xref: /openbmc/linux/drivers/gpu/drm/i915/display/intel_psr.c (revision a89aa749ece9c6fee7932163472d2ee0efd6ddd3)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <drm/drm_atomic_helper.h>
25 
26 #include "display/intel_dp.h"
27 
28 #include "i915_drv.h"
29 #include "intel_atomic.h"
30 #include "intel_display_types.h"
31 #include "intel_psr.h"
32 #include "intel_sprite.h"
33 
34 /**
35  * DOC: Panel Self Refresh (PSR/SRD)
36  *
37  * Since Haswell Display controller supports Panel Self-Refresh on display
38  * panels witch have a remote frame buffer (RFB) implemented according to PSR
39  * spec in eDP1.3. PSR feature allows the display to go to lower standby states
40  * when system is idle but display is on as it eliminates display refresh
41  * request to DDR memory completely as long as the frame buffer for that
42  * display is unchanged.
43  *
44  * Panel Self Refresh must be supported by both Hardware (source) and
45  * Panel (sink).
46  *
47  * PSR saves power by caching the framebuffer in the panel RFB, which allows us
48  * to power down the link and memory controller. For DSI panels the same idea
49  * is called "manual mode".
50  *
51  * The implementation uses the hardware-based PSR support which automatically
52  * enters/exits self-refresh mode. The hardware takes care of sending the
53  * required DP aux message and could even retrain the link (that part isn't
54  * enabled yet though). The hardware also keeps track of any frontbuffer
55  * changes to know when to exit self-refresh mode again. Unfortunately that
56  * part doesn't work too well, hence why the i915 PSR support uses the
57  * software frontbuffer tracking to make sure it doesn't miss a screen
58  * update. For this integration intel_psr_invalidate() and intel_psr_flush()
59  * get called by the frontbuffer tracking code. Note that because of locking
60  * issues the self-refresh re-enable code is done from a work queue, which
61  * must be correctly synchronized/cancelled when shutting down the pipe."
62  *
63  * DC3CO (DC3 clock off)
64  *
65  * On top of PSR2, GEN12 adds a intermediate power savings state that turns
66  * clock off automatically during PSR2 idle state.
67  * The smaller overhead of DC3co entry/exit vs. the overhead of PSR2 deep sleep
68  * entry/exit allows the HW to enter a low-power state even when page flipping
69  * periodically (for instance a 30fps video playback scenario).
70  *
71  * Every time a flips occurs PSR2 will get out of deep sleep state(if it was),
72  * so DC3CO is enabled and tgl_dc3co_disable_work is schedule to run after 6
73  * frames, if no other flip occurs and the function above is executed, DC3CO is
74  * disabled and PSR2 is configured to enter deep sleep, resetting again in case
75  * of another flip.
76  * Front buffer modifications do not trigger DC3CO activation on purpose as it
77  * would bring a lot of complexity and most of the moderns systems will only
78  * use page flips.
79  */
80 
81 static bool psr_global_enabled(struct drm_i915_private *i915)
82 {
83 	switch (i915->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
84 	case I915_PSR_DEBUG_DEFAULT:
85 		return i915_modparams.enable_psr;
86 	case I915_PSR_DEBUG_DISABLE:
87 		return false;
88 	default:
89 		return true;
90 	}
91 }
92 
93 static bool intel_psr2_enabled(struct drm_i915_private *dev_priv,
94 			       const struct intel_crtc_state *crtc_state)
95 {
96 	/* Cannot enable DSC and PSR2 simultaneously */
97 	drm_WARN_ON(&dev_priv->drm, crtc_state->dsc.compression_enable &&
98 		    crtc_state->has_psr2);
99 
100 	switch (dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
101 	case I915_PSR_DEBUG_DISABLE:
102 	case I915_PSR_DEBUG_FORCE_PSR1:
103 		return false;
104 	default:
105 		return crtc_state->has_psr2;
106 	}
107 }
108 
109 static void psr_irq_control(struct drm_i915_private *dev_priv)
110 {
111 	enum transcoder trans_shift;
112 	u32 mask, val;
113 	i915_reg_t imr_reg;
114 
115 	/*
116 	 * gen12+ has registers relative to transcoder and one per transcoder
117 	 * using the same bit definition: handle it as TRANSCODER_EDP to force
118 	 * 0 shift in bit definition
119 	 */
120 	if (INTEL_GEN(dev_priv) >= 12) {
121 		trans_shift = 0;
122 		imr_reg = TRANS_PSR_IMR(dev_priv->psr.transcoder);
123 	} else {
124 		trans_shift = dev_priv->psr.transcoder;
125 		imr_reg = EDP_PSR_IMR;
126 	}
127 
128 	mask = EDP_PSR_ERROR(trans_shift);
129 	if (dev_priv->psr.debug & I915_PSR_DEBUG_IRQ)
130 		mask |= EDP_PSR_POST_EXIT(trans_shift) |
131 			EDP_PSR_PRE_ENTRY(trans_shift);
132 
133 	/* Warning: it is masking/setting reserved bits too */
134 	val = intel_de_read(dev_priv, imr_reg);
135 	val &= ~EDP_PSR_TRANS_MASK(trans_shift);
136 	val |= ~mask;
137 	intel_de_write(dev_priv, imr_reg, val);
138 }
139 
140 static void psr_event_print(u32 val, bool psr2_enabled)
141 {
142 	DRM_DEBUG_KMS("PSR exit events: 0x%x\n", val);
143 	if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE)
144 		DRM_DEBUG_KMS("\tPSR2 watchdog timer expired\n");
145 	if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled)
146 		DRM_DEBUG_KMS("\tPSR2 disabled\n");
147 	if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN)
148 		DRM_DEBUG_KMS("\tSU dirty FIFO underrun\n");
149 	if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN)
150 		DRM_DEBUG_KMS("\tSU CRC FIFO underrun\n");
151 	if (val & PSR_EVENT_GRAPHICS_RESET)
152 		DRM_DEBUG_KMS("\tGraphics reset\n");
153 	if (val & PSR_EVENT_PCH_INTERRUPT)
154 		DRM_DEBUG_KMS("\tPCH interrupt\n");
155 	if (val & PSR_EVENT_MEMORY_UP)
156 		DRM_DEBUG_KMS("\tMemory up\n");
157 	if (val & PSR_EVENT_FRONT_BUFFER_MODIFY)
158 		DRM_DEBUG_KMS("\tFront buffer modification\n");
159 	if (val & PSR_EVENT_WD_TIMER_EXPIRE)
160 		DRM_DEBUG_KMS("\tPSR watchdog timer expired\n");
161 	if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE)
162 		DRM_DEBUG_KMS("\tPIPE registers updated\n");
163 	if (val & PSR_EVENT_REGISTER_UPDATE)
164 		DRM_DEBUG_KMS("\tRegister updated\n");
165 	if (val & PSR_EVENT_HDCP_ENABLE)
166 		DRM_DEBUG_KMS("\tHDCP enabled\n");
167 	if (val & PSR_EVENT_KVMR_SESSION_ENABLE)
168 		DRM_DEBUG_KMS("\tKVMR session enabled\n");
169 	if (val & PSR_EVENT_VBI_ENABLE)
170 		DRM_DEBUG_KMS("\tVBI enabled\n");
171 	if (val & PSR_EVENT_LPSP_MODE_EXIT)
172 		DRM_DEBUG_KMS("\tLPSP mode exited\n");
173 	if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled)
174 		DRM_DEBUG_KMS("\tPSR disabled\n");
175 }
176 
177 void intel_psr_irq_handler(struct drm_i915_private *dev_priv, u32 psr_iir)
178 {
179 	enum transcoder cpu_transcoder = dev_priv->psr.transcoder;
180 	enum transcoder trans_shift;
181 	i915_reg_t imr_reg;
182 	ktime_t time_ns =  ktime_get();
183 
184 	if (INTEL_GEN(dev_priv) >= 12) {
185 		trans_shift = 0;
186 		imr_reg = TRANS_PSR_IMR(dev_priv->psr.transcoder);
187 	} else {
188 		trans_shift = dev_priv->psr.transcoder;
189 		imr_reg = EDP_PSR_IMR;
190 	}
191 
192 	if (psr_iir & EDP_PSR_PRE_ENTRY(trans_shift)) {
193 		dev_priv->psr.last_entry_attempt = time_ns;
194 		drm_dbg_kms(&dev_priv->drm,
195 			    "[transcoder %s] PSR entry attempt in 2 vblanks\n",
196 			    transcoder_name(cpu_transcoder));
197 	}
198 
199 	if (psr_iir & EDP_PSR_POST_EXIT(trans_shift)) {
200 		dev_priv->psr.last_exit = time_ns;
201 		drm_dbg_kms(&dev_priv->drm,
202 			    "[transcoder %s] PSR exit completed\n",
203 			    transcoder_name(cpu_transcoder));
204 
205 		if (INTEL_GEN(dev_priv) >= 9) {
206 			u32 val = intel_de_read(dev_priv,
207 						PSR_EVENT(cpu_transcoder));
208 			bool psr2_enabled = dev_priv->psr.psr2_enabled;
209 
210 			intel_de_write(dev_priv, PSR_EVENT(cpu_transcoder),
211 				       val);
212 			psr_event_print(val, psr2_enabled);
213 		}
214 	}
215 
216 	if (psr_iir & EDP_PSR_ERROR(trans_shift)) {
217 		u32 val;
218 
219 		drm_warn(&dev_priv->drm, "[transcoder %s] PSR aux error\n",
220 			 transcoder_name(cpu_transcoder));
221 
222 		dev_priv->psr.irq_aux_error = true;
223 
224 		/*
225 		 * If this interruption is not masked it will keep
226 		 * interrupting so fast that it prevents the scheduled
227 		 * work to run.
228 		 * Also after a PSR error, we don't want to arm PSR
229 		 * again so we don't care about unmask the interruption
230 		 * or unset irq_aux_error.
231 		 */
232 		val = intel_de_read(dev_priv, imr_reg);
233 		val |= EDP_PSR_ERROR(trans_shift);
234 		intel_de_write(dev_priv, imr_reg, val);
235 
236 		schedule_work(&dev_priv->psr.work);
237 	}
238 }
239 
240 static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
241 {
242 	u8 alpm_caps = 0;
243 
244 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
245 			      &alpm_caps) != 1)
246 		return false;
247 	return alpm_caps & DP_ALPM_CAP;
248 }
249 
250 static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
251 {
252 	u8 val = 8; /* assume the worst if we can't read the value */
253 
254 	if (drm_dp_dpcd_readb(&intel_dp->aux,
255 			      DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
256 		val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
257 	else
258 		DRM_DEBUG_KMS("Unable to get sink synchronization latency, assuming 8 frames\n");
259 	return val;
260 }
261 
262 static u16 intel_dp_get_su_x_granulartiy(struct intel_dp *intel_dp)
263 {
264 	u16 val;
265 	ssize_t r;
266 
267 	/*
268 	 * Returning the default X granularity if granularity not required or
269 	 * if DPCD read fails
270 	 */
271 	if (!(intel_dp->psr_dpcd[1] & DP_PSR2_SU_GRANULARITY_REQUIRED))
272 		return 4;
273 
274 	r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_X_GRANULARITY, &val, 2);
275 	if (r != 2)
276 		DRM_DEBUG_KMS("Unable to read DP_PSR2_SU_X_GRANULARITY\n");
277 
278 	/*
279 	 * Spec says that if the value read is 0 the default granularity should
280 	 * be used instead.
281 	 */
282 	if (r != 2 || val == 0)
283 		val = 4;
284 
285 	return val;
286 }
287 
288 void intel_psr_init_dpcd(struct intel_dp *intel_dp)
289 {
290 	struct drm_i915_private *dev_priv =
291 		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
292 
293 	if (dev_priv->psr.dp) {
294 		drm_warn(&dev_priv->drm,
295 			 "More than one eDP panel found, PSR support should be extended\n");
296 		return;
297 	}
298 
299 	drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
300 			 sizeof(intel_dp->psr_dpcd));
301 
302 	if (!intel_dp->psr_dpcd[0])
303 		return;
304 	drm_dbg_kms(&dev_priv->drm, "eDP panel supports PSR version %x\n",
305 		    intel_dp->psr_dpcd[0]);
306 
307 	if (drm_dp_has_quirk(&intel_dp->desc, 0, DP_DPCD_QUIRK_NO_PSR)) {
308 		drm_dbg_kms(&dev_priv->drm,
309 			    "PSR support not currently available for this panel\n");
310 		return;
311 	}
312 
313 	if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
314 		drm_dbg_kms(&dev_priv->drm,
315 			    "Panel lacks power state control, PSR cannot be enabled\n");
316 		return;
317 	}
318 
319 	dev_priv->psr.sink_support = true;
320 	dev_priv->psr.sink_sync_latency =
321 		intel_dp_get_sink_sync_latency(intel_dp);
322 
323 	dev_priv->psr.dp = intel_dp;
324 
325 	if (INTEL_GEN(dev_priv) >= 9 &&
326 	    (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) {
327 		bool y_req = intel_dp->psr_dpcd[1] &
328 			     DP_PSR2_SU_Y_COORDINATE_REQUIRED;
329 		bool alpm = intel_dp_get_alpm_status(intel_dp);
330 
331 		/*
332 		 * All panels that supports PSR version 03h (PSR2 +
333 		 * Y-coordinate) can handle Y-coordinates in VSC but we are
334 		 * only sure that it is going to be used when required by the
335 		 * panel. This way panel is capable to do selective update
336 		 * without a aux frame sync.
337 		 *
338 		 * To support PSR version 02h and PSR version 03h without
339 		 * Y-coordinate requirement panels we would need to enable
340 		 * GTC first.
341 		 */
342 		dev_priv->psr.sink_psr2_support = y_req && alpm;
343 		drm_dbg_kms(&dev_priv->drm, "PSR2 %ssupported\n",
344 			    dev_priv->psr.sink_psr2_support ? "" : "not ");
345 
346 		if (dev_priv->psr.sink_psr2_support) {
347 			dev_priv->psr.colorimetry_support =
348 				intel_dp_get_colorimetry_status(intel_dp);
349 			dev_priv->psr.su_x_granularity =
350 				intel_dp_get_su_x_granulartiy(intel_dp);
351 		}
352 	}
353 }
354 
355 static void intel_psr_setup_vsc(struct intel_dp *intel_dp,
356 				const struct intel_crtc_state *crtc_state)
357 {
358 	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
359 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
360 	struct dp_sdp psr_vsc;
361 
362 	if (dev_priv->psr.psr2_enabled) {
363 		/* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
364 		memset(&psr_vsc, 0, sizeof(psr_vsc));
365 		psr_vsc.sdp_header.HB0 = 0;
366 		psr_vsc.sdp_header.HB1 = 0x7;
367 		if (dev_priv->psr.colorimetry_support) {
368 			psr_vsc.sdp_header.HB2 = 0x5;
369 			psr_vsc.sdp_header.HB3 = 0x13;
370 		} else {
371 			psr_vsc.sdp_header.HB2 = 0x4;
372 			psr_vsc.sdp_header.HB3 = 0xe;
373 		}
374 	} else {
375 		/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
376 		memset(&psr_vsc, 0, sizeof(psr_vsc));
377 		psr_vsc.sdp_header.HB0 = 0;
378 		psr_vsc.sdp_header.HB1 = 0x7;
379 		psr_vsc.sdp_header.HB2 = 0x2;
380 		psr_vsc.sdp_header.HB3 = 0x8;
381 	}
382 
383 	intel_dig_port->write_infoframe(&intel_dig_port->base,
384 					crtc_state,
385 					DP_SDP_VSC, &psr_vsc, sizeof(psr_vsc));
386 }
387 
388 static void hsw_psr_setup_aux(struct intel_dp *intel_dp)
389 {
390 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
391 	u32 aux_clock_divider, aux_ctl;
392 	int i;
393 	static const u8 aux_msg[] = {
394 		[0] = DP_AUX_NATIVE_WRITE << 4,
395 		[1] = DP_SET_POWER >> 8,
396 		[2] = DP_SET_POWER & 0xff,
397 		[3] = 1 - 1,
398 		[4] = DP_SET_POWER_D0,
399 	};
400 	u32 psr_aux_mask = EDP_PSR_AUX_CTL_TIME_OUT_MASK |
401 			   EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK |
402 			   EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK |
403 			   EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK;
404 
405 	BUILD_BUG_ON(sizeof(aux_msg) > 20);
406 	for (i = 0; i < sizeof(aux_msg); i += 4)
407 		intel_de_write(dev_priv,
408 			       EDP_PSR_AUX_DATA(dev_priv->psr.transcoder, i >> 2),
409 			       intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
410 
411 	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
412 
413 	/* Start with bits set for DDI_AUX_CTL register */
414 	aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, sizeof(aux_msg),
415 					     aux_clock_divider);
416 
417 	/* Select only valid bits for SRD_AUX_CTL */
418 	aux_ctl &= psr_aux_mask;
419 	intel_de_write(dev_priv, EDP_PSR_AUX_CTL(dev_priv->psr.transcoder),
420 		       aux_ctl);
421 }
422 
423 static void intel_psr_enable_sink(struct intel_dp *intel_dp)
424 {
425 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
426 	u8 dpcd_val = DP_PSR_ENABLE;
427 
428 	/* Enable ALPM at sink for psr2 */
429 	if (dev_priv->psr.psr2_enabled) {
430 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG,
431 				   DP_ALPM_ENABLE |
432 				   DP_ALPM_LOCK_ERROR_IRQ_HPD_ENABLE);
433 
434 		dpcd_val |= DP_PSR_ENABLE_PSR2 | DP_PSR_IRQ_HPD_WITH_CRC_ERRORS;
435 	} else {
436 		if (dev_priv->psr.link_standby)
437 			dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE;
438 
439 		if (INTEL_GEN(dev_priv) >= 8)
440 			dpcd_val |= DP_PSR_CRC_VERIFICATION;
441 	}
442 
443 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val);
444 
445 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
446 }
447 
448 static u32 intel_psr1_get_tp_time(struct intel_dp *intel_dp)
449 {
450 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
451 	u32 val = 0;
452 
453 	if (INTEL_GEN(dev_priv) >= 11)
454 		val |= EDP_PSR_TP4_TIME_0US;
455 
456 	if (dev_priv->vbt.psr.tp1_wakeup_time_us == 0)
457 		val |= EDP_PSR_TP1_TIME_0us;
458 	else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 100)
459 		val |= EDP_PSR_TP1_TIME_100us;
460 	else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 500)
461 		val |= EDP_PSR_TP1_TIME_500us;
462 	else
463 		val |= EDP_PSR_TP1_TIME_2500us;
464 
465 	if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us == 0)
466 		val |= EDP_PSR_TP2_TP3_TIME_0us;
467 	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
468 		val |= EDP_PSR_TP2_TP3_TIME_100us;
469 	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
470 		val |= EDP_PSR_TP2_TP3_TIME_500us;
471 	else
472 		val |= EDP_PSR_TP2_TP3_TIME_2500us;
473 
474 	if (intel_dp_source_supports_hbr2(intel_dp) &&
475 	    drm_dp_tps3_supported(intel_dp->dpcd))
476 		val |= EDP_PSR_TP1_TP3_SEL;
477 	else
478 		val |= EDP_PSR_TP1_TP2_SEL;
479 
480 	return val;
481 }
482 
483 static u8 psr_compute_idle_frames(struct intel_dp *intel_dp)
484 {
485 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
486 	int idle_frames;
487 
488 	/* Let's use 6 as the minimum to cover all known cases including the
489 	 * off-by-one issue that HW has in some cases.
490 	 */
491 	idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
492 	idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
493 
494 	if (drm_WARN_ON(&dev_priv->drm, idle_frames > 0xf))
495 		idle_frames = 0xf;
496 
497 	return idle_frames;
498 }
499 
500 static void hsw_activate_psr1(struct intel_dp *intel_dp)
501 {
502 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
503 	u32 max_sleep_time = 0x1f;
504 	u32 val = EDP_PSR_ENABLE;
505 
506 	val |= psr_compute_idle_frames(intel_dp) << EDP_PSR_IDLE_FRAME_SHIFT;
507 
508 	val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
509 	if (IS_HASWELL(dev_priv))
510 		val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
511 
512 	if (dev_priv->psr.link_standby)
513 		val |= EDP_PSR_LINK_STANDBY;
514 
515 	val |= intel_psr1_get_tp_time(intel_dp);
516 
517 	if (INTEL_GEN(dev_priv) >= 8)
518 		val |= EDP_PSR_CRC_ENABLE;
519 
520 	val |= (intel_de_read(dev_priv, EDP_PSR_CTL(dev_priv->psr.transcoder)) &
521 		EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK);
522 	intel_de_write(dev_priv, EDP_PSR_CTL(dev_priv->psr.transcoder), val);
523 }
524 
525 static void hsw_activate_psr2(struct intel_dp *intel_dp)
526 {
527 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
528 	u32 val;
529 
530 	val = psr_compute_idle_frames(intel_dp) << EDP_PSR2_IDLE_FRAME_SHIFT;
531 
532 	val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE;
533 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
534 		val |= EDP_Y_COORDINATE_ENABLE;
535 
536 	val |= EDP_PSR2_FRAME_BEFORE_SU(dev_priv->psr.sink_sync_latency + 1);
537 
538 	if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us >= 0 &&
539 	    dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 50)
540 		val |= EDP_PSR2_TP2_TIME_50us;
541 	else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 100)
542 		val |= EDP_PSR2_TP2_TIME_100us;
543 	else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 500)
544 		val |= EDP_PSR2_TP2_TIME_500us;
545 	else
546 		val |= EDP_PSR2_TP2_TIME_2500us;
547 
548 	/*
549 	 * PSR2 HW is incorrectly using EDP_PSR_TP1_TP3_SEL and BSpec is
550 	 * recommending keep this bit unset while PSR2 is enabled.
551 	 */
552 	intel_de_write(dev_priv, EDP_PSR_CTL(dev_priv->psr.transcoder), 0);
553 
554 	intel_de_write(dev_priv, EDP_PSR2_CTL(dev_priv->psr.transcoder), val);
555 }
556 
557 static bool
558 transcoder_has_psr2(struct drm_i915_private *dev_priv, enum transcoder trans)
559 {
560 	if (INTEL_GEN(dev_priv) < 9)
561 		return false;
562 	else if (INTEL_GEN(dev_priv) >= 12)
563 		return trans == TRANSCODER_A;
564 	else
565 		return trans == TRANSCODER_EDP;
566 }
567 
568 static u32 intel_get_frame_time_us(const struct intel_crtc_state *cstate)
569 {
570 	if (!cstate || !cstate->hw.active)
571 		return 0;
572 
573 	return DIV_ROUND_UP(1000 * 1000,
574 			    drm_mode_vrefresh(&cstate->hw.adjusted_mode));
575 }
576 
577 static void psr2_program_idle_frames(struct drm_i915_private *dev_priv,
578 				     u32 idle_frames)
579 {
580 	u32 val;
581 
582 	idle_frames <<=  EDP_PSR2_IDLE_FRAME_SHIFT;
583 	val = intel_de_read(dev_priv, EDP_PSR2_CTL(dev_priv->psr.transcoder));
584 	val &= ~EDP_PSR2_IDLE_FRAME_MASK;
585 	val |= idle_frames;
586 	intel_de_write(dev_priv, EDP_PSR2_CTL(dev_priv->psr.transcoder), val);
587 }
588 
589 static void tgl_psr2_enable_dc3co(struct drm_i915_private *dev_priv)
590 {
591 	psr2_program_idle_frames(dev_priv, 0);
592 	intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_DC3CO);
593 }
594 
595 static void tgl_psr2_disable_dc3co(struct drm_i915_private *dev_priv)
596 {
597 	struct intel_dp *intel_dp = dev_priv->psr.dp;
598 
599 	intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
600 	psr2_program_idle_frames(dev_priv, psr_compute_idle_frames(intel_dp));
601 }
602 
603 static void tgl_dc3co_disable_work(struct work_struct *work)
604 {
605 	struct drm_i915_private *dev_priv =
606 		container_of(work, typeof(*dev_priv), psr.dc3co_work.work);
607 
608 	mutex_lock(&dev_priv->psr.lock);
609 	/* If delayed work is pending, it is not idle */
610 	if (delayed_work_pending(&dev_priv->psr.dc3co_work))
611 		goto unlock;
612 
613 	tgl_psr2_disable_dc3co(dev_priv);
614 unlock:
615 	mutex_unlock(&dev_priv->psr.lock);
616 }
617 
618 static void tgl_disallow_dc3co_on_psr2_exit(struct drm_i915_private *dev_priv)
619 {
620 	if (!dev_priv->psr.dc3co_enabled)
621 		return;
622 
623 	cancel_delayed_work(&dev_priv->psr.dc3co_work);
624 	/* Before PSR2 exit disallow dc3co*/
625 	tgl_psr2_disable_dc3co(dev_priv);
626 }
627 
628 static void
629 tgl_dc3co_exitline_compute_config(struct intel_dp *intel_dp,
630 				  struct intel_crtc_state *crtc_state)
631 {
632 	const u32 crtc_vdisplay = crtc_state->uapi.adjusted_mode.crtc_vdisplay;
633 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
634 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
635 	u32 exit_scanlines;
636 
637 	if (!(dev_priv->csr.allowed_dc_mask & DC_STATE_EN_DC3CO))
638 		return;
639 
640 	/* B.Specs:49196 DC3CO only works with pipeA and DDIA.*/
641 	if (to_intel_crtc(crtc_state->uapi.crtc)->pipe != PIPE_A ||
642 	    dig_port->base.port != PORT_A)
643 		return;
644 
645 	/*
646 	 * DC3CO Exit time 200us B.Spec 49196
647 	 * PSR2 transcoder Early Exit scanlines = ROUNDUP(200 / line time) + 1
648 	 */
649 	exit_scanlines =
650 		intel_usecs_to_scanlines(&crtc_state->uapi.adjusted_mode, 200) + 1;
651 
652 	if (drm_WARN_ON(&dev_priv->drm, exit_scanlines > crtc_vdisplay))
653 		return;
654 
655 	crtc_state->dc3co_exitline = crtc_vdisplay - exit_scanlines;
656 }
657 
658 static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
659 				    struct intel_crtc_state *crtc_state)
660 {
661 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
662 	int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay;
663 	int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay;
664 	int psr_max_h = 0, psr_max_v = 0, max_bpp = 0;
665 
666 	if (!dev_priv->psr.sink_psr2_support)
667 		return false;
668 
669 	if (!transcoder_has_psr2(dev_priv, crtc_state->cpu_transcoder)) {
670 		drm_dbg_kms(&dev_priv->drm,
671 			    "PSR2 not supported in transcoder %s\n",
672 			    transcoder_name(crtc_state->cpu_transcoder));
673 		return false;
674 	}
675 
676 	/*
677 	 * DSC and PSR2 cannot be enabled simultaneously. If a requested
678 	 * resolution requires DSC to be enabled, priority is given to DSC
679 	 * over PSR2.
680 	 */
681 	if (crtc_state->dsc.compression_enable) {
682 		drm_dbg_kms(&dev_priv->drm,
683 			    "PSR2 cannot be enabled since DSC is enabled\n");
684 		return false;
685 	}
686 
687 	if (INTEL_GEN(dev_priv) >= 12) {
688 		psr_max_h = 5120;
689 		psr_max_v = 3200;
690 		max_bpp = 30;
691 	} else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
692 		psr_max_h = 4096;
693 		psr_max_v = 2304;
694 		max_bpp = 24;
695 	} else if (IS_GEN(dev_priv, 9)) {
696 		psr_max_h = 3640;
697 		psr_max_v = 2304;
698 		max_bpp = 24;
699 	}
700 
701 	if (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v) {
702 		drm_dbg_kms(&dev_priv->drm,
703 			    "PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
704 			    crtc_hdisplay, crtc_vdisplay,
705 			    psr_max_h, psr_max_v);
706 		return false;
707 	}
708 
709 	if (crtc_state->pipe_bpp > max_bpp) {
710 		drm_dbg_kms(&dev_priv->drm,
711 			    "PSR2 not enabled, pipe bpp %d > max supported %d\n",
712 			    crtc_state->pipe_bpp, max_bpp);
713 		return false;
714 	}
715 
716 	/*
717 	 * HW sends SU blocks of size four scan lines, which means the starting
718 	 * X coordinate and Y granularity requirements will always be met. We
719 	 * only need to validate the SU block width is a multiple of
720 	 * x granularity.
721 	 */
722 	if (crtc_hdisplay % dev_priv->psr.su_x_granularity) {
723 		drm_dbg_kms(&dev_priv->drm,
724 			    "PSR2 not enabled, hdisplay(%d) not multiple of %d\n",
725 			    crtc_hdisplay, dev_priv->psr.su_x_granularity);
726 		return false;
727 	}
728 
729 	if (crtc_state->crc_enabled) {
730 		drm_dbg_kms(&dev_priv->drm,
731 			    "PSR2 not enabled because it would inhibit pipe CRC calculation\n");
732 		return false;
733 	}
734 
735 	tgl_dc3co_exitline_compute_config(intel_dp, crtc_state);
736 	return true;
737 }
738 
739 void intel_psr_compute_config(struct intel_dp *intel_dp,
740 			      struct intel_crtc_state *crtc_state)
741 {
742 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
743 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
744 	const struct drm_display_mode *adjusted_mode =
745 		&crtc_state->hw.adjusted_mode;
746 	int psr_setup_time;
747 
748 	if (!CAN_PSR(dev_priv))
749 		return;
750 
751 	if (intel_dp != dev_priv->psr.dp)
752 		return;
753 
754 	/*
755 	 * HSW spec explicitly says PSR is tied to port A.
756 	 * BDW+ platforms have a instance of PSR registers per transcoder but
757 	 * for now it only supports one instance of PSR, so lets keep it
758 	 * hardcoded to PORT_A
759 	 */
760 	if (dig_port->base.port != PORT_A) {
761 		drm_dbg_kms(&dev_priv->drm,
762 			    "PSR condition failed: Port not supported\n");
763 		return;
764 	}
765 
766 	if (dev_priv->psr.sink_not_reliable) {
767 		drm_dbg_kms(&dev_priv->drm,
768 			    "PSR sink implementation is not reliable\n");
769 		return;
770 	}
771 
772 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
773 		drm_dbg_kms(&dev_priv->drm,
774 			    "PSR condition failed: Interlaced mode enabled\n");
775 		return;
776 	}
777 
778 	psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
779 	if (psr_setup_time < 0) {
780 		drm_dbg_kms(&dev_priv->drm,
781 			    "PSR condition failed: Invalid PSR setup time (0x%02x)\n",
782 			    intel_dp->psr_dpcd[1]);
783 		return;
784 	}
785 
786 	if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
787 	    adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
788 		drm_dbg_kms(&dev_priv->drm,
789 			    "PSR condition failed: PSR setup time (%d us) too long\n",
790 			    psr_setup_time);
791 		return;
792 	}
793 
794 	crtc_state->has_psr = true;
795 	crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state);
796 }
797 
798 static void intel_psr_activate(struct intel_dp *intel_dp)
799 {
800 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
801 
802 	if (transcoder_has_psr2(dev_priv, dev_priv->psr.transcoder))
803 		drm_WARN_ON(&dev_priv->drm,
804 			    intel_de_read(dev_priv, EDP_PSR2_CTL(dev_priv->psr.transcoder)) & EDP_PSR2_ENABLE);
805 
806 	drm_WARN_ON(&dev_priv->drm,
807 		    intel_de_read(dev_priv, EDP_PSR_CTL(dev_priv->psr.transcoder)) & EDP_PSR_ENABLE);
808 	drm_WARN_ON(&dev_priv->drm, dev_priv->psr.active);
809 	lockdep_assert_held(&dev_priv->psr.lock);
810 
811 	/* psr1 and psr2 are mutually exclusive.*/
812 	if (dev_priv->psr.psr2_enabled)
813 		hsw_activate_psr2(intel_dp);
814 	else
815 		hsw_activate_psr1(intel_dp);
816 
817 	dev_priv->psr.active = true;
818 }
819 
820 static void intel_psr_enable_source(struct intel_dp *intel_dp,
821 				    const struct intel_crtc_state *crtc_state)
822 {
823 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
824 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
825 	u32 mask;
826 
827 	/* Only HSW and BDW have PSR AUX registers that need to be setup. SKL+
828 	 * use hardcoded values PSR AUX transactions
829 	 */
830 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
831 		hsw_psr_setup_aux(intel_dp);
832 
833 	if (dev_priv->psr.psr2_enabled && (IS_GEN(dev_priv, 9) &&
834 					   !IS_GEMINILAKE(dev_priv))) {
835 		i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder);
836 		u32 chicken = intel_de_read(dev_priv, reg);
837 
838 		chicken |= PSR2_VSC_ENABLE_PROG_HEADER |
839 			   PSR2_ADD_VERTICAL_LINE_COUNT;
840 		intel_de_write(dev_priv, reg, chicken);
841 	}
842 
843 	/*
844 	 * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also
845 	 * mask LPSP to avoid dependency on other drivers that might block
846 	 * runtime_pm besides preventing  other hw tracking issues now we
847 	 * can rely on frontbuffer tracking.
848 	 */
849 	mask = EDP_PSR_DEBUG_MASK_MEMUP |
850 	       EDP_PSR_DEBUG_MASK_HPD |
851 	       EDP_PSR_DEBUG_MASK_LPSP |
852 	       EDP_PSR_DEBUG_MASK_MAX_SLEEP;
853 
854 	if (INTEL_GEN(dev_priv) < 11)
855 		mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE;
856 
857 	intel_de_write(dev_priv, EDP_PSR_DEBUG(dev_priv->psr.transcoder),
858 		       mask);
859 
860 	psr_irq_control(dev_priv);
861 
862 	if (crtc_state->dc3co_exitline) {
863 		u32 val;
864 
865 		/*
866 		 * TODO: if future platforms supports DC3CO in more than one
867 		 * transcoder, EXITLINE will need to be unset when disabling PSR
868 		 */
869 		val = intel_de_read(dev_priv, EXITLINE(cpu_transcoder));
870 		val &= ~EXITLINE_MASK;
871 		val |= crtc_state->dc3co_exitline << EXITLINE_SHIFT;
872 		val |= EXITLINE_ENABLE;
873 		intel_de_write(dev_priv, EXITLINE(cpu_transcoder), val);
874 	}
875 }
876 
877 static void intel_psr_enable_locked(struct drm_i915_private *dev_priv,
878 				    const struct intel_crtc_state *crtc_state)
879 {
880 	struct intel_dp *intel_dp = dev_priv->psr.dp;
881 	u32 val;
882 
883 	drm_WARN_ON(&dev_priv->drm, dev_priv->psr.enabled);
884 
885 	dev_priv->psr.psr2_enabled = intel_psr2_enabled(dev_priv, crtc_state);
886 	dev_priv->psr.busy_frontbuffer_bits = 0;
887 	dev_priv->psr.pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe;
888 	dev_priv->psr.dc3co_enabled = !!crtc_state->dc3co_exitline;
889 	dev_priv->psr.transcoder = crtc_state->cpu_transcoder;
890 	/* DC5/DC6 requires at least 6 idle frames */
891 	val = usecs_to_jiffies(intel_get_frame_time_us(crtc_state) * 6);
892 	dev_priv->psr.dc3co_exit_delay = val;
893 
894 	/*
895 	 * If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR
896 	 * will still keep the error set even after the reset done in the
897 	 * irq_preinstall and irq_uninstall hooks.
898 	 * And enabling in this situation cause the screen to freeze in the
899 	 * first time that PSR HW tries to activate so lets keep PSR disabled
900 	 * to avoid any rendering problems.
901 	 */
902 	if (INTEL_GEN(dev_priv) >= 12) {
903 		val = intel_de_read(dev_priv,
904 				    TRANS_PSR_IIR(dev_priv->psr.transcoder));
905 		val &= EDP_PSR_ERROR(0);
906 	} else {
907 		val = intel_de_read(dev_priv, EDP_PSR_IIR);
908 		val &= EDP_PSR_ERROR(dev_priv->psr.transcoder);
909 	}
910 	if (val) {
911 		dev_priv->psr.sink_not_reliable = true;
912 		drm_dbg_kms(&dev_priv->drm,
913 			    "PSR interruption error set, not enabling PSR\n");
914 		return;
915 	}
916 
917 	drm_dbg_kms(&dev_priv->drm, "Enabling PSR%s\n",
918 		    dev_priv->psr.psr2_enabled ? "2" : "1");
919 	intel_psr_setup_vsc(intel_dp, crtc_state);
920 	intel_psr_enable_sink(intel_dp);
921 	intel_psr_enable_source(intel_dp, crtc_state);
922 	dev_priv->psr.enabled = true;
923 
924 	intel_psr_activate(intel_dp);
925 }
926 
927 /**
928  * intel_psr_enable - Enable PSR
929  * @intel_dp: Intel DP
930  * @crtc_state: new CRTC state
931  *
932  * This function can only be called after the pipe is fully trained and enabled.
933  */
934 void intel_psr_enable(struct intel_dp *intel_dp,
935 		      const struct intel_crtc_state *crtc_state)
936 {
937 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
938 
939 	if (!CAN_PSR(dev_priv) || dev_priv->psr.dp != intel_dp)
940 		return;
941 
942 	dev_priv->psr.force_mode_changed = false;
943 
944 	if (!crtc_state->has_psr)
945 		return;
946 
947 	drm_WARN_ON(&dev_priv->drm, dev_priv->drrs.dp);
948 
949 	mutex_lock(&dev_priv->psr.lock);
950 
951 	if (!psr_global_enabled(dev_priv)) {
952 		drm_dbg_kms(&dev_priv->drm, "PSR disabled by flag\n");
953 		goto unlock;
954 	}
955 
956 	intel_psr_enable_locked(dev_priv, crtc_state);
957 
958 unlock:
959 	mutex_unlock(&dev_priv->psr.lock);
960 }
961 
962 static void intel_psr_exit(struct drm_i915_private *dev_priv)
963 {
964 	u32 val;
965 
966 	if (!dev_priv->psr.active) {
967 		if (transcoder_has_psr2(dev_priv, dev_priv->psr.transcoder)) {
968 			val = intel_de_read(dev_priv,
969 					    EDP_PSR2_CTL(dev_priv->psr.transcoder));
970 			drm_WARN_ON(&dev_priv->drm, val & EDP_PSR2_ENABLE);
971 		}
972 
973 		val = intel_de_read(dev_priv,
974 				    EDP_PSR_CTL(dev_priv->psr.transcoder));
975 		drm_WARN_ON(&dev_priv->drm, val & EDP_PSR_ENABLE);
976 
977 		return;
978 	}
979 
980 	if (dev_priv->psr.psr2_enabled) {
981 		tgl_disallow_dc3co_on_psr2_exit(dev_priv);
982 		val = intel_de_read(dev_priv,
983 				    EDP_PSR2_CTL(dev_priv->psr.transcoder));
984 		drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR2_ENABLE));
985 		val &= ~EDP_PSR2_ENABLE;
986 		intel_de_write(dev_priv,
987 			       EDP_PSR2_CTL(dev_priv->psr.transcoder), val);
988 	} else {
989 		val = intel_de_read(dev_priv,
990 				    EDP_PSR_CTL(dev_priv->psr.transcoder));
991 		drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR_ENABLE));
992 		val &= ~EDP_PSR_ENABLE;
993 		intel_de_write(dev_priv,
994 			       EDP_PSR_CTL(dev_priv->psr.transcoder), val);
995 	}
996 	dev_priv->psr.active = false;
997 }
998 
999 static void intel_psr_disable_locked(struct intel_dp *intel_dp)
1000 {
1001 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1002 	i915_reg_t psr_status;
1003 	u32 psr_status_mask;
1004 
1005 	lockdep_assert_held(&dev_priv->psr.lock);
1006 
1007 	if (!dev_priv->psr.enabled)
1008 		return;
1009 
1010 	drm_dbg_kms(&dev_priv->drm, "Disabling PSR%s\n",
1011 		    dev_priv->psr.psr2_enabled ? "2" : "1");
1012 
1013 	intel_psr_exit(dev_priv);
1014 
1015 	if (dev_priv->psr.psr2_enabled) {
1016 		psr_status = EDP_PSR2_STATUS(dev_priv->psr.transcoder);
1017 		psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
1018 	} else {
1019 		psr_status = EDP_PSR_STATUS(dev_priv->psr.transcoder);
1020 		psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
1021 	}
1022 
1023 	/* Wait till PSR is idle */
1024 	if (intel_de_wait_for_clear(dev_priv, psr_status,
1025 				    psr_status_mask, 2000))
1026 		drm_err(&dev_priv->drm, "Timed out waiting PSR idle state\n");
1027 
1028 	/* Disable PSR on Sink */
1029 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
1030 
1031 	if (dev_priv->psr.psr2_enabled)
1032 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, 0);
1033 
1034 	dev_priv->psr.enabled = false;
1035 }
1036 
1037 /**
1038  * intel_psr_disable - Disable PSR
1039  * @intel_dp: Intel DP
1040  * @old_crtc_state: old CRTC state
1041  *
1042  * This function needs to be called before disabling pipe.
1043  */
1044 void intel_psr_disable(struct intel_dp *intel_dp,
1045 		       const struct intel_crtc_state *old_crtc_state)
1046 {
1047 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1048 
1049 	if (!old_crtc_state->has_psr)
1050 		return;
1051 
1052 	if (drm_WARN_ON(&dev_priv->drm, !CAN_PSR(dev_priv)))
1053 		return;
1054 
1055 	mutex_lock(&dev_priv->psr.lock);
1056 
1057 	intel_psr_disable_locked(intel_dp);
1058 
1059 	mutex_unlock(&dev_priv->psr.lock);
1060 	cancel_work_sync(&dev_priv->psr.work);
1061 	cancel_delayed_work_sync(&dev_priv->psr.dc3co_work);
1062 }
1063 
1064 static void psr_force_hw_tracking_exit(struct drm_i915_private *dev_priv)
1065 {
1066 	if (INTEL_GEN(dev_priv) >= 9)
1067 		/*
1068 		 * Display WA #0884: skl+
1069 		 * This documented WA for bxt can be safely applied
1070 		 * broadly so we can force HW tracking to exit PSR
1071 		 * instead of disabling and re-enabling.
1072 		 * Workaround tells us to write 0 to CUR_SURFLIVE_A,
1073 		 * but it makes more sense write to the current active
1074 		 * pipe.
1075 		 */
1076 		intel_de_write(dev_priv, CURSURFLIVE(dev_priv->psr.pipe), 0);
1077 	else
1078 		/*
1079 		 * A write to CURSURFLIVE do not cause HW tracking to exit PSR
1080 		 * on older gens so doing the manual exit instead.
1081 		 */
1082 		intel_psr_exit(dev_priv);
1083 }
1084 
1085 /**
1086  * intel_psr_update - Update PSR state
1087  * @intel_dp: Intel DP
1088  * @crtc_state: new CRTC state
1089  *
1090  * This functions will update PSR states, disabling, enabling or switching PSR
1091  * version when executing fastsets. For full modeset, intel_psr_disable() and
1092  * intel_psr_enable() should be called instead.
1093  */
1094 void intel_psr_update(struct intel_dp *intel_dp,
1095 		      const struct intel_crtc_state *crtc_state)
1096 {
1097 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1098 	struct i915_psr *psr = &dev_priv->psr;
1099 	bool enable, psr2_enable;
1100 
1101 	if (!CAN_PSR(dev_priv) || READ_ONCE(psr->dp) != intel_dp)
1102 		return;
1103 
1104 	dev_priv->psr.force_mode_changed = false;
1105 
1106 	mutex_lock(&dev_priv->psr.lock);
1107 
1108 	enable = crtc_state->has_psr && psr_global_enabled(dev_priv);
1109 	psr2_enable = intel_psr2_enabled(dev_priv, crtc_state);
1110 
1111 	if (enable == psr->enabled && psr2_enable == psr->psr2_enabled) {
1112 		/* Force a PSR exit when enabling CRC to avoid CRC timeouts */
1113 		if (crtc_state->crc_enabled && psr->enabled)
1114 			psr_force_hw_tracking_exit(dev_priv);
1115 		else if (INTEL_GEN(dev_priv) < 9 && psr->enabled) {
1116 			/*
1117 			 * Activate PSR again after a force exit when enabling
1118 			 * CRC in older gens
1119 			 */
1120 			if (!dev_priv->psr.active &&
1121 			    !dev_priv->psr.busy_frontbuffer_bits)
1122 				schedule_work(&dev_priv->psr.work);
1123 		}
1124 
1125 		goto unlock;
1126 	}
1127 
1128 	if (psr->enabled)
1129 		intel_psr_disable_locked(intel_dp);
1130 
1131 	if (enable)
1132 		intel_psr_enable_locked(dev_priv, crtc_state);
1133 
1134 unlock:
1135 	mutex_unlock(&dev_priv->psr.lock);
1136 }
1137 
1138 /**
1139  * intel_psr_wait_for_idle - wait for PSR1 to idle
1140  * @new_crtc_state: new CRTC state
1141  * @out_value: PSR status in case of failure
1142  *
1143  * This function is expected to be called from pipe_update_start() where it is
1144  * not expected to race with PSR enable or disable.
1145  *
1146  * Returns: 0 on success or -ETIMEOUT if PSR status does not idle.
1147  */
1148 int intel_psr_wait_for_idle(const struct intel_crtc_state *new_crtc_state,
1149 			    u32 *out_value)
1150 {
1151 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1152 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1153 
1154 	if (!dev_priv->psr.enabled || !new_crtc_state->has_psr)
1155 		return 0;
1156 
1157 	/* FIXME: Update this for PSR2 if we need to wait for idle */
1158 	if (READ_ONCE(dev_priv->psr.psr2_enabled))
1159 		return 0;
1160 
1161 	/*
1162 	 * From bspec: Panel Self Refresh (BDW+)
1163 	 * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of
1164 	 * exit training time + 1.5 ms of aux channel handshake. 50 ms is
1165 	 * defensive enough to cover everything.
1166 	 */
1167 
1168 	return __intel_wait_for_register(&dev_priv->uncore,
1169 					 EDP_PSR_STATUS(dev_priv->psr.transcoder),
1170 					 EDP_PSR_STATUS_STATE_MASK,
1171 					 EDP_PSR_STATUS_STATE_IDLE, 2, 50,
1172 					 out_value);
1173 }
1174 
1175 static bool __psr_wait_for_idle_locked(struct drm_i915_private *dev_priv)
1176 {
1177 	i915_reg_t reg;
1178 	u32 mask;
1179 	int err;
1180 
1181 	if (!dev_priv->psr.enabled)
1182 		return false;
1183 
1184 	if (dev_priv->psr.psr2_enabled) {
1185 		reg = EDP_PSR2_STATUS(dev_priv->psr.transcoder);
1186 		mask = EDP_PSR2_STATUS_STATE_MASK;
1187 	} else {
1188 		reg = EDP_PSR_STATUS(dev_priv->psr.transcoder);
1189 		mask = EDP_PSR_STATUS_STATE_MASK;
1190 	}
1191 
1192 	mutex_unlock(&dev_priv->psr.lock);
1193 
1194 	err = intel_de_wait_for_clear(dev_priv, reg, mask, 50);
1195 	if (err)
1196 		drm_err(&dev_priv->drm,
1197 			"Timed out waiting for PSR Idle for re-enable\n");
1198 
1199 	/* After the unlocked wait, verify that PSR is still wanted! */
1200 	mutex_lock(&dev_priv->psr.lock);
1201 	return err == 0 && dev_priv->psr.enabled;
1202 }
1203 
1204 static int intel_psr_fastset_force(struct drm_i915_private *dev_priv)
1205 {
1206 	struct drm_device *dev = &dev_priv->drm;
1207 	struct drm_modeset_acquire_ctx ctx;
1208 	struct drm_atomic_state *state;
1209 	struct intel_crtc *crtc;
1210 	int err;
1211 
1212 	state = drm_atomic_state_alloc(dev);
1213 	if (!state)
1214 		return -ENOMEM;
1215 
1216 	drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
1217 	state->acquire_ctx = &ctx;
1218 
1219 retry:
1220 	for_each_intel_crtc(dev, crtc) {
1221 		struct intel_crtc_state *crtc_state =
1222 			intel_atomic_get_crtc_state(state, crtc);
1223 
1224 		if (IS_ERR(crtc_state)) {
1225 			err = PTR_ERR(crtc_state);
1226 			goto error;
1227 		}
1228 
1229 		if (crtc_state->hw.active && crtc_state->has_psr) {
1230 			/* Mark mode as changed to trigger a pipe->update() */
1231 			crtc_state->uapi.mode_changed = true;
1232 			break;
1233 		}
1234 	}
1235 
1236 	err = drm_atomic_commit(state);
1237 
1238 error:
1239 	if (err == -EDEADLK) {
1240 		drm_atomic_state_clear(state);
1241 		err = drm_modeset_backoff(&ctx);
1242 		if (!err)
1243 			goto retry;
1244 	}
1245 
1246 	drm_modeset_drop_locks(&ctx);
1247 	drm_modeset_acquire_fini(&ctx);
1248 	drm_atomic_state_put(state);
1249 
1250 	return err;
1251 }
1252 
1253 int intel_psr_debug_set(struct drm_i915_private *dev_priv, u64 val)
1254 {
1255 	const u32 mode = val & I915_PSR_DEBUG_MODE_MASK;
1256 	u32 old_mode;
1257 	int ret;
1258 
1259 	if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) ||
1260 	    mode > I915_PSR_DEBUG_FORCE_PSR1) {
1261 		drm_dbg_kms(&dev_priv->drm, "Invalid debug mask %llx\n", val);
1262 		return -EINVAL;
1263 	}
1264 
1265 	ret = mutex_lock_interruptible(&dev_priv->psr.lock);
1266 	if (ret)
1267 		return ret;
1268 
1269 	old_mode = dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK;
1270 	dev_priv->psr.debug = val;
1271 
1272 	/*
1273 	 * Do it right away if it's already enabled, otherwise it will be done
1274 	 * when enabling the source.
1275 	 */
1276 	if (dev_priv->psr.enabled)
1277 		psr_irq_control(dev_priv);
1278 
1279 	mutex_unlock(&dev_priv->psr.lock);
1280 
1281 	if (old_mode != mode)
1282 		ret = intel_psr_fastset_force(dev_priv);
1283 
1284 	return ret;
1285 }
1286 
1287 static void intel_psr_handle_irq(struct drm_i915_private *dev_priv)
1288 {
1289 	struct i915_psr *psr = &dev_priv->psr;
1290 
1291 	intel_psr_disable_locked(psr->dp);
1292 	psr->sink_not_reliable = true;
1293 	/* let's make sure that sink is awaken */
1294 	drm_dp_dpcd_writeb(&psr->dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
1295 }
1296 
1297 static void intel_psr_work(struct work_struct *work)
1298 {
1299 	struct drm_i915_private *dev_priv =
1300 		container_of(work, typeof(*dev_priv), psr.work);
1301 
1302 	mutex_lock(&dev_priv->psr.lock);
1303 
1304 	if (!dev_priv->psr.enabled)
1305 		goto unlock;
1306 
1307 	if (READ_ONCE(dev_priv->psr.irq_aux_error))
1308 		intel_psr_handle_irq(dev_priv);
1309 
1310 	/*
1311 	 * We have to make sure PSR is ready for re-enable
1312 	 * otherwise it keeps disabled until next full enable/disable cycle.
1313 	 * PSR might take some time to get fully disabled
1314 	 * and be ready for re-enable.
1315 	 */
1316 	if (!__psr_wait_for_idle_locked(dev_priv))
1317 		goto unlock;
1318 
1319 	/*
1320 	 * The delayed work can race with an invalidate hence we need to
1321 	 * recheck. Since psr_flush first clears this and then reschedules we
1322 	 * won't ever miss a flush when bailing out here.
1323 	 */
1324 	if (dev_priv->psr.busy_frontbuffer_bits || dev_priv->psr.active)
1325 		goto unlock;
1326 
1327 	intel_psr_activate(dev_priv->psr.dp);
1328 unlock:
1329 	mutex_unlock(&dev_priv->psr.lock);
1330 }
1331 
1332 /**
1333  * intel_psr_invalidate - Invalidade PSR
1334  * @dev_priv: i915 device
1335  * @frontbuffer_bits: frontbuffer plane tracking bits
1336  * @origin: which operation caused the invalidate
1337  *
1338  * Since the hardware frontbuffer tracking has gaps we need to integrate
1339  * with the software frontbuffer tracking. This function gets called every
1340  * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
1341  * disabled if the frontbuffer mask contains a buffer relevant to PSR.
1342  *
1343  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
1344  */
1345 void intel_psr_invalidate(struct drm_i915_private *dev_priv,
1346 			  unsigned frontbuffer_bits, enum fb_op_origin origin)
1347 {
1348 	if (!CAN_PSR(dev_priv))
1349 		return;
1350 
1351 	if (origin == ORIGIN_FLIP)
1352 		return;
1353 
1354 	mutex_lock(&dev_priv->psr.lock);
1355 	if (!dev_priv->psr.enabled) {
1356 		mutex_unlock(&dev_priv->psr.lock);
1357 		return;
1358 	}
1359 
1360 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
1361 	dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
1362 
1363 	if (frontbuffer_bits)
1364 		intel_psr_exit(dev_priv);
1365 
1366 	mutex_unlock(&dev_priv->psr.lock);
1367 }
1368 
1369 /*
1370  * When we will be completely rely on PSR2 S/W tracking in future,
1371  * intel_psr_flush() will invalidate and flush the PSR for ORIGIN_FLIP
1372  * event also therefore tgl_dc3co_flush() require to be changed
1373  * accordingly in future.
1374  */
1375 static void
1376 tgl_dc3co_flush(struct drm_i915_private *dev_priv,
1377 		unsigned int frontbuffer_bits, enum fb_op_origin origin)
1378 {
1379 	mutex_lock(&dev_priv->psr.lock);
1380 
1381 	if (!dev_priv->psr.dc3co_enabled)
1382 		goto unlock;
1383 
1384 	if (!dev_priv->psr.psr2_enabled || !dev_priv->psr.active)
1385 		goto unlock;
1386 
1387 	/*
1388 	 * At every frontbuffer flush flip event modified delay of delayed work,
1389 	 * when delayed work schedules that means display has been idle.
1390 	 */
1391 	if (!(frontbuffer_bits &
1392 	    INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe)))
1393 		goto unlock;
1394 
1395 	tgl_psr2_enable_dc3co(dev_priv);
1396 	mod_delayed_work(system_wq, &dev_priv->psr.dc3co_work,
1397 			 dev_priv->psr.dc3co_exit_delay);
1398 
1399 unlock:
1400 	mutex_unlock(&dev_priv->psr.lock);
1401 }
1402 
1403 /**
1404  * intel_psr_flush - Flush PSR
1405  * @dev_priv: i915 device
1406  * @frontbuffer_bits: frontbuffer plane tracking bits
1407  * @origin: which operation caused the flush
1408  *
1409  * Since the hardware frontbuffer tracking has gaps we need to integrate
1410  * with the software frontbuffer tracking. This function gets called every
1411  * time frontbuffer rendering has completed and flushed out to memory. PSR
1412  * can be enabled again if no other frontbuffer relevant to PSR is dirty.
1413  *
1414  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
1415  */
1416 void intel_psr_flush(struct drm_i915_private *dev_priv,
1417 		     unsigned frontbuffer_bits, enum fb_op_origin origin)
1418 {
1419 	if (!CAN_PSR(dev_priv))
1420 		return;
1421 
1422 	if (origin == ORIGIN_FLIP) {
1423 		tgl_dc3co_flush(dev_priv, frontbuffer_bits, origin);
1424 		return;
1425 	}
1426 
1427 	mutex_lock(&dev_priv->psr.lock);
1428 	if (!dev_priv->psr.enabled) {
1429 		mutex_unlock(&dev_priv->psr.lock);
1430 		return;
1431 	}
1432 
1433 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
1434 	dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
1435 
1436 	/* By definition flush = invalidate + flush */
1437 	if (frontbuffer_bits)
1438 		psr_force_hw_tracking_exit(dev_priv);
1439 
1440 	if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
1441 		schedule_work(&dev_priv->psr.work);
1442 	mutex_unlock(&dev_priv->psr.lock);
1443 }
1444 
1445 /**
1446  * intel_psr_init - Init basic PSR work and mutex.
1447  * @dev_priv: i915 device private
1448  *
1449  * This function is  called only once at driver load to initialize basic
1450  * PSR stuff.
1451  */
1452 void intel_psr_init(struct drm_i915_private *dev_priv)
1453 {
1454 	if (!HAS_PSR(dev_priv))
1455 		return;
1456 
1457 	if (!dev_priv->psr.sink_support)
1458 		return;
1459 
1460 	if (IS_HASWELL(dev_priv))
1461 		/*
1462 		 * HSW don't have PSR registers on the same space as transcoder
1463 		 * so set this to a value that when subtract to the register
1464 		 * in transcoder space results in the right offset for HSW
1465 		 */
1466 		dev_priv->hsw_psr_mmio_adjust = _SRD_CTL_EDP - _HSW_EDP_PSR_BASE;
1467 
1468 	if (i915_modparams.enable_psr == -1)
1469 		if (INTEL_GEN(dev_priv) < 9 || !dev_priv->vbt.psr.enable)
1470 			i915_modparams.enable_psr = 0;
1471 
1472 	/* Set link_standby x link_off defaults */
1473 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1474 		/* HSW and BDW require workarounds that we don't implement. */
1475 		dev_priv->psr.link_standby = false;
1476 	else if (INTEL_GEN(dev_priv) < 12)
1477 		/* For new platforms up to TGL let's respect VBT back again */
1478 		dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
1479 
1480 	INIT_WORK(&dev_priv->psr.work, intel_psr_work);
1481 	INIT_DELAYED_WORK(&dev_priv->psr.dc3co_work, tgl_dc3co_disable_work);
1482 	mutex_init(&dev_priv->psr.lock);
1483 }
1484 
1485 static int psr_get_status_and_error_status(struct intel_dp *intel_dp,
1486 					   u8 *status, u8 *error_status)
1487 {
1488 	struct drm_dp_aux *aux = &intel_dp->aux;
1489 	int ret;
1490 
1491 	ret = drm_dp_dpcd_readb(aux, DP_PSR_STATUS, status);
1492 	if (ret != 1)
1493 		return ret;
1494 
1495 	ret = drm_dp_dpcd_readb(aux, DP_PSR_ERROR_STATUS, error_status);
1496 	if (ret != 1)
1497 		return ret;
1498 
1499 	*status = *status & DP_PSR_SINK_STATE_MASK;
1500 
1501 	return 0;
1502 }
1503 
1504 static void psr_alpm_check(struct intel_dp *intel_dp)
1505 {
1506 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1507 	struct drm_dp_aux *aux = &intel_dp->aux;
1508 	struct i915_psr *psr = &dev_priv->psr;
1509 	u8 val;
1510 	int r;
1511 
1512 	if (!psr->psr2_enabled)
1513 		return;
1514 
1515 	r = drm_dp_dpcd_readb(aux, DP_RECEIVER_ALPM_STATUS, &val);
1516 	if (r != 1) {
1517 		drm_err(&dev_priv->drm, "Error reading ALPM status\n");
1518 		return;
1519 	}
1520 
1521 	if (val & DP_ALPM_LOCK_TIMEOUT_ERROR) {
1522 		intel_psr_disable_locked(intel_dp);
1523 		psr->sink_not_reliable = true;
1524 		drm_dbg_kms(&dev_priv->drm,
1525 			    "ALPM lock timeout error, disabling PSR\n");
1526 
1527 		/* Clearing error */
1528 		drm_dp_dpcd_writeb(aux, DP_RECEIVER_ALPM_STATUS, val);
1529 	}
1530 }
1531 
1532 static void psr_capability_changed_check(struct intel_dp *intel_dp)
1533 {
1534 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1535 	struct i915_psr *psr = &dev_priv->psr;
1536 	u8 val;
1537 	int r;
1538 
1539 	r = drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ESI, &val);
1540 	if (r != 1) {
1541 		drm_err(&dev_priv->drm, "Error reading DP_PSR_ESI\n");
1542 		return;
1543 	}
1544 
1545 	if (val & DP_PSR_CAPS_CHANGE) {
1546 		intel_psr_disable_locked(intel_dp);
1547 		psr->sink_not_reliable = true;
1548 		drm_dbg_kms(&dev_priv->drm,
1549 			    "Sink PSR capability changed, disabling PSR\n");
1550 
1551 		/* Clearing it */
1552 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ESI, val);
1553 	}
1554 }
1555 
1556 void intel_psr_short_pulse(struct intel_dp *intel_dp)
1557 {
1558 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1559 	struct i915_psr *psr = &dev_priv->psr;
1560 	u8 status, error_status;
1561 	const u8 errors = DP_PSR_RFB_STORAGE_ERROR |
1562 			  DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR |
1563 			  DP_PSR_LINK_CRC_ERROR;
1564 
1565 	if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
1566 		return;
1567 
1568 	mutex_lock(&psr->lock);
1569 
1570 	if (!psr->enabled || psr->dp != intel_dp)
1571 		goto exit;
1572 
1573 	if (psr_get_status_and_error_status(intel_dp, &status, &error_status)) {
1574 		drm_err(&dev_priv->drm,
1575 			"Error reading PSR status or error status\n");
1576 		goto exit;
1577 	}
1578 
1579 	if (status == DP_PSR_SINK_INTERNAL_ERROR || (error_status & errors)) {
1580 		intel_psr_disable_locked(intel_dp);
1581 		psr->sink_not_reliable = true;
1582 	}
1583 
1584 	if (status == DP_PSR_SINK_INTERNAL_ERROR && !error_status)
1585 		drm_dbg_kms(&dev_priv->drm,
1586 			    "PSR sink internal error, disabling PSR\n");
1587 	if (error_status & DP_PSR_RFB_STORAGE_ERROR)
1588 		drm_dbg_kms(&dev_priv->drm,
1589 			    "PSR RFB storage error, disabling PSR\n");
1590 	if (error_status & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR)
1591 		drm_dbg_kms(&dev_priv->drm,
1592 			    "PSR VSC SDP uncorrectable error, disabling PSR\n");
1593 	if (error_status & DP_PSR_LINK_CRC_ERROR)
1594 		drm_dbg_kms(&dev_priv->drm,
1595 			    "PSR Link CRC error, disabling PSR\n");
1596 
1597 	if (error_status & ~errors)
1598 		drm_err(&dev_priv->drm,
1599 			"PSR_ERROR_STATUS unhandled errors %x\n",
1600 			error_status & ~errors);
1601 	/* clear status register */
1602 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, error_status);
1603 
1604 	psr_alpm_check(intel_dp);
1605 	psr_capability_changed_check(intel_dp);
1606 
1607 exit:
1608 	mutex_unlock(&psr->lock);
1609 }
1610 
1611 bool intel_psr_enabled(struct intel_dp *intel_dp)
1612 {
1613 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1614 	bool ret;
1615 
1616 	if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
1617 		return false;
1618 
1619 	mutex_lock(&dev_priv->psr.lock);
1620 	ret = (dev_priv->psr.dp == intel_dp && dev_priv->psr.enabled);
1621 	mutex_unlock(&dev_priv->psr.lock);
1622 
1623 	return ret;
1624 }
1625 
1626 void intel_psr_atomic_check(struct drm_connector *connector,
1627 			    struct drm_connector_state *old_state,
1628 			    struct drm_connector_state *new_state)
1629 {
1630 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
1631 	struct intel_connector *intel_connector;
1632 	struct intel_digital_port *dig_port;
1633 	struct drm_crtc_state *crtc_state;
1634 
1635 	if (!CAN_PSR(dev_priv) || !new_state->crtc ||
1636 	    !dev_priv->psr.force_mode_changed)
1637 		return;
1638 
1639 	intel_connector = to_intel_connector(connector);
1640 	dig_port = enc_to_dig_port(intel_attached_encoder(intel_connector));
1641 	if (dev_priv->psr.dp != &dig_port->dp)
1642 		return;
1643 
1644 	crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
1645 						   new_state->crtc);
1646 	crtc_state->mode_changed = true;
1647 }
1648 
1649 void intel_psr_set_force_mode_changed(struct intel_dp *intel_dp)
1650 {
1651 	struct drm_i915_private *dev_priv;
1652 
1653 	if (!intel_dp)
1654 		return;
1655 
1656 	dev_priv = dp_to_i915(intel_dp);
1657 	if (!CAN_PSR(dev_priv) || intel_dp != dev_priv->psr.dp)
1658 		return;
1659 
1660 	dev_priv->psr.force_mode_changed = true;
1661 }
1662