xref: /openbmc/linux/drivers/gpu/drm/i915/display/intel_vblank.c (revision 3d40aed862874db14e1dd41fd6f12636dcfdcc3e)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022-2023 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "intel_de.h"
9 #include "intel_display_types.h"
10 #include "intel_vblank.h"
11 #include "intel_vrr.h"
12 
13 /*
14  * This timing diagram depicts the video signal in and
15  * around the vertical blanking period.
16  *
17  * Assumptions about the fictitious mode used in this example:
18  *  vblank_start >= 3
19  *  vsync_start = vblank_start + 1
20  *  vsync_end = vblank_start + 2
21  *  vtotal = vblank_start + 3
22  *
23  *           start of vblank:
24  *           latch double buffered registers
25  *           increment frame counter (ctg+)
26  *           generate start of vblank interrupt (gen4+)
27  *           |
28  *           |          frame start:
29  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
30  *           |          may be shifted forward 1-3 extra lines via TRANSCONF
31  *           |          |
32  *           |          |  start of vsync:
33  *           |          |  generate vsync interrupt
34  *           |          |  |
35  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
36  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
37  * ----va---> <-----------------vb--------------------> <--------va-------------
38  *       |          |       <----vs----->                     |
39  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
40  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
41  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
42  *       |          |                                         |
43  *       last visible pixel                                   first visible pixel
44  *                  |                                         increment frame counter (gen3/4)
45  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
46  *
47  * x  = horizontal active
48  * _  = horizontal blanking
49  * hs = horizontal sync
50  * va = vertical active
51  * vb = vertical blanking
52  * vs = vertical sync
53  * vbs = vblank_start (number)
54  *
55  * Summary:
56  * - most events happen at the start of horizontal sync
57  * - frame start happens at the start of horizontal blank, 1-4 lines
58  *   (depending on TRANSCONF settings) after the start of vblank
59  * - gen3/4 pixel and frame counter are synchronized with the start
60  *   of horizontal active on the first line of vertical active
61  */
62 
63 /*
64  * Called from drm generic code, passed a 'crtc', which we use as a pipe index.
65  */
66 u32 i915_get_vblank_counter(struct drm_crtc *crtc)
67 {
68 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
69 	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
70 	const struct drm_display_mode *mode = &vblank->hwmode;
71 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
72 	u32 pixel, vbl_start, hsync_start, htotal;
73 	u64 frame;
74 
75 	/*
76 	 * On i965gm TV output the frame counter only works up to
77 	 * the point when we enable the TV encoder. After that the
78 	 * frame counter ceases to work and reads zero. We need a
79 	 * vblank wait before enabling the TV encoder and so we
80 	 * have to enable vblank interrupts while the frame counter
81 	 * is still in a working state. However the core vblank code
82 	 * does not like us returning non-zero frame counter values
83 	 * when we've told it that we don't have a working frame
84 	 * counter. Thus we must stop non-zero values leaking out.
85 	 */
86 	if (!vblank->max_vblank_count)
87 		return 0;
88 
89 	htotal = mode->crtc_htotal;
90 	hsync_start = mode->crtc_hsync_start;
91 	vbl_start = mode->crtc_vblank_start;
92 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
93 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
94 
95 	/* Convert to pixel count */
96 	vbl_start *= htotal;
97 
98 	/* Start of vblank event occurs at start of hsync */
99 	vbl_start -= htotal - hsync_start;
100 
101 	/*
102 	 * High & low register fields aren't synchronized, so make sure
103 	 * we get a low value that's stable across two reads of the high
104 	 * register.
105 	 */
106 	frame = intel_de_read64_2x32(dev_priv, PIPEFRAMEPIXEL(pipe), PIPEFRAME(pipe));
107 
108 	pixel = frame & PIPE_PIXEL_MASK;
109 	frame = (frame >> PIPE_FRAME_LOW_SHIFT) & 0xffffff;
110 
111 	/*
112 	 * The frame counter increments at beginning of active.
113 	 * Cook up a vblank counter by also checking the pixel
114 	 * counter against vblank start.
115 	 */
116 	return (frame + (pixel >= vbl_start)) & 0xffffff;
117 }
118 
119 u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
120 {
121 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
122 	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
123 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
124 
125 	if (!vblank->max_vblank_count)
126 		return 0;
127 
128 	return intel_de_read(dev_priv, PIPE_FRMCOUNT_G4X(pipe));
129 }
130 
131 static u32 intel_crtc_scanlines_since_frame_timestamp(struct intel_crtc *crtc)
132 {
133 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
134 	struct drm_vblank_crtc *vblank =
135 		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
136 	const struct drm_display_mode *mode = &vblank->hwmode;
137 	u32 htotal = mode->crtc_htotal;
138 	u32 clock = mode->crtc_clock;
139 	u32 scan_prev_time, scan_curr_time, scan_post_time;
140 
141 	/*
142 	 * To avoid the race condition where we might cross into the
143 	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
144 	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
145 	 * during the same frame.
146 	 */
147 	do {
148 		/*
149 		 * This field provides read back of the display
150 		 * pipe frame time stamp. The time stamp value
151 		 * is sampled at every start of vertical blank.
152 		 */
153 		scan_prev_time = intel_de_read_fw(dev_priv,
154 						  PIPE_FRMTMSTMP(crtc->pipe));
155 
156 		/*
157 		 * The TIMESTAMP_CTR register has the current
158 		 * time stamp value.
159 		 */
160 		scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR);
161 
162 		scan_post_time = intel_de_read_fw(dev_priv,
163 						  PIPE_FRMTMSTMP(crtc->pipe));
164 	} while (scan_post_time != scan_prev_time);
165 
166 	return div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
167 				   clock), 1000 * htotal);
168 }
169 
170 /*
171  * On certain encoders on certain platforms, pipe
172  * scanline register will not work to get the scanline,
173  * since the timings are driven from the PORT or issues
174  * with scanline register updates.
175  * This function will use Framestamp and current
176  * timestamp registers to calculate the scanline.
177  */
178 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
179 {
180 	struct drm_vblank_crtc *vblank =
181 		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
182 	const struct drm_display_mode *mode = &vblank->hwmode;
183 	u32 vblank_start = mode->crtc_vblank_start;
184 	u32 vtotal = mode->crtc_vtotal;
185 	u32 scanline;
186 
187 	scanline = intel_crtc_scanlines_since_frame_timestamp(crtc);
188 	scanline = min(scanline, vtotal - 1);
189 	scanline = (scanline + vblank_start) % vtotal;
190 
191 	return scanline;
192 }
193 
194 /*
195  * intel_de_read_fw(), only for fast reads of display block, no need for
196  * forcewake etc.
197  */
198 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
199 {
200 	struct drm_device *dev = crtc->base.dev;
201 	struct drm_i915_private *dev_priv = to_i915(dev);
202 	const struct drm_display_mode *mode;
203 	struct drm_vblank_crtc *vblank;
204 	enum pipe pipe = crtc->pipe;
205 	int position, vtotal;
206 
207 	if (!crtc->active)
208 		return 0;
209 
210 	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
211 	mode = &vblank->hwmode;
212 
213 	if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
214 		return __intel_get_crtc_scanline_from_timestamp(crtc);
215 
216 	vtotal = mode->crtc_vtotal;
217 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
218 		vtotal /= 2;
219 
220 	position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & PIPEDSL_LINE_MASK;
221 
222 	/*
223 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
224 	 * read it just before the start of vblank.  So try it again
225 	 * so we don't accidentally end up spanning a vblank frame
226 	 * increment, causing the pipe_update_end() code to squak at us.
227 	 *
228 	 * The nature of this problem means we can't simply check the ISR
229 	 * bit and return the vblank start value; nor can we use the scanline
230 	 * debug register in the transcoder as it appears to have the same
231 	 * problem.  We may need to extend this to include other platforms,
232 	 * but so far testing only shows the problem on HSW.
233 	 */
234 	if (HAS_DDI(dev_priv) && !position) {
235 		int i, temp;
236 
237 		for (i = 0; i < 100; i++) {
238 			udelay(1);
239 			temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & PIPEDSL_LINE_MASK;
240 			if (temp != position) {
241 				position = temp;
242 				break;
243 			}
244 		}
245 	}
246 
247 	/*
248 	 * See update_scanline_offset() for the details on the
249 	 * scanline_offset adjustment.
250 	 */
251 	return (position + crtc->scanline_offset) % vtotal;
252 }
253 
254 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
255 				     bool in_vblank_irq,
256 				     int *vpos, int *hpos,
257 				     ktime_t *stime, ktime_t *etime,
258 				     const struct drm_display_mode *mode)
259 {
260 	struct drm_device *dev = _crtc->dev;
261 	struct drm_i915_private *dev_priv = to_i915(dev);
262 	struct intel_crtc *crtc = to_intel_crtc(_crtc);
263 	enum pipe pipe = crtc->pipe;
264 	int position;
265 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
266 	unsigned long irqflags;
267 	bool use_scanline_counter = DISPLAY_VER(dev_priv) >= 5 ||
268 		IS_G4X(dev_priv) || DISPLAY_VER(dev_priv) == 2 ||
269 		crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
270 
271 	if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) {
272 		drm_dbg(&dev_priv->drm,
273 			"trying to get scanoutpos for disabled pipe %c\n",
274 			pipe_name(pipe));
275 		return false;
276 	}
277 
278 	htotal = mode->crtc_htotal;
279 	hsync_start = mode->crtc_hsync_start;
280 	vtotal = mode->crtc_vtotal;
281 	vbl_start = mode->crtc_vblank_start;
282 	vbl_end = mode->crtc_vblank_end;
283 
284 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
285 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
286 		vbl_end /= 2;
287 		vtotal /= 2;
288 	}
289 
290 	/*
291 	 * Lock uncore.lock, as we will do multiple timing critical raw
292 	 * register reads, potentially with preemption disabled, so the
293 	 * following code must not block on uncore.lock.
294 	 */
295 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
296 
297 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
298 
299 	/* Get optional system timestamp before query. */
300 	if (stime)
301 		*stime = ktime_get();
302 
303 	if (crtc->mode_flags & I915_MODE_FLAG_VRR) {
304 		int scanlines = intel_crtc_scanlines_since_frame_timestamp(crtc);
305 
306 		position = __intel_get_crtc_scanline(crtc);
307 
308 		/*
309 		 * Already exiting vblank? If so, shift our position
310 		 * so it looks like we're already apporaching the full
311 		 * vblank end. This should make the generated timestamp
312 		 * more or less match when the active portion will start.
313 		 */
314 		if (position >= vbl_start && scanlines < position)
315 			position = min(crtc->vmax_vblank_start + scanlines, vtotal - 1);
316 	} else if (use_scanline_counter) {
317 		/* No obvious pixelcount register. Only query vertical
318 		 * scanout position from Display scan line register.
319 		 */
320 		position = __intel_get_crtc_scanline(crtc);
321 	} else {
322 		/*
323 		 * Have access to pixelcount since start of frame.
324 		 * We can split this into vertical and horizontal
325 		 * scanout position.
326 		 */
327 		position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
328 
329 		/* convert to pixel counts */
330 		vbl_start *= htotal;
331 		vbl_end *= htotal;
332 		vtotal *= htotal;
333 
334 		/*
335 		 * In interlaced modes, the pixel counter counts all pixels,
336 		 * so one field will have htotal more pixels. In order to avoid
337 		 * the reported position from jumping backwards when the pixel
338 		 * counter is beyond the length of the shorter field, just
339 		 * clamp the position the length of the shorter field. This
340 		 * matches how the scanline counter based position works since
341 		 * the scanline counter doesn't count the two half lines.
342 		 */
343 		position = min(position, vtotal - 1);
344 
345 		/*
346 		 * Start of vblank interrupt is triggered at start of hsync,
347 		 * just prior to the first active line of vblank. However we
348 		 * consider lines to start at the leading edge of horizontal
349 		 * active. So, should we get here before we've crossed into
350 		 * the horizontal active of the first line in vblank, we would
351 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
352 		 * always add htotal-hsync_start to the current pixel position.
353 		 */
354 		position = (position + htotal - hsync_start) % vtotal;
355 	}
356 
357 	/* Get optional system timestamp after query. */
358 	if (etime)
359 		*etime = ktime_get();
360 
361 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
362 
363 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
364 
365 	/*
366 	 * While in vblank, position will be negative
367 	 * counting up towards 0 at vbl_end. And outside
368 	 * vblank, position will be positive counting
369 	 * up since vbl_end.
370 	 */
371 	if (position >= vbl_start)
372 		position -= vbl_end;
373 	else
374 		position += vtotal - vbl_end;
375 
376 	if (use_scanline_counter) {
377 		*vpos = position;
378 		*hpos = 0;
379 	} else {
380 		*vpos = position / htotal;
381 		*hpos = position - (*vpos * htotal);
382 	}
383 
384 	return true;
385 }
386 
387 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
388 				     ktime_t *vblank_time, bool in_vblank_irq)
389 {
390 	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
391 		crtc, max_error, vblank_time, in_vblank_irq,
392 		i915_get_crtc_scanoutpos);
393 }
394 
395 int intel_get_crtc_scanline(struct intel_crtc *crtc)
396 {
397 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
398 	unsigned long irqflags;
399 	int position;
400 
401 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
402 	position = __intel_get_crtc_scanline(crtc);
403 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
404 
405 	return position;
406 }
407 
408 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv,
409 				    enum pipe pipe)
410 {
411 	i915_reg_t reg = PIPEDSL(pipe);
412 	u32 line1, line2;
413 
414 	line1 = intel_de_read(dev_priv, reg) & PIPEDSL_LINE_MASK;
415 	msleep(5);
416 	line2 = intel_de_read(dev_priv, reg) & PIPEDSL_LINE_MASK;
417 
418 	return line1 != line2;
419 }
420 
421 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
422 {
423 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
424 	enum pipe pipe = crtc->pipe;
425 
426 	/* Wait for the display line to settle/start moving */
427 	if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100))
428 		drm_err(&dev_priv->drm,
429 			"pipe %c scanline %s wait timed out\n",
430 			pipe_name(pipe), str_on_off(state));
431 }
432 
433 void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
434 {
435 	wait_for_pipe_scanline_moving(crtc, false);
436 }
437 
438 void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
439 {
440 	wait_for_pipe_scanline_moving(crtc, true);
441 }
442 
443 static int intel_crtc_scanline_offset(const struct intel_crtc_state *crtc_state)
444 {
445 	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
446 	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
447 
448 	/*
449 	 * The scanline counter increments at the leading edge of hsync.
450 	 *
451 	 * On most platforms it starts counting from vtotal-1 on the
452 	 * first active line. That means the scanline counter value is
453 	 * always one less than what we would expect. Ie. just after
454 	 * start of vblank, which also occurs at start of hsync (on the
455 	 * last active line), the scanline counter will read vblank_start-1.
456 	 *
457 	 * On gen2 the scanline counter starts counting from 1 instead
458 	 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
459 	 * to keep the value positive), instead of adding one.
460 	 *
461 	 * On HSW+ the behaviour of the scanline counter depends on the output
462 	 * type. For DP ports it behaves like most other platforms, but on HDMI
463 	 * there's an extra 1 line difference. So we need to add two instead of
464 	 * one to the value.
465 	 *
466 	 * On VLV/CHV DSI the scanline counter would appear to increment
467 	 * approx. 1/3 of a scanline before start of vblank. Unfortunately
468 	 * that means we can't tell whether we're in vblank or not while
469 	 * we're on that particular line. We must still set scanline_offset
470 	 * to 1 so that the vblank timestamps come out correct when we query
471 	 * the scanline counter from within the vblank interrupt handler.
472 	 * However if queried just before the start of vblank we'll get an
473 	 * answer that's slightly in the future.
474 	 */
475 	if (DISPLAY_VER(i915) == 2) {
476 		int vtotal;
477 
478 		vtotal = adjusted_mode->crtc_vtotal;
479 		if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
480 			vtotal /= 2;
481 
482 		return vtotal - 1;
483 	} else if (HAS_DDI(i915) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
484 		return 2;
485 	} else {
486 		return 1;
487 	}
488 }
489 
490 void intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state,
491 				      bool vrr_enable)
492 {
493 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
494 	struct drm_i915_private *i915 = to_i915(crtc->base.dev);
495 	u8 mode_flags = crtc_state->mode_flags;
496 	struct drm_display_mode adjusted_mode;
497 	int vmax_vblank_start = 0;
498 	unsigned long irqflags;
499 
500 	drm_mode_init(&adjusted_mode, &crtc_state->hw.adjusted_mode);
501 
502 	if (vrr_enable) {
503 		drm_WARN_ON(&i915->drm, (mode_flags & I915_MODE_FLAG_VRR) == 0);
504 
505 		adjusted_mode.crtc_vtotal = crtc_state->vrr.vmax;
506 		adjusted_mode.crtc_vblank_end = crtc_state->vrr.vmax;
507 		adjusted_mode.crtc_vblank_start = intel_vrr_vmin_vblank_start(crtc_state);
508 		vmax_vblank_start = intel_vrr_vmax_vblank_start(crtc_state);
509 	} else {
510 		mode_flags &= ~I915_MODE_FLAG_VRR;
511 	}
512 
513 	/*
514 	 * Belts and suspenders locking to guarantee everyone sees 100%
515 	 * consistent state during fastset seamless refresh rate changes.
516 	 *
517 	 * vblank_time_lock takes care of all drm_vblank.c stuff, and
518 	 * uncore.lock takes care of __intel_get_crtc_scanline() which
519 	 * may get called elsewhere as well.
520 	 *
521 	 * TODO maybe just protect everything (including
522 	 * __intel_get_crtc_scanline()) with vblank_time_lock?
523 	 * Need to audit everything to make sure it's safe.
524 	 */
525 	spin_lock_irqsave(&i915->drm.vblank_time_lock, irqflags);
526 	spin_lock(&i915->uncore.lock);
527 
528 	drm_calc_timestamping_constants(&crtc->base, &adjusted_mode);
529 
530 	crtc->vmax_vblank_start = vmax_vblank_start;
531 
532 	crtc->mode_flags = mode_flags;
533 
534 	crtc->scanline_offset = intel_crtc_scanline_offset(crtc_state);
535 
536 	spin_unlock(&i915->uncore.lock);
537 	spin_unlock_irqrestore(&i915->drm.vblank_time_lock, irqflags);
538 }
539