel_crtc *crtc; 439 struct intel_crtc_state *new_crtc_state; 440 struct intel_bw_state *new_bw_state = NULL; 441 const struct intel_bw_state *old_bw_state = NULL; 442 int i; 443 444 for_each_new_intel_crtc_in_state(state, crtc, 445 new_crtc_state, i) { 446 new_bw_state = intel_atomic_get_bw_state(state); 447 if (IS_ERR(new_bw_state)) 448 return PTR_ERR(new_bw_state); 449 450 old_bw_state = intel_atomic_get_old_bw_state(state); 451 452 if (intel_crtc_can_enable_sagv(new_crtc_state)) 453 new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe); 454 else 455 new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe); 456 } 457 458 if (!new_bw_state) 459 return 0; 460 461 new_bw_state->active_pipes = 462 intel_calc_active_pipes(state, old_bw_state->active_pipes); 463 464 if (new_bw_state->active_pipes != old_bw_state->active_pipes) { 465 ret = intel_atomic_lock_global_state(&new_bw_state->base); 466 if (ret) 467 return ret; 468 } 469 470 if (intel_can_enable_sagv(i915, new_bw_state) != 471 intel_can_enable_sagv(i915, old_bw_state)) { 472 ret = intel_atomic_serialize_global_state(&new_bw_state->base); 473 if (ret) 474 return ret; 475 } else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) { 476 ret = intel_atomic_lock_global_state(&new_bw_state->base); 477 if (ret) 478 return ret; 479 } 480 481 for_each_new_intel_crtc_in_state(state, crtc, 482 new_crtc_state, i) { 483 struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal; 484 485 /* 486 * We store use_sagv_wm in the crtc state rather than relying on 487 * that bw state since we have no convenient way to get at the 488 * latter from the plane commit hooks (especially in the legacy 489 * cursor case) 490 */ 491 pipe_wm->use_sagv_wm = !HAS_HW_SAGV_WM(i915) && 492 DISPLAY_VER(i915) >= 12 && 493 intel_can_enable_sagv(i915, new_bw_state); 494 } 495 496 return 0; 497 } 498 499 static u16 skl_ddb_entry_init(struct skl_ddb_entry *entry, 500 u16 start, u16 end) 501 { 502 entry->start = start; 503 entry->end = end; 504 505 return end; 506 } 507 508 static int intel_dbuf_slice_size(struct drm_i915_private *i915) 509 { 510 return DISPLAY_INFO(i915)->dbuf.size / 511 hweight8(DISPLAY_INFO(i915)->dbuf.slice_mask); 512 } 513 514 static void 515 skl_ddb_entry_for_slices(struct drm_i915_private *i915, u8 slice_mask, 516 struct skl_ddb_entry *ddb) 517 { 518 int slice_size = intel_dbuf_slice_size(i915); 519 520 if (!slice_mask) { 521 ddb->start = 0; 522 ddb->end = 0; 523 return; 524 } 525 526 ddb->start = (ffs(slice_mask) - 1) * slice_size; 527 ddb->end = fls(slice_mask) * slice_size; 528 529 WARN_ON(ddb->start >= ddb->end); 530 WARN_ON(ddb->end > DISPLAY_INFO(i915)->dbuf.size); 531 } 532 533 static unsigned int mbus_ddb_offset(struct drm_i915_private *i915, u8 slice_mask) 534 { 535 struct skl_ddb_entry ddb; 536 537 if (slice_mask & (BIT(DBUF_S1) | BIT(DBUF_S2))) 538 slice_mask = BIT(DBUF_S1); 539 else if (slice_mask & (BIT(DBUF_S3) | BIT(DBUF_S4))) 540 slice_mask = BIT(DBUF_S3); 541 542 skl_ddb_entry_for_slices(i915, slice_mask, &ddb); 543 544 return ddb.start; 545 } 546 547 u32 skl_ddb_dbuf_slice_mask(struct drm_i915_private *i915, 548 const struct skl_ddb_entry *entry) 549 { 550 int slice_size = intel_dbuf_slice_size(i915); 551 enum dbuf_slice start_slice, end_slice; 552 u8 slice_mask = 0; 553 554 if (!skl_ddb_entry_size(entry)) 555 return 0; 556 557 start_slice = entry->start / slice_size; 558 end_slice = (entry->end - 1) / slice_size; 559 560 /* 561 * Per plane DDB entry can in a really worst case be on multiple slices 562 * but single entry is anyway contigious. 563 */ 564 while (start_slice <= end_slice) { 565 slice_mask |= BIT(start_slice); 566 start_slice++; 567 } 568 569 return slice_mask; 570 } 571 572 static unsigned int intel_crtc_ddb_weight(const struct intel_crtc_state *crtc_state) 573 { 574 const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode; 575 int hdisplay, vdisplay; 576 577 if (!crtc_state->hw.active) 578 return 0; 579 580 /* 581 * Watermark/ddb requirement highly depends upon width of the 582 * framebuffer, So instead of allocating DDB equally among pipes 583 * distribute DDB based on resolution/width of the display. 584 */ 585 drm_mode_get_hv_timing(pipe_mode, &hdisplay, &vdisplay); 586 587 return hdisplay; 588 } 589 590 static void intel_crtc_dbuf_weights(const struct intel_dbuf_state *dbuf_state, 591 enum pipe for_pipe, 592 unsigned int *weight_start, 593 unsigned int *weight_end, 594 unsigned int *weight_total) 595 { 596 struct drm_i915_private *i915 = 597 to_i915(dbuf_state->base.state->base.dev); 598 enum pipe pipe; 599 600 *weight_start = 0; 601 *weight_end = 0; 602 *weight_total = 0; 603 604 for_each_pipe(i915, pipe) { 605 int weight = dbuf_state->weight[pipe]; 606 607 /* 608 * Do not account pipes using other slice sets 609 * luckily as of current BSpec slice sets do not partially 610 * intersect(pipes share either same one slice or same slice set 611 * i.e no partial intersection), so it is enough to check for 612 * equality for now. 613 */ 614 if (dbuf_state->slices[pipe] != dbuf_state->slices[for_pipe]) 615 continue; 616 617 *weight_total += weight; 618 if (pipe < for_pipe) { 619 *weight_start += weight; 620 *weight_end += weight; 621 } else if (pipe == for_pipe) { 622 *weight_end += weight; 623 } 624 } 625 } 626 627 static int 628 skl_crtc_allocate_ddb(struct intel_atomic_state *state, struct intel_crtc *crtc) 629 { 630 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 631 unsigned int weight_total, weight_start, weight_end; 632 const struct intel_dbuf_state *old_dbuf_state = 633 intel_atomic_get_old_dbuf_state(state); 634 struct intel_dbuf_state *new_dbuf_state = 635 intel_atomic_get_new_dbuf_state(state); 636 struct intel_crtc_state *crtc_state; 637 struct skl_ddb_entry ddb_slices; 638 enum pipe pipe = crtc->pipe; 639 unsigned int mbus_offset = 0; 640 u32 ddb_range_size; 641 u32 dbuf_slice_mask; 642 u32 start, end; 643 int ret; 644 645 if (new_dbuf_state->weight[pipe] == 0) { 646 skl_ddb_entry_init(&new_dbuf_state->ddb[pipe], 0, 0); 647 goto out; 648 } 649 650 dbuf_slice_mask = new_dbuf_state->slices[pipe]; 651 652 skl_ddb_entry_for_slices(i915, dbuf_slice_mask, &ddb_slices); 653 mbus_offset = mbus_ddb_offset(i915, dbuf_slice_mask); 654 ddb_range_size = skl_ddb_entry_size(&ddb_slices); 655 656 intel_crtc_dbuf_weights(new_dbuf_state, pipe, 657 &weight_start, &weight_end, &weight_total); 658 659 start = ddb_range_size * weight_start / weight_total; 660 end = ddb_range_size * weight_end / weight_total; 661 662 skl_ddb_entry_init(&new_dbuf_state->ddb[pipe], 663 ddb_slices.start - mbus_offset + start, 664 ddb_slices.start - mbus_offset + end); 665 666 out: 667 if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe] && 668 skl_ddb_entry_equal(&old_dbuf_state->ddb[pipe], 669 &new_dbuf_state->ddb[pipe])) 670 return 0; 671 672 ret = intel_atomic_lock_global_state(&new_dbuf_state->base); 673 if (ret) 674 return ret; 675 676 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc); 677 if (IS_ERR(crtc_state)) 678 return PTR_ERR(crtc_state); 679 680 /* 681 * Used for checking overlaps, so we need absolute 682 * offsets instead of MBUS relative offsets. 683 */ 684 crtc_state->wm.skl.ddb.start = mbus_offset + new_dbuf_state->ddb[pipe].start; 685 crtc_state->wm.skl.ddb.end = mbus_offset + new_dbuf_state->ddb[pipe].end; 686 687 drm_dbg_kms(&i915->drm, 688 "[CRTC:%d:%s] dbuf slices 0x%x -> 0x%x, ddb (%d - %d) -> (%d - %d), active pipes 0x%x -> 0x%x\n", 689 crtc->base.base.id, crtc->base.name, 690 old_dbuf_state->slices[pipe], new_dbuf_state->slices[pipe], 691 old_dbuf_state->ddb[pipe].start, old_dbuf_state->ddb[pipe].end, 692 new_dbuf_state->ddb[pipe].start, new_dbuf_state->ddb[pipe].end, 693 old_dbuf_state->active_pipes, new_dbuf_state->active_pipes); 694 695 return 0; 696 } 697 698 static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state, 699 int width, const struct drm_format_info *format, 700 u64 modifier, unsigned int rotation, 701 u32 plane_pixel_rate, struct skl_wm_params *wp, 702 int color_plane); 703 704 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state, 705 struct intel_plane *plane, 706 int level, 707 unsigned int latency, 708 const struct skl_wm_params *wp, 709 const struct skl_wm_level *result_prev, 710 struct skl_wm_level *result /* out */); 711 712 static unsigned int skl_wm_latency(struct drm_i915_private *i915, int level, 713 const struct skl_wm_params *wp) 714 { 715 unsigned int latency = i915->display.wm.skl_latency[level]; 716 717 if (latency == 0) 718 return 0; 719 720 /* 721 * WaIncreaseLatencyIPCEnabled: kbl,cfl 722 * Display WA #1141: kbl,cfl 723 */ 724 if ((IS_KABYLAKE(i915) || IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) && 725 skl_watermark_ipc_enabled(i915)) 726 latency += 4; 727 728 if (skl_needs_memory_bw_wa(i915) && wp && wp->x_tiled) 729 latency += 15; 730 731 return latency; 732 } 733 734 static unsigned int 735 skl_cursor_allocation(const struct intel_crtc_state *crtc_state, 736 int num_active) 737 { 738 struct intel_plane *plane = to_intel_plane(crtc_state->uapi.crtc->cursor); 739 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 740 struct skl_wm_level wm = {}; 741 int ret, min_ddb_alloc = 0; 742 struct skl_wm_params wp; 743 int level; 744 745 ret = skl_compute_wm_params(crtc_state, 256, 746 drm_format_info(DRM_FORMAT_ARGB8888), 747 DRM_FORMAT_MOD_LINEAR, 748 DRM_MODE_ROTATE_0, 749 crtc_state->pixel_rate, &wp, 0); 750 drm_WARN_ON(&i915->drm, ret); 751 752 for (level = 0; level < i915->display.wm.num_levels; level++) { 753 unsigned int latency = skl_wm_latency(i915, level, &wp); 754 755 skl_compute_plane_wm(crtc_state, plane, level, latency, &wp, &wm, &wm); 756 if (wm.min_ddb_alloc == U16_MAX) 757 break; 758 759 min_ddb_alloc = wm.min_ddb_alloc; 760 } 761 762 return max(num_active == 1 ? 32 : 8, min_ddb_alloc); 763 } 764 765 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg) 766 { 767 skl_ddb_entry_init(entry, 768 REG_FIELD_GET(PLANE_BUF_START_MASK, reg), 769 REG_FIELD_GET(PLANE_BUF_END_MASK, reg)); 770 if (entry->end) 771 entry->end++; 772 } 773 774 static void 775 skl_ddb_get_hw_plane_state(struct drm_i915_private *i915, 776 const enum pipe pipe, 777 const enum plane_id plane_id, 778 struct skl_ddb_entry *ddb, 779 struct skl_ddb_entry *ddb_y) 780 { 781 u32 val; 782 783 /* Cursor doesn't support NV12/planar, so no extra calculation needed */ 784 if (plane_id == PLANE_CURSOR) { 785 val = intel_de_read(i915, CUR_BUF_CFG(pipe)); 786 skl_ddb_entry_init_from_hw(ddb, val); 787 return; 788 } 789 790 val = intel_de_read(i915, PLANE_BUF_CFG(pipe, plane_id)); 791 skl_ddb_entry_init_from_hw(ddb, val); 792 793 if (DISPLAY_VER(i915) >= 11) 794 return; 795 796 val = intel_de_read(i915, PLANE_NV12_BUF_CFG(pipe, plane_id)); 797 skl_ddb_entry_init_from_hw(ddb_y, val); 798 } 799 800 static void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc, 801 struct skl_ddb_entry *ddb, 802 struct skl_ddb_entry *ddb_y) 803 { 804 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 805 enum intel_display_power_domain power_domain; 806 enum pipe pipe = crtc->pipe; 807 intel_wakeref_t wakeref; 808 enum plane_id plane_id; 809 810 power_domain = POWER_DOMAIN_PIPE(pipe); 811 wakeref = intel_display_power_get_if_enabled(i915, power_domain); 812 if (!wakeref) 813 return; 814 815 for_each_plane_id_on_crtc(crtc, plane_id) 816 skl_ddb_get_hw_plane_state(i915, pipe, 817 plane_id, 818 &ddb[plane_id], 819 &ddb_y[plane_id]); 820 821 intel_display_power_put(i915, power_domain, wakeref); 822 } 823 824 struct dbuf_slice_conf_entry { 825 u8 active_pipes; 826 u8 dbuf_mask[I915_MAX_PIPES]; 827 bool join_mbus; 828 }; 829 830 /* 831 * Table taken from Bspec 12716 832 * Pipes do have some preferred DBuf slice affinity, 833 * plus there are some hardcoded requirements on how 834 * those should be distributed for multipipe scenarios. 835 * For more DBuf slices algorithm can get even more messy 836 * and less readable, so decided to use a table almost 837 * as is from BSpec itself - that way it is at least easier 838 * to compare, change and check. 839 */ 840 static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] = 841 /* Autogenerated with igt/tools/intel_dbuf_map tool: */ 842 { 843 { 844 .active_pipes = BIT(PIPE_A), 845 .dbuf_mask = { 846 [PIPE_A] = BIT(DBUF_S1), 847 }, 848 }, 849 { 850 .active_pipes = BIT(PIPE_B), 851 .dbuf_mask = { 852 [PIPE_B] = BIT(DBUF_S1), 853 }, 854 }, 855 { 856 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B), 857 .dbuf_mask = { 858 [PIPE_A] = BIT(DBUF_S1), 859 [PIPE_B] = BIT(DBUF_S2), 860 }, 861 }, 862 { 863 .active_pipes = BIT(PIPE_C), 864 .dbuf_mask = { 865 [PIPE_C] = BIT(DBUF_S2), 866 }, 867 }, 868 { 869 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C), 870 .dbuf_mask = { 871 [PIPE_A] = BIT(DBUF_S1), 872 [PIPE_C] = BIT(DBUF_S2), 873 }, 874 }, 875 { 876 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C), 877 .dbuf_mask = { 878 [PIPE_B] = BIT(DBUF_S1), 879 [PIPE_C] = BIT(DBUF_S2), 880 }, 881 }, 882 { 883 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C), 884 .dbuf_mask = { 885 [PIPE_A] = BIT(DBUF_S1), 886 [PIPE_B] = BIT(DBUF_S1), 887 [PIPE_C] = BIT(DBUF_S2), 888 }, 889 }, 890 {} 891 }; 892 893 /* 894 * Table taken from Bspec 49255 895 * Pipes do have some preferred DBuf slice affinity, 896 * plus there are some hardcoded requirements on how 897 * those should be distributed for multipipe scenarios. 898 * For more DBuf slices algorithm can get even more messy 899 * and less readable, so decided to use a table almost 900 * as is from BSpec itself - that way it is at least easier 901 * to compare, change and check. 902 */ 903 static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] = 904 /* Autogenerated with igt/tools/intel_dbuf_map tool: */ 905 { 906 { 907 .active_pipes = BIT(PIPE_A), 908 .dbuf_mask = { 909 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 910 }, 911 }, 912 { 913 .active_pipes = BIT(PIPE_B), 914 .dbuf_mask = { 915 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2), 916 }, 917 }, 918 { 919 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B), 920 .dbuf_mask = { 921 [PIPE_A] = BIT(DBUF_S2), 922 [PIPE_B] = BIT(DBUF_S1), 923 }, 924 }, 925 { 926 .active_pipes = BIT(PIPE_C), 927 .dbuf_mask = { 928 [PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1), 929 }, 930 }, 931 { 932 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C), 933 .dbuf_mask = { 934 [PIPE_A] = BIT(DBUF_S1), 935 [PIPE_C] = BIT(DBUF_S2), 936 }, 937 }, 938 { 939 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C), 940 .dbuf_mask = { 941 [PIPE_B] = BIT(DBUF_S1), 942 [PIPE_C] = BIT(DBUF_S2), 943 }, 944 }, 945 { 946 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C), 947 .dbuf_mask = { 948 [PIPE_A] = BIT(DBUF_S1), 949 [PIPE_B] = BIT(DBUF_S1), 950 [PIPE_C] = BIT(DBUF_S2), 951 }, 952 }, 953 { 954 .active_pipes = BIT(PIPE_D), 955 .dbuf_mask = { 956 [PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1), 957 }, 958 }, 959 { 960 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D), 961 .dbuf_mask = { 962 [PIPE_A] = BIT(DBUF_S1), 963 [PIPE_D] = BIT(DBUF_S2), 964 }, 965 }, 966 { 967 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D), 968 .dbuf_mask = { 969 [PIPE_B] = BIT(DBUF_S1), 970 [PIPE_D] = BIT(DBUF_S2), 971 }, 972 }, 973 { 974 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D), 975 .dbuf_mask = { 976 [PIPE_A] = BIT(DBUF_S1), 977 [PIPE_B] = BIT(DBUF_S1), 978 [PIPE_D] = BIT(DBUF_S2), 979 }, 980 }, 981 { 982 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D), 983 .dbuf_mask = { 984 [PIPE_C] = BIT(DBUF_S1), 985 [PIPE_D] = BIT(DBUF_S2), 986 }, 987 }, 988 { 989 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D), 990 .dbuf_mask = { 991 [PIPE_A] = BIT(DBUF_S1), 992 [PIPE_C] = BIT(DBUF_S2), 993 [PIPE_D] = BIT(DBUF_S2), 994 }, 995 }, 996 { 997 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), 998 .dbuf_mask = { 999 [PIPE_B] = BIT(DBUF_S1), 1000 [PIPE_C] = BIT(DBUF_S2), 1001 [PIPE_D] = BIT(DBUF_S2), 1002 }, 1003 }, 1004 { 1005 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), 1006 .dbuf_mask = { 1007 [PIPE_A] = BIT(DBUF_S1), 1008 [PIPE_B] = BIT(DBUF_S1), 1009 [PIPE_C] = BIT(DBUF_S2), 1010 [PIPE_D] = BIT(DBUF_S2), 1011 }, 1012 }, 1013 {} 1014 }; 1015 1016 static const struct dbuf_slice_conf_entry dg2_allowed_dbufs[] = { 1017 { 1018 .active_pipes = BIT(PIPE_A), 1019 .dbuf_mask = { 1020 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 1021 }, 1022 }, 1023 { 1024 .active_pipes = BIT(PIPE_B), 1025 .dbuf_mask = { 1026 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2), 1027 }, 1028 }, 1029 { 1030 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B), 1031 .dbuf_mask = { 1032 [PIPE_A] = BIT(DBUF_S1), 1033 [PIPE_B] = BIT(DBUF_S2), 1034 }, 1035 }, 1036 { 1037 .active_pipes = BIT(PIPE_C), 1038 .dbuf_mask = { 1039 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 1040 }, 1041 }, 1042 { 1043 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C), 1044 .dbuf_mask = { 1045 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 1046 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 1047 }, 1048 }, 1049 { 1050 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C), 1051 .dbuf_mask = { 1052 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2), 1053 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 1054 }, 1055 }, 1056 { 1057 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C), 1058 .dbuf_mask = { 1059 [PIPE_A] = BIT(DBUF_S1), 1060 [PIPE_B] = BIT(DBUF_S2), 1061 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 1062 }, 1063 }, 1064 { 1065 .active_pipes = BIT(PIPE_D), 1066 .dbuf_mask = { 1067 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4), 1068 }, 1069 }, 1070 { 1071 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D), 1072 .dbuf_mask = { 1073 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 1074 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4), 1075 }, 1076 }, 1077 { 1078 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D), 1079 .dbuf_mask = { 1080 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2), 1081 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4), 1082 }, 1083 }, 1084 { 1085 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D), 1086 .dbuf_mask = { 1087 [PIPE_A] = BIT(DBUF_S1), 1088 [PIPE_B] = BIT(DBUF_S2), 1089 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4), 1090 }, 1091 }, 1092 { 1093 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D), 1094 .dbuf_mask = { 1095 [PIPE_C] = BIT(DBUF_S3), 1096 [PIPE_D] = BIT(DBUF_S4), 1097 }, 1098 }, 1099 { 1100 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D), 1101 .dbuf_mask = { 1102 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 1103 [PIPE_C] = BIT(DBUF_S3), 1104 [PIPE_D] = BIT(DBUF_S4), 1105 }, 1106 }, 1107 { 1108 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), 1109 .dbuf_mask = { 1110 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2), 1111 [PIPE_C] = BIT(DBUF_S3), 1112 [PIPE_D] = BIT(DBUF_S4), 1113 }, 1114 }, 1115 { 1116 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), 1117 .dbuf_mask = { 1118 [PIPE_A] = BIT(DBUF_S1), 1119 [PIPE_B] = BIT(DBUF_S2), 1120 [PIPE_C] = BIT(DBUF_S3), 1121 [PIPE_D] = BIT(DBUF_S4), 1122 }, 1123 }, 1124 {} 1125 }; 1126 1127 static const struct dbuf_slice_conf_entry adlp_allowed_dbufs[] = { 1128 /* 1129 * Keep the join_mbus cases first so check_mbus_joined() 1130 * will prefer them over the !join_mbus cases. 1131 */ 1132 { 1133 .active_pipes = BIT(PIPE_A), 1134 .dbuf_mask = { 1135 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4), 1136 }, 1137 .join_mbus = true, 1138 }, 1139 { 1140 .active_pipes = BIT(PIPE_B), 1141 .dbuf_mask = { 1142 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4), 1143 }, 1144 .join_mbus = true, 1145 }, 1146 { 1147 .active_pipes = BIT(PIPE_A), 1148 .dbuf_mask = { 1149 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 1150 }, 1151 .join_mbus = false, 1152 }, 1153 { 1154 .active_pipes = BIT(PIPE_B), 1155 .dbuf_mask = { 1156 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), 1157 }, 1158 .join_mbus = false, 1159 }, 1160 { 1161 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B), 1162 .dbuf_mask = { 1163 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 1164 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), 1165 }, 1166 }, 1167 { 1168 .active_pipes = BIT(PIPE_C), 1169 .dbuf_mask = { 1170 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 1171 }, 1172 }, 1173 { 1174 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C), 1175 .dbuf_mask = { 1176 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 1177 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 1178 }, 1179 }, 1180 { 1181 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C), 1182 .dbuf_mask = { 1183 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), 1184 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 1185 }, 1186 }, 1187 { 1188 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C), 1189 .dbuf_mask = { 1190 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 1191 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), 1192 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 1193 }, 1194 }, 1195 { 1196 .active_pipes = BIT(PIPE_D), 1197 .dbuf_mask = { 1198 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), 1199 }, 1200 }, 1201 { 1202 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D), 1203 .dbuf_mask = { 1204 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 1205 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), 1206 }, 1207 }, 1208 { 1209 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D), 1210 .dbuf_mask = { 1211 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), 1212 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), 1213 }, 1214 }, 1215 { 1216 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D), 1217 .dbuf_mask = { 1218 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 1219 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), 1220 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), 1221 }, 1222 }, 1223 { 1224 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D), 1225 .dbuf_mask = { 1226 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 1227 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), 1228 }, 1229 }, 1230 { 1231 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D), 1232 .dbuf_mask = { 1233 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 1234 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 1235 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), 1236 }, 1237 }, 1238 { 1239 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), 1240 .dbuf_mask = { 1241 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), 1242 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 1243 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), 1244 }, 1245 }, 1246 { 1247 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D), 1248 .dbuf_mask = { 1249 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2), 1250 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4), 1251 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4), 1252 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2), 1253 }, 1254 }, 1255 {} 1256 1257 }; 1258 1259 static bool check_mbus_joined(u8 active_pipes, 1260 const struct dbuf_slice_conf_entry *dbuf_slices) 1261 { 1262 int i; 1263 1264 for (i = 0; dbuf_slices[i].active_pipes != 0; i++) { 1265 if (dbuf_slices[i].active_pipes == active_pipes) 1266 return dbuf_slices[i].join_mbus; 1267 } 1268 return false; 1269 } 1270 1271 static bool adlp_check_mbus_joined(u8 active_pipes) 1272 { 1273 return check_mbus_joined(active_pipes, adlp_allowed_dbufs); 1274 } 1275 1276 static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus, 1277 const struct dbuf_slice_conf_entry *dbuf_slices) 1278 { 1279 int i; 1280 1281 for (i = 0; dbuf_slices[i].active_pipes != 0; i++) { 1282 if (dbuf_slices[i].active_pipes == active_pipes && 1283 dbuf_slices[i].join_mbus == join_mbus) 1284 return dbuf_slices[i].dbuf_mask[pipe]; 1285 } 1286 return 0; 1287 } 1288 1289 /* 1290 * This function finds an entry with same enabled pipe configuration and 1291 * returns correspondent DBuf slice mask as stated in BSpec for particular 1292 * platform. 1293 */ 1294 static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus) 1295 { 1296 /* 1297 * FIXME: For ICL this is still a bit unclear as prev BSpec revision 1298 * required calculating "pipe ratio" in order to determine 1299 * if one or two slices can be used for single pipe configurations 1300 * as additional constraint to the existing table. 1301 * However based on recent info, it should be not "pipe ratio" 1302 * but rather ratio between pixel_rate and cdclk with additional 1303 * constants, so for now we are using only table until this is 1304 * clarified. Also this is the reason why crtc_state param is 1305 * still here - we will need it once those additional constraints 1306 * pop up. 1307 */ 1308 return compute_dbuf_slices(pipe, active_pipes, join_mbus, 1309 icl_allowed_dbufs); 1310 } 1311 1312 static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus) 1313 { 1314 return compute_dbuf_slices(pipe, active_pipes, join_mbus, 1315 tgl_allowed_dbufs); 1316 } 1317 1318 static u8 adlp_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus) 1319 { 1320 return compute_dbuf_slices(pipe, active_pipes, join_mbus, 1321 adlp_allowed_dbufs); 1322 } 1323 1324 static u8 dg2_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus) 1325 { 1326 return compute_dbuf_slices(pipe, active_pipes, join_mbus, 1327 dg2_allowed_dbufs); 1328 } 1329 1330 static u8 skl_compute_dbuf_slices(struct intel_crtc *crtc, u8 active_pipes, bool join_mbus) 1331 { 1332 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 1333 enum pipe pipe = crtc->pipe; 1334 1335 if (IS_DG2(i915)) 1336 return dg2_compute_dbuf_slices(pipe, active_pipes, join_mbus); 1337 else if (DISPLAY_VER(i915) >= 13) 1338 return adlp_compute_dbuf_slices(pipe, active_pipes, join_mbus); 1339 else if (DISPLAY_VER(i915) == 12) 1340 return tgl_compute_dbuf_slices(pipe, active_pipes, join_mbus); 1341 else if (DISPLAY_VER(i915) == 11) 1342 return icl_compute_dbuf_slices(pipe, active_pipes, join_mbus); 1343 /* 1344 * For anything else just return one slice yet. 1345 * Should be extended for other platforms. 1346 */ 1347 return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0; 1348 } 1349 1350 static bool 1351 use_minimal_wm0_only(const struct intel_crtc_state *crtc_state, 1352 struct intel_plane *plane) 1353 { 1354 struct drm_i915_private *i915 = to_i915(plane->base.dev); 1355 1356 return DISPLAY_VER(i915) >= 13 && 1357 crtc_state->uapi.async_flip && 1358 plane->async_flip; 1359 } 1360 1361 static u64 1362 skl_total_relative_data_rate(const struct intel_crtc_state *crtc_state) 1363 { 1364 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1365 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 1366 enum plane_id plane_id; 1367 u64 data_rate = 0; 1368 1369 for_each_plane_id_on_crtc(crtc, plane_id) { 1370 if (plane_id == PLANE_CURSOR) 1371 continue; 1372 1373 data_rate += crtc_state->rel_data_rate[plane_id]; 1374 1375 if (DISPLAY_VER(i915) < 11) 1376 data_rate += crtc_state->rel_data_rate_y[plane_id]; 1377 } 1378 1379 return data_rate; 1380 } 1381 1382 static const struct skl_wm_level * 1383 skl_plane_wm_level(const struct skl_pipe_wm *pipe_wm, 1384 enum plane_id plane_id, 1385 int level) 1386 { 1387 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id]; 1388 1389 if (level == 0 && pipe_wm->use_sagv_wm) 1390 return &wm->sagv.wm0; 1391 1392 return &wm->wm[level]; 1393 } 1394 1395 static const struct skl_wm_level * 1396 skl_plane_trans_wm(const struct skl_pipe_wm *pipe_wm, 1397 enum plane_id plane_id) 1398 { 1399 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id]; 1400 1401 if (pipe_wm->use_sagv_wm) 1402 return &wm->sagv.trans_wm; 1403 1404 return &wm->trans_wm; 1405 } 1406 1407 /* 1408 * We only disable the watermarks for each plane if 1409 * they exceed the ddb allocation of said plane. This 1410 * is done so that we don't end up touching cursor 1411 * watermarks needlessly when some other plane reduces 1412 * our max possible watermark level. 1413 * 1414 * Bspec has this to say about the PLANE_WM enable bit: 1415 * "All the watermarks at this level for all enabled 1416 * planes must be enabled before the level will be used." 1417 * So this is actually safe to do. 1418 */ 1419 static void 1420 skl_check_wm_level(struct skl_wm_level *wm, const struct skl_ddb_entry *ddb) 1421 { 1422 if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb)) 1423 memset(wm, 0, sizeof(*wm)); 1424 } 1425 1426 static void 1427 skl_check_nv12_wm_level(struct skl_wm_level *wm, struct skl_wm_level *uv_wm, 1428 const struct skl_ddb_entry *ddb_y, const struct skl_ddb_entry *ddb) 1429 { 1430 if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb_y) || 1431 uv_wm->min_ddb_alloc > skl_ddb_entry_size(ddb)) { 1432 memset(wm, 0, sizeof(*wm)); 1433 memset(uv_wm, 0, sizeof(*uv_wm)); 1434 } 1435 } 1436 1437 static bool skl_need_wm_copy_wa(struct drm_i915_private *i915, int level, 1438 const struct skl_plane_wm *wm) 1439 { 1440 /* 1441 * Wa_1408961008:icl, ehl 1442 * Wa_14012656716:tgl, adl 1443 * Wa_14017887344:icl 1444 * Wa_14017868169:adl, tgl 1445 * Due to some power saving optimizations, different subsystems 1446 * like PSR, might still use even disabled wm level registers, 1447 * for "reference", so lets keep at least the values sane. 1448 * Considering amount of WA requiring us to do similar things, was 1449 * decided to simply do it for all of the platforms, as those wm 1450 * levels are disabled, this isn't going to do harm anyway. 1451 */ 1452 return level > 0 && !wm->wm[level].enable; 1453 } 1454 1455 struct skl_plane_ddb_iter { 1456 u64 data_rate; 1457 u16 start, size; 1458 }; 1459 1460 static void 1461 skl_allocate_plane_ddb(struct skl_plane_ddb_iter *iter, 1462 struct skl_ddb_entry *ddb, 1463 const struct skl_wm_level *wm, 1464 u64 data_rate) 1465 { 1466 u16 size, extra = 0; 1467 1468 if (data_rate) { 1469 extra = min_t(u16, iter->size, 1470 DIV64_U64_ROUND_UP(iter->size * data_rate, 1471 iter->data_rate)); 1472 iter->size -= extra; 1473 iter->data_rate -= data_rate; 1474 } 1475 1476 /* 1477 * Keep ddb entry of all disabled planes explicitly zeroed 1478 * to avoid skl_ddb_add_affected_planes() adding them to 1479 * the state when other planes change their allocations. 1480 */ 1481 size = wm->min_ddb_alloc + extra; 1482 if (size) 1483 iter->start = skl_ddb_entry_init(ddb, iter->start, 1484 iter->start + size); 1485 } 1486 1487 static int 1488 skl_crtc_allocate_plane_ddb(struct intel_atomic_state *state, 1489 struct intel_crtc *crtc) 1490 { 1491 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 1492 struct intel_crtc_state *crtc_state = 1493 intel_atomic_get_new_crtc_state(state, crtc); 1494 const struct intel_dbuf_state *dbuf_state = 1495 intel_atomic_get_new_dbuf_state(state); 1496 const struct skl_ddb_entry *alloc = &dbuf_state->ddb[crtc->pipe]; 1497 int num_active = hweight8(dbuf_state->active_pipes); 1498 struct skl_plane_ddb_iter iter; 1499 enum plane_id plane_id; 1500 u16 cursor_size; 1501 u32 blocks; 1502 int level; 1503 1504 /* Clear the partitioning for disabled planes. */ 1505 memset(crtc_state->wm.skl.plane_ddb, 0, sizeof(crtc_state->wm.skl.plane_ddb)); 1506 memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y)); 1507 1508 if (!crtc_state->hw.active) 1509 return 0; 1510 1511 iter.start = alloc->start; 1512 iter.size = skl_ddb_entry_size(alloc); 1513 if (iter.size == 0) 1514 return 0; 1515 1516 /* Allocate fixed number of blocks for cursor. */ 1517 cursor_size = skl_cursor_allocation(crtc_state, num_active); 1518 iter.size -= cursor_size; 1519 skl_ddb_entry_init(&crtc_state->wm.skl.plane_ddb[PLANE_CURSOR], 1520 alloc->end - cursor_size, alloc->end); 1521 1522 iter.data_rate = skl_total_relative_data_rate(crtc_state); 1523 1524 /* 1525 * Find the highest watermark level for which we can satisfy the block 1526 * requirement of active planes. 1527 */ 1528 for (level = i915->display.wm.num_levels - 1; level >= 0; level--) { 1529 blocks = 0; 1530 for_each_plane_id_on_crtc(crtc, plane_id) { 1531 const struct skl_plane_wm *wm = 1532 &crtc_state->wm.skl.optimal.planes[plane_id]; 1533 1534 if (plane_id == PLANE_CURSOR) { 1535 const struct skl_ddb_entry *ddb = 1536 &crtc_state->wm.skl.plane_ddb[plane_id]; 1537 1538 if (wm->wm[level].min_ddb_alloc > skl_ddb_entry_size(ddb)) { 1539 drm_WARN_ON(&i915->drm, 1540 wm->wm[level].min_ddb_alloc != U16_MAX); 1541 blocks = U32_MAX; 1542 break; 1543 } 1544 continue; 1545 } 1546 1547 blocks += wm->wm[level].min_ddb_alloc; 1548 blocks += wm->uv_wm[level].min_ddb_alloc; 1549 } 1550 1551 if (blocks <= iter.size) { 1552 iter.size -= blocks; 1553 break; 1554 } 1555 } 1556 1557 if (level < 0) { 1558 drm_dbg_kms(&i915->drm, 1559 "Requested display configuration exceeds system DDB limitations"); 1560 drm_dbg_kms(&i915->drm, "minimum required %d/%d\n", 1561 blocks, iter.size); 1562 return -EINVAL; 1563 } 1564 1565 /* avoid the WARN later when we don't allocate any extra DDB */ 1566 if (iter.data_rate == 0) 1567 iter.size = 0; 1568 1569 /* 1570 * Grant each plane the blocks it requires at the highest achievable 1571 * watermark level, plus an extra share of the leftover blocks 1572 * proportional to its relative data rate. 1573 */ 1574 for_each_plane_id_on_crtc(crtc, plane_id) { 1575 struct skl_ddb_entry *ddb = 1576 &crtc_state->wm.skl.plane_ddb[plane_id]; 1577 struct skl_ddb_entry *ddb_y = 1578 &crtc_state->wm.skl.plane_ddb_y[plane_id]; 1579 const struct skl_plane_wm *wm = 1580 &crtc_state->wm.skl.optimal.planes[plane_id]; 1581 1582 if (plane_id == PLANE_CURSOR) 1583 continue; 1584 1585 if (DISPLAY_VER(i915) < 11 && 1586 crtc_state->nv12_planes & BIT(plane_id)) { 1587 skl_allocate_plane_ddb(&iter, ddb_y, &wm->wm[level], 1588 crtc_state->rel_data_rate_y[plane_id]); 1589 skl_allocate_plane_ddb(&iter, ddb, &wm->uv_wm[level], 1590 crtc_state->rel_data_rate[plane_id]); 1591 } else { 1592 skl_allocate_plane_ddb(&iter, ddb, &wm->wm[level], 1593 crtc_state->rel_data_rate[plane_id]); 1594 } 1595 } 1596 drm_WARN_ON(&i915->drm, iter.size != 0 || iter.data_rate != 0); 1597 1598 /* 1599 * When we calculated watermark values we didn't know how high 1600 * of a level we'd actually be able to hit, so we just marked 1601 * all levels as "enabled." Go back now and disable the ones 1602 * that aren't actually possible. 1603 */ 1604 for (level++; level < i915->display.wm.num_levels; level++) { 1605 for_each_plane_id_on_crtc(crtc, plane_id) { 1606 const struct skl_ddb_entry *ddb = 1607 &crtc_state->wm.skl.plane_ddb[plane_id]; 1608 const struct skl_ddb_entry *ddb_y = 1609 &crtc_state->wm.skl.plane_ddb_y[plane_id]; 1610 struct skl_plane_wm *wm = 1611 &crtc_state->wm.skl.optimal.planes[plane_id]; 1612 1613 if (DISPLAY_VER(i915) < 11 && 1614 crtc_state->nv12_planes & BIT(plane_id)) 1615 skl_check_nv12_wm_level(&wm->wm[level], 1616 &wm->uv_wm[level], 1617 ddb_y, ddb); 1618 else 1619 skl_check_wm_level(&wm->wm[level], ddb); 1620 1621 if (skl_need_wm_copy_wa(i915, level, wm)) { 1622 wm->wm[level].blocks = wm->wm[level - 1].blocks; 1623 wm->wm[level].lines = wm->wm[level - 1].lines; 1624 wm->wm[level].ignore_lines = wm->wm[level - 1].ignore_lines; 1625 } 1626 } 1627 } 1628 1629 /* 1630 * Go back and disable the transition and SAGV watermarks 1631 * if it turns out we don't have enough DDB blocks for them. 1632 */ 1633 for_each_plane_id_on_crtc(crtc, plane_id) { 1634 const struct skl_ddb_entry *ddb = 1635 &crtc_state->wm.skl.plane_ddb[plane_id]; 1636 const struct skl_ddb_entry *ddb_y = 1637 &crtc_state->wm.skl.plane_ddb_y[plane_id]; 1638 struct skl_plane_wm *wm = 1639 &crtc_state->wm.skl.optimal.planes[plane_id]; 1640 1641 if (DISPLAY_VER(i915) < 11 && 1642 crtc_state->nv12_planes & BIT(plane_id)) { 1643 skl_check_wm_level(&wm->trans_wm, ddb_y); 1644 } else { 1645 WARN_ON(skl_ddb_entry_size(ddb_y)); 1646 1647 skl_check_wm_level(&wm->trans_wm, ddb); 1648 } 1649 1650 skl_check_wm_level(&wm->sagv.wm0, ddb); 1651 skl_check_wm_level(&wm->sagv.trans_wm, ddb); 1652 } 1653 1654 return 0; 1655 } 1656 1657 /* 1658 * The max latency should be 257 (max the punit can code is 255 and we add 2us 1659 * for the read latency) and cpp should always be <= 8, so that 1660 * should allow pixel_rate up to ~2 GHz which seems sufficient since max 1661 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that. 1662 */ 1663 static uint_fixed_16_16_t 1664 skl_wm_method1(const struct drm_i915_private *i915, u32 pixel_rate, 1665 u8 cpp, u32 latency, u32 dbuf_block_size) 1666 { 1667 u32 wm_intermediate_val; 1668 uint_fixed_16_16_t ret; 1669 1670 if (latency == 0) 1671 return FP_16_16_MAX; 1672 1673 wm_intermediate_val = latency * pixel_rate * cpp; 1674 ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size); 1675 1676 if (DISPLAY_VER(i915) >= 10) 1677 ret = add_fixed16_u32(ret, 1); 1678 1679 return ret; 1680 } 1681 1682 static uint_fixed_16_16_t 1683 skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency, 1684 uint_fixed_16_16_t plane_blocks_per_line) 1685 { 1686 u32 wm_intermediate_val; 1687 uint_fixed_16_16_t ret; 1688 1689 if (latency == 0) 1690 return FP_16_16_MAX; 1691 1692 wm_intermediate_val = latency * pixel_rate; 1693 wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val, 1694 pipe_htotal * 1000); 1695 ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line); 1696 return ret; 1697 } 1698 1699 static uint_fixed_16_16_t 1700 intel_get_linetime_us(const struct intel_crtc_state *crtc_state) 1701 { 1702 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 1703 u32 pixel_rate; 1704 u32 crtc_htotal; 1705 uint_fixed_16_16_t linetime_us; 1706 1707 if (!crtc_state->hw.active) 1708 return u32_to_fixed16(0); 1709 1710 pixel_rate = crtc_state->pixel_rate; 1711 1712 if (drm_WARN_ON(&i915->drm, pixel_rate == 0)) 1713 return u32_to_fixed16(0); 1714 1715 crtc_htotal = crtc_state->hw.pipe_mode.crtc_htotal; 1716 linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate); 1717 1718 return linetime_us; 1719 } 1720 1721 static int 1722 skl_compute_wm_params(const struct intel_crtc_state *crtc_state, 1723 int width, const struct drm_format_info *format, 1724 u64 modifier, unsigned int rotation, 1725 u32 plane_pixel_rate, struct skl_wm_params *wp, 1726 int color_plane) 1727 { 1728 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1729 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 1730 u32 interm_pbpl; 1731 1732 /* only planar format has two planes */ 1733 if (color_plane == 1 && 1734 !intel_format_info_is_yuv_semiplanar(format, modifier)) { 1735 drm_dbg_kms(&i915->drm, 1736 "Non planar format have single plane\n"); 1737 return -EINVAL; 1738 } 1739 1740 wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED; 1741 wp->y_tiled = modifier != I915_FORMAT_MOD_X_TILED && 1742 intel_fb_is_tiled_modifier(modifier); 1743 wp->rc_surface = intel_fb_is_ccs_modifier(modifier); 1744 wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier); 1745 1746 wp->width = width; 1747 if (color_plane == 1 && wp->is_planar) 1748 wp->width /= 2; 1749 1750 wp->cpp = format->cpp[color_plane]; 1751 wp->plane_pixel_rate = plane_pixel_rate; 1752 1753 if (DISPLAY_VER(i915) >= 11 && 1754 modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 1) 1755 wp->dbuf_block_size = 256; 1756 else 1757 wp->dbuf_block_size = 512; 1758 1759 if (drm_rotation_90_or_270(rotation)) { 1760 switch (wp->cpp) { 1761 case 1: 1762 wp->y_min_scanlines = 16; 1763 break; 1764 case 2: 1765 wp->y_min_scanlines = 8; 1766 break; 1767 case 4: 1768 wp->y_min_scanlines = 4; 1769 break; 1770 default: 1771 MISSING_CASE(wp->cpp); 1772 return -EINVAL; 1773 } 1774 } else { 1775 wp->y_min_scanlines = 4; 1776 } 1777 1778 if (skl_needs_memory_bw_wa(i915)) 1779 wp->y_min_scanlines *= 2; 1780 1781 wp->plane_bytes_per_line = wp->width * wp->cpp; 1782 if (wp->y_tiled) { 1783 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line * 1784 wp->y_min_scanlines, 1785 wp->dbuf_block_size); 1786 1787 if (DISPLAY_VER(i915) >= 10) 1788 interm_pbpl++; 1789 1790 wp->plane_blocks_per_line = div_fixed16(interm_pbpl, 1791 wp->y_min_scanlines); 1792 } else { 1793 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line, 1794 wp->dbuf_block_size); 1795 1796 if (!wp->x_tiled || DISPLAY_VER(i915) >= 10) 1797 interm_pbpl++; 1798 1799 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl); 1800 } 1801 1802 wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines, 1803 wp->plane_blocks_per_line); 1804 1805 wp->linetime_us = fixed16_to_u32_round_up(intel_get_linetime_us(crtc_state)); 1806 1807 return 0; 1808 } 1809 1810 static int 1811 skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state, 1812 const struct intel_plane_state *plane_state, 1813 struct skl_wm_params *wp, int color_plane) 1814 { 1815 const struct drm_framebuffer *fb = plane_state->hw.fb; 1816 int width; 1817 1818 /* 1819 * Src coordinates are already rotated by 270 degrees for 1820 * the 90/270 degree plane rotation cases (to match the 1821 * GTT mapping), hence no need to account for rotation here. 1822 */ 1823 width = drm_rect_width(&plane_state->uapi.src) >> 16; 1824 1825 return skl_compute_wm_params(crtc_state, width, 1826 fb->format, fb->modifier, 1827 plane_state->hw.rotation, 1828 intel_plane_pixel_rate(crtc_state, plane_state), 1829 wp, color_plane); 1830 } 1831 1832 static bool skl_wm_has_lines(struct drm_i915_private *i915, int level) 1833 { 1834 if (DISPLAY_VER(i915) >= 10) 1835 return true; 1836 1837 /* The number of lines are ignored for the level 0 watermark. */ 1838 return level > 0; 1839 } 1840 1841 static int skl_wm_max_lines(struct drm_i915_private *i915) 1842 { 1843 if (DISPLAY_VER(i915) >= 13) 1844 return 255; 1845 else 1846 return 31; 1847 } 1848 1849 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state, 1850 struct intel_plane *plane, 1851 int level, 1852 unsigned int latency, 1853 const struct skl_wm_params *wp, 1854 const struct skl_wm_level *result_prev, 1855 struct skl_wm_level *result /* out */) 1856 { 1857 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 1858 uint_fixed_16_16_t method1, method2; 1859 uint_fixed_16_16_t selected_result; 1860 u32 blocks, lines, min_ddb_alloc = 0; 1861 1862 if (latency == 0 || 1863 (use_minimal_wm0_only(crtc_state, plane) && level > 0)) { 1864 /* reject it */ 1865 result->min_ddb_alloc = U16_MAX; 1866 return; 1867 } 1868 1869 method1 = skl_wm_method1(i915, wp->plane_pixel_rate, 1870 wp->cpp, latency, wp->dbuf_block_size); 1871 method2 = skl_wm_method2(wp->plane_pixel_rate, 1872 crtc_state->hw.pipe_mode.crtc_htotal, 1873 latency, 1874 wp->plane_blocks_per_line); 1875 1876 if (wp->y_tiled) { 1877 selected_result = max_fixed16(method2, wp->y_tile_minimum); 1878 } else { 1879 if ((wp->cpp * crtc_state->hw.pipe_mode.crtc_htotal / 1880 wp->dbuf_block_size < 1) && 1881 (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) { 1882 selected_result = method2; 1883 } else if (latency >= wp->linetime_us) { 1884 if (DISPLAY_VER(i915) == 9) 1885 selected_result = min_fixed16(method1, method2); 1886 else 1887 selected_result = method2; 1888 } else { 1889 selected_result = method1; 1890 } 1891 } 1892 1893 blocks = fixed16_to_u32_round_up(selected_result) + 1; 1894 /* 1895 * Lets have blocks at minimum equivalent to plane_blocks_per_line 1896 * as there will be at minimum one line for lines configuration. This 1897 * is a work around for FIFO underruns observed with resolutions like 1898 * 4k 60 Hz in single channel DRAM configurations. 1899 * 1900 * As per the Bspec 49325, if the ddb allocation can hold at least 1901 * one plane_blocks_per_line, we should have selected method2 in 1902 * the above logic. Assuming that modern versions have enough dbuf 1903 * and method2 guarantees blocks equivalent to at least 1 line, 1904 * select the blocks as plane_blocks_per_line. 1905 * 1906 * TODO: Revisit the logic when we have better understanding on DRAM 1907 * channels' impact on the level 0 memory latency and the relevant 1908 * wm calculations. 1909 */ 1910 if (skl_wm_has_lines(i915, level)) 1911 blocks = max(blocks, 1912 fixed16_to_u32_round_up(wp->plane_blocks_per_line)); 1913 lines = div_round_up_fixed16(selected_result, 1914 wp->plane_blocks_per_line); 1915 1916 if (DISPLAY_VER(i915) == 9) { 1917 /* Display WA #1125: skl,bxt,kbl */ 1918 if (level == 0 && wp->rc_surface) 1919 blocks += fixed16_to_u32_round_up(wp->y_tile_minimum); 1920 1921 /* Display WA #1126: skl,bxt,kbl */ 1922 if (level >= 1 && level <= 7) { 1923 if (wp->y_tiled) { 1924 blocks += fixed16_to_u32_round_up(wp->y_tile_minimum); 1925 lines += wp->y_min_scanlines; 1926 } else { 1927 blocks++; 1928 } 1929 1930 /* 1931 * Make sure result blocks for higher latency levels are 1932 * at least as high as level below the current level. 1933 * Assumption in DDB algorithm optimization for special 1934 * cases. Also covers Display WA #1125 for RC. 1935 */ 1936 if (result_prev->blocks > blocks) 1937 blocks = result_prev->blocks; 1938 } 1939 } 1940 1941 if (DISPLAY_VER(i915) >= 11) { 1942 if (wp->y_tiled) { 1943 int extra_lines; 1944 1945 if (lines % wp->y_min_scanlines == 0) 1946 extra_lines = wp->y_min_scanlines; 1947 else 1948 extra_lines = wp->y_min_scanlines * 2 - 1949 lines % wp->y_min_scanlines; 1950 1951 min_ddb_alloc = mul_round_up_u32_fixed16(lines + extra_lines, 1952 wp->plane_blocks_per_line); 1953 } else { 1954 min_ddb_alloc = blocks + DIV_ROUND_UP(blocks, 10); 1955 } 1956 } 1957 1958 if (!skl_wm_has_lines(i915, level)) 1959 lines = 0; 1960 1961 if (lines > skl_wm_max_lines(i915)) { 1962 /* reject it */ 1963 result->min_ddb_alloc = U16_MAX; 1964 return; 1965 } 1966 1967 /* 1968 * If lines is valid, assume we can use this watermark level 1969 * for now. We'll come back and disable it after we calculate the 1970 * DDB allocation if it turns out we don't actually have enough 1971 * blocks to satisfy it. 1972 */ 1973 result->blocks = blocks; 1974 result->lines = lines; 1975 /* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */ 1976 result->min_ddb_alloc = max(min_ddb_alloc, blocks) + 1; 1977 result->enable = true; 1978 1979 if (DISPLAY_VER(i915) < 12 && i915->display.sagv.block_time_us) 1980 result->can_sagv = latency >= i915->display.sagv.block_time_us; 1981 } 1982 1983 static void 1984 skl_compute_wm_levels(const struct intel_crtc_state *crtc_state, 1985 struct intel_plane *plane, 1986 const struct skl_wm_params *wm_params, 1987 struct skl_wm_level *levels) 1988 { 1989 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 1990 struct skl_wm_level *result_prev = &levels[0]; 1991 int level; 1992 1993 for (level = 0; level < i915->display.wm.num_levels; level++) { 1994 struct skl_wm_level *result = &levels[level]; 1995 unsigned int latency = skl_wm_latency(i915, level, wm_params); 1996 1997 skl_compute_plane_wm(crtc_state, plane, level, latency, 1998 wm_params, result_prev, result); 1999 2000 result_prev = result; 2001 } 2002 } 2003 2004 static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state, 2005 struct intel_plane *plane, 2006 const struct skl_wm_params *wm_params, 2007 struct skl_plane_wm *plane_wm) 2008 { 2009 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 2010 struct skl_wm_level *sagv_wm = &plane_wm->sagv.wm0; 2011 struct skl_wm_level *levels = plane_wm->wm; 2012 unsigned int latency = 0; 2013 2014 if (i915->display.sagv.block_time_us) 2015 latency = i915->display.sagv.block_time_us + 2016 skl_wm_latency(i915, 0, wm_params); 2017 2018 skl_compute_plane_wm(crtc_state, plane, 0, latency, 2019 wm_params, &levels[0], 2020 sagv_wm); 2021 } 2022 2023 static void skl_compute_transition_wm(struct drm_i915_private *i915, 2024 struct skl_wm_level *trans_wm, 2025 const struct skl_wm_level *wm0, 2026 const struct skl_wm_params *wp) 2027 { 2028 u16 trans_min, trans_amount, trans_y_tile_min; 2029 u16 wm0_blocks, trans_offset, blocks; 2030 2031 /* Transition WM don't make any sense if ipc is disabled */ 2032 if (!skl_watermark_ipc_enabled(i915)) 2033 return; 2034 2035 /* 2036 * WaDisableTWM:skl,kbl,cfl,bxt 2037 * Transition WM are not recommended by HW team for GEN9 2038 */ 2039 if (DISPLAY_VER(i915) == 9) 2040 return; 2041 2042 if (DISPLAY_VER(i915) >= 11) 2043 trans_min = 4; 2044 else 2045 trans_min = 14; 2046 2047 /* Display WA #1140: glk,cnl */ 2048 if (DISPLAY_VER(i915) == 10) 2049 trans_amount = 0; 2050 else 2051 trans_amount = 10; /* This is configurable amount */ 2052 2053 trans_offset = trans_min + trans_amount; 2054 2055 /* 2056 * The spec asks for Selected Result Blocks for wm0 (the real value), 2057 * not Result Blocks (the integer value). Pay attention to the capital 2058 * letters. The value wm_l0->blocks is actually Result Blocks, but 2059 * since Result Blocks is the ceiling of Selected Result Blocks plus 1, 2060 * and since we later will have to get the ceiling of the sum in the 2061 * transition watermarks calculation, we can just pretend Selected 2062 * Result Blocks is Result Blocks minus 1 and it should work for the 2063 * current platforms. 2064 */ 2065 wm0_blocks = wm0->blocks - 1; 2066 2067 if (wp->y_tiled) { 2068 trans_y_tile_min = 2069 (u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum); 2070 blocks = max(wm0_blocks, trans_y_tile_min) + trans_offset; 2071 } else { 2072 blocks = wm0_blocks + trans_offset; 2073 } 2074 blocks++; 2075 2076 /* 2077 * Just assume we can enable the transition watermark. After 2078 * computing the DDB we'll come back and disable it if that 2079 * assumption turns out to be false. 2080 */ 2081 trans_wm->blocks = blocks; 2082 trans_wm->min_ddb_alloc = max_t(u16, wm0->min_ddb_alloc, blocks + 1); 2083 trans_wm->enable = true; 2084 } 2085 2086 static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state, 2087 const struct intel_plane_state *plane_state, 2088 struct intel_plane *plane, int color_plane) 2089 { 2090 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2091 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 2092 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id]; 2093 struct skl_wm_params wm_params; 2094 int ret; 2095 2096 ret = skl_compute_plane_wm_params(crtc_state, plane_state, 2097 &wm_params, color_plane); 2098 if (ret) 2099 return ret; 2100 2101 skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->wm); 2102 2103 skl_compute_transition_wm(i915, &wm->trans_wm, 2104 &wm->wm[0], &wm_params); 2105 2106 if (DISPLAY_VER(i915) >= 12) { 2107 tgl_compute_sagv_wm(crtc_state, plane, &wm_params, wm); 2108 2109 skl_compute_transition_wm(i915, &wm->sagv.trans_wm, 2110 &wm->sagv.wm0, &wm_params); 2111 } 2112 2113 return 0; 2114 } 2115 2116 static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state, 2117 const struct intel_plane_state *plane_state, 2118 struct intel_plane *plane) 2119 { 2120 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id]; 2121 struct skl_wm_params wm_params; 2122 int ret; 2123 2124 wm->is_planar = true; 2125 2126 /* uv plane watermarks must also be validated for NV12/Planar */ 2127 ret = skl_compute_plane_wm_params(crtc_state, plane_state, 2128 &wm_params, 1); 2129 if (ret) 2130 return ret; 2131 2132 skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->uv_wm); 2133 2134 return 0; 2135 } 2136 2137 static int skl_build_plane_wm(struct intel_crtc_state *crtc_state, 2138 const struct intel_plane_state *plane_state) 2139 { 2140 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 2141 enum plane_id plane_id = plane->id; 2142 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id]; 2143 const struct drm_framebuffer *fb = plane_state->hw.fb; 2144 int ret; 2145 2146 memset(wm, 0, sizeof(*wm)); 2147 2148 if (!intel_wm_plane_visible(crtc_state, plane_state)) 2149 return 0; 2150 2151 ret = skl_build_plane_wm_single(crtc_state, plane_state, 2152 plane, 0); 2153 if (ret) 2154 return ret; 2155 2156 if (fb->format->is_yuv && fb->format->num_planes > 1) { 2157 ret = skl_build_plane_wm_uv(crtc_state, plane_state, 2158 plane); 2159 if (ret) 2160 return ret; 2161 } 2162 2163 return 0; 2164 } 2165 2166 static int icl_build_plane_wm(struct intel_crtc_state *crtc_state, 2167 const struct intel_plane_state *plane_state) 2168 { 2169 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane); 2170 struct drm_i915_private *i915 = to_i915(plane->base.dev); 2171 enum plane_id plane_id = plane->id; 2172 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id]; 2173 int ret; 2174 2175 /* Watermarks calculated in master */ 2176 if (plane_state->planar_slave) 2177 return 0; 2178 2179 memset(wm, 0, sizeof(*wm)); 2180 2181 if (plane_state->planar_linked_plane) { 2182 const struct drm_framebuffer *fb = plane_state->hw.fb; 2183 2184 drm_WARN_ON(&i915->drm, 2185 !intel_wm_plane_visible(crtc_state, plane_state)); 2186 drm_WARN_ON(&i915->drm, !fb->format->is_yuv || 2187 fb->format->num_planes == 1); 2188 2189 ret = skl_build_plane_wm_single(crtc_state, plane_state, 2190 plane_state->planar_linked_plane, 0); 2191 if (ret) 2192 return ret; 2193 2194 ret = skl_build_plane_wm_single(crtc_state, plane_state, 2195 plane, 1); 2196 if (ret) 2197 return ret; 2198 } else if (intel_wm_plane_visible(crtc_state, plane_state)) { 2199 ret = skl_build_plane_wm_single(crtc_state, plane_state, 2200 plane, 0); 2201 if (ret) 2202 return ret; 2203 } 2204 2205 return 0; 2206 } 2207 2208 static bool 2209 skl_is_vblank_too_short(const struct intel_crtc_state *crtc_state, 2210 int wm0_lines, int latency) 2211 { 2212 const struct drm_display_mode *adjusted_mode = 2213 &crtc_state->hw.adjusted_mode; 2214 2215 /* FIXME missing scaler and DSC pre-fill time */ 2216 return crtc_state->framestart_delay + 2217 intel_usecs_to_scanlines(adjusted_mode, latency) + 2218 wm0_lines > 2219 adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vblank_start; 2220 } 2221 2222 static int skl_max_wm0_lines(const struct intel_crtc_state *crtc_state) 2223 { 2224 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2225 enum plane_id plane_id; 2226 int wm0_lines = 0; 2227 2228 for_each_plane_id_on_crtc(crtc, plane_id) { 2229 const struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id]; 2230 2231 /* FIXME what about !skl_wm_has_lines() platforms? */ 2232 wm0_lines = max_t(int, wm0_lines, wm->wm[0].lines); 2233 } 2234 2235 return wm0_lines; 2236 } 2237 2238 static int skl_max_wm_level_for_vblank(struct intel_crtc_state *crtc_state, 2239 int wm0_lines) 2240 { 2241 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2242 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 2243 int level; 2244 2245 for (level = i915->display.wm.num_levels - 1; level >= 0; level--) { 2246 int latency; 2247 2248 /* FIXME should we care about the latency w/a's? */ 2249 latency = skl_wm_latency(i915, level, NULL); 2250 if (latency == 0) 2251 continue; 2252 2253 /* FIXME is it correct to use 0 latency for wm0 here? */ 2254 if (level == 0) 2255 latency = 0; 2256 2257 if (!skl_is_vblank_too_short(crtc_state, wm0_lines, latency)) 2258 return level; 2259 } 2260 2261 return -EINVAL; 2262 } 2263 2264 static int skl_wm_check_vblank(struct intel_crtc_state *crtc_state) 2265 { 2266 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 2267 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 2268 int wm0_lines, level; 2269 2270 if (!crtc_state->hw.active) 2271 return 0; 2272 2273 wm0_lines = skl_max_wm0_lines(crtc_state); 2274 2275 level = skl_max_wm_level_for_vblank(crtc_state, wm0_lines); 2276 if (level < 0) 2277 return level; 2278 2279 /* 2280 * PSR needs to toggle LATENCY_REPORTING_REMOVED_PIPE_* 2281 * based on whether we're limited by the vblank duration. 2282 */ 2283 crtc_state->wm_level_disabled = level < i915->display.wm.num_levels - 1; 2284 2285 for (level++; level < i915->display.wm.num_levels; level++) { 2286 enum plane_id plane_id; 2287 2288 for_each_plane_id_on_crtc(crtc, plane_id) { 2289 struct skl_plane_wm *wm = 2290 &crtc_state->wm.skl.optimal.planes[plane_id]; 2291 2292 /* 2293 * FIXME just clear enable or flag the entire 2294 * thing as bad via min_ddb_alloc=U16_MAX? 2295 */ 2296 wm->wm[level].enable = false; 2297 wm->uv_wm[level].enable = false; 2298 } 2299 } 2300 2301 if (DISPLAY_VER(i915) >= 12 && 2302 i915->display.sagv.block_time_us && 2303 skl_is_vblank_too_short(crtc_state, wm0_lines, 2304 i915->display.sagv.block_time_us)) { 2305 enum plane_id plane_id; 2306 2307 for_each_plane_id_on_crtc(crtc, plane_id) { 2308 struct skl_plane_wm *wm = 2309 &crtc_state->wm.skl.optimal.planes[plane_id]; 2310 2311 wm->sagv.wm0.enable = false; 2312 wm->sagv.trans_wm.enable = false; 2313 } 2314 } 2315 2316 return 0; 2317 } 2318 2319 static int skl_build_pipe_wm(struct intel_atomic_state *state, 2320 struct intel_crtc *crtc) 2321 { 2322 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 2323 struct intel_crtc_state *crtc_state = 2324 intel_atomic_get_new_crtc_state(state, crtc); 2325 const struct intel_plane_state *plane_state; 2326 struct intel_plane *plane; 2327 int ret, i; 2328 2329 for_each_new_intel_plane_in_state(state, plane, plane_state, i) { 2330 /* 2331 * FIXME should perhaps check {old,new}_plane_crtc->hw.crtc 2332 * instead but we don't populate that correctly for NV12 Y 2333 * planes so for now hack this. 2334 */ 2335 if (plane->pipe != crtc->pipe) 2336 continue; 2337 2338 if (DISPLAY_VER(i915) >= 11) 2339 ret = icl_build_plane_wm(crtc_state, plane_state); 2340 else 2341 ret = skl_build_plane_wm(crtc_state, plane_state); 2342 if (ret) 2343 return ret; 2344 } 2345 2346 crtc_state->wm.skl.optimal = crtc_state->wm.skl.raw; 2347 2348 return skl_wm_check_vblank(crtc_state); 2349 } 2350 2351 static void skl_ddb_entry_write(struct drm_i915_private *i915, 2352 i915_reg_t reg, 2353 const struct skl_ddb_entry *entry) 2354 { 2355 if (entry->end) 2356 intel_de_write_fw(i915, reg, 2357 PLANE_BUF_END(entry->end - 1) | 2358 PLANE_BUF_START(entry->start)); 2359 else 2360 intel_de_write_fw(i915, reg, 0); 2361 } 2362 2363 static void skl_write_wm_level(struct drm_i915_private *i915, 2364 i915_reg_t reg, 2365 const struct skl_wm_level *level) 2366 { 2367 u32 val = 0; 2368 2369 if (level->enable) 2370 val |= PLANE_WM_EN; 2371 if (level->ignore_lines) 2372 val |= PLANE_WM_IGNORE_LINES; 2373 val |= REG_FIELD_PREP(PLANE_WM_BLOCKS_MASK, level->blocks); 2374 val |= REG_FIELD_PREP(PLANE_WM_LINES_MASK, level->lines); 2375 2376 intel_de_write_fw(i915, reg, val); 2377 } 2378 2379 void skl_write_plane_wm(struct intel_plane *plane, 2380 const struct intel_crtc_state *crtc_state) 2381 { 2382 struct drm_i915_private *i915 = to_i915(plane->base.dev); 2383 enum plane_id plane_id = plane->id; 2384 enum pipe pipe = plane->pipe; 2385 const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal; 2386 const struct skl_ddb_entry *ddb = 2387 &crtc_state->wm.skl.plane_ddb[plane_id]; 2388 const struct skl_ddb_entry *ddb_y = 2389 &crtc_state->wm.skl.plane_ddb_y[plane_id]; 2390 int level; 2391 2392 for (level = 0; level < i915->display.wm.num_levels; level++) 2393 skl_write_wm_level(i915, PLANE_WM(pipe, plane_id, level), 2394 skl_plane_wm_level(pipe_wm, plane_id, level)); 2395 2396 skl_write_wm_level(i915, PLANE_WM_TRANS(pipe, plane_id), 2397 skl_plane_trans_wm(pipe_wm, plane_id)); 2398 2399 if (HAS_HW_SAGV_WM(i915)) { 2400 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id]; 2401 2402 skl_write_wm_level(i915, PLANE_WM_SAGV(pipe, plane_id), 2403 &wm->sagv.wm0); 2404 skl_write_wm_level(i915, PLANE_WM_SAGV_TRANS(pipe, plane_id), 2405 &wm->sagv.trans_wm); 2406 } 2407 2408 skl_ddb_entry_write(i915, 2409 PLANE_BUF_CFG(pipe, plane_id), ddb); 2410 2411 if (DISPLAY_VER(i915) < 11) 2412 skl_ddb_entry_write(i915, 2413 PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_y); 2414 } 2415 2416 void skl_write_cursor_wm(struct intel_plane *plane, 2417 const struct intel_crtc_state *crtc_state) 2418 { 2419 struct drm_i915_private *i915 = to_i915(plane->base.dev); 2420 enum plane_id plane_id = plane->id; 2421 enum pipe pipe = plane->pipe; 2422 const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal; 2423 const struct skl_ddb_entry *ddb = 2424 &crtc_state->wm.skl.plane_ddb[plane_id]; 2425 int level; 2426 2427 for (level = 0; level < i915->display.wm.num_levels; level++) 2428 skl_write_wm_level(i915, CUR_WM(pipe, level), 2429 skl_plane_wm_level(pipe_wm, plane_id, level)); 2430 2431 skl_write_wm_level(i915, CUR_WM_TRANS(pipe), 2432 skl_plane_trans_wm(pipe_wm, plane_id)); 2433 2434 if (HAS_HW_SAGV_WM(i915)) { 2435 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id]; 2436 2437 skl_write_wm_level(i915, CUR_WM_SAGV(pipe), 2438 &wm->sagv.wm0); 2439 skl_write_wm_level(i915, CUR_WM_SAGV_TRANS(pipe), 2440 &wm->sagv.trans_wm); 2441 } 2442 2443 skl_ddb_entry_write(i915, CUR_BUF_CFG(pipe), ddb); 2444 } 2445 2446 static bool skl_wm_level_equals(const struct skl_wm_level *l1, 2447 const struct skl_wm_level *l2) 2448 { 2449 return l1->enable == l2->enable && 2450 l1->ignore_lines == l2->ignore_lines && 2451 l1->lines == l2->lines && 2452 l1->blocks == l2->blocks; 2453 } 2454 2455 static bool skl_plane_wm_equals(struct drm_i915_private *i915, 2456 const struct skl_plane_wm *wm1, 2457 const struct skl_plane_wm *wm2) 2458 { 2459 int level; 2460 2461 for (level = 0; level < i915->display.wm.num_levels; level++) { 2462 /* 2463 * We don't check uv_wm as the hardware doesn't actually 2464 * use it. It only gets used for calculating the required 2465 * ddb allocation. 2466 */ 2467 if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level])) 2468 return false; 2469 } 2470 2471 return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm) && 2472 skl_wm_level_equals(&wm1->sagv.wm0, &wm2->sagv.wm0) && 2473 skl_wm_level_equals(&wm1->sagv.trans_wm, &wm2->sagv.trans_wm); 2474 } 2475 2476 static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a, 2477 const struct skl_ddb_entry *b) 2478 { 2479 return a->start < b->end && b->start < a->end; 2480 } 2481 2482 static void skl_ddb_entry_union(struct skl_ddb_entry *a, 2483 const struct skl_ddb_entry *b) 2484 { 2485 if (a->end && b->end) { 2486 a->start = min(a->start, b->start); 2487 a->end = max(a->end, b->end); 2488 } else if (b->end) { 2489 a->start = b->start; 2490 a->end = b->end; 2491 } 2492 } 2493 2494 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb, 2495 const struct skl_ddb_entry *entries, 2496 int num_entries, int ignore_idx) 2497 { 2498 int i; 2499 2500 for (i = 0; i < num_entries; i++) { 2501 if (i != ignore_idx && 2502 skl_ddb_entries_overlap(ddb, &entries[i])) 2503 return true; 2504 } 2505 2506 return false; 2507 } 2508 2509 static int 2510 skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state, 2511 struct intel_crtc_state *new_crtc_state) 2512 { 2513 struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state); 2514 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc); 2515 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 2516 struct intel_plane *plane; 2517 2518 for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) { 2519 struct intel_plane_state *plane_state; 2520 enum plane_id plane_id = plane->id; 2521 2522 if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb[plane_id], 2523 &new_crtc_state->wm.skl.plane_ddb[plane_id]) && 2524 skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id], 2525 &new_crtc_state->wm.skl.plane_ddb_y[plane_id])) 2526 continue; 2527 2528 plane_state = intel_atomic_get_plane_state(state, plane); 2529 if (IS_ERR(plane_state)) 2530 return PTR_ERR(plane_state); 2531 2532 new_crtc_state->update_planes |= BIT(plane_id); 2533 new_crtc_state->async_flip_planes = 0; 2534 new_crtc_state->do_async_flip = false; 2535 } 2536 2537 return 0; 2538 } 2539 2540 static u8 intel_dbuf_enabled_slices(const struct intel_dbuf_state *dbuf_state) 2541 { 2542 struct drm_i915_private *i915 = to_i915(dbuf_state->base.state->base.dev); 2543 u8 enabled_slices; 2544 enum pipe pipe; 2545 2546 /* 2547 * FIXME: For now we always enable slice S1 as per 2548 * the Bspec display initialization sequence. 2549 */ 2550 enabled_slices = BIT(DBUF_S1); 2551 2552 for_each_pipe(i915, pipe) 2553 enabled_slices |= dbuf_state->slices[pipe]; 2554 2555 return enabled_slices; 2556 } 2557 2558 static int 2559 skl_compute_ddb(struct intel_atomic_state *state) 2560 { 2561 struct drm_i915_private *i915 = to_i915(state->base.dev); 2562 const struct intel_dbuf_state *old_dbuf_state; 2563 struct intel_dbuf_state *new_dbuf_state = NULL; 2564 const struct intel_crtc_state *old_crtc_state; 2565 struct intel_crtc_state *new_crtc_state; 2566 struct intel_crtc *crtc; 2567 int ret, i; 2568 2569 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 2570 new_dbuf_state = intel_atomic_get_dbuf_state(state); 2571 if (IS_ERR(new_dbuf_state)) 2572 return PTR_ERR(new_dbuf_state); 2573 2574 old_dbuf_state = intel_atomic_get_old_dbuf_state(state); 2575 break; 2576 } 2577 2578 if (!new_dbuf_state) 2579 return 0; 2580 2581 new_dbuf_state->active_pipes = 2582 intel_calc_active_pipes(state, old_dbuf_state->active_pipes); 2583 2584 if (old_dbuf_state->active_pipes != new_dbuf_state->active_pipes) { 2585 ret = intel_atomic_lock_global_state(&new_dbuf_state->base); 2586 if (ret) 2587 return ret; 2588 } 2589 2590 if (HAS_MBUS_JOINING(i915)) 2591 new_dbuf_state->joined_mbus = 2592 adlp_check_mbus_joined(new_dbuf_state->active_pipes); 2593 2594 for_each_intel_crtc(&i915->drm, crtc) { 2595 enum pipe pipe = crtc->pipe; 2596 2597 new_dbuf_state->slices[pipe] = 2598 skl_compute_dbuf_slices(crtc, new_dbuf_state->active_pipes, 2599 new_dbuf_state->joined_mbus); 2600 2601 if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe]) 2602 continue; 2603 2604 ret = intel_atomic_lock_global_state(&new_dbuf_state->base); 2605 if (ret) 2606 return ret; 2607 } 2608 2609 new_dbuf_state->enabled_slices = intel_dbuf_enabled_slices(new_dbuf_state); 2610 2611 if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices || 2612 old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) { 2613 ret = intel_atomic_serialize_global_state(&new_dbuf_state->base); 2614 if (ret) 2615 return ret; 2616 2617 if (old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) { 2618 /* TODO: Implement vblank synchronized MBUS joining changes */ 2619 ret = intel_modeset_all_pipes(state, "MBUS joining change"); 2620 if (ret) 2621 return ret; 2622 } 2623 2624 drm_dbg_kms(&i915->drm, 2625 "Enabled dbuf slices 0x%x -> 0x%x (total dbuf slices 0x%x), mbus joined? %s->%s\n", 2626 old_dbuf_state->enabled_slices, 2627 new_dbuf_state->enabled_slices, 2628 DISPLAY_INFO(i915)->dbuf.slice_mask, 2629 str_yes_no(old_dbuf_state->joined_mbus), 2630 str_yes_no(new_dbuf_state->joined_mbus)); 2631 } 2632 2633 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 2634 enum pipe pipe = crtc->pipe; 2635 2636 new_dbuf_state->weight[pipe] = intel_crtc_ddb_weight(new_crtc_state); 2637 2638 if (old_dbuf_state->weight[pipe] == new_dbuf_state->weight[pipe]) 2639 continue; 2640 2641 ret = intel_atomic_lock_global_state(&new_dbuf_state->base); 2642 if (ret) 2643 return ret; 2644 } 2645 2646 for_each_intel_crtc(&i915->drm, crtc) { 2647 ret = skl_crtc_allocate_ddb(state, crtc); 2648 if (ret) 2649 return ret; 2650 } 2651 2652 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 2653 new_crtc_state, i) { 2654 ret = skl_crtc_allocate_plane_ddb(state, crtc); 2655 if (ret) 2656 return ret; 2657 2658 ret = skl_ddb_add_affected_planes(old_crtc_state, 2659 new_crtc_state); 2660 if (ret) 2661 return ret; 2662 } 2663 2664 return 0; 2665 } 2666 2667 static char enast(bool enable) 2668 { 2669 return enable ? '*' : ' '; 2670 } 2671 2672 static void 2673 skl_print_wm_changes(struct intel_atomic_state *state) 2674 { 2675 struct drm_i915_private *i915 = to_i915(state->base.dev); 2676 const struct intel_crtc_state *old_crtc_state; 2677 const struct intel_crtc_state *new_crtc_state; 2678 struct intel_plane *plane; 2679 struct intel_crtc *crtc; 2680 int i; 2681 2682 if (!drm_debug_enabled(DRM_UT_KMS)) 2683 return; 2684 2685 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, 2686 new_crtc_state, i) { 2687 const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm; 2688 2689 old_pipe_wm = &old_crtc_state->wm.skl.optimal; 2690 new_pipe_wm = &new_crtc_state->wm.skl.optimal; 2691 2692 for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) { 2693 enum plane_id plane_id = plane->id; 2694 const struct skl_ddb_entry *old, *new; 2695 2696 old = &old_crtc_state->wm.skl.plane_ddb[plane_id]; 2697 new = &new_crtc_state->wm.skl.plane_ddb[plane_id]; 2698 2699 if (skl_ddb_entry_equal(old, new)) 2700 continue; 2701 2702 drm_dbg_kms(&i915->drm, 2703 "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n", 2704 plane->base.base.id, plane->base.name, 2705 old->start, old->end, new->start, new->end, 2706 skl_ddb_entry_size(old), skl_ddb_entry_size(new)); 2707 } 2708 2709 for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) { 2710 enum plane_id plane_id = plane->id; 2711 const struct skl_plane_wm *old_wm, *new_wm; 2712 2713 old_wm = &old_pipe_wm->planes[plane_id]; 2714 new_wm = &new_pipe_wm->planes[plane_id]; 2715 2716 if (skl_plane_wm_equals(i915, old_wm, new_wm)) 2717 continue; 2718 2719 drm_dbg_kms(&i915->drm, 2720 "[PLANE:%d:%s] level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm" 2721 " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm\n", 2722 plane->base.base.id, plane->base.name, 2723 enast(old_wm->wm[0].enable), enast(old_wm->wm[1].enable), 2724 enast(old_wm->wm[2].enable), enast(old_wm->wm[3].enable), 2725 enast(old_wm->wm[4].enable), enast(old_wm->wm[5].enable), 2726 enast(old_wm->wm[6].enable), enast(old_wm->wm[7].enable), 2727 enast(old_wm->trans_wm.enable), 2728 enast(old_wm->sagv.wm0.enable), 2729 enast(old_wm->sagv.trans_wm.enable), 2730 enast(new_wm->wm[0].enable), enast(new_wm->wm[1].enable), 2731 enast(new_wm->wm[2].enable), enast(new_wm->wm[3].enable), 2732 enast(new_wm->wm[4].enable), enast(new_wm->wm[5].enable), 2733 enast(new_wm->wm[6].enable), enast(new_wm->wm[7].enable), 2734 enast(new_wm->trans_wm.enable), 2735 enast(new_wm->sagv.wm0.enable), 2736 enast(new_wm->sagv.trans_wm.enable)); 2737 2738 drm_dbg_kms(&i915->drm, 2739 "[PLANE:%d:%s] lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d" 2740 " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d\n", 2741 plane->base.base.id, plane->base.name, 2742 enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].lines, 2743 enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].lines, 2744 enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].lines, 2745 enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].lines, 2746 enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].lines, 2747 enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].lines, 2748 enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].lines, 2749 enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].lines, 2750 enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.lines, 2751 enast(old_wm->sagv.wm0.ignore_lines), old_wm->sagv.wm0.lines, 2752 enast(old_wm->sagv.trans_wm.ignore_lines), old_wm->sagv.trans_wm.lines, 2753 enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].lines, 2754 enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].lines, 2755 enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].lines, 2756 enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].lines, 2757 enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].lines, 2758 enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].lines, 2759 enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].lines, 2760 enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].lines, 2761 enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.lines, 2762 enast(new_wm->sagv.wm0.ignore_lines), new_wm->sagv.wm0.lines, 2763 enast(new_wm->sagv.trans_wm.ignore_lines), new_wm->sagv.trans_wm.lines); 2764 2765 drm_dbg_kms(&i915->drm, 2766 "[PLANE:%d:%s] blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d" 2767 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n", 2768 plane->base.base.id, plane->base.name, 2769 old_wm->wm[0].blocks, old_wm->wm[1].blocks, 2770 old_wm->wm[2].blocks, old_wm->wm[3].blocks, 2771 old_wm->wm[4].blocks, old_wm->wm[5].blocks, 2772 old_wm->wm[6].blocks, old_wm->wm[7].blocks, 2773 old_wm->trans_wm.blocks, 2774 old_wm->sagv.wm0.blocks, 2775 old_wm->sagv.trans_wm.blocks, 2776 new_wm->wm[0].blocks, new_wm->wm[1].blocks, 2777 new_wm->wm[2].blocks, new_wm->wm[3].blocks, 2778 new_wm->wm[4].blocks, new_wm->wm[5].blocks, 2779 new_wm->wm[6].blocks, new_wm->wm[7].blocks, 2780 new_wm->trans_wm.blocks, 2781 new_wm->sagv.wm0.blocks, 2782 new_wm->sagv.trans_wm.blocks); 2783 2784 drm_dbg_kms(&i915->drm, 2785 "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d" 2786 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n", 2787 plane->base.base.id, plane->base.name, 2788 old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc, 2789 old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc, 2790 old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc, 2791 old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc, 2792 old_wm->trans_wm.min_ddb_alloc, 2793 old_wm->sagv.wm0.min_ddb_alloc, 2794 old_wm->sagv.trans_wm.min_ddb_alloc, 2795 new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc, 2796 new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc, 2797 new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc, 2798 new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc, 2799 new_wm->trans_wm.min_ddb_alloc, 2800 new_wm->sagv.wm0.min_ddb_alloc, 2801 new_wm->sagv.trans_wm.min_ddb_alloc); 2802 } 2803 } 2804 } 2805 2806 static bool skl_plane_selected_wm_equals(struct intel_plane *plane, 2807 const struct skl_pipe_wm *old_pipe_wm, 2808 const struct skl_pipe_wm *new_pipe_wm) 2809 { 2810 struct drm_i915_private *i915 = to_i915(plane->base.dev); 2811 int level; 2812 2813 for (level = 0; level < i915->display.wm.num_levels; level++) { 2814 /* 2815 * We don't check uv_wm as the hardware doesn't actually 2816 * use it. It only gets used for calculating the required 2817 * ddb allocation. 2818 */ 2819 if (!skl_wm_level_equals(skl_plane_wm_level(old_pipe_wm, plane->id, level), 2820 skl_plane_wm_level(new_pipe_wm, plane->id, level))) 2821 return false; 2822 } 2823 2824 if (HAS_HW_SAGV_WM(i915)) { 2825 const struct skl_plane_wm *old_wm = &old_pipe_wm->planes[plane->id]; 2826 const struct skl_plane_wm *new_wm = &new_pipe_wm->planes[plane->id]; 2827 2828 if (!skl_wm_level_equals(&old_wm->sagv.wm0, &new_wm->sagv.wm0) || 2829 !skl_wm_level_equals(&old_wm->sagv.trans_wm, &new_wm->sagv.trans_wm)) 2830 return false; 2831 } 2832 2833 return skl_wm_level_equals(skl_plane_trans_wm(old_pipe_wm, plane->id), 2834 skl_plane_trans_wm(new_pipe_wm, plane->id)); 2835 } 2836 2837 /* 2838 * To make sure the cursor watermark registers are always consistent 2839 * with our computed state the following scenario needs special 2840 * treatment: 2841 * 2842 * 1. enable cursor 2843 * 2. move cursor entirely offscreen 2844 * 3. disable cursor 2845 * 2846 * Step 2. does call .disable_plane() but does not zero the watermarks 2847 * (since we consider an offscreen cursor still active for the purposes 2848 * of watermarks). Step 3. would not normally call .disable_plane() 2849 * because the actual plane visibility isn't changing, and we don't 2850 * deallocate the cursor ddb until the pipe gets disabled. So we must 2851 * force step 3. to call .disable_plane() to update the watermark 2852 * registers properly. 2853 * 2854 * Other planes do not suffer from this issues as their watermarks are 2855 * calculated based on the actual plane visibility. The only time this 2856 * can trigger for the other planes is during the initial readout as the 2857 * default value of the watermarks registers is not zero. 2858 */ 2859 static int skl_wm_add_affected_planes(struct intel_atomic_state *state, 2860 struct intel_crtc *crtc) 2861 { 2862 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 2863 const struct intel_crtc_state *old_crtc_state = 2864 intel_atomic_get_old_crtc_state(state, crtc); 2865 struct intel_crtc_state *new_crtc_state = 2866 intel_atomic_get_new_crtc_state(state, crtc); 2867 struct intel_plane *plane; 2868 2869 for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) { 2870 struct intel_plane_state *plane_state; 2871 enum plane_id plane_id = plane->id; 2872 2873 /* 2874 * Force a full wm update for every plane on modeset. 2875 * Required because the reset value of the wm registers 2876 * is non-zero, whereas we want all disabled planes to 2877 * have zero watermarks. So if we turn off the relevant 2878 * power well the hardware state will go out of sync 2879 * with the software state. 2880 */ 2881 if (!intel_crtc_needs_modeset(new_crtc_state) && 2882 skl_plane_selected_wm_equals(plane, 2883 &old_crtc_state->wm.skl.optimal, 2884 &new_crtc_state->wm.skl.optimal)) 2885 continue; 2886 2887 plane_state = intel_atomic_get_plane_state(state, plane); 2888 if (IS_ERR(plane_state)) 2889 return PTR_ERR(plane_state); 2890 2891 new_crtc_state->update_planes |= BIT(plane_id); 2892 new_crtc_state->async_flip_planes = 0; 2893 new_crtc_state->do_async_flip = false; 2894 } 2895 2896 return 0; 2897 } 2898 2899 static int 2900 skl_compute_wm(struct intel_atomic_state *state) 2901 { 2902 struct intel_crtc *crtc; 2903 struct intel_crtc_state __maybe_unused *new_crtc_state; 2904 int ret, i; 2905 2906 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 2907 ret = skl_build_pipe_wm(state, crtc); 2908 if (ret) 2909 return ret; 2910 } 2911 2912 ret = skl_compute_ddb(state); 2913 if (ret) 2914 return ret; 2915 2916 ret = intel_compute_sagv_mask(state); 2917 if (ret) 2918 return ret; 2919 2920 /* 2921 * skl_compute_ddb() will have adjusted the final watermarks 2922 * based on how much ddb is available. Now we can actually 2923 * check if the final watermarks changed. 2924 */ 2925 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 2926 ret = skl_wm_add_affected_planes(state, crtc); 2927 if (ret) 2928 return ret; 2929 } 2930 2931 skl_print_wm_changes(state); 2932 2933 return 0; 2934 } 2935 2936 static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level) 2937 { 2938 level->enable = val & PLANE_WM_EN; 2939 level->ignore_lines = val & PLANE_WM_IGNORE_LINES; 2940 level->blocks = REG_FIELD_GET(PLANE_WM_BLOCKS_MASK, val); 2941 level->lines = REG_FIELD_GET(PLANE_WM_LINES_MASK, val); 2942 } 2943 2944 static void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc, 2945 struct skl_pipe_wm *out) 2946 { 2947 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 2948 enum pipe pipe = crtc->pipe; 2949 enum plane_id plane_id; 2950 int level; 2951 u32 val; 2952 2953 for_each_plane_id_on_crtc(crtc, plane_id) { 2954 struct skl_plane_wm *wm = &out->planes[plane_id]; 2955 2956 for (level = 0; level < i915->display.wm.num_levels; level++) { 2957 if (plane_id != PLANE_CURSOR) 2958 val = intel_de_read(i915, PLANE_WM(pipe, plane_id, level)); 2959 else 2960 val = intel_de_read(i915, CUR_WM(pipe, level)); 2961 2962 skl_wm_level_from_reg_val(val, &wm->wm[level]); 2963 } 2964 2965 if (plane_id != PLANE_CURSOR) 2966 val = intel_de_read(i915, PLANE_WM_TRANS(pipe, plane_id)); 2967 else 2968 val = intel_de_read(i915, CUR_WM_TRANS(pipe)); 2969 2970 skl_wm_level_from_reg_val(val, &wm->trans_wm); 2971 2972 if (HAS_HW_SAGV_WM(i915)) { 2973 if (plane_id != PLANE_CURSOR) 2974 val = intel_de_read(i915, PLANE_WM_SAGV(pipe, plane_id)); 2975 else 2976 val = intel_de_read(i915, CUR_WM_SAGV(pipe)); 2977 2978 skl_wm_level_from_reg_val(val, &wm->sagv.wm0); 2979 2980 if (plane_id != PLANE_CURSOR) 2981 val = intel_de_read(i915, PLANE_WM_SAGV_TRANS(pipe, plane_id)); 2982 else 2983 val = intel_de_read(i915, CUR_WM_SAGV_TRANS(pipe)); 2984 2985 skl_wm_level_from_reg_val(val, &wm->sagv.trans_wm); 2986 } else if (DISPLAY_VER(i915) >= 12) { 2987 wm->sagv.wm0 = wm->wm[0]; 2988 wm->sagv.trans_wm = wm->trans_wm; 2989 } 2990 } 2991 } 2992 2993 static void skl_wm_get_hw_state(struct drm_i915_private *i915) 2994 { 2995 struct intel_dbuf_state *dbuf_state = 2996 to_intel_dbuf_state(i915->display.dbuf.obj.state); 2997 struct intel_crtc *crtc; 2998 2999 if (HAS_MBUS_JOINING(i915)) 3000 dbuf_state->joined_mbus = intel_de_read(i915, MBUS_CTL) & MBUS_JOIN; 3001 3002 for_each_intel_crtc(&i915->drm, crtc) { 3003 struct intel_crtc_state *crtc_state = 3004 to_intel_crtc_state(crtc->base.state); 3005 enum pipe pipe = crtc->pipe; 3006 unsigned int mbus_offset; 3007 enum plane_id plane_id; 3008 u8 slices; 3009 3010 memset(&crtc_state->wm.skl.optimal, 0, 3011 sizeof(crtc_state->wm.skl.optimal)); 3012 if (crtc_state->hw.active) 3013 skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal); 3014 crtc_state->wm.skl.raw = crtc_state->wm.skl.optimal; 3015 3016 memset(&dbuf_state->ddb[pipe], 0, sizeof(dbuf_state->ddb[pipe])); 3017 3018 for_each_plane_id_on_crtc(crtc, plane_id) { 3019 struct skl_ddb_entry *ddb = 3020 &crtc_state->wm.skl.plane_ddb[plane_id]; 3021 struct skl_ddb_entry *ddb_y = 3022 &crtc_state->wm.skl.plane_ddb_y[plane_id]; 3023 3024 if (!crtc_state->hw.active) 3025 continue; 3026 3027 skl_ddb_get_hw_plane_state(i915, crtc->pipe, 3028 plane_id, ddb, ddb_y); 3029 3030 skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb); 3031 skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_y); 3032 } 3033 3034 dbuf_state->weight[pipe] = intel_crtc_ddb_weight(crtc_state); 3035 3036 /* 3037 * Used for checking overlaps, so we need absolute 3038 * offsets instead of MBUS relative offsets. 3039 */ 3040 slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes, 3041 dbuf_state->joined_mbus); 3042 mbus_offset = mbus_ddb_offset(i915, slices); 3043 crtc_state->wm.skl.ddb.start = mbus_offset + dbuf_state->ddb[pipe].start; 3044 crtc_state->wm.skl.ddb.end = mbus_offset + dbuf_state->ddb[pipe].end; 3045 3046 /* The slices actually used by the planes on the pipe */ 3047 dbuf_state->slices[pipe] = 3048 skl_ddb_dbuf_slice_mask(i915, &crtc_state->wm.skl.ddb); 3049 3050 drm_dbg_kms(&i915->drm, 3051 "[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x, mbus joined: %s\n", 3052 crtc->base.base.id, crtc->base.name, 3053 dbuf_state->slices[pipe], dbuf_state->ddb[pipe].start, 3054 dbuf_state->ddb[pipe].end, dbuf_state->active_pipes, 3055 str_yes_no(dbuf_state->joined_mbus)); 3056 } 3057 3058 dbuf_state->enabled_slices = i915->display.dbuf.enabled_slices; 3059 } 3060 3061 static bool skl_dbuf_is_misconfigured(struct drm_i915_private *i915) 3062 { 3063 const struct intel_dbuf_state *dbuf_state = 3064 to_intel_dbuf_state(i915->display.dbuf.obj.state); 3065 struct skl_ddb_entry entries[I915_MAX_PIPES] = {}; 3066 struct intel_crtc *crtc; 3067 3068 for_each_intel_crtc(&i915->drm, crtc) { 3069 const struct intel_crtc_state *crtc_state = 3070 to_intel_crtc_state(crtc->base.state); 3071 3072 entries[crtc->pipe] = crtc_state->wm.skl.ddb; 3073 } 3074 3075 for_each_intel_crtc(&i915->drm, crtc) { 3076 const struct intel_crtc_state *crtc_state = 3077 to_intel_crtc_state(crtc->base.state); 3078 u8 slices; 3079 3080 slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes, 3081 dbuf_state->joined_mbus); 3082 if (dbuf_state->slices[crtc->pipe] & ~slices) 3083 return true; 3084 3085 if (skl_ddb_allocation_overlaps(&crtc_state->wm.skl.ddb, entries, 3086 I915_MAX_PIPES, crtc->pipe)) 3087 return true; 3088 } 3089 3090 return false; 3091 } 3092 3093 static void skl_wm_sanitize(struct drm_i915_private *i915) 3094 { 3095 struct intel_crtc *crtc; 3096 3097 /* 3098 * On TGL/RKL (at least) the BIOS likes to assign the planes 3099 * to the wrong DBUF slices. This will cause an infinite loop 3100 * in skl_commit_modeset_enables() as it can't find a way to 3101 * transition between the old bogus DBUF layout to the new 3102 * proper DBUF layout without DBUF allocation overlaps between 3103 * the planes (which cannot be allowed or else the hardware 3104 * may hang). If we detect a bogus DBUF layout just turn off 3105 * all the planes so that skl_commit_modeset_enables() can 3106 * simply ignore them. 3107 */ 3108 if (!skl_dbuf_is_misconfigured(i915)) 3109 return; 3110 3111 drm_dbg_kms(&i915->drm, "BIOS has misprogrammed the DBUF, disabling all planes\n"); 3112 3113 for_each_intel_crtc(&i915->drm, crtc) { 3114 struct intel_plane *plane = to_intel_plane(crtc->base.primary); 3115 const struct intel_plane_state *plane_state = 3116 to_intel_plane_state(plane->base.state); 3117 struct intel_crtc_state *crtc_state = 3118 to_intel_crtc_state(crtc->base.state); 3119 3120 if (plane_state->uapi.visible) 3121 intel_plane_disable_noatomic(crtc, plane); 3122 3123 drm_WARN_ON(&i915->drm, crtc_state->active_planes != 0); 3124 3125 memset(&crtc_state->wm.skl.ddb, 0, sizeof(crtc_state->wm.skl.ddb)); 3126 } 3127 } 3128 3129 static void skl_wm_get_hw_state_and_sanitize(struct drm_i915_private *i915) 3130 { 3131 skl_wm_get_hw_state(i915); 3132 skl_wm_sanitize(i915); 3133 } 3134 3135 void intel_wm_state_verify(struct intel_crtc *crtc, 3136 struct intel_crtc_state *new_crtc_state) 3137 { 3138 struct drm_i915_private *i915 = to_i915(crtc->base.dev); 3139 struct skl_hw_state { 3140 struct skl_ddb_entry ddb[I915_MAX_PLANES]; 3141 struct skl_ddb_entry ddb_y[I915_MAX_PLANES]; 3142 struct skl_pipe_wm wm; 3143 } *hw; 3144 const struct skl_pipe_wm *sw_wm = &new_crtc_state->wm.skl.optimal; 3145 struct intel_plane *plane; 3146 u8 hw_enabled_slices; 3147 int level; 3148 3149 if (DISPLAY_VER(i915) < 9 || !new_crtc_state->hw.active) 3150 return; 3151 3152 hw = kzalloc(sizeof(*hw), GFP_KERNEL); 3153 if (!hw) 3154 return; 3155 3156 skl_pipe_wm_get_hw_state(crtc, &hw->wm); 3157 3158 skl_pipe_ddb_get_hw_state(crtc, hw->ddb, hw->ddb_y); 3159 3160 hw_enabled_slices = intel_enabled_dbuf_slices_mask(i915); 3161 3162 if (DISPLAY_VER(i915) >= 11 && 3163 hw_enabled_slices != i915->display.dbuf.enabled_slices) 3164 drm_err(&i915->drm, 3165 "mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n", 3166 i915->display.dbuf.enabled_slices, 3167 hw_enabled_slices); 3168 3169 for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) { 3170 const struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry; 3171 const struct skl_wm_level *hw_wm_level, *sw_wm_level; 3172 3173 /* Watermarks */ 3174 for (level = 0; level < i915->display.wm.num_levels; level++) { 3175 hw_wm_level = &hw->wm.planes[plane->id].wm[level]; 3176 sw_wm_level = skl_plane_wm_level(sw_wm, plane->id, level); 3177 3178 if (skl_wm_level_equals(hw_wm_level, sw_wm_level)) 3179 continue; 3180 3181 drm_err(&i915->drm, 3182 "[PLANE:%d:%s] mismatch in WM%d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 3183 plane->base.base.id, plane->base.name, level, 3184 sw_wm_level->enable, 3185 sw_wm_level->blocks, 3186 sw_wm_level->lines, 3187 hw_wm_level->enable, 3188 hw_wm_level->blocks, 3189 hw_wm_level->lines); 3190 } 3191 3192 hw_wm_level = &hw->wm.planes[plane->id].trans_wm; 3193 sw_wm_level = skl_plane_trans_wm(sw_wm, plane->id); 3194 3195 if (!skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 3196 drm_err(&i915->drm, 3197 "[PLANE:%d:%s] mismatch in trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 3198 plane->base.base.id, plane->base.name, 3199 sw_wm_level->enable, 3200 sw_wm_level->blocks, 3201 sw_wm_level->lines, 3202 hw_wm_level->enable, 3203 hw_wm_level->blocks, 3204 hw_wm_level->lines); 3205 } 3206 3207 hw_wm_level = &hw->wm.planes[plane->id].sagv.wm0; 3208 sw_wm_level = &sw_wm->planes[plane->id].sagv.wm0; 3209 3210 if (HAS_HW_SAGV_WM(i915) && 3211 !skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 3212 drm_err(&i915->drm, 3213 "[PLANE:%d:%s] mismatch in SAGV WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 3214 plane->base.base.id, plane->base.name, 3215 sw_wm_level->enable, 3216 sw_wm_level->blocks, 3217 sw_wm_level->lines, 3218 hw_wm_level->enable, 3219 hw_wm_level->blocks, 3220 hw_wm_level->lines); 3221 } 3222 3223 hw_wm_level = &hw->wm.planes[plane->id].sagv.trans_wm; 3224 sw_wm_level = &sw_wm->planes[plane->id].sagv.trans_wm; 3225 3226 if (HAS_HW_SAGV_WM(i915) && 3227 !skl_wm_level_equals(hw_wm_level, sw_wm_level)) { 3228 drm_err(&i915->drm, 3229 "[PLANE:%d:%s] mismatch in SAGV trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n", 3230 plane->base.base.id, plane->base.name, 3231 sw_wm_level->enable, 3232 sw_wm_level->blocks, 3233 sw_wm_level->lines, 3234 hw_wm_level->enable, 3235 hw_wm_level->blocks, 3236 hw_wm_level->lines); 3237 } 3238 3239 /* DDB */ 3240 hw_ddb_entry = &hw->ddb[PLANE_CURSOR]; 3241 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb[PLANE_CURSOR]; 3242 3243 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) { 3244 drm_err(&i915->drm, 3245 "[PLANE:%d:%s] mismatch in DDB (expected (%u,%u), found (%u,%u))\n", 3246 plane->base.base.id, plane->base.name, 3247 sw_ddb_entry->start, sw_ddb_entry->end, 3248 hw_ddb_entry->start, hw_ddb_entry->end); 3249 } 3250 } 3251 3252 kfree(hw); 3253 } 3254 3255 bool skl_watermark_ipc_enabled(struct drm_i915_private *i915) 3256 { 3257 return i915->display.wm.ipc_enabled; 3258 } 3259 3260 void skl_watermark_ipc_update(struct drm_i915_private *i915) 3261 { 3262 if (!HAS_IPC(i915)) 3263 return; 3264 3265 intel_de_rmw(i915, DISP_ARB_CTL2, DISP_IPC_ENABLE, 3266 skl_watermark_ipc_enabled(i915) ? DISP_IPC_ENABLE : 0); 3267 } 3268 3269 static bool skl_watermark_ipc_can_enable(struct drm_i915_private *i915) 3270 { 3271 /* Display WA #0477 WaDisableIPC: skl */ 3272 if (IS_SKYLAKE(i915)) 3273 return false; 3274 3275 /* Display WA #1141: SKL:all KBL:all CFL */ 3276 if (IS_KABYLAKE(i915) || 3277 IS_COFFEELAKE(i915) || 3278 IS_COMETLAKE(i915)) 3279 return i915->dram_info.symmetric_memory; 3280 3281 return true; 3282 } 3283 3284 void skl_watermark_ipc_init(struct drm_i915_private *i915) 3285 { 3286 if (!HAS_IPC(i915)) 3287 return; 3288 3289 i915->display.wm.ipc_enabled = skl_watermark_ipc_can_enable(i915); 3290 3291 skl_watermark_ipc_update(i915); 3292 } 3293 3294 static void 3295 adjust_wm_latency(struct drm_i915_private *i915, 3296 u16 wm[], int num_levels, int read_latency) 3297 { 3298 bool wm_lv_0_adjust_needed = i915->dram_info.wm_lv_0_adjust_needed; 3299 int i, level; 3300 3301 /* 3302 * If a level n (n > 1) has a 0us latency, all levels m (m >= n) 3303 * need to be disabled. We make sure to sanitize the values out 3304 * of the punit to satisfy this requirement. 3305 */ 3306 for (level = 1; level < num_levels; level++) { 3307 if (wm[level] == 0) { 3308 for (i = level + 1; i < num_levels; i++) 3309 wm[i] = 0; 3310 3311 num_levels = level; 3312 break; 3313 } 3314 } 3315 3316 /* 3317 * WaWmMemoryReadLatency 3318 * 3319 * punit doesn't take into account the read latency so we need 3320 * to add proper adjustement to each valid level we retrieve 3321 * from the punit when level 0 response data is 0us. 3322 */ 3323 if (wm[0] == 0) { 3324 for (level = 0; level < num_levels; level++) 3325 wm[level] += read_latency; 3326 } 3327 3328 /* 3329 * WA Level-0 adjustment for 16GB DIMMs: SKL+ 3330 * If we could not get dimm info enable this WA to prevent from 3331 * any underrun. If not able to get Dimm info assume 16GB dimm 3332 * to avoid any underrun. 3333 */ 3334 if (wm_lv_0_adjust_needed) 3335 wm[0] += 1; 3336 } 3337 3338 static void mtl_read_wm_latency(struct drm_i915_private *i915, u16 wm[]) 3339 { 3340 int num_levels = i915->display.wm.num_levels; 3341 u32 val; 3342 3343 val = intel_de_read(i915, MTL_LATENCY_LP0_LP1); 3344 wm[0] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val); 3345 wm[1] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val); 3346 3347 val = intel_de_read(i915, MTL_LATENCY_LP2_LP3); 3348 wm[2] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val); 3349 wm[3] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val); 3350 3351 val = intel_de_read(i915, MTL_LATENCY_LP4_LP5); 3352 wm[4] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val); 3353 wm[5] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val); 3354 3355 adjust_wm_latency(i915, wm, num_levels, 6); 3356 } 3357 3358 static void skl_read_wm_latency(struct drm_i915_private *i915, u16 wm[]) 3359 { 3360 int num_levels = i915->display.wm.num_levels; 3361 int read_latency = DISPLAY_VER(i915) >= 12 ? 3 : 2; 3362 int mult = IS_DG2(i915) ? 2 : 1; 3363 u32 val; 3364 int ret; 3365 3366 /* read the first set of memory latencies[0:3] */ 3367 val = 0; /* data0 to be programmed to 0 for first set */ 3368 ret = snb_pcode_read(&i915->uncore, GEN9_PCODE_READ_MEM_LATENCY, &val, NULL); 3369 if (ret) { 3370 drm_err(&i915->drm, "SKL Mailbox read error = %d\n", ret); 3371 return; 3372 } 3373 3374 wm[0] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_0_4_MASK, val) * mult; 3375 wm[1] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_1_5_MASK, val) * mult; 3376 wm[2] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_2_6_MASK, val) * mult; 3377 wm[3] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_3_7_MASK, val) * mult; 3378 3379 /* read the second set of memory latencies[4:7] */ 3380 val = 1; /* data0 to be programmed to 1 for second set */ 3381 ret = snb_pcode_read(&i915->uncore, GEN9_PCODE_READ_MEM_LATENCY, &val, NULL); 3382 if (ret) { 3383 drm_err(&i915->drm, "SKL Mailbox read error = %d\n", ret); 3384 return; 3385 } 3386 3387 wm[4] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_0_4_MASK, val) * mult; 3388 wm[5] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_1_5_MASK, val) * mult; 3389 wm[6] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_2_6_MASK, val) * mult; 3390 wm[7] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_3_7_MASK, val) * mult; 3391 3392 adjust_wm_latency(i915, wm, num_levels, read_latency); 3393 } 3394 3395 static void skl_setup_wm_latency(struct drm_i915_private *i915) 3396 { 3397 if (HAS_HW_SAGV_WM(i915)) 3398 i915->display.wm.num_levels = 6; 3399 else 3400 i915->display.wm.num_levels = 8; 3401 3402 if (DISPLAY_VER(i915) >= 14) 3403 mtl_read_wm_latency(i915, i915->display.wm.skl_latency); 3404 else 3405 skl_read_wm_latency(i915, i915->display.wm.skl_latency); 3406 3407 intel_print_wm_latency(i915, "Gen9 Plane", i915->display.wm.skl_latency); 3408 } 3409 3410 static const struct intel_wm_funcs skl_wm_funcs = { 3411 .compute_global_watermarks = skl_compute_wm, 3412 .get_hw_state = skl_wm_get_hw_state_and_sanitize, 3413 }; 3414 3415 void skl_wm_init(struct drm_i915_private *i915) 3416 { 3417 intel_sagv_init(i915); 3418 3419 skl_setup_wm_latency(i915); 3420 3421 i915->display.funcs.wm = &skl_wm_funcs; 3422 } 3423 3424 static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj) 3425 { 3426 struct intel_dbuf_state *dbuf_state; 3427 3428 dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL); 3429 if (!dbuf_state) 3430 return NULL; 3431 3432 return &dbuf_state->base; 3433 } 3434 3435 static void intel_dbuf_destroy_state(struct intel_global_obj *obj, 3436 struct intel_global_state *state) 3437 { 3438 kfree(state); 3439 } 3440 3441 static const struct intel_global_state_funcs intel_dbuf_funcs = { 3442 .atomic_duplicate_state = intel_dbuf_duplicate_state, 3443 .atomic_destroy_state = intel_dbuf_destroy_state, 3444 }; 3445 3446 struct intel_dbuf_state * 3447 intel_atomic_get_dbuf_state(struct intel_atomic_state *state) 3448 { 3449 struct drm_i915_private *i915 = to_i915(state->base.dev); 3450 struct intel_global_state *dbuf_state; 3451 3452 dbuf_state = intel_atomic_get_global_obj_state(state, &i915->display.dbuf.obj); 3453 if (IS_ERR(dbuf_state)) 3454 return ERR_CAST(dbuf_state); 3455 3456 return to_intel_dbuf_state(dbuf_state); 3457 } 3458 3459 int intel_dbuf_init(struct drm_i915_private *i915) 3460 { 3461 struct intel_dbuf_state *dbuf_state; 3462 3463 dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL); 3464 if (!dbuf_state) 3465 return -ENOMEM; 3466 3467 intel_atomic_global_obj_init(i915, &i915->display.dbuf.obj, 3468 &dbuf_state->base, &intel_dbuf_funcs); 3469 3470 return 0; 3471 } 3472 3473 /* 3474 * Configure MBUS_CTL and all DBUF_CTL_S of each slice to join_mbus state before 3475 * update the request state of all DBUS slices. 3476 */ 3477 static void update_mbus_pre_enable(struct intel_atomic_state *state) 3478 { 3479 struct drm_i915_private *i915 = to_i915(state->base.dev); 3480 u32 mbus_ctl, dbuf_min_tracker_val; 3481 enum dbuf_slice slice; 3482 const struct intel_dbuf_state *dbuf_state = 3483 intel_atomic_get_new_dbuf_state(state); 3484 3485 if (!HAS_MBUS_JOINING(i915)) 3486 return; 3487 3488 /* 3489 * TODO: Implement vblank synchronized MBUS joining changes. 3490 * Must be properly coordinated with dbuf reprogramming. 3491 */ 3492 if (dbuf_state->joined_mbus) { 3493 mbus_ctl = MBUS_HASHING_MODE_1x4 | MBUS_JOIN | 3494 MBUS_JOIN_PIPE_SELECT_NONE; 3495 dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(3); 3496 } else { 3497 mbus_ctl = MBUS_HASHING_MODE_2x2 | 3498 MBUS_JOIN_PIPE_SELECT_NONE; 3499 dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(1); 3500 } 3501 3502 intel_de_rmw(i915, MBUS_CTL, 3503 MBUS_HASHING_MODE_MASK | MBUS_JOIN | 3504 MBUS_JOIN_PIPE_SELECT_MASK, mbus_ctl); 3505 3506 for_each_dbuf_slice(i915, slice) 3507 intel_de_rmw(i915, DBUF_CTL_S(slice), 3508 DBUF_MIN_TRACKER_STATE_SERVICE_MASK, 3509 dbuf_min_tracker_val); 3510 } 3511 3512 void intel_dbuf_pre_plane_update(struct intel_atomic_state *state) 3513 { 3514 struct drm_i915_private *i915 = to_i915(state->base.dev); 3515 const struct intel_dbuf_state *new_dbuf_state = 3516 intel_atomic_get_new_dbuf_state(state); 3517 const struct intel_dbuf_state *old_dbuf_state = 3518 intel_atomic_get_old_dbuf_state(state); 3519 3520 if (!new_dbuf_state || 3521 (new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices && 3522 new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus)) 3523 return; 3524 3525 WARN_ON(!new_dbuf_state->base.changed); 3526 3527 update_mbus_pre_enable(state); 3528 gen9_dbuf_slices_update(i915, 3529 old_dbuf_state->enabled_slices | 3530 new_dbuf_state->enabled_slices); 3531 } 3532 3533 void intel_dbuf_post_plane_update(struct intel_atomic_state *state) 3534 { 3535 struct drm_i915_private *i915 = to_i915(state->base.dev); 3536 const struct intel_dbuf_state *new_dbuf_state = 3537 intel_atomic_get_new_dbuf_state(state); 3538 const struct intel_dbuf_state *old_dbuf_state = 3539 intel_atomic_get_old_dbuf_state(state); 3540 3541 if (!new_dbuf_state || 3542 (new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices && 3543 new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus)) 3544 return; 3545 3546 WARN_ON(!new_dbuf_state->base.changed); 3547 3548 gen9_dbuf_slices_update(i915, 3549 new_dbuf_state->enabled_slices); 3550 } 3551 3552 static bool xelpdp_is_only_pipe_per_dbuf_bank(enum pipe pipe, u8 active_pipes) 3553 { 3554 switch (pipe) { 3555 case PIPE_A: 3556 return !(active_pipes & BIT(PIPE_D)); 3557 case PIPE_D: 3558 return !(active_pipes & BIT(PIPE_A)); 3559 case PIPE_B: 3560 return !(active_pipes & BIT(PIPE_C)); 3561 case PIPE_C: 3562 return !(active_pipes & BIT(PIPE_B)); 3563 default: /* to suppress compiler warning */ 3564 MISSING_CASE(pipe); 3565 break; 3566 } 3567 3568 return false; 3569 } 3570 3571 void intel_mbus_dbox_update(struct intel_atomic_state *state) 3572 { 3573 struct drm_i915_private *i915 = to_i915(state->base.dev); 3574 const struct intel_dbuf_state *new_dbuf_state, *old_dbuf_state; 3575 const struct intel_crtc_state *new_crtc_state; 3576 const struct intel_crtc *crtc; 3577 u32 val = 0; 3578 int i; 3579 3580 if (DISPLAY_VER(i915) < 11) 3581 return; 3582 3583 new_dbuf_state = intel_atomic_get_new_dbuf_state(state); 3584 old_dbuf_state = intel_atomic_get_old_dbuf_state(state); 3585 if (!new_dbuf_state || 3586 (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus && 3587 new_dbuf_state->active_pipes == old_dbuf_state->active_pipes)) 3588 return; 3589 3590 if (DISPLAY_VER(i915) >= 14) 3591 val |= MBUS_DBOX_I_CREDIT(2); 3592 3593 if (DISPLAY_VER(i915) >= 12) { 3594 val |= MBUS_DBOX_B2B_TRANSACTIONS_MAX(16); 3595 val |= MBUS_DBOX_B2B_TRANSACTIONS_DELAY(1); 3596 val |= MBUS_DBOX_REGULATE_B2B_TRANSACTIONS_EN; 3597 } 3598 3599 if (DISPLAY_VER(i915) >= 14) 3600 val |= new_dbuf_state->joined_mbus ? MBUS_DBOX_A_CREDIT(12) : 3601 MBUS_DBOX_A_CREDIT(8); 3602 else if (IS_ALDERLAKE_P(i915)) 3603 /* Wa_22010947358:adl-p */ 3604 val |= new_dbuf_state->joined_mbus ? MBUS_DBOX_A_CREDIT(6) : 3605 MBUS_DBOX_A_CREDIT(4); 3606 else 3607 val |= MBUS_DBOX_A_CREDIT(2); 3608 3609 if (DISPLAY_VER(i915) >= 14) { 3610 val |= MBUS_DBOX_B_CREDIT(0xA); 3611 } else if (IS_ALDERLAKE_P(i915)) { 3612 val |= MBUS_DBOX_BW_CREDIT(2); 3613 val |= MBUS_DBOX_B_CREDIT(8); 3614 } else if (DISPLAY_VER(i915) >= 12) { 3615 val |= MBUS_DBOX_BW_CREDIT(2); 3616 val |= MBUS_DBOX_B_CREDIT(12); 3617 } else { 3618 val |= MBUS_DBOX_BW_CREDIT(1); 3619 val |= MBUS_DBOX_B_CREDIT(8); 3620 } 3621 3622 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) { 3623 u32 pipe_val = val; 3624 3625 if (!new_crtc_state->hw.active) 3626 continue; 3627 3628 if (DISPLAY_VER(i915) >= 14) { 3629 if (xelpdp_is_only_pipe_per_dbuf_bank(crtc->pipe, 3630 new_dbuf_state->active_pipes)) 3631 pipe_val |= MBUS_DBOX_BW_8CREDITS_MTL; 3632 else 3633 pipe_val |= MBUS_DBOX_BW_4CREDITS_MTL; 3634 } 3635 3636 intel_de_write(i915, PIPE_MBUS_DBOX_CTL(crtc->pipe), pipe_val); 3637 } 3638 } 3639 3640 static int skl_watermark_ipc_status_show(struct seq_file *m, void *data) 3641 { 3642 struct drm_i915_private *i915 = m->private; 3643 3644 seq_printf(m, "Isochronous Priority Control: %s\n", 3645 str_yes_no(skl_watermark_ipc_enabled(i915))); 3646 return 0; 3647 } 3648 3649 static int skl_watermark_ipc_status_open(struct inode *inode, struct file *file) 3650 { 3651 struct drm_i915_private *i915 = inode->i_private; 3652 3653 return single_open(file, skl_watermark_ipc_status_show, i915); 3654 } 3655 3656 static ssize_t skl_watermark_ipc_status_write(struct file *file, 3657 const char __user *ubuf, 3658 size_t len, loff_t *offp) 3659 { 3660 struct seq_file *m = file->private_data; 3661 struct drm_i915_private *i915 = m->private; 3662 intel_wakeref_t wakeref; 3663 bool enable; 3664 int ret; 3665 3666 ret = kstrtobool_from_user(ubuf, len, &enable); 3667 if (ret < 0) 3668 return ret; 3669 3670 with_intel_runtime_pm(&i915->runtime_pm, wakeref) { 3671 if (!skl_watermark_ipc_enabled(i915) && enable) 3672 drm_info(&i915->drm, 3673 "Enabling IPC: WM will be proper only after next commit\n"); 3674 i915->display.wm.ipc_enabled = enable; 3675 skl_watermark_ipc_update(i915); 3676 } 3677 3678 return len; 3679 } 3680 3681 static const struct file_operations skl_watermark_ipc_status_fops = { 3682 .owner = THIS_MODULE, 3683 .open = skl_watermark_ipc_status_open, 3684 .read = seq_read, 3685 .llseek = seq_lseek, 3686 .release = single_release, 3687 .write = skl_watermark_ipc_status_write 3688 }; 3689 3690 static int intel_sagv_status_show(struct seq_file *m, void *unused) 3691 { 3692 struct drm_i915_private *i915 = m->private; 3693 static const char * const sagv_status[] = { 3694 [I915_SAGV_UNKNOWN] = "unknown", 3695 [I915_SAGV_DISABLED] = "disabled", 3696 [I915_SAGV_ENABLED] = "enabled", 3697 [I915_SAGV_NOT_CONTROLLED] = "not controlled", 3698 }; 3699 3700 seq_printf(m, "SAGV available: %s\n", str_yes_no(intel_has_sagv(i915))); 3701 seq_printf(m, "SAGV modparam: %s\n", str_enabled_disabled(i915->params.enable_sagv)); 3702 seq_printf(m, "SAGV status: %s\n", sagv_status[i915->display.sagv.status]); 3703 seq_printf(m, "SAGV block time: %d usec\n", i915->display.sagv.block_time_us); 3704 3705 return 0; 3706 } 3707 3708 DEFINE_SHOW_ATTRIBUTE(intel_sagv_status); 3709 3710 void skl_watermark_debugfs_register(struct drm_i915_private *i915) 3711 { 3712 struct drm_minor *minor = i915->drm.primary; 3713 3714 if (HAS_IPC(i915)) 3715 debugfs_create_file("i915_ipc_status", 0644, minor->debugfs_root, i915, 3716 &skl_watermark_ipc_status_fops); 3717 3718 if (HAS_SAGV(i915)) 3719 debugfs_create_file("i915_sagv_status", 0444, minor->debugfs_root, i915, 3720 &intel_sagv_status_fops); 3721 } 3722