1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <drm/drm_atomic_helper.h>
25 
26 #include "display/intel_dp.h"
27 
28 #include "i915_drv.h"
29 #include "intel_atomic.h"
30 #include "intel_display_types.h"
31 #include "intel_dp_aux.h"
32 #include "intel_hdmi.h"
33 #include "intel_psr.h"
34 #include "intel_sprite.h"
35 #include "skl_universal_plane.h"
36 
37 /**
38  * DOC: Panel Self Refresh (PSR/SRD)
39  *
40  * Since Haswell Display controller supports Panel Self-Refresh on display
41  * panels witch have a remote frame buffer (RFB) implemented according to PSR
42  * spec in eDP1.3. PSR feature allows the display to go to lower standby states
43  * when system is idle but display is on as it eliminates display refresh
44  * request to DDR memory completely as long as the frame buffer for that
45  * display is unchanged.
46  *
47  * Panel Self Refresh must be supported by both Hardware (source) and
48  * Panel (sink).
49  *
50  * PSR saves power by caching the framebuffer in the panel RFB, which allows us
51  * to power down the link and memory controller. For DSI panels the same idea
52  * is called "manual mode".
53  *
54  * The implementation uses the hardware-based PSR support which automatically
55  * enters/exits self-refresh mode. The hardware takes care of sending the
56  * required DP aux message and could even retrain the link (that part isn't
57  * enabled yet though). The hardware also keeps track of any frontbuffer
58  * changes to know when to exit self-refresh mode again. Unfortunately that
59  * part doesn't work too well, hence why the i915 PSR support uses the
60  * software frontbuffer tracking to make sure it doesn't miss a screen
61  * update. For this integration intel_psr_invalidate() and intel_psr_flush()
62  * get called by the frontbuffer tracking code. Note that because of locking
63  * issues the self-refresh re-enable code is done from a work queue, which
64  * must be correctly synchronized/cancelled when shutting down the pipe."
65  *
66  * DC3CO (DC3 clock off)
67  *
68  * On top of PSR2, GEN12 adds a intermediate power savings state that turns
69  * clock off automatically during PSR2 idle state.
70  * The smaller overhead of DC3co entry/exit vs. the overhead of PSR2 deep sleep
71  * entry/exit allows the HW to enter a low-power state even when page flipping
72  * periodically (for instance a 30fps video playback scenario).
73  *
74  * Every time a flips occurs PSR2 will get out of deep sleep state(if it was),
75  * so DC3CO is enabled and tgl_dc3co_disable_work is schedule to run after 6
76  * frames, if no other flip occurs and the function above is executed, DC3CO is
77  * disabled and PSR2 is configured to enter deep sleep, resetting again in case
78  * of another flip.
79  * Front buffer modifications do not trigger DC3CO activation on purpose as it
80  * would bring a lot of complexity and most of the moderns systems will only
81  * use page flips.
82  */
83 
84 static bool psr_global_enabled(struct intel_dp *intel_dp)
85 {
86 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
87 
88 	switch (intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
89 	case I915_PSR_DEBUG_DEFAULT:
90 		return i915->params.enable_psr;
91 	case I915_PSR_DEBUG_DISABLE:
92 		return false;
93 	default:
94 		return true;
95 	}
96 }
97 
98 static bool psr2_global_enabled(struct intel_dp *intel_dp)
99 {
100 	switch (intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
101 	case I915_PSR_DEBUG_DISABLE:
102 	case I915_PSR_DEBUG_FORCE_PSR1:
103 		return false;
104 	default:
105 		return true;
106 	}
107 }
108 
109 static void psr_irq_control(struct intel_dp *intel_dp)
110 {
111 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
112 	enum transcoder trans_shift;
113 	i915_reg_t imr_reg;
114 	u32 mask, val;
115 
116 	/*
117 	 * gen12+ has registers relative to transcoder and one per transcoder
118 	 * using the same bit definition: handle it as TRANSCODER_EDP to force
119 	 * 0 shift in bit definition
120 	 */
121 	if (INTEL_GEN(dev_priv) >= 12) {
122 		trans_shift = 0;
123 		imr_reg = TRANS_PSR_IMR(intel_dp->psr.transcoder);
124 	} else {
125 		trans_shift = intel_dp->psr.transcoder;
126 		imr_reg = EDP_PSR_IMR;
127 	}
128 
129 	mask = EDP_PSR_ERROR(trans_shift);
130 	if (intel_dp->psr.debug & I915_PSR_DEBUG_IRQ)
131 		mask |= EDP_PSR_POST_EXIT(trans_shift) |
132 			EDP_PSR_PRE_ENTRY(trans_shift);
133 
134 	/* Warning: it is masking/setting reserved bits too */
135 	val = intel_de_read(dev_priv, imr_reg);
136 	val &= ~EDP_PSR_TRANS_MASK(trans_shift);
137 	val |= ~mask;
138 	intel_de_write(dev_priv, imr_reg, val);
139 }
140 
141 static void psr_event_print(struct drm_i915_private *i915,
142 			    u32 val, bool psr2_enabled)
143 {
144 	drm_dbg_kms(&i915->drm, "PSR exit events: 0x%x\n", val);
145 	if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE)
146 		drm_dbg_kms(&i915->drm, "\tPSR2 watchdog timer expired\n");
147 	if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled)
148 		drm_dbg_kms(&i915->drm, "\tPSR2 disabled\n");
149 	if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN)
150 		drm_dbg_kms(&i915->drm, "\tSU dirty FIFO underrun\n");
151 	if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN)
152 		drm_dbg_kms(&i915->drm, "\tSU CRC FIFO underrun\n");
153 	if (val & PSR_EVENT_GRAPHICS_RESET)
154 		drm_dbg_kms(&i915->drm, "\tGraphics reset\n");
155 	if (val & PSR_EVENT_PCH_INTERRUPT)
156 		drm_dbg_kms(&i915->drm, "\tPCH interrupt\n");
157 	if (val & PSR_EVENT_MEMORY_UP)
158 		drm_dbg_kms(&i915->drm, "\tMemory up\n");
159 	if (val & PSR_EVENT_FRONT_BUFFER_MODIFY)
160 		drm_dbg_kms(&i915->drm, "\tFront buffer modification\n");
161 	if (val & PSR_EVENT_WD_TIMER_EXPIRE)
162 		drm_dbg_kms(&i915->drm, "\tPSR watchdog timer expired\n");
163 	if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE)
164 		drm_dbg_kms(&i915->drm, "\tPIPE registers updated\n");
165 	if (val & PSR_EVENT_REGISTER_UPDATE)
166 		drm_dbg_kms(&i915->drm, "\tRegister updated\n");
167 	if (val & PSR_EVENT_HDCP_ENABLE)
168 		drm_dbg_kms(&i915->drm, "\tHDCP enabled\n");
169 	if (val & PSR_EVENT_KVMR_SESSION_ENABLE)
170 		drm_dbg_kms(&i915->drm, "\tKVMR session enabled\n");
171 	if (val & PSR_EVENT_VBI_ENABLE)
172 		drm_dbg_kms(&i915->drm, "\tVBI enabled\n");
173 	if (val & PSR_EVENT_LPSP_MODE_EXIT)
174 		drm_dbg_kms(&i915->drm, "\tLPSP mode exited\n");
175 	if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled)
176 		drm_dbg_kms(&i915->drm, "\tPSR disabled\n");
177 }
178 
179 void intel_psr_irq_handler(struct intel_dp *intel_dp, u32 psr_iir)
180 {
181 	enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
182 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
183 	ktime_t time_ns =  ktime_get();
184 	enum transcoder trans_shift;
185 	i915_reg_t imr_reg;
186 
187 	if (INTEL_GEN(dev_priv) >= 12) {
188 		trans_shift = 0;
189 		imr_reg = TRANS_PSR_IMR(intel_dp->psr.transcoder);
190 	} else {
191 		trans_shift = intel_dp->psr.transcoder;
192 		imr_reg = EDP_PSR_IMR;
193 	}
194 
195 	if (psr_iir & EDP_PSR_PRE_ENTRY(trans_shift)) {
196 		intel_dp->psr.last_entry_attempt = time_ns;
197 		drm_dbg_kms(&dev_priv->drm,
198 			    "[transcoder %s] PSR entry attempt in 2 vblanks\n",
199 			    transcoder_name(cpu_transcoder));
200 	}
201 
202 	if (psr_iir & EDP_PSR_POST_EXIT(trans_shift)) {
203 		intel_dp->psr.last_exit = time_ns;
204 		drm_dbg_kms(&dev_priv->drm,
205 			    "[transcoder %s] PSR exit completed\n",
206 			    transcoder_name(cpu_transcoder));
207 
208 		if (INTEL_GEN(dev_priv) >= 9) {
209 			u32 val = intel_de_read(dev_priv,
210 						PSR_EVENT(cpu_transcoder));
211 			bool psr2_enabled = intel_dp->psr.psr2_enabled;
212 
213 			intel_de_write(dev_priv, PSR_EVENT(cpu_transcoder),
214 				       val);
215 			psr_event_print(dev_priv, val, psr2_enabled);
216 		}
217 	}
218 
219 	if (psr_iir & EDP_PSR_ERROR(trans_shift)) {
220 		u32 val;
221 
222 		drm_warn(&dev_priv->drm, "[transcoder %s] PSR aux error\n",
223 			 transcoder_name(cpu_transcoder));
224 
225 		intel_dp->psr.irq_aux_error = true;
226 
227 		/*
228 		 * If this interruption is not masked it will keep
229 		 * interrupting so fast that it prevents the scheduled
230 		 * work to run.
231 		 * Also after a PSR error, we don't want to arm PSR
232 		 * again so we don't care about unmask the interruption
233 		 * or unset irq_aux_error.
234 		 */
235 		val = intel_de_read(dev_priv, imr_reg);
236 		val |= EDP_PSR_ERROR(trans_shift);
237 		intel_de_write(dev_priv, imr_reg, val);
238 
239 		schedule_work(&intel_dp->psr.work);
240 	}
241 }
242 
243 static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
244 {
245 	u8 alpm_caps = 0;
246 
247 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
248 			      &alpm_caps) != 1)
249 		return false;
250 	return alpm_caps & DP_ALPM_CAP;
251 }
252 
253 static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
254 {
255 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
256 	u8 val = 8; /* assume the worst if we can't read the value */
257 
258 	if (drm_dp_dpcd_readb(&intel_dp->aux,
259 			      DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
260 		val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
261 	else
262 		drm_dbg_kms(&i915->drm,
263 			    "Unable to get sink synchronization latency, assuming 8 frames\n");
264 	return val;
265 }
266 
267 static u16 intel_dp_get_su_x_granulartiy(struct intel_dp *intel_dp)
268 {
269 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
270 	u16 val;
271 	ssize_t r;
272 
273 	/*
274 	 * Returning the default X granularity if granularity not required or
275 	 * if DPCD read fails
276 	 */
277 	if (!(intel_dp->psr_dpcd[1] & DP_PSR2_SU_GRANULARITY_REQUIRED))
278 		return 4;
279 
280 	r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_X_GRANULARITY, &val, 2);
281 	if (r != 2)
282 		drm_dbg_kms(&i915->drm,
283 			    "Unable to read DP_PSR2_SU_X_GRANULARITY\n");
284 
285 	/*
286 	 * Spec says that if the value read is 0 the default granularity should
287 	 * be used instead.
288 	 */
289 	if (r != 2 || val == 0)
290 		val = 4;
291 
292 	return val;
293 }
294 
295 void intel_psr_init_dpcd(struct intel_dp *intel_dp)
296 {
297 	struct drm_i915_private *dev_priv =
298 		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
299 
300 	drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
301 			 sizeof(intel_dp->psr_dpcd));
302 
303 	if (!intel_dp->psr_dpcd[0])
304 		return;
305 	drm_dbg_kms(&dev_priv->drm, "eDP panel supports PSR version %x\n",
306 		    intel_dp->psr_dpcd[0]);
307 
308 	if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_PSR)) {
309 		drm_dbg_kms(&dev_priv->drm,
310 			    "PSR support not currently available for this panel\n");
311 		return;
312 	}
313 
314 	if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
315 		drm_dbg_kms(&dev_priv->drm,
316 			    "Panel lacks power state control, PSR cannot be enabled\n");
317 		return;
318 	}
319 
320 	intel_dp->psr.sink_support = true;
321 	intel_dp->psr.sink_sync_latency =
322 		intel_dp_get_sink_sync_latency(intel_dp);
323 
324 	if (INTEL_GEN(dev_priv) >= 9 &&
325 	    (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) {
326 		bool y_req = intel_dp->psr_dpcd[1] &
327 			     DP_PSR2_SU_Y_COORDINATE_REQUIRED;
328 		bool alpm = intel_dp_get_alpm_status(intel_dp);
329 
330 		/*
331 		 * All panels that supports PSR version 03h (PSR2 +
332 		 * Y-coordinate) can handle Y-coordinates in VSC but we are
333 		 * only sure that it is going to be used when required by the
334 		 * panel. This way panel is capable to do selective update
335 		 * without a aux frame sync.
336 		 *
337 		 * To support PSR version 02h and PSR version 03h without
338 		 * Y-coordinate requirement panels we would need to enable
339 		 * GTC first.
340 		 */
341 		intel_dp->psr.sink_psr2_support = y_req && alpm;
342 		drm_dbg_kms(&dev_priv->drm, "PSR2 %ssupported\n",
343 			    intel_dp->psr.sink_psr2_support ? "" : "not ");
344 
345 		if (intel_dp->psr.sink_psr2_support) {
346 			intel_dp->psr.colorimetry_support =
347 				intel_dp_get_colorimetry_status(intel_dp);
348 			intel_dp->psr.su_x_granularity =
349 				intel_dp_get_su_x_granulartiy(intel_dp);
350 		}
351 	}
352 }
353 
354 static void hsw_psr_setup_aux(struct intel_dp *intel_dp)
355 {
356 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
357 	u32 aux_clock_divider, aux_ctl;
358 	int i;
359 	static const u8 aux_msg[] = {
360 		[0] = DP_AUX_NATIVE_WRITE << 4,
361 		[1] = DP_SET_POWER >> 8,
362 		[2] = DP_SET_POWER & 0xff,
363 		[3] = 1 - 1,
364 		[4] = DP_SET_POWER_D0,
365 	};
366 	u32 psr_aux_mask = EDP_PSR_AUX_CTL_TIME_OUT_MASK |
367 			   EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK |
368 			   EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK |
369 			   EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK;
370 
371 	BUILD_BUG_ON(sizeof(aux_msg) > 20);
372 	for (i = 0; i < sizeof(aux_msg); i += 4)
373 		intel_de_write(dev_priv,
374 			       EDP_PSR_AUX_DATA(intel_dp->psr.transcoder, i >> 2),
375 			       intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
376 
377 	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
378 
379 	/* Start with bits set for DDI_AUX_CTL register */
380 	aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, sizeof(aux_msg),
381 					     aux_clock_divider);
382 
383 	/* Select only valid bits for SRD_AUX_CTL */
384 	aux_ctl &= psr_aux_mask;
385 	intel_de_write(dev_priv, EDP_PSR_AUX_CTL(intel_dp->psr.transcoder),
386 		       aux_ctl);
387 }
388 
389 static void intel_psr_enable_sink(struct intel_dp *intel_dp)
390 {
391 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
392 	u8 dpcd_val = DP_PSR_ENABLE;
393 
394 	/* Enable ALPM at sink for psr2 */
395 	if (intel_dp->psr.psr2_enabled) {
396 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG,
397 				   DP_ALPM_ENABLE |
398 				   DP_ALPM_LOCK_ERROR_IRQ_HPD_ENABLE);
399 
400 		dpcd_val |= DP_PSR_ENABLE_PSR2 | DP_PSR_IRQ_HPD_WITH_CRC_ERRORS;
401 	} else {
402 		if (intel_dp->psr.link_standby)
403 			dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE;
404 
405 		if (INTEL_GEN(dev_priv) >= 8)
406 			dpcd_val |= DP_PSR_CRC_VERIFICATION;
407 	}
408 
409 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val);
410 
411 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
412 }
413 
414 static u32 intel_psr1_get_tp_time(struct intel_dp *intel_dp)
415 {
416 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
417 	u32 val = 0;
418 
419 	if (INTEL_GEN(dev_priv) >= 11)
420 		val |= EDP_PSR_TP4_TIME_0US;
421 
422 	if (dev_priv->params.psr_safest_params) {
423 		val |= EDP_PSR_TP1_TIME_2500us;
424 		val |= EDP_PSR_TP2_TP3_TIME_2500us;
425 		goto check_tp3_sel;
426 	}
427 
428 	if (dev_priv->vbt.psr.tp1_wakeup_time_us == 0)
429 		val |= EDP_PSR_TP1_TIME_0us;
430 	else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 100)
431 		val |= EDP_PSR_TP1_TIME_100us;
432 	else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 500)
433 		val |= EDP_PSR_TP1_TIME_500us;
434 	else
435 		val |= EDP_PSR_TP1_TIME_2500us;
436 
437 	if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us == 0)
438 		val |= EDP_PSR_TP2_TP3_TIME_0us;
439 	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
440 		val |= EDP_PSR_TP2_TP3_TIME_100us;
441 	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
442 		val |= EDP_PSR_TP2_TP3_TIME_500us;
443 	else
444 		val |= EDP_PSR_TP2_TP3_TIME_2500us;
445 
446 check_tp3_sel:
447 	if (intel_dp_source_supports_hbr2(intel_dp) &&
448 	    drm_dp_tps3_supported(intel_dp->dpcd))
449 		val |= EDP_PSR_TP1_TP3_SEL;
450 	else
451 		val |= EDP_PSR_TP1_TP2_SEL;
452 
453 	return val;
454 }
455 
456 static u8 psr_compute_idle_frames(struct intel_dp *intel_dp)
457 {
458 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
459 	int idle_frames;
460 
461 	/* Let's use 6 as the minimum to cover all known cases including the
462 	 * off-by-one issue that HW has in some cases.
463 	 */
464 	idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
465 	idle_frames = max(idle_frames, intel_dp->psr.sink_sync_latency + 1);
466 
467 	if (drm_WARN_ON(&dev_priv->drm, idle_frames > 0xf))
468 		idle_frames = 0xf;
469 
470 	return idle_frames;
471 }
472 
473 static void hsw_activate_psr1(struct intel_dp *intel_dp)
474 {
475 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
476 	u32 max_sleep_time = 0x1f;
477 	u32 val = EDP_PSR_ENABLE;
478 
479 	val |= psr_compute_idle_frames(intel_dp) << EDP_PSR_IDLE_FRAME_SHIFT;
480 
481 	val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
482 	if (IS_HASWELL(dev_priv))
483 		val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
484 
485 	if (intel_dp->psr.link_standby)
486 		val |= EDP_PSR_LINK_STANDBY;
487 
488 	val |= intel_psr1_get_tp_time(intel_dp);
489 
490 	if (INTEL_GEN(dev_priv) >= 8)
491 		val |= EDP_PSR_CRC_ENABLE;
492 
493 	val |= (intel_de_read(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder)) &
494 		EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK);
495 	intel_de_write(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder), val);
496 }
497 
498 static u32 intel_psr2_get_tp_time(struct intel_dp *intel_dp)
499 {
500 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
501 	u32 val = 0;
502 
503 	if (dev_priv->params.psr_safest_params)
504 		return EDP_PSR2_TP2_TIME_2500us;
505 
506 	if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us >= 0 &&
507 	    dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 50)
508 		val |= EDP_PSR2_TP2_TIME_50us;
509 	else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 100)
510 		val |= EDP_PSR2_TP2_TIME_100us;
511 	else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 500)
512 		val |= EDP_PSR2_TP2_TIME_500us;
513 	else
514 		val |= EDP_PSR2_TP2_TIME_2500us;
515 
516 	return val;
517 }
518 
519 static void hsw_activate_psr2(struct intel_dp *intel_dp)
520 {
521 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
522 	u32 val;
523 
524 	val = psr_compute_idle_frames(intel_dp) << EDP_PSR2_IDLE_FRAME_SHIFT;
525 
526 	val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE;
527 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
528 		val |= EDP_Y_COORDINATE_ENABLE;
529 
530 	val |= EDP_PSR2_FRAME_BEFORE_SU(intel_dp->psr.sink_sync_latency + 1);
531 	val |= intel_psr2_get_tp_time(intel_dp);
532 
533 	if (INTEL_GEN(dev_priv) >= 12) {
534 		/*
535 		 * TODO: 7 lines of IO_BUFFER_WAKE and FAST_WAKE are default
536 		 * values from BSpec. In order to setting an optimal power
537 		 * consumption, lower than 4k resoluition mode needs to decrese
538 		 * IO_BUFFER_WAKE and FAST_WAKE. And higher than 4K resolution
539 		 * mode needs to increase IO_BUFFER_WAKE and FAST_WAKE.
540 		 */
541 		val |= TGL_EDP_PSR2_BLOCK_COUNT_NUM_2;
542 		val |= TGL_EDP_PSR2_IO_BUFFER_WAKE(7);
543 		val |= TGL_EDP_PSR2_FAST_WAKE(7);
544 	} else if (INTEL_GEN(dev_priv) >= 9) {
545 		val |= EDP_PSR2_IO_BUFFER_WAKE(7);
546 		val |= EDP_PSR2_FAST_WAKE(7);
547 	}
548 
549 	if (intel_dp->psr.psr2_sel_fetch_enabled) {
550 		/* WA 1408330847 */
551 		if (IS_TGL_DISP_STEPPING(dev_priv, STEP_A0, STEP_A0) ||
552 		    IS_RKL_REVID(dev_priv, RKL_REVID_A0, RKL_REVID_A0))
553 			intel_de_rmw(dev_priv, CHICKEN_PAR1_1,
554 				     DIS_RAM_BYPASS_PSR2_MAN_TRACK,
555 				     DIS_RAM_BYPASS_PSR2_MAN_TRACK);
556 
557 		intel_de_write(dev_priv,
558 			       PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder),
559 			       PSR2_MAN_TRK_CTL_ENABLE);
560 	} else if (HAS_PSR2_SEL_FETCH(dev_priv)) {
561 		intel_de_write(dev_priv,
562 			       PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder), 0);
563 	}
564 
565 	/*
566 	 * PSR2 HW is incorrectly using EDP_PSR_TP1_TP3_SEL and BSpec is
567 	 * recommending keep this bit unset while PSR2 is enabled.
568 	 */
569 	intel_de_write(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder), 0);
570 
571 	intel_de_write(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder), val);
572 }
573 
574 static bool
575 transcoder_has_psr2(struct drm_i915_private *dev_priv, enum transcoder trans)
576 {
577 	if (INTEL_GEN(dev_priv) < 9)
578 		return false;
579 	else if (INTEL_GEN(dev_priv) >= 12)
580 		return trans == TRANSCODER_A;
581 	else
582 		return trans == TRANSCODER_EDP;
583 }
584 
585 static u32 intel_get_frame_time_us(const struct intel_crtc_state *cstate)
586 {
587 	if (!cstate || !cstate->hw.active)
588 		return 0;
589 
590 	return DIV_ROUND_UP(1000 * 1000,
591 			    drm_mode_vrefresh(&cstate->hw.adjusted_mode));
592 }
593 
594 static void psr2_program_idle_frames(struct intel_dp *intel_dp,
595 				     u32 idle_frames)
596 {
597 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
598 	u32 val;
599 
600 	idle_frames <<=  EDP_PSR2_IDLE_FRAME_SHIFT;
601 	val = intel_de_read(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder));
602 	val &= ~EDP_PSR2_IDLE_FRAME_MASK;
603 	val |= idle_frames;
604 	intel_de_write(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder), val);
605 }
606 
607 static void tgl_psr2_enable_dc3co(struct intel_dp *intel_dp)
608 {
609 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
610 
611 	psr2_program_idle_frames(intel_dp, 0);
612 	intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_DC3CO);
613 }
614 
615 static void tgl_psr2_disable_dc3co(struct intel_dp *intel_dp)
616 {
617 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
618 
619 	intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
620 	psr2_program_idle_frames(intel_dp, psr_compute_idle_frames(intel_dp));
621 }
622 
623 static void tgl_dc3co_disable_work(struct work_struct *work)
624 {
625 	struct intel_dp *intel_dp =
626 		container_of(work, typeof(*intel_dp), psr.dc3co_work.work);
627 
628 	mutex_lock(&intel_dp->psr.lock);
629 	/* If delayed work is pending, it is not idle */
630 	if (delayed_work_pending(&intel_dp->psr.dc3co_work))
631 		goto unlock;
632 
633 	tgl_psr2_disable_dc3co(intel_dp);
634 unlock:
635 	mutex_unlock(&intel_dp->psr.lock);
636 }
637 
638 static void tgl_disallow_dc3co_on_psr2_exit(struct intel_dp *intel_dp)
639 {
640 	if (!intel_dp->psr.dc3co_enabled)
641 		return;
642 
643 	cancel_delayed_work(&intel_dp->psr.dc3co_work);
644 	/* Before PSR2 exit disallow dc3co*/
645 	tgl_psr2_disable_dc3co(intel_dp);
646 }
647 
648 static void
649 tgl_dc3co_exitline_compute_config(struct intel_dp *intel_dp,
650 				  struct intel_crtc_state *crtc_state)
651 {
652 	const u32 crtc_vdisplay = crtc_state->uapi.adjusted_mode.crtc_vdisplay;
653 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
654 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
655 	u32 exit_scanlines;
656 
657 	/*
658 	 * DMC's DC3CO exit mechanism has an issue with Selective Fecth
659 	 * TODO: when the issue is addressed, this restriction should be removed.
660 	 */
661 	if (crtc_state->enable_psr2_sel_fetch)
662 		return;
663 
664 	if (!(dev_priv->csr.allowed_dc_mask & DC_STATE_EN_DC3CO))
665 		return;
666 
667 	/* B.Specs:49196 DC3CO only works with pipeA and DDIA.*/
668 	if (to_intel_crtc(crtc_state->uapi.crtc)->pipe != PIPE_A ||
669 	    dig_port->base.port != PORT_A)
670 		return;
671 
672 	/*
673 	 * DC3CO Exit time 200us B.Spec 49196
674 	 * PSR2 transcoder Early Exit scanlines = ROUNDUP(200 / line time) + 1
675 	 */
676 	exit_scanlines =
677 		intel_usecs_to_scanlines(&crtc_state->uapi.adjusted_mode, 200) + 1;
678 
679 	if (drm_WARN_ON(&dev_priv->drm, exit_scanlines > crtc_vdisplay))
680 		return;
681 
682 	crtc_state->dc3co_exitline = crtc_vdisplay - exit_scanlines;
683 }
684 
685 static bool intel_psr2_sel_fetch_config_valid(struct intel_dp *intel_dp,
686 					      struct intel_crtc_state *crtc_state)
687 {
688 	struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state);
689 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
690 	struct intel_plane_state *plane_state;
691 	struct intel_plane *plane;
692 	int i;
693 
694 	if (!dev_priv->params.enable_psr2_sel_fetch &&
695 	    intel_dp->psr.debug != I915_PSR_DEBUG_ENABLE_SEL_FETCH) {
696 		drm_dbg_kms(&dev_priv->drm,
697 			    "PSR2 sel fetch not enabled, disabled by parameter\n");
698 		return false;
699 	}
700 
701 	if (crtc_state->uapi.async_flip) {
702 		drm_dbg_kms(&dev_priv->drm,
703 			    "PSR2 sel fetch not enabled, async flip enabled\n");
704 		return false;
705 	}
706 
707 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
708 		if (plane_state->uapi.rotation != DRM_MODE_ROTATE_0) {
709 			drm_dbg_kms(&dev_priv->drm,
710 				    "PSR2 sel fetch not enabled, plane rotated\n");
711 			return false;
712 		}
713 	}
714 
715 	return crtc_state->enable_psr2_sel_fetch = true;
716 }
717 
718 static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
719 				    struct intel_crtc_state *crtc_state)
720 {
721 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
722 	int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay;
723 	int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay;
724 	int psr_max_h = 0, psr_max_v = 0, max_bpp = 0;
725 
726 	if (!intel_dp->psr.sink_psr2_support)
727 		return false;
728 
729 	/* JSL and EHL only supports eDP 1.3 */
730 	if (IS_JSL_EHL(dev_priv)) {
731 		drm_dbg_kms(&dev_priv->drm, "PSR2 not supported by phy\n");
732 		return false;
733 	}
734 
735 	if (!transcoder_has_psr2(dev_priv, crtc_state->cpu_transcoder)) {
736 		drm_dbg_kms(&dev_priv->drm,
737 			    "PSR2 not supported in transcoder %s\n",
738 			    transcoder_name(crtc_state->cpu_transcoder));
739 		return false;
740 	}
741 
742 	if (!psr2_global_enabled(intel_dp)) {
743 		drm_dbg_kms(&dev_priv->drm, "PSR2 disabled by flag\n");
744 		return false;
745 	}
746 
747 	/*
748 	 * DSC and PSR2 cannot be enabled simultaneously. If a requested
749 	 * resolution requires DSC to be enabled, priority is given to DSC
750 	 * over PSR2.
751 	 */
752 	if (crtc_state->dsc.compression_enable) {
753 		drm_dbg_kms(&dev_priv->drm,
754 			    "PSR2 cannot be enabled since DSC is enabled\n");
755 		return false;
756 	}
757 
758 	if (crtc_state->crc_enabled) {
759 		drm_dbg_kms(&dev_priv->drm,
760 			    "PSR2 not enabled because it would inhibit pipe CRC calculation\n");
761 		return false;
762 	}
763 
764 	if (INTEL_GEN(dev_priv) >= 12) {
765 		psr_max_h = 5120;
766 		psr_max_v = 3200;
767 		max_bpp = 30;
768 	} else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
769 		psr_max_h = 4096;
770 		psr_max_v = 2304;
771 		max_bpp = 24;
772 	} else if (IS_GEN(dev_priv, 9)) {
773 		psr_max_h = 3640;
774 		psr_max_v = 2304;
775 		max_bpp = 24;
776 	}
777 
778 	if (crtc_state->pipe_bpp > max_bpp) {
779 		drm_dbg_kms(&dev_priv->drm,
780 			    "PSR2 not enabled, pipe bpp %d > max supported %d\n",
781 			    crtc_state->pipe_bpp, max_bpp);
782 		return false;
783 	}
784 
785 	/*
786 	 * HW sends SU blocks of size four scan lines, which means the starting
787 	 * X coordinate and Y granularity requirements will always be met. We
788 	 * only need to validate the SU block width is a multiple of
789 	 * x granularity.
790 	 */
791 	if (crtc_hdisplay % intel_dp->psr.su_x_granularity) {
792 		drm_dbg_kms(&dev_priv->drm,
793 			    "PSR2 not enabled, hdisplay(%d) not multiple of %d\n",
794 			    crtc_hdisplay, intel_dp->psr.su_x_granularity);
795 		return false;
796 	}
797 
798 	if (HAS_PSR2_SEL_FETCH(dev_priv)) {
799 		if (!intel_psr2_sel_fetch_config_valid(intel_dp, crtc_state) &&
800 		    !HAS_PSR_HW_TRACKING(dev_priv)) {
801 			drm_dbg_kms(&dev_priv->drm,
802 				    "PSR2 not enabled, selective fetch not valid and no HW tracking available\n");
803 			return false;
804 		}
805 	}
806 
807 	if (!crtc_state->enable_psr2_sel_fetch &&
808 	    (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v)) {
809 		drm_dbg_kms(&dev_priv->drm,
810 			    "PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
811 			    crtc_hdisplay, crtc_vdisplay,
812 			    psr_max_h, psr_max_v);
813 		return false;
814 	}
815 
816 	tgl_dc3co_exitline_compute_config(intel_dp, crtc_state);
817 	return true;
818 }
819 
820 void intel_psr_compute_config(struct intel_dp *intel_dp,
821 			      struct intel_crtc_state *crtc_state)
822 {
823 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
824 	const struct drm_display_mode *adjusted_mode =
825 		&crtc_state->hw.adjusted_mode;
826 	int psr_setup_time;
827 
828 	/*
829 	 * Current PSR panels dont work reliably with VRR enabled
830 	 * So if VRR is enabled, do not enable PSR.
831 	 */
832 	if (crtc_state->vrr.enable)
833 		return;
834 
835 	if (!CAN_PSR(intel_dp))
836 		return;
837 
838 	if (!psr_global_enabled(intel_dp)) {
839 		drm_dbg_kms(&dev_priv->drm, "PSR disabled by flag\n");
840 		return;
841 	}
842 
843 	if (intel_dp->psr.sink_not_reliable) {
844 		drm_dbg_kms(&dev_priv->drm,
845 			    "PSR sink implementation is not reliable\n");
846 		return;
847 	}
848 
849 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
850 		drm_dbg_kms(&dev_priv->drm,
851 			    "PSR condition failed: Interlaced mode enabled\n");
852 		return;
853 	}
854 
855 	psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
856 	if (psr_setup_time < 0) {
857 		drm_dbg_kms(&dev_priv->drm,
858 			    "PSR condition failed: Invalid PSR setup time (0x%02x)\n",
859 			    intel_dp->psr_dpcd[1]);
860 		return;
861 	}
862 
863 	if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
864 	    adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
865 		drm_dbg_kms(&dev_priv->drm,
866 			    "PSR condition failed: PSR setup time (%d us) too long\n",
867 			    psr_setup_time);
868 		return;
869 	}
870 
871 	crtc_state->has_psr = true;
872 	crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state);
873 	crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
874 }
875 
876 static void intel_psr_activate(struct intel_dp *intel_dp)
877 {
878 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
879 	enum transcoder transcoder = intel_dp->psr.transcoder;
880 
881 	if (transcoder_has_psr2(dev_priv, transcoder))
882 		drm_WARN_ON(&dev_priv->drm,
883 			    intel_de_read(dev_priv, EDP_PSR2_CTL(transcoder)) & EDP_PSR2_ENABLE);
884 
885 	drm_WARN_ON(&dev_priv->drm,
886 		    intel_de_read(dev_priv, EDP_PSR_CTL(transcoder)) & EDP_PSR_ENABLE);
887 	drm_WARN_ON(&dev_priv->drm, intel_dp->psr.active);
888 	lockdep_assert_held(&intel_dp->psr.lock);
889 
890 	/* psr1 and psr2 are mutually exclusive.*/
891 	if (intel_dp->psr.psr2_enabled)
892 		hsw_activate_psr2(intel_dp);
893 	else
894 		hsw_activate_psr1(intel_dp);
895 
896 	intel_dp->psr.active = true;
897 }
898 
899 static void intel_psr_enable_source(struct intel_dp *intel_dp,
900 				    const struct intel_crtc_state *crtc_state)
901 {
902 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
903 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
904 	u32 mask;
905 
906 	/* Only HSW and BDW have PSR AUX registers that need to be setup. SKL+
907 	 * use hardcoded values PSR AUX transactions
908 	 */
909 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
910 		hsw_psr_setup_aux(intel_dp);
911 
912 	if (intel_dp->psr.psr2_enabled && (IS_GEN(dev_priv, 9) &&
913 					   !IS_GEMINILAKE(dev_priv))) {
914 		i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder);
915 		u32 chicken = intel_de_read(dev_priv, reg);
916 
917 		chicken |= PSR2_VSC_ENABLE_PROG_HEADER |
918 			   PSR2_ADD_VERTICAL_LINE_COUNT;
919 		intel_de_write(dev_priv, reg, chicken);
920 	}
921 
922 	/*
923 	 * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also
924 	 * mask LPSP to avoid dependency on other drivers that might block
925 	 * runtime_pm besides preventing  other hw tracking issues now we
926 	 * can rely on frontbuffer tracking.
927 	 */
928 	mask = EDP_PSR_DEBUG_MASK_MEMUP |
929 	       EDP_PSR_DEBUG_MASK_HPD |
930 	       EDP_PSR_DEBUG_MASK_LPSP |
931 	       EDP_PSR_DEBUG_MASK_MAX_SLEEP;
932 
933 	if (INTEL_GEN(dev_priv) < 11)
934 		mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE;
935 
936 	intel_de_write(dev_priv, EDP_PSR_DEBUG(intel_dp->psr.transcoder),
937 		       mask);
938 
939 	psr_irq_control(intel_dp);
940 
941 	if (crtc_state->dc3co_exitline) {
942 		u32 val;
943 
944 		/*
945 		 * TODO: if future platforms supports DC3CO in more than one
946 		 * transcoder, EXITLINE will need to be unset when disabling PSR
947 		 */
948 		val = intel_de_read(dev_priv, EXITLINE(cpu_transcoder));
949 		val &= ~EXITLINE_MASK;
950 		val |= crtc_state->dc3co_exitline << EXITLINE_SHIFT;
951 		val |= EXITLINE_ENABLE;
952 		intel_de_write(dev_priv, EXITLINE(cpu_transcoder), val);
953 	}
954 
955 	if (HAS_PSR_HW_TRACKING(dev_priv) && HAS_PSR2_SEL_FETCH(dev_priv))
956 		intel_de_rmw(dev_priv, CHICKEN_PAR1_1, IGNORE_PSR2_HW_TRACKING,
957 			     intel_dp->psr.psr2_sel_fetch_enabled ?
958 			     IGNORE_PSR2_HW_TRACKING : 0);
959 }
960 
961 static void intel_psr_enable_locked(struct intel_dp *intel_dp,
962 				    const struct intel_crtc_state *crtc_state,
963 				    const struct drm_connector_state *conn_state)
964 {
965 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
966 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
967 	struct intel_encoder *encoder = &dig_port->base;
968 	u32 val;
969 
970 	drm_WARN_ON(&dev_priv->drm, intel_dp->psr.enabled);
971 
972 	intel_dp->psr.psr2_enabled = crtc_state->has_psr2;
973 	intel_dp->psr.busy_frontbuffer_bits = 0;
974 	intel_dp->psr.pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe;
975 	intel_dp->psr.dc3co_enabled = !!crtc_state->dc3co_exitline;
976 	intel_dp->psr.transcoder = crtc_state->cpu_transcoder;
977 	/* DC5/DC6 requires at least 6 idle frames */
978 	val = usecs_to_jiffies(intel_get_frame_time_us(crtc_state) * 6);
979 	intel_dp->psr.dc3co_exit_delay = val;
980 	intel_dp->psr.psr2_sel_fetch_enabled = crtc_state->enable_psr2_sel_fetch;
981 
982 	/*
983 	 * If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR
984 	 * will still keep the error set even after the reset done in the
985 	 * irq_preinstall and irq_uninstall hooks.
986 	 * And enabling in this situation cause the screen to freeze in the
987 	 * first time that PSR HW tries to activate so lets keep PSR disabled
988 	 * to avoid any rendering problems.
989 	 */
990 	if (INTEL_GEN(dev_priv) >= 12) {
991 		val = intel_de_read(dev_priv,
992 				    TRANS_PSR_IIR(intel_dp->psr.transcoder));
993 		val &= EDP_PSR_ERROR(0);
994 	} else {
995 		val = intel_de_read(dev_priv, EDP_PSR_IIR);
996 		val &= EDP_PSR_ERROR(intel_dp->psr.transcoder);
997 	}
998 	if (val) {
999 		intel_dp->psr.sink_not_reliable = true;
1000 		drm_dbg_kms(&dev_priv->drm,
1001 			    "PSR interruption error set, not enabling PSR\n");
1002 		return;
1003 	}
1004 
1005 	drm_dbg_kms(&dev_priv->drm, "Enabling PSR%s\n",
1006 		    intel_dp->psr.psr2_enabled ? "2" : "1");
1007 	intel_dp_compute_psr_vsc_sdp(intel_dp, crtc_state, conn_state,
1008 				     &intel_dp->psr.vsc);
1009 	intel_write_dp_vsc_sdp(encoder, crtc_state, &intel_dp->psr.vsc);
1010 	intel_psr_enable_sink(intel_dp);
1011 	intel_psr_enable_source(intel_dp, crtc_state);
1012 	intel_dp->psr.enabled = true;
1013 
1014 	intel_psr_activate(intel_dp);
1015 }
1016 
1017 /**
1018  * intel_psr_enable - Enable PSR
1019  * @intel_dp: Intel DP
1020  * @crtc_state: new CRTC state
1021  * @conn_state: new CONNECTOR state
1022  *
1023  * This function can only be called after the pipe is fully trained and enabled.
1024  */
1025 void intel_psr_enable(struct intel_dp *intel_dp,
1026 		      const struct intel_crtc_state *crtc_state,
1027 		      const struct drm_connector_state *conn_state)
1028 {
1029 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1030 
1031 	if (!CAN_PSR(intel_dp))
1032 		return;
1033 
1034 	if (!crtc_state->has_psr)
1035 		return;
1036 
1037 	drm_WARN_ON(&dev_priv->drm, dev_priv->drrs.dp);
1038 
1039 	mutex_lock(&intel_dp->psr.lock);
1040 	intel_psr_enable_locked(intel_dp, crtc_state, conn_state);
1041 	mutex_unlock(&intel_dp->psr.lock);
1042 }
1043 
1044 static void intel_psr_exit(struct intel_dp *intel_dp)
1045 {
1046 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1047 	u32 val;
1048 
1049 	if (!intel_dp->psr.active) {
1050 		if (transcoder_has_psr2(dev_priv, intel_dp->psr.transcoder)) {
1051 			val = intel_de_read(dev_priv,
1052 					    EDP_PSR2_CTL(intel_dp->psr.transcoder));
1053 			drm_WARN_ON(&dev_priv->drm, val & EDP_PSR2_ENABLE);
1054 		}
1055 
1056 		val = intel_de_read(dev_priv,
1057 				    EDP_PSR_CTL(intel_dp->psr.transcoder));
1058 		drm_WARN_ON(&dev_priv->drm, val & EDP_PSR_ENABLE);
1059 
1060 		return;
1061 	}
1062 
1063 	if (intel_dp->psr.psr2_enabled) {
1064 		tgl_disallow_dc3co_on_psr2_exit(intel_dp);
1065 		val = intel_de_read(dev_priv,
1066 				    EDP_PSR2_CTL(intel_dp->psr.transcoder));
1067 		drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR2_ENABLE));
1068 		val &= ~EDP_PSR2_ENABLE;
1069 		intel_de_write(dev_priv,
1070 			       EDP_PSR2_CTL(intel_dp->psr.transcoder), val);
1071 	} else {
1072 		val = intel_de_read(dev_priv,
1073 				    EDP_PSR_CTL(intel_dp->psr.transcoder));
1074 		drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR_ENABLE));
1075 		val &= ~EDP_PSR_ENABLE;
1076 		intel_de_write(dev_priv,
1077 			       EDP_PSR_CTL(intel_dp->psr.transcoder), val);
1078 	}
1079 	intel_dp->psr.active = false;
1080 }
1081 
1082 static void intel_psr_disable_locked(struct intel_dp *intel_dp)
1083 {
1084 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1085 	i915_reg_t psr_status;
1086 	u32 psr_status_mask;
1087 
1088 	lockdep_assert_held(&intel_dp->psr.lock);
1089 
1090 	if (!intel_dp->psr.enabled)
1091 		return;
1092 
1093 	drm_dbg_kms(&dev_priv->drm, "Disabling PSR%s\n",
1094 		    intel_dp->psr.psr2_enabled ? "2" : "1");
1095 
1096 	intel_psr_exit(intel_dp);
1097 
1098 	if (intel_dp->psr.psr2_enabled) {
1099 		psr_status = EDP_PSR2_STATUS(intel_dp->psr.transcoder);
1100 		psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
1101 	} else {
1102 		psr_status = EDP_PSR_STATUS(intel_dp->psr.transcoder);
1103 		psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
1104 	}
1105 
1106 	/* Wait till PSR is idle */
1107 	if (intel_de_wait_for_clear(dev_priv, psr_status,
1108 				    psr_status_mask, 2000))
1109 		drm_err(&dev_priv->drm, "Timed out waiting PSR idle state\n");
1110 
1111 	/* WA 1408330847 */
1112 	if (intel_dp->psr.psr2_sel_fetch_enabled &&
1113 	    (IS_TGL_DISP_STEPPING(dev_priv, STEP_A0, STEP_A0) ||
1114 	     IS_RKL_REVID(dev_priv, RKL_REVID_A0, RKL_REVID_A0)))
1115 		intel_de_rmw(dev_priv, CHICKEN_PAR1_1,
1116 			     DIS_RAM_BYPASS_PSR2_MAN_TRACK, 0);
1117 
1118 	/* Disable PSR on Sink */
1119 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
1120 
1121 	if (intel_dp->psr.psr2_enabled)
1122 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, 0);
1123 
1124 	intel_dp->psr.enabled = false;
1125 }
1126 
1127 /**
1128  * intel_psr_disable - Disable PSR
1129  * @intel_dp: Intel DP
1130  * @old_crtc_state: old CRTC state
1131  *
1132  * This function needs to be called before disabling pipe.
1133  */
1134 void intel_psr_disable(struct intel_dp *intel_dp,
1135 		       const struct intel_crtc_state *old_crtc_state)
1136 {
1137 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1138 
1139 	if (!old_crtc_state->has_psr)
1140 		return;
1141 
1142 	if (drm_WARN_ON(&dev_priv->drm, !CAN_PSR(intel_dp)))
1143 		return;
1144 
1145 	mutex_lock(&intel_dp->psr.lock);
1146 
1147 	intel_psr_disable_locked(intel_dp);
1148 
1149 	mutex_unlock(&intel_dp->psr.lock);
1150 	cancel_work_sync(&intel_dp->psr.work);
1151 	cancel_delayed_work_sync(&intel_dp->psr.dc3co_work);
1152 }
1153 
1154 static void psr_force_hw_tracking_exit(struct intel_dp *intel_dp)
1155 {
1156 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1157 
1158 	if (IS_TIGERLAKE(dev_priv))
1159 		/*
1160 		 * Writes to CURSURFLIVE in TGL are causing IOMMU errors and
1161 		 * visual glitches that are often reproduced when executing
1162 		 * CPU intensive workloads while a eDP 4K panel is attached.
1163 		 *
1164 		 * Manually exiting PSR causes the frontbuffer to be updated
1165 		 * without glitches and the IOMMU errors are also gone but
1166 		 * this comes at the cost of less time with PSR active.
1167 		 *
1168 		 * So using this workaround until this issue is root caused
1169 		 * and a better fix is found.
1170 		 */
1171 		intel_psr_exit(intel_dp);
1172 	else if (INTEL_GEN(dev_priv) >= 9)
1173 		/*
1174 		 * Display WA #0884: skl+
1175 		 * This documented WA for bxt can be safely applied
1176 		 * broadly so we can force HW tracking to exit PSR
1177 		 * instead of disabling and re-enabling.
1178 		 * Workaround tells us to write 0 to CUR_SURFLIVE_A,
1179 		 * but it makes more sense write to the current active
1180 		 * pipe.
1181 		 */
1182 		intel_de_write(dev_priv, CURSURFLIVE(intel_dp->psr.pipe), 0);
1183 	else
1184 		/*
1185 		 * A write to CURSURFLIVE do not cause HW tracking to exit PSR
1186 		 * on older gens so doing the manual exit instead.
1187 		 */
1188 		intel_psr_exit(intel_dp);
1189 }
1190 
1191 void intel_psr2_program_plane_sel_fetch(struct intel_plane *plane,
1192 					const struct intel_crtc_state *crtc_state,
1193 					const struct intel_plane_state *plane_state,
1194 					int color_plane)
1195 {
1196 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1197 	enum pipe pipe = plane->pipe;
1198 	const struct drm_rect *clip;
1199 	u32 val, offset;
1200 	int ret, x, y;
1201 
1202 	if (!crtc_state->enable_psr2_sel_fetch)
1203 		return;
1204 
1205 	val = plane_state ? plane_state->ctl : 0;
1206 	val &= plane->id == PLANE_CURSOR ? val : PLANE_SEL_FETCH_CTL_ENABLE;
1207 	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_CTL(pipe, plane->id), val);
1208 	if (!val || plane->id == PLANE_CURSOR)
1209 		return;
1210 
1211 	clip = &plane_state->psr2_sel_fetch_area;
1212 
1213 	val = (clip->y1 + plane_state->uapi.dst.y1) << 16;
1214 	val |= plane_state->uapi.dst.x1;
1215 	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_POS(pipe, plane->id), val);
1216 
1217 	/* TODO: consider auxiliary surfaces */
1218 	x = plane_state->uapi.src.x1 >> 16;
1219 	y = (plane_state->uapi.src.y1 >> 16) + clip->y1;
1220 	ret = skl_calc_main_surface_offset(plane_state, &x, &y, &offset);
1221 	if (ret)
1222 		drm_warn_once(&dev_priv->drm, "skl_calc_main_surface_offset() returned %i\n",
1223 			      ret);
1224 	val = y << 16 | x;
1225 	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_OFFSET(pipe, plane->id),
1226 			  val);
1227 
1228 	/* Sizes are 0 based */
1229 	val = (drm_rect_height(clip) - 1) << 16;
1230 	val |= (drm_rect_width(&plane_state->uapi.src) >> 16) - 1;
1231 	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_SIZE(pipe, plane->id), val);
1232 }
1233 
1234 void intel_psr2_program_trans_man_trk_ctl(const struct intel_crtc_state *crtc_state)
1235 {
1236 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1237 
1238 	if (!HAS_PSR2_SEL_FETCH(dev_priv) ||
1239 	    !crtc_state->enable_psr2_sel_fetch)
1240 		return;
1241 
1242 	intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(crtc_state->cpu_transcoder),
1243 		       crtc_state->psr2_man_track_ctl);
1244 }
1245 
1246 static void psr2_man_trk_ctl_calc(struct intel_crtc_state *crtc_state,
1247 				  struct drm_rect *clip, bool full_update)
1248 {
1249 	u32 val = PSR2_MAN_TRK_CTL_ENABLE;
1250 
1251 	if (full_update) {
1252 		val |= PSR2_MAN_TRK_CTL_SF_SINGLE_FULL_FRAME;
1253 		goto exit;
1254 	}
1255 
1256 	if (clip->y1 == -1)
1257 		goto exit;
1258 
1259 	drm_WARN_ON(crtc_state->uapi.crtc->dev, clip->y1 % 4 || clip->y2 % 4);
1260 
1261 	val |= PSR2_MAN_TRK_CTL_SF_PARTIAL_FRAME_UPDATE;
1262 	val |= PSR2_MAN_TRK_CTL_SU_REGION_START_ADDR(clip->y1 / 4 + 1);
1263 	val |= PSR2_MAN_TRK_CTL_SU_REGION_END_ADDR(clip->y2 / 4 + 1);
1264 exit:
1265 	crtc_state->psr2_man_track_ctl = val;
1266 }
1267 
1268 static void clip_area_update(struct drm_rect *overlap_damage_area,
1269 			     struct drm_rect *damage_area)
1270 {
1271 	if (overlap_damage_area->y1 == -1) {
1272 		overlap_damage_area->y1 = damage_area->y1;
1273 		overlap_damage_area->y2 = damage_area->y2;
1274 		return;
1275 	}
1276 
1277 	if (damage_area->y1 < overlap_damage_area->y1)
1278 		overlap_damage_area->y1 = damage_area->y1;
1279 
1280 	if (damage_area->y2 > overlap_damage_area->y2)
1281 		overlap_damage_area->y2 = damage_area->y2;
1282 }
1283 
1284 int intel_psr2_sel_fetch_update(struct intel_atomic_state *state,
1285 				struct intel_crtc *crtc)
1286 {
1287 	struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
1288 	struct drm_rect pipe_clip = { .x1 = 0, .y1 = -1, .x2 = INT_MAX, .y2 = -1 };
1289 	struct intel_plane_state *new_plane_state, *old_plane_state;
1290 	struct intel_plane *plane;
1291 	bool full_update = false;
1292 	int i, ret;
1293 
1294 	if (!crtc_state->enable_psr2_sel_fetch)
1295 		return 0;
1296 
1297 	ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
1298 	if (ret)
1299 		return ret;
1300 
1301 	/*
1302 	 * Calculate minimal selective fetch area of each plane and calculate
1303 	 * the pipe damaged area.
1304 	 * In the next loop the plane selective fetch area will actually be set
1305 	 * using whole pipe damaged area.
1306 	 */
1307 	for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
1308 					     new_plane_state, i) {
1309 		struct drm_rect src, damaged_area = { .y1 = -1 };
1310 		struct drm_mode_rect *damaged_clips;
1311 		u32 num_clips, j;
1312 
1313 		if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc)
1314 			continue;
1315 
1316 		if (!new_plane_state->uapi.visible &&
1317 		    !old_plane_state->uapi.visible)
1318 			continue;
1319 
1320 		/*
1321 		 * TODO: Not clear how to handle planes with negative position,
1322 		 * also planes are not updated if they have a negative X
1323 		 * position so for now doing a full update in this cases
1324 		 */
1325 		if (new_plane_state->uapi.dst.y1 < 0 ||
1326 		    new_plane_state->uapi.dst.x1 < 0) {
1327 			full_update = true;
1328 			break;
1329 		}
1330 
1331 		num_clips = drm_plane_get_damage_clips_count(&new_plane_state->uapi);
1332 
1333 		/*
1334 		 * If visibility or plane moved, mark the whole plane area as
1335 		 * damaged as it needs to be complete redraw in the new and old
1336 		 * position.
1337 		 */
1338 		if (new_plane_state->uapi.visible != old_plane_state->uapi.visible ||
1339 		    !drm_rect_equals(&new_plane_state->uapi.dst,
1340 				     &old_plane_state->uapi.dst)) {
1341 			if (old_plane_state->uapi.visible) {
1342 				damaged_area.y1 = old_plane_state->uapi.dst.y1;
1343 				damaged_area.y2 = old_plane_state->uapi.dst.y2;
1344 				clip_area_update(&pipe_clip, &damaged_area);
1345 			}
1346 
1347 			if (new_plane_state->uapi.visible) {
1348 				damaged_area.y1 = new_plane_state->uapi.dst.y1;
1349 				damaged_area.y2 = new_plane_state->uapi.dst.y2;
1350 				clip_area_update(&pipe_clip, &damaged_area);
1351 			}
1352 			continue;
1353 		} else if (new_plane_state->uapi.alpha != old_plane_state->uapi.alpha ||
1354 			   (!num_clips &&
1355 			    new_plane_state->uapi.fb != old_plane_state->uapi.fb)) {
1356 			/*
1357 			 * If the plane don't have damaged areas but the
1358 			 * framebuffer changed or alpha changed, mark the whole
1359 			 * plane area as damaged.
1360 			 */
1361 			damaged_area.y1 = new_plane_state->uapi.dst.y1;
1362 			damaged_area.y2 = new_plane_state->uapi.dst.y2;
1363 			clip_area_update(&pipe_clip, &damaged_area);
1364 			continue;
1365 		}
1366 
1367 		drm_rect_fp_to_int(&src, &new_plane_state->uapi.src);
1368 		damaged_clips = drm_plane_get_damage_clips(&new_plane_state->uapi);
1369 
1370 		for (j = 0; j < num_clips; j++) {
1371 			struct drm_rect clip;
1372 
1373 			clip.x1 = damaged_clips[j].x1;
1374 			clip.y1 = damaged_clips[j].y1;
1375 			clip.x2 = damaged_clips[j].x2;
1376 			clip.y2 = damaged_clips[j].y2;
1377 			if (drm_rect_intersect(&clip, &src))
1378 				clip_area_update(&damaged_area, &clip);
1379 		}
1380 
1381 		if (damaged_area.y1 == -1)
1382 			continue;
1383 
1384 		damaged_area.y1 += new_plane_state->uapi.dst.y1 - src.y1;
1385 		damaged_area.y2 += new_plane_state->uapi.dst.y1 - src.y1;
1386 		clip_area_update(&pipe_clip, &damaged_area);
1387 	}
1388 
1389 	if (full_update)
1390 		goto skip_sel_fetch_set_loop;
1391 
1392 	/* It must be aligned to 4 lines */
1393 	pipe_clip.y1 -= pipe_clip.y1 % 4;
1394 	if (pipe_clip.y2 % 4)
1395 		pipe_clip.y2 = ((pipe_clip.y2 / 4) + 1) * 4;
1396 
1397 	/*
1398 	 * Now that we have the pipe damaged area check if it intersect with
1399 	 * every plane, if it does set the plane selective fetch area.
1400 	 */
1401 	for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
1402 					     new_plane_state, i) {
1403 		struct drm_rect *sel_fetch_area, inter;
1404 
1405 		if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc ||
1406 		    !new_plane_state->uapi.visible)
1407 			continue;
1408 
1409 		inter = pipe_clip;
1410 		if (!drm_rect_intersect(&inter, &new_plane_state->uapi.dst))
1411 			continue;
1412 
1413 		sel_fetch_area = &new_plane_state->psr2_sel_fetch_area;
1414 		sel_fetch_area->y1 = inter.y1 - new_plane_state->uapi.dst.y1;
1415 		sel_fetch_area->y2 = inter.y2 - new_plane_state->uapi.dst.y1;
1416 	}
1417 
1418 skip_sel_fetch_set_loop:
1419 	psr2_man_trk_ctl_calc(crtc_state, &pipe_clip, full_update);
1420 	return 0;
1421 }
1422 
1423 /**
1424  * intel_psr_update - Update PSR state
1425  * @intel_dp: Intel DP
1426  * @crtc_state: new CRTC state
1427  * @conn_state: new CONNECTOR state
1428  *
1429  * This functions will update PSR states, disabling, enabling or switching PSR
1430  * version when executing fastsets. For full modeset, intel_psr_disable() and
1431  * intel_psr_enable() should be called instead.
1432  */
1433 void intel_psr_update(struct intel_dp *intel_dp,
1434 		      const struct intel_crtc_state *crtc_state,
1435 		      const struct drm_connector_state *conn_state)
1436 {
1437 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1438 	struct intel_psr *psr = &intel_dp->psr;
1439 	bool enable, psr2_enable;
1440 
1441 	if (!CAN_PSR(intel_dp))
1442 		return;
1443 
1444 	mutex_lock(&intel_dp->psr.lock);
1445 
1446 	enable = crtc_state->has_psr;
1447 	psr2_enable = crtc_state->has_psr2;
1448 
1449 	if (enable == psr->enabled && psr2_enable == psr->psr2_enabled &&
1450 	    crtc_state->enable_psr2_sel_fetch == psr->psr2_sel_fetch_enabled) {
1451 		/* Force a PSR exit when enabling CRC to avoid CRC timeouts */
1452 		if (crtc_state->crc_enabled && psr->enabled)
1453 			psr_force_hw_tracking_exit(intel_dp);
1454 		else if (INTEL_GEN(dev_priv) < 9 && psr->enabled) {
1455 			/*
1456 			 * Activate PSR again after a force exit when enabling
1457 			 * CRC in older gens
1458 			 */
1459 			if (!intel_dp->psr.active &&
1460 			    !intel_dp->psr.busy_frontbuffer_bits)
1461 				schedule_work(&intel_dp->psr.work);
1462 		}
1463 
1464 		goto unlock;
1465 	}
1466 
1467 	if (psr->enabled)
1468 		intel_psr_disable_locked(intel_dp);
1469 
1470 	if (enable)
1471 		intel_psr_enable_locked(intel_dp, crtc_state, conn_state);
1472 
1473 unlock:
1474 	mutex_unlock(&intel_dp->psr.lock);
1475 }
1476 
1477 /**
1478  * psr_wait_for_idle - wait for PSR1 to idle
1479  * @intel_dp: Intel DP
1480  * @out_value: PSR status in case of failure
1481  *
1482  * Returns: 0 on success or -ETIMEOUT if PSR status does not idle.
1483  *
1484  */
1485 static int psr_wait_for_idle(struct intel_dp *intel_dp, u32 *out_value)
1486 {
1487 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1488 
1489 	/*
1490 	 * From bspec: Panel Self Refresh (BDW+)
1491 	 * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of
1492 	 * exit training time + 1.5 ms of aux channel handshake. 50 ms is
1493 	 * defensive enough to cover everything.
1494 	 */
1495 	return __intel_wait_for_register(&dev_priv->uncore,
1496 					 EDP_PSR_STATUS(intel_dp->psr.transcoder),
1497 					 EDP_PSR_STATUS_STATE_MASK,
1498 					 EDP_PSR_STATUS_STATE_IDLE, 2, 50,
1499 					 out_value);
1500 }
1501 
1502 /**
1503  * intel_psr_wait_for_idle - wait for PSR1 to idle
1504  * @new_crtc_state: new CRTC state
1505  *
1506  * This function is expected to be called from pipe_update_start() where it is
1507  * not expected to race with PSR enable or disable.
1508  */
1509 void intel_psr_wait_for_idle(const struct intel_crtc_state *new_crtc_state)
1510 {
1511 	struct drm_i915_private *dev_priv = to_i915(new_crtc_state->uapi.crtc->dev);
1512 	struct intel_encoder *encoder;
1513 
1514 	if (!new_crtc_state->has_psr)
1515 		return;
1516 
1517 	for_each_intel_encoder_mask_with_psr(&dev_priv->drm, encoder,
1518 					     new_crtc_state->uapi.encoder_mask) {
1519 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1520 		u32 psr_status;
1521 
1522 		mutex_lock(&intel_dp->psr.lock);
1523 		if (!intel_dp->psr.enabled ||
1524 		    (intel_dp->psr.enabled && intel_dp->psr.psr2_enabled)) {
1525 			mutex_unlock(&intel_dp->psr.lock);
1526 			continue;
1527 		}
1528 
1529 		/* when the PSR1 is enabled */
1530 		if (psr_wait_for_idle(intel_dp, &psr_status))
1531 			drm_err(&dev_priv->drm,
1532 				"PSR idle timed out 0x%x, atomic update may fail\n",
1533 				psr_status);
1534 		mutex_unlock(&intel_dp->psr.lock);
1535 	}
1536 }
1537 
1538 static bool __psr_wait_for_idle_locked(struct intel_dp *intel_dp)
1539 {
1540 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1541 	i915_reg_t reg;
1542 	u32 mask;
1543 	int err;
1544 
1545 	if (!intel_dp->psr.enabled)
1546 		return false;
1547 
1548 	if (intel_dp->psr.psr2_enabled) {
1549 		reg = EDP_PSR2_STATUS(intel_dp->psr.transcoder);
1550 		mask = EDP_PSR2_STATUS_STATE_MASK;
1551 	} else {
1552 		reg = EDP_PSR_STATUS(intel_dp->psr.transcoder);
1553 		mask = EDP_PSR_STATUS_STATE_MASK;
1554 	}
1555 
1556 	mutex_unlock(&intel_dp->psr.lock);
1557 
1558 	err = intel_de_wait_for_clear(dev_priv, reg, mask, 50);
1559 	if (err)
1560 		drm_err(&dev_priv->drm,
1561 			"Timed out waiting for PSR Idle for re-enable\n");
1562 
1563 	/* After the unlocked wait, verify that PSR is still wanted! */
1564 	mutex_lock(&intel_dp->psr.lock);
1565 	return err == 0 && intel_dp->psr.enabled;
1566 }
1567 
1568 static int intel_psr_fastset_force(struct drm_i915_private *dev_priv)
1569 {
1570 	struct drm_connector_list_iter conn_iter;
1571 	struct drm_device *dev = &dev_priv->drm;
1572 	struct drm_modeset_acquire_ctx ctx;
1573 	struct drm_atomic_state *state;
1574 	struct drm_connector *conn;
1575 	int err = 0;
1576 
1577 	state = drm_atomic_state_alloc(dev);
1578 	if (!state)
1579 		return -ENOMEM;
1580 
1581 	drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
1582 	state->acquire_ctx = &ctx;
1583 
1584 retry:
1585 
1586 	drm_connector_list_iter_begin(dev, &conn_iter);
1587 	drm_for_each_connector_iter(conn, &conn_iter) {
1588 		struct drm_connector_state *conn_state;
1589 		struct drm_crtc_state *crtc_state;
1590 
1591 		if (conn->connector_type != DRM_MODE_CONNECTOR_eDP)
1592 			continue;
1593 
1594 		conn_state = drm_atomic_get_connector_state(state, conn);
1595 		if (IS_ERR(conn_state)) {
1596 			err = PTR_ERR(conn_state);
1597 			break;
1598 		}
1599 
1600 		if (!conn_state->crtc)
1601 			continue;
1602 
1603 		crtc_state = drm_atomic_get_crtc_state(state, conn_state->crtc);
1604 		if (IS_ERR(crtc_state)) {
1605 			err = PTR_ERR(crtc_state);
1606 			break;
1607 		}
1608 
1609 		/* Mark mode as changed to trigger a pipe->update() */
1610 		crtc_state->mode_changed = true;
1611 	}
1612 	drm_connector_list_iter_end(&conn_iter);
1613 
1614 	if (err == 0)
1615 		err = drm_atomic_commit(state);
1616 
1617 	if (err == -EDEADLK) {
1618 		drm_atomic_state_clear(state);
1619 		err = drm_modeset_backoff(&ctx);
1620 		if (!err)
1621 			goto retry;
1622 	}
1623 
1624 	drm_modeset_drop_locks(&ctx);
1625 	drm_modeset_acquire_fini(&ctx);
1626 	drm_atomic_state_put(state);
1627 
1628 	return err;
1629 }
1630 
1631 int intel_psr_debug_set(struct intel_dp *intel_dp, u64 val)
1632 {
1633 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1634 	const u32 mode = val & I915_PSR_DEBUG_MODE_MASK;
1635 	u32 old_mode;
1636 	int ret;
1637 
1638 	if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) ||
1639 	    mode > I915_PSR_DEBUG_ENABLE_SEL_FETCH) {
1640 		drm_dbg_kms(&dev_priv->drm, "Invalid debug mask %llx\n", val);
1641 		return -EINVAL;
1642 	}
1643 
1644 	ret = mutex_lock_interruptible(&intel_dp->psr.lock);
1645 	if (ret)
1646 		return ret;
1647 
1648 	old_mode = intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK;
1649 	intel_dp->psr.debug = val;
1650 
1651 	/*
1652 	 * Do it right away if it's already enabled, otherwise it will be done
1653 	 * when enabling the source.
1654 	 */
1655 	if (intel_dp->psr.enabled)
1656 		psr_irq_control(intel_dp);
1657 
1658 	mutex_unlock(&intel_dp->psr.lock);
1659 
1660 	if (old_mode != mode)
1661 		ret = intel_psr_fastset_force(dev_priv);
1662 
1663 	return ret;
1664 }
1665 
1666 static void intel_psr_handle_irq(struct intel_dp *intel_dp)
1667 {
1668 	struct intel_psr *psr = &intel_dp->psr;
1669 
1670 	intel_psr_disable_locked(intel_dp);
1671 	psr->sink_not_reliable = true;
1672 	/* let's make sure that sink is awaken */
1673 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
1674 }
1675 
1676 static void intel_psr_work(struct work_struct *work)
1677 {
1678 	struct intel_dp *intel_dp =
1679 		container_of(work, typeof(*intel_dp), psr.work);
1680 
1681 	mutex_lock(&intel_dp->psr.lock);
1682 
1683 	if (!intel_dp->psr.enabled)
1684 		goto unlock;
1685 
1686 	if (READ_ONCE(intel_dp->psr.irq_aux_error))
1687 		intel_psr_handle_irq(intel_dp);
1688 
1689 	/*
1690 	 * We have to make sure PSR is ready for re-enable
1691 	 * otherwise it keeps disabled until next full enable/disable cycle.
1692 	 * PSR might take some time to get fully disabled
1693 	 * and be ready for re-enable.
1694 	 */
1695 	if (!__psr_wait_for_idle_locked(intel_dp))
1696 		goto unlock;
1697 
1698 	/*
1699 	 * The delayed work can race with an invalidate hence we need to
1700 	 * recheck. Since psr_flush first clears this and then reschedules we
1701 	 * won't ever miss a flush when bailing out here.
1702 	 */
1703 	if (intel_dp->psr.busy_frontbuffer_bits || intel_dp->psr.active)
1704 		goto unlock;
1705 
1706 	intel_psr_activate(intel_dp);
1707 unlock:
1708 	mutex_unlock(&intel_dp->psr.lock);
1709 }
1710 
1711 /**
1712  * intel_psr_invalidate - Invalidade PSR
1713  * @dev_priv: i915 device
1714  * @frontbuffer_bits: frontbuffer plane tracking bits
1715  * @origin: which operation caused the invalidate
1716  *
1717  * Since the hardware frontbuffer tracking has gaps we need to integrate
1718  * with the software frontbuffer tracking. This function gets called every
1719  * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
1720  * disabled if the frontbuffer mask contains a buffer relevant to PSR.
1721  *
1722  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
1723  */
1724 void intel_psr_invalidate(struct drm_i915_private *dev_priv,
1725 			  unsigned frontbuffer_bits, enum fb_op_origin origin)
1726 {
1727 	struct intel_encoder *encoder;
1728 
1729 	if (origin == ORIGIN_FLIP)
1730 		return;
1731 
1732 	for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
1733 		unsigned int pipe_frontbuffer_bits = frontbuffer_bits;
1734 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1735 
1736 		mutex_lock(&intel_dp->psr.lock);
1737 		if (!intel_dp->psr.enabled) {
1738 			mutex_unlock(&intel_dp->psr.lock);
1739 			continue;
1740 		}
1741 
1742 		pipe_frontbuffer_bits &=
1743 			INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe);
1744 		intel_dp->psr.busy_frontbuffer_bits |= pipe_frontbuffer_bits;
1745 
1746 		if (pipe_frontbuffer_bits)
1747 			intel_psr_exit(intel_dp);
1748 
1749 		mutex_unlock(&intel_dp->psr.lock);
1750 	}
1751 }
1752 /*
1753  * When we will be completely rely on PSR2 S/W tracking in future,
1754  * intel_psr_flush() will invalidate and flush the PSR for ORIGIN_FLIP
1755  * event also therefore tgl_dc3co_flush() require to be changed
1756  * accordingly in future.
1757  */
1758 static void
1759 tgl_dc3co_flush(struct intel_dp *intel_dp, unsigned int frontbuffer_bits,
1760 		enum fb_op_origin origin)
1761 {
1762 	mutex_lock(&intel_dp->psr.lock);
1763 
1764 	if (!intel_dp->psr.dc3co_enabled)
1765 		goto unlock;
1766 
1767 	if (!intel_dp->psr.psr2_enabled || !intel_dp->psr.active)
1768 		goto unlock;
1769 
1770 	/*
1771 	 * At every frontbuffer flush flip event modified delay of delayed work,
1772 	 * when delayed work schedules that means display has been idle.
1773 	 */
1774 	if (!(frontbuffer_bits &
1775 	    INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe)))
1776 		goto unlock;
1777 
1778 	tgl_psr2_enable_dc3co(intel_dp);
1779 	mod_delayed_work(system_wq, &intel_dp->psr.dc3co_work,
1780 			 intel_dp->psr.dc3co_exit_delay);
1781 
1782 unlock:
1783 	mutex_unlock(&intel_dp->psr.lock);
1784 }
1785 
1786 /**
1787  * intel_psr_flush - Flush PSR
1788  * @dev_priv: i915 device
1789  * @frontbuffer_bits: frontbuffer plane tracking bits
1790  * @origin: which operation caused the flush
1791  *
1792  * Since the hardware frontbuffer tracking has gaps we need to integrate
1793  * with the software frontbuffer tracking. This function gets called every
1794  * time frontbuffer rendering has completed and flushed out to memory. PSR
1795  * can be enabled again if no other frontbuffer relevant to PSR is dirty.
1796  *
1797  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
1798  */
1799 void intel_psr_flush(struct drm_i915_private *dev_priv,
1800 		     unsigned frontbuffer_bits, enum fb_op_origin origin)
1801 {
1802 	struct intel_encoder *encoder;
1803 
1804 	for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
1805 		unsigned int pipe_frontbuffer_bits = frontbuffer_bits;
1806 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1807 
1808 		if (origin == ORIGIN_FLIP) {
1809 			tgl_dc3co_flush(intel_dp, frontbuffer_bits, origin);
1810 			continue;
1811 		}
1812 
1813 		mutex_lock(&intel_dp->psr.lock);
1814 		if (!intel_dp->psr.enabled) {
1815 			mutex_unlock(&intel_dp->psr.lock);
1816 			continue;
1817 		}
1818 
1819 		pipe_frontbuffer_bits &=
1820 			INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe);
1821 		intel_dp->psr.busy_frontbuffer_bits &= ~pipe_frontbuffer_bits;
1822 
1823 		/* By definition flush = invalidate + flush */
1824 		if (pipe_frontbuffer_bits)
1825 			psr_force_hw_tracking_exit(intel_dp);
1826 
1827 		if (!intel_dp->psr.active && !intel_dp->psr.busy_frontbuffer_bits)
1828 			schedule_work(&intel_dp->psr.work);
1829 		mutex_unlock(&intel_dp->psr.lock);
1830 	}
1831 }
1832 
1833 /**
1834  * intel_psr_init - Init basic PSR work and mutex.
1835  * @intel_dp: Intel DP
1836  *
1837  * This function is called after the initializing connector.
1838  * (the initializing of connector treats the handling of connector capabilities)
1839  * And it initializes basic PSR stuff for each DP Encoder.
1840  */
1841 void intel_psr_init(struct intel_dp *intel_dp)
1842 {
1843 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1844 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1845 
1846 	if (!HAS_PSR(dev_priv))
1847 		return;
1848 
1849 	/*
1850 	 * HSW spec explicitly says PSR is tied to port A.
1851 	 * BDW+ platforms have a instance of PSR registers per transcoder but
1852 	 * BDW, GEN9 and GEN11 are not validated by HW team in other transcoder
1853 	 * than eDP one.
1854 	 * For now it only supports one instance of PSR for BDW, GEN9 and GEN11.
1855 	 * So lets keep it hardcoded to PORT_A for BDW, GEN9 and GEN11.
1856 	 * But GEN12 supports a instance of PSR registers per transcoder.
1857 	 */
1858 	if (INTEL_GEN(dev_priv) < 12 && dig_port->base.port != PORT_A) {
1859 		drm_dbg_kms(&dev_priv->drm,
1860 			    "PSR condition failed: Port not supported\n");
1861 		return;
1862 	}
1863 
1864 	intel_dp->psr.source_support = true;
1865 
1866 	if (IS_HASWELL(dev_priv))
1867 		/*
1868 		 * HSW don't have PSR registers on the same space as transcoder
1869 		 * so set this to a value that when subtract to the register
1870 		 * in transcoder space results in the right offset for HSW
1871 		 */
1872 		dev_priv->hsw_psr_mmio_adjust = _SRD_CTL_EDP - _HSW_EDP_PSR_BASE;
1873 
1874 	if (dev_priv->params.enable_psr == -1)
1875 		if (INTEL_GEN(dev_priv) < 9 || !dev_priv->vbt.psr.enable)
1876 			dev_priv->params.enable_psr = 0;
1877 
1878 	/* Set link_standby x link_off defaults */
1879 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1880 		/* HSW and BDW require workarounds that we don't implement. */
1881 		intel_dp->psr.link_standby = false;
1882 	else if (INTEL_GEN(dev_priv) < 12)
1883 		/* For new platforms up to TGL let's respect VBT back again */
1884 		intel_dp->psr.link_standby = dev_priv->vbt.psr.full_link;
1885 
1886 	INIT_WORK(&intel_dp->psr.work, intel_psr_work);
1887 	INIT_DELAYED_WORK(&intel_dp->psr.dc3co_work, tgl_dc3co_disable_work);
1888 	mutex_init(&intel_dp->psr.lock);
1889 }
1890 
1891 static int psr_get_status_and_error_status(struct intel_dp *intel_dp,
1892 					   u8 *status, u8 *error_status)
1893 {
1894 	struct drm_dp_aux *aux = &intel_dp->aux;
1895 	int ret;
1896 
1897 	ret = drm_dp_dpcd_readb(aux, DP_PSR_STATUS, status);
1898 	if (ret != 1)
1899 		return ret;
1900 
1901 	ret = drm_dp_dpcd_readb(aux, DP_PSR_ERROR_STATUS, error_status);
1902 	if (ret != 1)
1903 		return ret;
1904 
1905 	*status = *status & DP_PSR_SINK_STATE_MASK;
1906 
1907 	return 0;
1908 }
1909 
1910 static void psr_alpm_check(struct intel_dp *intel_dp)
1911 {
1912 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1913 	struct drm_dp_aux *aux = &intel_dp->aux;
1914 	struct intel_psr *psr = &intel_dp->psr;
1915 	u8 val;
1916 	int r;
1917 
1918 	if (!psr->psr2_enabled)
1919 		return;
1920 
1921 	r = drm_dp_dpcd_readb(aux, DP_RECEIVER_ALPM_STATUS, &val);
1922 	if (r != 1) {
1923 		drm_err(&dev_priv->drm, "Error reading ALPM status\n");
1924 		return;
1925 	}
1926 
1927 	if (val & DP_ALPM_LOCK_TIMEOUT_ERROR) {
1928 		intel_psr_disable_locked(intel_dp);
1929 		psr->sink_not_reliable = true;
1930 		drm_dbg_kms(&dev_priv->drm,
1931 			    "ALPM lock timeout error, disabling PSR\n");
1932 
1933 		/* Clearing error */
1934 		drm_dp_dpcd_writeb(aux, DP_RECEIVER_ALPM_STATUS, val);
1935 	}
1936 }
1937 
1938 static void psr_capability_changed_check(struct intel_dp *intel_dp)
1939 {
1940 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1941 	struct intel_psr *psr = &intel_dp->psr;
1942 	u8 val;
1943 	int r;
1944 
1945 	r = drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ESI, &val);
1946 	if (r != 1) {
1947 		drm_err(&dev_priv->drm, "Error reading DP_PSR_ESI\n");
1948 		return;
1949 	}
1950 
1951 	if (val & DP_PSR_CAPS_CHANGE) {
1952 		intel_psr_disable_locked(intel_dp);
1953 		psr->sink_not_reliable = true;
1954 		drm_dbg_kms(&dev_priv->drm,
1955 			    "Sink PSR capability changed, disabling PSR\n");
1956 
1957 		/* Clearing it */
1958 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ESI, val);
1959 	}
1960 }
1961 
1962 void intel_psr_short_pulse(struct intel_dp *intel_dp)
1963 {
1964 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1965 	struct intel_psr *psr = &intel_dp->psr;
1966 	u8 status, error_status;
1967 	const u8 errors = DP_PSR_RFB_STORAGE_ERROR |
1968 			  DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR |
1969 			  DP_PSR_LINK_CRC_ERROR;
1970 
1971 	if (!CAN_PSR(intel_dp))
1972 		return;
1973 
1974 	mutex_lock(&psr->lock);
1975 
1976 	if (!psr->enabled)
1977 		goto exit;
1978 
1979 	if (psr_get_status_and_error_status(intel_dp, &status, &error_status)) {
1980 		drm_err(&dev_priv->drm,
1981 			"Error reading PSR status or error status\n");
1982 		goto exit;
1983 	}
1984 
1985 	if (status == DP_PSR_SINK_INTERNAL_ERROR || (error_status & errors)) {
1986 		intel_psr_disable_locked(intel_dp);
1987 		psr->sink_not_reliable = true;
1988 	}
1989 
1990 	if (status == DP_PSR_SINK_INTERNAL_ERROR && !error_status)
1991 		drm_dbg_kms(&dev_priv->drm,
1992 			    "PSR sink internal error, disabling PSR\n");
1993 	if (error_status & DP_PSR_RFB_STORAGE_ERROR)
1994 		drm_dbg_kms(&dev_priv->drm,
1995 			    "PSR RFB storage error, disabling PSR\n");
1996 	if (error_status & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR)
1997 		drm_dbg_kms(&dev_priv->drm,
1998 			    "PSR VSC SDP uncorrectable error, disabling PSR\n");
1999 	if (error_status & DP_PSR_LINK_CRC_ERROR)
2000 		drm_dbg_kms(&dev_priv->drm,
2001 			    "PSR Link CRC error, disabling PSR\n");
2002 
2003 	if (error_status & ~errors)
2004 		drm_err(&dev_priv->drm,
2005 			"PSR_ERROR_STATUS unhandled errors %x\n",
2006 			error_status & ~errors);
2007 	/* clear status register */
2008 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, error_status);
2009 
2010 	psr_alpm_check(intel_dp);
2011 	psr_capability_changed_check(intel_dp);
2012 
2013 exit:
2014 	mutex_unlock(&psr->lock);
2015 }
2016 
2017 bool intel_psr_enabled(struct intel_dp *intel_dp)
2018 {
2019 	bool ret;
2020 
2021 	if (!CAN_PSR(intel_dp))
2022 		return false;
2023 
2024 	mutex_lock(&intel_dp->psr.lock);
2025 	ret = intel_dp->psr.enabled;
2026 	mutex_unlock(&intel_dp->psr.lock);
2027 
2028 	return ret;
2029 }
2030