1 /* 2 * Copyright © 2006-2008 Intel Corporation 3 * Jesse Barnes <jesse.barnes@intel.com> 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: 25 * Eric Anholt <eric@anholt.net> 26 * 27 */ 28 29 /** @file 30 * Integrated TV-out support for the 915GM and 945GM. 31 */ 32 33 #include <drm/drm_atomic_helper.h> 34 #include <drm/drm_crtc.h> 35 #include <drm/drm_edid.h> 36 37 #include "i915_drv.h" 38 #include "intel_connector.h" 39 #include "intel_de.h" 40 #include "intel_display_types.h" 41 #include "intel_hotplug.h" 42 #include "intel_tv.h" 43 44 enum tv_margin { 45 TV_MARGIN_LEFT, TV_MARGIN_TOP, 46 TV_MARGIN_RIGHT, TV_MARGIN_BOTTOM 47 }; 48 49 struct intel_tv { 50 struct intel_encoder base; 51 52 int type; 53 }; 54 55 struct video_levels { 56 u16 blank, black; 57 u8 burst; 58 }; 59 60 struct color_conversion { 61 u16 ry, gy, by, ay; 62 u16 ru, gu, bu, au; 63 u16 rv, gv, bv, av; 64 }; 65 66 static const u32 filter_table[] = { 67 0xB1403000, 0x2E203500, 0x35002E20, 0x3000B140, 68 0x35A0B160, 0x2DC02E80, 0xB1403480, 0xB1603000, 69 0x2EA03640, 0x34002D80, 0x3000B120, 0x36E0B160, 70 0x2D202EF0, 0xB1203380, 0xB1603000, 0x2F303780, 71 0x33002CC0, 0x3000B100, 0x3820B160, 0x2C802F50, 72 0xB10032A0, 0xB1603000, 0x2F9038C0, 0x32202C20, 73 0x3000B0E0, 0x3980B160, 0x2BC02FC0, 0xB0E031C0, 74 0xB1603000, 0x2FF03A20, 0x31602B60, 0xB020B0C0, 75 0x3AE0B160, 0x2B001810, 0xB0C03120, 0xB140B020, 76 0x18283BA0, 0x30C02A80, 0xB020B0A0, 0x3C60B140, 77 0x2A201838, 0xB0A03080, 0xB120B020, 0x18383D20, 78 0x304029C0, 0xB040B080, 0x3DE0B100, 0x29601848, 79 0xB0803000, 0xB100B040, 0x18483EC0, 0xB0402900, 80 0xB040B060, 0x3F80B0C0, 0x28801858, 0xB060B080, 81 0xB0A0B060, 0x18602820, 0xB0A02820, 0x0000B060, 82 0xB1403000, 0x2E203500, 0x35002E20, 0x3000B140, 83 0x35A0B160, 0x2DC02E80, 0xB1403480, 0xB1603000, 84 0x2EA03640, 0x34002D80, 0x3000B120, 0x36E0B160, 85 0x2D202EF0, 0xB1203380, 0xB1603000, 0x2F303780, 86 0x33002CC0, 0x3000B100, 0x3820B160, 0x2C802F50, 87 0xB10032A0, 0xB1603000, 0x2F9038C0, 0x32202C20, 88 0x3000B0E0, 0x3980B160, 0x2BC02FC0, 0xB0E031C0, 89 0xB1603000, 0x2FF03A20, 0x31602B60, 0xB020B0C0, 90 0x3AE0B160, 0x2B001810, 0xB0C03120, 0xB140B020, 91 0x18283BA0, 0x30C02A80, 0xB020B0A0, 0x3C60B140, 92 0x2A201838, 0xB0A03080, 0xB120B020, 0x18383D20, 93 0x304029C0, 0xB040B080, 0x3DE0B100, 0x29601848, 94 0xB0803000, 0xB100B040, 0x18483EC0, 0xB0402900, 95 0xB040B060, 0x3F80B0C0, 0x28801858, 0xB060B080, 96 0xB0A0B060, 0x18602820, 0xB0A02820, 0x0000B060, 97 0x36403000, 0x2D002CC0, 0x30003640, 0x2D0036C0, 98 0x35C02CC0, 0x37403000, 0x2C802D40, 0x30003540, 99 0x2D8037C0, 0x34C02C40, 0x38403000, 0x2BC02E00, 100 0x30003440, 0x2E2038C0, 0x34002B80, 0x39803000, 101 0x2B402E40, 0x30003380, 0x2E603A00, 0x33402B00, 102 0x3A803040, 0x2A802EA0, 0x30403300, 0x2EC03B40, 103 0x32802A40, 0x3C003040, 0x2A002EC0, 0x30803240, 104 0x2EC03C80, 0x320029C0, 0x3D403080, 0x29402F00, 105 0x308031C0, 0x2F203DC0, 0x31802900, 0x3E8030C0, 106 0x28802F40, 0x30C03140, 0x2F203F40, 0x31402840, 107 0x28003100, 0x28002F00, 0x00003100, 0x36403000, 108 0x2D002CC0, 0x30003640, 0x2D0036C0, 109 0x35C02CC0, 0x37403000, 0x2C802D40, 0x30003540, 110 0x2D8037C0, 0x34C02C40, 0x38403000, 0x2BC02E00, 111 0x30003440, 0x2E2038C0, 0x34002B80, 0x39803000, 112 0x2B402E40, 0x30003380, 0x2E603A00, 0x33402B00, 113 0x3A803040, 0x2A802EA0, 0x30403300, 0x2EC03B40, 114 0x32802A40, 0x3C003040, 0x2A002EC0, 0x30803240, 115 0x2EC03C80, 0x320029C0, 0x3D403080, 0x29402F00, 116 0x308031C0, 0x2F203DC0, 0x31802900, 0x3E8030C0, 117 0x28802F40, 0x30C03140, 0x2F203F40, 0x31402840, 118 0x28003100, 0x28002F00, 0x00003100, 119 }; 120 121 /* 122 * Color conversion values have 3 separate fixed point formats: 123 * 124 * 10 bit fields (ay, au) 125 * 1.9 fixed point (b.bbbbbbbbb) 126 * 11 bit fields (ry, by, ru, gu, gv) 127 * exp.mantissa (ee.mmmmmmmmm) 128 * ee = 00 = 10^-1 (0.mmmmmmmmm) 129 * ee = 01 = 10^-2 (0.0mmmmmmmmm) 130 * ee = 10 = 10^-3 (0.00mmmmmmmmm) 131 * ee = 11 = 10^-4 (0.000mmmmmmmmm) 132 * 12 bit fields (gy, rv, bu) 133 * exp.mantissa (eee.mmmmmmmmm) 134 * eee = 000 = 10^-1 (0.mmmmmmmmm) 135 * eee = 001 = 10^-2 (0.0mmmmmmmmm) 136 * eee = 010 = 10^-3 (0.00mmmmmmmmm) 137 * eee = 011 = 10^-4 (0.000mmmmmmmmm) 138 * eee = 100 = reserved 139 * eee = 101 = reserved 140 * eee = 110 = reserved 141 * eee = 111 = 10^0 (m.mmmmmmmm) (only usable for 1.0 representation) 142 * 143 * Saturation and contrast are 8 bits, with their own representation: 144 * 8 bit field (saturation, contrast) 145 * exp.mantissa (ee.mmmmmm) 146 * ee = 00 = 10^-1 (0.mmmmmm) 147 * ee = 01 = 10^0 (m.mmmmm) 148 * ee = 10 = 10^1 (mm.mmmm) 149 * ee = 11 = 10^2 (mmm.mmm) 150 * 151 * Simple conversion function: 152 * 153 * static u32 154 * float_to_csc_11(float f) 155 * { 156 * u32 exp; 157 * u32 mant; 158 * u32 ret; 159 * 160 * if (f < 0) 161 * f = -f; 162 * 163 * if (f >= 1) { 164 * exp = 0x7; 165 * mant = 1 << 8; 166 * } else { 167 * for (exp = 0; exp < 3 && f < 0.5; exp++) 168 * f *= 2.0; 169 * mant = (f * (1 << 9) + 0.5); 170 * if (mant >= (1 << 9)) 171 * mant = (1 << 9) - 1; 172 * } 173 * ret = (exp << 9) | mant; 174 * return ret; 175 * } 176 */ 177 178 /* 179 * Behold, magic numbers! If we plant them they might grow a big 180 * s-video cable to the sky... or something. 181 * 182 * Pre-converted to appropriate hex value. 183 */ 184 185 /* 186 * PAL & NTSC values for composite & s-video connections 187 */ 188 static const struct color_conversion ntsc_m_csc_composite = { 189 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104, 190 .ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200, 191 .rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200, 192 }; 193 194 static const struct video_levels ntsc_m_levels_composite = { 195 .blank = 225, .black = 267, .burst = 113, 196 }; 197 198 static const struct color_conversion ntsc_m_csc_svideo = { 199 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133, 200 .ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200, 201 .rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200, 202 }; 203 204 static const struct video_levels ntsc_m_levels_svideo = { 205 .blank = 266, .black = 316, .burst = 133, 206 }; 207 208 static const struct color_conversion ntsc_j_csc_composite = { 209 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0119, 210 .ru = 0x074c, .gu = 0x0546, .bu = 0x05ec, .au = 0x0200, 211 .rv = 0x035a, .gv = 0x0322, .bv = 0x06e1, .av = 0x0200, 212 }; 213 214 static const struct video_levels ntsc_j_levels_composite = { 215 .blank = 225, .black = 225, .burst = 113, 216 }; 217 218 static const struct color_conversion ntsc_j_csc_svideo = { 219 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x014c, 220 .ru = 0x0788, .gu = 0x0581, .bu = 0x0322, .au = 0x0200, 221 .rv = 0x0399, .gv = 0x0356, .bv = 0x070a, .av = 0x0200, 222 }; 223 224 static const struct video_levels ntsc_j_levels_svideo = { 225 .blank = 266, .black = 266, .burst = 133, 226 }; 227 228 static const struct color_conversion pal_csc_composite = { 229 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0113, 230 .ru = 0x0745, .gu = 0x053f, .bu = 0x05e1, .au = 0x0200, 231 .rv = 0x0353, .gv = 0x031c, .bv = 0x06dc, .av = 0x0200, 232 }; 233 234 static const struct video_levels pal_levels_composite = { 235 .blank = 237, .black = 237, .burst = 118, 236 }; 237 238 static const struct color_conversion pal_csc_svideo = { 239 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0145, 240 .ru = 0x0780, .gu = 0x0579, .bu = 0x031c, .au = 0x0200, 241 .rv = 0x0390, .gv = 0x034f, .bv = 0x0705, .av = 0x0200, 242 }; 243 244 static const struct video_levels pal_levels_svideo = { 245 .blank = 280, .black = 280, .burst = 139, 246 }; 247 248 static const struct color_conversion pal_m_csc_composite = { 249 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104, 250 .ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200, 251 .rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200, 252 }; 253 254 static const struct video_levels pal_m_levels_composite = { 255 .blank = 225, .black = 267, .burst = 113, 256 }; 257 258 static const struct color_conversion pal_m_csc_svideo = { 259 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133, 260 .ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200, 261 .rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200, 262 }; 263 264 static const struct video_levels pal_m_levels_svideo = { 265 .blank = 266, .black = 316, .burst = 133, 266 }; 267 268 static const struct color_conversion pal_n_csc_composite = { 269 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104, 270 .ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200, 271 .rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200, 272 }; 273 274 static const struct video_levels pal_n_levels_composite = { 275 .blank = 225, .black = 267, .burst = 118, 276 }; 277 278 static const struct color_conversion pal_n_csc_svideo = { 279 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133, 280 .ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200, 281 .rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200, 282 }; 283 284 static const struct video_levels pal_n_levels_svideo = { 285 .blank = 266, .black = 316, .burst = 139, 286 }; 287 288 /* 289 * Component connections 290 */ 291 static const struct color_conversion sdtv_csc_yprpb = { 292 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0145, 293 .ru = 0x0559, .gu = 0x0353, .bu = 0x0100, .au = 0x0200, 294 .rv = 0x0100, .gv = 0x03ad, .bv = 0x074d, .av = 0x0200, 295 }; 296 297 static const struct color_conversion hdtv_csc_yprpb = { 298 .ry = 0x05b3, .gy = 0x016e, .by = 0x0728, .ay = 0x0145, 299 .ru = 0x07d5, .gu = 0x038b, .bu = 0x0100, .au = 0x0200, 300 .rv = 0x0100, .gv = 0x03d1, .bv = 0x06bc, .av = 0x0200, 301 }; 302 303 static const struct video_levels component_levels = { 304 .blank = 279, .black = 279, .burst = 0, 305 }; 306 307 308 struct tv_mode { 309 const char *name; 310 311 u32 clock; 312 u16 refresh; /* in millihertz (for precision) */ 313 u8 oversample; 314 u8 hsync_end; 315 u16 hblank_start, hblank_end, htotal; 316 bool progressive : 1, trilevel_sync : 1, component_only : 1; 317 u8 vsync_start_f1, vsync_start_f2, vsync_len; 318 bool veq_ena : 1; 319 u8 veq_start_f1, veq_start_f2, veq_len; 320 u8 vi_end_f1, vi_end_f2; 321 u16 nbr_end; 322 bool burst_ena : 1; 323 u8 hburst_start, hburst_len; 324 u8 vburst_start_f1; 325 u16 vburst_end_f1; 326 u8 vburst_start_f2; 327 u16 vburst_end_f2; 328 u8 vburst_start_f3; 329 u16 vburst_end_f3; 330 u8 vburst_start_f4; 331 u16 vburst_end_f4; 332 /* 333 * subcarrier programming 334 */ 335 u16 dda2_size, dda3_size; 336 u8 dda1_inc; 337 u16 dda2_inc, dda3_inc; 338 u32 sc_reset; 339 bool pal_burst : 1; 340 /* 341 * blank/black levels 342 */ 343 const struct video_levels *composite_levels, *svideo_levels; 344 const struct color_conversion *composite_color, *svideo_color; 345 const u32 *filter_table; 346 }; 347 348 349 /* 350 * Sub carrier DDA 351 * 352 * I think this works as follows: 353 * 354 * subcarrier freq = pixel_clock * (dda1_inc + dda2_inc / dda2_size) / 4096 355 * 356 * Presumably, when dda3 is added in, it gets to adjust the dda2_inc value 357 * 358 * So, 359 * dda1_ideal = subcarrier/pixel * 4096 360 * dda1_inc = floor (dda1_ideal) 361 * dda2 = dda1_ideal - dda1_inc 362 * 363 * then pick a ratio for dda2 that gives the closest approximation. If 364 * you can't get close enough, you can play with dda3 as well. This 365 * seems likely to happen when dda2 is small as the jumps would be larger 366 * 367 * To invert this, 368 * 369 * pixel_clock = subcarrier * 4096 / (dda1_inc + dda2_inc / dda2_size) 370 * 371 * The constants below were all computed using a 107.520MHz clock 372 */ 373 374 /* 375 * Register programming values for TV modes. 376 * 377 * These values account for -1s required. 378 */ 379 static const struct tv_mode tv_modes[] = { 380 { 381 .name = "NTSC-M", 382 .clock = 108000, 383 .refresh = 59940, 384 .oversample = 8, 385 .component_only = false, 386 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */ 387 388 .hsync_end = 64, .hblank_end = 124, 389 .hblank_start = 836, .htotal = 857, 390 391 .progressive = false, .trilevel_sync = false, 392 393 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 394 .vsync_len = 6, 395 396 .veq_ena = true, .veq_start_f1 = 0, 397 .veq_start_f2 = 1, .veq_len = 18, 398 399 .vi_end_f1 = 20, .vi_end_f2 = 21, 400 .nbr_end = 240, 401 402 .burst_ena = true, 403 .hburst_start = 72, .hburst_len = 34, 404 .vburst_start_f1 = 9, .vburst_end_f1 = 240, 405 .vburst_start_f2 = 10, .vburst_end_f2 = 240, 406 .vburst_start_f3 = 9, .vburst_end_f3 = 240, 407 .vburst_start_f4 = 10, .vburst_end_f4 = 240, 408 409 /* desired 3.5800000 actual 3.5800000 clock 107.52 */ 410 .dda1_inc = 135, 411 .dda2_inc = 20800, .dda2_size = 27456, 412 .dda3_inc = 0, .dda3_size = 0, 413 .sc_reset = TV_SC_RESET_EVERY_4, 414 .pal_burst = false, 415 416 .composite_levels = &ntsc_m_levels_composite, 417 .composite_color = &ntsc_m_csc_composite, 418 .svideo_levels = &ntsc_m_levels_svideo, 419 .svideo_color = &ntsc_m_csc_svideo, 420 421 .filter_table = filter_table, 422 }, 423 { 424 .name = "NTSC-443", 425 .clock = 108000, 426 .refresh = 59940, 427 .oversample = 8, 428 .component_only = false, 429 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 4.43MHz */ 430 .hsync_end = 64, .hblank_end = 124, 431 .hblank_start = 836, .htotal = 857, 432 433 .progressive = false, .trilevel_sync = false, 434 435 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 436 .vsync_len = 6, 437 438 .veq_ena = true, .veq_start_f1 = 0, 439 .veq_start_f2 = 1, .veq_len = 18, 440 441 .vi_end_f1 = 20, .vi_end_f2 = 21, 442 .nbr_end = 240, 443 444 .burst_ena = true, 445 .hburst_start = 72, .hburst_len = 34, 446 .vburst_start_f1 = 9, .vburst_end_f1 = 240, 447 .vburst_start_f2 = 10, .vburst_end_f2 = 240, 448 .vburst_start_f3 = 9, .vburst_end_f3 = 240, 449 .vburst_start_f4 = 10, .vburst_end_f4 = 240, 450 451 /* desired 4.4336180 actual 4.4336180 clock 107.52 */ 452 .dda1_inc = 168, 453 .dda2_inc = 4093, .dda2_size = 27456, 454 .dda3_inc = 310, .dda3_size = 525, 455 .sc_reset = TV_SC_RESET_NEVER, 456 .pal_burst = false, 457 458 .composite_levels = &ntsc_m_levels_composite, 459 .composite_color = &ntsc_m_csc_composite, 460 .svideo_levels = &ntsc_m_levels_svideo, 461 .svideo_color = &ntsc_m_csc_svideo, 462 463 .filter_table = filter_table, 464 }, 465 { 466 .name = "NTSC-J", 467 .clock = 108000, 468 .refresh = 59940, 469 .oversample = 8, 470 .component_only = false, 471 472 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */ 473 .hsync_end = 64, .hblank_end = 124, 474 .hblank_start = 836, .htotal = 857, 475 476 .progressive = false, .trilevel_sync = false, 477 478 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 479 .vsync_len = 6, 480 481 .veq_ena = true, .veq_start_f1 = 0, 482 .veq_start_f2 = 1, .veq_len = 18, 483 484 .vi_end_f1 = 20, .vi_end_f2 = 21, 485 .nbr_end = 240, 486 487 .burst_ena = true, 488 .hburst_start = 72, .hburst_len = 34, 489 .vburst_start_f1 = 9, .vburst_end_f1 = 240, 490 .vburst_start_f2 = 10, .vburst_end_f2 = 240, 491 .vburst_start_f3 = 9, .vburst_end_f3 = 240, 492 .vburst_start_f4 = 10, .vburst_end_f4 = 240, 493 494 /* desired 3.5800000 actual 3.5800000 clock 107.52 */ 495 .dda1_inc = 135, 496 .dda2_inc = 20800, .dda2_size = 27456, 497 .dda3_inc = 0, .dda3_size = 0, 498 .sc_reset = TV_SC_RESET_EVERY_4, 499 .pal_burst = false, 500 501 .composite_levels = &ntsc_j_levels_composite, 502 .composite_color = &ntsc_j_csc_composite, 503 .svideo_levels = &ntsc_j_levels_svideo, 504 .svideo_color = &ntsc_j_csc_svideo, 505 506 .filter_table = filter_table, 507 }, 508 { 509 .name = "PAL-M", 510 .clock = 108000, 511 .refresh = 59940, 512 .oversample = 8, 513 .component_only = false, 514 515 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */ 516 .hsync_end = 64, .hblank_end = 124, 517 .hblank_start = 836, .htotal = 857, 518 519 .progressive = false, .trilevel_sync = false, 520 521 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 522 .vsync_len = 6, 523 524 .veq_ena = true, .veq_start_f1 = 0, 525 .veq_start_f2 = 1, .veq_len = 18, 526 527 .vi_end_f1 = 20, .vi_end_f2 = 21, 528 .nbr_end = 240, 529 530 .burst_ena = true, 531 .hburst_start = 72, .hburst_len = 34, 532 .vburst_start_f1 = 9, .vburst_end_f1 = 240, 533 .vburst_start_f2 = 10, .vburst_end_f2 = 240, 534 .vburst_start_f3 = 9, .vburst_end_f3 = 240, 535 .vburst_start_f4 = 10, .vburst_end_f4 = 240, 536 537 /* desired 3.5800000 actual 3.5800000 clock 107.52 */ 538 .dda1_inc = 135, 539 .dda2_inc = 16704, .dda2_size = 27456, 540 .dda3_inc = 0, .dda3_size = 0, 541 .sc_reset = TV_SC_RESET_EVERY_8, 542 .pal_burst = true, 543 544 .composite_levels = &pal_m_levels_composite, 545 .composite_color = &pal_m_csc_composite, 546 .svideo_levels = &pal_m_levels_svideo, 547 .svideo_color = &pal_m_csc_svideo, 548 549 .filter_table = filter_table, 550 }, 551 { 552 /* 625 Lines, 50 Fields, 15.625KHz line, Sub-Carrier 4.434MHz */ 553 .name = "PAL-N", 554 .clock = 108000, 555 .refresh = 50000, 556 .oversample = 8, 557 .component_only = false, 558 559 .hsync_end = 64, .hblank_end = 128, 560 .hblank_start = 844, .htotal = 863, 561 562 .progressive = false, .trilevel_sync = false, 563 564 565 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 566 .vsync_len = 6, 567 568 .veq_ena = true, .veq_start_f1 = 0, 569 .veq_start_f2 = 1, .veq_len = 18, 570 571 .vi_end_f1 = 24, .vi_end_f2 = 25, 572 .nbr_end = 286, 573 574 .burst_ena = true, 575 .hburst_start = 73, .hburst_len = 34, 576 .vburst_start_f1 = 8, .vburst_end_f1 = 285, 577 .vburst_start_f2 = 8, .vburst_end_f2 = 286, 578 .vburst_start_f3 = 9, .vburst_end_f3 = 286, 579 .vburst_start_f4 = 9, .vburst_end_f4 = 285, 580 581 582 /* desired 4.4336180 actual 4.4336180 clock 107.52 */ 583 .dda1_inc = 135, 584 .dda2_inc = 23578, .dda2_size = 27648, 585 .dda3_inc = 134, .dda3_size = 625, 586 .sc_reset = TV_SC_RESET_EVERY_8, 587 .pal_burst = true, 588 589 .composite_levels = &pal_n_levels_composite, 590 .composite_color = &pal_n_csc_composite, 591 .svideo_levels = &pal_n_levels_svideo, 592 .svideo_color = &pal_n_csc_svideo, 593 594 .filter_table = filter_table, 595 }, 596 { 597 /* 625 Lines, 50 Fields, 15.625KHz line, Sub-Carrier 4.434MHz */ 598 .name = "PAL", 599 .clock = 108000, 600 .refresh = 50000, 601 .oversample = 8, 602 .component_only = false, 603 604 .hsync_end = 64, .hblank_end = 142, 605 .hblank_start = 844, .htotal = 863, 606 607 .progressive = false, .trilevel_sync = false, 608 609 .vsync_start_f1 = 5, .vsync_start_f2 = 6, 610 .vsync_len = 5, 611 612 .veq_ena = true, .veq_start_f1 = 0, 613 .veq_start_f2 = 1, .veq_len = 15, 614 615 .vi_end_f1 = 24, .vi_end_f2 = 25, 616 .nbr_end = 286, 617 618 .burst_ena = true, 619 .hburst_start = 73, .hburst_len = 32, 620 .vburst_start_f1 = 8, .vburst_end_f1 = 285, 621 .vburst_start_f2 = 8, .vburst_end_f2 = 286, 622 .vburst_start_f3 = 9, .vburst_end_f3 = 286, 623 .vburst_start_f4 = 9, .vburst_end_f4 = 285, 624 625 /* desired 4.4336180 actual 4.4336180 clock 107.52 */ 626 .dda1_inc = 168, 627 .dda2_inc = 4122, .dda2_size = 27648, 628 .dda3_inc = 67, .dda3_size = 625, 629 .sc_reset = TV_SC_RESET_EVERY_8, 630 .pal_burst = true, 631 632 .composite_levels = &pal_levels_composite, 633 .composite_color = &pal_csc_composite, 634 .svideo_levels = &pal_levels_svideo, 635 .svideo_color = &pal_csc_svideo, 636 637 .filter_table = filter_table, 638 }, 639 { 640 .name = "480p", 641 .clock = 108000, 642 .refresh = 59940, 643 .oversample = 4, 644 .component_only = true, 645 646 .hsync_end = 64, .hblank_end = 122, 647 .hblank_start = 842, .htotal = 857, 648 649 .progressive = true, .trilevel_sync = false, 650 651 .vsync_start_f1 = 12, .vsync_start_f2 = 12, 652 .vsync_len = 12, 653 654 .veq_ena = false, 655 656 .vi_end_f1 = 44, .vi_end_f2 = 44, 657 .nbr_end = 479, 658 659 .burst_ena = false, 660 661 .filter_table = filter_table, 662 }, 663 { 664 .name = "576p", 665 .clock = 108000, 666 .refresh = 50000, 667 .oversample = 4, 668 .component_only = true, 669 670 .hsync_end = 64, .hblank_end = 139, 671 .hblank_start = 859, .htotal = 863, 672 673 .progressive = true, .trilevel_sync = false, 674 675 .vsync_start_f1 = 10, .vsync_start_f2 = 10, 676 .vsync_len = 10, 677 678 .veq_ena = false, 679 680 .vi_end_f1 = 48, .vi_end_f2 = 48, 681 .nbr_end = 575, 682 683 .burst_ena = false, 684 685 .filter_table = filter_table, 686 }, 687 { 688 .name = "720p@60Hz", 689 .clock = 148500, 690 .refresh = 60000, 691 .oversample = 2, 692 .component_only = true, 693 694 .hsync_end = 80, .hblank_end = 300, 695 .hblank_start = 1580, .htotal = 1649, 696 697 .progressive = true, .trilevel_sync = true, 698 699 .vsync_start_f1 = 10, .vsync_start_f2 = 10, 700 .vsync_len = 10, 701 702 .veq_ena = false, 703 704 .vi_end_f1 = 29, .vi_end_f2 = 29, 705 .nbr_end = 719, 706 707 .burst_ena = false, 708 709 .filter_table = filter_table, 710 }, 711 { 712 .name = "720p@50Hz", 713 .clock = 148500, 714 .refresh = 50000, 715 .oversample = 2, 716 .component_only = true, 717 718 .hsync_end = 80, .hblank_end = 300, 719 .hblank_start = 1580, .htotal = 1979, 720 721 .progressive = true, .trilevel_sync = true, 722 723 .vsync_start_f1 = 10, .vsync_start_f2 = 10, 724 .vsync_len = 10, 725 726 .veq_ena = false, 727 728 .vi_end_f1 = 29, .vi_end_f2 = 29, 729 .nbr_end = 719, 730 731 .burst_ena = false, 732 733 .filter_table = filter_table, 734 }, 735 { 736 .name = "1080i@50Hz", 737 .clock = 148500, 738 .refresh = 50000, 739 .oversample = 2, 740 .component_only = true, 741 742 .hsync_end = 88, .hblank_end = 235, 743 .hblank_start = 2155, .htotal = 2639, 744 745 .progressive = false, .trilevel_sync = true, 746 747 .vsync_start_f1 = 4, .vsync_start_f2 = 5, 748 .vsync_len = 10, 749 750 .veq_ena = true, .veq_start_f1 = 4, 751 .veq_start_f2 = 4, .veq_len = 10, 752 753 754 .vi_end_f1 = 21, .vi_end_f2 = 22, 755 .nbr_end = 539, 756 757 .burst_ena = false, 758 759 .filter_table = filter_table, 760 }, 761 { 762 .name = "1080i@60Hz", 763 .clock = 148500, 764 .refresh = 60000, 765 .oversample = 2, 766 .component_only = true, 767 768 .hsync_end = 88, .hblank_end = 235, 769 .hblank_start = 2155, .htotal = 2199, 770 771 .progressive = false, .trilevel_sync = true, 772 773 .vsync_start_f1 = 4, .vsync_start_f2 = 5, 774 .vsync_len = 10, 775 776 .veq_ena = true, .veq_start_f1 = 4, 777 .veq_start_f2 = 4, .veq_len = 10, 778 779 780 .vi_end_f1 = 21, .vi_end_f2 = 22, 781 .nbr_end = 539, 782 783 .burst_ena = false, 784 785 .filter_table = filter_table, 786 }, 787 788 { 789 .name = "1080p@30Hz", 790 .clock = 148500, 791 .refresh = 30000, 792 .oversample = 2, 793 .component_only = true, 794 795 .hsync_end = 88, .hblank_end = 235, 796 .hblank_start = 2155, .htotal = 2199, 797 798 .progressive = true, .trilevel_sync = true, 799 800 .vsync_start_f1 = 8, .vsync_start_f2 = 8, 801 .vsync_len = 10, 802 803 .veq_ena = false, .veq_start_f1 = 0, 804 .veq_start_f2 = 0, .veq_len = 0, 805 806 .vi_end_f1 = 44, .vi_end_f2 = 44, 807 .nbr_end = 1079, 808 809 .burst_ena = false, 810 811 .filter_table = filter_table, 812 }, 813 814 { 815 .name = "1080p@50Hz", 816 .clock = 148500, 817 .refresh = 50000, 818 .oversample = 1, 819 .component_only = true, 820 821 .hsync_end = 88, .hblank_end = 235, 822 .hblank_start = 2155, .htotal = 2639, 823 824 .progressive = true, .trilevel_sync = true, 825 826 .vsync_start_f1 = 8, .vsync_start_f2 = 8, 827 .vsync_len = 10, 828 829 .veq_ena = false, .veq_start_f1 = 0, 830 .veq_start_f2 = 0, .veq_len = 0, 831 832 .vi_end_f1 = 44, .vi_end_f2 = 44, 833 .nbr_end = 1079, 834 835 .burst_ena = false, 836 837 .filter_table = filter_table, 838 }, 839 840 { 841 .name = "1080p@60Hz", 842 .clock = 148500, 843 .refresh = 60000, 844 .oversample = 1, 845 .component_only = true, 846 847 .hsync_end = 88, .hblank_end = 235, 848 .hblank_start = 2155, .htotal = 2199, 849 850 .progressive = true, .trilevel_sync = true, 851 852 .vsync_start_f1 = 8, .vsync_start_f2 = 8, 853 .vsync_len = 10, 854 855 .veq_ena = false, .veq_start_f1 = 0, 856 .veq_start_f2 = 0, .veq_len = 0, 857 858 .vi_end_f1 = 44, .vi_end_f2 = 44, 859 .nbr_end = 1079, 860 861 .burst_ena = false, 862 863 .filter_table = filter_table, 864 }, 865 }; 866 867 struct intel_tv_connector_state { 868 struct drm_connector_state base; 869 870 /* 871 * May need to override the user margins for 872 * gen3 >1024 wide source vertical centering. 873 */ 874 struct { 875 u16 top, bottom; 876 } margins; 877 878 bool bypass_vfilter; 879 }; 880 881 #define to_intel_tv_connector_state(x) container_of(x, struct intel_tv_connector_state, base) 882 883 static struct drm_connector_state * 884 intel_tv_connector_duplicate_state(struct drm_connector *connector) 885 { 886 struct intel_tv_connector_state *state; 887 888 state = kmemdup(connector->state, sizeof(*state), GFP_KERNEL); 889 if (!state) 890 return NULL; 891 892 __drm_atomic_helper_connector_duplicate_state(connector, &state->base); 893 return &state->base; 894 } 895 896 static struct intel_tv *enc_to_tv(struct intel_encoder *encoder) 897 { 898 return container_of(encoder, struct intel_tv, base); 899 } 900 901 static struct intel_tv *intel_attached_tv(struct intel_connector *connector) 902 { 903 return enc_to_tv(intel_attached_encoder(connector)); 904 } 905 906 static bool 907 intel_tv_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe) 908 { 909 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 910 u32 tmp = intel_de_read(dev_priv, TV_CTL); 911 912 *pipe = (tmp & TV_ENC_PIPE_SEL_MASK) >> TV_ENC_PIPE_SEL_SHIFT; 913 914 return tmp & TV_ENC_ENABLE; 915 } 916 917 static void 918 intel_enable_tv(struct intel_atomic_state *state, 919 struct intel_encoder *encoder, 920 const struct intel_crtc_state *pipe_config, 921 const struct drm_connector_state *conn_state) 922 { 923 struct drm_device *dev = encoder->base.dev; 924 struct drm_i915_private *dev_priv = to_i915(dev); 925 926 /* Prevents vblank waits from timing out in intel_tv_detect_type() */ 927 intel_wait_for_vblank(dev_priv, 928 to_intel_crtc(pipe_config->uapi.crtc)->pipe); 929 930 intel_de_write(dev_priv, TV_CTL, 931 intel_de_read(dev_priv, TV_CTL) | TV_ENC_ENABLE); 932 } 933 934 static void 935 intel_disable_tv(struct intel_atomic_state *state, 936 struct intel_encoder *encoder, 937 const struct intel_crtc_state *old_crtc_state, 938 const struct drm_connector_state *old_conn_state) 939 { 940 struct drm_device *dev = encoder->base.dev; 941 struct drm_i915_private *dev_priv = to_i915(dev); 942 943 intel_de_write(dev_priv, TV_CTL, 944 intel_de_read(dev_priv, TV_CTL) & ~TV_ENC_ENABLE); 945 } 946 947 static const struct tv_mode *intel_tv_mode_find(const struct drm_connector_state *conn_state) 948 { 949 int format = conn_state->tv.mode; 950 951 return &tv_modes[format]; 952 } 953 954 static enum drm_mode_status 955 intel_tv_mode_valid(struct drm_connector *connector, 956 struct drm_display_mode *mode) 957 { 958 const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state); 959 int max_dotclk = to_i915(connector->dev)->max_dotclk_freq; 960 961 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) 962 return MODE_NO_DBLESCAN; 963 964 if (mode->clock > max_dotclk) 965 return MODE_CLOCK_HIGH; 966 967 /* Ensure TV refresh is close to desired refresh */ 968 if (abs(tv_mode->refresh - drm_mode_vrefresh(mode) * 1000) >= 1000) 969 return MODE_CLOCK_RANGE; 970 971 return MODE_OK; 972 } 973 974 static int 975 intel_tv_mode_vdisplay(const struct tv_mode *tv_mode) 976 { 977 if (tv_mode->progressive) 978 return tv_mode->nbr_end + 1; 979 else 980 return 2 * (tv_mode->nbr_end + 1); 981 } 982 983 static void 984 intel_tv_mode_to_mode(struct drm_display_mode *mode, 985 const struct tv_mode *tv_mode) 986 { 987 mode->clock = tv_mode->clock / 988 (tv_mode->oversample >> !tv_mode->progressive); 989 990 /* 991 * tv_mode horizontal timings: 992 * 993 * hsync_end 994 * | hblank_end 995 * | | hblank_start 996 * | | | htotal 997 * | _______ | 998 * ____/ \___ 999 * \__/ \ 1000 */ 1001 mode->hdisplay = 1002 tv_mode->hblank_start - tv_mode->hblank_end; 1003 mode->hsync_start = mode->hdisplay + 1004 tv_mode->htotal - tv_mode->hblank_start; 1005 mode->hsync_end = mode->hsync_start + 1006 tv_mode->hsync_end; 1007 mode->htotal = tv_mode->htotal + 1; 1008 1009 /* 1010 * tv_mode vertical timings: 1011 * 1012 * vsync_start 1013 * | vsync_end 1014 * | | vi_end nbr_end 1015 * | | | | 1016 * | | _______ 1017 * \__ ____/ \ 1018 * \__/ 1019 */ 1020 mode->vdisplay = intel_tv_mode_vdisplay(tv_mode); 1021 if (tv_mode->progressive) { 1022 mode->vsync_start = mode->vdisplay + 1023 tv_mode->vsync_start_f1 + 1; 1024 mode->vsync_end = mode->vsync_start + 1025 tv_mode->vsync_len; 1026 mode->vtotal = mode->vdisplay + 1027 tv_mode->vi_end_f1 + 1; 1028 } else { 1029 mode->vsync_start = mode->vdisplay + 1030 tv_mode->vsync_start_f1 + 1 + 1031 tv_mode->vsync_start_f2 + 1; 1032 mode->vsync_end = mode->vsync_start + 1033 2 * tv_mode->vsync_len; 1034 mode->vtotal = mode->vdisplay + 1035 tv_mode->vi_end_f1 + 1 + 1036 tv_mode->vi_end_f2 + 1; 1037 } 1038 1039 /* TV has it's own notion of sync and other mode flags, so clear them. */ 1040 mode->flags = 0; 1041 1042 snprintf(mode->name, sizeof(mode->name), 1043 "%dx%d%c (%s)", 1044 mode->hdisplay, mode->vdisplay, 1045 tv_mode->progressive ? 'p' : 'i', 1046 tv_mode->name); 1047 } 1048 1049 static void intel_tv_scale_mode_horiz(struct drm_display_mode *mode, 1050 int hdisplay, int left_margin, 1051 int right_margin) 1052 { 1053 int hsync_start = mode->hsync_start - mode->hdisplay + right_margin; 1054 int hsync_end = mode->hsync_end - mode->hdisplay + right_margin; 1055 int new_htotal = mode->htotal * hdisplay / 1056 (mode->hdisplay - left_margin - right_margin); 1057 1058 mode->clock = mode->clock * new_htotal / mode->htotal; 1059 1060 mode->hdisplay = hdisplay; 1061 mode->hsync_start = hdisplay + hsync_start * new_htotal / mode->htotal; 1062 mode->hsync_end = hdisplay + hsync_end * new_htotal / mode->htotal; 1063 mode->htotal = new_htotal; 1064 } 1065 1066 static void intel_tv_scale_mode_vert(struct drm_display_mode *mode, 1067 int vdisplay, int top_margin, 1068 int bottom_margin) 1069 { 1070 int vsync_start = mode->vsync_start - mode->vdisplay + bottom_margin; 1071 int vsync_end = mode->vsync_end - mode->vdisplay + bottom_margin; 1072 int new_vtotal = mode->vtotal * vdisplay / 1073 (mode->vdisplay - top_margin - bottom_margin); 1074 1075 mode->clock = mode->clock * new_vtotal / mode->vtotal; 1076 1077 mode->vdisplay = vdisplay; 1078 mode->vsync_start = vdisplay + vsync_start * new_vtotal / mode->vtotal; 1079 mode->vsync_end = vdisplay + vsync_end * new_vtotal / mode->vtotal; 1080 mode->vtotal = new_vtotal; 1081 } 1082 1083 static void 1084 intel_tv_get_config(struct intel_encoder *encoder, 1085 struct intel_crtc_state *pipe_config) 1086 { 1087 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1088 struct drm_display_mode *adjusted_mode = 1089 &pipe_config->hw.adjusted_mode; 1090 struct drm_display_mode mode = {}; 1091 u32 tv_ctl, hctl1, hctl3, vctl1, vctl2, tmp; 1092 struct tv_mode tv_mode = {}; 1093 int hdisplay = adjusted_mode->crtc_hdisplay; 1094 int vdisplay = adjusted_mode->crtc_vdisplay; 1095 int xsize, ysize, xpos, ypos; 1096 1097 pipe_config->output_types |= BIT(INTEL_OUTPUT_TVOUT); 1098 1099 tv_ctl = intel_de_read(dev_priv, TV_CTL); 1100 hctl1 = intel_de_read(dev_priv, TV_H_CTL_1); 1101 hctl3 = intel_de_read(dev_priv, TV_H_CTL_3); 1102 vctl1 = intel_de_read(dev_priv, TV_V_CTL_1); 1103 vctl2 = intel_de_read(dev_priv, TV_V_CTL_2); 1104 1105 tv_mode.htotal = (hctl1 & TV_HTOTAL_MASK) >> TV_HTOTAL_SHIFT; 1106 tv_mode.hsync_end = (hctl1 & TV_HSYNC_END_MASK) >> TV_HSYNC_END_SHIFT; 1107 1108 tv_mode.hblank_start = (hctl3 & TV_HBLANK_START_MASK) >> TV_HBLANK_START_SHIFT; 1109 tv_mode.hblank_end = (hctl3 & TV_HSYNC_END_MASK) >> TV_HBLANK_END_SHIFT; 1110 1111 tv_mode.nbr_end = (vctl1 & TV_NBR_END_MASK) >> TV_NBR_END_SHIFT; 1112 tv_mode.vi_end_f1 = (vctl1 & TV_VI_END_F1_MASK) >> TV_VI_END_F1_SHIFT; 1113 tv_mode.vi_end_f2 = (vctl1 & TV_VI_END_F2_MASK) >> TV_VI_END_F2_SHIFT; 1114 1115 tv_mode.vsync_len = (vctl2 & TV_VSYNC_LEN_MASK) >> TV_VSYNC_LEN_SHIFT; 1116 tv_mode.vsync_start_f1 = (vctl2 & TV_VSYNC_START_F1_MASK) >> TV_VSYNC_START_F1_SHIFT; 1117 tv_mode.vsync_start_f2 = (vctl2 & TV_VSYNC_START_F2_MASK) >> TV_VSYNC_START_F2_SHIFT; 1118 1119 tv_mode.clock = pipe_config->port_clock; 1120 1121 tv_mode.progressive = tv_ctl & TV_PROGRESSIVE; 1122 1123 switch (tv_ctl & TV_OVERSAMPLE_MASK) { 1124 case TV_OVERSAMPLE_8X: 1125 tv_mode.oversample = 8; 1126 break; 1127 case TV_OVERSAMPLE_4X: 1128 tv_mode.oversample = 4; 1129 break; 1130 case TV_OVERSAMPLE_2X: 1131 tv_mode.oversample = 2; 1132 break; 1133 default: 1134 tv_mode.oversample = 1; 1135 break; 1136 } 1137 1138 tmp = intel_de_read(dev_priv, TV_WIN_POS); 1139 xpos = tmp >> 16; 1140 ypos = tmp & 0xffff; 1141 1142 tmp = intel_de_read(dev_priv, TV_WIN_SIZE); 1143 xsize = tmp >> 16; 1144 ysize = tmp & 0xffff; 1145 1146 intel_tv_mode_to_mode(&mode, &tv_mode); 1147 1148 drm_dbg_kms(&dev_priv->drm, "TV mode:\n"); 1149 drm_mode_debug_printmodeline(&mode); 1150 1151 intel_tv_scale_mode_horiz(&mode, hdisplay, 1152 xpos, mode.hdisplay - xsize - xpos); 1153 intel_tv_scale_mode_vert(&mode, vdisplay, 1154 ypos, mode.vdisplay - ysize - ypos); 1155 1156 adjusted_mode->crtc_clock = mode.clock; 1157 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 1158 adjusted_mode->crtc_clock /= 2; 1159 1160 /* pixel counter doesn't work on i965gm TV output */ 1161 if (IS_I965GM(dev_priv)) 1162 pipe_config->mode_flags |= 1163 I915_MODE_FLAG_USE_SCANLINE_COUNTER; 1164 } 1165 1166 static bool intel_tv_source_too_wide(struct drm_i915_private *dev_priv, 1167 int hdisplay) 1168 { 1169 return DISPLAY_VER(dev_priv) == 3 && hdisplay > 1024; 1170 } 1171 1172 static bool intel_tv_vert_scaling(const struct drm_display_mode *tv_mode, 1173 const struct drm_connector_state *conn_state, 1174 int vdisplay) 1175 { 1176 return tv_mode->crtc_vdisplay - 1177 conn_state->tv.margins.top - 1178 conn_state->tv.margins.bottom != 1179 vdisplay; 1180 } 1181 1182 static int 1183 intel_tv_compute_config(struct intel_encoder *encoder, 1184 struct intel_crtc_state *pipe_config, 1185 struct drm_connector_state *conn_state) 1186 { 1187 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1188 struct intel_tv_connector_state *tv_conn_state = 1189 to_intel_tv_connector_state(conn_state); 1190 const struct tv_mode *tv_mode = intel_tv_mode_find(conn_state); 1191 struct drm_display_mode *adjusted_mode = 1192 &pipe_config->hw.adjusted_mode; 1193 int hdisplay = adjusted_mode->crtc_hdisplay; 1194 int vdisplay = adjusted_mode->crtc_vdisplay; 1195 1196 if (!tv_mode) 1197 return -EINVAL; 1198 1199 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) 1200 return -EINVAL; 1201 1202 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 1203 1204 drm_dbg_kms(&dev_priv->drm, "forcing bpc to 8 for TV\n"); 1205 pipe_config->pipe_bpp = 8*3; 1206 1207 pipe_config->port_clock = tv_mode->clock; 1208 1209 intel_tv_mode_to_mode(adjusted_mode, tv_mode); 1210 drm_mode_set_crtcinfo(adjusted_mode, 0); 1211 1212 if (intel_tv_source_too_wide(dev_priv, hdisplay) || 1213 !intel_tv_vert_scaling(adjusted_mode, conn_state, vdisplay)) { 1214 int extra, top, bottom; 1215 1216 extra = adjusted_mode->crtc_vdisplay - vdisplay; 1217 1218 if (extra < 0) { 1219 drm_dbg_kms(&dev_priv->drm, 1220 "No vertical scaling for >1024 pixel wide modes\n"); 1221 return -EINVAL; 1222 } 1223 1224 /* Need to turn off the vertical filter and center the image */ 1225 1226 /* Attempt to maintain the relative sizes of the margins */ 1227 top = conn_state->tv.margins.top; 1228 bottom = conn_state->tv.margins.bottom; 1229 1230 if (top + bottom) 1231 top = extra * top / (top + bottom); 1232 else 1233 top = extra / 2; 1234 bottom = extra - top; 1235 1236 tv_conn_state->margins.top = top; 1237 tv_conn_state->margins.bottom = bottom; 1238 1239 tv_conn_state->bypass_vfilter = true; 1240 1241 if (!tv_mode->progressive) { 1242 adjusted_mode->clock /= 2; 1243 adjusted_mode->crtc_clock /= 2; 1244 adjusted_mode->flags |= DRM_MODE_FLAG_INTERLACE; 1245 } 1246 } else { 1247 tv_conn_state->margins.top = conn_state->tv.margins.top; 1248 tv_conn_state->margins.bottom = conn_state->tv.margins.bottom; 1249 1250 tv_conn_state->bypass_vfilter = false; 1251 } 1252 1253 drm_dbg_kms(&dev_priv->drm, "TV mode:\n"); 1254 drm_mode_debug_printmodeline(adjusted_mode); 1255 1256 /* 1257 * The pipe scanline counter behaviour looks as follows when 1258 * using the TV encoder: 1259 * 1260 * time -> 1261 * 1262 * dsl=vtotal-1 | | 1263 * || || 1264 * ___| | ___| | 1265 * / | / | 1266 * / | / | 1267 * dsl=0 ___/ |_____/ | 1268 * | | | | | | 1269 * ^ ^ ^ ^ ^ 1270 * | | | | pipe vblank/first part of tv vblank 1271 * | | | bottom margin 1272 * | | active 1273 * | top margin 1274 * remainder of tv vblank 1275 * 1276 * When the TV encoder is used the pipe wants to run faster 1277 * than expected rate. During the active portion the TV 1278 * encoder stalls the pipe every few lines to keep it in 1279 * check. When the TV encoder reaches the bottom margin the 1280 * pipe simply stops. Once we reach the TV vblank the pipe is 1281 * no longer stalled and it runs at the max rate (apparently 1282 * oversample clock on gen3, cdclk on gen4). Once the pipe 1283 * reaches the pipe vtotal the pipe stops for the remainder 1284 * of the TV vblank/top margin. The pipe starts up again when 1285 * the TV encoder exits the top margin. 1286 * 1287 * To avoid huge hassles for vblank timestamping we scale 1288 * the pipe timings as if the pipe always runs at the average 1289 * rate it maintains during the active period. This also 1290 * gives us a reasonable guesstimate as to the pixel rate. 1291 * Due to the variation in the actual pipe speed the scanline 1292 * counter will give us slightly erroneous results during the 1293 * TV vblank/margins. But since vtotal was selected such that 1294 * it matches the average rate of the pipe during the active 1295 * portion the error shouldn't cause any serious grief to 1296 * vblank timestamps. 1297 * 1298 * For posterity here is the empirically derived formula 1299 * that gives us the maximum length of the pipe vblank 1300 * we can use without causing display corruption. Following 1301 * this would allow us to have a ticking scanline counter 1302 * everywhere except during the bottom margin (there the 1303 * pipe always stops). Ie. this would eliminate the second 1304 * flat portion of the above graph. However this would also 1305 * complicate vblank timestamping as the pipe vtotal would 1306 * no longer match the average rate the pipe runs at during 1307 * the active portion. Hence following this formula seems 1308 * more trouble that it's worth. 1309 * 1310 * if (GRAPHICS_VER(dev_priv) == 4) { 1311 * num = cdclk * (tv_mode->oversample >> !tv_mode->progressive); 1312 * den = tv_mode->clock; 1313 * } else { 1314 * num = tv_mode->oversample >> !tv_mode->progressive; 1315 * den = 1; 1316 * } 1317 * max_pipe_vblank_len ~= 1318 * (num * tv_htotal * (tv_vblank_len + top_margin)) / 1319 * (den * pipe_htotal); 1320 */ 1321 intel_tv_scale_mode_horiz(adjusted_mode, hdisplay, 1322 conn_state->tv.margins.left, 1323 conn_state->tv.margins.right); 1324 intel_tv_scale_mode_vert(adjusted_mode, vdisplay, 1325 tv_conn_state->margins.top, 1326 tv_conn_state->margins.bottom); 1327 drm_mode_set_crtcinfo(adjusted_mode, 0); 1328 adjusted_mode->name[0] = '\0'; 1329 1330 /* pixel counter doesn't work on i965gm TV output */ 1331 if (IS_I965GM(dev_priv)) 1332 pipe_config->mode_flags |= 1333 I915_MODE_FLAG_USE_SCANLINE_COUNTER; 1334 1335 return 0; 1336 } 1337 1338 static void 1339 set_tv_mode_timings(struct drm_i915_private *dev_priv, 1340 const struct tv_mode *tv_mode, 1341 bool burst_ena) 1342 { 1343 u32 hctl1, hctl2, hctl3; 1344 u32 vctl1, vctl2, vctl3, vctl4, vctl5, vctl6, vctl7; 1345 1346 hctl1 = (tv_mode->hsync_end << TV_HSYNC_END_SHIFT) | 1347 (tv_mode->htotal << TV_HTOTAL_SHIFT); 1348 1349 hctl2 = (tv_mode->hburst_start << 16) | 1350 (tv_mode->hburst_len << TV_HBURST_LEN_SHIFT); 1351 1352 if (burst_ena) 1353 hctl2 |= TV_BURST_ENA; 1354 1355 hctl3 = (tv_mode->hblank_start << TV_HBLANK_START_SHIFT) | 1356 (tv_mode->hblank_end << TV_HBLANK_END_SHIFT); 1357 1358 vctl1 = (tv_mode->nbr_end << TV_NBR_END_SHIFT) | 1359 (tv_mode->vi_end_f1 << TV_VI_END_F1_SHIFT) | 1360 (tv_mode->vi_end_f2 << TV_VI_END_F2_SHIFT); 1361 1362 vctl2 = (tv_mode->vsync_len << TV_VSYNC_LEN_SHIFT) | 1363 (tv_mode->vsync_start_f1 << TV_VSYNC_START_F1_SHIFT) | 1364 (tv_mode->vsync_start_f2 << TV_VSYNC_START_F2_SHIFT); 1365 1366 vctl3 = (tv_mode->veq_len << TV_VEQ_LEN_SHIFT) | 1367 (tv_mode->veq_start_f1 << TV_VEQ_START_F1_SHIFT) | 1368 (tv_mode->veq_start_f2 << TV_VEQ_START_F2_SHIFT); 1369 1370 if (tv_mode->veq_ena) 1371 vctl3 |= TV_EQUAL_ENA; 1372 1373 vctl4 = (tv_mode->vburst_start_f1 << TV_VBURST_START_F1_SHIFT) | 1374 (tv_mode->vburst_end_f1 << TV_VBURST_END_F1_SHIFT); 1375 1376 vctl5 = (tv_mode->vburst_start_f2 << TV_VBURST_START_F2_SHIFT) | 1377 (tv_mode->vburst_end_f2 << TV_VBURST_END_F2_SHIFT); 1378 1379 vctl6 = (tv_mode->vburst_start_f3 << TV_VBURST_START_F3_SHIFT) | 1380 (tv_mode->vburst_end_f3 << TV_VBURST_END_F3_SHIFT); 1381 1382 vctl7 = (tv_mode->vburst_start_f4 << TV_VBURST_START_F4_SHIFT) | 1383 (tv_mode->vburst_end_f4 << TV_VBURST_END_F4_SHIFT); 1384 1385 intel_de_write(dev_priv, TV_H_CTL_1, hctl1); 1386 intel_de_write(dev_priv, TV_H_CTL_2, hctl2); 1387 intel_de_write(dev_priv, TV_H_CTL_3, hctl3); 1388 intel_de_write(dev_priv, TV_V_CTL_1, vctl1); 1389 intel_de_write(dev_priv, TV_V_CTL_2, vctl2); 1390 intel_de_write(dev_priv, TV_V_CTL_3, vctl3); 1391 intel_de_write(dev_priv, TV_V_CTL_4, vctl4); 1392 intel_de_write(dev_priv, TV_V_CTL_5, vctl5); 1393 intel_de_write(dev_priv, TV_V_CTL_6, vctl6); 1394 intel_de_write(dev_priv, TV_V_CTL_7, vctl7); 1395 } 1396 1397 static void set_color_conversion(struct drm_i915_private *dev_priv, 1398 const struct color_conversion *color_conversion) 1399 { 1400 if (!color_conversion) 1401 return; 1402 1403 intel_de_write(dev_priv, TV_CSC_Y, 1404 (color_conversion->ry << 16) | color_conversion->gy); 1405 intel_de_write(dev_priv, TV_CSC_Y2, 1406 (color_conversion->by << 16) | color_conversion->ay); 1407 intel_de_write(dev_priv, TV_CSC_U, 1408 (color_conversion->ru << 16) | color_conversion->gu); 1409 intel_de_write(dev_priv, TV_CSC_U2, 1410 (color_conversion->bu << 16) | color_conversion->au); 1411 intel_de_write(dev_priv, TV_CSC_V, 1412 (color_conversion->rv << 16) | color_conversion->gv); 1413 intel_de_write(dev_priv, TV_CSC_V2, 1414 (color_conversion->bv << 16) | color_conversion->av); 1415 } 1416 1417 static void intel_tv_pre_enable(struct intel_atomic_state *state, 1418 struct intel_encoder *encoder, 1419 const struct intel_crtc_state *pipe_config, 1420 const struct drm_connector_state *conn_state) 1421 { 1422 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1423 struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc); 1424 struct intel_tv *intel_tv = enc_to_tv(encoder); 1425 const struct intel_tv_connector_state *tv_conn_state = 1426 to_intel_tv_connector_state(conn_state); 1427 const struct tv_mode *tv_mode = intel_tv_mode_find(conn_state); 1428 u32 tv_ctl, tv_filter_ctl; 1429 u32 scctl1, scctl2, scctl3; 1430 int i, j; 1431 const struct video_levels *video_levels; 1432 const struct color_conversion *color_conversion; 1433 bool burst_ena; 1434 int xpos, ypos; 1435 unsigned int xsize, ysize; 1436 1437 if (!tv_mode) 1438 return; /* can't happen (mode_prepare prevents this) */ 1439 1440 tv_ctl = intel_de_read(dev_priv, TV_CTL); 1441 tv_ctl &= TV_CTL_SAVE; 1442 1443 switch (intel_tv->type) { 1444 default: 1445 case DRM_MODE_CONNECTOR_Unknown: 1446 case DRM_MODE_CONNECTOR_Composite: 1447 tv_ctl |= TV_ENC_OUTPUT_COMPOSITE; 1448 video_levels = tv_mode->composite_levels; 1449 color_conversion = tv_mode->composite_color; 1450 burst_ena = tv_mode->burst_ena; 1451 break; 1452 case DRM_MODE_CONNECTOR_Component: 1453 tv_ctl |= TV_ENC_OUTPUT_COMPONENT; 1454 video_levels = &component_levels; 1455 if (tv_mode->burst_ena) 1456 color_conversion = &sdtv_csc_yprpb; 1457 else 1458 color_conversion = &hdtv_csc_yprpb; 1459 burst_ena = false; 1460 break; 1461 case DRM_MODE_CONNECTOR_SVIDEO: 1462 tv_ctl |= TV_ENC_OUTPUT_SVIDEO; 1463 video_levels = tv_mode->svideo_levels; 1464 color_conversion = tv_mode->svideo_color; 1465 burst_ena = tv_mode->burst_ena; 1466 break; 1467 } 1468 1469 tv_ctl |= TV_ENC_PIPE_SEL(crtc->pipe); 1470 1471 switch (tv_mode->oversample) { 1472 case 8: 1473 tv_ctl |= TV_OVERSAMPLE_8X; 1474 break; 1475 case 4: 1476 tv_ctl |= TV_OVERSAMPLE_4X; 1477 break; 1478 case 2: 1479 tv_ctl |= TV_OVERSAMPLE_2X; 1480 break; 1481 default: 1482 tv_ctl |= TV_OVERSAMPLE_NONE; 1483 break; 1484 } 1485 1486 if (tv_mode->progressive) 1487 tv_ctl |= TV_PROGRESSIVE; 1488 if (tv_mode->trilevel_sync) 1489 tv_ctl |= TV_TRILEVEL_SYNC; 1490 if (tv_mode->pal_burst) 1491 tv_ctl |= TV_PAL_BURST; 1492 1493 scctl1 = 0; 1494 if (tv_mode->dda1_inc) 1495 scctl1 |= TV_SC_DDA1_EN; 1496 if (tv_mode->dda2_inc) 1497 scctl1 |= TV_SC_DDA2_EN; 1498 if (tv_mode->dda3_inc) 1499 scctl1 |= TV_SC_DDA3_EN; 1500 scctl1 |= tv_mode->sc_reset; 1501 if (video_levels) 1502 scctl1 |= video_levels->burst << TV_BURST_LEVEL_SHIFT; 1503 scctl1 |= tv_mode->dda1_inc << TV_SCDDA1_INC_SHIFT; 1504 1505 scctl2 = tv_mode->dda2_size << TV_SCDDA2_SIZE_SHIFT | 1506 tv_mode->dda2_inc << TV_SCDDA2_INC_SHIFT; 1507 1508 scctl3 = tv_mode->dda3_size << TV_SCDDA3_SIZE_SHIFT | 1509 tv_mode->dda3_inc << TV_SCDDA3_INC_SHIFT; 1510 1511 /* Enable two fixes for the chips that need them. */ 1512 if (IS_I915GM(dev_priv)) 1513 tv_ctl |= TV_ENC_C0_FIX | TV_ENC_SDP_FIX; 1514 1515 set_tv_mode_timings(dev_priv, tv_mode, burst_ena); 1516 1517 intel_de_write(dev_priv, TV_SC_CTL_1, scctl1); 1518 intel_de_write(dev_priv, TV_SC_CTL_2, scctl2); 1519 intel_de_write(dev_priv, TV_SC_CTL_3, scctl3); 1520 1521 set_color_conversion(dev_priv, color_conversion); 1522 1523 if (DISPLAY_VER(dev_priv) >= 4) 1524 intel_de_write(dev_priv, TV_CLR_KNOBS, 0x00404000); 1525 else 1526 intel_de_write(dev_priv, TV_CLR_KNOBS, 0x00606000); 1527 1528 if (video_levels) 1529 intel_de_write(dev_priv, TV_CLR_LEVEL, 1530 ((video_levels->black << TV_BLACK_LEVEL_SHIFT) | (video_levels->blank << TV_BLANK_LEVEL_SHIFT))); 1531 1532 assert_transcoder_disabled(dev_priv, pipe_config->cpu_transcoder); 1533 1534 /* Filter ctl must be set before TV_WIN_SIZE */ 1535 tv_filter_ctl = TV_AUTO_SCALE; 1536 if (tv_conn_state->bypass_vfilter) 1537 tv_filter_ctl |= TV_V_FILTER_BYPASS; 1538 intel_de_write(dev_priv, TV_FILTER_CTL_1, tv_filter_ctl); 1539 1540 xsize = tv_mode->hblank_start - tv_mode->hblank_end; 1541 ysize = intel_tv_mode_vdisplay(tv_mode); 1542 1543 xpos = conn_state->tv.margins.left; 1544 ypos = tv_conn_state->margins.top; 1545 xsize -= (conn_state->tv.margins.left + 1546 conn_state->tv.margins.right); 1547 ysize -= (tv_conn_state->margins.top + 1548 tv_conn_state->margins.bottom); 1549 intel_de_write(dev_priv, TV_WIN_POS, (xpos << 16) | ypos); 1550 intel_de_write(dev_priv, TV_WIN_SIZE, (xsize << 16) | ysize); 1551 1552 j = 0; 1553 for (i = 0; i < 60; i++) 1554 intel_de_write(dev_priv, TV_H_LUMA(i), 1555 tv_mode->filter_table[j++]); 1556 for (i = 0; i < 60; i++) 1557 intel_de_write(dev_priv, TV_H_CHROMA(i), 1558 tv_mode->filter_table[j++]); 1559 for (i = 0; i < 43; i++) 1560 intel_de_write(dev_priv, TV_V_LUMA(i), 1561 tv_mode->filter_table[j++]); 1562 for (i = 0; i < 43; i++) 1563 intel_de_write(dev_priv, TV_V_CHROMA(i), 1564 tv_mode->filter_table[j++]); 1565 intel_de_write(dev_priv, TV_DAC, 1566 intel_de_read(dev_priv, TV_DAC) & TV_DAC_SAVE); 1567 intel_de_write(dev_priv, TV_CTL, tv_ctl); 1568 } 1569 1570 static int 1571 intel_tv_detect_type(struct intel_tv *intel_tv, 1572 struct drm_connector *connector) 1573 { 1574 struct intel_crtc *crtc = to_intel_crtc(connector->state->crtc); 1575 struct drm_device *dev = connector->dev; 1576 struct drm_i915_private *dev_priv = to_i915(dev); 1577 u32 tv_ctl, save_tv_ctl; 1578 u32 tv_dac, save_tv_dac; 1579 int type; 1580 1581 /* Disable TV interrupts around load detect or we'll recurse */ 1582 if (connector->polled & DRM_CONNECTOR_POLL_HPD) { 1583 spin_lock_irq(&dev_priv->irq_lock); 1584 i915_disable_pipestat(dev_priv, 0, 1585 PIPE_HOTPLUG_INTERRUPT_STATUS | 1586 PIPE_HOTPLUG_TV_INTERRUPT_STATUS); 1587 spin_unlock_irq(&dev_priv->irq_lock); 1588 } 1589 1590 save_tv_dac = tv_dac = intel_de_read(dev_priv, TV_DAC); 1591 save_tv_ctl = tv_ctl = intel_de_read(dev_priv, TV_CTL); 1592 1593 /* Poll for TV detection */ 1594 tv_ctl &= ~(TV_ENC_ENABLE | TV_ENC_PIPE_SEL_MASK | TV_TEST_MODE_MASK); 1595 tv_ctl |= TV_TEST_MODE_MONITOR_DETECT; 1596 tv_ctl |= TV_ENC_PIPE_SEL(crtc->pipe); 1597 1598 tv_dac &= ~(TVDAC_SENSE_MASK | DAC_A_MASK | DAC_B_MASK | DAC_C_MASK); 1599 tv_dac |= (TVDAC_STATE_CHG_EN | 1600 TVDAC_A_SENSE_CTL | 1601 TVDAC_B_SENSE_CTL | 1602 TVDAC_C_SENSE_CTL | 1603 DAC_CTL_OVERRIDE | 1604 DAC_A_0_7_V | 1605 DAC_B_0_7_V | 1606 DAC_C_0_7_V); 1607 1608 1609 /* 1610 * The TV sense state should be cleared to zero on cantiga platform. Otherwise 1611 * the TV is misdetected. This is hardware requirement. 1612 */ 1613 if (IS_GM45(dev_priv)) 1614 tv_dac &= ~(TVDAC_STATE_CHG_EN | TVDAC_A_SENSE_CTL | 1615 TVDAC_B_SENSE_CTL | TVDAC_C_SENSE_CTL); 1616 1617 intel_de_write(dev_priv, TV_CTL, tv_ctl); 1618 intel_de_write(dev_priv, TV_DAC, tv_dac); 1619 intel_de_posting_read(dev_priv, TV_DAC); 1620 1621 intel_wait_for_vblank(dev_priv, crtc->pipe); 1622 1623 type = -1; 1624 tv_dac = intel_de_read(dev_priv, TV_DAC); 1625 drm_dbg_kms(&dev_priv->drm, "TV detected: %x, %x\n", tv_ctl, tv_dac); 1626 /* 1627 * A B C 1628 * 0 1 1 Composite 1629 * 1 0 X svideo 1630 * 0 0 0 Component 1631 */ 1632 if ((tv_dac & TVDAC_SENSE_MASK) == (TVDAC_B_SENSE | TVDAC_C_SENSE)) { 1633 drm_dbg_kms(&dev_priv->drm, 1634 "Detected Composite TV connection\n"); 1635 type = DRM_MODE_CONNECTOR_Composite; 1636 } else if ((tv_dac & (TVDAC_A_SENSE|TVDAC_B_SENSE)) == TVDAC_A_SENSE) { 1637 drm_dbg_kms(&dev_priv->drm, 1638 "Detected S-Video TV connection\n"); 1639 type = DRM_MODE_CONNECTOR_SVIDEO; 1640 } else if ((tv_dac & TVDAC_SENSE_MASK) == 0) { 1641 drm_dbg_kms(&dev_priv->drm, 1642 "Detected Component TV connection\n"); 1643 type = DRM_MODE_CONNECTOR_Component; 1644 } else { 1645 drm_dbg_kms(&dev_priv->drm, "Unrecognised TV connection\n"); 1646 type = -1; 1647 } 1648 1649 intel_de_write(dev_priv, TV_DAC, save_tv_dac & ~TVDAC_STATE_CHG_EN); 1650 intel_de_write(dev_priv, TV_CTL, save_tv_ctl); 1651 intel_de_posting_read(dev_priv, TV_CTL); 1652 1653 /* For unknown reasons the hw barfs if we don't do this vblank wait. */ 1654 intel_wait_for_vblank(dev_priv, crtc->pipe); 1655 1656 /* Restore interrupt config */ 1657 if (connector->polled & DRM_CONNECTOR_POLL_HPD) { 1658 spin_lock_irq(&dev_priv->irq_lock); 1659 i915_enable_pipestat(dev_priv, 0, 1660 PIPE_HOTPLUG_INTERRUPT_STATUS | 1661 PIPE_HOTPLUG_TV_INTERRUPT_STATUS); 1662 spin_unlock_irq(&dev_priv->irq_lock); 1663 } 1664 1665 return type; 1666 } 1667 1668 /* 1669 * Here we set accurate tv format according to connector type 1670 * i.e Component TV should not be assigned by NTSC or PAL 1671 */ 1672 static void intel_tv_find_better_format(struct drm_connector *connector) 1673 { 1674 struct intel_tv *intel_tv = intel_attached_tv(to_intel_connector(connector)); 1675 const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state); 1676 int i; 1677 1678 /* Component supports everything so we can keep the current mode */ 1679 if (intel_tv->type == DRM_MODE_CONNECTOR_Component) 1680 return; 1681 1682 /* If the current mode is fine don't change it */ 1683 if (!tv_mode->component_only) 1684 return; 1685 1686 for (i = 0; i < ARRAY_SIZE(tv_modes); i++) { 1687 tv_mode = &tv_modes[i]; 1688 1689 if (!tv_mode->component_only) 1690 break; 1691 } 1692 1693 connector->state->tv.mode = i; 1694 } 1695 1696 static int 1697 intel_tv_detect(struct drm_connector *connector, 1698 struct drm_modeset_acquire_ctx *ctx, 1699 bool force) 1700 { 1701 struct drm_i915_private *i915 = to_i915(connector->dev); 1702 struct intel_tv *intel_tv = intel_attached_tv(to_intel_connector(connector)); 1703 enum drm_connector_status status; 1704 int type; 1705 1706 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] force=%d\n", 1707 connector->base.id, connector->name, force); 1708 1709 if (!INTEL_DISPLAY_ENABLED(i915)) 1710 return connector_status_disconnected; 1711 1712 if (force) { 1713 struct intel_load_detect_pipe tmp; 1714 int ret; 1715 1716 ret = intel_get_load_detect_pipe(connector, &tmp, ctx); 1717 if (ret < 0) 1718 return ret; 1719 1720 if (ret > 0) { 1721 type = intel_tv_detect_type(intel_tv, connector); 1722 intel_release_load_detect_pipe(connector, &tmp, ctx); 1723 status = type < 0 ? 1724 connector_status_disconnected : 1725 connector_status_connected; 1726 } else 1727 status = connector_status_unknown; 1728 1729 if (status == connector_status_connected) { 1730 intel_tv->type = type; 1731 intel_tv_find_better_format(connector); 1732 } 1733 1734 return status; 1735 } else 1736 return connector->status; 1737 } 1738 1739 static const struct input_res { 1740 u16 w, h; 1741 } input_res_table[] = { 1742 { 640, 480 }, 1743 { 800, 600 }, 1744 { 1024, 768 }, 1745 { 1280, 1024 }, 1746 { 848, 480 }, 1747 { 1280, 720 }, 1748 { 1920, 1080 }, 1749 }; 1750 1751 /* Choose preferred mode according to line number of TV format */ 1752 static bool 1753 intel_tv_is_preferred_mode(const struct drm_display_mode *mode, 1754 const struct tv_mode *tv_mode) 1755 { 1756 int vdisplay = intel_tv_mode_vdisplay(tv_mode); 1757 1758 /* prefer 480 line modes for all SD TV modes */ 1759 if (vdisplay <= 576) 1760 vdisplay = 480; 1761 1762 return vdisplay == mode->vdisplay; 1763 } 1764 1765 static void 1766 intel_tv_set_mode_type(struct drm_display_mode *mode, 1767 const struct tv_mode *tv_mode) 1768 { 1769 mode->type = DRM_MODE_TYPE_DRIVER; 1770 1771 if (intel_tv_is_preferred_mode(mode, tv_mode)) 1772 mode->type |= DRM_MODE_TYPE_PREFERRED; 1773 } 1774 1775 static int 1776 intel_tv_get_modes(struct drm_connector *connector) 1777 { 1778 struct drm_i915_private *dev_priv = to_i915(connector->dev); 1779 const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state); 1780 int i, count = 0; 1781 1782 for (i = 0; i < ARRAY_SIZE(input_res_table); i++) { 1783 const struct input_res *input = &input_res_table[i]; 1784 struct drm_display_mode *mode; 1785 1786 if (input->w > 1024 && 1787 !tv_mode->progressive && 1788 !tv_mode->component_only) 1789 continue; 1790 1791 /* no vertical scaling with wide sources on gen3 */ 1792 if (DISPLAY_VER(dev_priv) == 3 && input->w > 1024 && 1793 input->h > intel_tv_mode_vdisplay(tv_mode)) 1794 continue; 1795 1796 mode = drm_mode_create(connector->dev); 1797 if (!mode) 1798 continue; 1799 1800 /* 1801 * We take the TV mode and scale it to look 1802 * like it had the expected h/vdisplay. This 1803 * provides the most information to userspace 1804 * about the actual timings of the mode. We 1805 * do ignore the margins though. 1806 */ 1807 intel_tv_mode_to_mode(mode, tv_mode); 1808 if (count == 0) { 1809 drm_dbg_kms(&dev_priv->drm, "TV mode:\n"); 1810 drm_mode_debug_printmodeline(mode); 1811 } 1812 intel_tv_scale_mode_horiz(mode, input->w, 0, 0); 1813 intel_tv_scale_mode_vert(mode, input->h, 0, 0); 1814 intel_tv_set_mode_type(mode, tv_mode); 1815 1816 drm_mode_set_name(mode); 1817 1818 drm_mode_probed_add(connector, mode); 1819 count++; 1820 } 1821 1822 return count; 1823 } 1824 1825 static const struct drm_connector_funcs intel_tv_connector_funcs = { 1826 .late_register = intel_connector_register, 1827 .early_unregister = intel_connector_unregister, 1828 .destroy = intel_connector_destroy, 1829 .fill_modes = drm_helper_probe_single_connector_modes, 1830 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 1831 .atomic_duplicate_state = intel_tv_connector_duplicate_state, 1832 }; 1833 1834 static int intel_tv_atomic_check(struct drm_connector *connector, 1835 struct drm_atomic_state *state) 1836 { 1837 struct drm_connector_state *new_state; 1838 struct drm_crtc_state *new_crtc_state; 1839 struct drm_connector_state *old_state; 1840 1841 new_state = drm_atomic_get_new_connector_state(state, connector); 1842 if (!new_state->crtc) 1843 return 0; 1844 1845 old_state = drm_atomic_get_old_connector_state(state, connector); 1846 new_crtc_state = drm_atomic_get_new_crtc_state(state, new_state->crtc); 1847 1848 if (old_state->tv.mode != new_state->tv.mode || 1849 old_state->tv.margins.left != new_state->tv.margins.left || 1850 old_state->tv.margins.right != new_state->tv.margins.right || 1851 old_state->tv.margins.top != new_state->tv.margins.top || 1852 old_state->tv.margins.bottom != new_state->tv.margins.bottom) { 1853 /* Force a modeset. */ 1854 1855 new_crtc_state->connectors_changed = true; 1856 } 1857 1858 return 0; 1859 } 1860 1861 static const struct drm_connector_helper_funcs intel_tv_connector_helper_funcs = { 1862 .detect_ctx = intel_tv_detect, 1863 .mode_valid = intel_tv_mode_valid, 1864 .get_modes = intel_tv_get_modes, 1865 .atomic_check = intel_tv_atomic_check, 1866 }; 1867 1868 static const struct drm_encoder_funcs intel_tv_enc_funcs = { 1869 .destroy = intel_encoder_destroy, 1870 }; 1871 1872 void 1873 intel_tv_init(struct drm_i915_private *dev_priv) 1874 { 1875 struct drm_device *dev = &dev_priv->drm; 1876 struct drm_connector *connector; 1877 struct intel_tv *intel_tv; 1878 struct intel_encoder *intel_encoder; 1879 struct intel_connector *intel_connector; 1880 u32 tv_dac_on, tv_dac_off, save_tv_dac; 1881 const char *tv_format_names[ARRAY_SIZE(tv_modes)]; 1882 int i, initial_mode = 0; 1883 struct drm_connector_state *state; 1884 1885 if ((intel_de_read(dev_priv, TV_CTL) & TV_FUSE_STATE_MASK) == TV_FUSE_STATE_DISABLED) 1886 return; 1887 1888 if (!intel_bios_is_tv_present(dev_priv)) { 1889 drm_dbg_kms(&dev_priv->drm, "Integrated TV is not present.\n"); 1890 return; 1891 } 1892 1893 /* 1894 * Sanity check the TV output by checking to see if the 1895 * DAC register holds a value 1896 */ 1897 save_tv_dac = intel_de_read(dev_priv, TV_DAC); 1898 1899 intel_de_write(dev_priv, TV_DAC, save_tv_dac | TVDAC_STATE_CHG_EN); 1900 tv_dac_on = intel_de_read(dev_priv, TV_DAC); 1901 1902 intel_de_write(dev_priv, TV_DAC, save_tv_dac & ~TVDAC_STATE_CHG_EN); 1903 tv_dac_off = intel_de_read(dev_priv, TV_DAC); 1904 1905 intel_de_write(dev_priv, TV_DAC, save_tv_dac); 1906 1907 /* 1908 * If the register does not hold the state change enable 1909 * bit, (either as a 0 or a 1), assume it doesn't really 1910 * exist 1911 */ 1912 if ((tv_dac_on & TVDAC_STATE_CHG_EN) == 0 || 1913 (tv_dac_off & TVDAC_STATE_CHG_EN) != 0) 1914 return; 1915 1916 intel_tv = kzalloc(sizeof(*intel_tv), GFP_KERNEL); 1917 if (!intel_tv) { 1918 return; 1919 } 1920 1921 intel_connector = intel_connector_alloc(); 1922 if (!intel_connector) { 1923 kfree(intel_tv); 1924 return; 1925 } 1926 1927 intel_encoder = &intel_tv->base; 1928 connector = &intel_connector->base; 1929 state = connector->state; 1930 1931 /* 1932 * The documentation, for the older chipsets at least, recommend 1933 * using a polling method rather than hotplug detection for TVs. 1934 * This is because in order to perform the hotplug detection, the PLLs 1935 * for the TV must be kept alive increasing power drain and starving 1936 * bandwidth from other encoders. Notably for instance, it causes 1937 * pipe underruns on Crestline when this encoder is supposedly idle. 1938 * 1939 * More recent chipsets favour HDMI rather than integrated S-Video. 1940 */ 1941 intel_connector->polled = DRM_CONNECTOR_POLL_CONNECT; 1942 1943 drm_connector_init(dev, connector, &intel_tv_connector_funcs, 1944 DRM_MODE_CONNECTOR_SVIDEO); 1945 1946 drm_encoder_init(dev, &intel_encoder->base, &intel_tv_enc_funcs, 1947 DRM_MODE_ENCODER_TVDAC, "TV"); 1948 1949 intel_encoder->compute_config = intel_tv_compute_config; 1950 intel_encoder->get_config = intel_tv_get_config; 1951 intel_encoder->pre_enable = intel_tv_pre_enable; 1952 intel_encoder->enable = intel_enable_tv; 1953 intel_encoder->disable = intel_disable_tv; 1954 intel_encoder->get_hw_state = intel_tv_get_hw_state; 1955 intel_connector->get_hw_state = intel_connector_get_hw_state; 1956 1957 intel_connector_attach_encoder(intel_connector, intel_encoder); 1958 1959 intel_encoder->type = INTEL_OUTPUT_TVOUT; 1960 intel_encoder->power_domain = POWER_DOMAIN_PORT_OTHER; 1961 intel_encoder->port = PORT_NONE; 1962 intel_encoder->pipe_mask = ~0; 1963 intel_encoder->cloneable = 0; 1964 intel_tv->type = DRM_MODE_CONNECTOR_Unknown; 1965 1966 /* BIOS margin values */ 1967 state->tv.margins.left = 54; 1968 state->tv.margins.top = 36; 1969 state->tv.margins.right = 46; 1970 state->tv.margins.bottom = 37; 1971 1972 state->tv.mode = initial_mode; 1973 1974 drm_connector_helper_add(connector, &intel_tv_connector_helper_funcs); 1975 connector->interlace_allowed = false; 1976 connector->doublescan_allowed = false; 1977 1978 /* Create TV properties then attach current values */ 1979 for (i = 0; i < ARRAY_SIZE(tv_modes); i++) { 1980 /* 1080p50/1080p60 not supported on gen3 */ 1981 if (DISPLAY_VER(dev_priv) == 3 && 1982 tv_modes[i].oversample == 1) 1983 break; 1984 1985 tv_format_names[i] = tv_modes[i].name; 1986 } 1987 drm_mode_create_tv_properties(dev, i, tv_format_names); 1988 1989 drm_object_attach_property(&connector->base, dev->mode_config.tv_mode_property, 1990 state->tv.mode); 1991 drm_object_attach_property(&connector->base, 1992 dev->mode_config.tv_left_margin_property, 1993 state->tv.margins.left); 1994 drm_object_attach_property(&connector->base, 1995 dev->mode_config.tv_top_margin_property, 1996 state->tv.margins.top); 1997 drm_object_attach_property(&connector->base, 1998 dev->mode_config.tv_right_margin_property, 1999 state->tv.margins.right); 2000 drm_object_attach_property(&connector->base, 2001 dev->mode_config.tv_bottom_margin_property, 2002 state->tv.margins.bottom); 2003 } 2004