1 /* 2 * Copyright © 2006-2008 Intel Corporation 3 * Jesse Barnes <jesse.barnes@intel.com> 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: 25 * Eric Anholt <eric@anholt.net> 26 * 27 */ 28 29 /** @file 30 * Integrated TV-out support for the 915GM and 945GM. 31 */ 32 33 #include <drm/drm_atomic_helper.h> 34 #include <drm/drm_crtc.h> 35 #include <drm/drm_edid.h> 36 37 #include "i915_drv.h" 38 #include "intel_connector.h" 39 #include "intel_display_types.h" 40 #include "intel_hotplug.h" 41 #include "intel_tv.h" 42 43 enum tv_margin { 44 TV_MARGIN_LEFT, TV_MARGIN_TOP, 45 TV_MARGIN_RIGHT, TV_MARGIN_BOTTOM 46 }; 47 48 struct intel_tv { 49 struct intel_encoder base; 50 51 int type; 52 }; 53 54 struct video_levels { 55 u16 blank, black; 56 u8 burst; 57 }; 58 59 struct color_conversion { 60 u16 ry, gy, by, ay; 61 u16 ru, gu, bu, au; 62 u16 rv, gv, bv, av; 63 }; 64 65 static const u32 filter_table[] = { 66 0xB1403000, 0x2E203500, 0x35002E20, 0x3000B140, 67 0x35A0B160, 0x2DC02E80, 0xB1403480, 0xB1603000, 68 0x2EA03640, 0x34002D80, 0x3000B120, 0x36E0B160, 69 0x2D202EF0, 0xB1203380, 0xB1603000, 0x2F303780, 70 0x33002CC0, 0x3000B100, 0x3820B160, 0x2C802F50, 71 0xB10032A0, 0xB1603000, 0x2F9038C0, 0x32202C20, 72 0x3000B0E0, 0x3980B160, 0x2BC02FC0, 0xB0E031C0, 73 0xB1603000, 0x2FF03A20, 0x31602B60, 0xB020B0C0, 74 0x3AE0B160, 0x2B001810, 0xB0C03120, 0xB140B020, 75 0x18283BA0, 0x30C02A80, 0xB020B0A0, 0x3C60B140, 76 0x2A201838, 0xB0A03080, 0xB120B020, 0x18383D20, 77 0x304029C0, 0xB040B080, 0x3DE0B100, 0x29601848, 78 0xB0803000, 0xB100B040, 0x18483EC0, 0xB0402900, 79 0xB040B060, 0x3F80B0C0, 0x28801858, 0xB060B080, 80 0xB0A0B060, 0x18602820, 0xB0A02820, 0x0000B060, 81 0xB1403000, 0x2E203500, 0x35002E20, 0x3000B140, 82 0x35A0B160, 0x2DC02E80, 0xB1403480, 0xB1603000, 83 0x2EA03640, 0x34002D80, 0x3000B120, 0x36E0B160, 84 0x2D202EF0, 0xB1203380, 0xB1603000, 0x2F303780, 85 0x33002CC0, 0x3000B100, 0x3820B160, 0x2C802F50, 86 0xB10032A0, 0xB1603000, 0x2F9038C0, 0x32202C20, 87 0x3000B0E0, 0x3980B160, 0x2BC02FC0, 0xB0E031C0, 88 0xB1603000, 0x2FF03A20, 0x31602B60, 0xB020B0C0, 89 0x3AE0B160, 0x2B001810, 0xB0C03120, 0xB140B020, 90 0x18283BA0, 0x30C02A80, 0xB020B0A0, 0x3C60B140, 91 0x2A201838, 0xB0A03080, 0xB120B020, 0x18383D20, 92 0x304029C0, 0xB040B080, 0x3DE0B100, 0x29601848, 93 0xB0803000, 0xB100B040, 0x18483EC0, 0xB0402900, 94 0xB040B060, 0x3F80B0C0, 0x28801858, 0xB060B080, 95 0xB0A0B060, 0x18602820, 0xB0A02820, 0x0000B060, 96 0x36403000, 0x2D002CC0, 0x30003640, 0x2D0036C0, 97 0x35C02CC0, 0x37403000, 0x2C802D40, 0x30003540, 98 0x2D8037C0, 0x34C02C40, 0x38403000, 0x2BC02E00, 99 0x30003440, 0x2E2038C0, 0x34002B80, 0x39803000, 100 0x2B402E40, 0x30003380, 0x2E603A00, 0x33402B00, 101 0x3A803040, 0x2A802EA0, 0x30403300, 0x2EC03B40, 102 0x32802A40, 0x3C003040, 0x2A002EC0, 0x30803240, 103 0x2EC03C80, 0x320029C0, 0x3D403080, 0x29402F00, 104 0x308031C0, 0x2F203DC0, 0x31802900, 0x3E8030C0, 105 0x28802F40, 0x30C03140, 0x2F203F40, 0x31402840, 106 0x28003100, 0x28002F00, 0x00003100, 0x36403000, 107 0x2D002CC0, 0x30003640, 0x2D0036C0, 108 0x35C02CC0, 0x37403000, 0x2C802D40, 0x30003540, 109 0x2D8037C0, 0x34C02C40, 0x38403000, 0x2BC02E00, 110 0x30003440, 0x2E2038C0, 0x34002B80, 0x39803000, 111 0x2B402E40, 0x30003380, 0x2E603A00, 0x33402B00, 112 0x3A803040, 0x2A802EA0, 0x30403300, 0x2EC03B40, 113 0x32802A40, 0x3C003040, 0x2A002EC0, 0x30803240, 114 0x2EC03C80, 0x320029C0, 0x3D403080, 0x29402F00, 115 0x308031C0, 0x2F203DC0, 0x31802900, 0x3E8030C0, 116 0x28802F40, 0x30C03140, 0x2F203F40, 0x31402840, 117 0x28003100, 0x28002F00, 0x00003100, 118 }; 119 120 /* 121 * Color conversion values have 3 separate fixed point formats: 122 * 123 * 10 bit fields (ay, au) 124 * 1.9 fixed point (b.bbbbbbbbb) 125 * 11 bit fields (ry, by, ru, gu, gv) 126 * exp.mantissa (ee.mmmmmmmmm) 127 * ee = 00 = 10^-1 (0.mmmmmmmmm) 128 * ee = 01 = 10^-2 (0.0mmmmmmmmm) 129 * ee = 10 = 10^-3 (0.00mmmmmmmmm) 130 * ee = 11 = 10^-4 (0.000mmmmmmmmm) 131 * 12 bit fields (gy, rv, bu) 132 * exp.mantissa (eee.mmmmmmmmm) 133 * eee = 000 = 10^-1 (0.mmmmmmmmm) 134 * eee = 001 = 10^-2 (0.0mmmmmmmmm) 135 * eee = 010 = 10^-3 (0.00mmmmmmmmm) 136 * eee = 011 = 10^-4 (0.000mmmmmmmmm) 137 * eee = 100 = reserved 138 * eee = 101 = reserved 139 * eee = 110 = reserved 140 * eee = 111 = 10^0 (m.mmmmmmmm) (only usable for 1.0 representation) 141 * 142 * Saturation and contrast are 8 bits, with their own representation: 143 * 8 bit field (saturation, contrast) 144 * exp.mantissa (ee.mmmmmm) 145 * ee = 00 = 10^-1 (0.mmmmmm) 146 * ee = 01 = 10^0 (m.mmmmm) 147 * ee = 10 = 10^1 (mm.mmmm) 148 * ee = 11 = 10^2 (mmm.mmm) 149 * 150 * Simple conversion function: 151 * 152 * static u32 153 * float_to_csc_11(float f) 154 * { 155 * u32 exp; 156 * u32 mant; 157 * u32 ret; 158 * 159 * if (f < 0) 160 * f = -f; 161 * 162 * if (f >= 1) { 163 * exp = 0x7; 164 * mant = 1 << 8; 165 * } else { 166 * for (exp = 0; exp < 3 && f < 0.5; exp++) 167 * f *= 2.0; 168 * mant = (f * (1 << 9) + 0.5); 169 * if (mant >= (1 << 9)) 170 * mant = (1 << 9) - 1; 171 * } 172 * ret = (exp << 9) | mant; 173 * return ret; 174 * } 175 */ 176 177 /* 178 * Behold, magic numbers! If we plant them they might grow a big 179 * s-video cable to the sky... or something. 180 * 181 * Pre-converted to appropriate hex value. 182 */ 183 184 /* 185 * PAL & NTSC values for composite & s-video connections 186 */ 187 static const struct color_conversion ntsc_m_csc_composite = { 188 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104, 189 .ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200, 190 .rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200, 191 }; 192 193 static const struct video_levels ntsc_m_levels_composite = { 194 .blank = 225, .black = 267, .burst = 113, 195 }; 196 197 static const struct color_conversion ntsc_m_csc_svideo = { 198 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133, 199 .ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200, 200 .rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200, 201 }; 202 203 static const struct video_levels ntsc_m_levels_svideo = { 204 .blank = 266, .black = 316, .burst = 133, 205 }; 206 207 static const struct color_conversion ntsc_j_csc_composite = { 208 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0119, 209 .ru = 0x074c, .gu = 0x0546, .bu = 0x05ec, .au = 0x0200, 210 .rv = 0x035a, .gv = 0x0322, .bv = 0x06e1, .av = 0x0200, 211 }; 212 213 static const struct video_levels ntsc_j_levels_composite = { 214 .blank = 225, .black = 225, .burst = 113, 215 }; 216 217 static const struct color_conversion ntsc_j_csc_svideo = { 218 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x014c, 219 .ru = 0x0788, .gu = 0x0581, .bu = 0x0322, .au = 0x0200, 220 .rv = 0x0399, .gv = 0x0356, .bv = 0x070a, .av = 0x0200, 221 }; 222 223 static const struct video_levels ntsc_j_levels_svideo = { 224 .blank = 266, .black = 266, .burst = 133, 225 }; 226 227 static const struct color_conversion pal_csc_composite = { 228 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0113, 229 .ru = 0x0745, .gu = 0x053f, .bu = 0x05e1, .au = 0x0200, 230 .rv = 0x0353, .gv = 0x031c, .bv = 0x06dc, .av = 0x0200, 231 }; 232 233 static const struct video_levels pal_levels_composite = { 234 .blank = 237, .black = 237, .burst = 118, 235 }; 236 237 static const struct color_conversion pal_csc_svideo = { 238 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0145, 239 .ru = 0x0780, .gu = 0x0579, .bu = 0x031c, .au = 0x0200, 240 .rv = 0x0390, .gv = 0x034f, .bv = 0x0705, .av = 0x0200, 241 }; 242 243 static const struct video_levels pal_levels_svideo = { 244 .blank = 280, .black = 280, .burst = 139, 245 }; 246 247 static const struct color_conversion pal_m_csc_composite = { 248 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104, 249 .ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200, 250 .rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200, 251 }; 252 253 static const struct video_levels pal_m_levels_composite = { 254 .blank = 225, .black = 267, .burst = 113, 255 }; 256 257 static const struct color_conversion pal_m_csc_svideo = { 258 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133, 259 .ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200, 260 .rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200, 261 }; 262 263 static const struct video_levels pal_m_levels_svideo = { 264 .blank = 266, .black = 316, .burst = 133, 265 }; 266 267 static const struct color_conversion pal_n_csc_composite = { 268 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104, 269 .ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200, 270 .rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200, 271 }; 272 273 static const struct video_levels pal_n_levels_composite = { 274 .blank = 225, .black = 267, .burst = 118, 275 }; 276 277 static const struct color_conversion pal_n_csc_svideo = { 278 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133, 279 .ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200, 280 .rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200, 281 }; 282 283 static const struct video_levels pal_n_levels_svideo = { 284 .blank = 266, .black = 316, .burst = 139, 285 }; 286 287 /* 288 * Component connections 289 */ 290 static const struct color_conversion sdtv_csc_yprpb = { 291 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0145, 292 .ru = 0x0559, .gu = 0x0353, .bu = 0x0100, .au = 0x0200, 293 .rv = 0x0100, .gv = 0x03ad, .bv = 0x074d, .av = 0x0200, 294 }; 295 296 static const struct color_conversion hdtv_csc_yprpb = { 297 .ry = 0x05b3, .gy = 0x016e, .by = 0x0728, .ay = 0x0145, 298 .ru = 0x07d5, .gu = 0x038b, .bu = 0x0100, .au = 0x0200, 299 .rv = 0x0100, .gv = 0x03d1, .bv = 0x06bc, .av = 0x0200, 300 }; 301 302 static const struct video_levels component_levels = { 303 .blank = 279, .black = 279, .burst = 0, 304 }; 305 306 307 struct tv_mode { 308 const char *name; 309 310 u32 clock; 311 u16 refresh; /* in millihertz (for precision) */ 312 u8 oversample; 313 u8 hsync_end; 314 u16 hblank_start, hblank_end, htotal; 315 bool progressive : 1, trilevel_sync : 1, component_only : 1; 316 u8 vsync_start_f1, vsync_start_f2, vsync_len; 317 bool veq_ena : 1; 318 u8 veq_start_f1, veq_start_f2, veq_len; 319 u8 vi_end_f1, vi_end_f2; 320 u16 nbr_end; 321 bool burst_ena : 1; 322 u8 hburst_start, hburst_len; 323 u8 vburst_start_f1; 324 u16 vburst_end_f1; 325 u8 vburst_start_f2; 326 u16 vburst_end_f2; 327 u8 vburst_start_f3; 328 u16 vburst_end_f3; 329 u8 vburst_start_f4; 330 u16 vburst_end_f4; 331 /* 332 * subcarrier programming 333 */ 334 u16 dda2_size, dda3_size; 335 u8 dda1_inc; 336 u16 dda2_inc, dda3_inc; 337 u32 sc_reset; 338 bool pal_burst : 1; 339 /* 340 * blank/black levels 341 */ 342 const struct video_levels *composite_levels, *svideo_levels; 343 const struct color_conversion *composite_color, *svideo_color; 344 const u32 *filter_table; 345 }; 346 347 348 /* 349 * Sub carrier DDA 350 * 351 * I think this works as follows: 352 * 353 * subcarrier freq = pixel_clock * (dda1_inc + dda2_inc / dda2_size) / 4096 354 * 355 * Presumably, when dda3 is added in, it gets to adjust the dda2_inc value 356 * 357 * So, 358 * dda1_ideal = subcarrier/pixel * 4096 359 * dda1_inc = floor (dda1_ideal) 360 * dda2 = dda1_ideal - dda1_inc 361 * 362 * then pick a ratio for dda2 that gives the closest approximation. If 363 * you can't get close enough, you can play with dda3 as well. This 364 * seems likely to happen when dda2 is small as the jumps would be larger 365 * 366 * To invert this, 367 * 368 * pixel_clock = subcarrier * 4096 / (dda1_inc + dda2_inc / dda2_size) 369 * 370 * The constants below were all computed using a 107.520MHz clock 371 */ 372 373 /* 374 * Register programming values for TV modes. 375 * 376 * These values account for -1s required. 377 */ 378 static const struct tv_mode tv_modes[] = { 379 { 380 .name = "NTSC-M", 381 .clock = 108000, 382 .refresh = 59940, 383 .oversample = 8, 384 .component_only = false, 385 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */ 386 387 .hsync_end = 64, .hblank_end = 124, 388 .hblank_start = 836, .htotal = 857, 389 390 .progressive = false, .trilevel_sync = false, 391 392 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 393 .vsync_len = 6, 394 395 .veq_ena = true, .veq_start_f1 = 0, 396 .veq_start_f2 = 1, .veq_len = 18, 397 398 .vi_end_f1 = 20, .vi_end_f2 = 21, 399 .nbr_end = 240, 400 401 .burst_ena = true, 402 .hburst_start = 72, .hburst_len = 34, 403 .vburst_start_f1 = 9, .vburst_end_f1 = 240, 404 .vburst_start_f2 = 10, .vburst_end_f2 = 240, 405 .vburst_start_f3 = 9, .vburst_end_f3 = 240, 406 .vburst_start_f4 = 10, .vburst_end_f4 = 240, 407 408 /* desired 3.5800000 actual 3.5800000 clock 107.52 */ 409 .dda1_inc = 135, 410 .dda2_inc = 20800, .dda2_size = 27456, 411 .dda3_inc = 0, .dda3_size = 0, 412 .sc_reset = TV_SC_RESET_EVERY_4, 413 .pal_burst = false, 414 415 .composite_levels = &ntsc_m_levels_composite, 416 .composite_color = &ntsc_m_csc_composite, 417 .svideo_levels = &ntsc_m_levels_svideo, 418 .svideo_color = &ntsc_m_csc_svideo, 419 420 .filter_table = filter_table, 421 }, 422 { 423 .name = "NTSC-443", 424 .clock = 108000, 425 .refresh = 59940, 426 .oversample = 8, 427 .component_only = false, 428 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 4.43MHz */ 429 .hsync_end = 64, .hblank_end = 124, 430 .hblank_start = 836, .htotal = 857, 431 432 .progressive = false, .trilevel_sync = false, 433 434 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 435 .vsync_len = 6, 436 437 .veq_ena = true, .veq_start_f1 = 0, 438 .veq_start_f2 = 1, .veq_len = 18, 439 440 .vi_end_f1 = 20, .vi_end_f2 = 21, 441 .nbr_end = 240, 442 443 .burst_ena = true, 444 .hburst_start = 72, .hburst_len = 34, 445 .vburst_start_f1 = 9, .vburst_end_f1 = 240, 446 .vburst_start_f2 = 10, .vburst_end_f2 = 240, 447 .vburst_start_f3 = 9, .vburst_end_f3 = 240, 448 .vburst_start_f4 = 10, .vburst_end_f4 = 240, 449 450 /* desired 4.4336180 actual 4.4336180 clock 107.52 */ 451 .dda1_inc = 168, 452 .dda2_inc = 4093, .dda2_size = 27456, 453 .dda3_inc = 310, .dda3_size = 525, 454 .sc_reset = TV_SC_RESET_NEVER, 455 .pal_burst = false, 456 457 .composite_levels = &ntsc_m_levels_composite, 458 .composite_color = &ntsc_m_csc_composite, 459 .svideo_levels = &ntsc_m_levels_svideo, 460 .svideo_color = &ntsc_m_csc_svideo, 461 462 .filter_table = filter_table, 463 }, 464 { 465 .name = "NTSC-J", 466 .clock = 108000, 467 .refresh = 59940, 468 .oversample = 8, 469 .component_only = false, 470 471 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */ 472 .hsync_end = 64, .hblank_end = 124, 473 .hblank_start = 836, .htotal = 857, 474 475 .progressive = false, .trilevel_sync = false, 476 477 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 478 .vsync_len = 6, 479 480 .veq_ena = true, .veq_start_f1 = 0, 481 .veq_start_f2 = 1, .veq_len = 18, 482 483 .vi_end_f1 = 20, .vi_end_f2 = 21, 484 .nbr_end = 240, 485 486 .burst_ena = true, 487 .hburst_start = 72, .hburst_len = 34, 488 .vburst_start_f1 = 9, .vburst_end_f1 = 240, 489 .vburst_start_f2 = 10, .vburst_end_f2 = 240, 490 .vburst_start_f3 = 9, .vburst_end_f3 = 240, 491 .vburst_start_f4 = 10, .vburst_end_f4 = 240, 492 493 /* desired 3.5800000 actual 3.5800000 clock 107.52 */ 494 .dda1_inc = 135, 495 .dda2_inc = 20800, .dda2_size = 27456, 496 .dda3_inc = 0, .dda3_size = 0, 497 .sc_reset = TV_SC_RESET_EVERY_4, 498 .pal_burst = false, 499 500 .composite_levels = &ntsc_j_levels_composite, 501 .composite_color = &ntsc_j_csc_composite, 502 .svideo_levels = &ntsc_j_levels_svideo, 503 .svideo_color = &ntsc_j_csc_svideo, 504 505 .filter_table = filter_table, 506 }, 507 { 508 .name = "PAL-M", 509 .clock = 108000, 510 .refresh = 59940, 511 .oversample = 8, 512 .component_only = false, 513 514 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */ 515 .hsync_end = 64, .hblank_end = 124, 516 .hblank_start = 836, .htotal = 857, 517 518 .progressive = false, .trilevel_sync = false, 519 520 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 521 .vsync_len = 6, 522 523 .veq_ena = true, .veq_start_f1 = 0, 524 .veq_start_f2 = 1, .veq_len = 18, 525 526 .vi_end_f1 = 20, .vi_end_f2 = 21, 527 .nbr_end = 240, 528 529 .burst_ena = true, 530 .hburst_start = 72, .hburst_len = 34, 531 .vburst_start_f1 = 9, .vburst_end_f1 = 240, 532 .vburst_start_f2 = 10, .vburst_end_f2 = 240, 533 .vburst_start_f3 = 9, .vburst_end_f3 = 240, 534 .vburst_start_f4 = 10, .vburst_end_f4 = 240, 535 536 /* desired 3.5800000 actual 3.5800000 clock 107.52 */ 537 .dda1_inc = 135, 538 .dda2_inc = 16704, .dda2_size = 27456, 539 .dda3_inc = 0, .dda3_size = 0, 540 .sc_reset = TV_SC_RESET_EVERY_8, 541 .pal_burst = true, 542 543 .composite_levels = &pal_m_levels_composite, 544 .composite_color = &pal_m_csc_composite, 545 .svideo_levels = &pal_m_levels_svideo, 546 .svideo_color = &pal_m_csc_svideo, 547 548 .filter_table = filter_table, 549 }, 550 { 551 /* 625 Lines, 50 Fields, 15.625KHz line, Sub-Carrier 4.434MHz */ 552 .name = "PAL-N", 553 .clock = 108000, 554 .refresh = 50000, 555 .oversample = 8, 556 .component_only = false, 557 558 .hsync_end = 64, .hblank_end = 128, 559 .hblank_start = 844, .htotal = 863, 560 561 .progressive = false, .trilevel_sync = false, 562 563 564 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 565 .vsync_len = 6, 566 567 .veq_ena = true, .veq_start_f1 = 0, 568 .veq_start_f2 = 1, .veq_len = 18, 569 570 .vi_end_f1 = 24, .vi_end_f2 = 25, 571 .nbr_end = 286, 572 573 .burst_ena = true, 574 .hburst_start = 73, .hburst_len = 34, 575 .vburst_start_f1 = 8, .vburst_end_f1 = 285, 576 .vburst_start_f2 = 8, .vburst_end_f2 = 286, 577 .vburst_start_f3 = 9, .vburst_end_f3 = 286, 578 .vburst_start_f4 = 9, .vburst_end_f4 = 285, 579 580 581 /* desired 4.4336180 actual 4.4336180 clock 107.52 */ 582 .dda1_inc = 135, 583 .dda2_inc = 23578, .dda2_size = 27648, 584 .dda3_inc = 134, .dda3_size = 625, 585 .sc_reset = TV_SC_RESET_EVERY_8, 586 .pal_burst = true, 587 588 .composite_levels = &pal_n_levels_composite, 589 .composite_color = &pal_n_csc_composite, 590 .svideo_levels = &pal_n_levels_svideo, 591 .svideo_color = &pal_n_csc_svideo, 592 593 .filter_table = filter_table, 594 }, 595 { 596 /* 625 Lines, 50 Fields, 15.625KHz line, Sub-Carrier 4.434MHz */ 597 .name = "PAL", 598 .clock = 108000, 599 .refresh = 50000, 600 .oversample = 8, 601 .component_only = false, 602 603 .hsync_end = 64, .hblank_end = 142, 604 .hblank_start = 844, .htotal = 863, 605 606 .progressive = false, .trilevel_sync = false, 607 608 .vsync_start_f1 = 5, .vsync_start_f2 = 6, 609 .vsync_len = 5, 610 611 .veq_ena = true, .veq_start_f1 = 0, 612 .veq_start_f2 = 1, .veq_len = 15, 613 614 .vi_end_f1 = 24, .vi_end_f2 = 25, 615 .nbr_end = 286, 616 617 .burst_ena = true, 618 .hburst_start = 73, .hburst_len = 32, 619 .vburst_start_f1 = 8, .vburst_end_f1 = 285, 620 .vburst_start_f2 = 8, .vburst_end_f2 = 286, 621 .vburst_start_f3 = 9, .vburst_end_f3 = 286, 622 .vburst_start_f4 = 9, .vburst_end_f4 = 285, 623 624 /* desired 4.4336180 actual 4.4336180 clock 107.52 */ 625 .dda1_inc = 168, 626 .dda2_inc = 4122, .dda2_size = 27648, 627 .dda3_inc = 67, .dda3_size = 625, 628 .sc_reset = TV_SC_RESET_EVERY_8, 629 .pal_burst = true, 630 631 .composite_levels = &pal_levels_composite, 632 .composite_color = &pal_csc_composite, 633 .svideo_levels = &pal_levels_svideo, 634 .svideo_color = &pal_csc_svideo, 635 636 .filter_table = filter_table, 637 }, 638 { 639 .name = "480p", 640 .clock = 108000, 641 .refresh = 59940, 642 .oversample = 4, 643 .component_only = true, 644 645 .hsync_end = 64, .hblank_end = 122, 646 .hblank_start = 842, .htotal = 857, 647 648 .progressive = true, .trilevel_sync = false, 649 650 .vsync_start_f1 = 12, .vsync_start_f2 = 12, 651 .vsync_len = 12, 652 653 .veq_ena = false, 654 655 .vi_end_f1 = 44, .vi_end_f2 = 44, 656 .nbr_end = 479, 657 658 .burst_ena = false, 659 660 .filter_table = filter_table, 661 }, 662 { 663 .name = "576p", 664 .clock = 108000, 665 .refresh = 50000, 666 .oversample = 4, 667 .component_only = true, 668 669 .hsync_end = 64, .hblank_end = 139, 670 .hblank_start = 859, .htotal = 863, 671 672 .progressive = true, .trilevel_sync = false, 673 674 .vsync_start_f1 = 10, .vsync_start_f2 = 10, 675 .vsync_len = 10, 676 677 .veq_ena = false, 678 679 .vi_end_f1 = 48, .vi_end_f2 = 48, 680 .nbr_end = 575, 681 682 .burst_ena = false, 683 684 .filter_table = filter_table, 685 }, 686 { 687 .name = "720p@60Hz", 688 .clock = 148500, 689 .refresh = 60000, 690 .oversample = 2, 691 .component_only = true, 692 693 .hsync_end = 80, .hblank_end = 300, 694 .hblank_start = 1580, .htotal = 1649, 695 696 .progressive = true, .trilevel_sync = true, 697 698 .vsync_start_f1 = 10, .vsync_start_f2 = 10, 699 .vsync_len = 10, 700 701 .veq_ena = false, 702 703 .vi_end_f1 = 29, .vi_end_f2 = 29, 704 .nbr_end = 719, 705 706 .burst_ena = false, 707 708 .filter_table = filter_table, 709 }, 710 { 711 .name = "720p@50Hz", 712 .clock = 148500, 713 .refresh = 50000, 714 .oversample = 2, 715 .component_only = true, 716 717 .hsync_end = 80, .hblank_end = 300, 718 .hblank_start = 1580, .htotal = 1979, 719 720 .progressive = true, .trilevel_sync = true, 721 722 .vsync_start_f1 = 10, .vsync_start_f2 = 10, 723 .vsync_len = 10, 724 725 .veq_ena = false, 726 727 .vi_end_f1 = 29, .vi_end_f2 = 29, 728 .nbr_end = 719, 729 730 .burst_ena = false, 731 732 .filter_table = filter_table, 733 }, 734 { 735 .name = "1080i@50Hz", 736 .clock = 148500, 737 .refresh = 50000, 738 .oversample = 2, 739 .component_only = true, 740 741 .hsync_end = 88, .hblank_end = 235, 742 .hblank_start = 2155, .htotal = 2639, 743 744 .progressive = false, .trilevel_sync = true, 745 746 .vsync_start_f1 = 4, .vsync_start_f2 = 5, 747 .vsync_len = 10, 748 749 .veq_ena = true, .veq_start_f1 = 4, 750 .veq_start_f2 = 4, .veq_len = 10, 751 752 753 .vi_end_f1 = 21, .vi_end_f2 = 22, 754 .nbr_end = 539, 755 756 .burst_ena = false, 757 758 .filter_table = filter_table, 759 }, 760 { 761 .name = "1080i@60Hz", 762 .clock = 148500, 763 .refresh = 60000, 764 .oversample = 2, 765 .component_only = true, 766 767 .hsync_end = 88, .hblank_end = 235, 768 .hblank_start = 2155, .htotal = 2199, 769 770 .progressive = false, .trilevel_sync = true, 771 772 .vsync_start_f1 = 4, .vsync_start_f2 = 5, 773 .vsync_len = 10, 774 775 .veq_ena = true, .veq_start_f1 = 4, 776 .veq_start_f2 = 4, .veq_len = 10, 777 778 779 .vi_end_f1 = 21, .vi_end_f2 = 22, 780 .nbr_end = 539, 781 782 .burst_ena = false, 783 784 .filter_table = filter_table, 785 }, 786 787 { 788 .name = "1080p@30Hz", 789 .clock = 148500, 790 .refresh = 30000, 791 .oversample = 2, 792 .component_only = true, 793 794 .hsync_end = 88, .hblank_end = 235, 795 .hblank_start = 2155, .htotal = 2199, 796 797 .progressive = true, .trilevel_sync = true, 798 799 .vsync_start_f1 = 8, .vsync_start_f2 = 8, 800 .vsync_len = 10, 801 802 .veq_ena = false, .veq_start_f1 = 0, 803 .veq_start_f2 = 0, .veq_len = 0, 804 805 .vi_end_f1 = 44, .vi_end_f2 = 44, 806 .nbr_end = 1079, 807 808 .burst_ena = false, 809 810 .filter_table = filter_table, 811 }, 812 813 { 814 .name = "1080p@50Hz", 815 .clock = 148500, 816 .refresh = 50000, 817 .oversample = 1, 818 .component_only = true, 819 820 .hsync_end = 88, .hblank_end = 235, 821 .hblank_start = 2155, .htotal = 2639, 822 823 .progressive = true, .trilevel_sync = true, 824 825 .vsync_start_f1 = 8, .vsync_start_f2 = 8, 826 .vsync_len = 10, 827 828 .veq_ena = false, .veq_start_f1 = 0, 829 .veq_start_f2 = 0, .veq_len = 0, 830 831 .vi_end_f1 = 44, .vi_end_f2 = 44, 832 .nbr_end = 1079, 833 834 .burst_ena = false, 835 836 .filter_table = filter_table, 837 }, 838 839 { 840 .name = "1080p@60Hz", 841 .clock = 148500, 842 .refresh = 60000, 843 .oversample = 1, 844 .component_only = true, 845 846 .hsync_end = 88, .hblank_end = 235, 847 .hblank_start = 2155, .htotal = 2199, 848 849 .progressive = true, .trilevel_sync = true, 850 851 .vsync_start_f1 = 8, .vsync_start_f2 = 8, 852 .vsync_len = 10, 853 854 .veq_ena = false, .veq_start_f1 = 0, 855 .veq_start_f2 = 0, .veq_len = 0, 856 857 .vi_end_f1 = 44, .vi_end_f2 = 44, 858 .nbr_end = 1079, 859 860 .burst_ena = false, 861 862 .filter_table = filter_table, 863 }, 864 }; 865 866 struct intel_tv_connector_state { 867 struct drm_connector_state base; 868 869 /* 870 * May need to override the user margins for 871 * gen3 >1024 wide source vertical centering. 872 */ 873 struct { 874 u16 top, bottom; 875 } margins; 876 877 bool bypass_vfilter; 878 }; 879 880 #define to_intel_tv_connector_state(x) container_of(x, struct intel_tv_connector_state, base) 881 882 static struct drm_connector_state * 883 intel_tv_connector_duplicate_state(struct drm_connector *connector) 884 { 885 struct intel_tv_connector_state *state; 886 887 state = kmemdup(connector->state, sizeof(*state), GFP_KERNEL); 888 if (!state) 889 return NULL; 890 891 __drm_atomic_helper_connector_duplicate_state(connector, &state->base); 892 return &state->base; 893 } 894 895 static struct intel_tv *enc_to_tv(struct intel_encoder *encoder) 896 { 897 return container_of(encoder, struct intel_tv, base); 898 } 899 900 static struct intel_tv *intel_attached_tv(struct intel_connector *connector) 901 { 902 return enc_to_tv(intel_attached_encoder(connector)); 903 } 904 905 static bool 906 intel_tv_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe) 907 { 908 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 909 u32 tmp = intel_de_read(dev_priv, TV_CTL); 910 911 *pipe = (tmp & TV_ENC_PIPE_SEL_MASK) >> TV_ENC_PIPE_SEL_SHIFT; 912 913 return tmp & TV_ENC_ENABLE; 914 } 915 916 static void 917 intel_enable_tv(struct intel_atomic_state *state, 918 struct intel_encoder *encoder, 919 const struct intel_crtc_state *pipe_config, 920 const struct drm_connector_state *conn_state) 921 { 922 struct drm_device *dev = encoder->base.dev; 923 struct drm_i915_private *dev_priv = to_i915(dev); 924 925 /* Prevents vblank waits from timing out in intel_tv_detect_type() */ 926 intel_wait_for_vblank(dev_priv, 927 to_intel_crtc(pipe_config->uapi.crtc)->pipe); 928 929 intel_de_write(dev_priv, TV_CTL, 930 intel_de_read(dev_priv, TV_CTL) | TV_ENC_ENABLE); 931 } 932 933 static void 934 intel_disable_tv(struct intel_atomic_state *state, 935 struct intel_encoder *encoder, 936 const struct intel_crtc_state *old_crtc_state, 937 const struct drm_connector_state *old_conn_state) 938 { 939 struct drm_device *dev = encoder->base.dev; 940 struct drm_i915_private *dev_priv = to_i915(dev); 941 942 intel_de_write(dev_priv, TV_CTL, 943 intel_de_read(dev_priv, TV_CTL) & ~TV_ENC_ENABLE); 944 } 945 946 static const struct tv_mode *intel_tv_mode_find(const struct drm_connector_state *conn_state) 947 { 948 int format = conn_state->tv.mode; 949 950 return &tv_modes[format]; 951 } 952 953 static enum drm_mode_status 954 intel_tv_mode_valid(struct drm_connector *connector, 955 struct drm_display_mode *mode) 956 { 957 const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state); 958 int max_dotclk = to_i915(connector->dev)->max_dotclk_freq; 959 960 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) 961 return MODE_NO_DBLESCAN; 962 963 if (mode->clock > max_dotclk) 964 return MODE_CLOCK_HIGH; 965 966 /* Ensure TV refresh is close to desired refresh */ 967 if (abs(tv_mode->refresh - drm_mode_vrefresh(mode) * 1000) >= 1000) 968 return MODE_CLOCK_RANGE; 969 970 return MODE_OK; 971 } 972 973 static int 974 intel_tv_mode_vdisplay(const struct tv_mode *tv_mode) 975 { 976 if (tv_mode->progressive) 977 return tv_mode->nbr_end + 1; 978 else 979 return 2 * (tv_mode->nbr_end + 1); 980 } 981 982 static void 983 intel_tv_mode_to_mode(struct drm_display_mode *mode, 984 const struct tv_mode *tv_mode) 985 { 986 mode->clock = tv_mode->clock / 987 (tv_mode->oversample >> !tv_mode->progressive); 988 989 /* 990 * tv_mode horizontal timings: 991 * 992 * hsync_end 993 * | hblank_end 994 * | | hblank_start 995 * | | | htotal 996 * | _______ | 997 * ____/ \___ 998 * \__/ \ 999 */ 1000 mode->hdisplay = 1001 tv_mode->hblank_start - tv_mode->hblank_end; 1002 mode->hsync_start = mode->hdisplay + 1003 tv_mode->htotal - tv_mode->hblank_start; 1004 mode->hsync_end = mode->hsync_start + 1005 tv_mode->hsync_end; 1006 mode->htotal = tv_mode->htotal + 1; 1007 1008 /* 1009 * tv_mode vertical timings: 1010 * 1011 * vsync_start 1012 * | vsync_end 1013 * | | vi_end nbr_end 1014 * | | | | 1015 * | | _______ 1016 * \__ ____/ \ 1017 * \__/ 1018 */ 1019 mode->vdisplay = intel_tv_mode_vdisplay(tv_mode); 1020 if (tv_mode->progressive) { 1021 mode->vsync_start = mode->vdisplay + 1022 tv_mode->vsync_start_f1 + 1; 1023 mode->vsync_end = mode->vsync_start + 1024 tv_mode->vsync_len; 1025 mode->vtotal = mode->vdisplay + 1026 tv_mode->vi_end_f1 + 1; 1027 } else { 1028 mode->vsync_start = mode->vdisplay + 1029 tv_mode->vsync_start_f1 + 1 + 1030 tv_mode->vsync_start_f2 + 1; 1031 mode->vsync_end = mode->vsync_start + 1032 2 * tv_mode->vsync_len; 1033 mode->vtotal = mode->vdisplay + 1034 tv_mode->vi_end_f1 + 1 + 1035 tv_mode->vi_end_f2 + 1; 1036 } 1037 1038 /* TV has it's own notion of sync and other mode flags, so clear them. */ 1039 mode->flags = 0; 1040 1041 snprintf(mode->name, sizeof(mode->name), 1042 "%dx%d%c (%s)", 1043 mode->hdisplay, mode->vdisplay, 1044 tv_mode->progressive ? 'p' : 'i', 1045 tv_mode->name); 1046 } 1047 1048 static void intel_tv_scale_mode_horiz(struct drm_display_mode *mode, 1049 int hdisplay, int left_margin, 1050 int right_margin) 1051 { 1052 int hsync_start = mode->hsync_start - mode->hdisplay + right_margin; 1053 int hsync_end = mode->hsync_end - mode->hdisplay + right_margin; 1054 int new_htotal = mode->htotal * hdisplay / 1055 (mode->hdisplay - left_margin - right_margin); 1056 1057 mode->clock = mode->clock * new_htotal / mode->htotal; 1058 1059 mode->hdisplay = hdisplay; 1060 mode->hsync_start = hdisplay + hsync_start * new_htotal / mode->htotal; 1061 mode->hsync_end = hdisplay + hsync_end * new_htotal / mode->htotal; 1062 mode->htotal = new_htotal; 1063 } 1064 1065 static void intel_tv_scale_mode_vert(struct drm_display_mode *mode, 1066 int vdisplay, int top_margin, 1067 int bottom_margin) 1068 { 1069 int vsync_start = mode->vsync_start - mode->vdisplay + bottom_margin; 1070 int vsync_end = mode->vsync_end - mode->vdisplay + bottom_margin; 1071 int new_vtotal = mode->vtotal * vdisplay / 1072 (mode->vdisplay - top_margin - bottom_margin); 1073 1074 mode->clock = mode->clock * new_vtotal / mode->vtotal; 1075 1076 mode->vdisplay = vdisplay; 1077 mode->vsync_start = vdisplay + vsync_start * new_vtotal / mode->vtotal; 1078 mode->vsync_end = vdisplay + vsync_end * new_vtotal / mode->vtotal; 1079 mode->vtotal = new_vtotal; 1080 } 1081 1082 static void 1083 intel_tv_get_config(struct intel_encoder *encoder, 1084 struct intel_crtc_state *pipe_config) 1085 { 1086 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1087 struct drm_display_mode *adjusted_mode = 1088 &pipe_config->hw.adjusted_mode; 1089 struct drm_display_mode mode = {}; 1090 u32 tv_ctl, hctl1, hctl3, vctl1, vctl2, tmp; 1091 struct tv_mode tv_mode = {}; 1092 int hdisplay = adjusted_mode->crtc_hdisplay; 1093 int vdisplay = adjusted_mode->crtc_vdisplay; 1094 int xsize, ysize, xpos, ypos; 1095 1096 pipe_config->output_types |= BIT(INTEL_OUTPUT_TVOUT); 1097 1098 tv_ctl = intel_de_read(dev_priv, TV_CTL); 1099 hctl1 = intel_de_read(dev_priv, TV_H_CTL_1); 1100 hctl3 = intel_de_read(dev_priv, TV_H_CTL_3); 1101 vctl1 = intel_de_read(dev_priv, TV_V_CTL_1); 1102 vctl2 = intel_de_read(dev_priv, TV_V_CTL_2); 1103 1104 tv_mode.htotal = (hctl1 & TV_HTOTAL_MASK) >> TV_HTOTAL_SHIFT; 1105 tv_mode.hsync_end = (hctl1 & TV_HSYNC_END_MASK) >> TV_HSYNC_END_SHIFT; 1106 1107 tv_mode.hblank_start = (hctl3 & TV_HBLANK_START_MASK) >> TV_HBLANK_START_SHIFT; 1108 tv_mode.hblank_end = (hctl3 & TV_HSYNC_END_MASK) >> TV_HBLANK_END_SHIFT; 1109 1110 tv_mode.nbr_end = (vctl1 & TV_NBR_END_MASK) >> TV_NBR_END_SHIFT; 1111 tv_mode.vi_end_f1 = (vctl1 & TV_VI_END_F1_MASK) >> TV_VI_END_F1_SHIFT; 1112 tv_mode.vi_end_f2 = (vctl1 & TV_VI_END_F2_MASK) >> TV_VI_END_F2_SHIFT; 1113 1114 tv_mode.vsync_len = (vctl2 & TV_VSYNC_LEN_MASK) >> TV_VSYNC_LEN_SHIFT; 1115 tv_mode.vsync_start_f1 = (vctl2 & TV_VSYNC_START_F1_MASK) >> TV_VSYNC_START_F1_SHIFT; 1116 tv_mode.vsync_start_f2 = (vctl2 & TV_VSYNC_START_F2_MASK) >> TV_VSYNC_START_F2_SHIFT; 1117 1118 tv_mode.clock = pipe_config->port_clock; 1119 1120 tv_mode.progressive = tv_ctl & TV_PROGRESSIVE; 1121 1122 switch (tv_ctl & TV_OVERSAMPLE_MASK) { 1123 case TV_OVERSAMPLE_8X: 1124 tv_mode.oversample = 8; 1125 break; 1126 case TV_OVERSAMPLE_4X: 1127 tv_mode.oversample = 4; 1128 break; 1129 case TV_OVERSAMPLE_2X: 1130 tv_mode.oversample = 2; 1131 break; 1132 default: 1133 tv_mode.oversample = 1; 1134 break; 1135 } 1136 1137 tmp = intel_de_read(dev_priv, TV_WIN_POS); 1138 xpos = tmp >> 16; 1139 ypos = tmp & 0xffff; 1140 1141 tmp = intel_de_read(dev_priv, TV_WIN_SIZE); 1142 xsize = tmp >> 16; 1143 ysize = tmp & 0xffff; 1144 1145 intel_tv_mode_to_mode(&mode, &tv_mode); 1146 1147 drm_dbg_kms(&dev_priv->drm, "TV mode:\n"); 1148 drm_mode_debug_printmodeline(&mode); 1149 1150 intel_tv_scale_mode_horiz(&mode, hdisplay, 1151 xpos, mode.hdisplay - xsize - xpos); 1152 intel_tv_scale_mode_vert(&mode, vdisplay, 1153 ypos, mode.vdisplay - ysize - ypos); 1154 1155 adjusted_mode->crtc_clock = mode.clock; 1156 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 1157 adjusted_mode->crtc_clock /= 2; 1158 1159 /* pixel counter doesn't work on i965gm TV output */ 1160 if (IS_I965GM(dev_priv)) 1161 pipe_config->mode_flags |= 1162 I915_MODE_FLAG_USE_SCANLINE_COUNTER; 1163 } 1164 1165 static bool intel_tv_source_too_wide(struct drm_i915_private *dev_priv, 1166 int hdisplay) 1167 { 1168 return IS_GEN(dev_priv, 3) && hdisplay > 1024; 1169 } 1170 1171 static bool intel_tv_vert_scaling(const struct drm_display_mode *tv_mode, 1172 const struct drm_connector_state *conn_state, 1173 int vdisplay) 1174 { 1175 return tv_mode->crtc_vdisplay - 1176 conn_state->tv.margins.top - 1177 conn_state->tv.margins.bottom != 1178 vdisplay; 1179 } 1180 1181 static int 1182 intel_tv_compute_config(struct intel_encoder *encoder, 1183 struct intel_crtc_state *pipe_config, 1184 struct drm_connector_state *conn_state) 1185 { 1186 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1187 struct intel_tv_connector_state *tv_conn_state = 1188 to_intel_tv_connector_state(conn_state); 1189 const struct tv_mode *tv_mode = intel_tv_mode_find(conn_state); 1190 struct drm_display_mode *adjusted_mode = 1191 &pipe_config->hw.adjusted_mode; 1192 int hdisplay = adjusted_mode->crtc_hdisplay; 1193 int vdisplay = adjusted_mode->crtc_vdisplay; 1194 1195 if (!tv_mode) 1196 return -EINVAL; 1197 1198 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) 1199 return -EINVAL; 1200 1201 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 1202 1203 drm_dbg_kms(&dev_priv->drm, "forcing bpc to 8 for TV\n"); 1204 pipe_config->pipe_bpp = 8*3; 1205 1206 pipe_config->port_clock = tv_mode->clock; 1207 1208 intel_tv_mode_to_mode(adjusted_mode, tv_mode); 1209 drm_mode_set_crtcinfo(adjusted_mode, 0); 1210 1211 if (intel_tv_source_too_wide(dev_priv, hdisplay) || 1212 !intel_tv_vert_scaling(adjusted_mode, conn_state, vdisplay)) { 1213 int extra, top, bottom; 1214 1215 extra = adjusted_mode->crtc_vdisplay - vdisplay; 1216 1217 if (extra < 0) { 1218 drm_dbg_kms(&dev_priv->drm, 1219 "No vertical scaling for >1024 pixel wide modes\n"); 1220 return -EINVAL; 1221 } 1222 1223 /* Need to turn off the vertical filter and center the image */ 1224 1225 /* Attempt to maintain the relative sizes of the margins */ 1226 top = conn_state->tv.margins.top; 1227 bottom = conn_state->tv.margins.bottom; 1228 1229 if (top + bottom) 1230 top = extra * top / (top + bottom); 1231 else 1232 top = extra / 2; 1233 bottom = extra - top; 1234 1235 tv_conn_state->margins.top = top; 1236 tv_conn_state->margins.bottom = bottom; 1237 1238 tv_conn_state->bypass_vfilter = true; 1239 1240 if (!tv_mode->progressive) { 1241 adjusted_mode->clock /= 2; 1242 adjusted_mode->crtc_clock /= 2; 1243 adjusted_mode->flags |= DRM_MODE_FLAG_INTERLACE; 1244 } 1245 } else { 1246 tv_conn_state->margins.top = conn_state->tv.margins.top; 1247 tv_conn_state->margins.bottom = conn_state->tv.margins.bottom; 1248 1249 tv_conn_state->bypass_vfilter = false; 1250 } 1251 1252 drm_dbg_kms(&dev_priv->drm, "TV mode:\n"); 1253 drm_mode_debug_printmodeline(adjusted_mode); 1254 1255 /* 1256 * The pipe scanline counter behaviour looks as follows when 1257 * using the TV encoder: 1258 * 1259 * time -> 1260 * 1261 * dsl=vtotal-1 | | 1262 * || || 1263 * ___| | ___| | 1264 * / | / | 1265 * / | / | 1266 * dsl=0 ___/ |_____/ | 1267 * | | | | | | 1268 * ^ ^ ^ ^ ^ 1269 * | | | | pipe vblank/first part of tv vblank 1270 * | | | bottom margin 1271 * | | active 1272 * | top margin 1273 * remainder of tv vblank 1274 * 1275 * When the TV encoder is used the pipe wants to run faster 1276 * than expected rate. During the active portion the TV 1277 * encoder stalls the pipe every few lines to keep it in 1278 * check. When the TV encoder reaches the bottom margin the 1279 * pipe simply stops. Once we reach the TV vblank the pipe is 1280 * no longer stalled and it runs at the max rate (apparently 1281 * oversample clock on gen3, cdclk on gen4). Once the pipe 1282 * reaches the pipe vtotal the pipe stops for the remainder 1283 * of the TV vblank/top margin. The pipe starts up again when 1284 * the TV encoder exits the top margin. 1285 * 1286 * To avoid huge hassles for vblank timestamping we scale 1287 * the pipe timings as if the pipe always runs at the average 1288 * rate it maintains during the active period. This also 1289 * gives us a reasonable guesstimate as to the pixel rate. 1290 * Due to the variation in the actual pipe speed the scanline 1291 * counter will give us slightly erroneous results during the 1292 * TV vblank/margins. But since vtotal was selected such that 1293 * it matches the average rate of the pipe during the active 1294 * portion the error shouldn't cause any serious grief to 1295 * vblank timestamps. 1296 * 1297 * For posterity here is the empirically derived formula 1298 * that gives us the maximum length of the pipe vblank 1299 * we can use without causing display corruption. Following 1300 * this would allow us to have a ticking scanline counter 1301 * everywhere except during the bottom margin (there the 1302 * pipe always stops). Ie. this would eliminate the second 1303 * flat portion of the above graph. However this would also 1304 * complicate vblank timestamping as the pipe vtotal would 1305 * no longer match the average rate the pipe runs at during 1306 * the active portion. Hence following this formula seems 1307 * more trouble that it's worth. 1308 * 1309 * if (IS_GEN(dev_priv, 4)) { 1310 * num = cdclk * (tv_mode->oversample >> !tv_mode->progressive); 1311 * den = tv_mode->clock; 1312 * } else { 1313 * num = tv_mode->oversample >> !tv_mode->progressive; 1314 * den = 1; 1315 * } 1316 * max_pipe_vblank_len ~= 1317 * (num * tv_htotal * (tv_vblank_len + top_margin)) / 1318 * (den * pipe_htotal); 1319 */ 1320 intel_tv_scale_mode_horiz(adjusted_mode, hdisplay, 1321 conn_state->tv.margins.left, 1322 conn_state->tv.margins.right); 1323 intel_tv_scale_mode_vert(adjusted_mode, vdisplay, 1324 tv_conn_state->margins.top, 1325 tv_conn_state->margins.bottom); 1326 drm_mode_set_crtcinfo(adjusted_mode, 0); 1327 adjusted_mode->name[0] = '\0'; 1328 1329 /* pixel counter doesn't work on i965gm TV output */ 1330 if (IS_I965GM(dev_priv)) 1331 pipe_config->mode_flags |= 1332 I915_MODE_FLAG_USE_SCANLINE_COUNTER; 1333 1334 return 0; 1335 } 1336 1337 static void 1338 set_tv_mode_timings(struct drm_i915_private *dev_priv, 1339 const struct tv_mode *tv_mode, 1340 bool burst_ena) 1341 { 1342 u32 hctl1, hctl2, hctl3; 1343 u32 vctl1, vctl2, vctl3, vctl4, vctl5, vctl6, vctl7; 1344 1345 hctl1 = (tv_mode->hsync_end << TV_HSYNC_END_SHIFT) | 1346 (tv_mode->htotal << TV_HTOTAL_SHIFT); 1347 1348 hctl2 = (tv_mode->hburst_start << 16) | 1349 (tv_mode->hburst_len << TV_HBURST_LEN_SHIFT); 1350 1351 if (burst_ena) 1352 hctl2 |= TV_BURST_ENA; 1353 1354 hctl3 = (tv_mode->hblank_start << TV_HBLANK_START_SHIFT) | 1355 (tv_mode->hblank_end << TV_HBLANK_END_SHIFT); 1356 1357 vctl1 = (tv_mode->nbr_end << TV_NBR_END_SHIFT) | 1358 (tv_mode->vi_end_f1 << TV_VI_END_F1_SHIFT) | 1359 (tv_mode->vi_end_f2 << TV_VI_END_F2_SHIFT); 1360 1361 vctl2 = (tv_mode->vsync_len << TV_VSYNC_LEN_SHIFT) | 1362 (tv_mode->vsync_start_f1 << TV_VSYNC_START_F1_SHIFT) | 1363 (tv_mode->vsync_start_f2 << TV_VSYNC_START_F2_SHIFT); 1364 1365 vctl3 = (tv_mode->veq_len << TV_VEQ_LEN_SHIFT) | 1366 (tv_mode->veq_start_f1 << TV_VEQ_START_F1_SHIFT) | 1367 (tv_mode->veq_start_f2 << TV_VEQ_START_F2_SHIFT); 1368 1369 if (tv_mode->veq_ena) 1370 vctl3 |= TV_EQUAL_ENA; 1371 1372 vctl4 = (tv_mode->vburst_start_f1 << TV_VBURST_START_F1_SHIFT) | 1373 (tv_mode->vburst_end_f1 << TV_VBURST_END_F1_SHIFT); 1374 1375 vctl5 = (tv_mode->vburst_start_f2 << TV_VBURST_START_F2_SHIFT) | 1376 (tv_mode->vburst_end_f2 << TV_VBURST_END_F2_SHIFT); 1377 1378 vctl6 = (tv_mode->vburst_start_f3 << TV_VBURST_START_F3_SHIFT) | 1379 (tv_mode->vburst_end_f3 << TV_VBURST_END_F3_SHIFT); 1380 1381 vctl7 = (tv_mode->vburst_start_f4 << TV_VBURST_START_F4_SHIFT) | 1382 (tv_mode->vburst_end_f4 << TV_VBURST_END_F4_SHIFT); 1383 1384 intel_de_write(dev_priv, TV_H_CTL_1, hctl1); 1385 intel_de_write(dev_priv, TV_H_CTL_2, hctl2); 1386 intel_de_write(dev_priv, TV_H_CTL_3, hctl3); 1387 intel_de_write(dev_priv, TV_V_CTL_1, vctl1); 1388 intel_de_write(dev_priv, TV_V_CTL_2, vctl2); 1389 intel_de_write(dev_priv, TV_V_CTL_3, vctl3); 1390 intel_de_write(dev_priv, TV_V_CTL_4, vctl4); 1391 intel_de_write(dev_priv, TV_V_CTL_5, vctl5); 1392 intel_de_write(dev_priv, TV_V_CTL_6, vctl6); 1393 intel_de_write(dev_priv, TV_V_CTL_7, vctl7); 1394 } 1395 1396 static void set_color_conversion(struct drm_i915_private *dev_priv, 1397 const struct color_conversion *color_conversion) 1398 { 1399 if (!color_conversion) 1400 return; 1401 1402 intel_de_write(dev_priv, TV_CSC_Y, 1403 (color_conversion->ry << 16) | color_conversion->gy); 1404 intel_de_write(dev_priv, TV_CSC_Y2, 1405 (color_conversion->by << 16) | color_conversion->ay); 1406 intel_de_write(dev_priv, TV_CSC_U, 1407 (color_conversion->ru << 16) | color_conversion->gu); 1408 intel_de_write(dev_priv, TV_CSC_U2, 1409 (color_conversion->bu << 16) | color_conversion->au); 1410 intel_de_write(dev_priv, TV_CSC_V, 1411 (color_conversion->rv << 16) | color_conversion->gv); 1412 intel_de_write(dev_priv, TV_CSC_V2, 1413 (color_conversion->bv << 16) | color_conversion->av); 1414 } 1415 1416 static void intel_tv_pre_enable(struct intel_atomic_state *state, 1417 struct intel_encoder *encoder, 1418 const struct intel_crtc_state *pipe_config, 1419 const struct drm_connector_state *conn_state) 1420 { 1421 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1422 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->uapi.crtc); 1423 struct intel_tv *intel_tv = enc_to_tv(encoder); 1424 const struct intel_tv_connector_state *tv_conn_state = 1425 to_intel_tv_connector_state(conn_state); 1426 const struct tv_mode *tv_mode = intel_tv_mode_find(conn_state); 1427 u32 tv_ctl, tv_filter_ctl; 1428 u32 scctl1, scctl2, scctl3; 1429 int i, j; 1430 const struct video_levels *video_levels; 1431 const struct color_conversion *color_conversion; 1432 bool burst_ena; 1433 int xpos, ypos; 1434 unsigned int xsize, ysize; 1435 1436 if (!tv_mode) 1437 return; /* can't happen (mode_prepare prevents this) */ 1438 1439 tv_ctl = intel_de_read(dev_priv, TV_CTL); 1440 tv_ctl &= TV_CTL_SAVE; 1441 1442 switch (intel_tv->type) { 1443 default: 1444 case DRM_MODE_CONNECTOR_Unknown: 1445 case DRM_MODE_CONNECTOR_Composite: 1446 tv_ctl |= TV_ENC_OUTPUT_COMPOSITE; 1447 video_levels = tv_mode->composite_levels; 1448 color_conversion = tv_mode->composite_color; 1449 burst_ena = tv_mode->burst_ena; 1450 break; 1451 case DRM_MODE_CONNECTOR_Component: 1452 tv_ctl |= TV_ENC_OUTPUT_COMPONENT; 1453 video_levels = &component_levels; 1454 if (tv_mode->burst_ena) 1455 color_conversion = &sdtv_csc_yprpb; 1456 else 1457 color_conversion = &hdtv_csc_yprpb; 1458 burst_ena = false; 1459 break; 1460 case DRM_MODE_CONNECTOR_SVIDEO: 1461 tv_ctl |= TV_ENC_OUTPUT_SVIDEO; 1462 video_levels = tv_mode->svideo_levels; 1463 color_conversion = tv_mode->svideo_color; 1464 burst_ena = tv_mode->burst_ena; 1465 break; 1466 } 1467 1468 tv_ctl |= TV_ENC_PIPE_SEL(intel_crtc->pipe); 1469 1470 switch (tv_mode->oversample) { 1471 case 8: 1472 tv_ctl |= TV_OVERSAMPLE_8X; 1473 break; 1474 case 4: 1475 tv_ctl |= TV_OVERSAMPLE_4X; 1476 break; 1477 case 2: 1478 tv_ctl |= TV_OVERSAMPLE_2X; 1479 break; 1480 default: 1481 tv_ctl |= TV_OVERSAMPLE_NONE; 1482 break; 1483 } 1484 1485 if (tv_mode->progressive) 1486 tv_ctl |= TV_PROGRESSIVE; 1487 if (tv_mode->trilevel_sync) 1488 tv_ctl |= TV_TRILEVEL_SYNC; 1489 if (tv_mode->pal_burst) 1490 tv_ctl |= TV_PAL_BURST; 1491 1492 scctl1 = 0; 1493 if (tv_mode->dda1_inc) 1494 scctl1 |= TV_SC_DDA1_EN; 1495 if (tv_mode->dda2_inc) 1496 scctl1 |= TV_SC_DDA2_EN; 1497 if (tv_mode->dda3_inc) 1498 scctl1 |= TV_SC_DDA3_EN; 1499 scctl1 |= tv_mode->sc_reset; 1500 if (video_levels) 1501 scctl1 |= video_levels->burst << TV_BURST_LEVEL_SHIFT; 1502 scctl1 |= tv_mode->dda1_inc << TV_SCDDA1_INC_SHIFT; 1503 1504 scctl2 = tv_mode->dda2_size << TV_SCDDA2_SIZE_SHIFT | 1505 tv_mode->dda2_inc << TV_SCDDA2_INC_SHIFT; 1506 1507 scctl3 = tv_mode->dda3_size << TV_SCDDA3_SIZE_SHIFT | 1508 tv_mode->dda3_inc << TV_SCDDA3_INC_SHIFT; 1509 1510 /* Enable two fixes for the chips that need them. */ 1511 if (IS_I915GM(dev_priv)) 1512 tv_ctl |= TV_ENC_C0_FIX | TV_ENC_SDP_FIX; 1513 1514 set_tv_mode_timings(dev_priv, tv_mode, burst_ena); 1515 1516 intel_de_write(dev_priv, TV_SC_CTL_1, scctl1); 1517 intel_de_write(dev_priv, TV_SC_CTL_2, scctl2); 1518 intel_de_write(dev_priv, TV_SC_CTL_3, scctl3); 1519 1520 set_color_conversion(dev_priv, color_conversion); 1521 1522 if (INTEL_GEN(dev_priv) >= 4) 1523 intel_de_write(dev_priv, TV_CLR_KNOBS, 0x00404000); 1524 else 1525 intel_de_write(dev_priv, TV_CLR_KNOBS, 0x00606000); 1526 1527 if (video_levels) 1528 intel_de_write(dev_priv, TV_CLR_LEVEL, 1529 ((video_levels->black << TV_BLACK_LEVEL_SHIFT) | (video_levels->blank << TV_BLANK_LEVEL_SHIFT))); 1530 1531 assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder); 1532 1533 /* Filter ctl must be set before TV_WIN_SIZE */ 1534 tv_filter_ctl = TV_AUTO_SCALE; 1535 if (tv_conn_state->bypass_vfilter) 1536 tv_filter_ctl |= TV_V_FILTER_BYPASS; 1537 intel_de_write(dev_priv, TV_FILTER_CTL_1, tv_filter_ctl); 1538 1539 xsize = tv_mode->hblank_start - tv_mode->hblank_end; 1540 ysize = intel_tv_mode_vdisplay(tv_mode); 1541 1542 xpos = conn_state->tv.margins.left; 1543 ypos = tv_conn_state->margins.top; 1544 xsize -= (conn_state->tv.margins.left + 1545 conn_state->tv.margins.right); 1546 ysize -= (tv_conn_state->margins.top + 1547 tv_conn_state->margins.bottom); 1548 intel_de_write(dev_priv, TV_WIN_POS, (xpos << 16) | ypos); 1549 intel_de_write(dev_priv, TV_WIN_SIZE, (xsize << 16) | ysize); 1550 1551 j = 0; 1552 for (i = 0; i < 60; i++) 1553 intel_de_write(dev_priv, TV_H_LUMA(i), 1554 tv_mode->filter_table[j++]); 1555 for (i = 0; i < 60; i++) 1556 intel_de_write(dev_priv, TV_H_CHROMA(i), 1557 tv_mode->filter_table[j++]); 1558 for (i = 0; i < 43; i++) 1559 intel_de_write(dev_priv, TV_V_LUMA(i), 1560 tv_mode->filter_table[j++]); 1561 for (i = 0; i < 43; i++) 1562 intel_de_write(dev_priv, TV_V_CHROMA(i), 1563 tv_mode->filter_table[j++]); 1564 intel_de_write(dev_priv, TV_DAC, 1565 intel_de_read(dev_priv, TV_DAC) & TV_DAC_SAVE); 1566 intel_de_write(dev_priv, TV_CTL, tv_ctl); 1567 } 1568 1569 static int 1570 intel_tv_detect_type(struct intel_tv *intel_tv, 1571 struct drm_connector *connector) 1572 { 1573 struct drm_crtc *crtc = connector->state->crtc; 1574 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 1575 struct drm_device *dev = connector->dev; 1576 struct drm_i915_private *dev_priv = to_i915(dev); 1577 u32 tv_ctl, save_tv_ctl; 1578 u32 tv_dac, save_tv_dac; 1579 int type; 1580 1581 /* Disable TV interrupts around load detect or we'll recurse */ 1582 if (connector->polled & DRM_CONNECTOR_POLL_HPD) { 1583 spin_lock_irq(&dev_priv->irq_lock); 1584 i915_disable_pipestat(dev_priv, 0, 1585 PIPE_HOTPLUG_INTERRUPT_STATUS | 1586 PIPE_HOTPLUG_TV_INTERRUPT_STATUS); 1587 spin_unlock_irq(&dev_priv->irq_lock); 1588 } 1589 1590 save_tv_dac = tv_dac = intel_de_read(dev_priv, TV_DAC); 1591 save_tv_ctl = tv_ctl = intel_de_read(dev_priv, TV_CTL); 1592 1593 /* Poll for TV detection */ 1594 tv_ctl &= ~(TV_ENC_ENABLE | TV_ENC_PIPE_SEL_MASK | TV_TEST_MODE_MASK); 1595 tv_ctl |= TV_TEST_MODE_MONITOR_DETECT; 1596 tv_ctl |= TV_ENC_PIPE_SEL(intel_crtc->pipe); 1597 1598 tv_dac &= ~(TVDAC_SENSE_MASK | DAC_A_MASK | DAC_B_MASK | DAC_C_MASK); 1599 tv_dac |= (TVDAC_STATE_CHG_EN | 1600 TVDAC_A_SENSE_CTL | 1601 TVDAC_B_SENSE_CTL | 1602 TVDAC_C_SENSE_CTL | 1603 DAC_CTL_OVERRIDE | 1604 DAC_A_0_7_V | 1605 DAC_B_0_7_V | 1606 DAC_C_0_7_V); 1607 1608 1609 /* 1610 * The TV sense state should be cleared to zero on cantiga platform. Otherwise 1611 * the TV is misdetected. This is hardware requirement. 1612 */ 1613 if (IS_GM45(dev_priv)) 1614 tv_dac &= ~(TVDAC_STATE_CHG_EN | TVDAC_A_SENSE_CTL | 1615 TVDAC_B_SENSE_CTL | TVDAC_C_SENSE_CTL); 1616 1617 intel_de_write(dev_priv, TV_CTL, tv_ctl); 1618 intel_de_write(dev_priv, TV_DAC, tv_dac); 1619 intel_de_posting_read(dev_priv, TV_DAC); 1620 1621 intel_wait_for_vblank(dev_priv, intel_crtc->pipe); 1622 1623 type = -1; 1624 tv_dac = intel_de_read(dev_priv, TV_DAC); 1625 drm_dbg_kms(&dev_priv->drm, "TV detected: %x, %x\n", tv_ctl, tv_dac); 1626 /* 1627 * A B C 1628 * 0 1 1 Composite 1629 * 1 0 X svideo 1630 * 0 0 0 Component 1631 */ 1632 if ((tv_dac & TVDAC_SENSE_MASK) == (TVDAC_B_SENSE | TVDAC_C_SENSE)) { 1633 drm_dbg_kms(&dev_priv->drm, 1634 "Detected Composite TV connection\n"); 1635 type = DRM_MODE_CONNECTOR_Composite; 1636 } else if ((tv_dac & (TVDAC_A_SENSE|TVDAC_B_SENSE)) == TVDAC_A_SENSE) { 1637 drm_dbg_kms(&dev_priv->drm, 1638 "Detected S-Video TV connection\n"); 1639 type = DRM_MODE_CONNECTOR_SVIDEO; 1640 } else if ((tv_dac & TVDAC_SENSE_MASK) == 0) { 1641 drm_dbg_kms(&dev_priv->drm, 1642 "Detected Component TV connection\n"); 1643 type = DRM_MODE_CONNECTOR_Component; 1644 } else { 1645 drm_dbg_kms(&dev_priv->drm, "Unrecognised TV connection\n"); 1646 type = -1; 1647 } 1648 1649 intel_de_write(dev_priv, TV_DAC, save_tv_dac & ~TVDAC_STATE_CHG_EN); 1650 intel_de_write(dev_priv, TV_CTL, save_tv_ctl); 1651 intel_de_posting_read(dev_priv, TV_CTL); 1652 1653 /* For unknown reasons the hw barfs if we don't do this vblank wait. */ 1654 intel_wait_for_vblank(dev_priv, intel_crtc->pipe); 1655 1656 /* Restore interrupt config */ 1657 if (connector->polled & DRM_CONNECTOR_POLL_HPD) { 1658 spin_lock_irq(&dev_priv->irq_lock); 1659 i915_enable_pipestat(dev_priv, 0, 1660 PIPE_HOTPLUG_INTERRUPT_STATUS | 1661 PIPE_HOTPLUG_TV_INTERRUPT_STATUS); 1662 spin_unlock_irq(&dev_priv->irq_lock); 1663 } 1664 1665 return type; 1666 } 1667 1668 /* 1669 * Here we set accurate tv format according to connector type 1670 * i.e Component TV should not be assigned by NTSC or PAL 1671 */ 1672 static void intel_tv_find_better_format(struct drm_connector *connector) 1673 { 1674 struct intel_tv *intel_tv = intel_attached_tv(to_intel_connector(connector)); 1675 const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state); 1676 int i; 1677 1678 /* Component supports everything so we can keep the current mode */ 1679 if (intel_tv->type == DRM_MODE_CONNECTOR_Component) 1680 return; 1681 1682 /* If the current mode is fine don't change it */ 1683 if (!tv_mode->component_only) 1684 return; 1685 1686 for (i = 0; i < ARRAY_SIZE(tv_modes); i++) { 1687 tv_mode = &tv_modes[i]; 1688 1689 if (!tv_mode->component_only) 1690 break; 1691 } 1692 1693 connector->state->tv.mode = i; 1694 } 1695 1696 static int 1697 intel_tv_detect(struct drm_connector *connector, 1698 struct drm_modeset_acquire_ctx *ctx, 1699 bool force) 1700 { 1701 struct drm_i915_private *i915 = to_i915(connector->dev); 1702 struct intel_tv *intel_tv = intel_attached_tv(to_intel_connector(connector)); 1703 enum drm_connector_status status; 1704 int type; 1705 1706 drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s] force=%d\n", 1707 connector->base.id, connector->name, force); 1708 1709 if (force) { 1710 struct intel_load_detect_pipe tmp; 1711 int ret; 1712 1713 ret = intel_get_load_detect_pipe(connector, &tmp, ctx); 1714 if (ret < 0) 1715 return ret; 1716 1717 if (ret > 0) { 1718 type = intel_tv_detect_type(intel_tv, connector); 1719 intel_release_load_detect_pipe(connector, &tmp, ctx); 1720 status = type < 0 ? 1721 connector_status_disconnected : 1722 connector_status_connected; 1723 } else 1724 status = connector_status_unknown; 1725 1726 if (status == connector_status_connected) { 1727 intel_tv->type = type; 1728 intel_tv_find_better_format(connector); 1729 } 1730 1731 return status; 1732 } else 1733 return connector->status; 1734 } 1735 1736 static const struct input_res { 1737 u16 w, h; 1738 } input_res_table[] = { 1739 { 640, 480 }, 1740 { 800, 600 }, 1741 { 1024, 768 }, 1742 { 1280, 1024 }, 1743 { 848, 480 }, 1744 { 1280, 720 }, 1745 { 1920, 1080 }, 1746 }; 1747 1748 /* Choose preferred mode according to line number of TV format */ 1749 static bool 1750 intel_tv_is_preferred_mode(const struct drm_display_mode *mode, 1751 const struct tv_mode *tv_mode) 1752 { 1753 int vdisplay = intel_tv_mode_vdisplay(tv_mode); 1754 1755 /* prefer 480 line modes for all SD TV modes */ 1756 if (vdisplay <= 576) 1757 vdisplay = 480; 1758 1759 return vdisplay == mode->vdisplay; 1760 } 1761 1762 static void 1763 intel_tv_set_mode_type(struct drm_display_mode *mode, 1764 const struct tv_mode *tv_mode) 1765 { 1766 mode->type = DRM_MODE_TYPE_DRIVER; 1767 1768 if (intel_tv_is_preferred_mode(mode, tv_mode)) 1769 mode->type |= DRM_MODE_TYPE_PREFERRED; 1770 } 1771 1772 static int 1773 intel_tv_get_modes(struct drm_connector *connector) 1774 { 1775 struct drm_i915_private *dev_priv = to_i915(connector->dev); 1776 const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state); 1777 int i, count = 0; 1778 1779 for (i = 0; i < ARRAY_SIZE(input_res_table); i++) { 1780 const struct input_res *input = &input_res_table[i]; 1781 struct drm_display_mode *mode; 1782 1783 if (input->w > 1024 && 1784 !tv_mode->progressive && 1785 !tv_mode->component_only) 1786 continue; 1787 1788 /* no vertical scaling with wide sources on gen3 */ 1789 if (IS_GEN(dev_priv, 3) && input->w > 1024 && 1790 input->h > intel_tv_mode_vdisplay(tv_mode)) 1791 continue; 1792 1793 mode = drm_mode_create(connector->dev); 1794 if (!mode) 1795 continue; 1796 1797 /* 1798 * We take the TV mode and scale it to look 1799 * like it had the expected h/vdisplay. This 1800 * provides the most information to userspace 1801 * about the actual timings of the mode. We 1802 * do ignore the margins though. 1803 */ 1804 intel_tv_mode_to_mode(mode, tv_mode); 1805 if (count == 0) { 1806 drm_dbg_kms(&dev_priv->drm, "TV mode:\n"); 1807 drm_mode_debug_printmodeline(mode); 1808 } 1809 intel_tv_scale_mode_horiz(mode, input->w, 0, 0); 1810 intel_tv_scale_mode_vert(mode, input->h, 0, 0); 1811 intel_tv_set_mode_type(mode, tv_mode); 1812 1813 drm_mode_set_name(mode); 1814 1815 drm_mode_probed_add(connector, mode); 1816 count++; 1817 } 1818 1819 return count; 1820 } 1821 1822 static const struct drm_connector_funcs intel_tv_connector_funcs = { 1823 .late_register = intel_connector_register, 1824 .early_unregister = intel_connector_unregister, 1825 .destroy = intel_connector_destroy, 1826 .fill_modes = drm_helper_probe_single_connector_modes, 1827 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 1828 .atomic_duplicate_state = intel_tv_connector_duplicate_state, 1829 }; 1830 1831 static int intel_tv_atomic_check(struct drm_connector *connector, 1832 struct drm_atomic_state *state) 1833 { 1834 struct drm_connector_state *new_state; 1835 struct drm_crtc_state *new_crtc_state; 1836 struct drm_connector_state *old_state; 1837 1838 new_state = drm_atomic_get_new_connector_state(state, connector); 1839 if (!new_state->crtc) 1840 return 0; 1841 1842 old_state = drm_atomic_get_old_connector_state(state, connector); 1843 new_crtc_state = drm_atomic_get_new_crtc_state(state, new_state->crtc); 1844 1845 if (old_state->tv.mode != new_state->tv.mode || 1846 old_state->tv.margins.left != new_state->tv.margins.left || 1847 old_state->tv.margins.right != new_state->tv.margins.right || 1848 old_state->tv.margins.top != new_state->tv.margins.top || 1849 old_state->tv.margins.bottom != new_state->tv.margins.bottom) { 1850 /* Force a modeset. */ 1851 1852 new_crtc_state->connectors_changed = true; 1853 } 1854 1855 return 0; 1856 } 1857 1858 static const struct drm_connector_helper_funcs intel_tv_connector_helper_funcs = { 1859 .detect_ctx = intel_tv_detect, 1860 .mode_valid = intel_tv_mode_valid, 1861 .get_modes = intel_tv_get_modes, 1862 .atomic_check = intel_tv_atomic_check, 1863 }; 1864 1865 static const struct drm_encoder_funcs intel_tv_enc_funcs = { 1866 .destroy = intel_encoder_destroy, 1867 }; 1868 1869 void 1870 intel_tv_init(struct drm_i915_private *dev_priv) 1871 { 1872 struct drm_device *dev = &dev_priv->drm; 1873 struct drm_connector *connector; 1874 struct intel_tv *intel_tv; 1875 struct intel_encoder *intel_encoder; 1876 struct intel_connector *intel_connector; 1877 u32 tv_dac_on, tv_dac_off, save_tv_dac; 1878 const char *tv_format_names[ARRAY_SIZE(tv_modes)]; 1879 int i, initial_mode = 0; 1880 struct drm_connector_state *state; 1881 1882 if ((intel_de_read(dev_priv, TV_CTL) & TV_FUSE_STATE_MASK) == TV_FUSE_STATE_DISABLED) 1883 return; 1884 1885 if (!intel_bios_is_tv_present(dev_priv)) { 1886 drm_dbg_kms(&dev_priv->drm, "Integrated TV is not present.\n"); 1887 return; 1888 } 1889 1890 /* 1891 * Sanity check the TV output by checking to see if the 1892 * DAC register holds a value 1893 */ 1894 save_tv_dac = intel_de_read(dev_priv, TV_DAC); 1895 1896 intel_de_write(dev_priv, TV_DAC, save_tv_dac | TVDAC_STATE_CHG_EN); 1897 tv_dac_on = intel_de_read(dev_priv, TV_DAC); 1898 1899 intel_de_write(dev_priv, TV_DAC, save_tv_dac & ~TVDAC_STATE_CHG_EN); 1900 tv_dac_off = intel_de_read(dev_priv, TV_DAC); 1901 1902 intel_de_write(dev_priv, TV_DAC, save_tv_dac); 1903 1904 /* 1905 * If the register does not hold the state change enable 1906 * bit, (either as a 0 or a 1), assume it doesn't really 1907 * exist 1908 */ 1909 if ((tv_dac_on & TVDAC_STATE_CHG_EN) == 0 || 1910 (tv_dac_off & TVDAC_STATE_CHG_EN) != 0) 1911 return; 1912 1913 intel_tv = kzalloc(sizeof(*intel_tv), GFP_KERNEL); 1914 if (!intel_tv) { 1915 return; 1916 } 1917 1918 intel_connector = intel_connector_alloc(); 1919 if (!intel_connector) { 1920 kfree(intel_tv); 1921 return; 1922 } 1923 1924 intel_encoder = &intel_tv->base; 1925 connector = &intel_connector->base; 1926 state = connector->state; 1927 1928 /* 1929 * The documentation, for the older chipsets at least, recommend 1930 * using a polling method rather than hotplug detection for TVs. 1931 * This is because in order to perform the hotplug detection, the PLLs 1932 * for the TV must be kept alive increasing power drain and starving 1933 * bandwidth from other encoders. Notably for instance, it causes 1934 * pipe underruns on Crestline when this encoder is supposedly idle. 1935 * 1936 * More recent chipsets favour HDMI rather than integrated S-Video. 1937 */ 1938 intel_connector->polled = DRM_CONNECTOR_POLL_CONNECT; 1939 1940 drm_connector_init(dev, connector, &intel_tv_connector_funcs, 1941 DRM_MODE_CONNECTOR_SVIDEO); 1942 1943 drm_encoder_init(dev, &intel_encoder->base, &intel_tv_enc_funcs, 1944 DRM_MODE_ENCODER_TVDAC, "TV"); 1945 1946 intel_encoder->compute_config = intel_tv_compute_config; 1947 intel_encoder->get_config = intel_tv_get_config; 1948 intel_encoder->pre_enable = intel_tv_pre_enable; 1949 intel_encoder->enable = intel_enable_tv; 1950 intel_encoder->disable = intel_disable_tv; 1951 intel_encoder->get_hw_state = intel_tv_get_hw_state; 1952 intel_connector->get_hw_state = intel_connector_get_hw_state; 1953 1954 intel_connector_attach_encoder(intel_connector, intel_encoder); 1955 1956 intel_encoder->type = INTEL_OUTPUT_TVOUT; 1957 intel_encoder->power_domain = POWER_DOMAIN_PORT_OTHER; 1958 intel_encoder->port = PORT_NONE; 1959 intel_encoder->pipe_mask = ~0; 1960 intel_encoder->cloneable = 0; 1961 intel_tv->type = DRM_MODE_CONNECTOR_Unknown; 1962 1963 /* BIOS margin values */ 1964 state->tv.margins.left = 54; 1965 state->tv.margins.top = 36; 1966 state->tv.margins.right = 46; 1967 state->tv.margins.bottom = 37; 1968 1969 state->tv.mode = initial_mode; 1970 1971 drm_connector_helper_add(connector, &intel_tv_connector_helper_funcs); 1972 connector->interlace_allowed = false; 1973 connector->doublescan_allowed = false; 1974 1975 /* Create TV properties then attach current values */ 1976 for (i = 0; i < ARRAY_SIZE(tv_modes); i++) { 1977 /* 1080p50/1080p60 not supported on gen3 */ 1978 if (IS_GEN(dev_priv, 3) && 1979 tv_modes[i].oversample == 1) 1980 break; 1981 1982 tv_format_names[i] = tv_modes[i].name; 1983 } 1984 drm_mode_create_tv_properties(dev, i, tv_format_names); 1985 1986 drm_object_attach_property(&connector->base, dev->mode_config.tv_mode_property, 1987 state->tv.mode); 1988 drm_object_attach_property(&connector->base, 1989 dev->mode_config.tv_left_margin_property, 1990 state->tv.margins.left); 1991 drm_object_attach_property(&connector->base, 1992 dev->mode_config.tv_top_margin_property, 1993 state->tv.margins.top); 1994 drm_object_attach_property(&connector->base, 1995 dev->mode_config.tv_right_margin_property, 1996 state->tv.margins.right); 1997 drm_object_attach_property(&connector->base, 1998 dev->mode_config.tv_bottom_margin_property, 1999 state->tv.margins.bottom); 2000 } 2001