1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <drm/drm_atomic_helper.h>
25 
26 #include "display/intel_dp.h"
27 
28 #include "i915_drv.h"
29 #include "intel_display_types.h"
30 #include "intel_psr.h"
31 #include "intel_sprite.h"
32 
33 /**
34  * DOC: Panel Self Refresh (PSR/SRD)
35  *
36  * Since Haswell Display controller supports Panel Self-Refresh on display
37  * panels witch have a remote frame buffer (RFB) implemented according to PSR
38  * spec in eDP1.3. PSR feature allows the display to go to lower standby states
39  * when system is idle but display is on as it eliminates display refresh
40  * request to DDR memory completely as long as the frame buffer for that
41  * display is unchanged.
42  *
43  * Panel Self Refresh must be supported by both Hardware (source) and
44  * Panel (sink).
45  *
46  * PSR saves power by caching the framebuffer in the panel RFB, which allows us
47  * to power down the link and memory controller. For DSI panels the same idea
48  * is called "manual mode".
49  *
50  * The implementation uses the hardware-based PSR support which automatically
51  * enters/exits self-refresh mode. The hardware takes care of sending the
52  * required DP aux message and could even retrain the link (that part isn't
53  * enabled yet though). The hardware also keeps track of any frontbuffer
54  * changes to know when to exit self-refresh mode again. Unfortunately that
55  * part doesn't work too well, hence why the i915 PSR support uses the
56  * software frontbuffer tracking to make sure it doesn't miss a screen
57  * update. For this integration intel_psr_invalidate() and intel_psr_flush()
58  * get called by the frontbuffer tracking code. Note that because of locking
59  * issues the self-refresh re-enable code is done from a work queue, which
60  * must be correctly synchronized/cancelled when shutting down the pipe."
61  */
62 
63 static bool psr_global_enabled(u32 debug)
64 {
65 	switch (debug & I915_PSR_DEBUG_MODE_MASK) {
66 	case I915_PSR_DEBUG_DEFAULT:
67 		return i915_modparams.enable_psr;
68 	case I915_PSR_DEBUG_DISABLE:
69 		return false;
70 	default:
71 		return true;
72 	}
73 }
74 
75 static bool intel_psr2_enabled(struct drm_i915_private *dev_priv,
76 			       const struct intel_crtc_state *crtc_state)
77 {
78 	/* Cannot enable DSC and PSR2 simultaneously */
79 	WARN_ON(crtc_state->dsc_params.compression_enable &&
80 		crtc_state->has_psr2);
81 
82 	switch (dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
83 	case I915_PSR_DEBUG_DISABLE:
84 	case I915_PSR_DEBUG_FORCE_PSR1:
85 		return false;
86 	default:
87 		return crtc_state->has_psr2;
88 	}
89 }
90 
91 static int edp_psr_shift(enum transcoder cpu_transcoder)
92 {
93 	switch (cpu_transcoder) {
94 	case TRANSCODER_A:
95 		return EDP_PSR_TRANSCODER_A_SHIFT;
96 	case TRANSCODER_B:
97 		return EDP_PSR_TRANSCODER_B_SHIFT;
98 	case TRANSCODER_C:
99 		return EDP_PSR_TRANSCODER_C_SHIFT;
100 	default:
101 		MISSING_CASE(cpu_transcoder);
102 		/* fallthrough */
103 	case TRANSCODER_EDP:
104 		return EDP_PSR_TRANSCODER_EDP_SHIFT;
105 	}
106 }
107 
108 void intel_psr_irq_control(struct drm_i915_private *dev_priv, u32 debug)
109 {
110 	u32 debug_mask, mask;
111 	enum transcoder cpu_transcoder;
112 	u32 transcoders = BIT(TRANSCODER_EDP);
113 
114 	if (INTEL_GEN(dev_priv) >= 8)
115 		transcoders |= BIT(TRANSCODER_A) |
116 			       BIT(TRANSCODER_B) |
117 			       BIT(TRANSCODER_C);
118 
119 	debug_mask = 0;
120 	mask = 0;
121 	for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) {
122 		int shift = edp_psr_shift(cpu_transcoder);
123 
124 		mask |= EDP_PSR_ERROR(shift);
125 		debug_mask |= EDP_PSR_POST_EXIT(shift) |
126 			      EDP_PSR_PRE_ENTRY(shift);
127 	}
128 
129 	if (debug & I915_PSR_DEBUG_IRQ)
130 		mask |= debug_mask;
131 
132 	I915_WRITE(EDP_PSR_IMR, ~mask);
133 }
134 
135 static void psr_event_print(u32 val, bool psr2_enabled)
136 {
137 	DRM_DEBUG_KMS("PSR exit events: 0x%x\n", val);
138 	if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE)
139 		DRM_DEBUG_KMS("\tPSR2 watchdog timer expired\n");
140 	if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled)
141 		DRM_DEBUG_KMS("\tPSR2 disabled\n");
142 	if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN)
143 		DRM_DEBUG_KMS("\tSU dirty FIFO underrun\n");
144 	if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN)
145 		DRM_DEBUG_KMS("\tSU CRC FIFO underrun\n");
146 	if (val & PSR_EVENT_GRAPHICS_RESET)
147 		DRM_DEBUG_KMS("\tGraphics reset\n");
148 	if (val & PSR_EVENT_PCH_INTERRUPT)
149 		DRM_DEBUG_KMS("\tPCH interrupt\n");
150 	if (val & PSR_EVENT_MEMORY_UP)
151 		DRM_DEBUG_KMS("\tMemory up\n");
152 	if (val & PSR_EVENT_FRONT_BUFFER_MODIFY)
153 		DRM_DEBUG_KMS("\tFront buffer modification\n");
154 	if (val & PSR_EVENT_WD_TIMER_EXPIRE)
155 		DRM_DEBUG_KMS("\tPSR watchdog timer expired\n");
156 	if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE)
157 		DRM_DEBUG_KMS("\tPIPE registers updated\n");
158 	if (val & PSR_EVENT_REGISTER_UPDATE)
159 		DRM_DEBUG_KMS("\tRegister updated\n");
160 	if (val & PSR_EVENT_HDCP_ENABLE)
161 		DRM_DEBUG_KMS("\tHDCP enabled\n");
162 	if (val & PSR_EVENT_KVMR_SESSION_ENABLE)
163 		DRM_DEBUG_KMS("\tKVMR session enabled\n");
164 	if (val & PSR_EVENT_VBI_ENABLE)
165 		DRM_DEBUG_KMS("\tVBI enabled\n");
166 	if (val & PSR_EVENT_LPSP_MODE_EXIT)
167 		DRM_DEBUG_KMS("\tLPSP mode exited\n");
168 	if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled)
169 		DRM_DEBUG_KMS("\tPSR disabled\n");
170 }
171 
172 void intel_psr_irq_handler(struct drm_i915_private *dev_priv, u32 psr_iir)
173 {
174 	u32 transcoders = BIT(TRANSCODER_EDP);
175 	enum transcoder cpu_transcoder;
176 	ktime_t time_ns =  ktime_get();
177 	u32 mask = 0;
178 
179 	if (INTEL_GEN(dev_priv) >= 8)
180 		transcoders |= BIT(TRANSCODER_A) |
181 			       BIT(TRANSCODER_B) |
182 			       BIT(TRANSCODER_C);
183 
184 	for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) {
185 		int shift = edp_psr_shift(cpu_transcoder);
186 
187 		if (psr_iir & EDP_PSR_ERROR(shift)) {
188 			DRM_WARN("[transcoder %s] PSR aux error\n",
189 				 transcoder_name(cpu_transcoder));
190 
191 			dev_priv->psr.irq_aux_error = true;
192 
193 			/*
194 			 * If this interruption is not masked it will keep
195 			 * interrupting so fast that it prevents the scheduled
196 			 * work to run.
197 			 * Also after a PSR error, we don't want to arm PSR
198 			 * again so we don't care about unmask the interruption
199 			 * or unset irq_aux_error.
200 			 */
201 			mask |= EDP_PSR_ERROR(shift);
202 		}
203 
204 		if (psr_iir & EDP_PSR_PRE_ENTRY(shift)) {
205 			dev_priv->psr.last_entry_attempt = time_ns;
206 			DRM_DEBUG_KMS("[transcoder %s] PSR entry attempt in 2 vblanks\n",
207 				      transcoder_name(cpu_transcoder));
208 		}
209 
210 		if (psr_iir & EDP_PSR_POST_EXIT(shift)) {
211 			dev_priv->psr.last_exit = time_ns;
212 			DRM_DEBUG_KMS("[transcoder %s] PSR exit completed\n",
213 				      transcoder_name(cpu_transcoder));
214 
215 			if (INTEL_GEN(dev_priv) >= 9) {
216 				u32 val = I915_READ(PSR_EVENT(cpu_transcoder));
217 				bool psr2_enabled = dev_priv->psr.psr2_enabled;
218 
219 				I915_WRITE(PSR_EVENT(cpu_transcoder), val);
220 				psr_event_print(val, psr2_enabled);
221 			}
222 		}
223 	}
224 
225 	if (mask) {
226 		mask |= I915_READ(EDP_PSR_IMR);
227 		I915_WRITE(EDP_PSR_IMR, mask);
228 
229 		schedule_work(&dev_priv->psr.work);
230 	}
231 }
232 
233 static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
234 {
235 	u8 alpm_caps = 0;
236 
237 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
238 			      &alpm_caps) != 1)
239 		return false;
240 	return alpm_caps & DP_ALPM_CAP;
241 }
242 
243 static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
244 {
245 	u8 val = 8; /* assume the worst if we can't read the value */
246 
247 	if (drm_dp_dpcd_readb(&intel_dp->aux,
248 			      DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
249 		val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
250 	else
251 		DRM_DEBUG_KMS("Unable to get sink synchronization latency, assuming 8 frames\n");
252 	return val;
253 }
254 
255 static u16 intel_dp_get_su_x_granulartiy(struct intel_dp *intel_dp)
256 {
257 	u16 val;
258 	ssize_t r;
259 
260 	/*
261 	 * Returning the default X granularity if granularity not required or
262 	 * if DPCD read fails
263 	 */
264 	if (!(intel_dp->psr_dpcd[1] & DP_PSR2_SU_GRANULARITY_REQUIRED))
265 		return 4;
266 
267 	r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_X_GRANULARITY, &val, 2);
268 	if (r != 2)
269 		DRM_DEBUG_KMS("Unable to read DP_PSR2_SU_X_GRANULARITY\n");
270 
271 	/*
272 	 * Spec says that if the value read is 0 the default granularity should
273 	 * be used instead.
274 	 */
275 	if (r != 2 || val == 0)
276 		val = 4;
277 
278 	return val;
279 }
280 
281 void intel_psr_init_dpcd(struct intel_dp *intel_dp)
282 {
283 	struct drm_i915_private *dev_priv =
284 		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
285 
286 	drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
287 			 sizeof(intel_dp->psr_dpcd));
288 
289 	if (!intel_dp->psr_dpcd[0])
290 		return;
291 	DRM_DEBUG_KMS("eDP panel supports PSR version %x\n",
292 		      intel_dp->psr_dpcd[0]);
293 
294 	if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_PSR)) {
295 		DRM_DEBUG_KMS("PSR support not currently available for this panel\n");
296 		return;
297 	}
298 
299 	if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
300 		DRM_DEBUG_KMS("Panel lacks power state control, PSR cannot be enabled\n");
301 		return;
302 	}
303 
304 	dev_priv->psr.sink_support = true;
305 	dev_priv->psr.sink_sync_latency =
306 		intel_dp_get_sink_sync_latency(intel_dp);
307 
308 	WARN_ON(dev_priv->psr.dp);
309 	dev_priv->psr.dp = intel_dp;
310 
311 	if (INTEL_GEN(dev_priv) >= 9 &&
312 	    (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) {
313 		bool y_req = intel_dp->psr_dpcd[1] &
314 			     DP_PSR2_SU_Y_COORDINATE_REQUIRED;
315 		bool alpm = intel_dp_get_alpm_status(intel_dp);
316 
317 		/*
318 		 * All panels that supports PSR version 03h (PSR2 +
319 		 * Y-coordinate) can handle Y-coordinates in VSC but we are
320 		 * only sure that it is going to be used when required by the
321 		 * panel. This way panel is capable to do selective update
322 		 * without a aux frame sync.
323 		 *
324 		 * To support PSR version 02h and PSR version 03h without
325 		 * Y-coordinate requirement panels we would need to enable
326 		 * GTC first.
327 		 */
328 		dev_priv->psr.sink_psr2_support = y_req && alpm;
329 		DRM_DEBUG_KMS("PSR2 %ssupported\n",
330 			      dev_priv->psr.sink_psr2_support ? "" : "not ");
331 
332 		if (dev_priv->psr.sink_psr2_support) {
333 			dev_priv->psr.colorimetry_support =
334 				intel_dp_get_colorimetry_status(intel_dp);
335 			dev_priv->psr.su_x_granularity =
336 				intel_dp_get_su_x_granulartiy(intel_dp);
337 		}
338 	}
339 }
340 
341 static void intel_psr_setup_vsc(struct intel_dp *intel_dp,
342 				const struct intel_crtc_state *crtc_state)
343 {
344 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
345 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
346 	struct dp_sdp psr_vsc;
347 
348 	if (dev_priv->psr.psr2_enabled) {
349 		/* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
350 		memset(&psr_vsc, 0, sizeof(psr_vsc));
351 		psr_vsc.sdp_header.HB0 = 0;
352 		psr_vsc.sdp_header.HB1 = 0x7;
353 		if (dev_priv->psr.colorimetry_support) {
354 			psr_vsc.sdp_header.HB2 = 0x5;
355 			psr_vsc.sdp_header.HB3 = 0x13;
356 		} else {
357 			psr_vsc.sdp_header.HB2 = 0x4;
358 			psr_vsc.sdp_header.HB3 = 0xe;
359 		}
360 	} else {
361 		/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
362 		memset(&psr_vsc, 0, sizeof(psr_vsc));
363 		psr_vsc.sdp_header.HB0 = 0;
364 		psr_vsc.sdp_header.HB1 = 0x7;
365 		psr_vsc.sdp_header.HB2 = 0x2;
366 		psr_vsc.sdp_header.HB3 = 0x8;
367 	}
368 
369 	intel_dig_port->write_infoframe(&intel_dig_port->base,
370 					crtc_state,
371 					DP_SDP_VSC, &psr_vsc, sizeof(psr_vsc));
372 }
373 
374 static void hsw_psr_setup_aux(struct intel_dp *intel_dp)
375 {
376 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
377 	u32 aux_clock_divider, aux_ctl;
378 	int i;
379 	static const u8 aux_msg[] = {
380 		[0] = DP_AUX_NATIVE_WRITE << 4,
381 		[1] = DP_SET_POWER >> 8,
382 		[2] = DP_SET_POWER & 0xff,
383 		[3] = 1 - 1,
384 		[4] = DP_SET_POWER_D0,
385 	};
386 	u32 psr_aux_mask = EDP_PSR_AUX_CTL_TIME_OUT_MASK |
387 			   EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK |
388 			   EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK |
389 			   EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK;
390 
391 	BUILD_BUG_ON(sizeof(aux_msg) > 20);
392 	for (i = 0; i < sizeof(aux_msg); i += 4)
393 		I915_WRITE(EDP_PSR_AUX_DATA(i >> 2),
394 			   intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
395 
396 	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
397 
398 	/* Start with bits set for DDI_AUX_CTL register */
399 	aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, sizeof(aux_msg),
400 					     aux_clock_divider);
401 
402 	/* Select only valid bits for SRD_AUX_CTL */
403 	aux_ctl &= psr_aux_mask;
404 	I915_WRITE(EDP_PSR_AUX_CTL, aux_ctl);
405 }
406 
407 static void intel_psr_enable_sink(struct intel_dp *intel_dp)
408 {
409 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
410 	u8 dpcd_val = DP_PSR_ENABLE;
411 
412 	/* Enable ALPM at sink for psr2 */
413 	if (dev_priv->psr.psr2_enabled) {
414 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG,
415 				   DP_ALPM_ENABLE);
416 		dpcd_val |= DP_PSR_ENABLE_PSR2 | DP_PSR_IRQ_HPD_WITH_CRC_ERRORS;
417 	} else {
418 		if (dev_priv->psr.link_standby)
419 			dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE;
420 
421 		if (INTEL_GEN(dev_priv) >= 8)
422 			dpcd_val |= DP_PSR_CRC_VERIFICATION;
423 	}
424 
425 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val);
426 
427 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
428 }
429 
430 static u32 intel_psr1_get_tp_time(struct intel_dp *intel_dp)
431 {
432 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
433 	u32 val = 0;
434 
435 	if (INTEL_GEN(dev_priv) >= 11)
436 		val |= EDP_PSR_TP4_TIME_0US;
437 
438 	if (dev_priv->vbt.psr.tp1_wakeup_time_us == 0)
439 		val |= EDP_PSR_TP1_TIME_0us;
440 	else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 100)
441 		val |= EDP_PSR_TP1_TIME_100us;
442 	else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 500)
443 		val |= EDP_PSR_TP1_TIME_500us;
444 	else
445 		val |= EDP_PSR_TP1_TIME_2500us;
446 
447 	if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us == 0)
448 		val |= EDP_PSR_TP2_TP3_TIME_0us;
449 	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
450 		val |= EDP_PSR_TP2_TP3_TIME_100us;
451 	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
452 		val |= EDP_PSR_TP2_TP3_TIME_500us;
453 	else
454 		val |= EDP_PSR_TP2_TP3_TIME_2500us;
455 
456 	if (intel_dp_source_supports_hbr2(intel_dp) &&
457 	    drm_dp_tps3_supported(intel_dp->dpcd))
458 		val |= EDP_PSR_TP1_TP3_SEL;
459 	else
460 		val |= EDP_PSR_TP1_TP2_SEL;
461 
462 	return val;
463 }
464 
465 static void hsw_activate_psr1(struct intel_dp *intel_dp)
466 {
467 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
468 	u32 max_sleep_time = 0x1f;
469 	u32 val = EDP_PSR_ENABLE;
470 
471 	/* Let's use 6 as the minimum to cover all known cases including the
472 	 * off-by-one issue that HW has in some cases.
473 	 */
474 	int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
475 
476 	/* sink_sync_latency of 8 means source has to wait for more than 8
477 	 * frames, we'll go with 9 frames for now
478 	 */
479 	idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
480 	val |= idle_frames << EDP_PSR_IDLE_FRAME_SHIFT;
481 
482 	val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
483 	if (IS_HASWELL(dev_priv))
484 		val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
485 
486 	if (dev_priv->psr.link_standby)
487 		val |= EDP_PSR_LINK_STANDBY;
488 
489 	val |= intel_psr1_get_tp_time(intel_dp);
490 
491 	if (INTEL_GEN(dev_priv) >= 8)
492 		val |= EDP_PSR_CRC_ENABLE;
493 
494 	val |= I915_READ(EDP_PSR_CTL) & EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK;
495 	I915_WRITE(EDP_PSR_CTL, val);
496 }
497 
498 static void hsw_activate_psr2(struct intel_dp *intel_dp)
499 {
500 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
501 	u32 val;
502 
503 	/* Let's use 6 as the minimum to cover all known cases including the
504 	 * off-by-one issue that HW has in some cases.
505 	 */
506 	int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
507 
508 	idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
509 	val = idle_frames << EDP_PSR2_IDLE_FRAME_SHIFT;
510 
511 	val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE;
512 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
513 		val |= EDP_Y_COORDINATE_ENABLE;
514 
515 	val |= EDP_PSR2_FRAME_BEFORE_SU(dev_priv->psr.sink_sync_latency + 1);
516 
517 	if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us >= 0 &&
518 	    dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 50)
519 		val |= EDP_PSR2_TP2_TIME_50us;
520 	else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 100)
521 		val |= EDP_PSR2_TP2_TIME_100us;
522 	else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 500)
523 		val |= EDP_PSR2_TP2_TIME_500us;
524 	else
525 		val |= EDP_PSR2_TP2_TIME_2500us;
526 
527 	/*
528 	 * PSR2 HW is incorrectly using EDP_PSR_TP1_TP3_SEL and BSpec is
529 	 * recommending keep this bit unset while PSR2 is enabled.
530 	 */
531 	I915_WRITE(EDP_PSR_CTL, 0);
532 
533 	I915_WRITE(EDP_PSR2_CTL, val);
534 }
535 
536 static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
537 				    struct intel_crtc_state *crtc_state)
538 {
539 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
540 	int crtc_hdisplay = crtc_state->base.adjusted_mode.crtc_hdisplay;
541 	int crtc_vdisplay = crtc_state->base.adjusted_mode.crtc_vdisplay;
542 	int psr_max_h = 0, psr_max_v = 0;
543 
544 	if (!dev_priv->psr.sink_psr2_support)
545 		return false;
546 
547 	/*
548 	 * DSC and PSR2 cannot be enabled simultaneously. If a requested
549 	 * resolution requires DSC to be enabled, priority is given to DSC
550 	 * over PSR2.
551 	 */
552 	if (crtc_state->dsc_params.compression_enable) {
553 		DRM_DEBUG_KMS("PSR2 cannot be enabled since DSC is enabled\n");
554 		return false;
555 	}
556 
557 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
558 		psr_max_h = 4096;
559 		psr_max_v = 2304;
560 	} else if (IS_GEN(dev_priv, 9)) {
561 		psr_max_h = 3640;
562 		psr_max_v = 2304;
563 	}
564 
565 	if (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v) {
566 		DRM_DEBUG_KMS("PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
567 			      crtc_hdisplay, crtc_vdisplay,
568 			      psr_max_h, psr_max_v);
569 		return false;
570 	}
571 
572 	/*
573 	 * HW sends SU blocks of size four scan lines, which means the starting
574 	 * X coordinate and Y granularity requirements will always be met. We
575 	 * only need to validate the SU block width is a multiple of
576 	 * x granularity.
577 	 */
578 	if (crtc_hdisplay % dev_priv->psr.su_x_granularity) {
579 		DRM_DEBUG_KMS("PSR2 not enabled, hdisplay(%d) not multiple of %d\n",
580 			      crtc_hdisplay, dev_priv->psr.su_x_granularity);
581 		return false;
582 	}
583 
584 	if (crtc_state->crc_enabled) {
585 		DRM_DEBUG_KMS("PSR2 not enabled because it would inhibit pipe CRC calculation\n");
586 		return false;
587 	}
588 
589 	return true;
590 }
591 
592 void intel_psr_compute_config(struct intel_dp *intel_dp,
593 			      struct intel_crtc_state *crtc_state)
594 {
595 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
596 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
597 	const struct drm_display_mode *adjusted_mode =
598 		&crtc_state->base.adjusted_mode;
599 	int psr_setup_time;
600 
601 	if (!CAN_PSR(dev_priv))
602 		return;
603 
604 	if (intel_dp != dev_priv->psr.dp)
605 		return;
606 
607 	/*
608 	 * HSW spec explicitly says PSR is tied to port A.
609 	 * BDW+ platforms with DDI implementation of PSR have different
610 	 * PSR registers per transcoder and we only implement transcoder EDP
611 	 * ones. Since by Display design transcoder EDP is tied to port A
612 	 * we can safely escape based on the port A.
613 	 */
614 	if (dig_port->base.port != PORT_A) {
615 		DRM_DEBUG_KMS("PSR condition failed: Port not supported\n");
616 		return;
617 	}
618 
619 	if (dev_priv->psr.sink_not_reliable) {
620 		DRM_DEBUG_KMS("PSR sink implementation is not reliable\n");
621 		return;
622 	}
623 
624 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
625 		DRM_DEBUG_KMS("PSR condition failed: Interlaced mode enabled\n");
626 		return;
627 	}
628 
629 	psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
630 	if (psr_setup_time < 0) {
631 		DRM_DEBUG_KMS("PSR condition failed: Invalid PSR setup time (0x%02x)\n",
632 			      intel_dp->psr_dpcd[1]);
633 		return;
634 	}
635 
636 	if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
637 	    adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
638 		DRM_DEBUG_KMS("PSR condition failed: PSR setup time (%d us) too long\n",
639 			      psr_setup_time);
640 		return;
641 	}
642 
643 	crtc_state->has_psr = true;
644 	crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state);
645 }
646 
647 static void intel_psr_activate(struct intel_dp *intel_dp)
648 {
649 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
650 
651 	if (INTEL_GEN(dev_priv) >= 9)
652 		WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
653 	WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
654 	WARN_ON(dev_priv->psr.active);
655 	lockdep_assert_held(&dev_priv->psr.lock);
656 
657 	/* psr1 and psr2 are mutually exclusive.*/
658 	if (dev_priv->psr.psr2_enabled)
659 		hsw_activate_psr2(intel_dp);
660 	else
661 		hsw_activate_psr1(intel_dp);
662 
663 	dev_priv->psr.active = true;
664 }
665 
666 static i915_reg_t gen9_chicken_trans_reg(struct drm_i915_private *dev_priv,
667 					 enum transcoder cpu_transcoder)
668 {
669 	static const i915_reg_t regs[] = {
670 		[TRANSCODER_A] = CHICKEN_TRANS_A,
671 		[TRANSCODER_B] = CHICKEN_TRANS_B,
672 		[TRANSCODER_C] = CHICKEN_TRANS_C,
673 		[TRANSCODER_EDP] = CHICKEN_TRANS_EDP,
674 	};
675 
676 	WARN_ON(INTEL_GEN(dev_priv) < 9);
677 
678 	if (WARN_ON(cpu_transcoder >= ARRAY_SIZE(regs) ||
679 		    !regs[cpu_transcoder].reg))
680 		cpu_transcoder = TRANSCODER_A;
681 
682 	return regs[cpu_transcoder];
683 }
684 
685 static void intel_psr_enable_source(struct intel_dp *intel_dp,
686 				    const struct intel_crtc_state *crtc_state)
687 {
688 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
689 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
690 	u32 mask;
691 
692 	/* Only HSW and BDW have PSR AUX registers that need to be setup. SKL+
693 	 * use hardcoded values PSR AUX transactions
694 	 */
695 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
696 		hsw_psr_setup_aux(intel_dp);
697 
698 	if (dev_priv->psr.psr2_enabled && (IS_GEN(dev_priv, 9) &&
699 					   !IS_GEMINILAKE(dev_priv))) {
700 		i915_reg_t reg = gen9_chicken_trans_reg(dev_priv,
701 							cpu_transcoder);
702 		u32 chicken = I915_READ(reg);
703 
704 		chicken |= PSR2_VSC_ENABLE_PROG_HEADER |
705 			   PSR2_ADD_VERTICAL_LINE_COUNT;
706 		I915_WRITE(reg, chicken);
707 	}
708 
709 	/*
710 	 * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also
711 	 * mask LPSP to avoid dependency on other drivers that might block
712 	 * runtime_pm besides preventing  other hw tracking issues now we
713 	 * can rely on frontbuffer tracking.
714 	 */
715 	mask = EDP_PSR_DEBUG_MASK_MEMUP |
716 	       EDP_PSR_DEBUG_MASK_HPD |
717 	       EDP_PSR_DEBUG_MASK_LPSP |
718 	       EDP_PSR_DEBUG_MASK_MAX_SLEEP;
719 
720 	if (INTEL_GEN(dev_priv) < 11)
721 		mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE;
722 
723 	I915_WRITE(EDP_PSR_DEBUG, mask);
724 }
725 
726 static void intel_psr_enable_locked(struct drm_i915_private *dev_priv,
727 				    const struct intel_crtc_state *crtc_state)
728 {
729 	struct intel_dp *intel_dp = dev_priv->psr.dp;
730 
731 	WARN_ON(dev_priv->psr.enabled);
732 
733 	dev_priv->psr.psr2_enabled = intel_psr2_enabled(dev_priv, crtc_state);
734 	dev_priv->psr.busy_frontbuffer_bits = 0;
735 	dev_priv->psr.pipe = to_intel_crtc(crtc_state->base.crtc)->pipe;
736 
737 	DRM_DEBUG_KMS("Enabling PSR%s\n",
738 		      dev_priv->psr.psr2_enabled ? "2" : "1");
739 	intel_psr_setup_vsc(intel_dp, crtc_state);
740 	intel_psr_enable_sink(intel_dp);
741 	intel_psr_enable_source(intel_dp, crtc_state);
742 	dev_priv->psr.enabled = true;
743 
744 	intel_psr_activate(intel_dp);
745 }
746 
747 /**
748  * intel_psr_enable - Enable PSR
749  * @intel_dp: Intel DP
750  * @crtc_state: new CRTC state
751  *
752  * This function can only be called after the pipe is fully trained and enabled.
753  */
754 void intel_psr_enable(struct intel_dp *intel_dp,
755 		      const struct intel_crtc_state *crtc_state)
756 {
757 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
758 
759 	if (!crtc_state->has_psr)
760 		return;
761 
762 	if (WARN_ON(!CAN_PSR(dev_priv)))
763 		return;
764 
765 	WARN_ON(dev_priv->drrs.dp);
766 
767 	mutex_lock(&dev_priv->psr.lock);
768 
769 	if (!psr_global_enabled(dev_priv->psr.debug)) {
770 		DRM_DEBUG_KMS("PSR disabled by flag\n");
771 		goto unlock;
772 	}
773 
774 	intel_psr_enable_locked(dev_priv, crtc_state);
775 
776 unlock:
777 	mutex_unlock(&dev_priv->psr.lock);
778 }
779 
780 static void intel_psr_exit(struct drm_i915_private *dev_priv)
781 {
782 	u32 val;
783 
784 	if (!dev_priv->psr.active) {
785 		if (INTEL_GEN(dev_priv) >= 9)
786 			WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
787 		WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
788 		return;
789 	}
790 
791 	if (dev_priv->psr.psr2_enabled) {
792 		val = I915_READ(EDP_PSR2_CTL);
793 		WARN_ON(!(val & EDP_PSR2_ENABLE));
794 		I915_WRITE(EDP_PSR2_CTL, val & ~EDP_PSR2_ENABLE);
795 	} else {
796 		val = I915_READ(EDP_PSR_CTL);
797 		WARN_ON(!(val & EDP_PSR_ENABLE));
798 		I915_WRITE(EDP_PSR_CTL, val & ~EDP_PSR_ENABLE);
799 	}
800 	dev_priv->psr.active = false;
801 }
802 
803 static void intel_psr_disable_locked(struct intel_dp *intel_dp)
804 {
805 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
806 	i915_reg_t psr_status;
807 	u32 psr_status_mask;
808 
809 	lockdep_assert_held(&dev_priv->psr.lock);
810 
811 	if (!dev_priv->psr.enabled)
812 		return;
813 
814 	DRM_DEBUG_KMS("Disabling PSR%s\n",
815 		      dev_priv->psr.psr2_enabled ? "2" : "1");
816 
817 	intel_psr_exit(dev_priv);
818 
819 	if (dev_priv->psr.psr2_enabled) {
820 		psr_status = EDP_PSR2_STATUS;
821 		psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
822 	} else {
823 		psr_status = EDP_PSR_STATUS;
824 		psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
825 	}
826 
827 	/* Wait till PSR is idle */
828 	if (intel_de_wait_for_clear(dev_priv, psr_status,
829 				    psr_status_mask, 2000))
830 		DRM_ERROR("Timed out waiting PSR idle state\n");
831 
832 	/* Disable PSR on Sink */
833 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
834 
835 	dev_priv->psr.enabled = false;
836 }
837 
838 /**
839  * intel_psr_disable - Disable PSR
840  * @intel_dp: Intel DP
841  * @old_crtc_state: old CRTC state
842  *
843  * This function needs to be called before disabling pipe.
844  */
845 void intel_psr_disable(struct intel_dp *intel_dp,
846 		       const struct intel_crtc_state *old_crtc_state)
847 {
848 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
849 
850 	if (!old_crtc_state->has_psr)
851 		return;
852 
853 	if (WARN_ON(!CAN_PSR(dev_priv)))
854 		return;
855 
856 	mutex_lock(&dev_priv->psr.lock);
857 
858 	intel_psr_disable_locked(intel_dp);
859 
860 	mutex_unlock(&dev_priv->psr.lock);
861 	cancel_work_sync(&dev_priv->psr.work);
862 }
863 
864 static void psr_force_hw_tracking_exit(struct drm_i915_private *dev_priv)
865 {
866 	if (INTEL_GEN(dev_priv) >= 9)
867 		/*
868 		 * Display WA #0884: skl+
869 		 * This documented WA for bxt can be safely applied
870 		 * broadly so we can force HW tracking to exit PSR
871 		 * instead of disabling and re-enabling.
872 		 * Workaround tells us to write 0 to CUR_SURFLIVE_A,
873 		 * but it makes more sense write to the current active
874 		 * pipe.
875 		 */
876 		I915_WRITE(CURSURFLIVE(dev_priv->psr.pipe), 0);
877 	else
878 		/*
879 		 * A write to CURSURFLIVE do not cause HW tracking to exit PSR
880 		 * on older gens so doing the manual exit instead.
881 		 */
882 		intel_psr_exit(dev_priv);
883 }
884 
885 /**
886  * intel_psr_update - Update PSR state
887  * @intel_dp: Intel DP
888  * @crtc_state: new CRTC state
889  *
890  * This functions will update PSR states, disabling, enabling or switching PSR
891  * version when executing fastsets. For full modeset, intel_psr_disable() and
892  * intel_psr_enable() should be called instead.
893  */
894 void intel_psr_update(struct intel_dp *intel_dp,
895 		      const struct intel_crtc_state *crtc_state)
896 {
897 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
898 	struct i915_psr *psr = &dev_priv->psr;
899 	bool enable, psr2_enable;
900 
901 	if (!CAN_PSR(dev_priv) || READ_ONCE(psr->dp) != intel_dp)
902 		return;
903 
904 	mutex_lock(&dev_priv->psr.lock);
905 
906 	enable = crtc_state->has_psr && psr_global_enabled(psr->debug);
907 	psr2_enable = intel_psr2_enabled(dev_priv, crtc_state);
908 
909 	if (enable == psr->enabled && psr2_enable == psr->psr2_enabled) {
910 		/* Force a PSR exit when enabling CRC to avoid CRC timeouts */
911 		if (crtc_state->crc_enabled && psr->enabled)
912 			psr_force_hw_tracking_exit(dev_priv);
913 		else if (INTEL_GEN(dev_priv) < 9 && psr->enabled) {
914 			/*
915 			 * Activate PSR again after a force exit when enabling
916 			 * CRC in older gens
917 			 */
918 			if (!dev_priv->psr.active &&
919 			    !dev_priv->psr.busy_frontbuffer_bits)
920 				schedule_work(&dev_priv->psr.work);
921 		}
922 
923 		goto unlock;
924 	}
925 
926 	if (psr->enabled)
927 		intel_psr_disable_locked(intel_dp);
928 
929 	if (enable)
930 		intel_psr_enable_locked(dev_priv, crtc_state);
931 
932 unlock:
933 	mutex_unlock(&dev_priv->psr.lock);
934 }
935 
936 /**
937  * intel_psr_wait_for_idle - wait for PSR1 to idle
938  * @new_crtc_state: new CRTC state
939  * @out_value: PSR status in case of failure
940  *
941  * This function is expected to be called from pipe_update_start() where it is
942  * not expected to race with PSR enable or disable.
943  *
944  * Returns: 0 on success or -ETIMEOUT if PSR status does not idle.
945  */
946 int intel_psr_wait_for_idle(const struct intel_crtc_state *new_crtc_state,
947 			    u32 *out_value)
948 {
949 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
950 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
951 
952 	if (!dev_priv->psr.enabled || !new_crtc_state->has_psr)
953 		return 0;
954 
955 	/* FIXME: Update this for PSR2 if we need to wait for idle */
956 	if (READ_ONCE(dev_priv->psr.psr2_enabled))
957 		return 0;
958 
959 	/*
960 	 * From bspec: Panel Self Refresh (BDW+)
961 	 * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of
962 	 * exit training time + 1.5 ms of aux channel handshake. 50 ms is
963 	 * defensive enough to cover everything.
964 	 */
965 
966 	return __intel_wait_for_register(&dev_priv->uncore, EDP_PSR_STATUS,
967 					 EDP_PSR_STATUS_STATE_MASK,
968 					 EDP_PSR_STATUS_STATE_IDLE, 2, 50,
969 					 out_value);
970 }
971 
972 static bool __psr_wait_for_idle_locked(struct drm_i915_private *dev_priv)
973 {
974 	i915_reg_t reg;
975 	u32 mask;
976 	int err;
977 
978 	if (!dev_priv->psr.enabled)
979 		return false;
980 
981 	if (dev_priv->psr.psr2_enabled) {
982 		reg = EDP_PSR2_STATUS;
983 		mask = EDP_PSR2_STATUS_STATE_MASK;
984 	} else {
985 		reg = EDP_PSR_STATUS;
986 		mask = EDP_PSR_STATUS_STATE_MASK;
987 	}
988 
989 	mutex_unlock(&dev_priv->psr.lock);
990 
991 	err = intel_de_wait_for_clear(dev_priv, reg, mask, 50);
992 	if (err)
993 		DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
994 
995 	/* After the unlocked wait, verify that PSR is still wanted! */
996 	mutex_lock(&dev_priv->psr.lock);
997 	return err == 0 && dev_priv->psr.enabled;
998 }
999 
1000 static int intel_psr_fastset_force(struct drm_i915_private *dev_priv)
1001 {
1002 	struct drm_device *dev = &dev_priv->drm;
1003 	struct drm_modeset_acquire_ctx ctx;
1004 	struct drm_atomic_state *state;
1005 	struct drm_crtc *crtc;
1006 	int err;
1007 
1008 	state = drm_atomic_state_alloc(dev);
1009 	if (!state)
1010 		return -ENOMEM;
1011 
1012 	drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
1013 	state->acquire_ctx = &ctx;
1014 
1015 retry:
1016 	drm_for_each_crtc(crtc, dev) {
1017 		struct drm_crtc_state *crtc_state;
1018 		struct intel_crtc_state *intel_crtc_state;
1019 
1020 		crtc_state = drm_atomic_get_crtc_state(state, crtc);
1021 		if (IS_ERR(crtc_state)) {
1022 			err = PTR_ERR(crtc_state);
1023 			goto error;
1024 		}
1025 
1026 		intel_crtc_state = to_intel_crtc_state(crtc_state);
1027 
1028 		if (crtc_state->active && intel_crtc_state->has_psr) {
1029 			/* Mark mode as changed to trigger a pipe->update() */
1030 			crtc_state->mode_changed = true;
1031 			break;
1032 		}
1033 	}
1034 
1035 	err = drm_atomic_commit(state);
1036 
1037 error:
1038 	if (err == -EDEADLK) {
1039 		drm_atomic_state_clear(state);
1040 		err = drm_modeset_backoff(&ctx);
1041 		if (!err)
1042 			goto retry;
1043 	}
1044 
1045 	drm_modeset_drop_locks(&ctx);
1046 	drm_modeset_acquire_fini(&ctx);
1047 	drm_atomic_state_put(state);
1048 
1049 	return err;
1050 }
1051 
1052 int intel_psr_debug_set(struct drm_i915_private *dev_priv, u64 val)
1053 {
1054 	const u32 mode = val & I915_PSR_DEBUG_MODE_MASK;
1055 	u32 old_mode;
1056 	int ret;
1057 
1058 	if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) ||
1059 	    mode > I915_PSR_DEBUG_FORCE_PSR1) {
1060 		DRM_DEBUG_KMS("Invalid debug mask %llx\n", val);
1061 		return -EINVAL;
1062 	}
1063 
1064 	ret = mutex_lock_interruptible(&dev_priv->psr.lock);
1065 	if (ret)
1066 		return ret;
1067 
1068 	old_mode = dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK;
1069 	dev_priv->psr.debug = val;
1070 	intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
1071 
1072 	mutex_unlock(&dev_priv->psr.lock);
1073 
1074 	if (old_mode != mode)
1075 		ret = intel_psr_fastset_force(dev_priv);
1076 
1077 	return ret;
1078 }
1079 
1080 static void intel_psr_handle_irq(struct drm_i915_private *dev_priv)
1081 {
1082 	struct i915_psr *psr = &dev_priv->psr;
1083 
1084 	intel_psr_disable_locked(psr->dp);
1085 	psr->sink_not_reliable = true;
1086 	/* let's make sure that sink is awaken */
1087 	drm_dp_dpcd_writeb(&psr->dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
1088 }
1089 
1090 static void intel_psr_work(struct work_struct *work)
1091 {
1092 	struct drm_i915_private *dev_priv =
1093 		container_of(work, typeof(*dev_priv), psr.work);
1094 
1095 	mutex_lock(&dev_priv->psr.lock);
1096 
1097 	if (!dev_priv->psr.enabled)
1098 		goto unlock;
1099 
1100 	if (READ_ONCE(dev_priv->psr.irq_aux_error))
1101 		intel_psr_handle_irq(dev_priv);
1102 
1103 	/*
1104 	 * We have to make sure PSR is ready for re-enable
1105 	 * otherwise it keeps disabled until next full enable/disable cycle.
1106 	 * PSR might take some time to get fully disabled
1107 	 * and be ready for re-enable.
1108 	 */
1109 	if (!__psr_wait_for_idle_locked(dev_priv))
1110 		goto unlock;
1111 
1112 	/*
1113 	 * The delayed work can race with an invalidate hence we need to
1114 	 * recheck. Since psr_flush first clears this and then reschedules we
1115 	 * won't ever miss a flush when bailing out here.
1116 	 */
1117 	if (dev_priv->psr.busy_frontbuffer_bits || dev_priv->psr.active)
1118 		goto unlock;
1119 
1120 	intel_psr_activate(dev_priv->psr.dp);
1121 unlock:
1122 	mutex_unlock(&dev_priv->psr.lock);
1123 }
1124 
1125 /**
1126  * intel_psr_invalidate - Invalidade PSR
1127  * @dev_priv: i915 device
1128  * @frontbuffer_bits: frontbuffer plane tracking bits
1129  * @origin: which operation caused the invalidate
1130  *
1131  * Since the hardware frontbuffer tracking has gaps we need to integrate
1132  * with the software frontbuffer tracking. This function gets called every
1133  * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
1134  * disabled if the frontbuffer mask contains a buffer relevant to PSR.
1135  *
1136  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
1137  */
1138 void intel_psr_invalidate(struct drm_i915_private *dev_priv,
1139 			  unsigned frontbuffer_bits, enum fb_op_origin origin)
1140 {
1141 	if (!CAN_PSR(dev_priv))
1142 		return;
1143 
1144 	if (origin == ORIGIN_FLIP)
1145 		return;
1146 
1147 	mutex_lock(&dev_priv->psr.lock);
1148 	if (!dev_priv->psr.enabled) {
1149 		mutex_unlock(&dev_priv->psr.lock);
1150 		return;
1151 	}
1152 
1153 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
1154 	dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
1155 
1156 	if (frontbuffer_bits)
1157 		intel_psr_exit(dev_priv);
1158 
1159 	mutex_unlock(&dev_priv->psr.lock);
1160 }
1161 
1162 /**
1163  * intel_psr_flush - Flush PSR
1164  * @dev_priv: i915 device
1165  * @frontbuffer_bits: frontbuffer plane tracking bits
1166  * @origin: which operation caused the flush
1167  *
1168  * Since the hardware frontbuffer tracking has gaps we need to integrate
1169  * with the software frontbuffer tracking. This function gets called every
1170  * time frontbuffer rendering has completed and flushed out to memory. PSR
1171  * can be enabled again if no other frontbuffer relevant to PSR is dirty.
1172  *
1173  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
1174  */
1175 void intel_psr_flush(struct drm_i915_private *dev_priv,
1176 		     unsigned frontbuffer_bits, enum fb_op_origin origin)
1177 {
1178 	if (!CAN_PSR(dev_priv))
1179 		return;
1180 
1181 	if (origin == ORIGIN_FLIP)
1182 		return;
1183 
1184 	mutex_lock(&dev_priv->psr.lock);
1185 	if (!dev_priv->psr.enabled) {
1186 		mutex_unlock(&dev_priv->psr.lock);
1187 		return;
1188 	}
1189 
1190 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
1191 	dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
1192 
1193 	/* By definition flush = invalidate + flush */
1194 	if (frontbuffer_bits)
1195 		psr_force_hw_tracking_exit(dev_priv);
1196 
1197 	if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
1198 		schedule_work(&dev_priv->psr.work);
1199 	mutex_unlock(&dev_priv->psr.lock);
1200 }
1201 
1202 /**
1203  * intel_psr_init - Init basic PSR work and mutex.
1204  * @dev_priv: i915 device private
1205  *
1206  * This function is  called only once at driver load to initialize basic
1207  * PSR stuff.
1208  */
1209 void intel_psr_init(struct drm_i915_private *dev_priv)
1210 {
1211 	u32 val;
1212 
1213 	if (!HAS_PSR(dev_priv))
1214 		return;
1215 
1216 	dev_priv->psr_mmio_base = IS_HASWELL(dev_priv) ?
1217 		HSW_EDP_PSR_BASE : BDW_EDP_PSR_BASE;
1218 
1219 	if (!dev_priv->psr.sink_support)
1220 		return;
1221 
1222 	if (i915_modparams.enable_psr == -1)
1223 		if (INTEL_GEN(dev_priv) < 9 || !dev_priv->vbt.psr.enable)
1224 			i915_modparams.enable_psr = 0;
1225 
1226 	/*
1227 	 * If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR
1228 	 * will still keep the error set even after the reset done in the
1229 	 * irq_preinstall and irq_uninstall hooks.
1230 	 * And enabling in this situation cause the screen to freeze in the
1231 	 * first time that PSR HW tries to activate so lets keep PSR disabled
1232 	 * to avoid any rendering problems.
1233 	 */
1234 	val = I915_READ(EDP_PSR_IIR);
1235 	val &= EDP_PSR_ERROR(edp_psr_shift(TRANSCODER_EDP));
1236 	if (val) {
1237 		DRM_DEBUG_KMS("PSR interruption error set\n");
1238 		dev_priv->psr.sink_not_reliable = true;
1239 	}
1240 
1241 	/* Set link_standby x link_off defaults */
1242 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1243 		/* HSW and BDW require workarounds that we don't implement. */
1244 		dev_priv->psr.link_standby = false;
1245 	else
1246 		/* For new platforms let's respect VBT back again */
1247 		dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
1248 
1249 	INIT_WORK(&dev_priv->psr.work, intel_psr_work);
1250 	mutex_init(&dev_priv->psr.lock);
1251 }
1252 
1253 void intel_psr_short_pulse(struct intel_dp *intel_dp)
1254 {
1255 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1256 	struct i915_psr *psr = &dev_priv->psr;
1257 	u8 val;
1258 	const u8 errors = DP_PSR_RFB_STORAGE_ERROR |
1259 			  DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR |
1260 			  DP_PSR_LINK_CRC_ERROR;
1261 
1262 	if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
1263 		return;
1264 
1265 	mutex_lock(&psr->lock);
1266 
1267 	if (!psr->enabled || psr->dp != intel_dp)
1268 		goto exit;
1269 
1270 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_STATUS, &val) != 1) {
1271 		DRM_ERROR("PSR_STATUS dpcd read failed\n");
1272 		goto exit;
1273 	}
1274 
1275 	if ((val & DP_PSR_SINK_STATE_MASK) == DP_PSR_SINK_INTERNAL_ERROR) {
1276 		DRM_DEBUG_KMS("PSR sink internal error, disabling PSR\n");
1277 		intel_psr_disable_locked(intel_dp);
1278 		psr->sink_not_reliable = true;
1279 	}
1280 
1281 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ERROR_STATUS, &val) != 1) {
1282 		DRM_ERROR("PSR_ERROR_STATUS dpcd read failed\n");
1283 		goto exit;
1284 	}
1285 
1286 	if (val & DP_PSR_RFB_STORAGE_ERROR)
1287 		DRM_DEBUG_KMS("PSR RFB storage error, disabling PSR\n");
1288 	if (val & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR)
1289 		DRM_DEBUG_KMS("PSR VSC SDP uncorrectable error, disabling PSR\n");
1290 	if (val & DP_PSR_LINK_CRC_ERROR)
1291 		DRM_ERROR("PSR Link CRC error, disabling PSR\n");
1292 
1293 	if (val & ~errors)
1294 		DRM_ERROR("PSR_ERROR_STATUS unhandled errors %x\n",
1295 			  val & ~errors);
1296 	if (val & errors) {
1297 		intel_psr_disable_locked(intel_dp);
1298 		psr->sink_not_reliable = true;
1299 	}
1300 	/* clear status register */
1301 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, val);
1302 exit:
1303 	mutex_unlock(&psr->lock);
1304 }
1305 
1306 bool intel_psr_enabled(struct intel_dp *intel_dp)
1307 {
1308 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1309 	bool ret;
1310 
1311 	if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
1312 		return false;
1313 
1314 	mutex_lock(&dev_priv->psr.lock);
1315 	ret = (dev_priv->psr.dp == intel_dp && dev_priv->psr.enabled);
1316 	mutex_unlock(&dev_priv->psr.lock);
1317 
1318 	return ret;
1319 }
1320