1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <drm/drm_atomic_helper.h>
25 
26 #include "display/intel_dp.h"
27 
28 #include "i915_drv.h"
29 #include "intel_atomic.h"
30 #include "intel_de.h"
31 #include "intel_display_types.h"
32 #include "intel_dp_aux.h"
33 #include "intel_hdmi.h"
34 #include "intel_psr.h"
35 #include "intel_sprite.h"
36 #include "skl_universal_plane.h"
37 
38 /**
39  * DOC: Panel Self Refresh (PSR/SRD)
40  *
41  * Since Haswell Display controller supports Panel Self-Refresh on display
42  * panels witch have a remote frame buffer (RFB) implemented according to PSR
43  * spec in eDP1.3. PSR feature allows the display to go to lower standby states
44  * when system is idle but display is on as it eliminates display refresh
45  * request to DDR memory completely as long as the frame buffer for that
46  * display is unchanged.
47  *
48  * Panel Self Refresh must be supported by both Hardware (source) and
49  * Panel (sink).
50  *
51  * PSR saves power by caching the framebuffer in the panel RFB, which allows us
52  * to power down the link and memory controller. For DSI panels the same idea
53  * is called "manual mode".
54  *
55  * The implementation uses the hardware-based PSR support which automatically
56  * enters/exits self-refresh mode. The hardware takes care of sending the
57  * required DP aux message and could even retrain the link (that part isn't
58  * enabled yet though). The hardware also keeps track of any frontbuffer
59  * changes to know when to exit self-refresh mode again. Unfortunately that
60  * part doesn't work too well, hence why the i915 PSR support uses the
61  * software frontbuffer tracking to make sure it doesn't miss a screen
62  * update. For this integration intel_psr_invalidate() and intel_psr_flush()
63  * get called by the frontbuffer tracking code. Note that because of locking
64  * issues the self-refresh re-enable code is done from a work queue, which
65  * must be correctly synchronized/cancelled when shutting down the pipe."
66  *
67  * DC3CO (DC3 clock off)
68  *
69  * On top of PSR2, GEN12 adds a intermediate power savings state that turns
70  * clock off automatically during PSR2 idle state.
71  * The smaller overhead of DC3co entry/exit vs. the overhead of PSR2 deep sleep
72  * entry/exit allows the HW to enter a low-power state even when page flipping
73  * periodically (for instance a 30fps video playback scenario).
74  *
75  * Every time a flips occurs PSR2 will get out of deep sleep state(if it was),
76  * so DC3CO is enabled and tgl_dc3co_disable_work is schedule to run after 6
77  * frames, if no other flip occurs and the function above is executed, DC3CO is
78  * disabled and PSR2 is configured to enter deep sleep, resetting again in case
79  * of another flip.
80  * Front buffer modifications do not trigger DC3CO activation on purpose as it
81  * would bring a lot of complexity and most of the moderns systems will only
82  * use page flips.
83  */
84 
85 static bool psr_global_enabled(struct intel_dp *intel_dp)
86 {
87 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
88 
89 	switch (intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
90 	case I915_PSR_DEBUG_DEFAULT:
91 		return i915->params.enable_psr;
92 	case I915_PSR_DEBUG_DISABLE:
93 		return false;
94 	default:
95 		return true;
96 	}
97 }
98 
99 static bool psr2_global_enabled(struct intel_dp *intel_dp)
100 {
101 	switch (intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
102 	case I915_PSR_DEBUG_DISABLE:
103 	case I915_PSR_DEBUG_FORCE_PSR1:
104 		return false;
105 	default:
106 		return true;
107 	}
108 }
109 
110 static void psr_irq_control(struct intel_dp *intel_dp)
111 {
112 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
113 	enum transcoder trans_shift;
114 	i915_reg_t imr_reg;
115 	u32 mask, val;
116 
117 	/*
118 	 * gen12+ has registers relative to transcoder and one per transcoder
119 	 * using the same bit definition: handle it as TRANSCODER_EDP to force
120 	 * 0 shift in bit definition
121 	 */
122 	if (DISPLAY_VER(dev_priv) >= 12) {
123 		trans_shift = 0;
124 		imr_reg = TRANS_PSR_IMR(intel_dp->psr.transcoder);
125 	} else {
126 		trans_shift = intel_dp->psr.transcoder;
127 		imr_reg = EDP_PSR_IMR;
128 	}
129 
130 	mask = EDP_PSR_ERROR(trans_shift);
131 	if (intel_dp->psr.debug & I915_PSR_DEBUG_IRQ)
132 		mask |= EDP_PSR_POST_EXIT(trans_shift) |
133 			EDP_PSR_PRE_ENTRY(trans_shift);
134 
135 	/* Warning: it is masking/setting reserved bits too */
136 	val = intel_de_read(dev_priv, imr_reg);
137 	val &= ~EDP_PSR_TRANS_MASK(trans_shift);
138 	val |= ~mask;
139 	intel_de_write(dev_priv, imr_reg, val);
140 }
141 
142 static void psr_event_print(struct drm_i915_private *i915,
143 			    u32 val, bool psr2_enabled)
144 {
145 	drm_dbg_kms(&i915->drm, "PSR exit events: 0x%x\n", val);
146 	if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE)
147 		drm_dbg_kms(&i915->drm, "\tPSR2 watchdog timer expired\n");
148 	if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled)
149 		drm_dbg_kms(&i915->drm, "\tPSR2 disabled\n");
150 	if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN)
151 		drm_dbg_kms(&i915->drm, "\tSU dirty FIFO underrun\n");
152 	if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN)
153 		drm_dbg_kms(&i915->drm, "\tSU CRC FIFO underrun\n");
154 	if (val & PSR_EVENT_GRAPHICS_RESET)
155 		drm_dbg_kms(&i915->drm, "\tGraphics reset\n");
156 	if (val & PSR_EVENT_PCH_INTERRUPT)
157 		drm_dbg_kms(&i915->drm, "\tPCH interrupt\n");
158 	if (val & PSR_EVENT_MEMORY_UP)
159 		drm_dbg_kms(&i915->drm, "\tMemory up\n");
160 	if (val & PSR_EVENT_FRONT_BUFFER_MODIFY)
161 		drm_dbg_kms(&i915->drm, "\tFront buffer modification\n");
162 	if (val & PSR_EVENT_WD_TIMER_EXPIRE)
163 		drm_dbg_kms(&i915->drm, "\tPSR watchdog timer expired\n");
164 	if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE)
165 		drm_dbg_kms(&i915->drm, "\tPIPE registers updated\n");
166 	if (val & PSR_EVENT_REGISTER_UPDATE)
167 		drm_dbg_kms(&i915->drm, "\tRegister updated\n");
168 	if (val & PSR_EVENT_HDCP_ENABLE)
169 		drm_dbg_kms(&i915->drm, "\tHDCP enabled\n");
170 	if (val & PSR_EVENT_KVMR_SESSION_ENABLE)
171 		drm_dbg_kms(&i915->drm, "\tKVMR session enabled\n");
172 	if (val & PSR_EVENT_VBI_ENABLE)
173 		drm_dbg_kms(&i915->drm, "\tVBI enabled\n");
174 	if (val & PSR_EVENT_LPSP_MODE_EXIT)
175 		drm_dbg_kms(&i915->drm, "\tLPSP mode exited\n");
176 	if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled)
177 		drm_dbg_kms(&i915->drm, "\tPSR disabled\n");
178 }
179 
180 void intel_psr_irq_handler(struct intel_dp *intel_dp, u32 psr_iir)
181 {
182 	enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
183 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
184 	ktime_t time_ns =  ktime_get();
185 	enum transcoder trans_shift;
186 	i915_reg_t imr_reg;
187 
188 	if (DISPLAY_VER(dev_priv) >= 12) {
189 		trans_shift = 0;
190 		imr_reg = TRANS_PSR_IMR(intel_dp->psr.transcoder);
191 	} else {
192 		trans_shift = intel_dp->psr.transcoder;
193 		imr_reg = EDP_PSR_IMR;
194 	}
195 
196 	if (psr_iir & EDP_PSR_PRE_ENTRY(trans_shift)) {
197 		intel_dp->psr.last_entry_attempt = time_ns;
198 		drm_dbg_kms(&dev_priv->drm,
199 			    "[transcoder %s] PSR entry attempt in 2 vblanks\n",
200 			    transcoder_name(cpu_transcoder));
201 	}
202 
203 	if (psr_iir & EDP_PSR_POST_EXIT(trans_shift)) {
204 		intel_dp->psr.last_exit = time_ns;
205 		drm_dbg_kms(&dev_priv->drm,
206 			    "[transcoder %s] PSR exit completed\n",
207 			    transcoder_name(cpu_transcoder));
208 
209 		if (DISPLAY_VER(dev_priv) >= 9) {
210 			u32 val = intel_de_read(dev_priv,
211 						PSR_EVENT(cpu_transcoder));
212 			bool psr2_enabled = intel_dp->psr.psr2_enabled;
213 
214 			intel_de_write(dev_priv, PSR_EVENT(cpu_transcoder),
215 				       val);
216 			psr_event_print(dev_priv, val, psr2_enabled);
217 		}
218 	}
219 
220 	if (psr_iir & EDP_PSR_ERROR(trans_shift)) {
221 		u32 val;
222 
223 		drm_warn(&dev_priv->drm, "[transcoder %s] PSR aux error\n",
224 			 transcoder_name(cpu_transcoder));
225 
226 		intel_dp->psr.irq_aux_error = true;
227 
228 		/*
229 		 * If this interruption is not masked it will keep
230 		 * interrupting so fast that it prevents the scheduled
231 		 * work to run.
232 		 * Also after a PSR error, we don't want to arm PSR
233 		 * again so we don't care about unmask the interruption
234 		 * or unset irq_aux_error.
235 		 */
236 		val = intel_de_read(dev_priv, imr_reg);
237 		val |= EDP_PSR_ERROR(trans_shift);
238 		intel_de_write(dev_priv, imr_reg, val);
239 
240 		schedule_work(&intel_dp->psr.work);
241 	}
242 }
243 
244 static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
245 {
246 	u8 alpm_caps = 0;
247 
248 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
249 			      &alpm_caps) != 1)
250 		return false;
251 	return alpm_caps & DP_ALPM_CAP;
252 }
253 
254 static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
255 {
256 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
257 	u8 val = 8; /* assume the worst if we can't read the value */
258 
259 	if (drm_dp_dpcd_readb(&intel_dp->aux,
260 			      DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
261 		val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
262 	else
263 		drm_dbg_kms(&i915->drm,
264 			    "Unable to get sink synchronization latency, assuming 8 frames\n");
265 	return val;
266 }
267 
268 static u16 intel_dp_get_su_x_granulartiy(struct intel_dp *intel_dp)
269 {
270 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
271 	u16 val;
272 	ssize_t r;
273 
274 	/*
275 	 * Returning the default X granularity if granularity not required or
276 	 * if DPCD read fails
277 	 */
278 	if (!(intel_dp->psr_dpcd[1] & DP_PSR2_SU_GRANULARITY_REQUIRED))
279 		return 4;
280 
281 	r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_X_GRANULARITY, &val, 2);
282 	if (r != 2)
283 		drm_dbg_kms(&i915->drm,
284 			    "Unable to read DP_PSR2_SU_X_GRANULARITY\n");
285 
286 	/*
287 	 * Spec says that if the value read is 0 the default granularity should
288 	 * be used instead.
289 	 */
290 	if (r != 2 || val == 0)
291 		val = 4;
292 
293 	return val;
294 }
295 
296 void intel_psr_init_dpcd(struct intel_dp *intel_dp)
297 {
298 	struct drm_i915_private *dev_priv =
299 		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
300 
301 	drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
302 			 sizeof(intel_dp->psr_dpcd));
303 
304 	if (!intel_dp->psr_dpcd[0])
305 		return;
306 	drm_dbg_kms(&dev_priv->drm, "eDP panel supports PSR version %x\n",
307 		    intel_dp->psr_dpcd[0]);
308 
309 	if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_PSR)) {
310 		drm_dbg_kms(&dev_priv->drm,
311 			    "PSR support not currently available for this panel\n");
312 		return;
313 	}
314 
315 	if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
316 		drm_dbg_kms(&dev_priv->drm,
317 			    "Panel lacks power state control, PSR cannot be enabled\n");
318 		return;
319 	}
320 
321 	intel_dp->psr.sink_support = true;
322 	intel_dp->psr.sink_sync_latency =
323 		intel_dp_get_sink_sync_latency(intel_dp);
324 
325 	if (DISPLAY_VER(dev_priv) >= 9 &&
326 	    (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) {
327 		bool y_req = intel_dp->psr_dpcd[1] &
328 			     DP_PSR2_SU_Y_COORDINATE_REQUIRED;
329 		bool alpm = intel_dp_get_alpm_status(intel_dp);
330 
331 		/*
332 		 * All panels that supports PSR version 03h (PSR2 +
333 		 * Y-coordinate) can handle Y-coordinates in VSC but we are
334 		 * only sure that it is going to be used when required by the
335 		 * panel. This way panel is capable to do selective update
336 		 * without a aux frame sync.
337 		 *
338 		 * To support PSR version 02h and PSR version 03h without
339 		 * Y-coordinate requirement panels we would need to enable
340 		 * GTC first.
341 		 */
342 		intel_dp->psr.sink_psr2_support = y_req && alpm;
343 		drm_dbg_kms(&dev_priv->drm, "PSR2 %ssupported\n",
344 			    intel_dp->psr.sink_psr2_support ? "" : "not ");
345 
346 		if (intel_dp->psr.sink_psr2_support) {
347 			intel_dp->psr.colorimetry_support =
348 				intel_dp_get_colorimetry_status(intel_dp);
349 			intel_dp->psr.su_x_granularity =
350 				intel_dp_get_su_x_granulartiy(intel_dp);
351 		}
352 	}
353 }
354 
355 static void hsw_psr_setup_aux(struct intel_dp *intel_dp)
356 {
357 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
358 	u32 aux_clock_divider, aux_ctl;
359 	int i;
360 	static const u8 aux_msg[] = {
361 		[0] = DP_AUX_NATIVE_WRITE << 4,
362 		[1] = DP_SET_POWER >> 8,
363 		[2] = DP_SET_POWER & 0xff,
364 		[3] = 1 - 1,
365 		[4] = DP_SET_POWER_D0,
366 	};
367 	u32 psr_aux_mask = EDP_PSR_AUX_CTL_TIME_OUT_MASK |
368 			   EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK |
369 			   EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK |
370 			   EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK;
371 
372 	BUILD_BUG_ON(sizeof(aux_msg) > 20);
373 	for (i = 0; i < sizeof(aux_msg); i += 4)
374 		intel_de_write(dev_priv,
375 			       EDP_PSR_AUX_DATA(intel_dp->psr.transcoder, i >> 2),
376 			       intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
377 
378 	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
379 
380 	/* Start with bits set for DDI_AUX_CTL register */
381 	aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, sizeof(aux_msg),
382 					     aux_clock_divider);
383 
384 	/* Select only valid bits for SRD_AUX_CTL */
385 	aux_ctl &= psr_aux_mask;
386 	intel_de_write(dev_priv, EDP_PSR_AUX_CTL(intel_dp->psr.transcoder),
387 		       aux_ctl);
388 }
389 
390 static void intel_psr_enable_sink(struct intel_dp *intel_dp)
391 {
392 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
393 	u8 dpcd_val = DP_PSR_ENABLE;
394 
395 	/* Enable ALPM at sink for psr2 */
396 	if (intel_dp->psr.psr2_enabled) {
397 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG,
398 				   DP_ALPM_ENABLE |
399 				   DP_ALPM_LOCK_ERROR_IRQ_HPD_ENABLE);
400 
401 		dpcd_val |= DP_PSR_ENABLE_PSR2 | DP_PSR_IRQ_HPD_WITH_CRC_ERRORS;
402 	} else {
403 		if (intel_dp->psr.link_standby)
404 			dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE;
405 
406 		if (DISPLAY_VER(dev_priv) >= 8)
407 			dpcd_val |= DP_PSR_CRC_VERIFICATION;
408 	}
409 
410 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val);
411 
412 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
413 }
414 
415 static u32 intel_psr1_get_tp_time(struct intel_dp *intel_dp)
416 {
417 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
418 	u32 val = 0;
419 
420 	if (DISPLAY_VER(dev_priv) >= 11)
421 		val |= EDP_PSR_TP4_TIME_0US;
422 
423 	if (dev_priv->params.psr_safest_params) {
424 		val |= EDP_PSR_TP1_TIME_2500us;
425 		val |= EDP_PSR_TP2_TP3_TIME_2500us;
426 		goto check_tp3_sel;
427 	}
428 
429 	if (dev_priv->vbt.psr.tp1_wakeup_time_us == 0)
430 		val |= EDP_PSR_TP1_TIME_0us;
431 	else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 100)
432 		val |= EDP_PSR_TP1_TIME_100us;
433 	else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 500)
434 		val |= EDP_PSR_TP1_TIME_500us;
435 	else
436 		val |= EDP_PSR_TP1_TIME_2500us;
437 
438 	if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us == 0)
439 		val |= EDP_PSR_TP2_TP3_TIME_0us;
440 	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
441 		val |= EDP_PSR_TP2_TP3_TIME_100us;
442 	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
443 		val |= EDP_PSR_TP2_TP3_TIME_500us;
444 	else
445 		val |= EDP_PSR_TP2_TP3_TIME_2500us;
446 
447 check_tp3_sel:
448 	if (intel_dp_source_supports_hbr2(intel_dp) &&
449 	    drm_dp_tps3_supported(intel_dp->dpcd))
450 		val |= EDP_PSR_TP1_TP3_SEL;
451 	else
452 		val |= EDP_PSR_TP1_TP2_SEL;
453 
454 	return val;
455 }
456 
457 static u8 psr_compute_idle_frames(struct intel_dp *intel_dp)
458 {
459 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
460 	int idle_frames;
461 
462 	/* Let's use 6 as the minimum to cover all known cases including the
463 	 * off-by-one issue that HW has in some cases.
464 	 */
465 	idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
466 	idle_frames = max(idle_frames, intel_dp->psr.sink_sync_latency + 1);
467 
468 	if (drm_WARN_ON(&dev_priv->drm, idle_frames > 0xf))
469 		idle_frames = 0xf;
470 
471 	return idle_frames;
472 }
473 
474 static void hsw_activate_psr1(struct intel_dp *intel_dp)
475 {
476 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
477 	u32 max_sleep_time = 0x1f;
478 	u32 val = EDP_PSR_ENABLE;
479 
480 	val |= psr_compute_idle_frames(intel_dp) << EDP_PSR_IDLE_FRAME_SHIFT;
481 
482 	val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
483 	if (IS_HASWELL(dev_priv))
484 		val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
485 
486 	if (intel_dp->psr.link_standby)
487 		val |= EDP_PSR_LINK_STANDBY;
488 
489 	val |= intel_psr1_get_tp_time(intel_dp);
490 
491 	if (DISPLAY_VER(dev_priv) >= 8)
492 		val |= EDP_PSR_CRC_ENABLE;
493 
494 	val |= (intel_de_read(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder)) &
495 		EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK);
496 	intel_de_write(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder), val);
497 }
498 
499 static u32 intel_psr2_get_tp_time(struct intel_dp *intel_dp)
500 {
501 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
502 	u32 val = 0;
503 
504 	if (dev_priv->params.psr_safest_params)
505 		return EDP_PSR2_TP2_TIME_2500us;
506 
507 	if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us >= 0 &&
508 	    dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 50)
509 		val |= EDP_PSR2_TP2_TIME_50us;
510 	else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 100)
511 		val |= EDP_PSR2_TP2_TIME_100us;
512 	else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 500)
513 		val |= EDP_PSR2_TP2_TIME_500us;
514 	else
515 		val |= EDP_PSR2_TP2_TIME_2500us;
516 
517 	return val;
518 }
519 
520 static void hsw_activate_psr2(struct intel_dp *intel_dp)
521 {
522 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
523 	u32 val;
524 
525 	val = psr_compute_idle_frames(intel_dp) << EDP_PSR2_IDLE_FRAME_SHIFT;
526 
527 	val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE;
528 	if (DISPLAY_VER(dev_priv) >= 10 && DISPLAY_VER(dev_priv) <= 12)
529 		val |= EDP_Y_COORDINATE_ENABLE;
530 
531 	val |= EDP_PSR2_FRAME_BEFORE_SU(intel_dp->psr.sink_sync_latency + 1);
532 	val |= intel_psr2_get_tp_time(intel_dp);
533 
534 	if (DISPLAY_VER(dev_priv) >= 12) {
535 		/*
536 		 * TODO: 7 lines of IO_BUFFER_WAKE and FAST_WAKE are default
537 		 * values from BSpec. In order to setting an optimal power
538 		 * consumption, lower than 4k resoluition mode needs to decrese
539 		 * IO_BUFFER_WAKE and FAST_WAKE. And higher than 4K resolution
540 		 * mode needs to increase IO_BUFFER_WAKE and FAST_WAKE.
541 		 */
542 		val |= TGL_EDP_PSR2_BLOCK_COUNT_NUM_2;
543 		val |= TGL_EDP_PSR2_IO_BUFFER_WAKE(7);
544 		val |= TGL_EDP_PSR2_FAST_WAKE(7);
545 	} else if (DISPLAY_VER(dev_priv) >= 9) {
546 		val |= EDP_PSR2_IO_BUFFER_WAKE(7);
547 		val |= EDP_PSR2_FAST_WAKE(7);
548 	}
549 
550 	if (intel_dp->psr.psr2_sel_fetch_enabled) {
551 		/* WA 1408330847 */
552 		if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_A0) ||
553 		    IS_RKL_REVID(dev_priv, RKL_REVID_A0, RKL_REVID_A0))
554 			intel_de_rmw(dev_priv, CHICKEN_PAR1_1,
555 				     DIS_RAM_BYPASS_PSR2_MAN_TRACK,
556 				     DIS_RAM_BYPASS_PSR2_MAN_TRACK);
557 
558 		intel_de_write(dev_priv,
559 			       PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder),
560 			       PSR2_MAN_TRK_CTL_ENABLE);
561 	} else if (HAS_PSR2_SEL_FETCH(dev_priv)) {
562 		intel_de_write(dev_priv,
563 			       PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder), 0);
564 	}
565 
566 	/*
567 	 * PSR2 HW is incorrectly using EDP_PSR_TP1_TP3_SEL and BSpec is
568 	 * recommending keep this bit unset while PSR2 is enabled.
569 	 */
570 	intel_de_write(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder), 0);
571 
572 	intel_de_write(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder), val);
573 }
574 
575 static bool
576 transcoder_has_psr2(struct drm_i915_private *dev_priv, enum transcoder trans)
577 {
578 	if (DISPLAY_VER(dev_priv) < 9)
579 		return false;
580 	else if (DISPLAY_VER(dev_priv) >= 12)
581 		return trans == TRANSCODER_A;
582 	else
583 		return trans == TRANSCODER_EDP;
584 }
585 
586 static u32 intel_get_frame_time_us(const struct intel_crtc_state *cstate)
587 {
588 	if (!cstate || !cstate->hw.active)
589 		return 0;
590 
591 	return DIV_ROUND_UP(1000 * 1000,
592 			    drm_mode_vrefresh(&cstate->hw.adjusted_mode));
593 }
594 
595 static void psr2_program_idle_frames(struct intel_dp *intel_dp,
596 				     u32 idle_frames)
597 {
598 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
599 	u32 val;
600 
601 	idle_frames <<=  EDP_PSR2_IDLE_FRAME_SHIFT;
602 	val = intel_de_read(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder));
603 	val &= ~EDP_PSR2_IDLE_FRAME_MASK;
604 	val |= idle_frames;
605 	intel_de_write(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder), val);
606 }
607 
608 static void tgl_psr2_enable_dc3co(struct intel_dp *intel_dp)
609 {
610 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
611 
612 	psr2_program_idle_frames(intel_dp, 0);
613 	intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_DC3CO);
614 }
615 
616 static void tgl_psr2_disable_dc3co(struct intel_dp *intel_dp)
617 {
618 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
619 
620 	intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
621 	psr2_program_idle_frames(intel_dp, psr_compute_idle_frames(intel_dp));
622 }
623 
624 static void tgl_dc3co_disable_work(struct work_struct *work)
625 {
626 	struct intel_dp *intel_dp =
627 		container_of(work, typeof(*intel_dp), psr.dc3co_work.work);
628 
629 	mutex_lock(&intel_dp->psr.lock);
630 	/* If delayed work is pending, it is not idle */
631 	if (delayed_work_pending(&intel_dp->psr.dc3co_work))
632 		goto unlock;
633 
634 	tgl_psr2_disable_dc3co(intel_dp);
635 unlock:
636 	mutex_unlock(&intel_dp->psr.lock);
637 }
638 
639 static void tgl_disallow_dc3co_on_psr2_exit(struct intel_dp *intel_dp)
640 {
641 	if (!intel_dp->psr.dc3co_enabled)
642 		return;
643 
644 	cancel_delayed_work(&intel_dp->psr.dc3co_work);
645 	/* Before PSR2 exit disallow dc3co*/
646 	tgl_psr2_disable_dc3co(intel_dp);
647 }
648 
649 static void
650 tgl_dc3co_exitline_compute_config(struct intel_dp *intel_dp,
651 				  struct intel_crtc_state *crtc_state)
652 {
653 	const u32 crtc_vdisplay = crtc_state->uapi.adjusted_mode.crtc_vdisplay;
654 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
655 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
656 	u32 exit_scanlines;
657 
658 	/*
659 	 * FIXME: Due to the changed sequence of activating/deactivating DC3CO,
660 	 * disable DC3CO until the changed dc3co activating/deactivating sequence
661 	 * is applied. B.Specs:49196
662 	 */
663 	return;
664 
665 	/*
666 	 * DMC's DC3CO exit mechanism has an issue with Selective Fecth
667 	 * TODO: when the issue is addressed, this restriction should be removed.
668 	 */
669 	if (crtc_state->enable_psr2_sel_fetch)
670 		return;
671 
672 	if (!(dev_priv->csr.allowed_dc_mask & DC_STATE_EN_DC3CO))
673 		return;
674 
675 	/* B.Specs:49196 DC3CO only works with pipeA and DDIA.*/
676 	if (to_intel_crtc(crtc_state->uapi.crtc)->pipe != PIPE_A ||
677 	    dig_port->base.port != PORT_A)
678 		return;
679 
680 	/*
681 	 * DC3CO Exit time 200us B.Spec 49196
682 	 * PSR2 transcoder Early Exit scanlines = ROUNDUP(200 / line time) + 1
683 	 */
684 	exit_scanlines =
685 		intel_usecs_to_scanlines(&crtc_state->uapi.adjusted_mode, 200) + 1;
686 
687 	if (drm_WARN_ON(&dev_priv->drm, exit_scanlines > crtc_vdisplay))
688 		return;
689 
690 	crtc_state->dc3co_exitline = crtc_vdisplay - exit_scanlines;
691 }
692 
693 static bool intel_psr2_sel_fetch_config_valid(struct intel_dp *intel_dp,
694 					      struct intel_crtc_state *crtc_state)
695 {
696 	struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state);
697 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
698 	struct intel_plane_state *plane_state;
699 	struct intel_plane *plane;
700 	int i;
701 
702 	if (!dev_priv->params.enable_psr2_sel_fetch &&
703 	    intel_dp->psr.debug != I915_PSR_DEBUG_ENABLE_SEL_FETCH) {
704 		drm_dbg_kms(&dev_priv->drm,
705 			    "PSR2 sel fetch not enabled, disabled by parameter\n");
706 		return false;
707 	}
708 
709 	if (crtc_state->uapi.async_flip) {
710 		drm_dbg_kms(&dev_priv->drm,
711 			    "PSR2 sel fetch not enabled, async flip enabled\n");
712 		return false;
713 	}
714 
715 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
716 		if (plane_state->uapi.rotation != DRM_MODE_ROTATE_0) {
717 			drm_dbg_kms(&dev_priv->drm,
718 				    "PSR2 sel fetch not enabled, plane rotated\n");
719 			return false;
720 		}
721 	}
722 
723 	/* Wa_14010254185 Wa_14010103792 */
724 	if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B1)) {
725 		drm_dbg_kms(&dev_priv->drm,
726 			    "PSR2 sel fetch not enabled, missing the implementation of WAs\n");
727 		return false;
728 	}
729 
730 	return crtc_state->enable_psr2_sel_fetch = true;
731 }
732 
733 static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
734 				    struct intel_crtc_state *crtc_state)
735 {
736 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
737 	int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay;
738 	int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay;
739 	int psr_max_h = 0, psr_max_v = 0, max_bpp = 0;
740 
741 	if (!intel_dp->psr.sink_psr2_support)
742 		return false;
743 
744 	/* JSL and EHL only supports eDP 1.3 */
745 	if (IS_JSL_EHL(dev_priv)) {
746 		drm_dbg_kms(&dev_priv->drm, "PSR2 not supported by phy\n");
747 		return false;
748 	}
749 
750 	/* Wa_16011181250 */
751 	if (IS_ROCKETLAKE(dev_priv) || IS_ALDERLAKE_S(dev_priv)) {
752 		drm_dbg_kms(&dev_priv->drm, "PSR2 is defeatured for this platform\n");
753 		return false;
754 	}
755 
756 	if (!transcoder_has_psr2(dev_priv, crtc_state->cpu_transcoder)) {
757 		drm_dbg_kms(&dev_priv->drm,
758 			    "PSR2 not supported in transcoder %s\n",
759 			    transcoder_name(crtc_state->cpu_transcoder));
760 		return false;
761 	}
762 
763 	if (!psr2_global_enabled(intel_dp)) {
764 		drm_dbg_kms(&dev_priv->drm, "PSR2 disabled by flag\n");
765 		return false;
766 	}
767 
768 	/*
769 	 * DSC and PSR2 cannot be enabled simultaneously. If a requested
770 	 * resolution requires DSC to be enabled, priority is given to DSC
771 	 * over PSR2.
772 	 */
773 	if (crtc_state->dsc.compression_enable) {
774 		drm_dbg_kms(&dev_priv->drm,
775 			    "PSR2 cannot be enabled since DSC is enabled\n");
776 		return false;
777 	}
778 
779 	if (crtc_state->crc_enabled) {
780 		drm_dbg_kms(&dev_priv->drm,
781 			    "PSR2 not enabled because it would inhibit pipe CRC calculation\n");
782 		return false;
783 	}
784 
785 	if (DISPLAY_VER(dev_priv) >= 12) {
786 		psr_max_h = 5120;
787 		psr_max_v = 3200;
788 		max_bpp = 30;
789 	} else if (DISPLAY_VER(dev_priv) >= 10) {
790 		psr_max_h = 4096;
791 		psr_max_v = 2304;
792 		max_bpp = 24;
793 	} else if (DISPLAY_VER(dev_priv) == 9) {
794 		psr_max_h = 3640;
795 		psr_max_v = 2304;
796 		max_bpp = 24;
797 	}
798 
799 	if (crtc_state->pipe_bpp > max_bpp) {
800 		drm_dbg_kms(&dev_priv->drm,
801 			    "PSR2 not enabled, pipe bpp %d > max supported %d\n",
802 			    crtc_state->pipe_bpp, max_bpp);
803 		return false;
804 	}
805 
806 	/*
807 	 * HW sends SU blocks of size four scan lines, which means the starting
808 	 * X coordinate and Y granularity requirements will always be met. We
809 	 * only need to validate the SU block width is a multiple of
810 	 * x granularity.
811 	 */
812 	if (crtc_hdisplay % intel_dp->psr.su_x_granularity) {
813 		drm_dbg_kms(&dev_priv->drm,
814 			    "PSR2 not enabled, hdisplay(%d) not multiple of %d\n",
815 			    crtc_hdisplay, intel_dp->psr.su_x_granularity);
816 		return false;
817 	}
818 
819 	if (HAS_PSR2_SEL_FETCH(dev_priv)) {
820 		if (!intel_psr2_sel_fetch_config_valid(intel_dp, crtc_state) &&
821 		    !HAS_PSR_HW_TRACKING(dev_priv)) {
822 			drm_dbg_kms(&dev_priv->drm,
823 				    "PSR2 not enabled, selective fetch not valid and no HW tracking available\n");
824 			return false;
825 		}
826 	}
827 
828 	/* Wa_2209313811 */
829 	if (!crtc_state->enable_psr2_sel_fetch &&
830 	    IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B1)) {
831 		drm_dbg_kms(&dev_priv->drm, "PSR2 HW tracking is not supported this Display stepping\n");
832 		return false;
833 	}
834 
835 	if (!crtc_state->enable_psr2_sel_fetch &&
836 	    (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v)) {
837 		drm_dbg_kms(&dev_priv->drm,
838 			    "PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
839 			    crtc_hdisplay, crtc_vdisplay,
840 			    psr_max_h, psr_max_v);
841 		return false;
842 	}
843 
844 	tgl_dc3co_exitline_compute_config(intel_dp, crtc_state);
845 	return true;
846 }
847 
848 void intel_psr_compute_config(struct intel_dp *intel_dp,
849 			      struct intel_crtc_state *crtc_state)
850 {
851 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
852 	const struct drm_display_mode *adjusted_mode =
853 		&crtc_state->hw.adjusted_mode;
854 	int psr_setup_time;
855 
856 	/*
857 	 * Current PSR panels dont work reliably with VRR enabled
858 	 * So if VRR is enabled, do not enable PSR.
859 	 */
860 	if (crtc_state->vrr.enable)
861 		return;
862 
863 	if (!CAN_PSR(intel_dp))
864 		return;
865 
866 	if (!psr_global_enabled(intel_dp)) {
867 		drm_dbg_kms(&dev_priv->drm, "PSR disabled by flag\n");
868 		return;
869 	}
870 
871 	if (intel_dp->psr.sink_not_reliable) {
872 		drm_dbg_kms(&dev_priv->drm,
873 			    "PSR sink implementation is not reliable\n");
874 		return;
875 	}
876 
877 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
878 		drm_dbg_kms(&dev_priv->drm,
879 			    "PSR condition failed: Interlaced mode enabled\n");
880 		return;
881 	}
882 
883 	psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
884 	if (psr_setup_time < 0) {
885 		drm_dbg_kms(&dev_priv->drm,
886 			    "PSR condition failed: Invalid PSR setup time (0x%02x)\n",
887 			    intel_dp->psr_dpcd[1]);
888 		return;
889 	}
890 
891 	if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
892 	    adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
893 		drm_dbg_kms(&dev_priv->drm,
894 			    "PSR condition failed: PSR setup time (%d us) too long\n",
895 			    psr_setup_time);
896 		return;
897 	}
898 
899 	crtc_state->has_psr = true;
900 	crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state);
901 	crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
902 }
903 
904 void intel_psr_get_config(struct intel_encoder *encoder,
905 			  struct intel_crtc_state *pipe_config)
906 {
907 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
908 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
909 	struct intel_dp *intel_dp;
910 	u32 val;
911 
912 	if (!dig_port)
913 		return;
914 
915 	intel_dp = &dig_port->dp;
916 	if (!CAN_PSR(intel_dp))
917 		return;
918 
919 	mutex_lock(&intel_dp->psr.lock);
920 	if (!intel_dp->psr.enabled)
921 		goto unlock;
922 
923 	/*
924 	 * Not possible to read EDP_PSR/PSR2_CTL registers as it is
925 	 * enabled/disabled because of frontbuffer tracking and others.
926 	 */
927 	pipe_config->has_psr = true;
928 	pipe_config->has_psr2 = intel_dp->psr.psr2_enabled;
929 	pipe_config->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
930 
931 	if (!intel_dp->psr.psr2_enabled)
932 		goto unlock;
933 
934 	if (HAS_PSR2_SEL_FETCH(dev_priv)) {
935 		val = intel_de_read(dev_priv, PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder));
936 		if (val & PSR2_MAN_TRK_CTL_ENABLE)
937 			pipe_config->enable_psr2_sel_fetch = true;
938 	}
939 
940 	if (DISPLAY_VER(dev_priv) >= 12) {
941 		val = intel_de_read(dev_priv, EXITLINE(intel_dp->psr.transcoder));
942 		val &= EXITLINE_MASK;
943 		pipe_config->dc3co_exitline = val;
944 	}
945 unlock:
946 	mutex_unlock(&intel_dp->psr.lock);
947 }
948 
949 static void intel_psr_activate(struct intel_dp *intel_dp)
950 {
951 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
952 	enum transcoder transcoder = intel_dp->psr.transcoder;
953 
954 	if (transcoder_has_psr2(dev_priv, transcoder))
955 		drm_WARN_ON(&dev_priv->drm,
956 			    intel_de_read(dev_priv, EDP_PSR2_CTL(transcoder)) & EDP_PSR2_ENABLE);
957 
958 	drm_WARN_ON(&dev_priv->drm,
959 		    intel_de_read(dev_priv, EDP_PSR_CTL(transcoder)) & EDP_PSR_ENABLE);
960 	drm_WARN_ON(&dev_priv->drm, intel_dp->psr.active);
961 	lockdep_assert_held(&intel_dp->psr.lock);
962 
963 	/* psr1 and psr2 are mutually exclusive.*/
964 	if (intel_dp->psr.psr2_enabled)
965 		hsw_activate_psr2(intel_dp);
966 	else
967 		hsw_activate_psr1(intel_dp);
968 
969 	intel_dp->psr.active = true;
970 }
971 
972 static void intel_psr_enable_source(struct intel_dp *intel_dp,
973 				    const struct intel_crtc_state *crtc_state)
974 {
975 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
976 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
977 	u32 mask;
978 
979 	/* Only HSW and BDW have PSR AUX registers that need to be setup. SKL+
980 	 * use hardcoded values PSR AUX transactions
981 	 */
982 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
983 		hsw_psr_setup_aux(intel_dp);
984 
985 	if (intel_dp->psr.psr2_enabled && DISPLAY_VER(dev_priv) == 9) {
986 		i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder);
987 		u32 chicken = intel_de_read(dev_priv, reg);
988 
989 		chicken |= PSR2_VSC_ENABLE_PROG_HEADER |
990 			   PSR2_ADD_VERTICAL_LINE_COUNT;
991 		intel_de_write(dev_priv, reg, chicken);
992 	}
993 
994 	/*
995 	 * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also
996 	 * mask LPSP to avoid dependency on other drivers that might block
997 	 * runtime_pm besides preventing  other hw tracking issues now we
998 	 * can rely on frontbuffer tracking.
999 	 */
1000 	mask = EDP_PSR_DEBUG_MASK_MEMUP |
1001 	       EDP_PSR_DEBUG_MASK_HPD |
1002 	       EDP_PSR_DEBUG_MASK_LPSP |
1003 	       EDP_PSR_DEBUG_MASK_MAX_SLEEP;
1004 
1005 	if (DISPLAY_VER(dev_priv) < 11)
1006 		mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE;
1007 
1008 	intel_de_write(dev_priv, EDP_PSR_DEBUG(intel_dp->psr.transcoder),
1009 		       mask);
1010 
1011 	psr_irq_control(intel_dp);
1012 
1013 	if (crtc_state->dc3co_exitline) {
1014 		u32 val;
1015 
1016 		/*
1017 		 * TODO: if future platforms supports DC3CO in more than one
1018 		 * transcoder, EXITLINE will need to be unset when disabling PSR
1019 		 */
1020 		val = intel_de_read(dev_priv, EXITLINE(cpu_transcoder));
1021 		val &= ~EXITLINE_MASK;
1022 		val |= crtc_state->dc3co_exitline << EXITLINE_SHIFT;
1023 		val |= EXITLINE_ENABLE;
1024 		intel_de_write(dev_priv, EXITLINE(cpu_transcoder), val);
1025 	}
1026 
1027 	if (HAS_PSR_HW_TRACKING(dev_priv) && HAS_PSR2_SEL_FETCH(dev_priv))
1028 		intel_de_rmw(dev_priv, CHICKEN_PAR1_1, IGNORE_PSR2_HW_TRACKING,
1029 			     intel_dp->psr.psr2_sel_fetch_enabled ?
1030 			     IGNORE_PSR2_HW_TRACKING : 0);
1031 }
1032 
1033 static void intel_psr_enable_locked(struct intel_dp *intel_dp,
1034 				    const struct intel_crtc_state *crtc_state,
1035 				    const struct drm_connector_state *conn_state)
1036 {
1037 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1038 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1039 	struct intel_encoder *encoder = &dig_port->base;
1040 	u32 val;
1041 
1042 	drm_WARN_ON(&dev_priv->drm, intel_dp->psr.enabled);
1043 
1044 	intel_dp->psr.psr2_enabled = crtc_state->has_psr2;
1045 	intel_dp->psr.busy_frontbuffer_bits = 0;
1046 	intel_dp->psr.pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe;
1047 	intel_dp->psr.dc3co_enabled = !!crtc_state->dc3co_exitline;
1048 	intel_dp->psr.transcoder = crtc_state->cpu_transcoder;
1049 	/* DC5/DC6 requires at least 6 idle frames */
1050 	val = usecs_to_jiffies(intel_get_frame_time_us(crtc_state) * 6);
1051 	intel_dp->psr.dc3co_exit_delay = val;
1052 	intel_dp->psr.psr2_sel_fetch_enabled = crtc_state->enable_psr2_sel_fetch;
1053 
1054 	/*
1055 	 * If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR
1056 	 * will still keep the error set even after the reset done in the
1057 	 * irq_preinstall and irq_uninstall hooks.
1058 	 * And enabling in this situation cause the screen to freeze in the
1059 	 * first time that PSR HW tries to activate so lets keep PSR disabled
1060 	 * to avoid any rendering problems.
1061 	 */
1062 	if (DISPLAY_VER(dev_priv) >= 12) {
1063 		val = intel_de_read(dev_priv,
1064 				    TRANS_PSR_IIR(intel_dp->psr.transcoder));
1065 		val &= EDP_PSR_ERROR(0);
1066 	} else {
1067 		val = intel_de_read(dev_priv, EDP_PSR_IIR);
1068 		val &= EDP_PSR_ERROR(intel_dp->psr.transcoder);
1069 	}
1070 	if (val) {
1071 		intel_dp->psr.sink_not_reliable = true;
1072 		drm_dbg_kms(&dev_priv->drm,
1073 			    "PSR interruption error set, not enabling PSR\n");
1074 		return;
1075 	}
1076 
1077 	drm_dbg_kms(&dev_priv->drm, "Enabling PSR%s\n",
1078 		    intel_dp->psr.psr2_enabled ? "2" : "1");
1079 	intel_dp_compute_psr_vsc_sdp(intel_dp, crtc_state, conn_state,
1080 				     &intel_dp->psr.vsc);
1081 	intel_write_dp_vsc_sdp(encoder, crtc_state, &intel_dp->psr.vsc);
1082 	intel_psr_enable_sink(intel_dp);
1083 	intel_psr_enable_source(intel_dp, crtc_state);
1084 	intel_dp->psr.enabled = true;
1085 
1086 	intel_psr_activate(intel_dp);
1087 }
1088 
1089 /**
1090  * intel_psr_enable - Enable PSR
1091  * @intel_dp: Intel DP
1092  * @crtc_state: new CRTC state
1093  * @conn_state: new CONNECTOR state
1094  *
1095  * This function can only be called after the pipe is fully trained and enabled.
1096  */
1097 void intel_psr_enable(struct intel_dp *intel_dp,
1098 		      const struct intel_crtc_state *crtc_state,
1099 		      const struct drm_connector_state *conn_state)
1100 {
1101 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1102 
1103 	if (!CAN_PSR(intel_dp))
1104 		return;
1105 
1106 	if (!crtc_state->has_psr)
1107 		return;
1108 
1109 	drm_WARN_ON(&dev_priv->drm, dev_priv->drrs.dp);
1110 
1111 	mutex_lock(&intel_dp->psr.lock);
1112 	intel_psr_enable_locked(intel_dp, crtc_state, conn_state);
1113 	mutex_unlock(&intel_dp->psr.lock);
1114 }
1115 
1116 static void intel_psr_exit(struct intel_dp *intel_dp)
1117 {
1118 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1119 	u32 val;
1120 
1121 	if (!intel_dp->psr.active) {
1122 		if (transcoder_has_psr2(dev_priv, intel_dp->psr.transcoder)) {
1123 			val = intel_de_read(dev_priv,
1124 					    EDP_PSR2_CTL(intel_dp->psr.transcoder));
1125 			drm_WARN_ON(&dev_priv->drm, val & EDP_PSR2_ENABLE);
1126 		}
1127 
1128 		val = intel_de_read(dev_priv,
1129 				    EDP_PSR_CTL(intel_dp->psr.transcoder));
1130 		drm_WARN_ON(&dev_priv->drm, val & EDP_PSR_ENABLE);
1131 
1132 		return;
1133 	}
1134 
1135 	if (intel_dp->psr.psr2_enabled) {
1136 		tgl_disallow_dc3co_on_psr2_exit(intel_dp);
1137 		val = intel_de_read(dev_priv,
1138 				    EDP_PSR2_CTL(intel_dp->psr.transcoder));
1139 		drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR2_ENABLE));
1140 		val &= ~EDP_PSR2_ENABLE;
1141 		intel_de_write(dev_priv,
1142 			       EDP_PSR2_CTL(intel_dp->psr.transcoder), val);
1143 	} else {
1144 		val = intel_de_read(dev_priv,
1145 				    EDP_PSR_CTL(intel_dp->psr.transcoder));
1146 		drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR_ENABLE));
1147 		val &= ~EDP_PSR_ENABLE;
1148 		intel_de_write(dev_priv,
1149 			       EDP_PSR_CTL(intel_dp->psr.transcoder), val);
1150 	}
1151 	intel_dp->psr.active = false;
1152 }
1153 
1154 static void intel_psr_disable_locked(struct intel_dp *intel_dp)
1155 {
1156 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1157 	i915_reg_t psr_status;
1158 	u32 psr_status_mask;
1159 
1160 	lockdep_assert_held(&intel_dp->psr.lock);
1161 
1162 	if (!intel_dp->psr.enabled)
1163 		return;
1164 
1165 	drm_dbg_kms(&dev_priv->drm, "Disabling PSR%s\n",
1166 		    intel_dp->psr.psr2_enabled ? "2" : "1");
1167 
1168 	intel_psr_exit(intel_dp);
1169 
1170 	if (intel_dp->psr.psr2_enabled) {
1171 		psr_status = EDP_PSR2_STATUS(intel_dp->psr.transcoder);
1172 		psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
1173 	} else {
1174 		psr_status = EDP_PSR_STATUS(intel_dp->psr.transcoder);
1175 		psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
1176 	}
1177 
1178 	/* Wait till PSR is idle */
1179 	if (intel_de_wait_for_clear(dev_priv, psr_status,
1180 				    psr_status_mask, 2000))
1181 		drm_err(&dev_priv->drm, "Timed out waiting PSR idle state\n");
1182 
1183 	/* WA 1408330847 */
1184 	if (intel_dp->psr.psr2_sel_fetch_enabled &&
1185 	    (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_A0) ||
1186 	     IS_RKL_REVID(dev_priv, RKL_REVID_A0, RKL_REVID_A0)))
1187 		intel_de_rmw(dev_priv, CHICKEN_PAR1_1,
1188 			     DIS_RAM_BYPASS_PSR2_MAN_TRACK, 0);
1189 
1190 	/* Disable PSR on Sink */
1191 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
1192 
1193 	if (intel_dp->psr.psr2_enabled)
1194 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, 0);
1195 
1196 	intel_dp->psr.enabled = false;
1197 }
1198 
1199 /**
1200  * intel_psr_disable - Disable PSR
1201  * @intel_dp: Intel DP
1202  * @old_crtc_state: old CRTC state
1203  *
1204  * This function needs to be called before disabling pipe.
1205  */
1206 void intel_psr_disable(struct intel_dp *intel_dp,
1207 		       const struct intel_crtc_state *old_crtc_state)
1208 {
1209 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1210 
1211 	if (!old_crtc_state->has_psr)
1212 		return;
1213 
1214 	if (drm_WARN_ON(&dev_priv->drm, !CAN_PSR(intel_dp)))
1215 		return;
1216 
1217 	mutex_lock(&intel_dp->psr.lock);
1218 
1219 	intel_psr_disable_locked(intel_dp);
1220 
1221 	mutex_unlock(&intel_dp->psr.lock);
1222 	cancel_work_sync(&intel_dp->psr.work);
1223 	cancel_delayed_work_sync(&intel_dp->psr.dc3co_work);
1224 }
1225 
1226 static void psr_force_hw_tracking_exit(struct intel_dp *intel_dp)
1227 {
1228 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1229 
1230 	if (DISPLAY_VER(dev_priv) >= 9)
1231 		/*
1232 		 * Display WA #0884: skl+
1233 		 * This documented WA for bxt can be safely applied
1234 		 * broadly so we can force HW tracking to exit PSR
1235 		 * instead of disabling and re-enabling.
1236 		 * Workaround tells us to write 0 to CUR_SURFLIVE_A,
1237 		 * but it makes more sense write to the current active
1238 		 * pipe.
1239 		 */
1240 		intel_de_write(dev_priv, CURSURFLIVE(intel_dp->psr.pipe), 0);
1241 	else
1242 		/*
1243 		 * A write to CURSURFLIVE do not cause HW tracking to exit PSR
1244 		 * on older gens so doing the manual exit instead.
1245 		 */
1246 		intel_psr_exit(intel_dp);
1247 }
1248 
1249 void intel_psr2_program_plane_sel_fetch(struct intel_plane *plane,
1250 					const struct intel_crtc_state *crtc_state,
1251 					const struct intel_plane_state *plane_state,
1252 					int color_plane)
1253 {
1254 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1255 	enum pipe pipe = plane->pipe;
1256 	const struct drm_rect *clip;
1257 	u32 val, offset;
1258 	int ret, x, y;
1259 
1260 	if (!crtc_state->enable_psr2_sel_fetch)
1261 		return;
1262 
1263 	val = plane_state ? plane_state->ctl : 0;
1264 	val &= plane->id == PLANE_CURSOR ? val : PLANE_SEL_FETCH_CTL_ENABLE;
1265 	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_CTL(pipe, plane->id), val);
1266 	if (!val || plane->id == PLANE_CURSOR)
1267 		return;
1268 
1269 	clip = &plane_state->psr2_sel_fetch_area;
1270 
1271 	val = (clip->y1 + plane_state->uapi.dst.y1) << 16;
1272 	val |= plane_state->uapi.dst.x1;
1273 	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_POS(pipe, plane->id), val);
1274 
1275 	/* TODO: consider auxiliary surfaces */
1276 	x = plane_state->uapi.src.x1 >> 16;
1277 	y = (plane_state->uapi.src.y1 >> 16) + clip->y1;
1278 	ret = skl_calc_main_surface_offset(plane_state, &x, &y, &offset);
1279 	if (ret)
1280 		drm_warn_once(&dev_priv->drm, "skl_calc_main_surface_offset() returned %i\n",
1281 			      ret);
1282 	val = y << 16 | x;
1283 	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_OFFSET(pipe, plane->id),
1284 			  val);
1285 
1286 	/* Sizes are 0 based */
1287 	val = (drm_rect_height(clip) - 1) << 16;
1288 	val |= (drm_rect_width(&plane_state->uapi.src) >> 16) - 1;
1289 	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_SIZE(pipe, plane->id), val);
1290 }
1291 
1292 void intel_psr2_program_trans_man_trk_ctl(const struct intel_crtc_state *crtc_state)
1293 {
1294 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1295 
1296 	if (!HAS_PSR2_SEL_FETCH(dev_priv) ||
1297 	    !crtc_state->enable_psr2_sel_fetch)
1298 		return;
1299 
1300 	intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(crtc_state->cpu_transcoder),
1301 		       crtc_state->psr2_man_track_ctl);
1302 }
1303 
1304 static void psr2_man_trk_ctl_calc(struct intel_crtc_state *crtc_state,
1305 				  struct drm_rect *clip, bool full_update)
1306 {
1307 	u32 val = PSR2_MAN_TRK_CTL_ENABLE;
1308 
1309 	if (full_update) {
1310 		val |= PSR2_MAN_TRK_CTL_SF_SINGLE_FULL_FRAME;
1311 		goto exit;
1312 	}
1313 
1314 	if (clip->y1 == -1)
1315 		goto exit;
1316 
1317 	drm_WARN_ON(crtc_state->uapi.crtc->dev, clip->y1 % 4 || clip->y2 % 4);
1318 
1319 	val |= PSR2_MAN_TRK_CTL_SF_PARTIAL_FRAME_UPDATE;
1320 	val |= PSR2_MAN_TRK_CTL_SU_REGION_START_ADDR(clip->y1 / 4 + 1);
1321 	val |= PSR2_MAN_TRK_CTL_SU_REGION_END_ADDR(clip->y2 / 4 + 1);
1322 exit:
1323 	crtc_state->psr2_man_track_ctl = val;
1324 }
1325 
1326 static void clip_area_update(struct drm_rect *overlap_damage_area,
1327 			     struct drm_rect *damage_area)
1328 {
1329 	if (overlap_damage_area->y1 == -1) {
1330 		overlap_damage_area->y1 = damage_area->y1;
1331 		overlap_damage_area->y2 = damage_area->y2;
1332 		return;
1333 	}
1334 
1335 	if (damage_area->y1 < overlap_damage_area->y1)
1336 		overlap_damage_area->y1 = damage_area->y1;
1337 
1338 	if (damage_area->y2 > overlap_damage_area->y2)
1339 		overlap_damage_area->y2 = damage_area->y2;
1340 }
1341 
1342 int intel_psr2_sel_fetch_update(struct intel_atomic_state *state,
1343 				struct intel_crtc *crtc)
1344 {
1345 	struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
1346 	struct drm_rect pipe_clip = { .x1 = 0, .y1 = -1, .x2 = INT_MAX, .y2 = -1 };
1347 	struct intel_plane_state *new_plane_state, *old_plane_state;
1348 	struct intel_plane *plane;
1349 	bool full_update = false;
1350 	int i, ret;
1351 
1352 	if (!crtc_state->enable_psr2_sel_fetch)
1353 		return 0;
1354 
1355 	ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
1356 	if (ret)
1357 		return ret;
1358 
1359 	/*
1360 	 * Calculate minimal selective fetch area of each plane and calculate
1361 	 * the pipe damaged area.
1362 	 * In the next loop the plane selective fetch area will actually be set
1363 	 * using whole pipe damaged area.
1364 	 */
1365 	for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
1366 					     new_plane_state, i) {
1367 		struct drm_rect src, damaged_area = { .y1 = -1 };
1368 		struct drm_mode_rect *damaged_clips;
1369 		u32 num_clips, j;
1370 
1371 		if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc)
1372 			continue;
1373 
1374 		if (!new_plane_state->uapi.visible &&
1375 		    !old_plane_state->uapi.visible)
1376 			continue;
1377 
1378 		/*
1379 		 * TODO: Not clear how to handle planes with negative position,
1380 		 * also planes are not updated if they have a negative X
1381 		 * position so for now doing a full update in this cases
1382 		 */
1383 		if (new_plane_state->uapi.dst.y1 < 0 ||
1384 		    new_plane_state->uapi.dst.x1 < 0) {
1385 			full_update = true;
1386 			break;
1387 		}
1388 
1389 		num_clips = drm_plane_get_damage_clips_count(&new_plane_state->uapi);
1390 
1391 		/*
1392 		 * If visibility or plane moved, mark the whole plane area as
1393 		 * damaged as it needs to be complete redraw in the new and old
1394 		 * position.
1395 		 */
1396 		if (new_plane_state->uapi.visible != old_plane_state->uapi.visible ||
1397 		    !drm_rect_equals(&new_plane_state->uapi.dst,
1398 				     &old_plane_state->uapi.dst)) {
1399 			if (old_plane_state->uapi.visible) {
1400 				damaged_area.y1 = old_plane_state->uapi.dst.y1;
1401 				damaged_area.y2 = old_plane_state->uapi.dst.y2;
1402 				clip_area_update(&pipe_clip, &damaged_area);
1403 			}
1404 
1405 			if (new_plane_state->uapi.visible) {
1406 				damaged_area.y1 = new_plane_state->uapi.dst.y1;
1407 				damaged_area.y2 = new_plane_state->uapi.dst.y2;
1408 				clip_area_update(&pipe_clip, &damaged_area);
1409 			}
1410 			continue;
1411 		} else if (new_plane_state->uapi.alpha != old_plane_state->uapi.alpha ||
1412 			   (!num_clips &&
1413 			    new_plane_state->uapi.fb != old_plane_state->uapi.fb)) {
1414 			/*
1415 			 * If the plane don't have damaged areas but the
1416 			 * framebuffer changed or alpha changed, mark the whole
1417 			 * plane area as damaged.
1418 			 */
1419 			damaged_area.y1 = new_plane_state->uapi.dst.y1;
1420 			damaged_area.y2 = new_plane_state->uapi.dst.y2;
1421 			clip_area_update(&pipe_clip, &damaged_area);
1422 			continue;
1423 		}
1424 
1425 		drm_rect_fp_to_int(&src, &new_plane_state->uapi.src);
1426 		damaged_clips = drm_plane_get_damage_clips(&new_plane_state->uapi);
1427 
1428 		for (j = 0; j < num_clips; j++) {
1429 			struct drm_rect clip;
1430 
1431 			clip.x1 = damaged_clips[j].x1;
1432 			clip.y1 = damaged_clips[j].y1;
1433 			clip.x2 = damaged_clips[j].x2;
1434 			clip.y2 = damaged_clips[j].y2;
1435 			if (drm_rect_intersect(&clip, &src))
1436 				clip_area_update(&damaged_area, &clip);
1437 		}
1438 
1439 		if (damaged_area.y1 == -1)
1440 			continue;
1441 
1442 		damaged_area.y1 += new_plane_state->uapi.dst.y1 - src.y1;
1443 		damaged_area.y2 += new_plane_state->uapi.dst.y1 - src.y1;
1444 		clip_area_update(&pipe_clip, &damaged_area);
1445 	}
1446 
1447 	if (full_update)
1448 		goto skip_sel_fetch_set_loop;
1449 
1450 	/* It must be aligned to 4 lines */
1451 	pipe_clip.y1 -= pipe_clip.y1 % 4;
1452 	if (pipe_clip.y2 % 4)
1453 		pipe_clip.y2 = ((pipe_clip.y2 / 4) + 1) * 4;
1454 
1455 	/*
1456 	 * Now that we have the pipe damaged area check if it intersect with
1457 	 * every plane, if it does set the plane selective fetch area.
1458 	 */
1459 	for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
1460 					     new_plane_state, i) {
1461 		struct drm_rect *sel_fetch_area, inter;
1462 
1463 		if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc ||
1464 		    !new_plane_state->uapi.visible)
1465 			continue;
1466 
1467 		inter = pipe_clip;
1468 		if (!drm_rect_intersect(&inter, &new_plane_state->uapi.dst))
1469 			continue;
1470 
1471 		sel_fetch_area = &new_plane_state->psr2_sel_fetch_area;
1472 		sel_fetch_area->y1 = inter.y1 - new_plane_state->uapi.dst.y1;
1473 		sel_fetch_area->y2 = inter.y2 - new_plane_state->uapi.dst.y1;
1474 	}
1475 
1476 skip_sel_fetch_set_loop:
1477 	psr2_man_trk_ctl_calc(crtc_state, &pipe_clip, full_update);
1478 	return 0;
1479 }
1480 
1481 /**
1482  * intel_psr_update - Update PSR state
1483  * @intel_dp: Intel DP
1484  * @crtc_state: new CRTC state
1485  * @conn_state: new CONNECTOR state
1486  *
1487  * This functions will update PSR states, disabling, enabling or switching PSR
1488  * version when executing fastsets. For full modeset, intel_psr_disable() and
1489  * intel_psr_enable() should be called instead.
1490  */
1491 void intel_psr_update(struct intel_dp *intel_dp,
1492 		      const struct intel_crtc_state *crtc_state,
1493 		      const struct drm_connector_state *conn_state)
1494 {
1495 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1496 	struct intel_psr *psr = &intel_dp->psr;
1497 	bool enable, psr2_enable;
1498 
1499 	if (!CAN_PSR(intel_dp))
1500 		return;
1501 
1502 	mutex_lock(&intel_dp->psr.lock);
1503 
1504 	enable = crtc_state->has_psr;
1505 	psr2_enable = crtc_state->has_psr2;
1506 
1507 	if (enable == psr->enabled && psr2_enable == psr->psr2_enabled &&
1508 	    crtc_state->enable_psr2_sel_fetch == psr->psr2_sel_fetch_enabled) {
1509 		/* Force a PSR exit when enabling CRC to avoid CRC timeouts */
1510 		if (crtc_state->crc_enabled && psr->enabled)
1511 			psr_force_hw_tracking_exit(intel_dp);
1512 		else if (DISPLAY_VER(dev_priv) < 9 && psr->enabled) {
1513 			/*
1514 			 * Activate PSR again after a force exit when enabling
1515 			 * CRC in older gens
1516 			 */
1517 			if (!intel_dp->psr.active &&
1518 			    !intel_dp->psr.busy_frontbuffer_bits)
1519 				schedule_work(&intel_dp->psr.work);
1520 		}
1521 
1522 		goto unlock;
1523 	}
1524 
1525 	if (psr->enabled)
1526 		intel_psr_disable_locked(intel_dp);
1527 
1528 	if (enable)
1529 		intel_psr_enable_locked(intel_dp, crtc_state, conn_state);
1530 
1531 unlock:
1532 	mutex_unlock(&intel_dp->psr.lock);
1533 }
1534 
1535 /**
1536  * psr_wait_for_idle - wait for PSR1 to idle
1537  * @intel_dp: Intel DP
1538  * @out_value: PSR status in case of failure
1539  *
1540  * Returns: 0 on success or -ETIMEOUT if PSR status does not idle.
1541  *
1542  */
1543 static int psr_wait_for_idle(struct intel_dp *intel_dp, u32 *out_value)
1544 {
1545 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1546 
1547 	/*
1548 	 * From bspec: Panel Self Refresh (BDW+)
1549 	 * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of
1550 	 * exit training time + 1.5 ms of aux channel handshake. 50 ms is
1551 	 * defensive enough to cover everything.
1552 	 */
1553 	return __intel_wait_for_register(&dev_priv->uncore,
1554 					 EDP_PSR_STATUS(intel_dp->psr.transcoder),
1555 					 EDP_PSR_STATUS_STATE_MASK,
1556 					 EDP_PSR_STATUS_STATE_IDLE, 2, 50,
1557 					 out_value);
1558 }
1559 
1560 /**
1561  * intel_psr_wait_for_idle - wait for PSR1 to idle
1562  * @new_crtc_state: new CRTC state
1563  *
1564  * This function is expected to be called from pipe_update_start() where it is
1565  * not expected to race with PSR enable or disable.
1566  */
1567 void intel_psr_wait_for_idle(const struct intel_crtc_state *new_crtc_state)
1568 {
1569 	struct drm_i915_private *dev_priv = to_i915(new_crtc_state->uapi.crtc->dev);
1570 	struct intel_encoder *encoder;
1571 
1572 	if (!new_crtc_state->has_psr)
1573 		return;
1574 
1575 	for_each_intel_encoder_mask_with_psr(&dev_priv->drm, encoder,
1576 					     new_crtc_state->uapi.encoder_mask) {
1577 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1578 		u32 psr_status;
1579 
1580 		mutex_lock(&intel_dp->psr.lock);
1581 		if (!intel_dp->psr.enabled || intel_dp->psr.psr2_enabled) {
1582 			mutex_unlock(&intel_dp->psr.lock);
1583 			continue;
1584 		}
1585 
1586 		/* when the PSR1 is enabled */
1587 		if (psr_wait_for_idle(intel_dp, &psr_status))
1588 			drm_err(&dev_priv->drm,
1589 				"PSR idle timed out 0x%x, atomic update may fail\n",
1590 				psr_status);
1591 		mutex_unlock(&intel_dp->psr.lock);
1592 	}
1593 }
1594 
1595 static bool __psr_wait_for_idle_locked(struct intel_dp *intel_dp)
1596 {
1597 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1598 	i915_reg_t reg;
1599 	u32 mask;
1600 	int err;
1601 
1602 	if (!intel_dp->psr.enabled)
1603 		return false;
1604 
1605 	if (intel_dp->psr.psr2_enabled) {
1606 		reg = EDP_PSR2_STATUS(intel_dp->psr.transcoder);
1607 		mask = EDP_PSR2_STATUS_STATE_MASK;
1608 	} else {
1609 		reg = EDP_PSR_STATUS(intel_dp->psr.transcoder);
1610 		mask = EDP_PSR_STATUS_STATE_MASK;
1611 	}
1612 
1613 	mutex_unlock(&intel_dp->psr.lock);
1614 
1615 	err = intel_de_wait_for_clear(dev_priv, reg, mask, 50);
1616 	if (err)
1617 		drm_err(&dev_priv->drm,
1618 			"Timed out waiting for PSR Idle for re-enable\n");
1619 
1620 	/* After the unlocked wait, verify that PSR is still wanted! */
1621 	mutex_lock(&intel_dp->psr.lock);
1622 	return err == 0 && intel_dp->psr.enabled;
1623 }
1624 
1625 static int intel_psr_fastset_force(struct drm_i915_private *dev_priv)
1626 {
1627 	struct drm_connector_list_iter conn_iter;
1628 	struct drm_device *dev = &dev_priv->drm;
1629 	struct drm_modeset_acquire_ctx ctx;
1630 	struct drm_atomic_state *state;
1631 	struct drm_connector *conn;
1632 	int err = 0;
1633 
1634 	state = drm_atomic_state_alloc(dev);
1635 	if (!state)
1636 		return -ENOMEM;
1637 
1638 	drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
1639 	state->acquire_ctx = &ctx;
1640 
1641 retry:
1642 
1643 	drm_connector_list_iter_begin(dev, &conn_iter);
1644 	drm_for_each_connector_iter(conn, &conn_iter) {
1645 		struct drm_connector_state *conn_state;
1646 		struct drm_crtc_state *crtc_state;
1647 
1648 		if (conn->connector_type != DRM_MODE_CONNECTOR_eDP)
1649 			continue;
1650 
1651 		conn_state = drm_atomic_get_connector_state(state, conn);
1652 		if (IS_ERR(conn_state)) {
1653 			err = PTR_ERR(conn_state);
1654 			break;
1655 		}
1656 
1657 		if (!conn_state->crtc)
1658 			continue;
1659 
1660 		crtc_state = drm_atomic_get_crtc_state(state, conn_state->crtc);
1661 		if (IS_ERR(crtc_state)) {
1662 			err = PTR_ERR(crtc_state);
1663 			break;
1664 		}
1665 
1666 		/* Mark mode as changed to trigger a pipe->update() */
1667 		crtc_state->mode_changed = true;
1668 	}
1669 	drm_connector_list_iter_end(&conn_iter);
1670 
1671 	if (err == 0)
1672 		err = drm_atomic_commit(state);
1673 
1674 	if (err == -EDEADLK) {
1675 		drm_atomic_state_clear(state);
1676 		err = drm_modeset_backoff(&ctx);
1677 		if (!err)
1678 			goto retry;
1679 	}
1680 
1681 	drm_modeset_drop_locks(&ctx);
1682 	drm_modeset_acquire_fini(&ctx);
1683 	drm_atomic_state_put(state);
1684 
1685 	return err;
1686 }
1687 
1688 int intel_psr_debug_set(struct intel_dp *intel_dp, u64 val)
1689 {
1690 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1691 	const u32 mode = val & I915_PSR_DEBUG_MODE_MASK;
1692 	u32 old_mode;
1693 	int ret;
1694 
1695 	if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) ||
1696 	    mode > I915_PSR_DEBUG_ENABLE_SEL_FETCH) {
1697 		drm_dbg_kms(&dev_priv->drm, "Invalid debug mask %llx\n", val);
1698 		return -EINVAL;
1699 	}
1700 
1701 	ret = mutex_lock_interruptible(&intel_dp->psr.lock);
1702 	if (ret)
1703 		return ret;
1704 
1705 	old_mode = intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK;
1706 	intel_dp->psr.debug = val;
1707 
1708 	/*
1709 	 * Do it right away if it's already enabled, otherwise it will be done
1710 	 * when enabling the source.
1711 	 */
1712 	if (intel_dp->psr.enabled)
1713 		psr_irq_control(intel_dp);
1714 
1715 	mutex_unlock(&intel_dp->psr.lock);
1716 
1717 	if (old_mode != mode)
1718 		ret = intel_psr_fastset_force(dev_priv);
1719 
1720 	return ret;
1721 }
1722 
1723 static void intel_psr_handle_irq(struct intel_dp *intel_dp)
1724 {
1725 	struct intel_psr *psr = &intel_dp->psr;
1726 
1727 	intel_psr_disable_locked(intel_dp);
1728 	psr->sink_not_reliable = true;
1729 	/* let's make sure that sink is awaken */
1730 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
1731 }
1732 
1733 static void intel_psr_work(struct work_struct *work)
1734 {
1735 	struct intel_dp *intel_dp =
1736 		container_of(work, typeof(*intel_dp), psr.work);
1737 
1738 	mutex_lock(&intel_dp->psr.lock);
1739 
1740 	if (!intel_dp->psr.enabled)
1741 		goto unlock;
1742 
1743 	if (READ_ONCE(intel_dp->psr.irq_aux_error))
1744 		intel_psr_handle_irq(intel_dp);
1745 
1746 	/*
1747 	 * We have to make sure PSR is ready for re-enable
1748 	 * otherwise it keeps disabled until next full enable/disable cycle.
1749 	 * PSR might take some time to get fully disabled
1750 	 * and be ready for re-enable.
1751 	 */
1752 	if (!__psr_wait_for_idle_locked(intel_dp))
1753 		goto unlock;
1754 
1755 	/*
1756 	 * The delayed work can race with an invalidate hence we need to
1757 	 * recheck. Since psr_flush first clears this and then reschedules we
1758 	 * won't ever miss a flush when bailing out here.
1759 	 */
1760 	if (intel_dp->psr.busy_frontbuffer_bits || intel_dp->psr.active)
1761 		goto unlock;
1762 
1763 	intel_psr_activate(intel_dp);
1764 unlock:
1765 	mutex_unlock(&intel_dp->psr.lock);
1766 }
1767 
1768 /**
1769  * intel_psr_invalidate - Invalidade PSR
1770  * @dev_priv: i915 device
1771  * @frontbuffer_bits: frontbuffer plane tracking bits
1772  * @origin: which operation caused the invalidate
1773  *
1774  * Since the hardware frontbuffer tracking has gaps we need to integrate
1775  * with the software frontbuffer tracking. This function gets called every
1776  * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
1777  * disabled if the frontbuffer mask contains a buffer relevant to PSR.
1778  *
1779  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
1780  */
1781 void intel_psr_invalidate(struct drm_i915_private *dev_priv,
1782 			  unsigned frontbuffer_bits, enum fb_op_origin origin)
1783 {
1784 	struct intel_encoder *encoder;
1785 
1786 	if (origin == ORIGIN_FLIP)
1787 		return;
1788 
1789 	for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
1790 		unsigned int pipe_frontbuffer_bits = frontbuffer_bits;
1791 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1792 
1793 		mutex_lock(&intel_dp->psr.lock);
1794 		if (!intel_dp->psr.enabled) {
1795 			mutex_unlock(&intel_dp->psr.lock);
1796 			continue;
1797 		}
1798 
1799 		pipe_frontbuffer_bits &=
1800 			INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe);
1801 		intel_dp->psr.busy_frontbuffer_bits |= pipe_frontbuffer_bits;
1802 
1803 		if (pipe_frontbuffer_bits)
1804 			intel_psr_exit(intel_dp);
1805 
1806 		mutex_unlock(&intel_dp->psr.lock);
1807 	}
1808 }
1809 /*
1810  * When we will be completely rely on PSR2 S/W tracking in future,
1811  * intel_psr_flush() will invalidate and flush the PSR for ORIGIN_FLIP
1812  * event also therefore tgl_dc3co_flush() require to be changed
1813  * accordingly in future.
1814  */
1815 static void
1816 tgl_dc3co_flush(struct intel_dp *intel_dp, unsigned int frontbuffer_bits,
1817 		enum fb_op_origin origin)
1818 {
1819 	mutex_lock(&intel_dp->psr.lock);
1820 
1821 	if (!intel_dp->psr.dc3co_enabled)
1822 		goto unlock;
1823 
1824 	if (!intel_dp->psr.psr2_enabled || !intel_dp->psr.active)
1825 		goto unlock;
1826 
1827 	/*
1828 	 * At every frontbuffer flush flip event modified delay of delayed work,
1829 	 * when delayed work schedules that means display has been idle.
1830 	 */
1831 	if (!(frontbuffer_bits &
1832 	    INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe)))
1833 		goto unlock;
1834 
1835 	tgl_psr2_enable_dc3co(intel_dp);
1836 	mod_delayed_work(system_wq, &intel_dp->psr.dc3co_work,
1837 			 intel_dp->psr.dc3co_exit_delay);
1838 
1839 unlock:
1840 	mutex_unlock(&intel_dp->psr.lock);
1841 }
1842 
1843 /**
1844  * intel_psr_flush - Flush PSR
1845  * @dev_priv: i915 device
1846  * @frontbuffer_bits: frontbuffer plane tracking bits
1847  * @origin: which operation caused the flush
1848  *
1849  * Since the hardware frontbuffer tracking has gaps we need to integrate
1850  * with the software frontbuffer tracking. This function gets called every
1851  * time frontbuffer rendering has completed and flushed out to memory. PSR
1852  * can be enabled again if no other frontbuffer relevant to PSR is dirty.
1853  *
1854  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
1855  */
1856 void intel_psr_flush(struct drm_i915_private *dev_priv,
1857 		     unsigned frontbuffer_bits, enum fb_op_origin origin)
1858 {
1859 	struct intel_encoder *encoder;
1860 
1861 	for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
1862 		unsigned int pipe_frontbuffer_bits = frontbuffer_bits;
1863 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1864 
1865 		if (origin == ORIGIN_FLIP) {
1866 			tgl_dc3co_flush(intel_dp, frontbuffer_bits, origin);
1867 			continue;
1868 		}
1869 
1870 		mutex_lock(&intel_dp->psr.lock);
1871 		if (!intel_dp->psr.enabled) {
1872 			mutex_unlock(&intel_dp->psr.lock);
1873 			continue;
1874 		}
1875 
1876 		pipe_frontbuffer_bits &=
1877 			INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe);
1878 		intel_dp->psr.busy_frontbuffer_bits &= ~pipe_frontbuffer_bits;
1879 
1880 		/* By definition flush = invalidate + flush */
1881 		if (pipe_frontbuffer_bits)
1882 			psr_force_hw_tracking_exit(intel_dp);
1883 
1884 		if (!intel_dp->psr.active && !intel_dp->psr.busy_frontbuffer_bits)
1885 			schedule_work(&intel_dp->psr.work);
1886 		mutex_unlock(&intel_dp->psr.lock);
1887 	}
1888 }
1889 
1890 /**
1891  * intel_psr_init - Init basic PSR work and mutex.
1892  * @intel_dp: Intel DP
1893  *
1894  * This function is called after the initializing connector.
1895  * (the initializing of connector treats the handling of connector capabilities)
1896  * And it initializes basic PSR stuff for each DP Encoder.
1897  */
1898 void intel_psr_init(struct intel_dp *intel_dp)
1899 {
1900 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1901 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1902 
1903 	if (!HAS_PSR(dev_priv))
1904 		return;
1905 
1906 	/*
1907 	 * HSW spec explicitly says PSR is tied to port A.
1908 	 * BDW+ platforms have a instance of PSR registers per transcoder but
1909 	 * BDW, GEN9 and GEN11 are not validated by HW team in other transcoder
1910 	 * than eDP one.
1911 	 * For now it only supports one instance of PSR for BDW, GEN9 and GEN11.
1912 	 * So lets keep it hardcoded to PORT_A for BDW, GEN9 and GEN11.
1913 	 * But GEN12 supports a instance of PSR registers per transcoder.
1914 	 */
1915 	if (DISPLAY_VER(dev_priv) < 12 && dig_port->base.port != PORT_A) {
1916 		drm_dbg_kms(&dev_priv->drm,
1917 			    "PSR condition failed: Port not supported\n");
1918 		return;
1919 	}
1920 
1921 	intel_dp->psr.source_support = true;
1922 
1923 	if (IS_HASWELL(dev_priv))
1924 		/*
1925 		 * HSW don't have PSR registers on the same space as transcoder
1926 		 * so set this to a value that when subtract to the register
1927 		 * in transcoder space results in the right offset for HSW
1928 		 */
1929 		dev_priv->hsw_psr_mmio_adjust = _SRD_CTL_EDP - _HSW_EDP_PSR_BASE;
1930 
1931 	if (dev_priv->params.enable_psr == -1)
1932 		if (DISPLAY_VER(dev_priv) < 9 || !dev_priv->vbt.psr.enable)
1933 			dev_priv->params.enable_psr = 0;
1934 
1935 	/* Set link_standby x link_off defaults */
1936 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1937 		/* HSW and BDW require workarounds that we don't implement. */
1938 		intel_dp->psr.link_standby = false;
1939 	else if (DISPLAY_VER(dev_priv) < 12)
1940 		/* For new platforms up to TGL let's respect VBT back again */
1941 		intel_dp->psr.link_standby = dev_priv->vbt.psr.full_link;
1942 
1943 	INIT_WORK(&intel_dp->psr.work, intel_psr_work);
1944 	INIT_DELAYED_WORK(&intel_dp->psr.dc3co_work, tgl_dc3co_disable_work);
1945 	mutex_init(&intel_dp->psr.lock);
1946 }
1947 
1948 static int psr_get_status_and_error_status(struct intel_dp *intel_dp,
1949 					   u8 *status, u8 *error_status)
1950 {
1951 	struct drm_dp_aux *aux = &intel_dp->aux;
1952 	int ret;
1953 
1954 	ret = drm_dp_dpcd_readb(aux, DP_PSR_STATUS, status);
1955 	if (ret != 1)
1956 		return ret;
1957 
1958 	ret = drm_dp_dpcd_readb(aux, DP_PSR_ERROR_STATUS, error_status);
1959 	if (ret != 1)
1960 		return ret;
1961 
1962 	*status = *status & DP_PSR_SINK_STATE_MASK;
1963 
1964 	return 0;
1965 }
1966 
1967 static void psr_alpm_check(struct intel_dp *intel_dp)
1968 {
1969 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1970 	struct drm_dp_aux *aux = &intel_dp->aux;
1971 	struct intel_psr *psr = &intel_dp->psr;
1972 	u8 val;
1973 	int r;
1974 
1975 	if (!psr->psr2_enabled)
1976 		return;
1977 
1978 	r = drm_dp_dpcd_readb(aux, DP_RECEIVER_ALPM_STATUS, &val);
1979 	if (r != 1) {
1980 		drm_err(&dev_priv->drm, "Error reading ALPM status\n");
1981 		return;
1982 	}
1983 
1984 	if (val & DP_ALPM_LOCK_TIMEOUT_ERROR) {
1985 		intel_psr_disable_locked(intel_dp);
1986 		psr->sink_not_reliable = true;
1987 		drm_dbg_kms(&dev_priv->drm,
1988 			    "ALPM lock timeout error, disabling PSR\n");
1989 
1990 		/* Clearing error */
1991 		drm_dp_dpcd_writeb(aux, DP_RECEIVER_ALPM_STATUS, val);
1992 	}
1993 }
1994 
1995 static void psr_capability_changed_check(struct intel_dp *intel_dp)
1996 {
1997 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1998 	struct intel_psr *psr = &intel_dp->psr;
1999 	u8 val;
2000 	int r;
2001 
2002 	r = drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ESI, &val);
2003 	if (r != 1) {
2004 		drm_err(&dev_priv->drm, "Error reading DP_PSR_ESI\n");
2005 		return;
2006 	}
2007 
2008 	if (val & DP_PSR_CAPS_CHANGE) {
2009 		intel_psr_disable_locked(intel_dp);
2010 		psr->sink_not_reliable = true;
2011 		drm_dbg_kms(&dev_priv->drm,
2012 			    "Sink PSR capability changed, disabling PSR\n");
2013 
2014 		/* Clearing it */
2015 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ESI, val);
2016 	}
2017 }
2018 
2019 void intel_psr_short_pulse(struct intel_dp *intel_dp)
2020 {
2021 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2022 	struct intel_psr *psr = &intel_dp->psr;
2023 	u8 status, error_status;
2024 	const u8 errors = DP_PSR_RFB_STORAGE_ERROR |
2025 			  DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR |
2026 			  DP_PSR_LINK_CRC_ERROR;
2027 
2028 	if (!CAN_PSR(intel_dp))
2029 		return;
2030 
2031 	mutex_lock(&psr->lock);
2032 
2033 	if (!psr->enabled)
2034 		goto exit;
2035 
2036 	if (psr_get_status_and_error_status(intel_dp, &status, &error_status)) {
2037 		drm_err(&dev_priv->drm,
2038 			"Error reading PSR status or error status\n");
2039 		goto exit;
2040 	}
2041 
2042 	if (status == DP_PSR_SINK_INTERNAL_ERROR || (error_status & errors)) {
2043 		intel_psr_disable_locked(intel_dp);
2044 		psr->sink_not_reliable = true;
2045 	}
2046 
2047 	if (status == DP_PSR_SINK_INTERNAL_ERROR && !error_status)
2048 		drm_dbg_kms(&dev_priv->drm,
2049 			    "PSR sink internal error, disabling PSR\n");
2050 	if (error_status & DP_PSR_RFB_STORAGE_ERROR)
2051 		drm_dbg_kms(&dev_priv->drm,
2052 			    "PSR RFB storage error, disabling PSR\n");
2053 	if (error_status & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR)
2054 		drm_dbg_kms(&dev_priv->drm,
2055 			    "PSR VSC SDP uncorrectable error, disabling PSR\n");
2056 	if (error_status & DP_PSR_LINK_CRC_ERROR)
2057 		drm_dbg_kms(&dev_priv->drm,
2058 			    "PSR Link CRC error, disabling PSR\n");
2059 
2060 	if (error_status & ~errors)
2061 		drm_err(&dev_priv->drm,
2062 			"PSR_ERROR_STATUS unhandled errors %x\n",
2063 			error_status & ~errors);
2064 	/* clear status register */
2065 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, error_status);
2066 
2067 	psr_alpm_check(intel_dp);
2068 	psr_capability_changed_check(intel_dp);
2069 
2070 exit:
2071 	mutex_unlock(&psr->lock);
2072 }
2073 
2074 bool intel_psr_enabled(struct intel_dp *intel_dp)
2075 {
2076 	bool ret;
2077 
2078 	if (!CAN_PSR(intel_dp))
2079 		return false;
2080 
2081 	mutex_lock(&intel_dp->psr.lock);
2082 	ret = intel_dp->psr.enabled;
2083 	mutex_unlock(&intel_dp->psr.lock);
2084 
2085 	return ret;
2086 }
2087