xref: /openbmc/linux/drivers/gpu/drm/i915/display/intel_psr.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <drm/drm_atomic_helper.h>
25 #include <drm/drm_damage_helper.h>
26 
27 #include "display/intel_dp.h"
28 
29 #include "i915_drv.h"
30 #include "i915_reg.h"
31 #include "intel_atomic.h"
32 #include "intel_crtc.h"
33 #include "intel_de.h"
34 #include "intel_display_types.h"
35 #include "intel_dp_aux.h"
36 #include "intel_hdmi.h"
37 #include "intel_psr.h"
38 #include "intel_snps_phy.h"
39 #include "skl_universal_plane.h"
40 
41 /**
42  * DOC: Panel Self Refresh (PSR/SRD)
43  *
44  * Since Haswell Display controller supports Panel Self-Refresh on display
45  * panels witch have a remote frame buffer (RFB) implemented according to PSR
46  * spec in eDP1.3. PSR feature allows the display to go to lower standby states
47  * when system is idle but display is on as it eliminates display refresh
48  * request to DDR memory completely as long as the frame buffer for that
49  * display is unchanged.
50  *
51  * Panel Self Refresh must be supported by both Hardware (source) and
52  * Panel (sink).
53  *
54  * PSR saves power by caching the framebuffer in the panel RFB, which allows us
55  * to power down the link and memory controller. For DSI panels the same idea
56  * is called "manual mode".
57  *
58  * The implementation uses the hardware-based PSR support which automatically
59  * enters/exits self-refresh mode. The hardware takes care of sending the
60  * required DP aux message and could even retrain the link (that part isn't
61  * enabled yet though). The hardware also keeps track of any frontbuffer
62  * changes to know when to exit self-refresh mode again. Unfortunately that
63  * part doesn't work too well, hence why the i915 PSR support uses the
64  * software frontbuffer tracking to make sure it doesn't miss a screen
65  * update. For this integration intel_psr_invalidate() and intel_psr_flush()
66  * get called by the frontbuffer tracking code. Note that because of locking
67  * issues the self-refresh re-enable code is done from a work queue, which
68  * must be correctly synchronized/cancelled when shutting down the pipe."
69  *
70  * DC3CO (DC3 clock off)
71  *
72  * On top of PSR2, GEN12 adds a intermediate power savings state that turns
73  * clock off automatically during PSR2 idle state.
74  * The smaller overhead of DC3co entry/exit vs. the overhead of PSR2 deep sleep
75  * entry/exit allows the HW to enter a low-power state even when page flipping
76  * periodically (for instance a 30fps video playback scenario).
77  *
78  * Every time a flips occurs PSR2 will get out of deep sleep state(if it was),
79  * so DC3CO is enabled and tgl_dc3co_disable_work is schedule to run after 6
80  * frames, if no other flip occurs and the function above is executed, DC3CO is
81  * disabled and PSR2 is configured to enter deep sleep, resetting again in case
82  * of another flip.
83  * Front buffer modifications do not trigger DC3CO activation on purpose as it
84  * would bring a lot of complexity and most of the moderns systems will only
85  * use page flips.
86  */
87 
88 static bool psr_global_enabled(struct intel_dp *intel_dp)
89 {
90 	struct intel_connector *connector = intel_dp->attached_connector;
91 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
92 
93 	switch (intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
94 	case I915_PSR_DEBUG_DEFAULT:
95 		if (i915->params.enable_psr == -1)
96 			return connector->panel.vbt.psr.enable;
97 		return i915->params.enable_psr;
98 	case I915_PSR_DEBUG_DISABLE:
99 		return false;
100 	default:
101 		return true;
102 	}
103 }
104 
105 static bool psr2_global_enabled(struct intel_dp *intel_dp)
106 {
107 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
108 
109 	switch (intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
110 	case I915_PSR_DEBUG_DISABLE:
111 	case I915_PSR_DEBUG_FORCE_PSR1:
112 		return false;
113 	default:
114 		if (i915->params.enable_psr == 1)
115 			return false;
116 		return true;
117 	}
118 }
119 
120 static u32 psr_irq_psr_error_bit_get(struct intel_dp *intel_dp)
121 {
122 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
123 
124 	return DISPLAY_VER(dev_priv) >= 12 ? TGL_PSR_ERROR :
125 		EDP_PSR_ERROR(intel_dp->psr.transcoder);
126 }
127 
128 static u32 psr_irq_post_exit_bit_get(struct intel_dp *intel_dp)
129 {
130 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
131 
132 	return DISPLAY_VER(dev_priv) >= 12 ? TGL_PSR_POST_EXIT :
133 		EDP_PSR_POST_EXIT(intel_dp->psr.transcoder);
134 }
135 
136 static u32 psr_irq_pre_entry_bit_get(struct intel_dp *intel_dp)
137 {
138 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
139 
140 	return DISPLAY_VER(dev_priv) >= 12 ? TGL_PSR_PRE_ENTRY :
141 		EDP_PSR_PRE_ENTRY(intel_dp->psr.transcoder);
142 }
143 
144 static u32 psr_irq_mask_get(struct intel_dp *intel_dp)
145 {
146 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
147 
148 	return DISPLAY_VER(dev_priv) >= 12 ? TGL_PSR_MASK :
149 		EDP_PSR_MASK(intel_dp->psr.transcoder);
150 }
151 
152 static void psr_irq_control(struct intel_dp *intel_dp)
153 {
154 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
155 	i915_reg_t imr_reg;
156 	u32 mask, val;
157 
158 	if (DISPLAY_VER(dev_priv) >= 12)
159 		imr_reg = TRANS_PSR_IMR(intel_dp->psr.transcoder);
160 	else
161 		imr_reg = EDP_PSR_IMR;
162 
163 	mask = psr_irq_psr_error_bit_get(intel_dp);
164 	if (intel_dp->psr.debug & I915_PSR_DEBUG_IRQ)
165 		mask |= psr_irq_post_exit_bit_get(intel_dp) |
166 			psr_irq_pre_entry_bit_get(intel_dp);
167 
168 	val = intel_de_read(dev_priv, imr_reg);
169 	val &= ~psr_irq_mask_get(intel_dp);
170 	val |= ~mask;
171 	intel_de_write(dev_priv, imr_reg, val);
172 }
173 
174 static void psr_event_print(struct drm_i915_private *i915,
175 			    u32 val, bool psr2_enabled)
176 {
177 	drm_dbg_kms(&i915->drm, "PSR exit events: 0x%x\n", val);
178 	if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE)
179 		drm_dbg_kms(&i915->drm, "\tPSR2 watchdog timer expired\n");
180 	if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled)
181 		drm_dbg_kms(&i915->drm, "\tPSR2 disabled\n");
182 	if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN)
183 		drm_dbg_kms(&i915->drm, "\tSU dirty FIFO underrun\n");
184 	if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN)
185 		drm_dbg_kms(&i915->drm, "\tSU CRC FIFO underrun\n");
186 	if (val & PSR_EVENT_GRAPHICS_RESET)
187 		drm_dbg_kms(&i915->drm, "\tGraphics reset\n");
188 	if (val & PSR_EVENT_PCH_INTERRUPT)
189 		drm_dbg_kms(&i915->drm, "\tPCH interrupt\n");
190 	if (val & PSR_EVENT_MEMORY_UP)
191 		drm_dbg_kms(&i915->drm, "\tMemory up\n");
192 	if (val & PSR_EVENT_FRONT_BUFFER_MODIFY)
193 		drm_dbg_kms(&i915->drm, "\tFront buffer modification\n");
194 	if (val & PSR_EVENT_WD_TIMER_EXPIRE)
195 		drm_dbg_kms(&i915->drm, "\tPSR watchdog timer expired\n");
196 	if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE)
197 		drm_dbg_kms(&i915->drm, "\tPIPE registers updated\n");
198 	if (val & PSR_EVENT_REGISTER_UPDATE)
199 		drm_dbg_kms(&i915->drm, "\tRegister updated\n");
200 	if (val & PSR_EVENT_HDCP_ENABLE)
201 		drm_dbg_kms(&i915->drm, "\tHDCP enabled\n");
202 	if (val & PSR_EVENT_KVMR_SESSION_ENABLE)
203 		drm_dbg_kms(&i915->drm, "\tKVMR session enabled\n");
204 	if (val & PSR_EVENT_VBI_ENABLE)
205 		drm_dbg_kms(&i915->drm, "\tVBI enabled\n");
206 	if (val & PSR_EVENT_LPSP_MODE_EXIT)
207 		drm_dbg_kms(&i915->drm, "\tLPSP mode exited\n");
208 	if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled)
209 		drm_dbg_kms(&i915->drm, "\tPSR disabled\n");
210 }
211 
212 void intel_psr_irq_handler(struct intel_dp *intel_dp, u32 psr_iir)
213 {
214 	enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
215 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
216 	ktime_t time_ns =  ktime_get();
217 	i915_reg_t imr_reg;
218 
219 	if (DISPLAY_VER(dev_priv) >= 12)
220 		imr_reg = TRANS_PSR_IMR(intel_dp->psr.transcoder);
221 	else
222 		imr_reg = EDP_PSR_IMR;
223 
224 	if (psr_iir & psr_irq_pre_entry_bit_get(intel_dp)) {
225 		intel_dp->psr.last_entry_attempt = time_ns;
226 		drm_dbg_kms(&dev_priv->drm,
227 			    "[transcoder %s] PSR entry attempt in 2 vblanks\n",
228 			    transcoder_name(cpu_transcoder));
229 	}
230 
231 	if (psr_iir & psr_irq_post_exit_bit_get(intel_dp)) {
232 		intel_dp->psr.last_exit = time_ns;
233 		drm_dbg_kms(&dev_priv->drm,
234 			    "[transcoder %s] PSR exit completed\n",
235 			    transcoder_name(cpu_transcoder));
236 
237 		if (DISPLAY_VER(dev_priv) >= 9) {
238 			u32 val = intel_de_read(dev_priv,
239 						PSR_EVENT(cpu_transcoder));
240 			bool psr2_enabled = intel_dp->psr.psr2_enabled;
241 
242 			intel_de_write(dev_priv, PSR_EVENT(cpu_transcoder),
243 				       val);
244 			psr_event_print(dev_priv, val, psr2_enabled);
245 		}
246 	}
247 
248 	if (psr_iir & psr_irq_psr_error_bit_get(intel_dp)) {
249 		u32 val;
250 
251 		drm_warn(&dev_priv->drm, "[transcoder %s] PSR aux error\n",
252 			 transcoder_name(cpu_transcoder));
253 
254 		intel_dp->psr.irq_aux_error = true;
255 
256 		/*
257 		 * If this interruption is not masked it will keep
258 		 * interrupting so fast that it prevents the scheduled
259 		 * work to run.
260 		 * Also after a PSR error, we don't want to arm PSR
261 		 * again so we don't care about unmask the interruption
262 		 * or unset irq_aux_error.
263 		 */
264 		val = intel_de_read(dev_priv, imr_reg);
265 		val |= psr_irq_psr_error_bit_get(intel_dp);
266 		intel_de_write(dev_priv, imr_reg, val);
267 
268 		schedule_work(&intel_dp->psr.work);
269 	}
270 }
271 
272 static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
273 {
274 	u8 alpm_caps = 0;
275 
276 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
277 			      &alpm_caps) != 1)
278 		return false;
279 	return alpm_caps & DP_ALPM_CAP;
280 }
281 
282 static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
283 {
284 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
285 	u8 val = 8; /* assume the worst if we can't read the value */
286 
287 	if (drm_dp_dpcd_readb(&intel_dp->aux,
288 			      DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
289 		val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
290 	else
291 		drm_dbg_kms(&i915->drm,
292 			    "Unable to get sink synchronization latency, assuming 8 frames\n");
293 	return val;
294 }
295 
296 static void intel_dp_get_su_granularity(struct intel_dp *intel_dp)
297 {
298 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
299 	ssize_t r;
300 	u16 w;
301 	u8 y;
302 
303 	/* If sink don't have specific granularity requirements set legacy ones */
304 	if (!(intel_dp->psr_dpcd[1] & DP_PSR2_SU_GRANULARITY_REQUIRED)) {
305 		/* As PSR2 HW sends full lines, we do not care about x granularity */
306 		w = 4;
307 		y = 4;
308 		goto exit;
309 	}
310 
311 	r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_X_GRANULARITY, &w, 2);
312 	if (r != 2)
313 		drm_dbg_kms(&i915->drm,
314 			    "Unable to read DP_PSR2_SU_X_GRANULARITY\n");
315 	/*
316 	 * Spec says that if the value read is 0 the default granularity should
317 	 * be used instead.
318 	 */
319 	if (r != 2 || w == 0)
320 		w = 4;
321 
322 	r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_Y_GRANULARITY, &y, 1);
323 	if (r != 1) {
324 		drm_dbg_kms(&i915->drm,
325 			    "Unable to read DP_PSR2_SU_Y_GRANULARITY\n");
326 		y = 4;
327 	}
328 	if (y == 0)
329 		y = 1;
330 
331 exit:
332 	intel_dp->psr.su_w_granularity = w;
333 	intel_dp->psr.su_y_granularity = y;
334 }
335 
336 void intel_psr_init_dpcd(struct intel_dp *intel_dp)
337 {
338 	struct drm_i915_private *dev_priv =
339 		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
340 
341 	drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
342 			 sizeof(intel_dp->psr_dpcd));
343 
344 	if (!intel_dp->psr_dpcd[0])
345 		return;
346 	drm_dbg_kms(&dev_priv->drm, "eDP panel supports PSR version %x\n",
347 		    intel_dp->psr_dpcd[0]);
348 
349 	if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_PSR)) {
350 		drm_dbg_kms(&dev_priv->drm,
351 			    "PSR support not currently available for this panel\n");
352 		return;
353 	}
354 
355 	if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
356 		drm_dbg_kms(&dev_priv->drm,
357 			    "Panel lacks power state control, PSR cannot be enabled\n");
358 		return;
359 	}
360 
361 	intel_dp->psr.sink_support = true;
362 	intel_dp->psr.sink_sync_latency =
363 		intel_dp_get_sink_sync_latency(intel_dp);
364 
365 	if (DISPLAY_VER(dev_priv) >= 9 &&
366 	    (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) {
367 		bool y_req = intel_dp->psr_dpcd[1] &
368 			     DP_PSR2_SU_Y_COORDINATE_REQUIRED;
369 		bool alpm = intel_dp_get_alpm_status(intel_dp);
370 
371 		/*
372 		 * All panels that supports PSR version 03h (PSR2 +
373 		 * Y-coordinate) can handle Y-coordinates in VSC but we are
374 		 * only sure that it is going to be used when required by the
375 		 * panel. This way panel is capable to do selective update
376 		 * without a aux frame sync.
377 		 *
378 		 * To support PSR version 02h and PSR version 03h without
379 		 * Y-coordinate requirement panels we would need to enable
380 		 * GTC first.
381 		 */
382 		intel_dp->psr.sink_psr2_support = y_req && alpm;
383 		drm_dbg_kms(&dev_priv->drm, "PSR2 %ssupported\n",
384 			    intel_dp->psr.sink_psr2_support ? "" : "not ");
385 
386 		if (intel_dp->psr.sink_psr2_support) {
387 			intel_dp->psr.colorimetry_support =
388 				intel_dp_get_colorimetry_status(intel_dp);
389 			intel_dp_get_su_granularity(intel_dp);
390 		}
391 	}
392 }
393 
394 static void intel_psr_enable_sink(struct intel_dp *intel_dp)
395 {
396 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
397 	u8 dpcd_val = DP_PSR_ENABLE;
398 
399 	/* Enable ALPM at sink for psr2 */
400 	if (intel_dp->psr.psr2_enabled) {
401 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG,
402 				   DP_ALPM_ENABLE |
403 				   DP_ALPM_LOCK_ERROR_IRQ_HPD_ENABLE);
404 
405 		dpcd_val |= DP_PSR_ENABLE_PSR2 | DP_PSR_IRQ_HPD_WITH_CRC_ERRORS;
406 	} else {
407 		if (intel_dp->psr.link_standby)
408 			dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE;
409 
410 		if (DISPLAY_VER(dev_priv) >= 8)
411 			dpcd_val |= DP_PSR_CRC_VERIFICATION;
412 	}
413 
414 	if (intel_dp->psr.req_psr2_sdp_prior_scanline)
415 		dpcd_val |= DP_PSR_SU_REGION_SCANLINE_CAPTURE;
416 
417 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val);
418 
419 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
420 }
421 
422 static u32 intel_psr1_get_tp_time(struct intel_dp *intel_dp)
423 {
424 	struct intel_connector *connector = intel_dp->attached_connector;
425 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
426 	u32 val = 0;
427 
428 	if (DISPLAY_VER(dev_priv) >= 11)
429 		val |= EDP_PSR_TP4_TIME_0US;
430 
431 	if (dev_priv->params.psr_safest_params) {
432 		val |= EDP_PSR_TP1_TIME_2500us;
433 		val |= EDP_PSR_TP2_TP3_TIME_2500us;
434 		goto check_tp3_sel;
435 	}
436 
437 	if (connector->panel.vbt.psr.tp1_wakeup_time_us == 0)
438 		val |= EDP_PSR_TP1_TIME_0us;
439 	else if (connector->panel.vbt.psr.tp1_wakeup_time_us <= 100)
440 		val |= EDP_PSR_TP1_TIME_100us;
441 	else if (connector->panel.vbt.psr.tp1_wakeup_time_us <= 500)
442 		val |= EDP_PSR_TP1_TIME_500us;
443 	else
444 		val |= EDP_PSR_TP1_TIME_2500us;
445 
446 	if (connector->panel.vbt.psr.tp2_tp3_wakeup_time_us == 0)
447 		val |= EDP_PSR_TP2_TP3_TIME_0us;
448 	else if (connector->panel.vbt.psr.tp2_tp3_wakeup_time_us <= 100)
449 		val |= EDP_PSR_TP2_TP3_TIME_100us;
450 	else if (connector->panel.vbt.psr.tp2_tp3_wakeup_time_us <= 500)
451 		val |= EDP_PSR_TP2_TP3_TIME_500us;
452 	else
453 		val |= EDP_PSR_TP2_TP3_TIME_2500us;
454 
455 check_tp3_sel:
456 	if (intel_dp_source_supports_tps3(dev_priv) &&
457 	    drm_dp_tps3_supported(intel_dp->dpcd))
458 		val |= EDP_PSR_TP1_TP3_SEL;
459 	else
460 		val |= EDP_PSR_TP1_TP2_SEL;
461 
462 	return val;
463 }
464 
465 static u8 psr_compute_idle_frames(struct intel_dp *intel_dp)
466 {
467 	struct intel_connector *connector = intel_dp->attached_connector;
468 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
469 	int idle_frames;
470 
471 	/* Let's use 6 as the minimum to cover all known cases including the
472 	 * off-by-one issue that HW has in some cases.
473 	 */
474 	idle_frames = max(6, connector->panel.vbt.psr.idle_frames);
475 	idle_frames = max(idle_frames, intel_dp->psr.sink_sync_latency + 1);
476 
477 	if (drm_WARN_ON(&dev_priv->drm, idle_frames > 0xf))
478 		idle_frames = 0xf;
479 
480 	return idle_frames;
481 }
482 
483 static void hsw_activate_psr1(struct intel_dp *intel_dp)
484 {
485 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
486 	u32 max_sleep_time = 0x1f;
487 	u32 val = EDP_PSR_ENABLE;
488 
489 	val |= psr_compute_idle_frames(intel_dp) << EDP_PSR_IDLE_FRAME_SHIFT;
490 
491 	val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
492 	if (IS_HASWELL(dev_priv))
493 		val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
494 
495 	if (intel_dp->psr.link_standby)
496 		val |= EDP_PSR_LINK_STANDBY;
497 
498 	val |= intel_psr1_get_tp_time(intel_dp);
499 
500 	if (DISPLAY_VER(dev_priv) >= 8)
501 		val |= EDP_PSR_CRC_ENABLE;
502 
503 	val |= (intel_de_read(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder)) &
504 		EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK);
505 	intel_de_write(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder), val);
506 }
507 
508 static u32 intel_psr2_get_tp_time(struct intel_dp *intel_dp)
509 {
510 	struct intel_connector *connector = intel_dp->attached_connector;
511 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
512 	u32 val = 0;
513 
514 	if (dev_priv->params.psr_safest_params)
515 		return EDP_PSR2_TP2_TIME_2500us;
516 
517 	if (connector->panel.vbt.psr.psr2_tp2_tp3_wakeup_time_us >= 0 &&
518 	    connector->panel.vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 50)
519 		val |= EDP_PSR2_TP2_TIME_50us;
520 	else if (connector->panel.vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 100)
521 		val |= EDP_PSR2_TP2_TIME_100us;
522 	else if (connector->panel.vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 500)
523 		val |= EDP_PSR2_TP2_TIME_500us;
524 	else
525 		val |= EDP_PSR2_TP2_TIME_2500us;
526 
527 	return val;
528 }
529 
530 static void hsw_activate_psr2(struct intel_dp *intel_dp)
531 {
532 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
533 	u32 val = EDP_PSR2_ENABLE;
534 
535 	val |= psr_compute_idle_frames(intel_dp) << EDP_PSR2_IDLE_FRAME_SHIFT;
536 
537 	if (DISPLAY_VER(dev_priv) <= 13 && !IS_ALDERLAKE_P(dev_priv))
538 		val |= EDP_SU_TRACK_ENABLE;
539 
540 	if (DISPLAY_VER(dev_priv) >= 10 && DISPLAY_VER(dev_priv) <= 12)
541 		val |= EDP_Y_COORDINATE_ENABLE;
542 
543 	val |= EDP_PSR2_FRAME_BEFORE_SU(max_t(u8, intel_dp->psr.sink_sync_latency + 1, 2));
544 	val |= intel_psr2_get_tp_time(intel_dp);
545 
546 	/* Wa_22012278275:adl-p */
547 	if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_E0)) {
548 		static const u8 map[] = {
549 			2, /* 5 lines */
550 			1, /* 6 lines */
551 			0, /* 7 lines */
552 			3, /* 8 lines */
553 			6, /* 9 lines */
554 			5, /* 10 lines */
555 			4, /* 11 lines */
556 			7, /* 12 lines */
557 		};
558 		/*
559 		 * Still using the default IO_BUFFER_WAKE and FAST_WAKE, see
560 		 * comments bellow for more information
561 		 */
562 		u32 tmp, lines = 7;
563 
564 		val |= TGL_EDP_PSR2_BLOCK_COUNT_NUM_2;
565 
566 		tmp = map[lines - TGL_EDP_PSR2_IO_BUFFER_WAKE_MIN_LINES];
567 		tmp = tmp << TGL_EDP_PSR2_IO_BUFFER_WAKE_SHIFT;
568 		val |= tmp;
569 
570 		tmp = map[lines - TGL_EDP_PSR2_FAST_WAKE_MIN_LINES];
571 		tmp = tmp << TGL_EDP_PSR2_FAST_WAKE_MIN_SHIFT;
572 		val |= tmp;
573 	} else if (DISPLAY_VER(dev_priv) >= 12) {
574 		/*
575 		 * TODO: 7 lines of IO_BUFFER_WAKE and FAST_WAKE are default
576 		 * values from BSpec. In order to setting an optimal power
577 		 * consumption, lower than 4k resolution mode needs to decrease
578 		 * IO_BUFFER_WAKE and FAST_WAKE. And higher than 4K resolution
579 		 * mode needs to increase IO_BUFFER_WAKE and FAST_WAKE.
580 		 */
581 		val |= TGL_EDP_PSR2_BLOCK_COUNT_NUM_2;
582 		val |= TGL_EDP_PSR2_IO_BUFFER_WAKE(7);
583 		val |= TGL_EDP_PSR2_FAST_WAKE(7);
584 	} else if (DISPLAY_VER(dev_priv) >= 9) {
585 		val |= EDP_PSR2_IO_BUFFER_WAKE(7);
586 		val |= EDP_PSR2_FAST_WAKE(7);
587 	}
588 
589 	if (intel_dp->psr.req_psr2_sdp_prior_scanline)
590 		val |= EDP_PSR2_SU_SDP_SCANLINE;
591 
592 	if (intel_dp->psr.psr2_sel_fetch_enabled) {
593 		u32 tmp;
594 
595 		/* Wa_1408330847 */
596 		if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
597 			intel_de_rmw(dev_priv, CHICKEN_PAR1_1,
598 				     DIS_RAM_BYPASS_PSR2_MAN_TRACK,
599 				     DIS_RAM_BYPASS_PSR2_MAN_TRACK);
600 
601 		tmp = intel_de_read(dev_priv, PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder));
602 		drm_WARN_ON(&dev_priv->drm, !(tmp & PSR2_MAN_TRK_CTL_ENABLE));
603 	} else if (HAS_PSR2_SEL_FETCH(dev_priv)) {
604 		intel_de_write(dev_priv,
605 			       PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder), 0);
606 	}
607 
608 	/*
609 	 * PSR2 HW is incorrectly using EDP_PSR_TP1_TP3_SEL and BSpec is
610 	 * recommending keep this bit unset while PSR2 is enabled.
611 	 */
612 	intel_de_write(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder), 0);
613 
614 	intel_de_write(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder), val);
615 }
616 
617 static bool
618 transcoder_has_psr2(struct drm_i915_private *dev_priv, enum transcoder trans)
619 {
620 	if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14)
621 		return trans == TRANSCODER_A || trans == TRANSCODER_B;
622 	else if (DISPLAY_VER(dev_priv) >= 12)
623 		return trans == TRANSCODER_A;
624 	else
625 		return trans == TRANSCODER_EDP;
626 }
627 
628 static u32 intel_get_frame_time_us(const struct intel_crtc_state *cstate)
629 {
630 	if (!cstate || !cstate->hw.active)
631 		return 0;
632 
633 	return DIV_ROUND_UP(1000 * 1000,
634 			    drm_mode_vrefresh(&cstate->hw.adjusted_mode));
635 }
636 
637 static void psr2_program_idle_frames(struct intel_dp *intel_dp,
638 				     u32 idle_frames)
639 {
640 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
641 	u32 val;
642 
643 	idle_frames <<=  EDP_PSR2_IDLE_FRAME_SHIFT;
644 	val = intel_de_read(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder));
645 	val &= ~EDP_PSR2_IDLE_FRAME_MASK;
646 	val |= idle_frames;
647 	intel_de_write(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder), val);
648 }
649 
650 static void tgl_psr2_enable_dc3co(struct intel_dp *intel_dp)
651 {
652 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
653 
654 	psr2_program_idle_frames(intel_dp, 0);
655 	intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_DC3CO);
656 }
657 
658 static void tgl_psr2_disable_dc3co(struct intel_dp *intel_dp)
659 {
660 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
661 
662 	intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
663 	psr2_program_idle_frames(intel_dp, psr_compute_idle_frames(intel_dp));
664 }
665 
666 static void tgl_dc3co_disable_work(struct work_struct *work)
667 {
668 	struct intel_dp *intel_dp =
669 		container_of(work, typeof(*intel_dp), psr.dc3co_work.work);
670 
671 	mutex_lock(&intel_dp->psr.lock);
672 	/* If delayed work is pending, it is not idle */
673 	if (delayed_work_pending(&intel_dp->psr.dc3co_work))
674 		goto unlock;
675 
676 	tgl_psr2_disable_dc3co(intel_dp);
677 unlock:
678 	mutex_unlock(&intel_dp->psr.lock);
679 }
680 
681 static void tgl_disallow_dc3co_on_psr2_exit(struct intel_dp *intel_dp)
682 {
683 	if (!intel_dp->psr.dc3co_exitline)
684 		return;
685 
686 	cancel_delayed_work(&intel_dp->psr.dc3co_work);
687 	/* Before PSR2 exit disallow dc3co*/
688 	tgl_psr2_disable_dc3co(intel_dp);
689 }
690 
691 static bool
692 dc3co_is_pipe_port_compatible(struct intel_dp *intel_dp,
693 			      struct intel_crtc_state *crtc_state)
694 {
695 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
696 	enum pipe pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe;
697 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
698 	enum port port = dig_port->base.port;
699 
700 	if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14)
701 		return pipe <= PIPE_B && port <= PORT_B;
702 	else
703 		return pipe == PIPE_A && port == PORT_A;
704 }
705 
706 static void
707 tgl_dc3co_exitline_compute_config(struct intel_dp *intel_dp,
708 				  struct intel_crtc_state *crtc_state)
709 {
710 	const u32 crtc_vdisplay = crtc_state->uapi.adjusted_mode.crtc_vdisplay;
711 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
712 	u32 exit_scanlines;
713 
714 	/*
715 	 * FIXME: Due to the changed sequence of activating/deactivating DC3CO,
716 	 * disable DC3CO until the changed dc3co activating/deactivating sequence
717 	 * is applied. B.Specs:49196
718 	 */
719 	return;
720 
721 	/*
722 	 * DMC's DC3CO exit mechanism has an issue with Selective Fecth
723 	 * TODO: when the issue is addressed, this restriction should be removed.
724 	 */
725 	if (crtc_state->enable_psr2_sel_fetch)
726 		return;
727 
728 	if (!(dev_priv->display.dmc.allowed_dc_mask & DC_STATE_EN_DC3CO))
729 		return;
730 
731 	if (!dc3co_is_pipe_port_compatible(intel_dp, crtc_state))
732 		return;
733 
734 	/* Wa_16011303918:adl-p */
735 	if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
736 		return;
737 
738 	/*
739 	 * DC3CO Exit time 200us B.Spec 49196
740 	 * PSR2 transcoder Early Exit scanlines = ROUNDUP(200 / line time) + 1
741 	 */
742 	exit_scanlines =
743 		intel_usecs_to_scanlines(&crtc_state->uapi.adjusted_mode, 200) + 1;
744 
745 	if (drm_WARN_ON(&dev_priv->drm, exit_scanlines > crtc_vdisplay))
746 		return;
747 
748 	crtc_state->dc3co_exitline = crtc_vdisplay - exit_scanlines;
749 }
750 
751 static bool intel_psr2_sel_fetch_config_valid(struct intel_dp *intel_dp,
752 					      struct intel_crtc_state *crtc_state)
753 {
754 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
755 
756 	if (!dev_priv->params.enable_psr2_sel_fetch &&
757 	    intel_dp->psr.debug != I915_PSR_DEBUG_ENABLE_SEL_FETCH) {
758 		drm_dbg_kms(&dev_priv->drm,
759 			    "PSR2 sel fetch not enabled, disabled by parameter\n");
760 		return false;
761 	}
762 
763 	if (crtc_state->uapi.async_flip) {
764 		drm_dbg_kms(&dev_priv->drm,
765 			    "PSR2 sel fetch not enabled, async flip enabled\n");
766 		return false;
767 	}
768 
769 	/* Wa_14010254185 Wa_14010103792 */
770 	if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0)) {
771 		drm_dbg_kms(&dev_priv->drm,
772 			    "PSR2 sel fetch not enabled, missing the implementation of WAs\n");
773 		return false;
774 	}
775 
776 	return crtc_state->enable_psr2_sel_fetch = true;
777 }
778 
779 static bool psr2_granularity_check(struct intel_dp *intel_dp,
780 				   struct intel_crtc_state *crtc_state)
781 {
782 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
783 	const struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
784 	const int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay;
785 	const int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay;
786 	u16 y_granularity = 0;
787 
788 	/* PSR2 HW only send full lines so we only need to validate the width */
789 	if (crtc_hdisplay % intel_dp->psr.su_w_granularity)
790 		return false;
791 
792 	if (crtc_vdisplay % intel_dp->psr.su_y_granularity)
793 		return false;
794 
795 	/* HW tracking is only aligned to 4 lines */
796 	if (!crtc_state->enable_psr2_sel_fetch)
797 		return intel_dp->psr.su_y_granularity == 4;
798 
799 	/*
800 	 * adl_p and mtl platforms have 1 line granularity.
801 	 * For other platforms with SW tracking we can adjust the y coordinates
802 	 * to match sink requirement if multiple of 4.
803 	 */
804 	if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14)
805 		y_granularity = intel_dp->psr.su_y_granularity;
806 	else if (intel_dp->psr.su_y_granularity <= 2)
807 		y_granularity = 4;
808 	else if ((intel_dp->psr.su_y_granularity % 4) == 0)
809 		y_granularity = intel_dp->psr.su_y_granularity;
810 
811 	if (y_granularity == 0 || crtc_vdisplay % y_granularity)
812 		return false;
813 
814 	if (crtc_state->dsc.compression_enable &&
815 	    vdsc_cfg->slice_height % y_granularity)
816 		return false;
817 
818 	crtc_state->su_y_granularity = y_granularity;
819 	return true;
820 }
821 
822 static bool _compute_psr2_sdp_prior_scanline_indication(struct intel_dp *intel_dp,
823 							struct intel_crtc_state *crtc_state)
824 {
825 	const struct drm_display_mode *adjusted_mode = &crtc_state->uapi.adjusted_mode;
826 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
827 	u32 hblank_total, hblank_ns, req_ns;
828 
829 	hblank_total = adjusted_mode->crtc_hblank_end - adjusted_mode->crtc_hblank_start;
830 	hblank_ns = div_u64(1000000ULL * hblank_total, adjusted_mode->crtc_clock);
831 
832 	/* From spec: ((60 / number of lanes) + 11) * 1000 / symbol clock frequency MHz */
833 	req_ns = ((60 / crtc_state->lane_count) + 11) * 1000 / (crtc_state->port_clock / 1000);
834 
835 	if ((hblank_ns - req_ns) > 100)
836 		return true;
837 
838 	/* Not supported <13 / Wa_22012279113:adl-p */
839 	if (DISPLAY_VER(dev_priv) <= 13 || intel_dp->edp_dpcd[0] < DP_EDP_14b)
840 		return false;
841 
842 	crtc_state->req_psr2_sdp_prior_scanline = true;
843 	return true;
844 }
845 
846 static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
847 				    struct intel_crtc_state *crtc_state)
848 {
849 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
850 	int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay;
851 	int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay;
852 	int psr_max_h = 0, psr_max_v = 0, max_bpp = 0;
853 
854 	if (!intel_dp->psr.sink_psr2_support)
855 		return false;
856 
857 	/* JSL and EHL only supports eDP 1.3 */
858 	if (IS_JSL_EHL(dev_priv)) {
859 		drm_dbg_kms(&dev_priv->drm, "PSR2 not supported by phy\n");
860 		return false;
861 	}
862 
863 	/* Wa_16011181250 */
864 	if (IS_ROCKETLAKE(dev_priv) || IS_ALDERLAKE_S(dev_priv) ||
865 	    IS_DG2(dev_priv)) {
866 		drm_dbg_kms(&dev_priv->drm, "PSR2 is defeatured for this platform\n");
867 		return false;
868 	}
869 
870 	if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) {
871 		drm_dbg_kms(&dev_priv->drm, "PSR2 not completely functional in this stepping\n");
872 		return false;
873 	}
874 
875 	if (!transcoder_has_psr2(dev_priv, crtc_state->cpu_transcoder)) {
876 		drm_dbg_kms(&dev_priv->drm,
877 			    "PSR2 not supported in transcoder %s\n",
878 			    transcoder_name(crtc_state->cpu_transcoder));
879 		return false;
880 	}
881 
882 	if (!psr2_global_enabled(intel_dp)) {
883 		drm_dbg_kms(&dev_priv->drm, "PSR2 disabled by flag\n");
884 		return false;
885 	}
886 
887 	/*
888 	 * DSC and PSR2 cannot be enabled simultaneously. If a requested
889 	 * resolution requires DSC to be enabled, priority is given to DSC
890 	 * over PSR2.
891 	 */
892 	if (crtc_state->dsc.compression_enable &&
893 	    (DISPLAY_VER(dev_priv) <= 13 && !IS_ALDERLAKE_P(dev_priv))) {
894 		drm_dbg_kms(&dev_priv->drm,
895 			    "PSR2 cannot be enabled since DSC is enabled\n");
896 		return false;
897 	}
898 
899 	if (crtc_state->crc_enabled) {
900 		drm_dbg_kms(&dev_priv->drm,
901 			    "PSR2 not enabled because it would inhibit pipe CRC calculation\n");
902 		return false;
903 	}
904 
905 	if (DISPLAY_VER(dev_priv) >= 12) {
906 		psr_max_h = 5120;
907 		psr_max_v = 3200;
908 		max_bpp = 30;
909 	} else if (DISPLAY_VER(dev_priv) >= 10) {
910 		psr_max_h = 4096;
911 		psr_max_v = 2304;
912 		max_bpp = 24;
913 	} else if (DISPLAY_VER(dev_priv) == 9) {
914 		psr_max_h = 3640;
915 		psr_max_v = 2304;
916 		max_bpp = 24;
917 	}
918 
919 	if (crtc_state->pipe_bpp > max_bpp) {
920 		drm_dbg_kms(&dev_priv->drm,
921 			    "PSR2 not enabled, pipe bpp %d > max supported %d\n",
922 			    crtc_state->pipe_bpp, max_bpp);
923 		return false;
924 	}
925 
926 	/* Wa_16011303918:adl-p */
927 	if (crtc_state->vrr.enable &&
928 	    IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) {
929 		drm_dbg_kms(&dev_priv->drm,
930 			    "PSR2 not enabled, not compatible with HW stepping + VRR\n");
931 		return false;
932 	}
933 
934 	if (!_compute_psr2_sdp_prior_scanline_indication(intel_dp, crtc_state)) {
935 		drm_dbg_kms(&dev_priv->drm,
936 			    "PSR2 not enabled, PSR2 SDP indication do not fit in hblank\n");
937 		return false;
938 	}
939 
940 	if (HAS_PSR2_SEL_FETCH(dev_priv)) {
941 		if (!intel_psr2_sel_fetch_config_valid(intel_dp, crtc_state) &&
942 		    !HAS_PSR_HW_TRACKING(dev_priv)) {
943 			drm_dbg_kms(&dev_priv->drm,
944 				    "PSR2 not enabled, selective fetch not valid and no HW tracking available\n");
945 			return false;
946 		}
947 	}
948 
949 	/* Wa_2209313811 */
950 	if (!crtc_state->enable_psr2_sel_fetch &&
951 	    IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0)) {
952 		drm_dbg_kms(&dev_priv->drm, "PSR2 HW tracking is not supported this Display stepping\n");
953 		goto unsupported;
954 	}
955 
956 	if (!psr2_granularity_check(intel_dp, crtc_state)) {
957 		drm_dbg_kms(&dev_priv->drm, "PSR2 not enabled, SU granularity not compatible\n");
958 		goto unsupported;
959 	}
960 
961 	if (!crtc_state->enable_psr2_sel_fetch &&
962 	    (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v)) {
963 		drm_dbg_kms(&dev_priv->drm,
964 			    "PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
965 			    crtc_hdisplay, crtc_vdisplay,
966 			    psr_max_h, psr_max_v);
967 		goto unsupported;
968 	}
969 
970 	tgl_dc3co_exitline_compute_config(intel_dp, crtc_state);
971 	return true;
972 
973 unsupported:
974 	crtc_state->enable_psr2_sel_fetch = false;
975 	return false;
976 }
977 
978 void intel_psr_compute_config(struct intel_dp *intel_dp,
979 			      struct intel_crtc_state *crtc_state,
980 			      struct drm_connector_state *conn_state)
981 {
982 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
983 	const struct drm_display_mode *adjusted_mode =
984 		&crtc_state->hw.adjusted_mode;
985 	int psr_setup_time;
986 
987 	/*
988 	 * Current PSR panels don't work reliably with VRR enabled
989 	 * So if VRR is enabled, do not enable PSR.
990 	 */
991 	if (crtc_state->vrr.enable)
992 		return;
993 
994 	if (!CAN_PSR(intel_dp))
995 		return;
996 
997 	if (!psr_global_enabled(intel_dp)) {
998 		drm_dbg_kms(&dev_priv->drm, "PSR disabled by flag\n");
999 		return;
1000 	}
1001 
1002 	if (intel_dp->psr.sink_not_reliable) {
1003 		drm_dbg_kms(&dev_priv->drm,
1004 			    "PSR sink implementation is not reliable\n");
1005 		return;
1006 	}
1007 
1008 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
1009 		drm_dbg_kms(&dev_priv->drm,
1010 			    "PSR condition failed: Interlaced mode enabled\n");
1011 		return;
1012 	}
1013 
1014 	psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
1015 	if (psr_setup_time < 0) {
1016 		drm_dbg_kms(&dev_priv->drm,
1017 			    "PSR condition failed: Invalid PSR setup time (0x%02x)\n",
1018 			    intel_dp->psr_dpcd[1]);
1019 		return;
1020 	}
1021 
1022 	if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
1023 	    adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
1024 		drm_dbg_kms(&dev_priv->drm,
1025 			    "PSR condition failed: PSR setup time (%d us) too long\n",
1026 			    psr_setup_time);
1027 		return;
1028 	}
1029 
1030 	crtc_state->has_psr = true;
1031 	crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state);
1032 
1033 	crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
1034 	intel_dp_compute_psr_vsc_sdp(intel_dp, crtc_state, conn_state,
1035 				     &crtc_state->psr_vsc);
1036 }
1037 
1038 void intel_psr_get_config(struct intel_encoder *encoder,
1039 			  struct intel_crtc_state *pipe_config)
1040 {
1041 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1042 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1043 	struct intel_dp *intel_dp;
1044 	u32 val;
1045 
1046 	if (!dig_port)
1047 		return;
1048 
1049 	intel_dp = &dig_port->dp;
1050 	if (!CAN_PSR(intel_dp))
1051 		return;
1052 
1053 	mutex_lock(&intel_dp->psr.lock);
1054 	if (!intel_dp->psr.enabled)
1055 		goto unlock;
1056 
1057 	/*
1058 	 * Not possible to read EDP_PSR/PSR2_CTL registers as it is
1059 	 * enabled/disabled because of frontbuffer tracking and others.
1060 	 */
1061 	pipe_config->has_psr = true;
1062 	pipe_config->has_psr2 = intel_dp->psr.psr2_enabled;
1063 	pipe_config->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
1064 
1065 	if (!intel_dp->psr.psr2_enabled)
1066 		goto unlock;
1067 
1068 	if (HAS_PSR2_SEL_FETCH(dev_priv)) {
1069 		val = intel_de_read(dev_priv, PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder));
1070 		if (val & PSR2_MAN_TRK_CTL_ENABLE)
1071 			pipe_config->enable_psr2_sel_fetch = true;
1072 	}
1073 
1074 	if (DISPLAY_VER(dev_priv) >= 12) {
1075 		val = intel_de_read(dev_priv, EXITLINE(intel_dp->psr.transcoder));
1076 		val &= EXITLINE_MASK;
1077 		pipe_config->dc3co_exitline = val;
1078 	}
1079 unlock:
1080 	mutex_unlock(&intel_dp->psr.lock);
1081 }
1082 
1083 static void intel_psr_activate(struct intel_dp *intel_dp)
1084 {
1085 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1086 	enum transcoder transcoder = intel_dp->psr.transcoder;
1087 
1088 	if (transcoder_has_psr2(dev_priv, transcoder))
1089 		drm_WARN_ON(&dev_priv->drm,
1090 			    intel_de_read(dev_priv, EDP_PSR2_CTL(transcoder)) & EDP_PSR2_ENABLE);
1091 
1092 	drm_WARN_ON(&dev_priv->drm,
1093 		    intel_de_read(dev_priv, EDP_PSR_CTL(transcoder)) & EDP_PSR_ENABLE);
1094 	drm_WARN_ON(&dev_priv->drm, intel_dp->psr.active);
1095 	lockdep_assert_held(&intel_dp->psr.lock);
1096 
1097 	/* psr1 and psr2 are mutually exclusive.*/
1098 	if (intel_dp->psr.psr2_enabled)
1099 		hsw_activate_psr2(intel_dp);
1100 	else
1101 		hsw_activate_psr1(intel_dp);
1102 
1103 	intel_dp->psr.active = true;
1104 }
1105 
1106 static u32 wa_16013835468_bit_get(struct intel_dp *intel_dp)
1107 {
1108 	switch (intel_dp->psr.pipe) {
1109 	case PIPE_A:
1110 		return LATENCY_REPORTING_REMOVED_PIPE_A;
1111 	case PIPE_B:
1112 		return LATENCY_REPORTING_REMOVED_PIPE_B;
1113 	case PIPE_C:
1114 		return LATENCY_REPORTING_REMOVED_PIPE_C;
1115 	default:
1116 		MISSING_CASE(intel_dp->psr.pipe);
1117 		return 0;
1118 	}
1119 }
1120 
1121 static void intel_psr_enable_source(struct intel_dp *intel_dp,
1122 				    const struct intel_crtc_state *crtc_state)
1123 {
1124 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1125 	enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
1126 	u32 mask;
1127 
1128 	/*
1129 	 * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also
1130 	 * mask LPSP to avoid dependency on other drivers that might block
1131 	 * runtime_pm besides preventing  other hw tracking issues now we
1132 	 * can rely on frontbuffer tracking.
1133 	 */
1134 	mask = EDP_PSR_DEBUG_MASK_MEMUP |
1135 	       EDP_PSR_DEBUG_MASK_HPD |
1136 	       EDP_PSR_DEBUG_MASK_LPSP |
1137 	       EDP_PSR_DEBUG_MASK_MAX_SLEEP;
1138 
1139 	if (DISPLAY_VER(dev_priv) < 11)
1140 		mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE;
1141 
1142 	intel_de_write(dev_priv, EDP_PSR_DEBUG(intel_dp->psr.transcoder),
1143 		       mask);
1144 
1145 	psr_irq_control(intel_dp);
1146 
1147 	if (intel_dp->psr.dc3co_exitline) {
1148 		u32 val;
1149 
1150 		/*
1151 		 * TODO: if future platforms supports DC3CO in more than one
1152 		 * transcoder, EXITLINE will need to be unset when disabling PSR
1153 		 */
1154 		val = intel_de_read(dev_priv, EXITLINE(cpu_transcoder));
1155 		val &= ~EXITLINE_MASK;
1156 		val |= intel_dp->psr.dc3co_exitline << EXITLINE_SHIFT;
1157 		val |= EXITLINE_ENABLE;
1158 		intel_de_write(dev_priv, EXITLINE(cpu_transcoder), val);
1159 	}
1160 
1161 	if (HAS_PSR_HW_TRACKING(dev_priv) && HAS_PSR2_SEL_FETCH(dev_priv))
1162 		intel_de_rmw(dev_priv, CHICKEN_PAR1_1, IGNORE_PSR2_HW_TRACKING,
1163 			     intel_dp->psr.psr2_sel_fetch_enabled ?
1164 			     IGNORE_PSR2_HW_TRACKING : 0);
1165 
1166 	if (intel_dp->psr.psr2_enabled) {
1167 		if (DISPLAY_VER(dev_priv) == 9)
1168 			intel_de_rmw(dev_priv, CHICKEN_TRANS(cpu_transcoder), 0,
1169 				     PSR2_VSC_ENABLE_PROG_HEADER |
1170 				     PSR2_ADD_VERTICAL_LINE_COUNT);
1171 
1172 		/*
1173 		 * Wa_16014451276:adlp,mtl[a0,b0]
1174 		 * All supported adlp panels have 1-based X granularity, this may
1175 		 * cause issues if non-supported panels are used.
1176 		 */
1177 		if (IS_MTL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
1178 			intel_de_rmw(dev_priv, MTL_CHICKEN_TRANS(cpu_transcoder), 0,
1179 				     ADLP_1_BASED_X_GRANULARITY);
1180 		else if (IS_ALDERLAKE_P(dev_priv))
1181 			intel_de_rmw(dev_priv, CHICKEN_TRANS(cpu_transcoder), 0,
1182 				     ADLP_1_BASED_X_GRANULARITY);
1183 
1184 		/* Wa_16011168373:adl-p */
1185 		if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
1186 			intel_de_rmw(dev_priv,
1187 				     TRANS_SET_CONTEXT_LATENCY(intel_dp->psr.transcoder),
1188 				     TRANS_SET_CONTEXT_LATENCY_MASK,
1189 				     TRANS_SET_CONTEXT_LATENCY_VALUE(1));
1190 
1191 		/* Wa_16012604467:adlp,mtl[a0,b0] */
1192 		if (IS_MTL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
1193 			intel_de_rmw(dev_priv,
1194 				     MTL_CLKGATE_DIS_TRANS(cpu_transcoder), 0,
1195 				     MTL_CLKGATE_DIS_TRANS_DMASC_GATING_DIS);
1196 		else if (IS_ALDERLAKE_P(dev_priv))
1197 			intel_de_rmw(dev_priv, CLKGATE_DIS_MISC, 0,
1198 				     CLKGATE_DIS_MISC_DMASC_GATING_DIS);
1199 
1200 		/* Wa_16013835468:tgl[b0+], dg1 */
1201 		if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_B0, STEP_FOREVER) ||
1202 		    IS_DG1(dev_priv)) {
1203 			u16 vtotal, vblank;
1204 
1205 			vtotal = crtc_state->uapi.adjusted_mode.crtc_vtotal -
1206 				 crtc_state->uapi.adjusted_mode.crtc_vdisplay;
1207 			vblank = crtc_state->uapi.adjusted_mode.crtc_vblank_end -
1208 				 crtc_state->uapi.adjusted_mode.crtc_vblank_start;
1209 			if (vblank > vtotal)
1210 				intel_de_rmw(dev_priv, GEN8_CHICKEN_DCPR_1, 0,
1211 					     wa_16013835468_bit_get(intel_dp));
1212 		}
1213 	}
1214 }
1215 
1216 static bool psr_interrupt_error_check(struct intel_dp *intel_dp)
1217 {
1218 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1219 	u32 val;
1220 
1221 	/*
1222 	 * If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR
1223 	 * will still keep the error set even after the reset done in the
1224 	 * irq_preinstall and irq_uninstall hooks.
1225 	 * And enabling in this situation cause the screen to freeze in the
1226 	 * first time that PSR HW tries to activate so lets keep PSR disabled
1227 	 * to avoid any rendering problems.
1228 	 */
1229 	if (DISPLAY_VER(dev_priv) >= 12)
1230 		val = intel_de_read(dev_priv,
1231 				    TRANS_PSR_IIR(intel_dp->psr.transcoder));
1232 	else
1233 		val = intel_de_read(dev_priv, EDP_PSR_IIR);
1234 	val &= psr_irq_psr_error_bit_get(intel_dp);
1235 	if (val) {
1236 		intel_dp->psr.sink_not_reliable = true;
1237 		drm_dbg_kms(&dev_priv->drm,
1238 			    "PSR interruption error set, not enabling PSR\n");
1239 		return false;
1240 	}
1241 
1242 	return true;
1243 }
1244 
1245 static void intel_psr_enable_locked(struct intel_dp *intel_dp,
1246 				    const struct intel_crtc_state *crtc_state)
1247 {
1248 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1249 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1250 	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
1251 	struct intel_encoder *encoder = &dig_port->base;
1252 	u32 val;
1253 
1254 	drm_WARN_ON(&dev_priv->drm, intel_dp->psr.enabled);
1255 
1256 	intel_dp->psr.psr2_enabled = crtc_state->has_psr2;
1257 	intel_dp->psr.busy_frontbuffer_bits = 0;
1258 	intel_dp->psr.pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe;
1259 	intel_dp->psr.transcoder = crtc_state->cpu_transcoder;
1260 	/* DC5/DC6 requires at least 6 idle frames */
1261 	val = usecs_to_jiffies(intel_get_frame_time_us(crtc_state) * 6);
1262 	intel_dp->psr.dc3co_exit_delay = val;
1263 	intel_dp->psr.dc3co_exitline = crtc_state->dc3co_exitline;
1264 	intel_dp->psr.psr2_sel_fetch_enabled = crtc_state->enable_psr2_sel_fetch;
1265 	intel_dp->psr.psr2_sel_fetch_cff_enabled = false;
1266 	intel_dp->psr.req_psr2_sdp_prior_scanline =
1267 		crtc_state->req_psr2_sdp_prior_scanline;
1268 
1269 	if (!psr_interrupt_error_check(intel_dp))
1270 		return;
1271 
1272 	drm_dbg_kms(&dev_priv->drm, "Enabling PSR%s\n",
1273 		    intel_dp->psr.psr2_enabled ? "2" : "1");
1274 	intel_write_dp_vsc_sdp(encoder, crtc_state, &crtc_state->psr_vsc);
1275 	intel_snps_phy_update_psr_power_state(dev_priv, phy, true);
1276 	intel_psr_enable_sink(intel_dp);
1277 	intel_psr_enable_source(intel_dp, crtc_state);
1278 	intel_dp->psr.enabled = true;
1279 	intel_dp->psr.paused = false;
1280 
1281 	intel_psr_activate(intel_dp);
1282 }
1283 
1284 static void intel_psr_exit(struct intel_dp *intel_dp)
1285 {
1286 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1287 	u32 val;
1288 
1289 	if (!intel_dp->psr.active) {
1290 		if (transcoder_has_psr2(dev_priv, intel_dp->psr.transcoder)) {
1291 			val = intel_de_read(dev_priv,
1292 					    EDP_PSR2_CTL(intel_dp->psr.transcoder));
1293 			drm_WARN_ON(&dev_priv->drm, val & EDP_PSR2_ENABLE);
1294 		}
1295 
1296 		val = intel_de_read(dev_priv,
1297 				    EDP_PSR_CTL(intel_dp->psr.transcoder));
1298 		drm_WARN_ON(&dev_priv->drm, val & EDP_PSR_ENABLE);
1299 
1300 		return;
1301 	}
1302 
1303 	if (intel_dp->psr.psr2_enabled) {
1304 		tgl_disallow_dc3co_on_psr2_exit(intel_dp);
1305 		val = intel_de_read(dev_priv,
1306 				    EDP_PSR2_CTL(intel_dp->psr.transcoder));
1307 		drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR2_ENABLE));
1308 		val &= ~EDP_PSR2_ENABLE;
1309 		intel_de_write(dev_priv,
1310 			       EDP_PSR2_CTL(intel_dp->psr.transcoder), val);
1311 	} else {
1312 		val = intel_de_read(dev_priv,
1313 				    EDP_PSR_CTL(intel_dp->psr.transcoder));
1314 		drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR_ENABLE));
1315 		val &= ~EDP_PSR_ENABLE;
1316 		intel_de_write(dev_priv,
1317 			       EDP_PSR_CTL(intel_dp->psr.transcoder), val);
1318 	}
1319 	intel_dp->psr.active = false;
1320 }
1321 
1322 static void intel_psr_wait_exit_locked(struct intel_dp *intel_dp)
1323 {
1324 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1325 	i915_reg_t psr_status;
1326 	u32 psr_status_mask;
1327 
1328 	if (intel_dp->psr.psr2_enabled) {
1329 		psr_status = EDP_PSR2_STATUS(intel_dp->psr.transcoder);
1330 		psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
1331 	} else {
1332 		psr_status = EDP_PSR_STATUS(intel_dp->psr.transcoder);
1333 		psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
1334 	}
1335 
1336 	/* Wait till PSR is idle */
1337 	if (intel_de_wait_for_clear(dev_priv, psr_status,
1338 				    psr_status_mask, 2000))
1339 		drm_err(&dev_priv->drm, "Timed out waiting PSR idle state\n");
1340 }
1341 
1342 static void intel_psr_disable_locked(struct intel_dp *intel_dp)
1343 {
1344 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1345 	enum phy phy = intel_port_to_phy(dev_priv,
1346 					 dp_to_dig_port(intel_dp)->base.port);
1347 
1348 	lockdep_assert_held(&intel_dp->psr.lock);
1349 
1350 	if (!intel_dp->psr.enabled)
1351 		return;
1352 
1353 	drm_dbg_kms(&dev_priv->drm, "Disabling PSR%s\n",
1354 		    intel_dp->psr.psr2_enabled ? "2" : "1");
1355 
1356 	intel_psr_exit(intel_dp);
1357 	intel_psr_wait_exit_locked(intel_dp);
1358 
1359 	/* Wa_1408330847 */
1360 	if (intel_dp->psr.psr2_sel_fetch_enabled &&
1361 	    IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
1362 		intel_de_rmw(dev_priv, CHICKEN_PAR1_1,
1363 			     DIS_RAM_BYPASS_PSR2_MAN_TRACK, 0);
1364 
1365 	if (intel_dp->psr.psr2_enabled) {
1366 		/* Wa_16011168373:adl-p */
1367 		if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
1368 			intel_de_rmw(dev_priv,
1369 				     TRANS_SET_CONTEXT_LATENCY(intel_dp->psr.transcoder),
1370 				     TRANS_SET_CONTEXT_LATENCY_MASK, 0);
1371 
1372 		/* Wa_16012604467:adlp,mtl[a0,b0] */
1373 		if (IS_MTL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
1374 			intel_de_rmw(dev_priv,
1375 				     MTL_CLKGATE_DIS_TRANS(intel_dp->psr.transcoder),
1376 				     MTL_CLKGATE_DIS_TRANS_DMASC_GATING_DIS, 0);
1377 		else if (IS_ALDERLAKE_P(dev_priv))
1378 			intel_de_rmw(dev_priv, CLKGATE_DIS_MISC,
1379 				     CLKGATE_DIS_MISC_DMASC_GATING_DIS, 0);
1380 
1381 		/* Wa_16013835468:tgl[b0+], dg1 */
1382 		if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_B0, STEP_FOREVER) ||
1383 		    IS_DG1(dev_priv))
1384 			intel_de_rmw(dev_priv, GEN8_CHICKEN_DCPR_1,
1385 				     wa_16013835468_bit_get(intel_dp), 0);
1386 	}
1387 
1388 	intel_snps_phy_update_psr_power_state(dev_priv, phy, false);
1389 
1390 	/* Disable PSR on Sink */
1391 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
1392 
1393 	if (intel_dp->psr.psr2_enabled)
1394 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, 0);
1395 
1396 	intel_dp->psr.enabled = false;
1397 	intel_dp->psr.psr2_enabled = false;
1398 	intel_dp->psr.psr2_sel_fetch_enabled = false;
1399 	intel_dp->psr.psr2_sel_fetch_cff_enabled = false;
1400 }
1401 
1402 /**
1403  * intel_psr_disable - Disable PSR
1404  * @intel_dp: Intel DP
1405  * @old_crtc_state: old CRTC state
1406  *
1407  * This function needs to be called before disabling pipe.
1408  */
1409 void intel_psr_disable(struct intel_dp *intel_dp,
1410 		       const struct intel_crtc_state *old_crtc_state)
1411 {
1412 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1413 
1414 	if (!old_crtc_state->has_psr)
1415 		return;
1416 
1417 	if (drm_WARN_ON(&dev_priv->drm, !CAN_PSR(intel_dp)))
1418 		return;
1419 
1420 	mutex_lock(&intel_dp->psr.lock);
1421 
1422 	intel_psr_disable_locked(intel_dp);
1423 
1424 	mutex_unlock(&intel_dp->psr.lock);
1425 	cancel_work_sync(&intel_dp->psr.work);
1426 	cancel_delayed_work_sync(&intel_dp->psr.dc3co_work);
1427 }
1428 
1429 /**
1430  * intel_psr_pause - Pause PSR
1431  * @intel_dp: Intel DP
1432  *
1433  * This function need to be called after enabling psr.
1434  */
1435 void intel_psr_pause(struct intel_dp *intel_dp)
1436 {
1437 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1438 	struct intel_psr *psr = &intel_dp->psr;
1439 
1440 	if (!CAN_PSR(intel_dp))
1441 		return;
1442 
1443 	mutex_lock(&psr->lock);
1444 
1445 	if (!psr->enabled) {
1446 		mutex_unlock(&psr->lock);
1447 		return;
1448 	}
1449 
1450 	/* If we ever hit this, we will need to add refcount to pause/resume */
1451 	drm_WARN_ON(&dev_priv->drm, psr->paused);
1452 
1453 	intel_psr_exit(intel_dp);
1454 	intel_psr_wait_exit_locked(intel_dp);
1455 	psr->paused = true;
1456 
1457 	mutex_unlock(&psr->lock);
1458 
1459 	cancel_work_sync(&psr->work);
1460 	cancel_delayed_work_sync(&psr->dc3co_work);
1461 }
1462 
1463 /**
1464  * intel_psr_resume - Resume PSR
1465  * @intel_dp: Intel DP
1466  *
1467  * This function need to be called after pausing psr.
1468  */
1469 void intel_psr_resume(struct intel_dp *intel_dp)
1470 {
1471 	struct intel_psr *psr = &intel_dp->psr;
1472 
1473 	if (!CAN_PSR(intel_dp))
1474 		return;
1475 
1476 	mutex_lock(&psr->lock);
1477 
1478 	if (!psr->paused)
1479 		goto unlock;
1480 
1481 	psr->paused = false;
1482 	intel_psr_activate(intel_dp);
1483 
1484 unlock:
1485 	mutex_unlock(&psr->lock);
1486 }
1487 
1488 static u32 man_trk_ctl_enable_bit_get(struct drm_i915_private *dev_priv)
1489 {
1490 	return IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14 ? 0 :
1491 		PSR2_MAN_TRK_CTL_ENABLE;
1492 }
1493 
1494 static u32 man_trk_ctl_single_full_frame_bit_get(struct drm_i915_private *dev_priv)
1495 {
1496 	return IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14 ?
1497 	       ADLP_PSR2_MAN_TRK_CTL_SF_SINGLE_FULL_FRAME :
1498 	       PSR2_MAN_TRK_CTL_SF_SINGLE_FULL_FRAME;
1499 }
1500 
1501 static u32 man_trk_ctl_partial_frame_bit_get(struct drm_i915_private *dev_priv)
1502 {
1503 	return IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14 ?
1504 	       ADLP_PSR2_MAN_TRK_CTL_SF_PARTIAL_FRAME_UPDATE :
1505 	       PSR2_MAN_TRK_CTL_SF_PARTIAL_FRAME_UPDATE;
1506 }
1507 
1508 static u32 man_trk_ctl_continuos_full_frame(struct drm_i915_private *dev_priv)
1509 {
1510 	return IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14 ?
1511 	       ADLP_PSR2_MAN_TRK_CTL_SF_CONTINUOS_FULL_FRAME :
1512 	       PSR2_MAN_TRK_CTL_SF_CONTINUOS_FULL_FRAME;
1513 }
1514 
1515 static void psr_force_hw_tracking_exit(struct intel_dp *intel_dp)
1516 {
1517 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1518 
1519 	if (intel_dp->psr.psr2_sel_fetch_enabled)
1520 		intel_de_write(dev_priv,
1521 			       PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder),
1522 			       man_trk_ctl_enable_bit_get(dev_priv) |
1523 			       man_trk_ctl_partial_frame_bit_get(dev_priv) |
1524 			       man_trk_ctl_single_full_frame_bit_get(dev_priv) |
1525 			       man_trk_ctl_continuos_full_frame(dev_priv));
1526 
1527 	/*
1528 	 * Display WA #0884: skl+
1529 	 * This documented WA for bxt can be safely applied
1530 	 * broadly so we can force HW tracking to exit PSR
1531 	 * instead of disabling and re-enabling.
1532 	 * Workaround tells us to write 0 to CUR_SURFLIVE_A,
1533 	 * but it makes more sense write to the current active
1534 	 * pipe.
1535 	 *
1536 	 * This workaround do not exist for platforms with display 10 or newer
1537 	 * but testing proved that it works for up display 13, for newer
1538 	 * than that testing will be needed.
1539 	 */
1540 	intel_de_write(dev_priv, CURSURFLIVE(intel_dp->psr.pipe), 0);
1541 }
1542 
1543 void intel_psr2_disable_plane_sel_fetch(struct intel_plane *plane,
1544 					const struct intel_crtc_state *crtc_state)
1545 {
1546 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1547 	enum pipe pipe = plane->pipe;
1548 
1549 	if (!crtc_state->enable_psr2_sel_fetch)
1550 		return;
1551 
1552 	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_CTL(pipe, plane->id), 0);
1553 }
1554 
1555 void intel_psr2_program_plane_sel_fetch(struct intel_plane *plane,
1556 					const struct intel_crtc_state *crtc_state,
1557 					const struct intel_plane_state *plane_state,
1558 					int color_plane)
1559 {
1560 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1561 	enum pipe pipe = plane->pipe;
1562 	const struct drm_rect *clip;
1563 	u32 val;
1564 	int x, y;
1565 
1566 	if (!crtc_state->enable_psr2_sel_fetch)
1567 		return;
1568 
1569 	if (plane->id == PLANE_CURSOR) {
1570 		intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_CTL(pipe, plane->id),
1571 				  plane_state->ctl);
1572 		return;
1573 	}
1574 
1575 	clip = &plane_state->psr2_sel_fetch_area;
1576 
1577 	val = (clip->y1 + plane_state->uapi.dst.y1) << 16;
1578 	val |= plane_state->uapi.dst.x1;
1579 	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_POS(pipe, plane->id), val);
1580 
1581 	x = plane_state->view.color_plane[color_plane].x;
1582 
1583 	/*
1584 	 * From Bspec: UV surface Start Y Position = half of Y plane Y
1585 	 * start position.
1586 	 */
1587 	if (!color_plane)
1588 		y = plane_state->view.color_plane[color_plane].y + clip->y1;
1589 	else
1590 		y = plane_state->view.color_plane[color_plane].y + clip->y1 / 2;
1591 
1592 	val = y << 16 | x;
1593 
1594 	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_OFFSET(pipe, plane->id),
1595 			  val);
1596 
1597 	/* Sizes are 0 based */
1598 	val = (drm_rect_height(clip) - 1) << 16;
1599 	val |= (drm_rect_width(&plane_state->uapi.src) >> 16) - 1;
1600 	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_SIZE(pipe, plane->id), val);
1601 
1602 	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_CTL(pipe, plane->id),
1603 			  PLANE_SEL_FETCH_CTL_ENABLE);
1604 }
1605 
1606 void intel_psr2_program_trans_man_trk_ctl(const struct intel_crtc_state *crtc_state)
1607 {
1608 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1609 	struct intel_encoder *encoder;
1610 
1611 	if (!crtc_state->enable_psr2_sel_fetch)
1612 		return;
1613 
1614 	for_each_intel_encoder_mask_with_psr(&dev_priv->drm, encoder,
1615 					     crtc_state->uapi.encoder_mask) {
1616 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1617 
1618 		lockdep_assert_held(&intel_dp->psr.lock);
1619 		if (intel_dp->psr.psr2_sel_fetch_cff_enabled)
1620 			return;
1621 		break;
1622 	}
1623 
1624 	intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(crtc_state->cpu_transcoder),
1625 		       crtc_state->psr2_man_track_ctl);
1626 }
1627 
1628 static void psr2_man_trk_ctl_calc(struct intel_crtc_state *crtc_state,
1629 				  struct drm_rect *clip, bool full_update)
1630 {
1631 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1632 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1633 	u32 val = man_trk_ctl_enable_bit_get(dev_priv);
1634 
1635 	/* SF partial frame enable has to be set even on full update */
1636 	val |= man_trk_ctl_partial_frame_bit_get(dev_priv);
1637 
1638 	if (full_update) {
1639 		val |= man_trk_ctl_single_full_frame_bit_get(dev_priv);
1640 		val |= man_trk_ctl_continuos_full_frame(dev_priv);
1641 		goto exit;
1642 	}
1643 
1644 	if (clip->y1 == -1)
1645 		goto exit;
1646 
1647 	if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14) {
1648 		val |= ADLP_PSR2_MAN_TRK_CTL_SU_REGION_START_ADDR(clip->y1);
1649 		val |= ADLP_PSR2_MAN_TRK_CTL_SU_REGION_END_ADDR(clip->y2 - 1);
1650 	} else {
1651 		drm_WARN_ON(crtc_state->uapi.crtc->dev, clip->y1 % 4 || clip->y2 % 4);
1652 
1653 		val |= PSR2_MAN_TRK_CTL_SU_REGION_START_ADDR(clip->y1 / 4 + 1);
1654 		val |= PSR2_MAN_TRK_CTL_SU_REGION_END_ADDR(clip->y2 / 4 + 1);
1655 	}
1656 exit:
1657 	crtc_state->psr2_man_track_ctl = val;
1658 }
1659 
1660 static void clip_area_update(struct drm_rect *overlap_damage_area,
1661 			     struct drm_rect *damage_area,
1662 			     struct drm_rect *pipe_src)
1663 {
1664 	if (!drm_rect_intersect(damage_area, pipe_src))
1665 		return;
1666 
1667 	if (overlap_damage_area->y1 == -1) {
1668 		overlap_damage_area->y1 = damage_area->y1;
1669 		overlap_damage_area->y2 = damage_area->y2;
1670 		return;
1671 	}
1672 
1673 	if (damage_area->y1 < overlap_damage_area->y1)
1674 		overlap_damage_area->y1 = damage_area->y1;
1675 
1676 	if (damage_area->y2 > overlap_damage_area->y2)
1677 		overlap_damage_area->y2 = damage_area->y2;
1678 }
1679 
1680 static void intel_psr2_sel_fetch_pipe_alignment(const struct intel_crtc_state *crtc_state,
1681 						struct drm_rect *pipe_clip)
1682 {
1683 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1684 	const struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
1685 	u16 y_alignment;
1686 
1687 	/* ADLP aligns the SU region to vdsc slice height in case dsc is enabled */
1688 	if (crtc_state->dsc.compression_enable &&
1689 	    (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14))
1690 		y_alignment = vdsc_cfg->slice_height;
1691 	else
1692 		y_alignment = crtc_state->su_y_granularity;
1693 
1694 	pipe_clip->y1 -= pipe_clip->y1 % y_alignment;
1695 	if (pipe_clip->y2 % y_alignment)
1696 		pipe_clip->y2 = ((pipe_clip->y2 / y_alignment) + 1) * y_alignment;
1697 }
1698 
1699 /*
1700  * TODO: Not clear how to handle planes with negative position,
1701  * also planes are not updated if they have a negative X
1702  * position so for now doing a full update in this cases
1703  *
1704  * Plane scaling and rotation is not supported by selective fetch and both
1705  * properties can change without a modeset, so need to be check at every
1706  * atomic commit.
1707  */
1708 static bool psr2_sel_fetch_plane_state_supported(const struct intel_plane_state *plane_state)
1709 {
1710 	if (plane_state->uapi.dst.y1 < 0 ||
1711 	    plane_state->uapi.dst.x1 < 0 ||
1712 	    plane_state->scaler_id >= 0 ||
1713 	    plane_state->uapi.rotation != DRM_MODE_ROTATE_0)
1714 		return false;
1715 
1716 	return true;
1717 }
1718 
1719 /*
1720  * Check for pipe properties that is not supported by selective fetch.
1721  *
1722  * TODO: pipe scaling causes a modeset but skl_update_scaler_crtc() is executed
1723  * after intel_psr_compute_config(), so for now keeping PSR2 selective fetch
1724  * enabled and going to the full update path.
1725  */
1726 static bool psr2_sel_fetch_pipe_state_supported(const struct intel_crtc_state *crtc_state)
1727 {
1728 	if (crtc_state->scaler_state.scaler_id >= 0)
1729 		return false;
1730 
1731 	return true;
1732 }
1733 
1734 int intel_psr2_sel_fetch_update(struct intel_atomic_state *state,
1735 				struct intel_crtc *crtc)
1736 {
1737 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1738 	struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
1739 	struct drm_rect pipe_clip = { .x1 = 0, .y1 = -1, .x2 = INT_MAX, .y2 = -1 };
1740 	struct intel_plane_state *new_plane_state, *old_plane_state;
1741 	struct intel_plane *plane;
1742 	bool full_update = false;
1743 	int i, ret;
1744 
1745 	if (!crtc_state->enable_psr2_sel_fetch)
1746 		return 0;
1747 
1748 	if (!psr2_sel_fetch_pipe_state_supported(crtc_state)) {
1749 		full_update = true;
1750 		goto skip_sel_fetch_set_loop;
1751 	}
1752 
1753 	/*
1754 	 * Calculate minimal selective fetch area of each plane and calculate
1755 	 * the pipe damaged area.
1756 	 * In the next loop the plane selective fetch area will actually be set
1757 	 * using whole pipe damaged area.
1758 	 */
1759 	for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
1760 					     new_plane_state, i) {
1761 		struct drm_rect src, damaged_area = { .x1 = 0, .y1 = -1,
1762 						      .x2 = INT_MAX };
1763 
1764 		if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc)
1765 			continue;
1766 
1767 		if (!new_plane_state->uapi.visible &&
1768 		    !old_plane_state->uapi.visible)
1769 			continue;
1770 
1771 		if (!psr2_sel_fetch_plane_state_supported(new_plane_state)) {
1772 			full_update = true;
1773 			break;
1774 		}
1775 
1776 		/*
1777 		 * If visibility or plane moved, mark the whole plane area as
1778 		 * damaged as it needs to be complete redraw in the new and old
1779 		 * position.
1780 		 */
1781 		if (new_plane_state->uapi.visible != old_plane_state->uapi.visible ||
1782 		    !drm_rect_equals(&new_plane_state->uapi.dst,
1783 				     &old_plane_state->uapi.dst)) {
1784 			if (old_plane_state->uapi.visible) {
1785 				damaged_area.y1 = old_plane_state->uapi.dst.y1;
1786 				damaged_area.y2 = old_plane_state->uapi.dst.y2;
1787 				clip_area_update(&pipe_clip, &damaged_area,
1788 						 &crtc_state->pipe_src);
1789 			}
1790 
1791 			if (new_plane_state->uapi.visible) {
1792 				damaged_area.y1 = new_plane_state->uapi.dst.y1;
1793 				damaged_area.y2 = new_plane_state->uapi.dst.y2;
1794 				clip_area_update(&pipe_clip, &damaged_area,
1795 						 &crtc_state->pipe_src);
1796 			}
1797 			continue;
1798 		} else if (new_plane_state->uapi.alpha != old_plane_state->uapi.alpha) {
1799 			/* If alpha changed mark the whole plane area as damaged */
1800 			damaged_area.y1 = new_plane_state->uapi.dst.y1;
1801 			damaged_area.y2 = new_plane_state->uapi.dst.y2;
1802 			clip_area_update(&pipe_clip, &damaged_area,
1803 					 &crtc_state->pipe_src);
1804 			continue;
1805 		}
1806 
1807 		src = drm_plane_state_src(&new_plane_state->uapi);
1808 		drm_rect_fp_to_int(&src, &src);
1809 
1810 		if (!drm_atomic_helper_damage_merged(&old_plane_state->uapi,
1811 						     &new_plane_state->uapi, &damaged_area))
1812 			continue;
1813 
1814 		damaged_area.y1 += new_plane_state->uapi.dst.y1 - src.y1;
1815 		damaged_area.y2 += new_plane_state->uapi.dst.y1 - src.y1;
1816 		damaged_area.x1 += new_plane_state->uapi.dst.x1 - src.x1;
1817 		damaged_area.x2 += new_plane_state->uapi.dst.x1 - src.x1;
1818 
1819 		clip_area_update(&pipe_clip, &damaged_area, &crtc_state->pipe_src);
1820 	}
1821 
1822 	/*
1823 	 * TODO: For now we are just using full update in case
1824 	 * selective fetch area calculation fails. To optimize this we
1825 	 * should identify cases where this happens and fix the area
1826 	 * calculation for those.
1827 	 */
1828 	if (pipe_clip.y1 == -1) {
1829 		drm_info_once(&dev_priv->drm,
1830 			      "Selective fetch area calculation failed in pipe %c\n",
1831 			      pipe_name(crtc->pipe));
1832 		full_update = true;
1833 	}
1834 
1835 	if (full_update)
1836 		goto skip_sel_fetch_set_loop;
1837 
1838 	ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
1839 	if (ret)
1840 		return ret;
1841 
1842 	intel_psr2_sel_fetch_pipe_alignment(crtc_state, &pipe_clip);
1843 
1844 	/*
1845 	 * Now that we have the pipe damaged area check if it intersect with
1846 	 * every plane, if it does set the plane selective fetch area.
1847 	 */
1848 	for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
1849 					     new_plane_state, i) {
1850 		struct drm_rect *sel_fetch_area, inter;
1851 		struct intel_plane *linked = new_plane_state->planar_linked_plane;
1852 
1853 		if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc ||
1854 		    !new_plane_state->uapi.visible)
1855 			continue;
1856 
1857 		inter = pipe_clip;
1858 		if (!drm_rect_intersect(&inter, &new_plane_state->uapi.dst))
1859 			continue;
1860 
1861 		if (!psr2_sel_fetch_plane_state_supported(new_plane_state)) {
1862 			full_update = true;
1863 			break;
1864 		}
1865 
1866 		sel_fetch_area = &new_plane_state->psr2_sel_fetch_area;
1867 		sel_fetch_area->y1 = inter.y1 - new_plane_state->uapi.dst.y1;
1868 		sel_fetch_area->y2 = inter.y2 - new_plane_state->uapi.dst.y1;
1869 		crtc_state->update_planes |= BIT(plane->id);
1870 
1871 		/*
1872 		 * Sel_fetch_area is calculated for UV plane. Use
1873 		 * same area for Y plane as well.
1874 		 */
1875 		if (linked) {
1876 			struct intel_plane_state *linked_new_plane_state;
1877 			struct drm_rect *linked_sel_fetch_area;
1878 
1879 			linked_new_plane_state = intel_atomic_get_plane_state(state, linked);
1880 			if (IS_ERR(linked_new_plane_state))
1881 				return PTR_ERR(linked_new_plane_state);
1882 
1883 			linked_sel_fetch_area = &linked_new_plane_state->psr2_sel_fetch_area;
1884 			linked_sel_fetch_area->y1 = sel_fetch_area->y1;
1885 			linked_sel_fetch_area->y2 = sel_fetch_area->y2;
1886 			crtc_state->update_planes |= BIT(linked->id);
1887 		}
1888 	}
1889 
1890 skip_sel_fetch_set_loop:
1891 	psr2_man_trk_ctl_calc(crtc_state, &pipe_clip, full_update);
1892 	return 0;
1893 }
1894 
1895 void intel_psr_pre_plane_update(struct intel_atomic_state *state,
1896 				struct intel_crtc *crtc)
1897 {
1898 	struct drm_i915_private *i915 = to_i915(state->base.dev);
1899 	const struct intel_crtc_state *old_crtc_state =
1900 		intel_atomic_get_old_crtc_state(state, crtc);
1901 	const struct intel_crtc_state *new_crtc_state =
1902 		intel_atomic_get_new_crtc_state(state, crtc);
1903 	struct intel_encoder *encoder;
1904 
1905 	if (!HAS_PSR(i915))
1906 		return;
1907 
1908 	for_each_intel_encoder_mask_with_psr(state->base.dev, encoder,
1909 					     old_crtc_state->uapi.encoder_mask) {
1910 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1911 		struct intel_psr *psr = &intel_dp->psr;
1912 		bool needs_to_disable = false;
1913 
1914 		mutex_lock(&psr->lock);
1915 
1916 		/*
1917 		 * Reasons to disable:
1918 		 * - PSR disabled in new state
1919 		 * - All planes will go inactive
1920 		 * - Changing between PSR versions
1921 		 */
1922 		needs_to_disable |= intel_crtc_needs_modeset(new_crtc_state);
1923 		needs_to_disable |= !new_crtc_state->has_psr;
1924 		needs_to_disable |= !new_crtc_state->active_planes;
1925 		needs_to_disable |= new_crtc_state->has_psr2 != psr->psr2_enabled;
1926 
1927 		if (psr->enabled && needs_to_disable)
1928 			intel_psr_disable_locked(intel_dp);
1929 
1930 		mutex_unlock(&psr->lock);
1931 	}
1932 }
1933 
1934 static void _intel_psr_post_plane_update(const struct intel_atomic_state *state,
1935 					 const struct intel_crtc_state *crtc_state)
1936 {
1937 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1938 	struct intel_encoder *encoder;
1939 
1940 	if (!crtc_state->has_psr)
1941 		return;
1942 
1943 	for_each_intel_encoder_mask_with_psr(state->base.dev, encoder,
1944 					     crtc_state->uapi.encoder_mask) {
1945 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1946 		struct intel_psr *psr = &intel_dp->psr;
1947 
1948 		mutex_lock(&psr->lock);
1949 
1950 		if (psr->sink_not_reliable)
1951 			goto exit;
1952 
1953 		drm_WARN_ON(&dev_priv->drm, psr->enabled && !crtc_state->active_planes);
1954 
1955 		/* Only enable if there is active planes */
1956 		if (!psr->enabled && crtc_state->active_planes)
1957 			intel_psr_enable_locked(intel_dp, crtc_state);
1958 
1959 		/* Force a PSR exit when enabling CRC to avoid CRC timeouts */
1960 		if (crtc_state->crc_enabled && psr->enabled)
1961 			psr_force_hw_tracking_exit(intel_dp);
1962 
1963 exit:
1964 		mutex_unlock(&psr->lock);
1965 	}
1966 }
1967 
1968 void intel_psr_post_plane_update(const struct intel_atomic_state *state)
1969 {
1970 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1971 	struct intel_crtc_state *crtc_state;
1972 	struct intel_crtc *crtc;
1973 	int i;
1974 
1975 	if (!HAS_PSR(dev_priv))
1976 		return;
1977 
1978 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
1979 		_intel_psr_post_plane_update(state, crtc_state);
1980 }
1981 
1982 static int _psr2_ready_for_pipe_update_locked(struct intel_dp *intel_dp)
1983 {
1984 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1985 
1986 	/*
1987 	 * Any state lower than EDP_PSR2_STATUS_STATE_DEEP_SLEEP is enough.
1988 	 * As all higher states has bit 4 of PSR2 state set we can just wait for
1989 	 * EDP_PSR2_STATUS_STATE_DEEP_SLEEP to be cleared.
1990 	 */
1991 	return intel_de_wait_for_clear(dev_priv,
1992 				       EDP_PSR2_STATUS(intel_dp->psr.transcoder),
1993 				       EDP_PSR2_STATUS_STATE_DEEP_SLEEP, 50);
1994 }
1995 
1996 static int _psr1_ready_for_pipe_update_locked(struct intel_dp *intel_dp)
1997 {
1998 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1999 
2000 	/*
2001 	 * From bspec: Panel Self Refresh (BDW+)
2002 	 * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of
2003 	 * exit training time + 1.5 ms of aux channel handshake. 50 ms is
2004 	 * defensive enough to cover everything.
2005 	 */
2006 	return intel_de_wait_for_clear(dev_priv,
2007 				       EDP_PSR_STATUS(intel_dp->psr.transcoder),
2008 				       EDP_PSR_STATUS_STATE_MASK, 50);
2009 }
2010 
2011 /**
2012  * intel_psr_wait_for_idle_locked - wait for PSR be ready for a pipe update
2013  * @new_crtc_state: new CRTC state
2014  *
2015  * This function is expected to be called from pipe_update_start() where it is
2016  * not expected to race with PSR enable or disable.
2017  */
2018 void intel_psr_wait_for_idle_locked(const struct intel_crtc_state *new_crtc_state)
2019 {
2020 	struct drm_i915_private *dev_priv = to_i915(new_crtc_state->uapi.crtc->dev);
2021 	struct intel_encoder *encoder;
2022 
2023 	if (!new_crtc_state->has_psr)
2024 		return;
2025 
2026 	for_each_intel_encoder_mask_with_psr(&dev_priv->drm, encoder,
2027 					     new_crtc_state->uapi.encoder_mask) {
2028 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2029 		int ret;
2030 
2031 		lockdep_assert_held(&intel_dp->psr.lock);
2032 
2033 		if (!intel_dp->psr.enabled)
2034 			continue;
2035 
2036 		if (intel_dp->psr.psr2_enabled)
2037 			ret = _psr2_ready_for_pipe_update_locked(intel_dp);
2038 		else
2039 			ret = _psr1_ready_for_pipe_update_locked(intel_dp);
2040 
2041 		if (ret)
2042 			drm_err(&dev_priv->drm, "PSR wait timed out, atomic update may fail\n");
2043 	}
2044 }
2045 
2046 static bool __psr_wait_for_idle_locked(struct intel_dp *intel_dp)
2047 {
2048 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2049 	i915_reg_t reg;
2050 	u32 mask;
2051 	int err;
2052 
2053 	if (!intel_dp->psr.enabled)
2054 		return false;
2055 
2056 	if (intel_dp->psr.psr2_enabled) {
2057 		reg = EDP_PSR2_STATUS(intel_dp->psr.transcoder);
2058 		mask = EDP_PSR2_STATUS_STATE_MASK;
2059 	} else {
2060 		reg = EDP_PSR_STATUS(intel_dp->psr.transcoder);
2061 		mask = EDP_PSR_STATUS_STATE_MASK;
2062 	}
2063 
2064 	mutex_unlock(&intel_dp->psr.lock);
2065 
2066 	err = intel_de_wait_for_clear(dev_priv, reg, mask, 50);
2067 	if (err)
2068 		drm_err(&dev_priv->drm,
2069 			"Timed out waiting for PSR Idle for re-enable\n");
2070 
2071 	/* After the unlocked wait, verify that PSR is still wanted! */
2072 	mutex_lock(&intel_dp->psr.lock);
2073 	return err == 0 && intel_dp->psr.enabled;
2074 }
2075 
2076 static int intel_psr_fastset_force(struct drm_i915_private *dev_priv)
2077 {
2078 	struct drm_connector_list_iter conn_iter;
2079 	struct drm_modeset_acquire_ctx ctx;
2080 	struct drm_atomic_state *state;
2081 	struct drm_connector *conn;
2082 	int err = 0;
2083 
2084 	state = drm_atomic_state_alloc(&dev_priv->drm);
2085 	if (!state)
2086 		return -ENOMEM;
2087 
2088 	drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
2089 	state->acquire_ctx = &ctx;
2090 
2091 retry:
2092 
2093 	drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
2094 	drm_for_each_connector_iter(conn, &conn_iter) {
2095 		struct drm_connector_state *conn_state;
2096 		struct drm_crtc_state *crtc_state;
2097 
2098 		if (conn->connector_type != DRM_MODE_CONNECTOR_eDP)
2099 			continue;
2100 
2101 		conn_state = drm_atomic_get_connector_state(state, conn);
2102 		if (IS_ERR(conn_state)) {
2103 			err = PTR_ERR(conn_state);
2104 			break;
2105 		}
2106 
2107 		if (!conn_state->crtc)
2108 			continue;
2109 
2110 		crtc_state = drm_atomic_get_crtc_state(state, conn_state->crtc);
2111 		if (IS_ERR(crtc_state)) {
2112 			err = PTR_ERR(crtc_state);
2113 			break;
2114 		}
2115 
2116 		/* Mark mode as changed to trigger a pipe->update() */
2117 		crtc_state->mode_changed = true;
2118 	}
2119 	drm_connector_list_iter_end(&conn_iter);
2120 
2121 	if (err == 0)
2122 		err = drm_atomic_commit(state);
2123 
2124 	if (err == -EDEADLK) {
2125 		drm_atomic_state_clear(state);
2126 		err = drm_modeset_backoff(&ctx);
2127 		if (!err)
2128 			goto retry;
2129 	}
2130 
2131 	drm_modeset_drop_locks(&ctx);
2132 	drm_modeset_acquire_fini(&ctx);
2133 	drm_atomic_state_put(state);
2134 
2135 	return err;
2136 }
2137 
2138 int intel_psr_debug_set(struct intel_dp *intel_dp, u64 val)
2139 {
2140 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2141 	const u32 mode = val & I915_PSR_DEBUG_MODE_MASK;
2142 	u32 old_mode;
2143 	int ret;
2144 
2145 	if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) ||
2146 	    mode > I915_PSR_DEBUG_ENABLE_SEL_FETCH) {
2147 		drm_dbg_kms(&dev_priv->drm, "Invalid debug mask %llx\n", val);
2148 		return -EINVAL;
2149 	}
2150 
2151 	ret = mutex_lock_interruptible(&intel_dp->psr.lock);
2152 	if (ret)
2153 		return ret;
2154 
2155 	old_mode = intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK;
2156 	intel_dp->psr.debug = val;
2157 
2158 	/*
2159 	 * Do it right away if it's already enabled, otherwise it will be done
2160 	 * when enabling the source.
2161 	 */
2162 	if (intel_dp->psr.enabled)
2163 		psr_irq_control(intel_dp);
2164 
2165 	mutex_unlock(&intel_dp->psr.lock);
2166 
2167 	if (old_mode != mode)
2168 		ret = intel_psr_fastset_force(dev_priv);
2169 
2170 	return ret;
2171 }
2172 
2173 static void intel_psr_handle_irq(struct intel_dp *intel_dp)
2174 {
2175 	struct intel_psr *psr = &intel_dp->psr;
2176 
2177 	intel_psr_disable_locked(intel_dp);
2178 	psr->sink_not_reliable = true;
2179 	/* let's make sure that sink is awaken */
2180 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
2181 }
2182 
2183 static void intel_psr_work(struct work_struct *work)
2184 {
2185 	struct intel_dp *intel_dp =
2186 		container_of(work, typeof(*intel_dp), psr.work);
2187 
2188 	mutex_lock(&intel_dp->psr.lock);
2189 
2190 	if (!intel_dp->psr.enabled)
2191 		goto unlock;
2192 
2193 	if (READ_ONCE(intel_dp->psr.irq_aux_error))
2194 		intel_psr_handle_irq(intel_dp);
2195 
2196 	/*
2197 	 * We have to make sure PSR is ready for re-enable
2198 	 * otherwise it keeps disabled until next full enable/disable cycle.
2199 	 * PSR might take some time to get fully disabled
2200 	 * and be ready for re-enable.
2201 	 */
2202 	if (!__psr_wait_for_idle_locked(intel_dp))
2203 		goto unlock;
2204 
2205 	/*
2206 	 * The delayed work can race with an invalidate hence we need to
2207 	 * recheck. Since psr_flush first clears this and then reschedules we
2208 	 * won't ever miss a flush when bailing out here.
2209 	 */
2210 	if (intel_dp->psr.busy_frontbuffer_bits || intel_dp->psr.active)
2211 		goto unlock;
2212 
2213 	intel_psr_activate(intel_dp);
2214 unlock:
2215 	mutex_unlock(&intel_dp->psr.lock);
2216 }
2217 
2218 static void _psr_invalidate_handle(struct intel_dp *intel_dp)
2219 {
2220 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2221 
2222 	if (intel_dp->psr.psr2_sel_fetch_enabled) {
2223 		u32 val;
2224 
2225 		if (intel_dp->psr.psr2_sel_fetch_cff_enabled) {
2226 			/* Send one update otherwise lag is observed in screen */
2227 			intel_de_write(dev_priv, CURSURFLIVE(intel_dp->psr.pipe), 0);
2228 			return;
2229 		}
2230 
2231 		val = man_trk_ctl_enable_bit_get(dev_priv) |
2232 		      man_trk_ctl_partial_frame_bit_get(dev_priv) |
2233 		      man_trk_ctl_continuos_full_frame(dev_priv);
2234 		intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder), val);
2235 		intel_de_write(dev_priv, CURSURFLIVE(intel_dp->psr.pipe), 0);
2236 		intel_dp->psr.psr2_sel_fetch_cff_enabled = true;
2237 	} else {
2238 		intel_psr_exit(intel_dp);
2239 	}
2240 }
2241 
2242 /**
2243  * intel_psr_invalidate - Invalidate PSR
2244  * @dev_priv: i915 device
2245  * @frontbuffer_bits: frontbuffer plane tracking bits
2246  * @origin: which operation caused the invalidate
2247  *
2248  * Since the hardware frontbuffer tracking has gaps we need to integrate
2249  * with the software frontbuffer tracking. This function gets called every
2250  * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
2251  * disabled if the frontbuffer mask contains a buffer relevant to PSR.
2252  *
2253  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
2254  */
2255 void intel_psr_invalidate(struct drm_i915_private *dev_priv,
2256 			  unsigned frontbuffer_bits, enum fb_op_origin origin)
2257 {
2258 	struct intel_encoder *encoder;
2259 
2260 	if (origin == ORIGIN_FLIP)
2261 		return;
2262 
2263 	for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
2264 		unsigned int pipe_frontbuffer_bits = frontbuffer_bits;
2265 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2266 
2267 		mutex_lock(&intel_dp->psr.lock);
2268 		if (!intel_dp->psr.enabled) {
2269 			mutex_unlock(&intel_dp->psr.lock);
2270 			continue;
2271 		}
2272 
2273 		pipe_frontbuffer_bits &=
2274 			INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe);
2275 		intel_dp->psr.busy_frontbuffer_bits |= pipe_frontbuffer_bits;
2276 
2277 		if (pipe_frontbuffer_bits)
2278 			_psr_invalidate_handle(intel_dp);
2279 
2280 		mutex_unlock(&intel_dp->psr.lock);
2281 	}
2282 }
2283 /*
2284  * When we will be completely rely on PSR2 S/W tracking in future,
2285  * intel_psr_flush() will invalidate and flush the PSR for ORIGIN_FLIP
2286  * event also therefore tgl_dc3co_flush_locked() require to be changed
2287  * accordingly in future.
2288  */
2289 static void
2290 tgl_dc3co_flush_locked(struct intel_dp *intel_dp, unsigned int frontbuffer_bits,
2291 		       enum fb_op_origin origin)
2292 {
2293 	if (!intel_dp->psr.dc3co_exitline || !intel_dp->psr.psr2_enabled ||
2294 	    !intel_dp->psr.active)
2295 		return;
2296 
2297 	/*
2298 	 * At every frontbuffer flush flip event modified delay of delayed work,
2299 	 * when delayed work schedules that means display has been idle.
2300 	 */
2301 	if (!(frontbuffer_bits &
2302 	    INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe)))
2303 		return;
2304 
2305 	tgl_psr2_enable_dc3co(intel_dp);
2306 	mod_delayed_work(system_wq, &intel_dp->psr.dc3co_work,
2307 			 intel_dp->psr.dc3co_exit_delay);
2308 }
2309 
2310 static void _psr_flush_handle(struct intel_dp *intel_dp)
2311 {
2312 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2313 
2314 	if (intel_dp->psr.psr2_sel_fetch_enabled) {
2315 		if (intel_dp->psr.psr2_sel_fetch_cff_enabled) {
2316 			/* can we turn CFF off? */
2317 			if (intel_dp->psr.busy_frontbuffer_bits == 0) {
2318 				u32 val = man_trk_ctl_enable_bit_get(dev_priv) |
2319 					man_trk_ctl_partial_frame_bit_get(dev_priv) |
2320 					man_trk_ctl_single_full_frame_bit_get(dev_priv) |
2321 					man_trk_ctl_continuos_full_frame(dev_priv);
2322 
2323 				/*
2324 				 * Set psr2_sel_fetch_cff_enabled as false to allow selective
2325 				 * updates. Still keep cff bit enabled as we don't have proper
2326 				 * SU configuration in case update is sent for any reason after
2327 				 * sff bit gets cleared by the HW on next vblank.
2328 				 */
2329 				intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder),
2330 					       val);
2331 				intel_de_write(dev_priv, CURSURFLIVE(intel_dp->psr.pipe), 0);
2332 				intel_dp->psr.psr2_sel_fetch_cff_enabled = false;
2333 			}
2334 		} else {
2335 			/*
2336 			 * continuous full frame is disabled, only a single full
2337 			 * frame is required
2338 			 */
2339 			psr_force_hw_tracking_exit(intel_dp);
2340 		}
2341 	} else {
2342 		psr_force_hw_tracking_exit(intel_dp);
2343 
2344 		if (!intel_dp->psr.active && !intel_dp->psr.busy_frontbuffer_bits)
2345 			schedule_work(&intel_dp->psr.work);
2346 	}
2347 }
2348 
2349 /**
2350  * intel_psr_flush - Flush PSR
2351  * @dev_priv: i915 device
2352  * @frontbuffer_bits: frontbuffer plane tracking bits
2353  * @origin: which operation caused the flush
2354  *
2355  * Since the hardware frontbuffer tracking has gaps we need to integrate
2356  * with the software frontbuffer tracking. This function gets called every
2357  * time frontbuffer rendering has completed and flushed out to memory. PSR
2358  * can be enabled again if no other frontbuffer relevant to PSR is dirty.
2359  *
2360  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
2361  */
2362 void intel_psr_flush(struct drm_i915_private *dev_priv,
2363 		     unsigned frontbuffer_bits, enum fb_op_origin origin)
2364 {
2365 	struct intel_encoder *encoder;
2366 
2367 	for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
2368 		unsigned int pipe_frontbuffer_bits = frontbuffer_bits;
2369 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2370 
2371 		mutex_lock(&intel_dp->psr.lock);
2372 		if (!intel_dp->psr.enabled) {
2373 			mutex_unlock(&intel_dp->psr.lock);
2374 			continue;
2375 		}
2376 
2377 		pipe_frontbuffer_bits &=
2378 			INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe);
2379 		intel_dp->psr.busy_frontbuffer_bits &= ~pipe_frontbuffer_bits;
2380 
2381 		/*
2382 		 * If the PSR is paused by an explicit intel_psr_paused() call,
2383 		 * we have to ensure that the PSR is not activated until
2384 		 * intel_psr_resume() is called.
2385 		 */
2386 		if (intel_dp->psr.paused)
2387 			goto unlock;
2388 
2389 		if (origin == ORIGIN_FLIP ||
2390 		    (origin == ORIGIN_CURSOR_UPDATE &&
2391 		     !intel_dp->psr.psr2_sel_fetch_enabled)) {
2392 			tgl_dc3co_flush_locked(intel_dp, frontbuffer_bits, origin);
2393 			goto unlock;
2394 		}
2395 
2396 		if (pipe_frontbuffer_bits == 0)
2397 			goto unlock;
2398 
2399 		/* By definition flush = invalidate + flush */
2400 		_psr_flush_handle(intel_dp);
2401 unlock:
2402 		mutex_unlock(&intel_dp->psr.lock);
2403 	}
2404 }
2405 
2406 /**
2407  * intel_psr_init - Init basic PSR work and mutex.
2408  * @intel_dp: Intel DP
2409  *
2410  * This function is called after the initializing connector.
2411  * (the initializing of connector treats the handling of connector capabilities)
2412  * And it initializes basic PSR stuff for each DP Encoder.
2413  */
2414 void intel_psr_init(struct intel_dp *intel_dp)
2415 {
2416 	struct intel_connector *connector = intel_dp->attached_connector;
2417 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2418 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2419 
2420 	if (!HAS_PSR(dev_priv))
2421 		return;
2422 
2423 	/*
2424 	 * HSW spec explicitly says PSR is tied to port A.
2425 	 * BDW+ platforms have a instance of PSR registers per transcoder but
2426 	 * BDW, GEN9 and GEN11 are not validated by HW team in other transcoder
2427 	 * than eDP one.
2428 	 * For now it only supports one instance of PSR for BDW, GEN9 and GEN11.
2429 	 * So lets keep it hardcoded to PORT_A for BDW, GEN9 and GEN11.
2430 	 * But GEN12 supports a instance of PSR registers per transcoder.
2431 	 */
2432 	if (DISPLAY_VER(dev_priv) < 12 && dig_port->base.port != PORT_A) {
2433 		drm_dbg_kms(&dev_priv->drm,
2434 			    "PSR condition failed: Port not supported\n");
2435 		return;
2436 	}
2437 
2438 	intel_dp->psr.source_support = true;
2439 
2440 	/* Set link_standby x link_off defaults */
2441 	if (DISPLAY_VER(dev_priv) < 12)
2442 		/* For new platforms up to TGL let's respect VBT back again */
2443 		intel_dp->psr.link_standby = connector->panel.vbt.psr.full_link;
2444 
2445 	INIT_WORK(&intel_dp->psr.work, intel_psr_work);
2446 	INIT_DELAYED_WORK(&intel_dp->psr.dc3co_work, tgl_dc3co_disable_work);
2447 	mutex_init(&intel_dp->psr.lock);
2448 }
2449 
2450 static int psr_get_status_and_error_status(struct intel_dp *intel_dp,
2451 					   u8 *status, u8 *error_status)
2452 {
2453 	struct drm_dp_aux *aux = &intel_dp->aux;
2454 	int ret;
2455 
2456 	ret = drm_dp_dpcd_readb(aux, DP_PSR_STATUS, status);
2457 	if (ret != 1)
2458 		return ret;
2459 
2460 	ret = drm_dp_dpcd_readb(aux, DP_PSR_ERROR_STATUS, error_status);
2461 	if (ret != 1)
2462 		return ret;
2463 
2464 	*status = *status & DP_PSR_SINK_STATE_MASK;
2465 
2466 	return 0;
2467 }
2468 
2469 static void psr_alpm_check(struct intel_dp *intel_dp)
2470 {
2471 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2472 	struct drm_dp_aux *aux = &intel_dp->aux;
2473 	struct intel_psr *psr = &intel_dp->psr;
2474 	u8 val;
2475 	int r;
2476 
2477 	if (!psr->psr2_enabled)
2478 		return;
2479 
2480 	r = drm_dp_dpcd_readb(aux, DP_RECEIVER_ALPM_STATUS, &val);
2481 	if (r != 1) {
2482 		drm_err(&dev_priv->drm, "Error reading ALPM status\n");
2483 		return;
2484 	}
2485 
2486 	if (val & DP_ALPM_LOCK_TIMEOUT_ERROR) {
2487 		intel_psr_disable_locked(intel_dp);
2488 		psr->sink_not_reliable = true;
2489 		drm_dbg_kms(&dev_priv->drm,
2490 			    "ALPM lock timeout error, disabling PSR\n");
2491 
2492 		/* Clearing error */
2493 		drm_dp_dpcd_writeb(aux, DP_RECEIVER_ALPM_STATUS, val);
2494 	}
2495 }
2496 
2497 static void psr_capability_changed_check(struct intel_dp *intel_dp)
2498 {
2499 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2500 	struct intel_psr *psr = &intel_dp->psr;
2501 	u8 val;
2502 	int r;
2503 
2504 	r = drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ESI, &val);
2505 	if (r != 1) {
2506 		drm_err(&dev_priv->drm, "Error reading DP_PSR_ESI\n");
2507 		return;
2508 	}
2509 
2510 	if (val & DP_PSR_CAPS_CHANGE) {
2511 		intel_psr_disable_locked(intel_dp);
2512 		psr->sink_not_reliable = true;
2513 		drm_dbg_kms(&dev_priv->drm,
2514 			    "Sink PSR capability changed, disabling PSR\n");
2515 
2516 		/* Clearing it */
2517 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ESI, val);
2518 	}
2519 }
2520 
2521 void intel_psr_short_pulse(struct intel_dp *intel_dp)
2522 {
2523 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2524 	struct intel_psr *psr = &intel_dp->psr;
2525 	u8 status, error_status;
2526 	const u8 errors = DP_PSR_RFB_STORAGE_ERROR |
2527 			  DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR |
2528 			  DP_PSR_LINK_CRC_ERROR;
2529 
2530 	if (!CAN_PSR(intel_dp))
2531 		return;
2532 
2533 	mutex_lock(&psr->lock);
2534 
2535 	if (!psr->enabled)
2536 		goto exit;
2537 
2538 	if (psr_get_status_and_error_status(intel_dp, &status, &error_status)) {
2539 		drm_err(&dev_priv->drm,
2540 			"Error reading PSR status or error status\n");
2541 		goto exit;
2542 	}
2543 
2544 	if (status == DP_PSR_SINK_INTERNAL_ERROR || (error_status & errors)) {
2545 		intel_psr_disable_locked(intel_dp);
2546 		psr->sink_not_reliable = true;
2547 	}
2548 
2549 	if (status == DP_PSR_SINK_INTERNAL_ERROR && !error_status)
2550 		drm_dbg_kms(&dev_priv->drm,
2551 			    "PSR sink internal error, disabling PSR\n");
2552 	if (error_status & DP_PSR_RFB_STORAGE_ERROR)
2553 		drm_dbg_kms(&dev_priv->drm,
2554 			    "PSR RFB storage error, disabling PSR\n");
2555 	if (error_status & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR)
2556 		drm_dbg_kms(&dev_priv->drm,
2557 			    "PSR VSC SDP uncorrectable error, disabling PSR\n");
2558 	if (error_status & DP_PSR_LINK_CRC_ERROR)
2559 		drm_dbg_kms(&dev_priv->drm,
2560 			    "PSR Link CRC error, disabling PSR\n");
2561 
2562 	if (error_status & ~errors)
2563 		drm_err(&dev_priv->drm,
2564 			"PSR_ERROR_STATUS unhandled errors %x\n",
2565 			error_status & ~errors);
2566 	/* clear status register */
2567 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, error_status);
2568 
2569 	psr_alpm_check(intel_dp);
2570 	psr_capability_changed_check(intel_dp);
2571 
2572 exit:
2573 	mutex_unlock(&psr->lock);
2574 }
2575 
2576 bool intel_psr_enabled(struct intel_dp *intel_dp)
2577 {
2578 	bool ret;
2579 
2580 	if (!CAN_PSR(intel_dp))
2581 		return false;
2582 
2583 	mutex_lock(&intel_dp->psr.lock);
2584 	ret = intel_dp->psr.enabled;
2585 	mutex_unlock(&intel_dp->psr.lock);
2586 
2587 	return ret;
2588 }
2589 
2590 /**
2591  * intel_psr_lock - grab PSR lock
2592  * @crtc_state: the crtc state
2593  *
2594  * This is initially meant to be used by around CRTC update, when
2595  * vblank sensitive registers are updated and we need grab the lock
2596  * before it to avoid vblank evasion.
2597  */
2598 void intel_psr_lock(const struct intel_crtc_state *crtc_state)
2599 {
2600 	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
2601 	struct intel_encoder *encoder;
2602 
2603 	if (!crtc_state->has_psr)
2604 		return;
2605 
2606 	for_each_intel_encoder_mask_with_psr(&i915->drm, encoder,
2607 					     crtc_state->uapi.encoder_mask) {
2608 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2609 
2610 		mutex_lock(&intel_dp->psr.lock);
2611 		break;
2612 	}
2613 }
2614 
2615 /**
2616  * intel_psr_unlock - release PSR lock
2617  * @crtc_state: the crtc state
2618  *
2619  * Release the PSR lock that was held during pipe update.
2620  */
2621 void intel_psr_unlock(const struct intel_crtc_state *crtc_state)
2622 {
2623 	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
2624 	struct intel_encoder *encoder;
2625 
2626 	if (!crtc_state->has_psr)
2627 		return;
2628 
2629 	for_each_intel_encoder_mask_with_psr(&i915->drm, encoder,
2630 					     crtc_state->uapi.encoder_mask) {
2631 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2632 
2633 		mutex_unlock(&intel_dp->psr.lock);
2634 		break;
2635 	}
2636 }
2637