1 /* 2 * Copyright © 2006-2008 Intel Corporation 3 * Jesse Barnes <jesse.barnes@intel.com> 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 22 * DEALINGS IN THE SOFTWARE. 23 * 24 * Authors: 25 * Eric Anholt <eric@anholt.net> 26 * 27 */ 28 29 /** @file 30 * Integrated TV-out support for the 915GM and 945GM. 31 */ 32 33 #include <drm/drm_atomic_helper.h> 34 #include <drm/drm_crtc.h> 35 #include <drm/drm_edid.h> 36 #include <drm/i915_drm.h> 37 38 #include "i915_drv.h" 39 #include "intel_connector.h" 40 #include "intel_display_types.h" 41 #include "intel_hotplug.h" 42 #include "intel_tv.h" 43 44 enum tv_margin { 45 TV_MARGIN_LEFT, TV_MARGIN_TOP, 46 TV_MARGIN_RIGHT, TV_MARGIN_BOTTOM 47 }; 48 49 struct intel_tv { 50 struct intel_encoder base; 51 52 int type; 53 }; 54 55 struct video_levels { 56 u16 blank, black; 57 u8 burst; 58 }; 59 60 struct color_conversion { 61 u16 ry, gy, by, ay; 62 u16 ru, gu, bu, au; 63 u16 rv, gv, bv, av; 64 }; 65 66 static const u32 filter_table[] = { 67 0xB1403000, 0x2E203500, 0x35002E20, 0x3000B140, 68 0x35A0B160, 0x2DC02E80, 0xB1403480, 0xB1603000, 69 0x2EA03640, 0x34002D80, 0x3000B120, 0x36E0B160, 70 0x2D202EF0, 0xB1203380, 0xB1603000, 0x2F303780, 71 0x33002CC0, 0x3000B100, 0x3820B160, 0x2C802F50, 72 0xB10032A0, 0xB1603000, 0x2F9038C0, 0x32202C20, 73 0x3000B0E0, 0x3980B160, 0x2BC02FC0, 0xB0E031C0, 74 0xB1603000, 0x2FF03A20, 0x31602B60, 0xB020B0C0, 75 0x3AE0B160, 0x2B001810, 0xB0C03120, 0xB140B020, 76 0x18283BA0, 0x30C02A80, 0xB020B0A0, 0x3C60B140, 77 0x2A201838, 0xB0A03080, 0xB120B020, 0x18383D20, 78 0x304029C0, 0xB040B080, 0x3DE0B100, 0x29601848, 79 0xB0803000, 0xB100B040, 0x18483EC0, 0xB0402900, 80 0xB040B060, 0x3F80B0C0, 0x28801858, 0xB060B080, 81 0xB0A0B060, 0x18602820, 0xB0A02820, 0x0000B060, 82 0xB1403000, 0x2E203500, 0x35002E20, 0x3000B140, 83 0x35A0B160, 0x2DC02E80, 0xB1403480, 0xB1603000, 84 0x2EA03640, 0x34002D80, 0x3000B120, 0x36E0B160, 85 0x2D202EF0, 0xB1203380, 0xB1603000, 0x2F303780, 86 0x33002CC0, 0x3000B100, 0x3820B160, 0x2C802F50, 87 0xB10032A0, 0xB1603000, 0x2F9038C0, 0x32202C20, 88 0x3000B0E0, 0x3980B160, 0x2BC02FC0, 0xB0E031C0, 89 0xB1603000, 0x2FF03A20, 0x31602B60, 0xB020B0C0, 90 0x3AE0B160, 0x2B001810, 0xB0C03120, 0xB140B020, 91 0x18283BA0, 0x30C02A80, 0xB020B0A0, 0x3C60B140, 92 0x2A201838, 0xB0A03080, 0xB120B020, 0x18383D20, 93 0x304029C0, 0xB040B080, 0x3DE0B100, 0x29601848, 94 0xB0803000, 0xB100B040, 0x18483EC0, 0xB0402900, 95 0xB040B060, 0x3F80B0C0, 0x28801858, 0xB060B080, 96 0xB0A0B060, 0x18602820, 0xB0A02820, 0x0000B060, 97 0x36403000, 0x2D002CC0, 0x30003640, 0x2D0036C0, 98 0x35C02CC0, 0x37403000, 0x2C802D40, 0x30003540, 99 0x2D8037C0, 0x34C02C40, 0x38403000, 0x2BC02E00, 100 0x30003440, 0x2E2038C0, 0x34002B80, 0x39803000, 101 0x2B402E40, 0x30003380, 0x2E603A00, 0x33402B00, 102 0x3A803040, 0x2A802EA0, 0x30403300, 0x2EC03B40, 103 0x32802A40, 0x3C003040, 0x2A002EC0, 0x30803240, 104 0x2EC03C80, 0x320029C0, 0x3D403080, 0x29402F00, 105 0x308031C0, 0x2F203DC0, 0x31802900, 0x3E8030C0, 106 0x28802F40, 0x30C03140, 0x2F203F40, 0x31402840, 107 0x28003100, 0x28002F00, 0x00003100, 0x36403000, 108 0x2D002CC0, 0x30003640, 0x2D0036C0, 109 0x35C02CC0, 0x37403000, 0x2C802D40, 0x30003540, 110 0x2D8037C0, 0x34C02C40, 0x38403000, 0x2BC02E00, 111 0x30003440, 0x2E2038C0, 0x34002B80, 0x39803000, 112 0x2B402E40, 0x30003380, 0x2E603A00, 0x33402B00, 113 0x3A803040, 0x2A802EA0, 0x30403300, 0x2EC03B40, 114 0x32802A40, 0x3C003040, 0x2A002EC0, 0x30803240, 115 0x2EC03C80, 0x320029C0, 0x3D403080, 0x29402F00, 116 0x308031C0, 0x2F203DC0, 0x31802900, 0x3E8030C0, 117 0x28802F40, 0x30C03140, 0x2F203F40, 0x31402840, 118 0x28003100, 0x28002F00, 0x00003100, 119 }; 120 121 /* 122 * Color conversion values have 3 separate fixed point formats: 123 * 124 * 10 bit fields (ay, au) 125 * 1.9 fixed point (b.bbbbbbbbb) 126 * 11 bit fields (ry, by, ru, gu, gv) 127 * exp.mantissa (ee.mmmmmmmmm) 128 * ee = 00 = 10^-1 (0.mmmmmmmmm) 129 * ee = 01 = 10^-2 (0.0mmmmmmmmm) 130 * ee = 10 = 10^-3 (0.00mmmmmmmmm) 131 * ee = 11 = 10^-4 (0.000mmmmmmmmm) 132 * 12 bit fields (gy, rv, bu) 133 * exp.mantissa (eee.mmmmmmmmm) 134 * eee = 000 = 10^-1 (0.mmmmmmmmm) 135 * eee = 001 = 10^-2 (0.0mmmmmmmmm) 136 * eee = 010 = 10^-3 (0.00mmmmmmmmm) 137 * eee = 011 = 10^-4 (0.000mmmmmmmmm) 138 * eee = 100 = reserved 139 * eee = 101 = reserved 140 * eee = 110 = reserved 141 * eee = 111 = 10^0 (m.mmmmmmmm) (only usable for 1.0 representation) 142 * 143 * Saturation and contrast are 8 bits, with their own representation: 144 * 8 bit field (saturation, contrast) 145 * exp.mantissa (ee.mmmmmm) 146 * ee = 00 = 10^-1 (0.mmmmmm) 147 * ee = 01 = 10^0 (m.mmmmm) 148 * ee = 10 = 10^1 (mm.mmmm) 149 * ee = 11 = 10^2 (mmm.mmm) 150 * 151 * Simple conversion function: 152 * 153 * static u32 154 * float_to_csc_11(float f) 155 * { 156 * u32 exp; 157 * u32 mant; 158 * u32 ret; 159 * 160 * if (f < 0) 161 * f = -f; 162 * 163 * if (f >= 1) { 164 * exp = 0x7; 165 * mant = 1 << 8; 166 * } else { 167 * for (exp = 0; exp < 3 && f < 0.5; exp++) 168 * f *= 2.0; 169 * mant = (f * (1 << 9) + 0.5); 170 * if (mant >= (1 << 9)) 171 * mant = (1 << 9) - 1; 172 * } 173 * ret = (exp << 9) | mant; 174 * return ret; 175 * } 176 */ 177 178 /* 179 * Behold, magic numbers! If we plant them they might grow a big 180 * s-video cable to the sky... or something. 181 * 182 * Pre-converted to appropriate hex value. 183 */ 184 185 /* 186 * PAL & NTSC values for composite & s-video connections 187 */ 188 static const struct color_conversion ntsc_m_csc_composite = { 189 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104, 190 .ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200, 191 .rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200, 192 }; 193 194 static const struct video_levels ntsc_m_levels_composite = { 195 .blank = 225, .black = 267, .burst = 113, 196 }; 197 198 static const struct color_conversion ntsc_m_csc_svideo = { 199 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133, 200 .ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200, 201 .rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200, 202 }; 203 204 static const struct video_levels ntsc_m_levels_svideo = { 205 .blank = 266, .black = 316, .burst = 133, 206 }; 207 208 static const struct color_conversion ntsc_j_csc_composite = { 209 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0119, 210 .ru = 0x074c, .gu = 0x0546, .bu = 0x05ec, .au = 0x0200, 211 .rv = 0x035a, .gv = 0x0322, .bv = 0x06e1, .av = 0x0200, 212 }; 213 214 static const struct video_levels ntsc_j_levels_composite = { 215 .blank = 225, .black = 225, .burst = 113, 216 }; 217 218 static const struct color_conversion ntsc_j_csc_svideo = { 219 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x014c, 220 .ru = 0x0788, .gu = 0x0581, .bu = 0x0322, .au = 0x0200, 221 .rv = 0x0399, .gv = 0x0356, .bv = 0x070a, .av = 0x0200, 222 }; 223 224 static const struct video_levels ntsc_j_levels_svideo = { 225 .blank = 266, .black = 266, .burst = 133, 226 }; 227 228 static const struct color_conversion pal_csc_composite = { 229 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0113, 230 .ru = 0x0745, .gu = 0x053f, .bu = 0x05e1, .au = 0x0200, 231 .rv = 0x0353, .gv = 0x031c, .bv = 0x06dc, .av = 0x0200, 232 }; 233 234 static const struct video_levels pal_levels_composite = { 235 .blank = 237, .black = 237, .burst = 118, 236 }; 237 238 static const struct color_conversion pal_csc_svideo = { 239 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0145, 240 .ru = 0x0780, .gu = 0x0579, .bu = 0x031c, .au = 0x0200, 241 .rv = 0x0390, .gv = 0x034f, .bv = 0x0705, .av = 0x0200, 242 }; 243 244 static const struct video_levels pal_levels_svideo = { 245 .blank = 280, .black = 280, .burst = 139, 246 }; 247 248 static const struct color_conversion pal_m_csc_composite = { 249 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104, 250 .ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200, 251 .rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200, 252 }; 253 254 static const struct video_levels pal_m_levels_composite = { 255 .blank = 225, .black = 267, .burst = 113, 256 }; 257 258 static const struct color_conversion pal_m_csc_svideo = { 259 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133, 260 .ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200, 261 .rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200, 262 }; 263 264 static const struct video_levels pal_m_levels_svideo = { 265 .blank = 266, .black = 316, .burst = 133, 266 }; 267 268 static const struct color_conversion pal_n_csc_composite = { 269 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0104, 270 .ru = 0x0733, .gu = 0x052d, .bu = 0x05c7, .au = 0x0200, 271 .rv = 0x0340, .gv = 0x030c, .bv = 0x06d0, .av = 0x0200, 272 }; 273 274 static const struct video_levels pal_n_levels_composite = { 275 .blank = 225, .black = 267, .burst = 118, 276 }; 277 278 static const struct color_conversion pal_n_csc_svideo = { 279 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0133, 280 .ru = 0x076a, .gu = 0x0564, .bu = 0x030d, .au = 0x0200, 281 .rv = 0x037a, .gv = 0x033d, .bv = 0x06f6, .av = 0x0200, 282 }; 283 284 static const struct video_levels pal_n_levels_svideo = { 285 .blank = 266, .black = 316, .burst = 139, 286 }; 287 288 /* 289 * Component connections 290 */ 291 static const struct color_conversion sdtv_csc_yprpb = { 292 .ry = 0x0332, .gy = 0x012d, .by = 0x07d3, .ay = 0x0145, 293 .ru = 0x0559, .gu = 0x0353, .bu = 0x0100, .au = 0x0200, 294 .rv = 0x0100, .gv = 0x03ad, .bv = 0x074d, .av = 0x0200, 295 }; 296 297 static const struct color_conversion hdtv_csc_yprpb = { 298 .ry = 0x05b3, .gy = 0x016e, .by = 0x0728, .ay = 0x0145, 299 .ru = 0x07d5, .gu = 0x038b, .bu = 0x0100, .au = 0x0200, 300 .rv = 0x0100, .gv = 0x03d1, .bv = 0x06bc, .av = 0x0200, 301 }; 302 303 static const struct video_levels component_levels = { 304 .blank = 279, .black = 279, .burst = 0, 305 }; 306 307 308 struct tv_mode { 309 const char *name; 310 311 u32 clock; 312 u16 refresh; /* in millihertz (for precision) */ 313 u8 oversample; 314 u8 hsync_end; 315 u16 hblank_start, hblank_end, htotal; 316 bool progressive : 1, trilevel_sync : 1, component_only : 1; 317 u8 vsync_start_f1, vsync_start_f2, vsync_len; 318 bool veq_ena : 1; 319 u8 veq_start_f1, veq_start_f2, veq_len; 320 u8 vi_end_f1, vi_end_f2; 321 u16 nbr_end; 322 bool burst_ena : 1; 323 u8 hburst_start, hburst_len; 324 u8 vburst_start_f1; 325 u16 vburst_end_f1; 326 u8 vburst_start_f2; 327 u16 vburst_end_f2; 328 u8 vburst_start_f3; 329 u16 vburst_end_f3; 330 u8 vburst_start_f4; 331 u16 vburst_end_f4; 332 /* 333 * subcarrier programming 334 */ 335 u16 dda2_size, dda3_size; 336 u8 dda1_inc; 337 u16 dda2_inc, dda3_inc; 338 u32 sc_reset; 339 bool pal_burst : 1; 340 /* 341 * blank/black levels 342 */ 343 const struct video_levels *composite_levels, *svideo_levels; 344 const struct color_conversion *composite_color, *svideo_color; 345 const u32 *filter_table; 346 }; 347 348 349 /* 350 * Sub carrier DDA 351 * 352 * I think this works as follows: 353 * 354 * subcarrier freq = pixel_clock * (dda1_inc + dda2_inc / dda2_size) / 4096 355 * 356 * Presumably, when dda3 is added in, it gets to adjust the dda2_inc value 357 * 358 * So, 359 * dda1_ideal = subcarrier/pixel * 4096 360 * dda1_inc = floor (dda1_ideal) 361 * dda2 = dda1_ideal - dda1_inc 362 * 363 * then pick a ratio for dda2 that gives the closest approximation. If 364 * you can't get close enough, you can play with dda3 as well. This 365 * seems likely to happen when dda2 is small as the jumps would be larger 366 * 367 * To invert this, 368 * 369 * pixel_clock = subcarrier * 4096 / (dda1_inc + dda2_inc / dda2_size) 370 * 371 * The constants below were all computed using a 107.520MHz clock 372 */ 373 374 /* 375 * Register programming values for TV modes. 376 * 377 * These values account for -1s required. 378 */ 379 static const struct tv_mode tv_modes[] = { 380 { 381 .name = "NTSC-M", 382 .clock = 108000, 383 .refresh = 59940, 384 .oversample = 8, 385 .component_only = false, 386 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */ 387 388 .hsync_end = 64, .hblank_end = 124, 389 .hblank_start = 836, .htotal = 857, 390 391 .progressive = false, .trilevel_sync = false, 392 393 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 394 .vsync_len = 6, 395 396 .veq_ena = true, .veq_start_f1 = 0, 397 .veq_start_f2 = 1, .veq_len = 18, 398 399 .vi_end_f1 = 20, .vi_end_f2 = 21, 400 .nbr_end = 240, 401 402 .burst_ena = true, 403 .hburst_start = 72, .hburst_len = 34, 404 .vburst_start_f1 = 9, .vburst_end_f1 = 240, 405 .vburst_start_f2 = 10, .vburst_end_f2 = 240, 406 .vburst_start_f3 = 9, .vburst_end_f3 = 240, 407 .vburst_start_f4 = 10, .vburst_end_f4 = 240, 408 409 /* desired 3.5800000 actual 3.5800000 clock 107.52 */ 410 .dda1_inc = 135, 411 .dda2_inc = 20800, .dda2_size = 27456, 412 .dda3_inc = 0, .dda3_size = 0, 413 .sc_reset = TV_SC_RESET_EVERY_4, 414 .pal_burst = false, 415 416 .composite_levels = &ntsc_m_levels_composite, 417 .composite_color = &ntsc_m_csc_composite, 418 .svideo_levels = &ntsc_m_levels_svideo, 419 .svideo_color = &ntsc_m_csc_svideo, 420 421 .filter_table = filter_table, 422 }, 423 { 424 .name = "NTSC-443", 425 .clock = 108000, 426 .refresh = 59940, 427 .oversample = 8, 428 .component_only = false, 429 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 4.43MHz */ 430 .hsync_end = 64, .hblank_end = 124, 431 .hblank_start = 836, .htotal = 857, 432 433 .progressive = false, .trilevel_sync = false, 434 435 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 436 .vsync_len = 6, 437 438 .veq_ena = true, .veq_start_f1 = 0, 439 .veq_start_f2 = 1, .veq_len = 18, 440 441 .vi_end_f1 = 20, .vi_end_f2 = 21, 442 .nbr_end = 240, 443 444 .burst_ena = true, 445 .hburst_start = 72, .hburst_len = 34, 446 .vburst_start_f1 = 9, .vburst_end_f1 = 240, 447 .vburst_start_f2 = 10, .vburst_end_f2 = 240, 448 .vburst_start_f3 = 9, .vburst_end_f3 = 240, 449 .vburst_start_f4 = 10, .vburst_end_f4 = 240, 450 451 /* desired 4.4336180 actual 4.4336180 clock 107.52 */ 452 .dda1_inc = 168, 453 .dda2_inc = 4093, .dda2_size = 27456, 454 .dda3_inc = 310, .dda3_size = 525, 455 .sc_reset = TV_SC_RESET_NEVER, 456 .pal_burst = false, 457 458 .composite_levels = &ntsc_m_levels_composite, 459 .composite_color = &ntsc_m_csc_composite, 460 .svideo_levels = &ntsc_m_levels_svideo, 461 .svideo_color = &ntsc_m_csc_svideo, 462 463 .filter_table = filter_table, 464 }, 465 { 466 .name = "NTSC-J", 467 .clock = 108000, 468 .refresh = 59940, 469 .oversample = 8, 470 .component_only = false, 471 472 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */ 473 .hsync_end = 64, .hblank_end = 124, 474 .hblank_start = 836, .htotal = 857, 475 476 .progressive = false, .trilevel_sync = false, 477 478 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 479 .vsync_len = 6, 480 481 .veq_ena = true, .veq_start_f1 = 0, 482 .veq_start_f2 = 1, .veq_len = 18, 483 484 .vi_end_f1 = 20, .vi_end_f2 = 21, 485 .nbr_end = 240, 486 487 .burst_ena = true, 488 .hburst_start = 72, .hburst_len = 34, 489 .vburst_start_f1 = 9, .vburst_end_f1 = 240, 490 .vburst_start_f2 = 10, .vburst_end_f2 = 240, 491 .vburst_start_f3 = 9, .vburst_end_f3 = 240, 492 .vburst_start_f4 = 10, .vburst_end_f4 = 240, 493 494 /* desired 3.5800000 actual 3.5800000 clock 107.52 */ 495 .dda1_inc = 135, 496 .dda2_inc = 20800, .dda2_size = 27456, 497 .dda3_inc = 0, .dda3_size = 0, 498 .sc_reset = TV_SC_RESET_EVERY_4, 499 .pal_burst = false, 500 501 .composite_levels = &ntsc_j_levels_composite, 502 .composite_color = &ntsc_j_csc_composite, 503 .svideo_levels = &ntsc_j_levels_svideo, 504 .svideo_color = &ntsc_j_csc_svideo, 505 506 .filter_table = filter_table, 507 }, 508 { 509 .name = "PAL-M", 510 .clock = 108000, 511 .refresh = 59940, 512 .oversample = 8, 513 .component_only = false, 514 515 /* 525 Lines, 60 Fields, 15.734KHz line, Sub-Carrier 3.580MHz */ 516 .hsync_end = 64, .hblank_end = 124, 517 .hblank_start = 836, .htotal = 857, 518 519 .progressive = false, .trilevel_sync = false, 520 521 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 522 .vsync_len = 6, 523 524 .veq_ena = true, .veq_start_f1 = 0, 525 .veq_start_f2 = 1, .veq_len = 18, 526 527 .vi_end_f1 = 20, .vi_end_f2 = 21, 528 .nbr_end = 240, 529 530 .burst_ena = true, 531 .hburst_start = 72, .hburst_len = 34, 532 .vburst_start_f1 = 9, .vburst_end_f1 = 240, 533 .vburst_start_f2 = 10, .vburst_end_f2 = 240, 534 .vburst_start_f3 = 9, .vburst_end_f3 = 240, 535 .vburst_start_f4 = 10, .vburst_end_f4 = 240, 536 537 /* desired 3.5800000 actual 3.5800000 clock 107.52 */ 538 .dda1_inc = 135, 539 .dda2_inc = 16704, .dda2_size = 27456, 540 .dda3_inc = 0, .dda3_size = 0, 541 .sc_reset = TV_SC_RESET_EVERY_8, 542 .pal_burst = true, 543 544 .composite_levels = &pal_m_levels_composite, 545 .composite_color = &pal_m_csc_composite, 546 .svideo_levels = &pal_m_levels_svideo, 547 .svideo_color = &pal_m_csc_svideo, 548 549 .filter_table = filter_table, 550 }, 551 { 552 /* 625 Lines, 50 Fields, 15.625KHz line, Sub-Carrier 4.434MHz */ 553 .name = "PAL-N", 554 .clock = 108000, 555 .refresh = 50000, 556 .oversample = 8, 557 .component_only = false, 558 559 .hsync_end = 64, .hblank_end = 128, 560 .hblank_start = 844, .htotal = 863, 561 562 .progressive = false, .trilevel_sync = false, 563 564 565 .vsync_start_f1 = 6, .vsync_start_f2 = 7, 566 .vsync_len = 6, 567 568 .veq_ena = true, .veq_start_f1 = 0, 569 .veq_start_f2 = 1, .veq_len = 18, 570 571 .vi_end_f1 = 24, .vi_end_f2 = 25, 572 .nbr_end = 286, 573 574 .burst_ena = true, 575 .hburst_start = 73, .hburst_len = 34, 576 .vburst_start_f1 = 8, .vburst_end_f1 = 285, 577 .vburst_start_f2 = 8, .vburst_end_f2 = 286, 578 .vburst_start_f3 = 9, .vburst_end_f3 = 286, 579 .vburst_start_f4 = 9, .vburst_end_f4 = 285, 580 581 582 /* desired 4.4336180 actual 4.4336180 clock 107.52 */ 583 .dda1_inc = 135, 584 .dda2_inc = 23578, .dda2_size = 27648, 585 .dda3_inc = 134, .dda3_size = 625, 586 .sc_reset = TV_SC_RESET_EVERY_8, 587 .pal_burst = true, 588 589 .composite_levels = &pal_n_levels_composite, 590 .composite_color = &pal_n_csc_composite, 591 .svideo_levels = &pal_n_levels_svideo, 592 .svideo_color = &pal_n_csc_svideo, 593 594 .filter_table = filter_table, 595 }, 596 { 597 /* 625 Lines, 50 Fields, 15.625KHz line, Sub-Carrier 4.434MHz */ 598 .name = "PAL", 599 .clock = 108000, 600 .refresh = 50000, 601 .oversample = 8, 602 .component_only = false, 603 604 .hsync_end = 64, .hblank_end = 142, 605 .hblank_start = 844, .htotal = 863, 606 607 .progressive = false, .trilevel_sync = false, 608 609 .vsync_start_f1 = 5, .vsync_start_f2 = 6, 610 .vsync_len = 5, 611 612 .veq_ena = true, .veq_start_f1 = 0, 613 .veq_start_f2 = 1, .veq_len = 15, 614 615 .vi_end_f1 = 24, .vi_end_f2 = 25, 616 .nbr_end = 286, 617 618 .burst_ena = true, 619 .hburst_start = 73, .hburst_len = 32, 620 .vburst_start_f1 = 8, .vburst_end_f1 = 285, 621 .vburst_start_f2 = 8, .vburst_end_f2 = 286, 622 .vburst_start_f3 = 9, .vburst_end_f3 = 286, 623 .vburst_start_f4 = 9, .vburst_end_f4 = 285, 624 625 /* desired 4.4336180 actual 4.4336180 clock 107.52 */ 626 .dda1_inc = 168, 627 .dda2_inc = 4122, .dda2_size = 27648, 628 .dda3_inc = 67, .dda3_size = 625, 629 .sc_reset = TV_SC_RESET_EVERY_8, 630 .pal_burst = true, 631 632 .composite_levels = &pal_levels_composite, 633 .composite_color = &pal_csc_composite, 634 .svideo_levels = &pal_levels_svideo, 635 .svideo_color = &pal_csc_svideo, 636 637 .filter_table = filter_table, 638 }, 639 { 640 .name = "480p", 641 .clock = 108000, 642 .refresh = 59940, 643 .oversample = 4, 644 .component_only = true, 645 646 .hsync_end = 64, .hblank_end = 122, 647 .hblank_start = 842, .htotal = 857, 648 649 .progressive = true, .trilevel_sync = false, 650 651 .vsync_start_f1 = 12, .vsync_start_f2 = 12, 652 .vsync_len = 12, 653 654 .veq_ena = false, 655 656 .vi_end_f1 = 44, .vi_end_f2 = 44, 657 .nbr_end = 479, 658 659 .burst_ena = false, 660 661 .filter_table = filter_table, 662 }, 663 { 664 .name = "576p", 665 .clock = 108000, 666 .refresh = 50000, 667 .oversample = 4, 668 .component_only = true, 669 670 .hsync_end = 64, .hblank_end = 139, 671 .hblank_start = 859, .htotal = 863, 672 673 .progressive = true, .trilevel_sync = false, 674 675 .vsync_start_f1 = 10, .vsync_start_f2 = 10, 676 .vsync_len = 10, 677 678 .veq_ena = false, 679 680 .vi_end_f1 = 48, .vi_end_f2 = 48, 681 .nbr_end = 575, 682 683 .burst_ena = false, 684 685 .filter_table = filter_table, 686 }, 687 { 688 .name = "720p@60Hz", 689 .clock = 148500, 690 .refresh = 60000, 691 .oversample = 2, 692 .component_only = true, 693 694 .hsync_end = 80, .hblank_end = 300, 695 .hblank_start = 1580, .htotal = 1649, 696 697 .progressive = true, .trilevel_sync = true, 698 699 .vsync_start_f1 = 10, .vsync_start_f2 = 10, 700 .vsync_len = 10, 701 702 .veq_ena = false, 703 704 .vi_end_f1 = 29, .vi_end_f2 = 29, 705 .nbr_end = 719, 706 707 .burst_ena = false, 708 709 .filter_table = filter_table, 710 }, 711 { 712 .name = "720p@50Hz", 713 .clock = 148500, 714 .refresh = 50000, 715 .oversample = 2, 716 .component_only = true, 717 718 .hsync_end = 80, .hblank_end = 300, 719 .hblank_start = 1580, .htotal = 1979, 720 721 .progressive = true, .trilevel_sync = true, 722 723 .vsync_start_f1 = 10, .vsync_start_f2 = 10, 724 .vsync_len = 10, 725 726 .veq_ena = false, 727 728 .vi_end_f1 = 29, .vi_end_f2 = 29, 729 .nbr_end = 719, 730 731 .burst_ena = false, 732 733 .filter_table = filter_table, 734 }, 735 { 736 .name = "1080i@50Hz", 737 .clock = 148500, 738 .refresh = 50000, 739 .oversample = 2, 740 .component_only = true, 741 742 .hsync_end = 88, .hblank_end = 235, 743 .hblank_start = 2155, .htotal = 2639, 744 745 .progressive = false, .trilevel_sync = true, 746 747 .vsync_start_f1 = 4, .vsync_start_f2 = 5, 748 .vsync_len = 10, 749 750 .veq_ena = true, .veq_start_f1 = 4, 751 .veq_start_f2 = 4, .veq_len = 10, 752 753 754 .vi_end_f1 = 21, .vi_end_f2 = 22, 755 .nbr_end = 539, 756 757 .burst_ena = false, 758 759 .filter_table = filter_table, 760 }, 761 { 762 .name = "1080i@60Hz", 763 .clock = 148500, 764 .refresh = 60000, 765 .oversample = 2, 766 .component_only = true, 767 768 .hsync_end = 88, .hblank_end = 235, 769 .hblank_start = 2155, .htotal = 2199, 770 771 .progressive = false, .trilevel_sync = true, 772 773 .vsync_start_f1 = 4, .vsync_start_f2 = 5, 774 .vsync_len = 10, 775 776 .veq_ena = true, .veq_start_f1 = 4, 777 .veq_start_f2 = 4, .veq_len = 10, 778 779 780 .vi_end_f1 = 21, .vi_end_f2 = 22, 781 .nbr_end = 539, 782 783 .burst_ena = false, 784 785 .filter_table = filter_table, 786 }, 787 788 { 789 .name = "1080p@30Hz", 790 .clock = 148500, 791 .refresh = 30000, 792 .oversample = 2, 793 .component_only = true, 794 795 .hsync_end = 88, .hblank_end = 235, 796 .hblank_start = 2155, .htotal = 2199, 797 798 .progressive = true, .trilevel_sync = true, 799 800 .vsync_start_f1 = 8, .vsync_start_f2 = 8, 801 .vsync_len = 10, 802 803 .veq_ena = false, .veq_start_f1 = 0, 804 .veq_start_f2 = 0, .veq_len = 0, 805 806 .vi_end_f1 = 44, .vi_end_f2 = 44, 807 .nbr_end = 1079, 808 809 .burst_ena = false, 810 811 .filter_table = filter_table, 812 }, 813 814 { 815 .name = "1080p@50Hz", 816 .clock = 148500, 817 .refresh = 50000, 818 .oversample = 1, 819 .component_only = true, 820 821 .hsync_end = 88, .hblank_end = 235, 822 .hblank_start = 2155, .htotal = 2639, 823 824 .progressive = true, .trilevel_sync = true, 825 826 .vsync_start_f1 = 8, .vsync_start_f2 = 8, 827 .vsync_len = 10, 828 829 .veq_ena = false, .veq_start_f1 = 0, 830 .veq_start_f2 = 0, .veq_len = 0, 831 832 .vi_end_f1 = 44, .vi_end_f2 = 44, 833 .nbr_end = 1079, 834 835 .burst_ena = false, 836 837 .filter_table = filter_table, 838 }, 839 840 { 841 .name = "1080p@60Hz", 842 .clock = 148500, 843 .refresh = 60000, 844 .oversample = 1, 845 .component_only = true, 846 847 .hsync_end = 88, .hblank_end = 235, 848 .hblank_start = 2155, .htotal = 2199, 849 850 .progressive = true, .trilevel_sync = true, 851 852 .vsync_start_f1 = 8, .vsync_start_f2 = 8, 853 .vsync_len = 10, 854 855 .veq_ena = false, .veq_start_f1 = 0, 856 .veq_start_f2 = 0, .veq_len = 0, 857 858 .vi_end_f1 = 44, .vi_end_f2 = 44, 859 .nbr_end = 1079, 860 861 .burst_ena = false, 862 863 .filter_table = filter_table, 864 }, 865 }; 866 867 struct intel_tv_connector_state { 868 struct drm_connector_state base; 869 870 /* 871 * May need to override the user margins for 872 * gen3 >1024 wide source vertical centering. 873 */ 874 struct { 875 u16 top, bottom; 876 } margins; 877 878 bool bypass_vfilter; 879 }; 880 881 #define to_intel_tv_connector_state(x) container_of(x, struct intel_tv_connector_state, base) 882 883 static struct drm_connector_state * 884 intel_tv_connector_duplicate_state(struct drm_connector *connector) 885 { 886 struct intel_tv_connector_state *state; 887 888 state = kmemdup(connector->state, sizeof(*state), GFP_KERNEL); 889 if (!state) 890 return NULL; 891 892 __drm_atomic_helper_connector_duplicate_state(connector, &state->base); 893 return &state->base; 894 } 895 896 static struct intel_tv *enc_to_tv(struct intel_encoder *encoder) 897 { 898 return container_of(encoder, struct intel_tv, base); 899 } 900 901 static struct intel_tv *intel_attached_tv(struct drm_connector *connector) 902 { 903 return enc_to_tv(intel_attached_encoder(connector)); 904 } 905 906 static bool 907 intel_tv_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe) 908 { 909 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 910 u32 tmp = I915_READ(TV_CTL); 911 912 *pipe = (tmp & TV_ENC_PIPE_SEL_MASK) >> TV_ENC_PIPE_SEL_SHIFT; 913 914 return tmp & TV_ENC_ENABLE; 915 } 916 917 static void 918 intel_enable_tv(struct intel_encoder *encoder, 919 const struct intel_crtc_state *pipe_config, 920 const struct drm_connector_state *conn_state) 921 { 922 struct drm_device *dev = encoder->base.dev; 923 struct drm_i915_private *dev_priv = to_i915(dev); 924 925 /* Prevents vblank waits from timing out in intel_tv_detect_type() */ 926 intel_wait_for_vblank(dev_priv, 927 to_intel_crtc(pipe_config->base.crtc)->pipe); 928 929 I915_WRITE(TV_CTL, I915_READ(TV_CTL) | TV_ENC_ENABLE); 930 } 931 932 static void 933 intel_disable_tv(struct intel_encoder *encoder, 934 const struct intel_crtc_state *old_crtc_state, 935 const struct drm_connector_state *old_conn_state) 936 { 937 struct drm_device *dev = encoder->base.dev; 938 struct drm_i915_private *dev_priv = to_i915(dev); 939 940 I915_WRITE(TV_CTL, I915_READ(TV_CTL) & ~TV_ENC_ENABLE); 941 } 942 943 static const struct tv_mode *intel_tv_mode_find(const struct drm_connector_state *conn_state) 944 { 945 int format = conn_state->tv.mode; 946 947 return &tv_modes[format]; 948 } 949 950 static enum drm_mode_status 951 intel_tv_mode_valid(struct drm_connector *connector, 952 struct drm_display_mode *mode) 953 { 954 const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state); 955 int max_dotclk = to_i915(connector->dev)->max_dotclk_freq; 956 957 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) 958 return MODE_NO_DBLESCAN; 959 960 if (mode->clock > max_dotclk) 961 return MODE_CLOCK_HIGH; 962 963 /* Ensure TV refresh is close to desired refresh */ 964 if (tv_mode && abs(tv_mode->refresh - drm_mode_vrefresh(mode) * 1000) 965 < 1000) 966 return MODE_OK; 967 968 return MODE_CLOCK_RANGE; 969 } 970 971 static int 972 intel_tv_mode_vdisplay(const struct tv_mode *tv_mode) 973 { 974 if (tv_mode->progressive) 975 return tv_mode->nbr_end + 1; 976 else 977 return 2 * (tv_mode->nbr_end + 1); 978 } 979 980 static void 981 intel_tv_mode_to_mode(struct drm_display_mode *mode, 982 const struct tv_mode *tv_mode) 983 { 984 mode->clock = tv_mode->clock / 985 (tv_mode->oversample >> !tv_mode->progressive); 986 987 /* 988 * tv_mode horizontal timings: 989 * 990 * hsync_end 991 * | hblank_end 992 * | | hblank_start 993 * | | | htotal 994 * | _______ | 995 * ____/ \___ 996 * \__/ \ 997 */ 998 mode->hdisplay = 999 tv_mode->hblank_start - tv_mode->hblank_end; 1000 mode->hsync_start = mode->hdisplay + 1001 tv_mode->htotal - tv_mode->hblank_start; 1002 mode->hsync_end = mode->hsync_start + 1003 tv_mode->hsync_end; 1004 mode->htotal = tv_mode->htotal + 1; 1005 1006 /* 1007 * tv_mode vertical timings: 1008 * 1009 * vsync_start 1010 * | vsync_end 1011 * | | vi_end nbr_end 1012 * | | | | 1013 * | | _______ 1014 * \__ ____/ \ 1015 * \__/ 1016 */ 1017 mode->vdisplay = intel_tv_mode_vdisplay(tv_mode); 1018 if (tv_mode->progressive) { 1019 mode->vsync_start = mode->vdisplay + 1020 tv_mode->vsync_start_f1 + 1; 1021 mode->vsync_end = mode->vsync_start + 1022 tv_mode->vsync_len; 1023 mode->vtotal = mode->vdisplay + 1024 tv_mode->vi_end_f1 + 1; 1025 } else { 1026 mode->vsync_start = mode->vdisplay + 1027 tv_mode->vsync_start_f1 + 1 + 1028 tv_mode->vsync_start_f2 + 1; 1029 mode->vsync_end = mode->vsync_start + 1030 2 * tv_mode->vsync_len; 1031 mode->vtotal = mode->vdisplay + 1032 tv_mode->vi_end_f1 + 1 + 1033 tv_mode->vi_end_f2 + 1; 1034 } 1035 1036 /* TV has it's own notion of sync and other mode flags, so clear them. */ 1037 mode->flags = 0; 1038 1039 mode->vrefresh = 0; 1040 mode->vrefresh = drm_mode_vrefresh(mode); 1041 1042 snprintf(mode->name, sizeof(mode->name), 1043 "%dx%d%c (%s)", 1044 mode->hdisplay, mode->vdisplay, 1045 tv_mode->progressive ? 'p' : 'i', 1046 tv_mode->name); 1047 } 1048 1049 static void intel_tv_scale_mode_horiz(struct drm_display_mode *mode, 1050 int hdisplay, int left_margin, 1051 int right_margin) 1052 { 1053 int hsync_start = mode->hsync_start - mode->hdisplay + right_margin; 1054 int hsync_end = mode->hsync_end - mode->hdisplay + right_margin; 1055 int new_htotal = mode->htotal * hdisplay / 1056 (mode->hdisplay - left_margin - right_margin); 1057 1058 mode->clock = mode->clock * new_htotal / mode->htotal; 1059 1060 mode->hdisplay = hdisplay; 1061 mode->hsync_start = hdisplay + hsync_start * new_htotal / mode->htotal; 1062 mode->hsync_end = hdisplay + hsync_end * new_htotal / mode->htotal; 1063 mode->htotal = new_htotal; 1064 } 1065 1066 static void intel_tv_scale_mode_vert(struct drm_display_mode *mode, 1067 int vdisplay, int top_margin, 1068 int bottom_margin) 1069 { 1070 int vsync_start = mode->vsync_start - mode->vdisplay + bottom_margin; 1071 int vsync_end = mode->vsync_end - mode->vdisplay + bottom_margin; 1072 int new_vtotal = mode->vtotal * vdisplay / 1073 (mode->vdisplay - top_margin - bottom_margin); 1074 1075 mode->clock = mode->clock * new_vtotal / mode->vtotal; 1076 1077 mode->vdisplay = vdisplay; 1078 mode->vsync_start = vdisplay + vsync_start * new_vtotal / mode->vtotal; 1079 mode->vsync_end = vdisplay + vsync_end * new_vtotal / mode->vtotal; 1080 mode->vtotal = new_vtotal; 1081 } 1082 1083 static void 1084 intel_tv_get_config(struct intel_encoder *encoder, 1085 struct intel_crtc_state *pipe_config) 1086 { 1087 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1088 struct drm_display_mode *adjusted_mode = 1089 &pipe_config->base.adjusted_mode; 1090 struct drm_display_mode mode = {}; 1091 u32 tv_ctl, hctl1, hctl3, vctl1, vctl2, tmp; 1092 struct tv_mode tv_mode = {}; 1093 int hdisplay = adjusted_mode->crtc_hdisplay; 1094 int vdisplay = adjusted_mode->crtc_vdisplay; 1095 int xsize, ysize, xpos, ypos; 1096 1097 pipe_config->output_types |= BIT(INTEL_OUTPUT_TVOUT); 1098 1099 tv_ctl = I915_READ(TV_CTL); 1100 hctl1 = I915_READ(TV_H_CTL_1); 1101 hctl3 = I915_READ(TV_H_CTL_3); 1102 vctl1 = I915_READ(TV_V_CTL_1); 1103 vctl2 = I915_READ(TV_V_CTL_2); 1104 1105 tv_mode.htotal = (hctl1 & TV_HTOTAL_MASK) >> TV_HTOTAL_SHIFT; 1106 tv_mode.hsync_end = (hctl1 & TV_HSYNC_END_MASK) >> TV_HSYNC_END_SHIFT; 1107 1108 tv_mode.hblank_start = (hctl3 & TV_HBLANK_START_MASK) >> TV_HBLANK_START_SHIFT; 1109 tv_mode.hblank_end = (hctl3 & TV_HSYNC_END_MASK) >> TV_HBLANK_END_SHIFT; 1110 1111 tv_mode.nbr_end = (vctl1 & TV_NBR_END_MASK) >> TV_NBR_END_SHIFT; 1112 tv_mode.vi_end_f1 = (vctl1 & TV_VI_END_F1_MASK) >> TV_VI_END_F1_SHIFT; 1113 tv_mode.vi_end_f2 = (vctl1 & TV_VI_END_F2_MASK) >> TV_VI_END_F2_SHIFT; 1114 1115 tv_mode.vsync_len = (vctl2 & TV_VSYNC_LEN_MASK) >> TV_VSYNC_LEN_SHIFT; 1116 tv_mode.vsync_start_f1 = (vctl2 & TV_VSYNC_START_F1_MASK) >> TV_VSYNC_START_F1_SHIFT; 1117 tv_mode.vsync_start_f2 = (vctl2 & TV_VSYNC_START_F2_MASK) >> TV_VSYNC_START_F2_SHIFT; 1118 1119 tv_mode.clock = pipe_config->port_clock; 1120 1121 tv_mode.progressive = tv_ctl & TV_PROGRESSIVE; 1122 1123 switch (tv_ctl & TV_OVERSAMPLE_MASK) { 1124 case TV_OVERSAMPLE_8X: 1125 tv_mode.oversample = 8; 1126 break; 1127 case TV_OVERSAMPLE_4X: 1128 tv_mode.oversample = 4; 1129 break; 1130 case TV_OVERSAMPLE_2X: 1131 tv_mode.oversample = 2; 1132 break; 1133 default: 1134 tv_mode.oversample = 1; 1135 break; 1136 } 1137 1138 tmp = I915_READ(TV_WIN_POS); 1139 xpos = tmp >> 16; 1140 ypos = tmp & 0xffff; 1141 1142 tmp = I915_READ(TV_WIN_SIZE); 1143 xsize = tmp >> 16; 1144 ysize = tmp & 0xffff; 1145 1146 intel_tv_mode_to_mode(&mode, &tv_mode); 1147 1148 DRM_DEBUG_KMS("TV mode:\n"); 1149 drm_mode_debug_printmodeline(&mode); 1150 1151 intel_tv_scale_mode_horiz(&mode, hdisplay, 1152 xpos, mode.hdisplay - xsize - xpos); 1153 intel_tv_scale_mode_vert(&mode, vdisplay, 1154 ypos, mode.vdisplay - ysize - ypos); 1155 1156 adjusted_mode->crtc_clock = mode.clock; 1157 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) 1158 adjusted_mode->crtc_clock /= 2; 1159 1160 /* pixel counter doesn't work on i965gm TV output */ 1161 if (IS_I965GM(dev_priv)) 1162 adjusted_mode->private_flags |= 1163 I915_MODE_FLAG_USE_SCANLINE_COUNTER; 1164 } 1165 1166 static bool intel_tv_source_too_wide(struct drm_i915_private *dev_priv, 1167 int hdisplay) 1168 { 1169 return IS_GEN(dev_priv, 3) && hdisplay > 1024; 1170 } 1171 1172 static bool intel_tv_vert_scaling(const struct drm_display_mode *tv_mode, 1173 const struct drm_connector_state *conn_state, 1174 int vdisplay) 1175 { 1176 return tv_mode->crtc_vdisplay - 1177 conn_state->tv.margins.top - 1178 conn_state->tv.margins.bottom != 1179 vdisplay; 1180 } 1181 1182 static int 1183 intel_tv_compute_config(struct intel_encoder *encoder, 1184 struct intel_crtc_state *pipe_config, 1185 struct drm_connector_state *conn_state) 1186 { 1187 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1188 struct intel_tv_connector_state *tv_conn_state = 1189 to_intel_tv_connector_state(conn_state); 1190 const struct tv_mode *tv_mode = intel_tv_mode_find(conn_state); 1191 struct drm_display_mode *adjusted_mode = 1192 &pipe_config->base.adjusted_mode; 1193 int hdisplay = adjusted_mode->crtc_hdisplay; 1194 int vdisplay = adjusted_mode->crtc_vdisplay; 1195 1196 if (!tv_mode) 1197 return -EINVAL; 1198 1199 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) 1200 return -EINVAL; 1201 1202 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB; 1203 1204 DRM_DEBUG_KMS("forcing bpc to 8 for TV\n"); 1205 pipe_config->pipe_bpp = 8*3; 1206 1207 pipe_config->port_clock = tv_mode->clock; 1208 1209 intel_tv_mode_to_mode(adjusted_mode, tv_mode); 1210 drm_mode_set_crtcinfo(adjusted_mode, 0); 1211 1212 if (intel_tv_source_too_wide(dev_priv, hdisplay) || 1213 !intel_tv_vert_scaling(adjusted_mode, conn_state, vdisplay)) { 1214 int extra, top, bottom; 1215 1216 extra = adjusted_mode->crtc_vdisplay - vdisplay; 1217 1218 if (extra < 0) { 1219 DRM_DEBUG_KMS("No vertical scaling for >1024 pixel wide modes\n"); 1220 return -EINVAL; 1221 } 1222 1223 /* Need to turn off the vertical filter and center the image */ 1224 1225 /* Attempt to maintain the relative sizes of the margins */ 1226 top = conn_state->tv.margins.top; 1227 bottom = conn_state->tv.margins.bottom; 1228 1229 if (top + bottom) 1230 top = extra * top / (top + bottom); 1231 else 1232 top = extra / 2; 1233 bottom = extra - top; 1234 1235 tv_conn_state->margins.top = top; 1236 tv_conn_state->margins.bottom = bottom; 1237 1238 tv_conn_state->bypass_vfilter = true; 1239 1240 if (!tv_mode->progressive) { 1241 adjusted_mode->clock /= 2; 1242 adjusted_mode->crtc_clock /= 2; 1243 adjusted_mode->flags |= DRM_MODE_FLAG_INTERLACE; 1244 } 1245 } else { 1246 tv_conn_state->margins.top = conn_state->tv.margins.top; 1247 tv_conn_state->margins.bottom = conn_state->tv.margins.bottom; 1248 1249 tv_conn_state->bypass_vfilter = false; 1250 } 1251 1252 DRM_DEBUG_KMS("TV mode:\n"); 1253 drm_mode_debug_printmodeline(adjusted_mode); 1254 1255 /* 1256 * The pipe scanline counter behaviour looks as follows when 1257 * using the TV encoder: 1258 * 1259 * time -> 1260 * 1261 * dsl=vtotal-1 | | 1262 * || || 1263 * ___| | ___| | 1264 * / | / | 1265 * / | / | 1266 * dsl=0 ___/ |_____/ | 1267 * | | | | | | 1268 * ^ ^ ^ ^ ^ 1269 * | | | | pipe vblank/first part of tv vblank 1270 * | | | bottom margin 1271 * | | active 1272 * | top margin 1273 * remainder of tv vblank 1274 * 1275 * When the TV encoder is used the pipe wants to run faster 1276 * than expected rate. During the active portion the TV 1277 * encoder stalls the pipe every few lines to keep it in 1278 * check. When the TV encoder reaches the bottom margin the 1279 * pipe simply stops. Once we reach the TV vblank the pipe is 1280 * no longer stalled and it runs at the max rate (apparently 1281 * oversample clock on gen3, cdclk on gen4). Once the pipe 1282 * reaches the pipe vtotal the pipe stops for the remainder 1283 * of the TV vblank/top margin. The pipe starts up again when 1284 * the TV encoder exits the top margin. 1285 * 1286 * To avoid huge hassles for vblank timestamping we scale 1287 * the pipe timings as if the pipe always runs at the average 1288 * rate it maintains during the active period. This also 1289 * gives us a reasonable guesstimate as to the pixel rate. 1290 * Due to the variation in the actual pipe speed the scanline 1291 * counter will give us slightly erroneous results during the 1292 * TV vblank/margins. But since vtotal was selected such that 1293 * it matches the average rate of the pipe during the active 1294 * portion the error shouldn't cause any serious grief to 1295 * vblank timestamps. 1296 * 1297 * For posterity here is the empirically derived formula 1298 * that gives us the maximum length of the pipe vblank 1299 * we can use without causing display corruption. Following 1300 * this would allow us to have a ticking scanline counter 1301 * everywhere except during the bottom margin (there the 1302 * pipe always stops). Ie. this would eliminate the second 1303 * flat portion of the above graph. However this would also 1304 * complicate vblank timestamping as the pipe vtotal would 1305 * no longer match the average rate the pipe runs at during 1306 * the active portion. Hence following this formula seems 1307 * more trouble that it's worth. 1308 * 1309 * if (IS_GEN(dev_priv, 4)) { 1310 * num = cdclk * (tv_mode->oversample >> !tv_mode->progressive); 1311 * den = tv_mode->clock; 1312 * } else { 1313 * num = tv_mode->oversample >> !tv_mode->progressive; 1314 * den = 1; 1315 * } 1316 * max_pipe_vblank_len ~= 1317 * (num * tv_htotal * (tv_vblank_len + top_margin)) / 1318 * (den * pipe_htotal); 1319 */ 1320 intel_tv_scale_mode_horiz(adjusted_mode, hdisplay, 1321 conn_state->tv.margins.left, 1322 conn_state->tv.margins.right); 1323 intel_tv_scale_mode_vert(adjusted_mode, vdisplay, 1324 tv_conn_state->margins.top, 1325 tv_conn_state->margins.bottom); 1326 drm_mode_set_crtcinfo(adjusted_mode, 0); 1327 adjusted_mode->name[0] = '\0'; 1328 1329 /* pixel counter doesn't work on i965gm TV output */ 1330 if (IS_I965GM(dev_priv)) 1331 adjusted_mode->private_flags |= 1332 I915_MODE_FLAG_USE_SCANLINE_COUNTER; 1333 1334 return 0; 1335 } 1336 1337 static void 1338 set_tv_mode_timings(struct drm_i915_private *dev_priv, 1339 const struct tv_mode *tv_mode, 1340 bool burst_ena) 1341 { 1342 u32 hctl1, hctl2, hctl3; 1343 u32 vctl1, vctl2, vctl3, vctl4, vctl5, vctl6, vctl7; 1344 1345 hctl1 = (tv_mode->hsync_end << TV_HSYNC_END_SHIFT) | 1346 (tv_mode->htotal << TV_HTOTAL_SHIFT); 1347 1348 hctl2 = (tv_mode->hburst_start << 16) | 1349 (tv_mode->hburst_len << TV_HBURST_LEN_SHIFT); 1350 1351 if (burst_ena) 1352 hctl2 |= TV_BURST_ENA; 1353 1354 hctl3 = (tv_mode->hblank_start << TV_HBLANK_START_SHIFT) | 1355 (tv_mode->hblank_end << TV_HBLANK_END_SHIFT); 1356 1357 vctl1 = (tv_mode->nbr_end << TV_NBR_END_SHIFT) | 1358 (tv_mode->vi_end_f1 << TV_VI_END_F1_SHIFT) | 1359 (tv_mode->vi_end_f2 << TV_VI_END_F2_SHIFT); 1360 1361 vctl2 = (tv_mode->vsync_len << TV_VSYNC_LEN_SHIFT) | 1362 (tv_mode->vsync_start_f1 << TV_VSYNC_START_F1_SHIFT) | 1363 (tv_mode->vsync_start_f2 << TV_VSYNC_START_F2_SHIFT); 1364 1365 vctl3 = (tv_mode->veq_len << TV_VEQ_LEN_SHIFT) | 1366 (tv_mode->veq_start_f1 << TV_VEQ_START_F1_SHIFT) | 1367 (tv_mode->veq_start_f2 << TV_VEQ_START_F2_SHIFT); 1368 1369 if (tv_mode->veq_ena) 1370 vctl3 |= TV_EQUAL_ENA; 1371 1372 vctl4 = (tv_mode->vburst_start_f1 << TV_VBURST_START_F1_SHIFT) | 1373 (tv_mode->vburst_end_f1 << TV_VBURST_END_F1_SHIFT); 1374 1375 vctl5 = (tv_mode->vburst_start_f2 << TV_VBURST_START_F2_SHIFT) | 1376 (tv_mode->vburst_end_f2 << TV_VBURST_END_F2_SHIFT); 1377 1378 vctl6 = (tv_mode->vburst_start_f3 << TV_VBURST_START_F3_SHIFT) | 1379 (tv_mode->vburst_end_f3 << TV_VBURST_END_F3_SHIFT); 1380 1381 vctl7 = (tv_mode->vburst_start_f4 << TV_VBURST_START_F4_SHIFT) | 1382 (tv_mode->vburst_end_f4 << TV_VBURST_END_F4_SHIFT); 1383 1384 I915_WRITE(TV_H_CTL_1, hctl1); 1385 I915_WRITE(TV_H_CTL_2, hctl2); 1386 I915_WRITE(TV_H_CTL_3, hctl3); 1387 I915_WRITE(TV_V_CTL_1, vctl1); 1388 I915_WRITE(TV_V_CTL_2, vctl2); 1389 I915_WRITE(TV_V_CTL_3, vctl3); 1390 I915_WRITE(TV_V_CTL_4, vctl4); 1391 I915_WRITE(TV_V_CTL_5, vctl5); 1392 I915_WRITE(TV_V_CTL_6, vctl6); 1393 I915_WRITE(TV_V_CTL_7, vctl7); 1394 } 1395 1396 static void set_color_conversion(struct drm_i915_private *dev_priv, 1397 const struct color_conversion *color_conversion) 1398 { 1399 if (!color_conversion) 1400 return; 1401 1402 I915_WRITE(TV_CSC_Y, (color_conversion->ry << 16) | 1403 color_conversion->gy); 1404 I915_WRITE(TV_CSC_Y2, (color_conversion->by << 16) | 1405 color_conversion->ay); 1406 I915_WRITE(TV_CSC_U, (color_conversion->ru << 16) | 1407 color_conversion->gu); 1408 I915_WRITE(TV_CSC_U2, (color_conversion->bu << 16) | 1409 color_conversion->au); 1410 I915_WRITE(TV_CSC_V, (color_conversion->rv << 16) | 1411 color_conversion->gv); 1412 I915_WRITE(TV_CSC_V2, (color_conversion->bv << 16) | 1413 color_conversion->av); 1414 } 1415 1416 static void intel_tv_pre_enable(struct intel_encoder *encoder, 1417 const struct intel_crtc_state *pipe_config, 1418 const struct drm_connector_state *conn_state) 1419 { 1420 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1421 struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc); 1422 struct intel_tv *intel_tv = enc_to_tv(encoder); 1423 const struct intel_tv_connector_state *tv_conn_state = 1424 to_intel_tv_connector_state(conn_state); 1425 const struct tv_mode *tv_mode = intel_tv_mode_find(conn_state); 1426 u32 tv_ctl, tv_filter_ctl; 1427 u32 scctl1, scctl2, scctl3; 1428 int i, j; 1429 const struct video_levels *video_levels; 1430 const struct color_conversion *color_conversion; 1431 bool burst_ena; 1432 int xpos, ypos; 1433 unsigned int xsize, ysize; 1434 1435 if (!tv_mode) 1436 return; /* can't happen (mode_prepare prevents this) */ 1437 1438 tv_ctl = I915_READ(TV_CTL); 1439 tv_ctl &= TV_CTL_SAVE; 1440 1441 switch (intel_tv->type) { 1442 default: 1443 case DRM_MODE_CONNECTOR_Unknown: 1444 case DRM_MODE_CONNECTOR_Composite: 1445 tv_ctl |= TV_ENC_OUTPUT_COMPOSITE; 1446 video_levels = tv_mode->composite_levels; 1447 color_conversion = tv_mode->composite_color; 1448 burst_ena = tv_mode->burst_ena; 1449 break; 1450 case DRM_MODE_CONNECTOR_Component: 1451 tv_ctl |= TV_ENC_OUTPUT_COMPONENT; 1452 video_levels = &component_levels; 1453 if (tv_mode->burst_ena) 1454 color_conversion = &sdtv_csc_yprpb; 1455 else 1456 color_conversion = &hdtv_csc_yprpb; 1457 burst_ena = false; 1458 break; 1459 case DRM_MODE_CONNECTOR_SVIDEO: 1460 tv_ctl |= TV_ENC_OUTPUT_SVIDEO; 1461 video_levels = tv_mode->svideo_levels; 1462 color_conversion = tv_mode->svideo_color; 1463 burst_ena = tv_mode->burst_ena; 1464 break; 1465 } 1466 1467 tv_ctl |= TV_ENC_PIPE_SEL(intel_crtc->pipe); 1468 1469 switch (tv_mode->oversample) { 1470 case 8: 1471 tv_ctl |= TV_OVERSAMPLE_8X; 1472 break; 1473 case 4: 1474 tv_ctl |= TV_OVERSAMPLE_4X; 1475 break; 1476 case 2: 1477 tv_ctl |= TV_OVERSAMPLE_2X; 1478 break; 1479 default: 1480 tv_ctl |= TV_OVERSAMPLE_NONE; 1481 break; 1482 } 1483 1484 if (tv_mode->progressive) 1485 tv_ctl |= TV_PROGRESSIVE; 1486 if (tv_mode->trilevel_sync) 1487 tv_ctl |= TV_TRILEVEL_SYNC; 1488 if (tv_mode->pal_burst) 1489 tv_ctl |= TV_PAL_BURST; 1490 1491 scctl1 = 0; 1492 if (tv_mode->dda1_inc) 1493 scctl1 |= TV_SC_DDA1_EN; 1494 if (tv_mode->dda2_inc) 1495 scctl1 |= TV_SC_DDA2_EN; 1496 if (tv_mode->dda3_inc) 1497 scctl1 |= TV_SC_DDA3_EN; 1498 scctl1 |= tv_mode->sc_reset; 1499 if (video_levels) 1500 scctl1 |= video_levels->burst << TV_BURST_LEVEL_SHIFT; 1501 scctl1 |= tv_mode->dda1_inc << TV_SCDDA1_INC_SHIFT; 1502 1503 scctl2 = tv_mode->dda2_size << TV_SCDDA2_SIZE_SHIFT | 1504 tv_mode->dda2_inc << TV_SCDDA2_INC_SHIFT; 1505 1506 scctl3 = tv_mode->dda3_size << TV_SCDDA3_SIZE_SHIFT | 1507 tv_mode->dda3_inc << TV_SCDDA3_INC_SHIFT; 1508 1509 /* Enable two fixes for the chips that need them. */ 1510 if (IS_I915GM(dev_priv)) 1511 tv_ctl |= TV_ENC_C0_FIX | TV_ENC_SDP_FIX; 1512 1513 set_tv_mode_timings(dev_priv, tv_mode, burst_ena); 1514 1515 I915_WRITE(TV_SC_CTL_1, scctl1); 1516 I915_WRITE(TV_SC_CTL_2, scctl2); 1517 I915_WRITE(TV_SC_CTL_3, scctl3); 1518 1519 set_color_conversion(dev_priv, color_conversion); 1520 1521 if (INTEL_GEN(dev_priv) >= 4) 1522 I915_WRITE(TV_CLR_KNOBS, 0x00404000); 1523 else 1524 I915_WRITE(TV_CLR_KNOBS, 0x00606000); 1525 1526 if (video_levels) 1527 I915_WRITE(TV_CLR_LEVEL, 1528 ((video_levels->black << TV_BLACK_LEVEL_SHIFT) | 1529 (video_levels->blank << TV_BLANK_LEVEL_SHIFT))); 1530 1531 assert_pipe_disabled(dev_priv, intel_crtc->pipe); 1532 1533 /* Filter ctl must be set before TV_WIN_SIZE */ 1534 tv_filter_ctl = TV_AUTO_SCALE; 1535 if (tv_conn_state->bypass_vfilter) 1536 tv_filter_ctl |= TV_V_FILTER_BYPASS; 1537 I915_WRITE(TV_FILTER_CTL_1, tv_filter_ctl); 1538 1539 xsize = tv_mode->hblank_start - tv_mode->hblank_end; 1540 ysize = intel_tv_mode_vdisplay(tv_mode); 1541 1542 xpos = conn_state->tv.margins.left; 1543 ypos = tv_conn_state->margins.top; 1544 xsize -= (conn_state->tv.margins.left + 1545 conn_state->tv.margins.right); 1546 ysize -= (tv_conn_state->margins.top + 1547 tv_conn_state->margins.bottom); 1548 I915_WRITE(TV_WIN_POS, (xpos<<16)|ypos); 1549 I915_WRITE(TV_WIN_SIZE, (xsize<<16)|ysize); 1550 1551 j = 0; 1552 for (i = 0; i < 60; i++) 1553 I915_WRITE(TV_H_LUMA(i), tv_mode->filter_table[j++]); 1554 for (i = 0; i < 60; i++) 1555 I915_WRITE(TV_H_CHROMA(i), tv_mode->filter_table[j++]); 1556 for (i = 0; i < 43; i++) 1557 I915_WRITE(TV_V_LUMA(i), tv_mode->filter_table[j++]); 1558 for (i = 0; i < 43; i++) 1559 I915_WRITE(TV_V_CHROMA(i), tv_mode->filter_table[j++]); 1560 I915_WRITE(TV_DAC, I915_READ(TV_DAC) & TV_DAC_SAVE); 1561 I915_WRITE(TV_CTL, tv_ctl); 1562 } 1563 1564 static int 1565 intel_tv_detect_type(struct intel_tv *intel_tv, 1566 struct drm_connector *connector) 1567 { 1568 struct drm_crtc *crtc = connector->state->crtc; 1569 struct intel_crtc *intel_crtc = to_intel_crtc(crtc); 1570 struct drm_device *dev = connector->dev; 1571 struct drm_i915_private *dev_priv = to_i915(dev); 1572 u32 tv_ctl, save_tv_ctl; 1573 u32 tv_dac, save_tv_dac; 1574 int type; 1575 1576 /* Disable TV interrupts around load detect or we'll recurse */ 1577 if (connector->polled & DRM_CONNECTOR_POLL_HPD) { 1578 spin_lock_irq(&dev_priv->irq_lock); 1579 i915_disable_pipestat(dev_priv, 0, 1580 PIPE_HOTPLUG_INTERRUPT_STATUS | 1581 PIPE_HOTPLUG_TV_INTERRUPT_STATUS); 1582 spin_unlock_irq(&dev_priv->irq_lock); 1583 } 1584 1585 save_tv_dac = tv_dac = I915_READ(TV_DAC); 1586 save_tv_ctl = tv_ctl = I915_READ(TV_CTL); 1587 1588 /* Poll for TV detection */ 1589 tv_ctl &= ~(TV_ENC_ENABLE | TV_ENC_PIPE_SEL_MASK | TV_TEST_MODE_MASK); 1590 tv_ctl |= TV_TEST_MODE_MONITOR_DETECT; 1591 tv_ctl |= TV_ENC_PIPE_SEL(intel_crtc->pipe); 1592 1593 tv_dac &= ~(TVDAC_SENSE_MASK | DAC_A_MASK | DAC_B_MASK | DAC_C_MASK); 1594 tv_dac |= (TVDAC_STATE_CHG_EN | 1595 TVDAC_A_SENSE_CTL | 1596 TVDAC_B_SENSE_CTL | 1597 TVDAC_C_SENSE_CTL | 1598 DAC_CTL_OVERRIDE | 1599 DAC_A_0_7_V | 1600 DAC_B_0_7_V | 1601 DAC_C_0_7_V); 1602 1603 1604 /* 1605 * The TV sense state should be cleared to zero on cantiga platform. Otherwise 1606 * the TV is misdetected. This is hardware requirement. 1607 */ 1608 if (IS_GM45(dev_priv)) 1609 tv_dac &= ~(TVDAC_STATE_CHG_EN | TVDAC_A_SENSE_CTL | 1610 TVDAC_B_SENSE_CTL | TVDAC_C_SENSE_CTL); 1611 1612 I915_WRITE(TV_CTL, tv_ctl); 1613 I915_WRITE(TV_DAC, tv_dac); 1614 POSTING_READ(TV_DAC); 1615 1616 intel_wait_for_vblank(dev_priv, intel_crtc->pipe); 1617 1618 type = -1; 1619 tv_dac = I915_READ(TV_DAC); 1620 DRM_DEBUG_KMS("TV detected: %x, %x\n", tv_ctl, tv_dac); 1621 /* 1622 * A B C 1623 * 0 1 1 Composite 1624 * 1 0 X svideo 1625 * 0 0 0 Component 1626 */ 1627 if ((tv_dac & TVDAC_SENSE_MASK) == (TVDAC_B_SENSE | TVDAC_C_SENSE)) { 1628 DRM_DEBUG_KMS("Detected Composite TV connection\n"); 1629 type = DRM_MODE_CONNECTOR_Composite; 1630 } else if ((tv_dac & (TVDAC_A_SENSE|TVDAC_B_SENSE)) == TVDAC_A_SENSE) { 1631 DRM_DEBUG_KMS("Detected S-Video TV connection\n"); 1632 type = DRM_MODE_CONNECTOR_SVIDEO; 1633 } else if ((tv_dac & TVDAC_SENSE_MASK) == 0) { 1634 DRM_DEBUG_KMS("Detected Component TV connection\n"); 1635 type = DRM_MODE_CONNECTOR_Component; 1636 } else { 1637 DRM_DEBUG_KMS("Unrecognised TV connection\n"); 1638 type = -1; 1639 } 1640 1641 I915_WRITE(TV_DAC, save_tv_dac & ~TVDAC_STATE_CHG_EN); 1642 I915_WRITE(TV_CTL, save_tv_ctl); 1643 POSTING_READ(TV_CTL); 1644 1645 /* For unknown reasons the hw barfs if we don't do this vblank wait. */ 1646 intel_wait_for_vblank(dev_priv, intel_crtc->pipe); 1647 1648 /* Restore interrupt config */ 1649 if (connector->polled & DRM_CONNECTOR_POLL_HPD) { 1650 spin_lock_irq(&dev_priv->irq_lock); 1651 i915_enable_pipestat(dev_priv, 0, 1652 PIPE_HOTPLUG_INTERRUPT_STATUS | 1653 PIPE_HOTPLUG_TV_INTERRUPT_STATUS); 1654 spin_unlock_irq(&dev_priv->irq_lock); 1655 } 1656 1657 return type; 1658 } 1659 1660 /* 1661 * Here we set accurate tv format according to connector type 1662 * i.e Component TV should not be assigned by NTSC or PAL 1663 */ 1664 static void intel_tv_find_better_format(struct drm_connector *connector) 1665 { 1666 struct intel_tv *intel_tv = intel_attached_tv(connector); 1667 const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state); 1668 int i; 1669 1670 /* Component supports everything so we can keep the current mode */ 1671 if (intel_tv->type == DRM_MODE_CONNECTOR_Component) 1672 return; 1673 1674 /* If the current mode is fine don't change it */ 1675 if (!tv_mode->component_only) 1676 return; 1677 1678 for (i = 0; i < ARRAY_SIZE(tv_modes); i++) { 1679 tv_mode = &tv_modes[i]; 1680 1681 if (!tv_mode->component_only) 1682 break; 1683 } 1684 1685 connector->state->tv.mode = i; 1686 } 1687 1688 static int 1689 intel_tv_detect(struct drm_connector *connector, 1690 struct drm_modeset_acquire_ctx *ctx, 1691 bool force) 1692 { 1693 struct intel_tv *intel_tv = intel_attached_tv(connector); 1694 enum drm_connector_status status; 1695 int type; 1696 1697 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] force=%d\n", 1698 connector->base.id, connector->name, 1699 force); 1700 1701 if (force) { 1702 struct intel_load_detect_pipe tmp; 1703 int ret; 1704 1705 ret = intel_get_load_detect_pipe(connector, NULL, &tmp, ctx); 1706 if (ret < 0) 1707 return ret; 1708 1709 if (ret > 0) { 1710 type = intel_tv_detect_type(intel_tv, connector); 1711 intel_release_load_detect_pipe(connector, &tmp, ctx); 1712 status = type < 0 ? 1713 connector_status_disconnected : 1714 connector_status_connected; 1715 } else 1716 status = connector_status_unknown; 1717 1718 if (status == connector_status_connected) { 1719 intel_tv->type = type; 1720 intel_tv_find_better_format(connector); 1721 } 1722 1723 return status; 1724 } else 1725 return connector->status; 1726 } 1727 1728 static const struct input_res { 1729 u16 w, h; 1730 } input_res_table[] = { 1731 { 640, 480 }, 1732 { 800, 600 }, 1733 { 1024, 768 }, 1734 { 1280, 1024 }, 1735 { 848, 480 }, 1736 { 1280, 720 }, 1737 { 1920, 1080 }, 1738 }; 1739 1740 /* Choose preferred mode according to line number of TV format */ 1741 static bool 1742 intel_tv_is_preferred_mode(const struct drm_display_mode *mode, 1743 const struct tv_mode *tv_mode) 1744 { 1745 int vdisplay = intel_tv_mode_vdisplay(tv_mode); 1746 1747 /* prefer 480 line modes for all SD TV modes */ 1748 if (vdisplay <= 576) 1749 vdisplay = 480; 1750 1751 return vdisplay == mode->vdisplay; 1752 } 1753 1754 static void 1755 intel_tv_set_mode_type(struct drm_display_mode *mode, 1756 const struct tv_mode *tv_mode) 1757 { 1758 mode->type = DRM_MODE_TYPE_DRIVER; 1759 1760 if (intel_tv_is_preferred_mode(mode, tv_mode)) 1761 mode->type |= DRM_MODE_TYPE_PREFERRED; 1762 } 1763 1764 static int 1765 intel_tv_get_modes(struct drm_connector *connector) 1766 { 1767 struct drm_i915_private *dev_priv = to_i915(connector->dev); 1768 const struct tv_mode *tv_mode = intel_tv_mode_find(connector->state); 1769 int i, count = 0; 1770 1771 for (i = 0; i < ARRAY_SIZE(input_res_table); i++) { 1772 const struct input_res *input = &input_res_table[i]; 1773 struct drm_display_mode *mode; 1774 1775 if (input->w > 1024 && 1776 !tv_mode->progressive && 1777 !tv_mode->component_only) 1778 continue; 1779 1780 /* no vertical scaling with wide sources on gen3 */ 1781 if (IS_GEN(dev_priv, 3) && input->w > 1024 && 1782 input->h > intel_tv_mode_vdisplay(tv_mode)) 1783 continue; 1784 1785 mode = drm_mode_create(connector->dev); 1786 if (!mode) 1787 continue; 1788 1789 /* 1790 * We take the TV mode and scale it to look 1791 * like it had the expected h/vdisplay. This 1792 * provides the most information to userspace 1793 * about the actual timings of the mode. We 1794 * do ignore the margins though. 1795 */ 1796 intel_tv_mode_to_mode(mode, tv_mode); 1797 if (count == 0) { 1798 DRM_DEBUG_KMS("TV mode:\n"); 1799 drm_mode_debug_printmodeline(mode); 1800 } 1801 intel_tv_scale_mode_horiz(mode, input->w, 0, 0); 1802 intel_tv_scale_mode_vert(mode, input->h, 0, 0); 1803 intel_tv_set_mode_type(mode, tv_mode); 1804 1805 drm_mode_set_name(mode); 1806 1807 drm_mode_probed_add(connector, mode); 1808 count++; 1809 } 1810 1811 return count; 1812 } 1813 1814 static const struct drm_connector_funcs intel_tv_connector_funcs = { 1815 .late_register = intel_connector_register, 1816 .early_unregister = intel_connector_unregister, 1817 .destroy = intel_connector_destroy, 1818 .fill_modes = drm_helper_probe_single_connector_modes, 1819 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, 1820 .atomic_duplicate_state = intel_tv_connector_duplicate_state, 1821 }; 1822 1823 static int intel_tv_atomic_check(struct drm_connector *connector, 1824 struct drm_atomic_state *state) 1825 { 1826 struct drm_connector_state *new_state; 1827 struct drm_crtc_state *new_crtc_state; 1828 struct drm_connector_state *old_state; 1829 1830 new_state = drm_atomic_get_new_connector_state(state, connector); 1831 if (!new_state->crtc) 1832 return 0; 1833 1834 old_state = drm_atomic_get_old_connector_state(state, connector); 1835 new_crtc_state = drm_atomic_get_new_crtc_state(state, new_state->crtc); 1836 1837 if (old_state->tv.mode != new_state->tv.mode || 1838 old_state->tv.margins.left != new_state->tv.margins.left || 1839 old_state->tv.margins.right != new_state->tv.margins.right || 1840 old_state->tv.margins.top != new_state->tv.margins.top || 1841 old_state->tv.margins.bottom != new_state->tv.margins.bottom) { 1842 /* Force a modeset. */ 1843 1844 new_crtc_state->connectors_changed = true; 1845 } 1846 1847 return 0; 1848 } 1849 1850 static const struct drm_connector_helper_funcs intel_tv_connector_helper_funcs = { 1851 .detect_ctx = intel_tv_detect, 1852 .mode_valid = intel_tv_mode_valid, 1853 .get_modes = intel_tv_get_modes, 1854 .atomic_check = intel_tv_atomic_check, 1855 }; 1856 1857 static const struct drm_encoder_funcs intel_tv_enc_funcs = { 1858 .destroy = intel_encoder_destroy, 1859 }; 1860 1861 void 1862 intel_tv_init(struct drm_i915_private *dev_priv) 1863 { 1864 struct drm_device *dev = &dev_priv->drm; 1865 struct drm_connector *connector; 1866 struct intel_tv *intel_tv; 1867 struct intel_encoder *intel_encoder; 1868 struct intel_connector *intel_connector; 1869 u32 tv_dac_on, tv_dac_off, save_tv_dac; 1870 const char *tv_format_names[ARRAY_SIZE(tv_modes)]; 1871 int i, initial_mode = 0; 1872 struct drm_connector_state *state; 1873 1874 if ((I915_READ(TV_CTL) & TV_FUSE_STATE_MASK) == TV_FUSE_STATE_DISABLED) 1875 return; 1876 1877 if (!intel_bios_is_tv_present(dev_priv)) { 1878 DRM_DEBUG_KMS("Integrated TV is not present.\n"); 1879 return; 1880 } 1881 1882 /* 1883 * Sanity check the TV output by checking to see if the 1884 * DAC register holds a value 1885 */ 1886 save_tv_dac = I915_READ(TV_DAC); 1887 1888 I915_WRITE(TV_DAC, save_tv_dac | TVDAC_STATE_CHG_EN); 1889 tv_dac_on = I915_READ(TV_DAC); 1890 1891 I915_WRITE(TV_DAC, save_tv_dac & ~TVDAC_STATE_CHG_EN); 1892 tv_dac_off = I915_READ(TV_DAC); 1893 1894 I915_WRITE(TV_DAC, save_tv_dac); 1895 1896 /* 1897 * If the register does not hold the state change enable 1898 * bit, (either as a 0 or a 1), assume it doesn't really 1899 * exist 1900 */ 1901 if ((tv_dac_on & TVDAC_STATE_CHG_EN) == 0 || 1902 (tv_dac_off & TVDAC_STATE_CHG_EN) != 0) 1903 return; 1904 1905 intel_tv = kzalloc(sizeof(*intel_tv), GFP_KERNEL); 1906 if (!intel_tv) { 1907 return; 1908 } 1909 1910 intel_connector = intel_connector_alloc(); 1911 if (!intel_connector) { 1912 kfree(intel_tv); 1913 return; 1914 } 1915 1916 intel_encoder = &intel_tv->base; 1917 connector = &intel_connector->base; 1918 state = connector->state; 1919 1920 /* 1921 * The documentation, for the older chipsets at least, recommend 1922 * using a polling method rather than hotplug detection for TVs. 1923 * This is because in order to perform the hotplug detection, the PLLs 1924 * for the TV must be kept alive increasing power drain and starving 1925 * bandwidth from other encoders. Notably for instance, it causes 1926 * pipe underruns on Crestline when this encoder is supposedly idle. 1927 * 1928 * More recent chipsets favour HDMI rather than integrated S-Video. 1929 */ 1930 intel_connector->polled = DRM_CONNECTOR_POLL_CONNECT; 1931 1932 drm_connector_init(dev, connector, &intel_tv_connector_funcs, 1933 DRM_MODE_CONNECTOR_SVIDEO); 1934 1935 drm_encoder_init(dev, &intel_encoder->base, &intel_tv_enc_funcs, 1936 DRM_MODE_ENCODER_TVDAC, "TV"); 1937 1938 intel_encoder->compute_config = intel_tv_compute_config; 1939 intel_encoder->get_config = intel_tv_get_config; 1940 intel_encoder->pre_enable = intel_tv_pre_enable; 1941 intel_encoder->enable = intel_enable_tv; 1942 intel_encoder->disable = intel_disable_tv; 1943 intel_encoder->get_hw_state = intel_tv_get_hw_state; 1944 intel_connector->get_hw_state = intel_connector_get_hw_state; 1945 1946 intel_connector_attach_encoder(intel_connector, intel_encoder); 1947 1948 intel_encoder->type = INTEL_OUTPUT_TVOUT; 1949 intel_encoder->power_domain = POWER_DOMAIN_PORT_OTHER; 1950 intel_encoder->port = PORT_NONE; 1951 intel_encoder->crtc_mask = (1 << 0) | (1 << 1); 1952 intel_encoder->cloneable = 0; 1953 intel_encoder->base.possible_crtcs = ((1 << 0) | (1 << 1)); 1954 intel_tv->type = DRM_MODE_CONNECTOR_Unknown; 1955 1956 /* BIOS margin values */ 1957 state->tv.margins.left = 54; 1958 state->tv.margins.top = 36; 1959 state->tv.margins.right = 46; 1960 state->tv.margins.bottom = 37; 1961 1962 state->tv.mode = initial_mode; 1963 1964 drm_connector_helper_add(connector, &intel_tv_connector_helper_funcs); 1965 connector->interlace_allowed = false; 1966 connector->doublescan_allowed = false; 1967 1968 /* Create TV properties then attach current values */ 1969 for (i = 0; i < ARRAY_SIZE(tv_modes); i++) { 1970 /* 1080p50/1080p60 not supported on gen3 */ 1971 if (IS_GEN(dev_priv, 3) && 1972 tv_modes[i].oversample == 1) 1973 break; 1974 1975 tv_format_names[i] = tv_modes[i].name; 1976 } 1977 drm_mode_create_tv_properties(dev, i, tv_format_names); 1978 1979 drm_object_attach_property(&connector->base, dev->mode_config.tv_mode_property, 1980 state->tv.mode); 1981 drm_object_attach_property(&connector->base, 1982 dev->mode_config.tv_left_margin_property, 1983 state->tv.margins.left); 1984 drm_object_attach_property(&connector->base, 1985 dev->mode_config.tv_top_margin_property, 1986 state->tv.margins.top); 1987 drm_object_attach_property(&connector->base, 1988 dev->mode_config.tv_right_margin_property, 1989 state->tv.margins.right); 1990 drm_object_attach_property(&connector->base, 1991 dev->mode_config.tv_bottom_margin_property, 1992 state->tv.margins.bottom); 1993 } 1994