xref: /openbmc/linux/drivers/gpu/drm/i915/display/intel_vrr.c (revision 519b58bbfa825f042fcf80261cc18e1e35f85ffd)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  *
5  */
6 
7 #include "i915_drv.h"
8 #include "intel_de.h"
9 #include "intel_display_types.h"
10 #include "intel_vrr.h"
11 
12 bool intel_vrr_is_capable(struct intel_connector *connector)
13 {
14 	const struct drm_display_info *info = &connector->base.display_info;
15 	struct drm_i915_private *i915 = to_i915(connector->base.dev);
16 	struct intel_dp *intel_dp;
17 
18 	/*
19 	 * DP Sink is capable of VRR video timings if
20 	 * Ignore MSA bit is set in DPCD.
21 	 * EDID monitor range also should be atleast 10 for reasonable
22 	 * Adaptive Sync or Variable Refresh Rate end user experience.
23 	 */
24 	switch (connector->base.connector_type) {
25 	case DRM_MODE_CONNECTOR_eDP:
26 		if (!connector->panel.vbt.vrr)
27 			return false;
28 		fallthrough;
29 	case DRM_MODE_CONNECTOR_DisplayPort:
30 		intel_dp = intel_attached_dp(connector);
31 
32 		if (!drm_dp_sink_can_do_video_without_timing_msa(intel_dp->dpcd))
33 			return false;
34 
35 		break;
36 	default:
37 		return false;
38 	}
39 
40 	return HAS_VRR(i915) &&
41 		info->monitor_range.max_vfreq - info->monitor_range.min_vfreq > 10;
42 }
43 
44 void
45 intel_vrr_check_modeset(struct intel_atomic_state *state)
46 {
47 	int i;
48 	struct intel_crtc_state *old_crtc_state, *new_crtc_state;
49 	struct intel_crtc *crtc;
50 
51 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
52 					    new_crtc_state, i) {
53 		if (new_crtc_state->uapi.vrr_enabled !=
54 		    old_crtc_state->uapi.vrr_enabled)
55 			new_crtc_state->uapi.mode_changed = true;
56 	}
57 }
58 
59 /*
60  * Without VRR registers get latched at:
61  *  vblank_start
62  *
63  * With VRR the earliest registers can get latched is:
64  *  intel_vrr_vmin_vblank_start(), which if we want to maintain
65  *  the correct min vtotal is >=vblank_start+1
66  *
67  * The latest point registers can get latched is the vmax decision boundary:
68  *  intel_vrr_vmax_vblank_start()
69  *
70  * Between those two points the vblank exit starts (and hence registers get
71  * latched) ASAP after a push is sent.
72  *
73  * framestart_delay is programmable 1-4.
74  */
75 static int intel_vrr_vblank_exit_length(const struct intel_crtc_state *crtc_state)
76 {
77 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
78 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
79 
80 	/* The hw imposes the extra scanline before frame start */
81 	if (DISPLAY_VER(i915) >= 13)
82 		return crtc_state->vrr.guardband + crtc_state->framestart_delay + 1;
83 	else
84 		return crtc_state->vrr.pipeline_full + crtc_state->framestart_delay + 1;
85 }
86 
87 int intel_vrr_vmin_vblank_start(const struct intel_crtc_state *crtc_state)
88 {
89 	/* Min vblank actually determined by flipline that is always >=vmin+1 */
90 	return crtc_state->vrr.vmin + 1 - intel_vrr_vblank_exit_length(crtc_state);
91 }
92 
93 int intel_vrr_vmax_vblank_start(const struct intel_crtc_state *crtc_state)
94 {
95 	return crtc_state->vrr.vmax - intel_vrr_vblank_exit_length(crtc_state);
96 }
97 
98 void
99 intel_vrr_compute_config(struct intel_crtc_state *crtc_state,
100 			 struct drm_connector_state *conn_state)
101 {
102 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
103 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
104 	struct intel_connector *connector =
105 		to_intel_connector(conn_state->connector);
106 	struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
107 	const struct drm_display_info *info = &connector->base.display_info;
108 	int vmin, vmax;
109 
110 	if (!intel_vrr_is_capable(connector))
111 		return;
112 
113 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
114 		return;
115 
116 	if (!crtc_state->uapi.vrr_enabled)
117 		return;
118 
119 	vmin = DIV_ROUND_UP(adjusted_mode->crtc_clock * 1000,
120 			    adjusted_mode->crtc_htotal * info->monitor_range.max_vfreq);
121 	vmax = adjusted_mode->crtc_clock * 1000 /
122 		(adjusted_mode->crtc_htotal * info->monitor_range.min_vfreq);
123 
124 	vmin = max_t(int, vmin, adjusted_mode->crtc_vtotal);
125 	vmax = max_t(int, vmax, adjusted_mode->crtc_vtotal);
126 
127 	if (vmin >= vmax)
128 		return;
129 
130 	/*
131 	 * flipline determines the min vblank length the hardware will
132 	 * generate, and flipline>=vmin+1, hence we reduce vmin by one
133 	 * to make sure we can get the actual min vblank length.
134 	 */
135 	crtc_state->vrr.vmin = vmin - 1;
136 	crtc_state->vrr.vmax = vmax;
137 	crtc_state->vrr.enable = true;
138 
139 	crtc_state->vrr.flipline = crtc_state->vrr.vmin + 1;
140 
141 	/*
142 	 * For XE_LPD+, we use guardband and pipeline override
143 	 * is deprecated.
144 	 */
145 	if (DISPLAY_VER(i915) >= 13) {
146 		/*
147 		 * FIXME: Subtract Window2 delay from below value.
148 		 *
149 		 * Window2 specifies time required to program DSB (Window2) in
150 		 * number of scan lines. Assuming 0 for no DSB.
151 		 */
152 		crtc_state->vrr.guardband =
153 			crtc_state->vrr.vmin - adjusted_mode->crtc_vdisplay;
154 	} else {
155 		/*
156 		 * FIXME: s/4/framestart_delay/ to get consistent
157 		 * earliest/latest points for register latching regardless
158 		 * of the framestart_delay used?
159 		 *
160 		 * FIXME: this really needs the extra scanline to provide consistent
161 		 * behaviour for all framestart_delay values. Otherwise with
162 		 * framestart_delay==4 we will end up extending the min vblank by
163 		 * one extra line.
164 		 */
165 		crtc_state->vrr.pipeline_full =
166 			min(255, crtc_state->vrr.vmin - adjusted_mode->crtc_vdisplay - 4 - 1);
167 	}
168 
169 	crtc_state->mode_flags |= I915_MODE_FLAG_VRR;
170 }
171 
172 void intel_vrr_enable(struct intel_encoder *encoder,
173 		      const struct intel_crtc_state *crtc_state)
174 {
175 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
176 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
177 	u32 trans_vrr_ctl;
178 
179 	if (!crtc_state->vrr.enable)
180 		return;
181 
182 	if (DISPLAY_VER(dev_priv) >= 13)
183 		trans_vrr_ctl = VRR_CTL_VRR_ENABLE |
184 			VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN |
185 			XELPD_VRR_CTL_VRR_GUARDBAND(crtc_state->vrr.guardband);
186 	else
187 		trans_vrr_ctl = VRR_CTL_VRR_ENABLE |
188 			VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN |
189 			VRR_CTL_PIPELINE_FULL(crtc_state->vrr.pipeline_full) |
190 			VRR_CTL_PIPELINE_FULL_OVERRIDE;
191 
192 	intel_de_write(dev_priv, TRANS_VRR_VMIN(cpu_transcoder), crtc_state->vrr.vmin - 1);
193 	intel_de_write(dev_priv, TRANS_VRR_VMAX(cpu_transcoder), crtc_state->vrr.vmax - 1);
194 	intel_de_write(dev_priv, TRANS_VRR_CTL(cpu_transcoder), trans_vrr_ctl);
195 	intel_de_write(dev_priv, TRANS_VRR_FLIPLINE(cpu_transcoder), crtc_state->vrr.flipline - 1);
196 	intel_de_write(dev_priv, TRANS_PUSH(cpu_transcoder), TRANS_PUSH_EN);
197 }
198 
199 void intel_vrr_send_push(const struct intel_crtc_state *crtc_state)
200 {
201 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
202 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
203 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
204 
205 	if (!crtc_state->vrr.enable)
206 		return;
207 
208 	intel_de_write(dev_priv, TRANS_PUSH(cpu_transcoder),
209 		       TRANS_PUSH_EN | TRANS_PUSH_SEND);
210 }
211 
212 bool intel_vrr_is_push_sent(const struct intel_crtc_state *crtc_state)
213 {
214 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
215 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
216 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
217 
218 	if (!crtc_state->vrr.enable)
219 		return false;
220 
221 	return intel_de_read(dev_priv, TRANS_PUSH(cpu_transcoder)) & TRANS_PUSH_SEND;
222 }
223 
224 void intel_vrr_disable(const struct intel_crtc_state *old_crtc_state)
225 {
226 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
227 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
228 	enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
229 
230 	if (!old_crtc_state->vrr.enable)
231 		return;
232 
233 	intel_de_write(dev_priv, TRANS_VRR_CTL(cpu_transcoder), 0);
234 	intel_de_write(dev_priv, TRANS_PUSH(cpu_transcoder), 0);
235 }
236 
237 void intel_vrr_get_config(struct intel_crtc *crtc,
238 			  struct intel_crtc_state *crtc_state)
239 {
240 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
241 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
242 	u32 trans_vrr_ctl;
243 
244 	trans_vrr_ctl = intel_de_read(dev_priv, TRANS_VRR_CTL(cpu_transcoder));
245 	crtc_state->vrr.enable = trans_vrr_ctl & VRR_CTL_VRR_ENABLE;
246 	if (!crtc_state->vrr.enable)
247 		return;
248 
249 	if (DISPLAY_VER(dev_priv) >= 13)
250 		crtc_state->vrr.guardband =
251 			REG_FIELD_GET(XELPD_VRR_CTL_VRR_GUARDBAND_MASK, trans_vrr_ctl);
252 	else
253 		if (trans_vrr_ctl & VRR_CTL_PIPELINE_FULL_OVERRIDE)
254 			crtc_state->vrr.pipeline_full =
255 				REG_FIELD_GET(VRR_CTL_PIPELINE_FULL_MASK, trans_vrr_ctl);
256 	if (trans_vrr_ctl & VRR_CTL_FLIP_LINE_EN)
257 		crtc_state->vrr.flipline = intel_de_read(dev_priv, TRANS_VRR_FLIPLINE(cpu_transcoder)) + 1;
258 	crtc_state->vrr.vmax = intel_de_read(dev_priv, TRANS_VRR_VMAX(cpu_transcoder)) + 1;
259 	crtc_state->vrr.vmin = intel_de_read(dev_priv, TRANS_VRR_VMIN(cpu_transcoder)) + 1;
260 
261 	crtc_state->mode_flags |= I915_MODE_FLAG_VRR;
262 }
263