1 /* 2 * Copyright © 2014 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <drm/drm_atomic_helper.h> 25 #include <drm/drm_damage_helper.h> 26 27 #include "i915_drv.h" 28 #include "i915_reg.h" 29 #include "intel_atomic.h" 30 #include "intel_crtc.h" 31 #include "intel_de.h" 32 #include "intel_display_types.h" 33 #include "intel_dp.h" 34 #include "intel_dp_aux.h" 35 #include "intel_hdmi.h" 36 #include "intel_psr.h" 37 #include "intel_psr_regs.h" 38 #include "intel_snps_phy.h" 39 #include "skl_universal_plane.h" 40 41 /** 42 * DOC: Panel Self Refresh (PSR/SRD) 43 * 44 * Since Haswell Display controller supports Panel Self-Refresh on display 45 * panels witch have a remote frame buffer (RFB) implemented according to PSR 46 * spec in eDP1.3. PSR feature allows the display to go to lower standby states 47 * when system is idle but display is on as it eliminates display refresh 48 * request to DDR memory completely as long as the frame buffer for that 49 * display is unchanged. 50 * 51 * Panel Self Refresh must be supported by both Hardware (source) and 52 * Panel (sink). 53 * 54 * PSR saves power by caching the framebuffer in the panel RFB, which allows us 55 * to power down the link and memory controller. For DSI panels the same idea 56 * is called "manual mode". 57 * 58 * The implementation uses the hardware-based PSR support which automatically 59 * enters/exits self-refresh mode. The hardware takes care of sending the 60 * required DP aux message and could even retrain the link (that part isn't 61 * enabled yet though). The hardware also keeps track of any frontbuffer 62 * changes to know when to exit self-refresh mode again. Unfortunately that 63 * part doesn't work too well, hence why the i915 PSR support uses the 64 * software frontbuffer tracking to make sure it doesn't miss a screen 65 * update. For this integration intel_psr_invalidate() and intel_psr_flush() 66 * get called by the frontbuffer tracking code. Note that because of locking 67 * issues the self-refresh re-enable code is done from a work queue, which 68 * must be correctly synchronized/cancelled when shutting down the pipe." 69 * 70 * DC3CO (DC3 clock off) 71 * 72 * On top of PSR2, GEN12 adds a intermediate power savings state that turns 73 * clock off automatically during PSR2 idle state. 74 * The smaller overhead of DC3co entry/exit vs. the overhead of PSR2 deep sleep 75 * entry/exit allows the HW to enter a low-power state even when page flipping 76 * periodically (for instance a 30fps video playback scenario). 77 * 78 * Every time a flips occurs PSR2 will get out of deep sleep state(if it was), 79 * so DC3CO is enabled and tgl_dc3co_disable_work is schedule to run after 6 80 * frames, if no other flip occurs and the function above is executed, DC3CO is 81 * disabled and PSR2 is configured to enter deep sleep, resetting again in case 82 * of another flip. 83 * Front buffer modifications do not trigger DC3CO activation on purpose as it 84 * would bring a lot of complexity and most of the moderns systems will only 85 * use page flips. 86 */ 87 88 /* 89 * Description of PSR mask bits: 90 * 91 * EDP_PSR_DEBUG[16]/EDP_PSR_DEBUG_MASK_DISP_REG_WRITE (hsw-skl): 92 * 93 * When unmasked (nearly) all display register writes (eg. even 94 * SWF) trigger a PSR exit. Some registers are excluded from this 95 * and they have a more specific mask (described below). On icl+ 96 * this bit no longer exists and is effectively always set. 97 * 98 * PIPE_MISC[21]/PIPE_MISC_PSR_MASK_PIPE_REG_WRITE (skl+): 99 * 100 * When unmasked (nearly) all pipe/plane register writes 101 * trigger a PSR exit. Some plane registers are excluded from this 102 * and they have a more specific mask (described below). 103 * 104 * CHICKEN_PIPESL_1[11]/SKL_PSR_MASK_PLANE_FLIP (skl+): 105 * PIPE_MISC[23]/PIPE_MISC_PSR_MASK_PRIMARY_FLIP (bdw): 106 * EDP_PSR_DEBUG[23]/EDP_PSR_DEBUG_MASK_PRIMARY_FLIP (hsw): 107 * 108 * When unmasked PRI_SURF/PLANE_SURF writes trigger a PSR exit. 109 * SPR_SURF/CURBASE are not included in this and instead are 110 * controlled by PIPE_MISC_PSR_MASK_PIPE_REG_WRITE (skl+) or 111 * EDP_PSR_DEBUG_MASK_DISP_REG_WRITE (hsw/bdw). 112 * 113 * PIPE_MISC[22]/PIPE_MISC_PSR_MASK_SPRITE_ENABLE (bdw): 114 * EDP_PSR_DEBUG[21]/EDP_PSR_DEBUG_MASK_SPRITE_ENABLE (hsw): 115 * 116 * When unmasked PSR is blocked as long as the sprite 117 * plane is enabled. skl+ with their universal planes no 118 * longer have a mask bit like this, and no plane being 119 * enabledb blocks PSR. 120 * 121 * PIPE_MISC[21]/PIPE_MISC_PSR_MASK_CURSOR_MOVE (bdw): 122 * EDP_PSR_DEBUG[20]/EDP_PSR_DEBUG_MASK_CURSOR_MOVE (hsw): 123 * 124 * When umasked CURPOS writes trigger a PSR exit. On skl+ 125 * this doesn't exit but CURPOS is included in the 126 * PIPE_MISC_PSR_MASK_PIPE_REG_WRITE mask. 127 * 128 * PIPE_MISC[20]/PIPE_MISC_PSR_MASK_VBLANK_VSYNC_INT (bdw+): 129 * EDP_PSR_DEBUG[19]/EDP_PSR_DEBUG_MASK_VBLANK_VSYNC_INT (hsw): 130 * 131 * When unmasked PSR is blocked as long as vblank and/or vsync 132 * interrupt is unmasked in IMR *and* enabled in IER. 133 * 134 * CHICKEN_TRANS[30]/SKL_UNMASK_VBL_TO_PIPE_IN_SRD (skl+): 135 * CHICKEN_PAR1_1[15]/HSW_MASK_VBL_TO_PIPE_IN_SRD (hsw/bdw): 136 * 137 * Selectcs whether PSR exit generates an extra vblank before 138 * the first frame is transmitted. Also note the opposite polarity 139 * if the bit on hsw/bdw vs. skl+ (masked==generate the extra vblank, 140 * unmasked==do not generate the extra vblank). 141 * 142 * With DC states enabled the extra vblank happens after link training, 143 * with DC states disabled it happens immediately upuon PSR exit trigger. 144 * No idea as of now why there is a difference. HSW/BDW (which don't 145 * even have DMC) always generate it after link training. Go figure. 146 * 147 * Unfortunately CHICKEN_TRANS itself seems to be double buffered 148 * and thus won't latch until the first vblank. So with DC states 149 * enabled the register effctively uses the reset value during DC5 150 * exit+PSR exit sequence, and thus the bit does nothing until 151 * latched by the vblank that it was trying to prevent from being 152 * generated in the first place. So we should probably call this 153 * one a chicken/egg bit instead on skl+. 154 * 155 * In standby mode (as opposed to link-off) this makes no difference 156 * as the timing generator keeps running the whole time generating 157 * normal periodic vblanks. 158 * 159 * WaPsrDPAMaskVBlankInSRD asks us to set the bit on hsw/bdw, 160 * and doing so makes the behaviour match the skl+ reset value. 161 * 162 * CHICKEN_PIPESL_1[0]/BDW_UNMASK_VBL_TO_REGS_IN_SRD (bdw): 163 * CHICKEN_PIPESL_1[15]/HSW_UNMASK_VBL_TO_REGS_IN_SRD (hsw): 164 * 165 * On BDW without this bit is no vblanks whatsoever are 166 * generated after PSR exit. On HSW this has no apparant effect. 167 * WaPsrDPRSUnmaskVBlankInSRD says to set this. 168 * 169 * The rest of the bits are more self-explanatory and/or 170 * irrelevant for normal operation. 171 */ 172 173 static bool psr_global_enabled(struct intel_dp *intel_dp) 174 { 175 struct intel_connector *connector = intel_dp->attached_connector; 176 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 177 178 switch (intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK) { 179 case I915_PSR_DEBUG_DEFAULT: 180 if (i915->params.enable_psr == -1) 181 return connector->panel.vbt.psr.enable; 182 return i915->params.enable_psr; 183 case I915_PSR_DEBUG_DISABLE: 184 return false; 185 default: 186 return true; 187 } 188 } 189 190 static bool psr2_global_enabled(struct intel_dp *intel_dp) 191 { 192 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 193 194 switch (intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK) { 195 case I915_PSR_DEBUG_DISABLE: 196 case I915_PSR_DEBUG_FORCE_PSR1: 197 return false; 198 default: 199 if (i915->params.enable_psr == 1) 200 return false; 201 return true; 202 } 203 } 204 205 static u32 psr_irq_psr_error_bit_get(struct intel_dp *intel_dp) 206 { 207 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 208 209 return DISPLAY_VER(dev_priv) >= 12 ? TGL_PSR_ERROR : 210 EDP_PSR_ERROR(intel_dp->psr.transcoder); 211 } 212 213 static u32 psr_irq_post_exit_bit_get(struct intel_dp *intel_dp) 214 { 215 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 216 217 return DISPLAY_VER(dev_priv) >= 12 ? TGL_PSR_POST_EXIT : 218 EDP_PSR_POST_EXIT(intel_dp->psr.transcoder); 219 } 220 221 static u32 psr_irq_pre_entry_bit_get(struct intel_dp *intel_dp) 222 { 223 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 224 225 return DISPLAY_VER(dev_priv) >= 12 ? TGL_PSR_PRE_ENTRY : 226 EDP_PSR_PRE_ENTRY(intel_dp->psr.transcoder); 227 } 228 229 static u32 psr_irq_mask_get(struct intel_dp *intel_dp) 230 { 231 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 232 233 return DISPLAY_VER(dev_priv) >= 12 ? TGL_PSR_MASK : 234 EDP_PSR_MASK(intel_dp->psr.transcoder); 235 } 236 237 static i915_reg_t psr_ctl_reg(struct drm_i915_private *dev_priv, 238 enum transcoder cpu_transcoder) 239 { 240 if (DISPLAY_VER(dev_priv) >= 8) 241 return EDP_PSR_CTL(cpu_transcoder); 242 else 243 return HSW_SRD_CTL; 244 } 245 246 static i915_reg_t psr_debug_reg(struct drm_i915_private *dev_priv, 247 enum transcoder cpu_transcoder) 248 { 249 if (DISPLAY_VER(dev_priv) >= 8) 250 return EDP_PSR_DEBUG(cpu_transcoder); 251 else 252 return HSW_SRD_DEBUG; 253 } 254 255 static i915_reg_t psr_perf_cnt_reg(struct drm_i915_private *dev_priv, 256 enum transcoder cpu_transcoder) 257 { 258 if (DISPLAY_VER(dev_priv) >= 8) 259 return EDP_PSR_PERF_CNT(cpu_transcoder); 260 else 261 return HSW_SRD_PERF_CNT; 262 } 263 264 static i915_reg_t psr_status_reg(struct drm_i915_private *dev_priv, 265 enum transcoder cpu_transcoder) 266 { 267 if (DISPLAY_VER(dev_priv) >= 8) 268 return EDP_PSR_STATUS(cpu_transcoder); 269 else 270 return HSW_SRD_STATUS; 271 } 272 273 static i915_reg_t psr_imr_reg(struct drm_i915_private *dev_priv, 274 enum transcoder cpu_transcoder) 275 { 276 if (DISPLAY_VER(dev_priv) >= 12) 277 return TRANS_PSR_IMR(cpu_transcoder); 278 else 279 return EDP_PSR_IMR; 280 } 281 282 static i915_reg_t psr_iir_reg(struct drm_i915_private *dev_priv, 283 enum transcoder cpu_transcoder) 284 { 285 if (DISPLAY_VER(dev_priv) >= 12) 286 return TRANS_PSR_IIR(cpu_transcoder); 287 else 288 return EDP_PSR_IIR; 289 } 290 291 static i915_reg_t psr_aux_ctl_reg(struct drm_i915_private *dev_priv, 292 enum transcoder cpu_transcoder) 293 { 294 if (DISPLAY_VER(dev_priv) >= 8) 295 return EDP_PSR_AUX_CTL(cpu_transcoder); 296 else 297 return HSW_SRD_AUX_CTL; 298 } 299 300 static i915_reg_t psr_aux_data_reg(struct drm_i915_private *dev_priv, 301 enum transcoder cpu_transcoder, int i) 302 { 303 if (DISPLAY_VER(dev_priv) >= 8) 304 return EDP_PSR_AUX_DATA(cpu_transcoder, i); 305 else 306 return HSW_SRD_AUX_DATA(i); 307 } 308 309 static void psr_irq_control(struct intel_dp *intel_dp) 310 { 311 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 312 enum transcoder cpu_transcoder = intel_dp->psr.transcoder; 313 u32 mask; 314 315 mask = psr_irq_psr_error_bit_get(intel_dp); 316 if (intel_dp->psr.debug & I915_PSR_DEBUG_IRQ) 317 mask |= psr_irq_post_exit_bit_get(intel_dp) | 318 psr_irq_pre_entry_bit_get(intel_dp); 319 320 intel_de_rmw(dev_priv, psr_imr_reg(dev_priv, cpu_transcoder), 321 psr_irq_mask_get(intel_dp), ~mask); 322 } 323 324 static void psr_event_print(struct drm_i915_private *i915, 325 u32 val, bool psr2_enabled) 326 { 327 drm_dbg_kms(&i915->drm, "PSR exit events: 0x%x\n", val); 328 if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE) 329 drm_dbg_kms(&i915->drm, "\tPSR2 watchdog timer expired\n"); 330 if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled) 331 drm_dbg_kms(&i915->drm, "\tPSR2 disabled\n"); 332 if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN) 333 drm_dbg_kms(&i915->drm, "\tSU dirty FIFO underrun\n"); 334 if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN) 335 drm_dbg_kms(&i915->drm, "\tSU CRC FIFO underrun\n"); 336 if (val & PSR_EVENT_GRAPHICS_RESET) 337 drm_dbg_kms(&i915->drm, "\tGraphics reset\n"); 338 if (val & PSR_EVENT_PCH_INTERRUPT) 339 drm_dbg_kms(&i915->drm, "\tPCH interrupt\n"); 340 if (val & PSR_EVENT_MEMORY_UP) 341 drm_dbg_kms(&i915->drm, "\tMemory up\n"); 342 if (val & PSR_EVENT_FRONT_BUFFER_MODIFY) 343 drm_dbg_kms(&i915->drm, "\tFront buffer modification\n"); 344 if (val & PSR_EVENT_WD_TIMER_EXPIRE) 345 drm_dbg_kms(&i915->drm, "\tPSR watchdog timer expired\n"); 346 if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE) 347 drm_dbg_kms(&i915->drm, "\tPIPE registers updated\n"); 348 if (val & PSR_EVENT_REGISTER_UPDATE) 349 drm_dbg_kms(&i915->drm, "\tRegister updated\n"); 350 if (val & PSR_EVENT_HDCP_ENABLE) 351 drm_dbg_kms(&i915->drm, "\tHDCP enabled\n"); 352 if (val & PSR_EVENT_KVMR_SESSION_ENABLE) 353 drm_dbg_kms(&i915->drm, "\tKVMR session enabled\n"); 354 if (val & PSR_EVENT_VBI_ENABLE) 355 drm_dbg_kms(&i915->drm, "\tVBI enabled\n"); 356 if (val & PSR_EVENT_LPSP_MODE_EXIT) 357 drm_dbg_kms(&i915->drm, "\tLPSP mode exited\n"); 358 if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled) 359 drm_dbg_kms(&i915->drm, "\tPSR disabled\n"); 360 } 361 362 void intel_psr_irq_handler(struct intel_dp *intel_dp, u32 psr_iir) 363 { 364 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 365 enum transcoder cpu_transcoder = intel_dp->psr.transcoder; 366 ktime_t time_ns = ktime_get(); 367 368 if (psr_iir & psr_irq_pre_entry_bit_get(intel_dp)) { 369 intel_dp->psr.last_entry_attempt = time_ns; 370 drm_dbg_kms(&dev_priv->drm, 371 "[transcoder %s] PSR entry attempt in 2 vblanks\n", 372 transcoder_name(cpu_transcoder)); 373 } 374 375 if (psr_iir & psr_irq_post_exit_bit_get(intel_dp)) { 376 intel_dp->psr.last_exit = time_ns; 377 drm_dbg_kms(&dev_priv->drm, 378 "[transcoder %s] PSR exit completed\n", 379 transcoder_name(cpu_transcoder)); 380 381 if (DISPLAY_VER(dev_priv) >= 9) { 382 u32 val; 383 384 val = intel_de_rmw(dev_priv, PSR_EVENT(cpu_transcoder), 0, 0); 385 386 psr_event_print(dev_priv, val, intel_dp->psr.psr2_enabled); 387 } 388 } 389 390 if (psr_iir & psr_irq_psr_error_bit_get(intel_dp)) { 391 drm_warn(&dev_priv->drm, "[transcoder %s] PSR aux error\n", 392 transcoder_name(cpu_transcoder)); 393 394 intel_dp->psr.irq_aux_error = true; 395 396 /* 397 * If this interruption is not masked it will keep 398 * interrupting so fast that it prevents the scheduled 399 * work to run. 400 * Also after a PSR error, we don't want to arm PSR 401 * again so we don't care about unmask the interruption 402 * or unset irq_aux_error. 403 */ 404 intel_de_rmw(dev_priv, psr_imr_reg(dev_priv, cpu_transcoder), 405 0, psr_irq_psr_error_bit_get(intel_dp)); 406 407 queue_work(dev_priv->unordered_wq, &intel_dp->psr.work); 408 } 409 } 410 411 static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp) 412 { 413 u8 alpm_caps = 0; 414 415 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP, 416 &alpm_caps) != 1) 417 return false; 418 return alpm_caps & DP_ALPM_CAP; 419 } 420 421 static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp) 422 { 423 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 424 u8 val = 8; /* assume the worst if we can't read the value */ 425 426 if (drm_dp_dpcd_readb(&intel_dp->aux, 427 DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1) 428 val &= DP_MAX_RESYNC_FRAME_COUNT_MASK; 429 else 430 drm_dbg_kms(&i915->drm, 431 "Unable to get sink synchronization latency, assuming 8 frames\n"); 432 return val; 433 } 434 435 static void intel_dp_get_su_granularity(struct intel_dp *intel_dp) 436 { 437 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 438 ssize_t r; 439 u16 w; 440 u8 y; 441 442 /* If sink don't have specific granularity requirements set legacy ones */ 443 if (!(intel_dp->psr_dpcd[1] & DP_PSR2_SU_GRANULARITY_REQUIRED)) { 444 /* As PSR2 HW sends full lines, we do not care about x granularity */ 445 w = 4; 446 y = 4; 447 goto exit; 448 } 449 450 r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_X_GRANULARITY, &w, 2); 451 if (r != 2) 452 drm_dbg_kms(&i915->drm, 453 "Unable to read DP_PSR2_SU_X_GRANULARITY\n"); 454 /* 455 * Spec says that if the value read is 0 the default granularity should 456 * be used instead. 457 */ 458 if (r != 2 || w == 0) 459 w = 4; 460 461 r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_Y_GRANULARITY, &y, 1); 462 if (r != 1) { 463 drm_dbg_kms(&i915->drm, 464 "Unable to read DP_PSR2_SU_Y_GRANULARITY\n"); 465 y = 4; 466 } 467 if (y == 0) 468 y = 1; 469 470 exit: 471 intel_dp->psr.su_w_granularity = w; 472 intel_dp->psr.su_y_granularity = y; 473 } 474 475 void intel_psr_init_dpcd(struct intel_dp *intel_dp) 476 { 477 struct drm_i915_private *dev_priv = 478 to_i915(dp_to_dig_port(intel_dp)->base.base.dev); 479 480 drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd, 481 sizeof(intel_dp->psr_dpcd)); 482 483 if (!intel_dp->psr_dpcd[0]) 484 return; 485 drm_dbg_kms(&dev_priv->drm, "eDP panel supports PSR version %x\n", 486 intel_dp->psr_dpcd[0]); 487 488 if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_PSR)) { 489 drm_dbg_kms(&dev_priv->drm, 490 "PSR support not currently available for this panel\n"); 491 return; 492 } 493 494 if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) { 495 drm_dbg_kms(&dev_priv->drm, 496 "Panel lacks power state control, PSR cannot be enabled\n"); 497 return; 498 } 499 500 intel_dp->psr.sink_support = true; 501 intel_dp->psr.sink_sync_latency = 502 intel_dp_get_sink_sync_latency(intel_dp); 503 504 if (DISPLAY_VER(dev_priv) >= 9 && 505 (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) { 506 bool y_req = intel_dp->psr_dpcd[1] & 507 DP_PSR2_SU_Y_COORDINATE_REQUIRED; 508 bool alpm = intel_dp_get_alpm_status(intel_dp); 509 510 /* 511 * All panels that supports PSR version 03h (PSR2 + 512 * Y-coordinate) can handle Y-coordinates in VSC but we are 513 * only sure that it is going to be used when required by the 514 * panel. This way panel is capable to do selective update 515 * without a aux frame sync. 516 * 517 * To support PSR version 02h and PSR version 03h without 518 * Y-coordinate requirement panels we would need to enable 519 * GTC first. 520 */ 521 intel_dp->psr.sink_psr2_support = y_req && alpm; 522 drm_dbg_kms(&dev_priv->drm, "PSR2 %ssupported\n", 523 intel_dp->psr.sink_psr2_support ? "" : "not "); 524 525 if (intel_dp->psr.sink_psr2_support) { 526 intel_dp->psr.colorimetry_support = 527 intel_dp_get_colorimetry_status(intel_dp); 528 intel_dp_get_su_granularity(intel_dp); 529 } 530 } 531 } 532 533 static void hsw_psr_setup_aux(struct intel_dp *intel_dp) 534 { 535 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 536 enum transcoder cpu_transcoder = intel_dp->psr.transcoder; 537 u32 aux_clock_divider, aux_ctl; 538 /* write DP_SET_POWER=D0 */ 539 static const u8 aux_msg[] = { 540 [0] = (DP_AUX_NATIVE_WRITE << 4) | ((DP_SET_POWER >> 16) & 0xf), 541 [1] = (DP_SET_POWER >> 8) & 0xff, 542 [2] = DP_SET_POWER & 0xff, 543 [3] = 1 - 1, 544 [4] = DP_SET_POWER_D0, 545 }; 546 int i; 547 548 BUILD_BUG_ON(sizeof(aux_msg) > 20); 549 for (i = 0; i < sizeof(aux_msg); i += 4) 550 intel_de_write(dev_priv, 551 psr_aux_data_reg(dev_priv, cpu_transcoder, i >> 2), 552 intel_dp_aux_pack(&aux_msg[i], sizeof(aux_msg) - i)); 553 554 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0); 555 556 /* Start with bits set for DDI_AUX_CTL register */ 557 aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, sizeof(aux_msg), 558 aux_clock_divider); 559 560 /* Select only valid bits for SRD_AUX_CTL */ 561 aux_ctl &= EDP_PSR_AUX_CTL_TIME_OUT_MASK | 562 EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK | 563 EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK | 564 EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK; 565 566 intel_de_write(dev_priv, psr_aux_ctl_reg(dev_priv, cpu_transcoder), 567 aux_ctl); 568 } 569 570 static void intel_psr_enable_sink(struct intel_dp *intel_dp) 571 { 572 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 573 u8 dpcd_val = DP_PSR_ENABLE; 574 575 /* Enable ALPM at sink for psr2 */ 576 if (intel_dp->psr.psr2_enabled) { 577 drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, 578 DP_ALPM_ENABLE | 579 DP_ALPM_LOCK_ERROR_IRQ_HPD_ENABLE); 580 581 dpcd_val |= DP_PSR_ENABLE_PSR2 | DP_PSR_IRQ_HPD_WITH_CRC_ERRORS; 582 } else { 583 if (intel_dp->psr.link_standby) 584 dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE; 585 586 if (DISPLAY_VER(dev_priv) >= 8) 587 dpcd_val |= DP_PSR_CRC_VERIFICATION; 588 } 589 590 if (intel_dp->psr.req_psr2_sdp_prior_scanline) 591 dpcd_val |= DP_PSR_SU_REGION_SCANLINE_CAPTURE; 592 593 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val); 594 595 drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0); 596 } 597 598 static u32 intel_psr1_get_tp_time(struct intel_dp *intel_dp) 599 { 600 struct intel_connector *connector = intel_dp->attached_connector; 601 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 602 u32 val = 0; 603 604 if (DISPLAY_VER(dev_priv) >= 11) 605 val |= EDP_PSR_TP4_TIME_0us; 606 607 if (dev_priv->params.psr_safest_params) { 608 val |= EDP_PSR_TP1_TIME_2500us; 609 val |= EDP_PSR_TP2_TP3_TIME_2500us; 610 goto check_tp3_sel; 611 } 612 613 if (connector->panel.vbt.psr.tp1_wakeup_time_us == 0) 614 val |= EDP_PSR_TP1_TIME_0us; 615 else if (connector->panel.vbt.psr.tp1_wakeup_time_us <= 100) 616 val |= EDP_PSR_TP1_TIME_100us; 617 else if (connector->panel.vbt.psr.tp1_wakeup_time_us <= 500) 618 val |= EDP_PSR_TP1_TIME_500us; 619 else 620 val |= EDP_PSR_TP1_TIME_2500us; 621 622 if (connector->panel.vbt.psr.tp2_tp3_wakeup_time_us == 0) 623 val |= EDP_PSR_TP2_TP3_TIME_0us; 624 else if (connector->panel.vbt.psr.tp2_tp3_wakeup_time_us <= 100) 625 val |= EDP_PSR_TP2_TP3_TIME_100us; 626 else if (connector->panel.vbt.psr.tp2_tp3_wakeup_time_us <= 500) 627 val |= EDP_PSR_TP2_TP3_TIME_500us; 628 else 629 val |= EDP_PSR_TP2_TP3_TIME_2500us; 630 631 /* 632 * WA 0479: hsw,bdw 633 * "Do not skip both TP1 and TP2/TP3" 634 */ 635 if (DISPLAY_VER(dev_priv) < 9 && 636 connector->panel.vbt.psr.tp1_wakeup_time_us == 0 && 637 connector->panel.vbt.psr.tp2_tp3_wakeup_time_us == 0) 638 val |= EDP_PSR_TP2_TP3_TIME_100us; 639 640 check_tp3_sel: 641 if (intel_dp_source_supports_tps3(dev_priv) && 642 drm_dp_tps3_supported(intel_dp->dpcd)) 643 val |= EDP_PSR_TP_TP1_TP3; 644 else 645 val |= EDP_PSR_TP_TP1_TP2; 646 647 return val; 648 } 649 650 static u8 psr_compute_idle_frames(struct intel_dp *intel_dp) 651 { 652 struct intel_connector *connector = intel_dp->attached_connector; 653 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 654 int idle_frames; 655 656 /* Let's use 6 as the minimum to cover all known cases including the 657 * off-by-one issue that HW has in some cases. 658 */ 659 idle_frames = max(6, connector->panel.vbt.psr.idle_frames); 660 idle_frames = max(idle_frames, intel_dp->psr.sink_sync_latency + 1); 661 662 if (drm_WARN_ON(&dev_priv->drm, idle_frames > 0xf)) 663 idle_frames = 0xf; 664 665 return idle_frames; 666 } 667 668 static void hsw_activate_psr1(struct intel_dp *intel_dp) 669 { 670 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 671 enum transcoder cpu_transcoder = intel_dp->psr.transcoder; 672 u32 max_sleep_time = 0x1f; 673 u32 val = EDP_PSR_ENABLE; 674 675 val |= EDP_PSR_IDLE_FRAMES(psr_compute_idle_frames(intel_dp)); 676 677 if (DISPLAY_VER(dev_priv) < 20) 678 val |= EDP_PSR_MAX_SLEEP_TIME(max_sleep_time); 679 680 if (IS_HASWELL(dev_priv)) 681 val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES; 682 683 if (intel_dp->psr.link_standby) 684 val |= EDP_PSR_LINK_STANDBY; 685 686 val |= intel_psr1_get_tp_time(intel_dp); 687 688 if (DISPLAY_VER(dev_priv) >= 8) 689 val |= EDP_PSR_CRC_ENABLE; 690 691 intel_de_rmw(dev_priv, psr_ctl_reg(dev_priv, cpu_transcoder), 692 ~EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK, val); 693 } 694 695 static u32 intel_psr2_get_tp_time(struct intel_dp *intel_dp) 696 { 697 struct intel_connector *connector = intel_dp->attached_connector; 698 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 699 u32 val = 0; 700 701 if (dev_priv->params.psr_safest_params) 702 return EDP_PSR2_TP2_TIME_2500us; 703 704 if (connector->panel.vbt.psr.psr2_tp2_tp3_wakeup_time_us >= 0 && 705 connector->panel.vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 50) 706 val |= EDP_PSR2_TP2_TIME_50us; 707 else if (connector->panel.vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 100) 708 val |= EDP_PSR2_TP2_TIME_100us; 709 else if (connector->panel.vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 500) 710 val |= EDP_PSR2_TP2_TIME_500us; 711 else 712 val |= EDP_PSR2_TP2_TIME_2500us; 713 714 return val; 715 } 716 717 static int psr2_block_count_lines(struct intel_dp *intel_dp) 718 { 719 return intel_dp->psr.io_wake_lines < 9 && 720 intel_dp->psr.fast_wake_lines < 9 ? 8 : 12; 721 } 722 723 static int psr2_block_count(struct intel_dp *intel_dp) 724 { 725 return psr2_block_count_lines(intel_dp) / 4; 726 } 727 728 static void hsw_activate_psr2(struct intel_dp *intel_dp) 729 { 730 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 731 enum transcoder cpu_transcoder = intel_dp->psr.transcoder; 732 u32 val = EDP_PSR2_ENABLE; 733 734 val |= EDP_PSR2_IDLE_FRAMES(psr_compute_idle_frames(intel_dp)); 735 736 if (DISPLAY_VER(dev_priv) <= 13 && !IS_ALDERLAKE_P(dev_priv)) 737 val |= EDP_SU_TRACK_ENABLE; 738 739 if (DISPLAY_VER(dev_priv) >= 10 && DISPLAY_VER(dev_priv) <= 12) 740 val |= EDP_Y_COORDINATE_ENABLE; 741 742 val |= EDP_PSR2_FRAME_BEFORE_SU(max_t(u8, intel_dp->psr.sink_sync_latency + 1, 2)); 743 val |= intel_psr2_get_tp_time(intel_dp); 744 745 if (DISPLAY_VER(dev_priv) >= 12) { 746 if (psr2_block_count(intel_dp) > 2) 747 val |= TGL_EDP_PSR2_BLOCK_COUNT_NUM_3; 748 else 749 val |= TGL_EDP_PSR2_BLOCK_COUNT_NUM_2; 750 } 751 752 /* Wa_22012278275:adl-p */ 753 if (IS_ALDERLAKE_P(dev_priv) && IS_DISPLAY_STEP(dev_priv, STEP_A0, STEP_E0)) { 754 static const u8 map[] = { 755 2, /* 5 lines */ 756 1, /* 6 lines */ 757 0, /* 7 lines */ 758 3, /* 8 lines */ 759 6, /* 9 lines */ 760 5, /* 10 lines */ 761 4, /* 11 lines */ 762 7, /* 12 lines */ 763 }; 764 /* 765 * Still using the default IO_BUFFER_WAKE and FAST_WAKE, see 766 * comments bellow for more information 767 */ 768 int tmp; 769 770 tmp = map[intel_dp->psr.io_wake_lines - TGL_EDP_PSR2_IO_BUFFER_WAKE_MIN_LINES]; 771 val |= TGL_EDP_PSR2_IO_BUFFER_WAKE(tmp + TGL_EDP_PSR2_IO_BUFFER_WAKE_MIN_LINES); 772 773 tmp = map[intel_dp->psr.fast_wake_lines - TGL_EDP_PSR2_FAST_WAKE_MIN_LINES]; 774 val |= TGL_EDP_PSR2_FAST_WAKE(tmp + TGL_EDP_PSR2_FAST_WAKE_MIN_LINES); 775 } else if (DISPLAY_VER(dev_priv) >= 12) { 776 val |= TGL_EDP_PSR2_IO_BUFFER_WAKE(intel_dp->psr.io_wake_lines); 777 val |= TGL_EDP_PSR2_FAST_WAKE(intel_dp->psr.fast_wake_lines); 778 } else if (DISPLAY_VER(dev_priv) >= 9) { 779 val |= EDP_PSR2_IO_BUFFER_WAKE(intel_dp->psr.io_wake_lines); 780 val |= EDP_PSR2_FAST_WAKE(intel_dp->psr.fast_wake_lines); 781 } 782 783 if (intel_dp->psr.req_psr2_sdp_prior_scanline) 784 val |= EDP_PSR2_SU_SDP_SCANLINE; 785 786 if (intel_dp->psr.psr2_sel_fetch_enabled) { 787 u32 tmp; 788 789 tmp = intel_de_read(dev_priv, PSR2_MAN_TRK_CTL(cpu_transcoder)); 790 drm_WARN_ON(&dev_priv->drm, !(tmp & PSR2_MAN_TRK_CTL_ENABLE)); 791 } else if (HAS_PSR2_SEL_FETCH(dev_priv)) { 792 intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(cpu_transcoder), 0); 793 } 794 795 /* 796 * PSR2 HW is incorrectly using EDP_PSR_TP1_TP3_SEL and BSpec is 797 * recommending keep this bit unset while PSR2 is enabled. 798 */ 799 intel_de_write(dev_priv, psr_ctl_reg(dev_priv, cpu_transcoder), 0); 800 801 intel_de_write(dev_priv, EDP_PSR2_CTL(cpu_transcoder), val); 802 } 803 804 static bool 805 transcoder_has_psr2(struct drm_i915_private *dev_priv, enum transcoder cpu_transcoder) 806 { 807 if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14) 808 return cpu_transcoder == TRANSCODER_A || cpu_transcoder == TRANSCODER_B; 809 else if (DISPLAY_VER(dev_priv) >= 12) 810 return cpu_transcoder == TRANSCODER_A; 811 else if (DISPLAY_VER(dev_priv) >= 9) 812 return cpu_transcoder == TRANSCODER_EDP; 813 else 814 return false; 815 } 816 817 static u32 intel_get_frame_time_us(const struct intel_crtc_state *cstate) 818 { 819 if (!cstate || !cstate->hw.active) 820 return 0; 821 822 return DIV_ROUND_UP(1000 * 1000, 823 drm_mode_vrefresh(&cstate->hw.adjusted_mode)); 824 } 825 826 static void psr2_program_idle_frames(struct intel_dp *intel_dp, 827 u32 idle_frames) 828 { 829 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 830 enum transcoder cpu_transcoder = intel_dp->psr.transcoder; 831 832 intel_de_rmw(dev_priv, EDP_PSR2_CTL(cpu_transcoder), 833 EDP_PSR2_IDLE_FRAMES_MASK, 834 EDP_PSR2_IDLE_FRAMES(idle_frames)); 835 } 836 837 static void tgl_psr2_enable_dc3co(struct intel_dp *intel_dp) 838 { 839 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 840 841 psr2_program_idle_frames(intel_dp, 0); 842 intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_DC3CO); 843 } 844 845 static void tgl_psr2_disable_dc3co(struct intel_dp *intel_dp) 846 { 847 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 848 849 intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6); 850 psr2_program_idle_frames(intel_dp, psr_compute_idle_frames(intel_dp)); 851 } 852 853 static void tgl_dc3co_disable_work(struct work_struct *work) 854 { 855 struct intel_dp *intel_dp = 856 container_of(work, typeof(*intel_dp), psr.dc3co_work.work); 857 858 mutex_lock(&intel_dp->psr.lock); 859 /* If delayed work is pending, it is not idle */ 860 if (delayed_work_pending(&intel_dp->psr.dc3co_work)) 861 goto unlock; 862 863 tgl_psr2_disable_dc3co(intel_dp); 864 unlock: 865 mutex_unlock(&intel_dp->psr.lock); 866 } 867 868 static void tgl_disallow_dc3co_on_psr2_exit(struct intel_dp *intel_dp) 869 { 870 if (!intel_dp->psr.dc3co_exitline) 871 return; 872 873 cancel_delayed_work(&intel_dp->psr.dc3co_work); 874 /* Before PSR2 exit disallow dc3co*/ 875 tgl_psr2_disable_dc3co(intel_dp); 876 } 877 878 static bool 879 dc3co_is_pipe_port_compatible(struct intel_dp *intel_dp, 880 struct intel_crtc_state *crtc_state) 881 { 882 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 883 enum pipe pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe; 884 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 885 enum port port = dig_port->base.port; 886 887 if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14) 888 return pipe <= PIPE_B && port <= PORT_B; 889 else 890 return pipe == PIPE_A && port == PORT_A; 891 } 892 893 static void 894 tgl_dc3co_exitline_compute_config(struct intel_dp *intel_dp, 895 struct intel_crtc_state *crtc_state) 896 { 897 const u32 crtc_vdisplay = crtc_state->uapi.adjusted_mode.crtc_vdisplay; 898 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 899 struct i915_power_domains *power_domains = &dev_priv->display.power.domains; 900 u32 exit_scanlines; 901 902 /* 903 * FIXME: Due to the changed sequence of activating/deactivating DC3CO, 904 * disable DC3CO until the changed dc3co activating/deactivating sequence 905 * is applied. B.Specs:49196 906 */ 907 return; 908 909 /* 910 * DMC's DC3CO exit mechanism has an issue with Selective Fecth 911 * TODO: when the issue is addressed, this restriction should be removed. 912 */ 913 if (crtc_state->enable_psr2_sel_fetch) 914 return; 915 916 if (!(power_domains->allowed_dc_mask & DC_STATE_EN_DC3CO)) 917 return; 918 919 if (!dc3co_is_pipe_port_compatible(intel_dp, crtc_state)) 920 return; 921 922 /* Wa_16011303918:adl-p */ 923 if (IS_ALDERLAKE_P(dev_priv) && IS_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) 924 return; 925 926 /* 927 * DC3CO Exit time 200us B.Spec 49196 928 * PSR2 transcoder Early Exit scanlines = ROUNDUP(200 / line time) + 1 929 */ 930 exit_scanlines = 931 intel_usecs_to_scanlines(&crtc_state->uapi.adjusted_mode, 200) + 1; 932 933 if (drm_WARN_ON(&dev_priv->drm, exit_scanlines > crtc_vdisplay)) 934 return; 935 936 crtc_state->dc3co_exitline = crtc_vdisplay - exit_scanlines; 937 } 938 939 static bool intel_psr2_sel_fetch_config_valid(struct intel_dp *intel_dp, 940 struct intel_crtc_state *crtc_state) 941 { 942 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 943 944 if (!dev_priv->params.enable_psr2_sel_fetch && 945 intel_dp->psr.debug != I915_PSR_DEBUG_ENABLE_SEL_FETCH) { 946 drm_dbg_kms(&dev_priv->drm, 947 "PSR2 sel fetch not enabled, disabled by parameter\n"); 948 return false; 949 } 950 951 if (crtc_state->uapi.async_flip) { 952 drm_dbg_kms(&dev_priv->drm, 953 "PSR2 sel fetch not enabled, async flip enabled\n"); 954 return false; 955 } 956 957 return crtc_state->enable_psr2_sel_fetch = true; 958 } 959 960 static bool psr2_granularity_check(struct intel_dp *intel_dp, 961 struct intel_crtc_state *crtc_state) 962 { 963 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 964 const struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; 965 const int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay; 966 const int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay; 967 u16 y_granularity = 0; 968 969 /* PSR2 HW only send full lines so we only need to validate the width */ 970 if (crtc_hdisplay % intel_dp->psr.su_w_granularity) 971 return false; 972 973 if (crtc_vdisplay % intel_dp->psr.su_y_granularity) 974 return false; 975 976 /* HW tracking is only aligned to 4 lines */ 977 if (!crtc_state->enable_psr2_sel_fetch) 978 return intel_dp->psr.su_y_granularity == 4; 979 980 /* 981 * adl_p and mtl platforms have 1 line granularity. 982 * For other platforms with SW tracking we can adjust the y coordinates 983 * to match sink requirement if multiple of 4. 984 */ 985 if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14) 986 y_granularity = intel_dp->psr.su_y_granularity; 987 else if (intel_dp->psr.su_y_granularity <= 2) 988 y_granularity = 4; 989 else if ((intel_dp->psr.su_y_granularity % 4) == 0) 990 y_granularity = intel_dp->psr.su_y_granularity; 991 992 if (y_granularity == 0 || crtc_vdisplay % y_granularity) 993 return false; 994 995 if (crtc_state->dsc.compression_enable && 996 vdsc_cfg->slice_height % y_granularity) 997 return false; 998 999 crtc_state->su_y_granularity = y_granularity; 1000 return true; 1001 } 1002 1003 static bool _compute_psr2_sdp_prior_scanline_indication(struct intel_dp *intel_dp, 1004 struct intel_crtc_state *crtc_state) 1005 { 1006 const struct drm_display_mode *adjusted_mode = &crtc_state->uapi.adjusted_mode; 1007 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1008 u32 hblank_total, hblank_ns, req_ns; 1009 1010 hblank_total = adjusted_mode->crtc_hblank_end - adjusted_mode->crtc_hblank_start; 1011 hblank_ns = div_u64(1000000ULL * hblank_total, adjusted_mode->crtc_clock); 1012 1013 /* From spec: ((60 / number of lanes) + 11) * 1000 / symbol clock frequency MHz */ 1014 req_ns = ((60 / crtc_state->lane_count) + 11) * 1000 / (crtc_state->port_clock / 1000); 1015 1016 if ((hblank_ns - req_ns) > 100) 1017 return true; 1018 1019 /* Not supported <13 / Wa_22012279113:adl-p */ 1020 if (DISPLAY_VER(dev_priv) <= 13 || intel_dp->edp_dpcd[0] < DP_EDP_14b) 1021 return false; 1022 1023 crtc_state->req_psr2_sdp_prior_scanline = true; 1024 return true; 1025 } 1026 1027 static bool _compute_psr2_wake_times(struct intel_dp *intel_dp, 1028 struct intel_crtc_state *crtc_state) 1029 { 1030 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 1031 int io_wake_lines, io_wake_time, fast_wake_lines, fast_wake_time; 1032 u8 max_wake_lines; 1033 1034 if (DISPLAY_VER(i915) >= 12) { 1035 io_wake_time = 42; 1036 /* 1037 * According to Bspec it's 42us, but based on testing 1038 * it is not enough -> use 45 us. 1039 */ 1040 fast_wake_time = 45; 1041 max_wake_lines = 12; 1042 } else { 1043 io_wake_time = 50; 1044 fast_wake_time = 32; 1045 max_wake_lines = 8; 1046 } 1047 1048 io_wake_lines = intel_usecs_to_scanlines( 1049 &crtc_state->hw.adjusted_mode, io_wake_time); 1050 fast_wake_lines = intel_usecs_to_scanlines( 1051 &crtc_state->hw.adjusted_mode, fast_wake_time); 1052 1053 if (io_wake_lines > max_wake_lines || 1054 fast_wake_lines > max_wake_lines) 1055 return false; 1056 1057 if (i915->params.psr_safest_params) 1058 io_wake_lines = fast_wake_lines = max_wake_lines; 1059 1060 /* According to Bspec lower limit should be set as 7 lines. */ 1061 intel_dp->psr.io_wake_lines = max(io_wake_lines, 7); 1062 intel_dp->psr.fast_wake_lines = max(fast_wake_lines, 7); 1063 1064 return true; 1065 } 1066 1067 static bool intel_psr2_config_valid(struct intel_dp *intel_dp, 1068 struct intel_crtc_state *crtc_state) 1069 { 1070 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1071 int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay; 1072 int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay; 1073 int psr_max_h = 0, psr_max_v = 0, max_bpp = 0; 1074 1075 if (!intel_dp->psr.sink_psr2_support) 1076 return false; 1077 1078 /* JSL and EHL only supports eDP 1.3 */ 1079 if (IS_JASPERLAKE(dev_priv) || IS_ELKHARTLAKE(dev_priv)) { 1080 drm_dbg_kms(&dev_priv->drm, "PSR2 not supported by phy\n"); 1081 return false; 1082 } 1083 1084 /* Wa_16011181250 */ 1085 if (IS_ROCKETLAKE(dev_priv) || IS_ALDERLAKE_S(dev_priv) || 1086 IS_DG2(dev_priv)) { 1087 drm_dbg_kms(&dev_priv->drm, "PSR2 is defeatured for this platform\n"); 1088 return false; 1089 } 1090 1091 if (IS_ALDERLAKE_P(dev_priv) && IS_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) { 1092 drm_dbg_kms(&dev_priv->drm, "PSR2 not completely functional in this stepping\n"); 1093 return false; 1094 } 1095 1096 if (!transcoder_has_psr2(dev_priv, crtc_state->cpu_transcoder)) { 1097 drm_dbg_kms(&dev_priv->drm, 1098 "PSR2 not supported in transcoder %s\n", 1099 transcoder_name(crtc_state->cpu_transcoder)); 1100 return false; 1101 } 1102 1103 if (!psr2_global_enabled(intel_dp)) { 1104 drm_dbg_kms(&dev_priv->drm, "PSR2 disabled by flag\n"); 1105 return false; 1106 } 1107 1108 /* 1109 * DSC and PSR2 cannot be enabled simultaneously. If a requested 1110 * resolution requires DSC to be enabled, priority is given to DSC 1111 * over PSR2. 1112 */ 1113 if (crtc_state->dsc.compression_enable && 1114 (DISPLAY_VER(dev_priv) <= 13 && !IS_ALDERLAKE_P(dev_priv))) { 1115 drm_dbg_kms(&dev_priv->drm, 1116 "PSR2 cannot be enabled since DSC is enabled\n"); 1117 return false; 1118 } 1119 1120 if (crtc_state->crc_enabled) { 1121 drm_dbg_kms(&dev_priv->drm, 1122 "PSR2 not enabled because it would inhibit pipe CRC calculation\n"); 1123 return false; 1124 } 1125 1126 if (DISPLAY_VER(dev_priv) >= 12) { 1127 psr_max_h = 5120; 1128 psr_max_v = 3200; 1129 max_bpp = 30; 1130 } else if (DISPLAY_VER(dev_priv) >= 10) { 1131 psr_max_h = 4096; 1132 psr_max_v = 2304; 1133 max_bpp = 24; 1134 } else if (DISPLAY_VER(dev_priv) == 9) { 1135 psr_max_h = 3640; 1136 psr_max_v = 2304; 1137 max_bpp = 24; 1138 } 1139 1140 if (crtc_state->pipe_bpp > max_bpp) { 1141 drm_dbg_kms(&dev_priv->drm, 1142 "PSR2 not enabled, pipe bpp %d > max supported %d\n", 1143 crtc_state->pipe_bpp, max_bpp); 1144 return false; 1145 } 1146 1147 /* Wa_16011303918:adl-p */ 1148 if (crtc_state->vrr.enable && 1149 IS_ALDERLAKE_P(dev_priv) && IS_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) { 1150 drm_dbg_kms(&dev_priv->drm, 1151 "PSR2 not enabled, not compatible with HW stepping + VRR\n"); 1152 return false; 1153 } 1154 1155 if (!_compute_psr2_sdp_prior_scanline_indication(intel_dp, crtc_state)) { 1156 drm_dbg_kms(&dev_priv->drm, 1157 "PSR2 not enabled, PSR2 SDP indication do not fit in hblank\n"); 1158 return false; 1159 } 1160 1161 if (!_compute_psr2_wake_times(intel_dp, crtc_state)) { 1162 drm_dbg_kms(&dev_priv->drm, 1163 "PSR2 not enabled, Unable to use long enough wake times\n"); 1164 return false; 1165 } 1166 1167 /* Vblank >= PSR2_CTL Block Count Number maximum line count */ 1168 if (crtc_state->hw.adjusted_mode.crtc_vblank_end - 1169 crtc_state->hw.adjusted_mode.crtc_vblank_start < 1170 psr2_block_count_lines(intel_dp)) { 1171 drm_dbg_kms(&dev_priv->drm, 1172 "PSR2 not enabled, too short vblank time\n"); 1173 return false; 1174 } 1175 1176 if (HAS_PSR2_SEL_FETCH(dev_priv)) { 1177 if (!intel_psr2_sel_fetch_config_valid(intel_dp, crtc_state) && 1178 !HAS_PSR_HW_TRACKING(dev_priv)) { 1179 drm_dbg_kms(&dev_priv->drm, 1180 "PSR2 not enabled, selective fetch not valid and no HW tracking available\n"); 1181 return false; 1182 } 1183 } 1184 1185 if (!psr2_granularity_check(intel_dp, crtc_state)) { 1186 drm_dbg_kms(&dev_priv->drm, "PSR2 not enabled, SU granularity not compatible\n"); 1187 goto unsupported; 1188 } 1189 1190 if (!crtc_state->enable_psr2_sel_fetch && 1191 (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v)) { 1192 drm_dbg_kms(&dev_priv->drm, 1193 "PSR2 not enabled, resolution %dx%d > max supported %dx%d\n", 1194 crtc_hdisplay, crtc_vdisplay, 1195 psr_max_h, psr_max_v); 1196 goto unsupported; 1197 } 1198 1199 tgl_dc3co_exitline_compute_config(intel_dp, crtc_state); 1200 return true; 1201 1202 unsupported: 1203 crtc_state->enable_psr2_sel_fetch = false; 1204 return false; 1205 } 1206 1207 void intel_psr_compute_config(struct intel_dp *intel_dp, 1208 struct intel_crtc_state *crtc_state, 1209 struct drm_connector_state *conn_state) 1210 { 1211 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1212 const struct drm_display_mode *adjusted_mode = 1213 &crtc_state->hw.adjusted_mode; 1214 int psr_setup_time; 1215 1216 /* 1217 * Current PSR panels don't work reliably with VRR enabled 1218 * So if VRR is enabled, do not enable PSR. 1219 */ 1220 if (crtc_state->vrr.enable) 1221 return; 1222 1223 if (!CAN_PSR(intel_dp)) 1224 return; 1225 1226 if (!psr_global_enabled(intel_dp)) { 1227 drm_dbg_kms(&dev_priv->drm, "PSR disabled by flag\n"); 1228 return; 1229 } 1230 1231 if (intel_dp->psr.sink_not_reliable) { 1232 drm_dbg_kms(&dev_priv->drm, 1233 "PSR sink implementation is not reliable\n"); 1234 return; 1235 } 1236 1237 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 1238 drm_dbg_kms(&dev_priv->drm, 1239 "PSR condition failed: Interlaced mode enabled\n"); 1240 return; 1241 } 1242 1243 psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd); 1244 if (psr_setup_time < 0) { 1245 drm_dbg_kms(&dev_priv->drm, 1246 "PSR condition failed: Invalid PSR setup time (0x%02x)\n", 1247 intel_dp->psr_dpcd[1]); 1248 return; 1249 } 1250 1251 if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) > 1252 adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) { 1253 drm_dbg_kms(&dev_priv->drm, 1254 "PSR condition failed: PSR setup time (%d us) too long\n", 1255 psr_setup_time); 1256 return; 1257 } 1258 1259 crtc_state->has_psr = true; 1260 crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state); 1261 1262 crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC); 1263 intel_dp_compute_psr_vsc_sdp(intel_dp, crtc_state, conn_state, 1264 &crtc_state->psr_vsc); 1265 } 1266 1267 void intel_psr_get_config(struct intel_encoder *encoder, 1268 struct intel_crtc_state *pipe_config) 1269 { 1270 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1271 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 1272 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder; 1273 struct intel_dp *intel_dp; 1274 u32 val; 1275 1276 if (!dig_port) 1277 return; 1278 1279 intel_dp = &dig_port->dp; 1280 if (!CAN_PSR(intel_dp)) 1281 return; 1282 1283 mutex_lock(&intel_dp->psr.lock); 1284 if (!intel_dp->psr.enabled) 1285 goto unlock; 1286 1287 /* 1288 * Not possible to read EDP_PSR/PSR2_CTL registers as it is 1289 * enabled/disabled because of frontbuffer tracking and others. 1290 */ 1291 pipe_config->has_psr = true; 1292 pipe_config->has_psr2 = intel_dp->psr.psr2_enabled; 1293 pipe_config->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC); 1294 1295 if (!intel_dp->psr.psr2_enabled) 1296 goto unlock; 1297 1298 if (HAS_PSR2_SEL_FETCH(dev_priv)) { 1299 val = intel_de_read(dev_priv, PSR2_MAN_TRK_CTL(cpu_transcoder)); 1300 if (val & PSR2_MAN_TRK_CTL_ENABLE) 1301 pipe_config->enable_psr2_sel_fetch = true; 1302 } 1303 1304 if (DISPLAY_VER(dev_priv) >= 12) { 1305 val = intel_de_read(dev_priv, TRANS_EXITLINE(cpu_transcoder)); 1306 pipe_config->dc3co_exitline = REG_FIELD_GET(EXITLINE_MASK, val); 1307 } 1308 unlock: 1309 mutex_unlock(&intel_dp->psr.lock); 1310 } 1311 1312 static void intel_psr_activate(struct intel_dp *intel_dp) 1313 { 1314 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1315 enum transcoder cpu_transcoder = intel_dp->psr.transcoder; 1316 1317 drm_WARN_ON(&dev_priv->drm, 1318 transcoder_has_psr2(dev_priv, cpu_transcoder) && 1319 intel_de_read(dev_priv, EDP_PSR2_CTL(cpu_transcoder)) & EDP_PSR2_ENABLE); 1320 1321 drm_WARN_ON(&dev_priv->drm, 1322 intel_de_read(dev_priv, psr_ctl_reg(dev_priv, cpu_transcoder)) & EDP_PSR_ENABLE); 1323 1324 drm_WARN_ON(&dev_priv->drm, intel_dp->psr.active); 1325 1326 lockdep_assert_held(&intel_dp->psr.lock); 1327 1328 /* psr1 and psr2 are mutually exclusive.*/ 1329 if (intel_dp->psr.psr2_enabled) 1330 hsw_activate_psr2(intel_dp); 1331 else 1332 hsw_activate_psr1(intel_dp); 1333 1334 intel_dp->psr.active = true; 1335 } 1336 1337 static u32 wa_16013835468_bit_get(struct intel_dp *intel_dp) 1338 { 1339 switch (intel_dp->psr.pipe) { 1340 case PIPE_A: 1341 return LATENCY_REPORTING_REMOVED_PIPE_A; 1342 case PIPE_B: 1343 return LATENCY_REPORTING_REMOVED_PIPE_B; 1344 case PIPE_C: 1345 return LATENCY_REPORTING_REMOVED_PIPE_C; 1346 case PIPE_D: 1347 return LATENCY_REPORTING_REMOVED_PIPE_D; 1348 default: 1349 MISSING_CASE(intel_dp->psr.pipe); 1350 return 0; 1351 } 1352 } 1353 1354 /* 1355 * Wa_16013835468 1356 * Wa_14015648006 1357 */ 1358 static void wm_optimization_wa(struct intel_dp *intel_dp, 1359 const struct intel_crtc_state *crtc_state) 1360 { 1361 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1362 bool set_wa_bit = false; 1363 1364 /* Wa_14015648006 */ 1365 if (IS_MTL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0) || 1366 IS_DISPLAY_VER(dev_priv, 11, 13)) 1367 set_wa_bit |= crtc_state->wm_level_disabled; 1368 1369 /* Wa_16013835468 */ 1370 if (DISPLAY_VER(dev_priv) == 12) 1371 set_wa_bit |= crtc_state->hw.adjusted_mode.crtc_vblank_start != 1372 crtc_state->hw.adjusted_mode.crtc_vdisplay; 1373 1374 if (set_wa_bit) 1375 intel_de_rmw(dev_priv, GEN8_CHICKEN_DCPR_1, 1376 0, wa_16013835468_bit_get(intel_dp)); 1377 else 1378 intel_de_rmw(dev_priv, GEN8_CHICKEN_DCPR_1, 1379 wa_16013835468_bit_get(intel_dp), 0); 1380 } 1381 1382 static void intel_psr_enable_source(struct intel_dp *intel_dp, 1383 const struct intel_crtc_state *crtc_state) 1384 { 1385 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1386 enum transcoder cpu_transcoder = intel_dp->psr.transcoder; 1387 u32 mask; 1388 1389 /* 1390 * Only HSW and BDW have PSR AUX registers that need to be setup. 1391 * SKL+ use hardcoded values PSR AUX transactions 1392 */ 1393 if (DISPLAY_VER(dev_priv) < 9) 1394 hsw_psr_setup_aux(intel_dp); 1395 1396 /* 1397 * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also 1398 * mask LPSP to avoid dependency on other drivers that might block 1399 * runtime_pm besides preventing other hw tracking issues now we 1400 * can rely on frontbuffer tracking. 1401 */ 1402 mask = EDP_PSR_DEBUG_MASK_MEMUP | 1403 EDP_PSR_DEBUG_MASK_HPD; 1404 1405 /* 1406 * For some unknown reason on HSW non-ULT (or at least on 1407 * Dell Latitude E6540) external displays start to flicker 1408 * when PSR is enabled on the eDP. SR/PC6 residency is much 1409 * higher than should be possible with an external display. 1410 * As a workaround leave LPSP unmasked to prevent PSR entry 1411 * when external displays are active. 1412 */ 1413 if (DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL_ULT(dev_priv)) 1414 mask |= EDP_PSR_DEBUG_MASK_LPSP; 1415 1416 if (DISPLAY_VER(dev_priv) < 20) 1417 mask |= EDP_PSR_DEBUG_MASK_MAX_SLEEP; 1418 1419 /* 1420 * No separate pipe reg write mask on hsw/bdw, so have to unmask all 1421 * registers in order to keep the CURSURFLIVE tricks working :( 1422 */ 1423 if (IS_DISPLAY_VER(dev_priv, 9, 10)) 1424 mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE; 1425 1426 /* allow PSR with sprite enabled */ 1427 if (IS_HASWELL(dev_priv)) 1428 mask |= EDP_PSR_DEBUG_MASK_SPRITE_ENABLE; 1429 1430 intel_de_write(dev_priv, psr_debug_reg(dev_priv, cpu_transcoder), mask); 1431 1432 psr_irq_control(intel_dp); 1433 1434 /* 1435 * TODO: if future platforms supports DC3CO in more than one 1436 * transcoder, EXITLINE will need to be unset when disabling PSR 1437 */ 1438 if (intel_dp->psr.dc3co_exitline) 1439 intel_de_rmw(dev_priv, TRANS_EXITLINE(cpu_transcoder), EXITLINE_MASK, 1440 intel_dp->psr.dc3co_exitline << EXITLINE_SHIFT | EXITLINE_ENABLE); 1441 1442 if (HAS_PSR_HW_TRACKING(dev_priv) && HAS_PSR2_SEL_FETCH(dev_priv)) 1443 intel_de_rmw(dev_priv, CHICKEN_PAR1_1, IGNORE_PSR2_HW_TRACKING, 1444 intel_dp->psr.psr2_sel_fetch_enabled ? 1445 IGNORE_PSR2_HW_TRACKING : 0); 1446 1447 /* 1448 * Wa_16013835468 1449 * Wa_14015648006 1450 */ 1451 wm_optimization_wa(intel_dp, crtc_state); 1452 1453 if (intel_dp->psr.psr2_enabled) { 1454 if (DISPLAY_VER(dev_priv) == 9) 1455 intel_de_rmw(dev_priv, CHICKEN_TRANS(cpu_transcoder), 0, 1456 PSR2_VSC_ENABLE_PROG_HEADER | 1457 PSR2_ADD_VERTICAL_LINE_COUNT); 1458 1459 /* 1460 * Wa_16014451276:adlp,mtl[a0,b0] 1461 * All supported adlp panels have 1-based X granularity, this may 1462 * cause issues if non-supported panels are used. 1463 */ 1464 if (IS_MTL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) 1465 intel_de_rmw(dev_priv, MTL_CHICKEN_TRANS(cpu_transcoder), 0, 1466 ADLP_1_BASED_X_GRANULARITY); 1467 else if (IS_ALDERLAKE_P(dev_priv)) 1468 intel_de_rmw(dev_priv, CHICKEN_TRANS(cpu_transcoder), 0, 1469 ADLP_1_BASED_X_GRANULARITY); 1470 1471 /* Wa_16012604467:adlp,mtl[a0,b0] */ 1472 if (IS_MTL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) 1473 intel_de_rmw(dev_priv, 1474 MTL_CLKGATE_DIS_TRANS(cpu_transcoder), 0, 1475 MTL_CLKGATE_DIS_TRANS_DMASC_GATING_DIS); 1476 else if (IS_ALDERLAKE_P(dev_priv)) 1477 intel_de_rmw(dev_priv, CLKGATE_DIS_MISC, 0, 1478 CLKGATE_DIS_MISC_DMASC_GATING_DIS); 1479 } 1480 } 1481 1482 static bool psr_interrupt_error_check(struct intel_dp *intel_dp) 1483 { 1484 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1485 enum transcoder cpu_transcoder = intel_dp->psr.transcoder; 1486 u32 val; 1487 1488 /* 1489 * If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR 1490 * will still keep the error set even after the reset done in the 1491 * irq_preinstall and irq_uninstall hooks. 1492 * And enabling in this situation cause the screen to freeze in the 1493 * first time that PSR HW tries to activate so lets keep PSR disabled 1494 * to avoid any rendering problems. 1495 */ 1496 val = intel_de_read(dev_priv, psr_iir_reg(dev_priv, cpu_transcoder)); 1497 val &= psr_irq_psr_error_bit_get(intel_dp); 1498 if (val) { 1499 intel_dp->psr.sink_not_reliable = true; 1500 drm_dbg_kms(&dev_priv->drm, 1501 "PSR interruption error set, not enabling PSR\n"); 1502 return false; 1503 } 1504 1505 return true; 1506 } 1507 1508 static void intel_psr_enable_locked(struct intel_dp *intel_dp, 1509 const struct intel_crtc_state *crtc_state) 1510 { 1511 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1512 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1513 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 1514 struct intel_encoder *encoder = &dig_port->base; 1515 u32 val; 1516 1517 drm_WARN_ON(&dev_priv->drm, intel_dp->psr.enabled); 1518 1519 intel_dp->psr.psr2_enabled = crtc_state->has_psr2; 1520 intel_dp->psr.busy_frontbuffer_bits = 0; 1521 intel_dp->psr.pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe; 1522 intel_dp->psr.transcoder = crtc_state->cpu_transcoder; 1523 /* DC5/DC6 requires at least 6 idle frames */ 1524 val = usecs_to_jiffies(intel_get_frame_time_us(crtc_state) * 6); 1525 intel_dp->psr.dc3co_exit_delay = val; 1526 intel_dp->psr.dc3co_exitline = crtc_state->dc3co_exitline; 1527 intel_dp->psr.psr2_sel_fetch_enabled = crtc_state->enable_psr2_sel_fetch; 1528 intel_dp->psr.psr2_sel_fetch_cff_enabled = false; 1529 intel_dp->psr.req_psr2_sdp_prior_scanline = 1530 crtc_state->req_psr2_sdp_prior_scanline; 1531 1532 if (!psr_interrupt_error_check(intel_dp)) 1533 return; 1534 1535 drm_dbg_kms(&dev_priv->drm, "Enabling PSR%s\n", 1536 intel_dp->psr.psr2_enabled ? "2" : "1"); 1537 intel_write_dp_vsc_sdp(encoder, crtc_state, &crtc_state->psr_vsc); 1538 intel_snps_phy_update_psr_power_state(dev_priv, phy, true); 1539 intel_psr_enable_sink(intel_dp); 1540 intel_psr_enable_source(intel_dp, crtc_state); 1541 intel_dp->psr.enabled = true; 1542 intel_dp->psr.paused = false; 1543 1544 intel_psr_activate(intel_dp); 1545 } 1546 1547 static void intel_psr_exit(struct intel_dp *intel_dp) 1548 { 1549 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1550 enum transcoder cpu_transcoder = intel_dp->psr.transcoder; 1551 u32 val; 1552 1553 if (!intel_dp->psr.active) { 1554 if (transcoder_has_psr2(dev_priv, cpu_transcoder)) { 1555 val = intel_de_read(dev_priv, EDP_PSR2_CTL(cpu_transcoder)); 1556 drm_WARN_ON(&dev_priv->drm, val & EDP_PSR2_ENABLE); 1557 } 1558 1559 val = intel_de_read(dev_priv, psr_ctl_reg(dev_priv, cpu_transcoder)); 1560 drm_WARN_ON(&dev_priv->drm, val & EDP_PSR_ENABLE); 1561 1562 return; 1563 } 1564 1565 if (intel_dp->psr.psr2_enabled) { 1566 tgl_disallow_dc3co_on_psr2_exit(intel_dp); 1567 1568 val = intel_de_rmw(dev_priv, EDP_PSR2_CTL(cpu_transcoder), 1569 EDP_PSR2_ENABLE, 0); 1570 1571 drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR2_ENABLE)); 1572 } else { 1573 val = intel_de_rmw(dev_priv, psr_ctl_reg(dev_priv, cpu_transcoder), 1574 EDP_PSR_ENABLE, 0); 1575 1576 drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR_ENABLE)); 1577 } 1578 intel_dp->psr.active = false; 1579 } 1580 1581 static void intel_psr_wait_exit_locked(struct intel_dp *intel_dp) 1582 { 1583 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1584 enum transcoder cpu_transcoder = intel_dp->psr.transcoder; 1585 i915_reg_t psr_status; 1586 u32 psr_status_mask; 1587 1588 if (intel_dp->psr.psr2_enabled) { 1589 psr_status = EDP_PSR2_STATUS(cpu_transcoder); 1590 psr_status_mask = EDP_PSR2_STATUS_STATE_MASK; 1591 } else { 1592 psr_status = psr_status_reg(dev_priv, cpu_transcoder); 1593 psr_status_mask = EDP_PSR_STATUS_STATE_MASK; 1594 } 1595 1596 /* Wait till PSR is idle */ 1597 if (intel_de_wait_for_clear(dev_priv, psr_status, 1598 psr_status_mask, 2000)) 1599 drm_err(&dev_priv->drm, "Timed out waiting PSR idle state\n"); 1600 } 1601 1602 static void intel_psr_disable_locked(struct intel_dp *intel_dp) 1603 { 1604 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1605 enum transcoder cpu_transcoder = intel_dp->psr.transcoder; 1606 enum phy phy = intel_port_to_phy(dev_priv, 1607 dp_to_dig_port(intel_dp)->base.port); 1608 1609 lockdep_assert_held(&intel_dp->psr.lock); 1610 1611 if (!intel_dp->psr.enabled) 1612 return; 1613 1614 drm_dbg_kms(&dev_priv->drm, "Disabling PSR%s\n", 1615 intel_dp->psr.psr2_enabled ? "2" : "1"); 1616 1617 intel_psr_exit(intel_dp); 1618 intel_psr_wait_exit_locked(intel_dp); 1619 1620 /* 1621 * Wa_16013835468 1622 * Wa_14015648006 1623 */ 1624 if (DISPLAY_VER(dev_priv) >= 11) 1625 intel_de_rmw(dev_priv, GEN8_CHICKEN_DCPR_1, 1626 wa_16013835468_bit_get(intel_dp), 0); 1627 1628 if (intel_dp->psr.psr2_enabled) { 1629 /* Wa_16012604467:adlp,mtl[a0,b0] */ 1630 if (IS_MTL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) 1631 intel_de_rmw(dev_priv, 1632 MTL_CLKGATE_DIS_TRANS(cpu_transcoder), 1633 MTL_CLKGATE_DIS_TRANS_DMASC_GATING_DIS, 0); 1634 else if (IS_ALDERLAKE_P(dev_priv)) 1635 intel_de_rmw(dev_priv, CLKGATE_DIS_MISC, 1636 CLKGATE_DIS_MISC_DMASC_GATING_DIS, 0); 1637 } 1638 1639 intel_snps_phy_update_psr_power_state(dev_priv, phy, false); 1640 1641 /* Disable PSR on Sink */ 1642 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0); 1643 1644 if (intel_dp->psr.psr2_enabled) 1645 drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, 0); 1646 1647 intel_dp->psr.enabled = false; 1648 intel_dp->psr.psr2_enabled = false; 1649 intel_dp->psr.psr2_sel_fetch_enabled = false; 1650 intel_dp->psr.psr2_sel_fetch_cff_enabled = false; 1651 } 1652 1653 /** 1654 * intel_psr_disable - Disable PSR 1655 * @intel_dp: Intel DP 1656 * @old_crtc_state: old CRTC state 1657 * 1658 * This function needs to be called before disabling pipe. 1659 */ 1660 void intel_psr_disable(struct intel_dp *intel_dp, 1661 const struct intel_crtc_state *old_crtc_state) 1662 { 1663 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1664 1665 if (!old_crtc_state->has_psr) 1666 return; 1667 1668 if (drm_WARN_ON(&dev_priv->drm, !CAN_PSR(intel_dp))) 1669 return; 1670 1671 mutex_lock(&intel_dp->psr.lock); 1672 1673 intel_psr_disable_locked(intel_dp); 1674 1675 mutex_unlock(&intel_dp->psr.lock); 1676 cancel_work_sync(&intel_dp->psr.work); 1677 cancel_delayed_work_sync(&intel_dp->psr.dc3co_work); 1678 } 1679 1680 /** 1681 * intel_psr_pause - Pause PSR 1682 * @intel_dp: Intel DP 1683 * 1684 * This function need to be called after enabling psr. 1685 */ 1686 void intel_psr_pause(struct intel_dp *intel_dp) 1687 { 1688 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1689 struct intel_psr *psr = &intel_dp->psr; 1690 1691 if (!CAN_PSR(intel_dp)) 1692 return; 1693 1694 mutex_lock(&psr->lock); 1695 1696 if (!psr->enabled) { 1697 mutex_unlock(&psr->lock); 1698 return; 1699 } 1700 1701 /* If we ever hit this, we will need to add refcount to pause/resume */ 1702 drm_WARN_ON(&dev_priv->drm, psr->paused); 1703 1704 intel_psr_exit(intel_dp); 1705 intel_psr_wait_exit_locked(intel_dp); 1706 psr->paused = true; 1707 1708 mutex_unlock(&psr->lock); 1709 1710 cancel_work_sync(&psr->work); 1711 cancel_delayed_work_sync(&psr->dc3co_work); 1712 } 1713 1714 /** 1715 * intel_psr_resume - Resume PSR 1716 * @intel_dp: Intel DP 1717 * 1718 * This function need to be called after pausing psr. 1719 */ 1720 void intel_psr_resume(struct intel_dp *intel_dp) 1721 { 1722 struct intel_psr *psr = &intel_dp->psr; 1723 1724 if (!CAN_PSR(intel_dp)) 1725 return; 1726 1727 mutex_lock(&psr->lock); 1728 1729 if (!psr->paused) 1730 goto unlock; 1731 1732 psr->paused = false; 1733 intel_psr_activate(intel_dp); 1734 1735 unlock: 1736 mutex_unlock(&psr->lock); 1737 } 1738 1739 static u32 man_trk_ctl_enable_bit_get(struct drm_i915_private *dev_priv) 1740 { 1741 return IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14 ? 0 : 1742 PSR2_MAN_TRK_CTL_ENABLE; 1743 } 1744 1745 static u32 man_trk_ctl_single_full_frame_bit_get(struct drm_i915_private *dev_priv) 1746 { 1747 return IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14 ? 1748 ADLP_PSR2_MAN_TRK_CTL_SF_SINGLE_FULL_FRAME : 1749 PSR2_MAN_TRK_CTL_SF_SINGLE_FULL_FRAME; 1750 } 1751 1752 static u32 man_trk_ctl_partial_frame_bit_get(struct drm_i915_private *dev_priv) 1753 { 1754 return IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14 ? 1755 ADLP_PSR2_MAN_TRK_CTL_SF_PARTIAL_FRAME_UPDATE : 1756 PSR2_MAN_TRK_CTL_SF_PARTIAL_FRAME_UPDATE; 1757 } 1758 1759 static u32 man_trk_ctl_continuos_full_frame(struct drm_i915_private *dev_priv) 1760 { 1761 return IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14 ? 1762 ADLP_PSR2_MAN_TRK_CTL_SF_CONTINUOS_FULL_FRAME : 1763 PSR2_MAN_TRK_CTL_SF_CONTINUOS_FULL_FRAME; 1764 } 1765 1766 static void psr_force_hw_tracking_exit(struct intel_dp *intel_dp) 1767 { 1768 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1769 enum transcoder cpu_transcoder = intel_dp->psr.transcoder; 1770 1771 if (intel_dp->psr.psr2_sel_fetch_enabled) 1772 intel_de_write(dev_priv, 1773 PSR2_MAN_TRK_CTL(cpu_transcoder), 1774 man_trk_ctl_enable_bit_get(dev_priv) | 1775 man_trk_ctl_partial_frame_bit_get(dev_priv) | 1776 man_trk_ctl_single_full_frame_bit_get(dev_priv) | 1777 man_trk_ctl_continuos_full_frame(dev_priv)); 1778 1779 /* 1780 * Display WA #0884: skl+ 1781 * This documented WA for bxt can be safely applied 1782 * broadly so we can force HW tracking to exit PSR 1783 * instead of disabling and re-enabling. 1784 * Workaround tells us to write 0 to CUR_SURFLIVE_A, 1785 * but it makes more sense write to the current active 1786 * pipe. 1787 * 1788 * This workaround do not exist for platforms with display 10 or newer 1789 * but testing proved that it works for up display 13, for newer 1790 * than that testing will be needed. 1791 */ 1792 intel_de_write(dev_priv, CURSURFLIVE(intel_dp->psr.pipe), 0); 1793 } 1794 1795 void intel_psr2_disable_plane_sel_fetch_arm(struct intel_plane *plane, 1796 const struct intel_crtc_state *crtc_state) 1797 { 1798 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 1799 enum pipe pipe = plane->pipe; 1800 1801 if (!crtc_state->enable_psr2_sel_fetch) 1802 return; 1803 1804 intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_CTL(pipe, plane->id), 0); 1805 } 1806 1807 void intel_psr2_program_plane_sel_fetch_arm(struct intel_plane *plane, 1808 const struct intel_crtc_state *crtc_state, 1809 const struct intel_plane_state *plane_state) 1810 { 1811 struct drm_i915_private *i915 = to_i915(plane->base.dev); 1812 enum pipe pipe = plane->pipe; 1813 1814 if (!crtc_state->enable_psr2_sel_fetch) 1815 return; 1816 1817 if (plane->id == PLANE_CURSOR) 1818 intel_de_write_fw(i915, PLANE_SEL_FETCH_CTL(pipe, plane->id), 1819 plane_state->ctl); 1820 else 1821 intel_de_write_fw(i915, PLANE_SEL_FETCH_CTL(pipe, plane->id), 1822 PLANE_SEL_FETCH_CTL_ENABLE); 1823 } 1824 1825 void intel_psr2_program_plane_sel_fetch_noarm(struct intel_plane *plane, 1826 const struct intel_crtc_state *crtc_state, 1827 const struct intel_plane_state *plane_state, 1828 int color_plane) 1829 { 1830 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 1831 enum pipe pipe = plane->pipe; 1832 const struct drm_rect *clip; 1833 u32 val; 1834 int x, y; 1835 1836 if (!crtc_state->enable_psr2_sel_fetch) 1837 return; 1838 1839 if (plane->id == PLANE_CURSOR) 1840 return; 1841 1842 clip = &plane_state->psr2_sel_fetch_area; 1843 1844 val = (clip->y1 + plane_state->uapi.dst.y1) << 16; 1845 val |= plane_state->uapi.dst.x1; 1846 intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_POS(pipe, plane->id), val); 1847 1848 x = plane_state->view.color_plane[color_plane].x; 1849 1850 /* 1851 * From Bspec: UV surface Start Y Position = half of Y plane Y 1852 * start position. 1853 */ 1854 if (!color_plane) 1855 y = plane_state->view.color_plane[color_plane].y + clip->y1; 1856 else 1857 y = plane_state->view.color_plane[color_plane].y + clip->y1 / 2; 1858 1859 val = y << 16 | x; 1860 1861 intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_OFFSET(pipe, plane->id), 1862 val); 1863 1864 /* Sizes are 0 based */ 1865 val = (drm_rect_height(clip) - 1) << 16; 1866 val |= (drm_rect_width(&plane_state->uapi.src) >> 16) - 1; 1867 intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_SIZE(pipe, plane->id), val); 1868 } 1869 1870 void intel_psr2_program_trans_man_trk_ctl(const struct intel_crtc_state *crtc_state) 1871 { 1872 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1873 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder; 1874 struct intel_encoder *encoder; 1875 1876 if (!crtc_state->enable_psr2_sel_fetch) 1877 return; 1878 1879 for_each_intel_encoder_mask_with_psr(&dev_priv->drm, encoder, 1880 crtc_state->uapi.encoder_mask) { 1881 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 1882 1883 lockdep_assert_held(&intel_dp->psr.lock); 1884 if (intel_dp->psr.psr2_sel_fetch_cff_enabled) 1885 return; 1886 break; 1887 } 1888 1889 intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(cpu_transcoder), 1890 crtc_state->psr2_man_track_ctl); 1891 } 1892 1893 static void psr2_man_trk_ctl_calc(struct intel_crtc_state *crtc_state, 1894 struct drm_rect *clip, bool full_update) 1895 { 1896 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1897 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1898 u32 val = man_trk_ctl_enable_bit_get(dev_priv); 1899 1900 /* SF partial frame enable has to be set even on full update */ 1901 val |= man_trk_ctl_partial_frame_bit_get(dev_priv); 1902 1903 if (full_update) { 1904 val |= man_trk_ctl_single_full_frame_bit_get(dev_priv); 1905 val |= man_trk_ctl_continuos_full_frame(dev_priv); 1906 goto exit; 1907 } 1908 1909 if (clip->y1 == -1) 1910 goto exit; 1911 1912 if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14) { 1913 val |= ADLP_PSR2_MAN_TRK_CTL_SU_REGION_START_ADDR(clip->y1); 1914 val |= ADLP_PSR2_MAN_TRK_CTL_SU_REGION_END_ADDR(clip->y2 - 1); 1915 } else { 1916 drm_WARN_ON(crtc_state->uapi.crtc->dev, clip->y1 % 4 || clip->y2 % 4); 1917 1918 val |= PSR2_MAN_TRK_CTL_SU_REGION_START_ADDR(clip->y1 / 4 + 1); 1919 val |= PSR2_MAN_TRK_CTL_SU_REGION_END_ADDR(clip->y2 / 4 + 1); 1920 } 1921 exit: 1922 crtc_state->psr2_man_track_ctl = val; 1923 } 1924 1925 static void clip_area_update(struct drm_rect *overlap_damage_area, 1926 struct drm_rect *damage_area, 1927 struct drm_rect *pipe_src) 1928 { 1929 if (!drm_rect_intersect(damage_area, pipe_src)) 1930 return; 1931 1932 if (overlap_damage_area->y1 == -1) { 1933 overlap_damage_area->y1 = damage_area->y1; 1934 overlap_damage_area->y2 = damage_area->y2; 1935 return; 1936 } 1937 1938 if (damage_area->y1 < overlap_damage_area->y1) 1939 overlap_damage_area->y1 = damage_area->y1; 1940 1941 if (damage_area->y2 > overlap_damage_area->y2) 1942 overlap_damage_area->y2 = damage_area->y2; 1943 } 1944 1945 static void intel_psr2_sel_fetch_pipe_alignment(const struct intel_crtc_state *crtc_state, 1946 struct drm_rect *pipe_clip) 1947 { 1948 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1949 const struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config; 1950 u16 y_alignment; 1951 1952 /* ADLP aligns the SU region to vdsc slice height in case dsc is enabled */ 1953 if (crtc_state->dsc.compression_enable && 1954 (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14)) 1955 y_alignment = vdsc_cfg->slice_height; 1956 else 1957 y_alignment = crtc_state->su_y_granularity; 1958 1959 pipe_clip->y1 -= pipe_clip->y1 % y_alignment; 1960 if (pipe_clip->y2 % y_alignment) 1961 pipe_clip->y2 = ((pipe_clip->y2 / y_alignment) + 1) * y_alignment; 1962 } 1963 1964 /* 1965 * TODO: Not clear how to handle planes with negative position, 1966 * also planes are not updated if they have a negative X 1967 * position so for now doing a full update in this cases 1968 * 1969 * Plane scaling and rotation is not supported by selective fetch and both 1970 * properties can change without a modeset, so need to be check at every 1971 * atomic commit. 1972 */ 1973 static bool psr2_sel_fetch_plane_state_supported(const struct intel_plane_state *plane_state) 1974 { 1975 if (plane_state->uapi.dst.y1 < 0 || 1976 plane_state->uapi.dst.x1 < 0 || 1977 plane_state->scaler_id >= 0 || 1978 plane_state->uapi.rotation != DRM_MODE_ROTATE_0) 1979 return false; 1980 1981 return true; 1982 } 1983 1984 /* 1985 * Check for pipe properties that is not supported by selective fetch. 1986 * 1987 * TODO: pipe scaling causes a modeset but skl_update_scaler_crtc() is executed 1988 * after intel_psr_compute_config(), so for now keeping PSR2 selective fetch 1989 * enabled and going to the full update path. 1990 */ 1991 static bool psr2_sel_fetch_pipe_state_supported(const struct intel_crtc_state *crtc_state) 1992 { 1993 if (crtc_state->scaler_state.scaler_id >= 0) 1994 return false; 1995 1996 return true; 1997 } 1998 1999 int intel_psr2_sel_fetch_update(struct intel_atomic_state *state, 2000 struct intel_crtc *crtc) 2001 { 2002 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2003 struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 2004 struct drm_rect pipe_clip = { .x1 = 0, .y1 = -1, .x2 = INT_MAX, .y2 = -1 }; 2005 struct intel_plane_state *new_plane_state, *old_plane_state; 2006 struct intel_plane *plane; 2007 bool full_update = false; 2008 int i, ret; 2009 2010 if (!crtc_state->enable_psr2_sel_fetch) 2011 return 0; 2012 2013 if (!psr2_sel_fetch_pipe_state_supported(crtc_state)) { 2014 full_update = true; 2015 goto skip_sel_fetch_set_loop; 2016 } 2017 2018 /* 2019 * Calculate minimal selective fetch area of each plane and calculate 2020 * the pipe damaged area. 2021 * In the next loop the plane selective fetch area will actually be set 2022 * using whole pipe damaged area. 2023 */ 2024 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 2025 new_plane_state, i) { 2026 struct drm_rect src, damaged_area = { .x1 = 0, .y1 = -1, 2027 .x2 = INT_MAX }; 2028 2029 if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc) 2030 continue; 2031 2032 if (!new_plane_state->uapi.visible && 2033 !old_plane_state->uapi.visible) 2034 continue; 2035 2036 if (!psr2_sel_fetch_plane_state_supported(new_plane_state)) { 2037 full_update = true; 2038 break; 2039 } 2040 2041 /* 2042 * If visibility or plane moved, mark the whole plane area as 2043 * damaged as it needs to be complete redraw in the new and old 2044 * position. 2045 */ 2046 if (new_plane_state->uapi.visible != old_plane_state->uapi.visible || 2047 !drm_rect_equals(&new_plane_state->uapi.dst, 2048 &old_plane_state->uapi.dst)) { 2049 if (old_plane_state->uapi.visible) { 2050 damaged_area.y1 = old_plane_state->uapi.dst.y1; 2051 damaged_area.y2 = old_plane_state->uapi.dst.y2; 2052 clip_area_update(&pipe_clip, &damaged_area, 2053 &crtc_state->pipe_src); 2054 } 2055 2056 if (new_plane_state->uapi.visible) { 2057 damaged_area.y1 = new_plane_state->uapi.dst.y1; 2058 damaged_area.y2 = new_plane_state->uapi.dst.y2; 2059 clip_area_update(&pipe_clip, &damaged_area, 2060 &crtc_state->pipe_src); 2061 } 2062 continue; 2063 } else if (new_plane_state->uapi.alpha != old_plane_state->uapi.alpha) { 2064 /* If alpha changed mark the whole plane area as damaged */ 2065 damaged_area.y1 = new_plane_state->uapi.dst.y1; 2066 damaged_area.y2 = new_plane_state->uapi.dst.y2; 2067 clip_area_update(&pipe_clip, &damaged_area, 2068 &crtc_state->pipe_src); 2069 continue; 2070 } 2071 2072 src = drm_plane_state_src(&new_plane_state->uapi); 2073 drm_rect_fp_to_int(&src, &src); 2074 2075 if (!drm_atomic_helper_damage_merged(&old_plane_state->uapi, 2076 &new_plane_state->uapi, &damaged_area)) 2077 continue; 2078 2079 damaged_area.y1 += new_plane_state->uapi.dst.y1 - src.y1; 2080 damaged_area.y2 += new_plane_state->uapi.dst.y1 - src.y1; 2081 damaged_area.x1 += new_plane_state->uapi.dst.x1 - src.x1; 2082 damaged_area.x2 += new_plane_state->uapi.dst.x1 - src.x1; 2083 2084 clip_area_update(&pipe_clip, &damaged_area, &crtc_state->pipe_src); 2085 } 2086 2087 /* 2088 * TODO: For now we are just using full update in case 2089 * selective fetch area calculation fails. To optimize this we 2090 * should identify cases where this happens and fix the area 2091 * calculation for those. 2092 */ 2093 if (pipe_clip.y1 == -1) { 2094 drm_info_once(&dev_priv->drm, 2095 "Selective fetch area calculation failed in pipe %c\n", 2096 pipe_name(crtc->pipe)); 2097 full_update = true; 2098 } 2099 2100 if (full_update) 2101 goto skip_sel_fetch_set_loop; 2102 2103 /* Wa_14014971492 */ 2104 if ((IS_MTL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0) || 2105 IS_ALDERLAKE_P(dev_priv) || IS_TIGERLAKE(dev_priv)) && 2106 crtc_state->splitter.enable) 2107 pipe_clip.y1 = 0; 2108 2109 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base); 2110 if (ret) 2111 return ret; 2112 2113 intel_psr2_sel_fetch_pipe_alignment(crtc_state, &pipe_clip); 2114 2115 /* 2116 * Now that we have the pipe damaged area check if it intersect with 2117 * every plane, if it does set the plane selective fetch area. 2118 */ 2119 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 2120 new_plane_state, i) { 2121 struct drm_rect *sel_fetch_area, inter; 2122 struct intel_plane *linked = new_plane_state->planar_linked_plane; 2123 2124 if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc || 2125 !new_plane_state->uapi.visible) 2126 continue; 2127 2128 inter = pipe_clip; 2129 if (!drm_rect_intersect(&inter, &new_plane_state->uapi.dst)) 2130 continue; 2131 2132 if (!psr2_sel_fetch_plane_state_supported(new_plane_state)) { 2133 full_update = true; 2134 break; 2135 } 2136 2137 sel_fetch_area = &new_plane_state->psr2_sel_fetch_area; 2138 sel_fetch_area->y1 = inter.y1 - new_plane_state->uapi.dst.y1; 2139 sel_fetch_area->y2 = inter.y2 - new_plane_state->uapi.dst.y1; 2140 crtc_state->update_planes |= BIT(plane->id); 2141 2142 /* 2143 * Sel_fetch_area is calculated for UV plane. Use 2144 * same area for Y plane as well. 2145 */ 2146 if (linked) { 2147 struct intel_plane_state *linked_new_plane_state; 2148 struct drm_rect *linked_sel_fetch_area; 2149 2150 linked_new_plane_state = intel_atomic_get_plane_state(state, linked); 2151 if (IS_ERR(linked_new_plane_state)) 2152 return PTR_ERR(linked_new_plane_state); 2153 2154 linked_sel_fetch_area = &linked_new_plane_state->psr2_sel_fetch_area; 2155 linked_sel_fetch_area->y1 = sel_fetch_area->y1; 2156 linked_sel_fetch_area->y2 = sel_fetch_area->y2; 2157 crtc_state->update_planes |= BIT(linked->id); 2158 } 2159 } 2160 2161 skip_sel_fetch_set_loop: 2162 psr2_man_trk_ctl_calc(crtc_state, &pipe_clip, full_update); 2163 return 0; 2164 } 2165 2166 void intel_psr_pre_plane_update(struct intel_atomic_state *state, 2167 struct intel_crtc *crtc) 2168 { 2169 struct drm_i915_private *i915 = to_i915(state->base.dev); 2170 const struct intel_crtc_state *old_crtc_state = 2171 intel_atomic_get_old_crtc_state(state, crtc); 2172 const struct intel_crtc_state *new_crtc_state = 2173 intel_atomic_get_new_crtc_state(state, crtc); 2174 struct intel_encoder *encoder; 2175 2176 if (!HAS_PSR(i915)) 2177 return; 2178 2179 for_each_intel_encoder_mask_with_psr(state->base.dev, encoder, 2180 old_crtc_state->uapi.encoder_mask) { 2181 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2182 struct intel_psr *psr = &intel_dp->psr; 2183 bool needs_to_disable = false; 2184 2185 mutex_lock(&psr->lock); 2186 2187 /* 2188 * Reasons to disable: 2189 * - PSR disabled in new state 2190 * - All planes will go inactive 2191 * - Changing between PSR versions 2192 * - Display WA #1136: skl, bxt 2193 */ 2194 needs_to_disable |= intel_crtc_needs_modeset(new_crtc_state); 2195 needs_to_disable |= !new_crtc_state->has_psr; 2196 needs_to_disable |= !new_crtc_state->active_planes; 2197 needs_to_disable |= new_crtc_state->has_psr2 != psr->psr2_enabled; 2198 needs_to_disable |= DISPLAY_VER(i915) < 11 && 2199 new_crtc_state->wm_level_disabled; 2200 2201 if (psr->enabled && needs_to_disable) 2202 intel_psr_disable_locked(intel_dp); 2203 else if (psr->enabled && new_crtc_state->wm_level_disabled) 2204 /* Wa_14015648006 */ 2205 wm_optimization_wa(intel_dp, new_crtc_state); 2206 2207 mutex_unlock(&psr->lock); 2208 } 2209 } 2210 2211 static void _intel_psr_post_plane_update(const struct intel_atomic_state *state, 2212 const struct intel_crtc_state *crtc_state) 2213 { 2214 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2215 struct intel_encoder *encoder; 2216 2217 if (!crtc_state->has_psr) 2218 return; 2219 2220 for_each_intel_encoder_mask_with_psr(state->base.dev, encoder, 2221 crtc_state->uapi.encoder_mask) { 2222 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2223 struct intel_psr *psr = &intel_dp->psr; 2224 bool keep_disabled = false; 2225 2226 mutex_lock(&psr->lock); 2227 2228 drm_WARN_ON(&dev_priv->drm, psr->enabled && !crtc_state->active_planes); 2229 2230 keep_disabled |= psr->sink_not_reliable; 2231 keep_disabled |= !crtc_state->active_planes; 2232 2233 /* Display WA #1136: skl, bxt */ 2234 keep_disabled |= DISPLAY_VER(dev_priv) < 11 && 2235 crtc_state->wm_level_disabled; 2236 2237 if (!psr->enabled && !keep_disabled) 2238 intel_psr_enable_locked(intel_dp, crtc_state); 2239 else if (psr->enabled && !crtc_state->wm_level_disabled) 2240 /* Wa_14015648006 */ 2241 wm_optimization_wa(intel_dp, crtc_state); 2242 2243 /* Force a PSR exit when enabling CRC to avoid CRC timeouts */ 2244 if (crtc_state->crc_enabled && psr->enabled) 2245 psr_force_hw_tracking_exit(intel_dp); 2246 2247 mutex_unlock(&psr->lock); 2248 } 2249 } 2250 2251 void intel_psr_post_plane_update(const struct intel_atomic_state *state) 2252 { 2253 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 2254 struct intel_crtc_state *crtc_state; 2255 struct intel_crtc *crtc; 2256 int i; 2257 2258 if (!HAS_PSR(dev_priv)) 2259 return; 2260 2261 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) 2262 _intel_psr_post_plane_update(state, crtc_state); 2263 } 2264 2265 static int _psr2_ready_for_pipe_update_locked(struct intel_dp *intel_dp) 2266 { 2267 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2268 enum transcoder cpu_transcoder = intel_dp->psr.transcoder; 2269 2270 /* 2271 * Any state lower than EDP_PSR2_STATUS_STATE_DEEP_SLEEP is enough. 2272 * As all higher states has bit 4 of PSR2 state set we can just wait for 2273 * EDP_PSR2_STATUS_STATE_DEEP_SLEEP to be cleared. 2274 */ 2275 return intel_de_wait_for_clear(dev_priv, 2276 EDP_PSR2_STATUS(cpu_transcoder), 2277 EDP_PSR2_STATUS_STATE_DEEP_SLEEP, 50); 2278 } 2279 2280 static int _psr1_ready_for_pipe_update_locked(struct intel_dp *intel_dp) 2281 { 2282 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2283 enum transcoder cpu_transcoder = intel_dp->psr.transcoder; 2284 2285 /* 2286 * From bspec: Panel Self Refresh (BDW+) 2287 * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of 2288 * exit training time + 1.5 ms of aux channel handshake. 50 ms is 2289 * defensive enough to cover everything. 2290 */ 2291 return intel_de_wait_for_clear(dev_priv, 2292 psr_status_reg(dev_priv, cpu_transcoder), 2293 EDP_PSR_STATUS_STATE_MASK, 50); 2294 } 2295 2296 /** 2297 * intel_psr_wait_for_idle_locked - wait for PSR be ready for a pipe update 2298 * @new_crtc_state: new CRTC state 2299 * 2300 * This function is expected to be called from pipe_update_start() where it is 2301 * not expected to race with PSR enable or disable. 2302 */ 2303 void intel_psr_wait_for_idle_locked(const struct intel_crtc_state *new_crtc_state) 2304 { 2305 struct drm_i915_private *dev_priv = to_i915(new_crtc_state->uapi.crtc->dev); 2306 struct intel_encoder *encoder; 2307 2308 if (!new_crtc_state->has_psr) 2309 return; 2310 2311 for_each_intel_encoder_mask_with_psr(&dev_priv->drm, encoder, 2312 new_crtc_state->uapi.encoder_mask) { 2313 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2314 int ret; 2315 2316 lockdep_assert_held(&intel_dp->psr.lock); 2317 2318 if (!intel_dp->psr.enabled) 2319 continue; 2320 2321 if (intel_dp->psr.psr2_enabled) 2322 ret = _psr2_ready_for_pipe_update_locked(intel_dp); 2323 else 2324 ret = _psr1_ready_for_pipe_update_locked(intel_dp); 2325 2326 if (ret) 2327 drm_err(&dev_priv->drm, "PSR wait timed out, atomic update may fail\n"); 2328 } 2329 } 2330 2331 static bool __psr_wait_for_idle_locked(struct intel_dp *intel_dp) 2332 { 2333 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2334 enum transcoder cpu_transcoder = intel_dp->psr.transcoder; 2335 i915_reg_t reg; 2336 u32 mask; 2337 int err; 2338 2339 if (!intel_dp->psr.enabled) 2340 return false; 2341 2342 if (intel_dp->psr.psr2_enabled) { 2343 reg = EDP_PSR2_STATUS(cpu_transcoder); 2344 mask = EDP_PSR2_STATUS_STATE_MASK; 2345 } else { 2346 reg = psr_status_reg(dev_priv, cpu_transcoder); 2347 mask = EDP_PSR_STATUS_STATE_MASK; 2348 } 2349 2350 mutex_unlock(&intel_dp->psr.lock); 2351 2352 err = intel_de_wait_for_clear(dev_priv, reg, mask, 50); 2353 if (err) 2354 drm_err(&dev_priv->drm, 2355 "Timed out waiting for PSR Idle for re-enable\n"); 2356 2357 /* After the unlocked wait, verify that PSR is still wanted! */ 2358 mutex_lock(&intel_dp->psr.lock); 2359 return err == 0 && intel_dp->psr.enabled; 2360 } 2361 2362 static int intel_psr_fastset_force(struct drm_i915_private *dev_priv) 2363 { 2364 struct drm_connector_list_iter conn_iter; 2365 struct drm_modeset_acquire_ctx ctx; 2366 struct drm_atomic_state *state; 2367 struct drm_connector *conn; 2368 int err = 0; 2369 2370 state = drm_atomic_state_alloc(&dev_priv->drm); 2371 if (!state) 2372 return -ENOMEM; 2373 2374 drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE); 2375 2376 state->acquire_ctx = &ctx; 2377 to_intel_atomic_state(state)->internal = true; 2378 2379 retry: 2380 drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter); 2381 drm_for_each_connector_iter(conn, &conn_iter) { 2382 struct drm_connector_state *conn_state; 2383 struct drm_crtc_state *crtc_state; 2384 2385 if (conn->connector_type != DRM_MODE_CONNECTOR_eDP) 2386 continue; 2387 2388 conn_state = drm_atomic_get_connector_state(state, conn); 2389 if (IS_ERR(conn_state)) { 2390 err = PTR_ERR(conn_state); 2391 break; 2392 } 2393 2394 if (!conn_state->crtc) 2395 continue; 2396 2397 crtc_state = drm_atomic_get_crtc_state(state, conn_state->crtc); 2398 if (IS_ERR(crtc_state)) { 2399 err = PTR_ERR(crtc_state); 2400 break; 2401 } 2402 2403 /* Mark mode as changed to trigger a pipe->update() */ 2404 crtc_state->mode_changed = true; 2405 } 2406 drm_connector_list_iter_end(&conn_iter); 2407 2408 if (err == 0) 2409 err = drm_atomic_commit(state); 2410 2411 if (err == -EDEADLK) { 2412 drm_atomic_state_clear(state); 2413 err = drm_modeset_backoff(&ctx); 2414 if (!err) 2415 goto retry; 2416 } 2417 2418 drm_modeset_drop_locks(&ctx); 2419 drm_modeset_acquire_fini(&ctx); 2420 drm_atomic_state_put(state); 2421 2422 return err; 2423 } 2424 2425 int intel_psr_debug_set(struct intel_dp *intel_dp, u64 val) 2426 { 2427 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2428 const u32 mode = val & I915_PSR_DEBUG_MODE_MASK; 2429 u32 old_mode; 2430 int ret; 2431 2432 if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) || 2433 mode > I915_PSR_DEBUG_ENABLE_SEL_FETCH) { 2434 drm_dbg_kms(&dev_priv->drm, "Invalid debug mask %llx\n", val); 2435 return -EINVAL; 2436 } 2437 2438 ret = mutex_lock_interruptible(&intel_dp->psr.lock); 2439 if (ret) 2440 return ret; 2441 2442 old_mode = intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK; 2443 intel_dp->psr.debug = val; 2444 2445 /* 2446 * Do it right away if it's already enabled, otherwise it will be done 2447 * when enabling the source. 2448 */ 2449 if (intel_dp->psr.enabled) 2450 psr_irq_control(intel_dp); 2451 2452 mutex_unlock(&intel_dp->psr.lock); 2453 2454 if (old_mode != mode) 2455 ret = intel_psr_fastset_force(dev_priv); 2456 2457 return ret; 2458 } 2459 2460 static void intel_psr_handle_irq(struct intel_dp *intel_dp) 2461 { 2462 struct intel_psr *psr = &intel_dp->psr; 2463 2464 intel_psr_disable_locked(intel_dp); 2465 psr->sink_not_reliable = true; 2466 /* let's make sure that sink is awaken */ 2467 drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0); 2468 } 2469 2470 static void intel_psr_work(struct work_struct *work) 2471 { 2472 struct intel_dp *intel_dp = 2473 container_of(work, typeof(*intel_dp), psr.work); 2474 2475 mutex_lock(&intel_dp->psr.lock); 2476 2477 if (!intel_dp->psr.enabled) 2478 goto unlock; 2479 2480 if (READ_ONCE(intel_dp->psr.irq_aux_error)) 2481 intel_psr_handle_irq(intel_dp); 2482 2483 /* 2484 * We have to make sure PSR is ready for re-enable 2485 * otherwise it keeps disabled until next full enable/disable cycle. 2486 * PSR might take some time to get fully disabled 2487 * and be ready for re-enable. 2488 */ 2489 if (!__psr_wait_for_idle_locked(intel_dp)) 2490 goto unlock; 2491 2492 /* 2493 * The delayed work can race with an invalidate hence we need to 2494 * recheck. Since psr_flush first clears this and then reschedules we 2495 * won't ever miss a flush when bailing out here. 2496 */ 2497 if (intel_dp->psr.busy_frontbuffer_bits || intel_dp->psr.active) 2498 goto unlock; 2499 2500 intel_psr_activate(intel_dp); 2501 unlock: 2502 mutex_unlock(&intel_dp->psr.lock); 2503 } 2504 2505 static void _psr_invalidate_handle(struct intel_dp *intel_dp) 2506 { 2507 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2508 enum transcoder cpu_transcoder = intel_dp->psr.transcoder; 2509 2510 if (intel_dp->psr.psr2_sel_fetch_enabled) { 2511 u32 val; 2512 2513 if (intel_dp->psr.psr2_sel_fetch_cff_enabled) { 2514 /* Send one update otherwise lag is observed in screen */ 2515 intel_de_write(dev_priv, CURSURFLIVE(intel_dp->psr.pipe), 0); 2516 return; 2517 } 2518 2519 val = man_trk_ctl_enable_bit_get(dev_priv) | 2520 man_trk_ctl_partial_frame_bit_get(dev_priv) | 2521 man_trk_ctl_continuos_full_frame(dev_priv); 2522 intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(cpu_transcoder), val); 2523 intel_de_write(dev_priv, CURSURFLIVE(intel_dp->psr.pipe), 0); 2524 intel_dp->psr.psr2_sel_fetch_cff_enabled = true; 2525 } else { 2526 intel_psr_exit(intel_dp); 2527 } 2528 } 2529 2530 /** 2531 * intel_psr_invalidate - Invalidate PSR 2532 * @dev_priv: i915 device 2533 * @frontbuffer_bits: frontbuffer plane tracking bits 2534 * @origin: which operation caused the invalidate 2535 * 2536 * Since the hardware frontbuffer tracking has gaps we need to integrate 2537 * with the software frontbuffer tracking. This function gets called every 2538 * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be 2539 * disabled if the frontbuffer mask contains a buffer relevant to PSR. 2540 * 2541 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits." 2542 */ 2543 void intel_psr_invalidate(struct drm_i915_private *dev_priv, 2544 unsigned frontbuffer_bits, enum fb_op_origin origin) 2545 { 2546 struct intel_encoder *encoder; 2547 2548 if (origin == ORIGIN_FLIP) 2549 return; 2550 2551 for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) { 2552 unsigned int pipe_frontbuffer_bits = frontbuffer_bits; 2553 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2554 2555 mutex_lock(&intel_dp->psr.lock); 2556 if (!intel_dp->psr.enabled) { 2557 mutex_unlock(&intel_dp->psr.lock); 2558 continue; 2559 } 2560 2561 pipe_frontbuffer_bits &= 2562 INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe); 2563 intel_dp->psr.busy_frontbuffer_bits |= pipe_frontbuffer_bits; 2564 2565 if (pipe_frontbuffer_bits) 2566 _psr_invalidate_handle(intel_dp); 2567 2568 mutex_unlock(&intel_dp->psr.lock); 2569 } 2570 } 2571 /* 2572 * When we will be completely rely on PSR2 S/W tracking in future, 2573 * intel_psr_flush() will invalidate and flush the PSR for ORIGIN_FLIP 2574 * event also therefore tgl_dc3co_flush_locked() require to be changed 2575 * accordingly in future. 2576 */ 2577 static void 2578 tgl_dc3co_flush_locked(struct intel_dp *intel_dp, unsigned int frontbuffer_bits, 2579 enum fb_op_origin origin) 2580 { 2581 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 2582 2583 if (!intel_dp->psr.dc3co_exitline || !intel_dp->psr.psr2_enabled || 2584 !intel_dp->psr.active) 2585 return; 2586 2587 /* 2588 * At every frontbuffer flush flip event modified delay of delayed work, 2589 * when delayed work schedules that means display has been idle. 2590 */ 2591 if (!(frontbuffer_bits & 2592 INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe))) 2593 return; 2594 2595 tgl_psr2_enable_dc3co(intel_dp); 2596 mod_delayed_work(i915->unordered_wq, &intel_dp->psr.dc3co_work, 2597 intel_dp->psr.dc3co_exit_delay); 2598 } 2599 2600 static void _psr_flush_handle(struct intel_dp *intel_dp) 2601 { 2602 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2603 enum transcoder cpu_transcoder = intel_dp->psr.transcoder; 2604 2605 if (intel_dp->psr.psr2_sel_fetch_enabled) { 2606 if (intel_dp->psr.psr2_sel_fetch_cff_enabled) { 2607 /* can we turn CFF off? */ 2608 if (intel_dp->psr.busy_frontbuffer_bits == 0) { 2609 u32 val = man_trk_ctl_enable_bit_get(dev_priv) | 2610 man_trk_ctl_partial_frame_bit_get(dev_priv) | 2611 man_trk_ctl_single_full_frame_bit_get(dev_priv) | 2612 man_trk_ctl_continuos_full_frame(dev_priv); 2613 2614 /* 2615 * Set psr2_sel_fetch_cff_enabled as false to allow selective 2616 * updates. Still keep cff bit enabled as we don't have proper 2617 * SU configuration in case update is sent for any reason after 2618 * sff bit gets cleared by the HW on next vblank. 2619 */ 2620 intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(cpu_transcoder), 2621 val); 2622 intel_de_write(dev_priv, CURSURFLIVE(intel_dp->psr.pipe), 0); 2623 intel_dp->psr.psr2_sel_fetch_cff_enabled = false; 2624 } 2625 } else { 2626 /* 2627 * continuous full frame is disabled, only a single full 2628 * frame is required 2629 */ 2630 psr_force_hw_tracking_exit(intel_dp); 2631 } 2632 } else { 2633 psr_force_hw_tracking_exit(intel_dp); 2634 2635 if (!intel_dp->psr.active && !intel_dp->psr.busy_frontbuffer_bits) 2636 queue_work(dev_priv->unordered_wq, &intel_dp->psr.work); 2637 } 2638 } 2639 2640 /** 2641 * intel_psr_flush - Flush PSR 2642 * @dev_priv: i915 device 2643 * @frontbuffer_bits: frontbuffer plane tracking bits 2644 * @origin: which operation caused the flush 2645 * 2646 * Since the hardware frontbuffer tracking has gaps we need to integrate 2647 * with the software frontbuffer tracking. This function gets called every 2648 * time frontbuffer rendering has completed and flushed out to memory. PSR 2649 * can be enabled again if no other frontbuffer relevant to PSR is dirty. 2650 * 2651 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits. 2652 */ 2653 void intel_psr_flush(struct drm_i915_private *dev_priv, 2654 unsigned frontbuffer_bits, enum fb_op_origin origin) 2655 { 2656 struct intel_encoder *encoder; 2657 2658 for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) { 2659 unsigned int pipe_frontbuffer_bits = frontbuffer_bits; 2660 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2661 2662 mutex_lock(&intel_dp->psr.lock); 2663 if (!intel_dp->psr.enabled) { 2664 mutex_unlock(&intel_dp->psr.lock); 2665 continue; 2666 } 2667 2668 pipe_frontbuffer_bits &= 2669 INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe); 2670 intel_dp->psr.busy_frontbuffer_bits &= ~pipe_frontbuffer_bits; 2671 2672 /* 2673 * If the PSR is paused by an explicit intel_psr_paused() call, 2674 * we have to ensure that the PSR is not activated until 2675 * intel_psr_resume() is called. 2676 */ 2677 if (intel_dp->psr.paused) 2678 goto unlock; 2679 2680 if (origin == ORIGIN_FLIP || 2681 (origin == ORIGIN_CURSOR_UPDATE && 2682 !intel_dp->psr.psr2_sel_fetch_enabled)) { 2683 tgl_dc3co_flush_locked(intel_dp, frontbuffer_bits, origin); 2684 goto unlock; 2685 } 2686 2687 if (pipe_frontbuffer_bits == 0) 2688 goto unlock; 2689 2690 /* By definition flush = invalidate + flush */ 2691 _psr_flush_handle(intel_dp); 2692 unlock: 2693 mutex_unlock(&intel_dp->psr.lock); 2694 } 2695 } 2696 2697 /** 2698 * intel_psr_init - Init basic PSR work and mutex. 2699 * @intel_dp: Intel DP 2700 * 2701 * This function is called after the initializing connector. 2702 * (the initializing of connector treats the handling of connector capabilities) 2703 * And it initializes basic PSR stuff for each DP Encoder. 2704 */ 2705 void intel_psr_init(struct intel_dp *intel_dp) 2706 { 2707 struct intel_connector *connector = intel_dp->attached_connector; 2708 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2709 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2710 2711 if (!HAS_PSR(dev_priv)) 2712 return; 2713 2714 /* 2715 * HSW spec explicitly says PSR is tied to port A. 2716 * BDW+ platforms have a instance of PSR registers per transcoder but 2717 * BDW, GEN9 and GEN11 are not validated by HW team in other transcoder 2718 * than eDP one. 2719 * For now it only supports one instance of PSR for BDW, GEN9 and GEN11. 2720 * So lets keep it hardcoded to PORT_A for BDW, GEN9 and GEN11. 2721 * But GEN12 supports a instance of PSR registers per transcoder. 2722 */ 2723 if (DISPLAY_VER(dev_priv) < 12 && dig_port->base.port != PORT_A) { 2724 drm_dbg_kms(&dev_priv->drm, 2725 "PSR condition failed: Port not supported\n"); 2726 return; 2727 } 2728 2729 intel_dp->psr.source_support = true; 2730 2731 /* Set link_standby x link_off defaults */ 2732 if (DISPLAY_VER(dev_priv) < 12) 2733 /* For new platforms up to TGL let's respect VBT back again */ 2734 intel_dp->psr.link_standby = connector->panel.vbt.psr.full_link; 2735 2736 INIT_WORK(&intel_dp->psr.work, intel_psr_work); 2737 INIT_DELAYED_WORK(&intel_dp->psr.dc3co_work, tgl_dc3co_disable_work); 2738 mutex_init(&intel_dp->psr.lock); 2739 } 2740 2741 static int psr_get_status_and_error_status(struct intel_dp *intel_dp, 2742 u8 *status, u8 *error_status) 2743 { 2744 struct drm_dp_aux *aux = &intel_dp->aux; 2745 int ret; 2746 2747 ret = drm_dp_dpcd_readb(aux, DP_PSR_STATUS, status); 2748 if (ret != 1) 2749 return ret; 2750 2751 ret = drm_dp_dpcd_readb(aux, DP_PSR_ERROR_STATUS, error_status); 2752 if (ret != 1) 2753 return ret; 2754 2755 *status = *status & DP_PSR_SINK_STATE_MASK; 2756 2757 return 0; 2758 } 2759 2760 static void psr_alpm_check(struct intel_dp *intel_dp) 2761 { 2762 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2763 struct drm_dp_aux *aux = &intel_dp->aux; 2764 struct intel_psr *psr = &intel_dp->psr; 2765 u8 val; 2766 int r; 2767 2768 if (!psr->psr2_enabled) 2769 return; 2770 2771 r = drm_dp_dpcd_readb(aux, DP_RECEIVER_ALPM_STATUS, &val); 2772 if (r != 1) { 2773 drm_err(&dev_priv->drm, "Error reading ALPM status\n"); 2774 return; 2775 } 2776 2777 if (val & DP_ALPM_LOCK_TIMEOUT_ERROR) { 2778 intel_psr_disable_locked(intel_dp); 2779 psr->sink_not_reliable = true; 2780 drm_dbg_kms(&dev_priv->drm, 2781 "ALPM lock timeout error, disabling PSR\n"); 2782 2783 /* Clearing error */ 2784 drm_dp_dpcd_writeb(aux, DP_RECEIVER_ALPM_STATUS, val); 2785 } 2786 } 2787 2788 static void psr_capability_changed_check(struct intel_dp *intel_dp) 2789 { 2790 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2791 struct intel_psr *psr = &intel_dp->psr; 2792 u8 val; 2793 int r; 2794 2795 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ESI, &val); 2796 if (r != 1) { 2797 drm_err(&dev_priv->drm, "Error reading DP_PSR_ESI\n"); 2798 return; 2799 } 2800 2801 if (val & DP_PSR_CAPS_CHANGE) { 2802 intel_psr_disable_locked(intel_dp); 2803 psr->sink_not_reliable = true; 2804 drm_dbg_kms(&dev_priv->drm, 2805 "Sink PSR capability changed, disabling PSR\n"); 2806 2807 /* Clearing it */ 2808 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ESI, val); 2809 } 2810 } 2811 2812 void intel_psr_short_pulse(struct intel_dp *intel_dp) 2813 { 2814 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2815 struct intel_psr *psr = &intel_dp->psr; 2816 u8 status, error_status; 2817 const u8 errors = DP_PSR_RFB_STORAGE_ERROR | 2818 DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR | 2819 DP_PSR_LINK_CRC_ERROR; 2820 2821 if (!CAN_PSR(intel_dp)) 2822 return; 2823 2824 mutex_lock(&psr->lock); 2825 2826 if (!psr->enabled) 2827 goto exit; 2828 2829 if (psr_get_status_and_error_status(intel_dp, &status, &error_status)) { 2830 drm_err(&dev_priv->drm, 2831 "Error reading PSR status or error status\n"); 2832 goto exit; 2833 } 2834 2835 if (status == DP_PSR_SINK_INTERNAL_ERROR || (error_status & errors)) { 2836 intel_psr_disable_locked(intel_dp); 2837 psr->sink_not_reliable = true; 2838 } 2839 2840 if (status == DP_PSR_SINK_INTERNAL_ERROR && !error_status) 2841 drm_dbg_kms(&dev_priv->drm, 2842 "PSR sink internal error, disabling PSR\n"); 2843 if (error_status & DP_PSR_RFB_STORAGE_ERROR) 2844 drm_dbg_kms(&dev_priv->drm, 2845 "PSR RFB storage error, disabling PSR\n"); 2846 if (error_status & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR) 2847 drm_dbg_kms(&dev_priv->drm, 2848 "PSR VSC SDP uncorrectable error, disabling PSR\n"); 2849 if (error_status & DP_PSR_LINK_CRC_ERROR) 2850 drm_dbg_kms(&dev_priv->drm, 2851 "PSR Link CRC error, disabling PSR\n"); 2852 2853 if (error_status & ~errors) 2854 drm_err(&dev_priv->drm, 2855 "PSR_ERROR_STATUS unhandled errors %x\n", 2856 error_status & ~errors); 2857 /* clear status register */ 2858 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, error_status); 2859 2860 psr_alpm_check(intel_dp); 2861 psr_capability_changed_check(intel_dp); 2862 2863 exit: 2864 mutex_unlock(&psr->lock); 2865 } 2866 2867 bool intel_psr_enabled(struct intel_dp *intel_dp) 2868 { 2869 bool ret; 2870 2871 if (!CAN_PSR(intel_dp)) 2872 return false; 2873 2874 mutex_lock(&intel_dp->psr.lock); 2875 ret = intel_dp->psr.enabled; 2876 mutex_unlock(&intel_dp->psr.lock); 2877 2878 return ret; 2879 } 2880 2881 /** 2882 * intel_psr_lock - grab PSR lock 2883 * @crtc_state: the crtc state 2884 * 2885 * This is initially meant to be used by around CRTC update, when 2886 * vblank sensitive registers are updated and we need grab the lock 2887 * before it to avoid vblank evasion. 2888 */ 2889 void intel_psr_lock(const struct intel_crtc_state *crtc_state) 2890 { 2891 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 2892 struct intel_encoder *encoder; 2893 2894 if (!crtc_state->has_psr) 2895 return; 2896 2897 for_each_intel_encoder_mask_with_psr(&i915->drm, encoder, 2898 crtc_state->uapi.encoder_mask) { 2899 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2900 2901 mutex_lock(&intel_dp->psr.lock); 2902 break; 2903 } 2904 } 2905 2906 /** 2907 * intel_psr_unlock - release PSR lock 2908 * @crtc_state: the crtc state 2909 * 2910 * Release the PSR lock that was held during pipe update. 2911 */ 2912 void intel_psr_unlock(const struct intel_crtc_state *crtc_state) 2913 { 2914 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 2915 struct intel_encoder *encoder; 2916 2917 if (!crtc_state->has_psr) 2918 return; 2919 2920 for_each_intel_encoder_mask_with_psr(&i915->drm, encoder, 2921 crtc_state->uapi.encoder_mask) { 2922 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2923 2924 mutex_unlock(&intel_dp->psr.lock); 2925 break; 2926 } 2927 } 2928 2929 static void 2930 psr_source_status(struct intel_dp *intel_dp, struct seq_file *m) 2931 { 2932 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2933 enum transcoder cpu_transcoder = intel_dp->psr.transcoder; 2934 const char *status = "unknown"; 2935 u32 val, status_val; 2936 2937 if (intel_dp->psr.psr2_enabled) { 2938 static const char * const live_status[] = { 2939 "IDLE", 2940 "CAPTURE", 2941 "CAPTURE_FS", 2942 "SLEEP", 2943 "BUFON_FW", 2944 "ML_UP", 2945 "SU_STANDBY", 2946 "FAST_SLEEP", 2947 "DEEP_SLEEP", 2948 "BUF_ON", 2949 "TG_ON" 2950 }; 2951 val = intel_de_read(dev_priv, EDP_PSR2_STATUS(cpu_transcoder)); 2952 status_val = REG_FIELD_GET(EDP_PSR2_STATUS_STATE_MASK, val); 2953 if (status_val < ARRAY_SIZE(live_status)) 2954 status = live_status[status_val]; 2955 } else { 2956 static const char * const live_status[] = { 2957 "IDLE", 2958 "SRDONACK", 2959 "SRDENT", 2960 "BUFOFF", 2961 "BUFON", 2962 "AUXACK", 2963 "SRDOFFACK", 2964 "SRDENT_ON", 2965 }; 2966 val = intel_de_read(dev_priv, psr_status_reg(dev_priv, cpu_transcoder)); 2967 status_val = REG_FIELD_GET(EDP_PSR_STATUS_STATE_MASK, val); 2968 if (status_val < ARRAY_SIZE(live_status)) 2969 status = live_status[status_val]; 2970 } 2971 2972 seq_printf(m, "Source PSR status: %s [0x%08x]\n", status, val); 2973 } 2974 2975 static int intel_psr_status(struct seq_file *m, struct intel_dp *intel_dp) 2976 { 2977 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2978 enum transcoder cpu_transcoder = intel_dp->psr.transcoder; 2979 struct intel_psr *psr = &intel_dp->psr; 2980 intel_wakeref_t wakeref; 2981 const char *status; 2982 bool enabled; 2983 u32 val; 2984 2985 seq_printf(m, "Sink support: %s", str_yes_no(psr->sink_support)); 2986 if (psr->sink_support) 2987 seq_printf(m, " [0x%02x]", intel_dp->psr_dpcd[0]); 2988 seq_puts(m, "\n"); 2989 2990 if (!psr->sink_support) 2991 return 0; 2992 2993 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 2994 mutex_lock(&psr->lock); 2995 2996 if (psr->enabled) 2997 status = psr->psr2_enabled ? "PSR2 enabled" : "PSR1 enabled"; 2998 else 2999 status = "disabled"; 3000 seq_printf(m, "PSR mode: %s\n", status); 3001 3002 if (!psr->enabled) { 3003 seq_printf(m, "PSR sink not reliable: %s\n", 3004 str_yes_no(psr->sink_not_reliable)); 3005 3006 goto unlock; 3007 } 3008 3009 if (psr->psr2_enabled) { 3010 val = intel_de_read(dev_priv, EDP_PSR2_CTL(cpu_transcoder)); 3011 enabled = val & EDP_PSR2_ENABLE; 3012 } else { 3013 val = intel_de_read(dev_priv, psr_ctl_reg(dev_priv, cpu_transcoder)); 3014 enabled = val & EDP_PSR_ENABLE; 3015 } 3016 seq_printf(m, "Source PSR ctl: %s [0x%08x]\n", 3017 str_enabled_disabled(enabled), val); 3018 psr_source_status(intel_dp, m); 3019 seq_printf(m, "Busy frontbuffer bits: 0x%08x\n", 3020 psr->busy_frontbuffer_bits); 3021 3022 /* 3023 * SKL+ Perf counter is reset to 0 everytime DC state is entered 3024 */ 3025 val = intel_de_read(dev_priv, psr_perf_cnt_reg(dev_priv, cpu_transcoder)); 3026 seq_printf(m, "Performance counter: %u\n", 3027 REG_FIELD_GET(EDP_PSR_PERF_CNT_MASK, val)); 3028 3029 if (psr->debug & I915_PSR_DEBUG_IRQ) { 3030 seq_printf(m, "Last attempted entry at: %lld\n", 3031 psr->last_entry_attempt); 3032 seq_printf(m, "Last exit at: %lld\n", psr->last_exit); 3033 } 3034 3035 if (psr->psr2_enabled) { 3036 u32 su_frames_val[3]; 3037 int frame; 3038 3039 /* 3040 * Reading all 3 registers before hand to minimize crossing a 3041 * frame boundary between register reads 3042 */ 3043 for (frame = 0; frame < PSR2_SU_STATUS_FRAMES; frame += 3) { 3044 val = intel_de_read(dev_priv, PSR2_SU_STATUS(cpu_transcoder, frame)); 3045 su_frames_val[frame / 3] = val; 3046 } 3047 3048 seq_puts(m, "Frame:\tPSR2 SU blocks:\n"); 3049 3050 for (frame = 0; frame < PSR2_SU_STATUS_FRAMES; frame++) { 3051 u32 su_blocks; 3052 3053 su_blocks = su_frames_val[frame / 3] & 3054 PSR2_SU_STATUS_MASK(frame); 3055 su_blocks = su_blocks >> PSR2_SU_STATUS_SHIFT(frame); 3056 seq_printf(m, "%d\t%d\n", frame, su_blocks); 3057 } 3058 3059 seq_printf(m, "PSR2 selective fetch: %s\n", 3060 str_enabled_disabled(psr->psr2_sel_fetch_enabled)); 3061 } 3062 3063 unlock: 3064 mutex_unlock(&psr->lock); 3065 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); 3066 3067 return 0; 3068 } 3069 3070 static int i915_edp_psr_status_show(struct seq_file *m, void *data) 3071 { 3072 struct drm_i915_private *dev_priv = m->private; 3073 struct intel_dp *intel_dp = NULL; 3074 struct intel_encoder *encoder; 3075 3076 if (!HAS_PSR(dev_priv)) 3077 return -ENODEV; 3078 3079 /* Find the first EDP which supports PSR */ 3080 for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) { 3081 intel_dp = enc_to_intel_dp(encoder); 3082 break; 3083 } 3084 3085 if (!intel_dp) 3086 return -ENODEV; 3087 3088 return intel_psr_status(m, intel_dp); 3089 } 3090 DEFINE_SHOW_ATTRIBUTE(i915_edp_psr_status); 3091 3092 static int 3093 i915_edp_psr_debug_set(void *data, u64 val) 3094 { 3095 struct drm_i915_private *dev_priv = data; 3096 struct intel_encoder *encoder; 3097 intel_wakeref_t wakeref; 3098 int ret = -ENODEV; 3099 3100 if (!HAS_PSR(dev_priv)) 3101 return ret; 3102 3103 for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) { 3104 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3105 3106 drm_dbg_kms(&dev_priv->drm, "Setting PSR debug to %llx\n", val); 3107 3108 wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm); 3109 3110 // TODO: split to each transcoder's PSR debug state 3111 ret = intel_psr_debug_set(intel_dp, val); 3112 3113 intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref); 3114 } 3115 3116 return ret; 3117 } 3118 3119 static int 3120 i915_edp_psr_debug_get(void *data, u64 *val) 3121 { 3122 struct drm_i915_private *dev_priv = data; 3123 struct intel_encoder *encoder; 3124 3125 if (!HAS_PSR(dev_priv)) 3126 return -ENODEV; 3127 3128 for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) { 3129 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 3130 3131 // TODO: split to each transcoder's PSR debug state 3132 *val = READ_ONCE(intel_dp->psr.debug); 3133 return 0; 3134 } 3135 3136 return -ENODEV; 3137 } 3138 3139 DEFINE_SIMPLE_ATTRIBUTE(i915_edp_psr_debug_fops, 3140 i915_edp_psr_debug_get, i915_edp_psr_debug_set, 3141 "%llu\n"); 3142 3143 void intel_psr_debugfs_register(struct drm_i915_private *i915) 3144 { 3145 struct drm_minor *minor = i915->drm.primary; 3146 3147 debugfs_create_file("i915_edp_psr_debug", 0644, minor->debugfs_root, 3148 i915, &i915_edp_psr_debug_fops); 3149 3150 debugfs_create_file("i915_edp_psr_status", 0444, minor->debugfs_root, 3151 i915, &i915_edp_psr_status_fops); 3152 } 3153 3154 static int i915_psr_sink_status_show(struct seq_file *m, void *data) 3155 { 3156 struct intel_connector *connector = m->private; 3157 struct intel_dp *intel_dp = intel_attached_dp(connector); 3158 static const char * const sink_status[] = { 3159 "inactive", 3160 "transition to active, capture and display", 3161 "active, display from RFB", 3162 "active, capture and display on sink device timings", 3163 "transition to inactive, capture and display, timing re-sync", 3164 "reserved", 3165 "reserved", 3166 "sink internal error", 3167 }; 3168 const char *str; 3169 int ret; 3170 u8 val; 3171 3172 if (!CAN_PSR(intel_dp)) { 3173 seq_puts(m, "PSR Unsupported\n"); 3174 return -ENODEV; 3175 } 3176 3177 if (connector->base.status != connector_status_connected) 3178 return -ENODEV; 3179 3180 ret = drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_STATUS, &val); 3181 if (ret != 1) 3182 return ret < 0 ? ret : -EIO; 3183 3184 val &= DP_PSR_SINK_STATE_MASK; 3185 if (val < ARRAY_SIZE(sink_status)) 3186 str = sink_status[val]; 3187 else 3188 str = "unknown"; 3189 3190 seq_printf(m, "Sink PSR status: 0x%x [%s]\n", val, str); 3191 3192 return 0; 3193 } 3194 DEFINE_SHOW_ATTRIBUTE(i915_psr_sink_status); 3195 3196 static int i915_psr_status_show(struct seq_file *m, void *data) 3197 { 3198 struct intel_connector *connector = m->private; 3199 struct intel_dp *intel_dp = intel_attached_dp(connector); 3200 3201 return intel_psr_status(m, intel_dp); 3202 } 3203 DEFINE_SHOW_ATTRIBUTE(i915_psr_status); 3204 3205 void intel_psr_connector_debugfs_add(struct intel_connector *connector) 3206 { 3207 struct drm_i915_private *i915 = to_i915(connector->base.dev); 3208 struct dentry *root = connector->base.debugfs_entry; 3209 3210 if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP) 3211 return; 3212 3213 debugfs_create_file("i915_psr_sink_status", 0444, root, 3214 connector, &i915_psr_sink_status_fops); 3215 3216 if (HAS_PSR(i915)) 3217 debugfs_create_file("i915_psr_status", 0444, root, 3218 connector, &i915_psr_status_fops); 3219 } 3220