1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <drm/drm_atomic_helper.h>
25 
26 #include "display/intel_dp.h"
27 
28 #include "i915_drv.h"
29 #include "intel_atomic.h"
30 #include "intel_display_types.h"
31 #include "intel_psr.h"
32 #include "intel_sprite.h"
33 #include "intel_hdmi.h"
34 
35 /**
36  * DOC: Panel Self Refresh (PSR/SRD)
37  *
38  * Since Haswell Display controller supports Panel Self-Refresh on display
39  * panels witch have a remote frame buffer (RFB) implemented according to PSR
40  * spec in eDP1.3. PSR feature allows the display to go to lower standby states
41  * when system is idle but display is on as it eliminates display refresh
42  * request to DDR memory completely as long as the frame buffer for that
43  * display is unchanged.
44  *
45  * Panel Self Refresh must be supported by both Hardware (source) and
46  * Panel (sink).
47  *
48  * PSR saves power by caching the framebuffer in the panel RFB, which allows us
49  * to power down the link and memory controller. For DSI panels the same idea
50  * is called "manual mode".
51  *
52  * The implementation uses the hardware-based PSR support which automatically
53  * enters/exits self-refresh mode. The hardware takes care of sending the
54  * required DP aux message and could even retrain the link (that part isn't
55  * enabled yet though). The hardware also keeps track of any frontbuffer
56  * changes to know when to exit self-refresh mode again. Unfortunately that
57  * part doesn't work too well, hence why the i915 PSR support uses the
58  * software frontbuffer tracking to make sure it doesn't miss a screen
59  * update. For this integration intel_psr_invalidate() and intel_psr_flush()
60  * get called by the frontbuffer tracking code. Note that because of locking
61  * issues the self-refresh re-enable code is done from a work queue, which
62  * must be correctly synchronized/cancelled when shutting down the pipe."
63  *
64  * DC3CO (DC3 clock off)
65  *
66  * On top of PSR2, GEN12 adds a intermediate power savings state that turns
67  * clock off automatically during PSR2 idle state.
68  * The smaller overhead of DC3co entry/exit vs. the overhead of PSR2 deep sleep
69  * entry/exit allows the HW to enter a low-power state even when page flipping
70  * periodically (for instance a 30fps video playback scenario).
71  *
72  * Every time a flips occurs PSR2 will get out of deep sleep state(if it was),
73  * so DC3CO is enabled and tgl_dc3co_disable_work is schedule to run after 6
74  * frames, if no other flip occurs and the function above is executed, DC3CO is
75  * disabled and PSR2 is configured to enter deep sleep, resetting again in case
76  * of another flip.
77  * Front buffer modifications do not trigger DC3CO activation on purpose as it
78  * would bring a lot of complexity and most of the moderns systems will only
79  * use page flips.
80  */
81 
82 static bool psr_global_enabled(struct drm_i915_private *i915)
83 {
84 	switch (i915->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
85 	case I915_PSR_DEBUG_DEFAULT:
86 		return i915->params.enable_psr;
87 	case I915_PSR_DEBUG_DISABLE:
88 		return false;
89 	default:
90 		return true;
91 	}
92 }
93 
94 static bool psr2_global_enabled(struct drm_i915_private *dev_priv)
95 {
96 	switch (dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
97 	case I915_PSR_DEBUG_DISABLE:
98 	case I915_PSR_DEBUG_FORCE_PSR1:
99 		return false;
100 	default:
101 		return true;
102 	}
103 }
104 
105 static void psr_irq_control(struct drm_i915_private *dev_priv)
106 {
107 	enum transcoder trans_shift;
108 	u32 mask, val;
109 	i915_reg_t imr_reg;
110 
111 	/*
112 	 * gen12+ has registers relative to transcoder and one per transcoder
113 	 * using the same bit definition: handle it as TRANSCODER_EDP to force
114 	 * 0 shift in bit definition
115 	 */
116 	if (INTEL_GEN(dev_priv) >= 12) {
117 		trans_shift = 0;
118 		imr_reg = TRANS_PSR_IMR(dev_priv->psr.transcoder);
119 	} else {
120 		trans_shift = dev_priv->psr.transcoder;
121 		imr_reg = EDP_PSR_IMR;
122 	}
123 
124 	mask = EDP_PSR_ERROR(trans_shift);
125 	if (dev_priv->psr.debug & I915_PSR_DEBUG_IRQ)
126 		mask |= EDP_PSR_POST_EXIT(trans_shift) |
127 			EDP_PSR_PRE_ENTRY(trans_shift);
128 
129 	/* Warning: it is masking/setting reserved bits too */
130 	val = intel_de_read(dev_priv, imr_reg);
131 	val &= ~EDP_PSR_TRANS_MASK(trans_shift);
132 	val |= ~mask;
133 	intel_de_write(dev_priv, imr_reg, val);
134 }
135 
136 static void psr_event_print(struct drm_i915_private *i915,
137 			    u32 val, bool psr2_enabled)
138 {
139 	drm_dbg_kms(&i915->drm, "PSR exit events: 0x%x\n", val);
140 	if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE)
141 		drm_dbg_kms(&i915->drm, "\tPSR2 watchdog timer expired\n");
142 	if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled)
143 		drm_dbg_kms(&i915->drm, "\tPSR2 disabled\n");
144 	if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN)
145 		drm_dbg_kms(&i915->drm, "\tSU dirty FIFO underrun\n");
146 	if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN)
147 		drm_dbg_kms(&i915->drm, "\tSU CRC FIFO underrun\n");
148 	if (val & PSR_EVENT_GRAPHICS_RESET)
149 		drm_dbg_kms(&i915->drm, "\tGraphics reset\n");
150 	if (val & PSR_EVENT_PCH_INTERRUPT)
151 		drm_dbg_kms(&i915->drm, "\tPCH interrupt\n");
152 	if (val & PSR_EVENT_MEMORY_UP)
153 		drm_dbg_kms(&i915->drm, "\tMemory up\n");
154 	if (val & PSR_EVENT_FRONT_BUFFER_MODIFY)
155 		drm_dbg_kms(&i915->drm, "\tFront buffer modification\n");
156 	if (val & PSR_EVENT_WD_TIMER_EXPIRE)
157 		drm_dbg_kms(&i915->drm, "\tPSR watchdog timer expired\n");
158 	if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE)
159 		drm_dbg_kms(&i915->drm, "\tPIPE registers updated\n");
160 	if (val & PSR_EVENT_REGISTER_UPDATE)
161 		drm_dbg_kms(&i915->drm, "\tRegister updated\n");
162 	if (val & PSR_EVENT_HDCP_ENABLE)
163 		drm_dbg_kms(&i915->drm, "\tHDCP enabled\n");
164 	if (val & PSR_EVENT_KVMR_SESSION_ENABLE)
165 		drm_dbg_kms(&i915->drm, "\tKVMR session enabled\n");
166 	if (val & PSR_EVENT_VBI_ENABLE)
167 		drm_dbg_kms(&i915->drm, "\tVBI enabled\n");
168 	if (val & PSR_EVENT_LPSP_MODE_EXIT)
169 		drm_dbg_kms(&i915->drm, "\tLPSP mode exited\n");
170 	if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled)
171 		drm_dbg_kms(&i915->drm, "\tPSR disabled\n");
172 }
173 
174 void intel_psr_irq_handler(struct drm_i915_private *dev_priv, u32 psr_iir)
175 {
176 	enum transcoder cpu_transcoder = dev_priv->psr.transcoder;
177 	enum transcoder trans_shift;
178 	i915_reg_t imr_reg;
179 	ktime_t time_ns =  ktime_get();
180 
181 	if (INTEL_GEN(dev_priv) >= 12) {
182 		trans_shift = 0;
183 		imr_reg = TRANS_PSR_IMR(dev_priv->psr.transcoder);
184 	} else {
185 		trans_shift = dev_priv->psr.transcoder;
186 		imr_reg = EDP_PSR_IMR;
187 	}
188 
189 	if (psr_iir & EDP_PSR_PRE_ENTRY(trans_shift)) {
190 		dev_priv->psr.last_entry_attempt = time_ns;
191 		drm_dbg_kms(&dev_priv->drm,
192 			    "[transcoder %s] PSR entry attempt in 2 vblanks\n",
193 			    transcoder_name(cpu_transcoder));
194 	}
195 
196 	if (psr_iir & EDP_PSR_POST_EXIT(trans_shift)) {
197 		dev_priv->psr.last_exit = time_ns;
198 		drm_dbg_kms(&dev_priv->drm,
199 			    "[transcoder %s] PSR exit completed\n",
200 			    transcoder_name(cpu_transcoder));
201 
202 		if (INTEL_GEN(dev_priv) >= 9) {
203 			u32 val = intel_de_read(dev_priv,
204 						PSR_EVENT(cpu_transcoder));
205 			bool psr2_enabled = dev_priv->psr.psr2_enabled;
206 
207 			intel_de_write(dev_priv, PSR_EVENT(cpu_transcoder),
208 				       val);
209 			psr_event_print(dev_priv, val, psr2_enabled);
210 		}
211 	}
212 
213 	if (psr_iir & EDP_PSR_ERROR(trans_shift)) {
214 		u32 val;
215 
216 		drm_warn(&dev_priv->drm, "[transcoder %s] PSR aux error\n",
217 			 transcoder_name(cpu_transcoder));
218 
219 		dev_priv->psr.irq_aux_error = true;
220 
221 		/*
222 		 * If this interruption is not masked it will keep
223 		 * interrupting so fast that it prevents the scheduled
224 		 * work to run.
225 		 * Also after a PSR error, we don't want to arm PSR
226 		 * again so we don't care about unmask the interruption
227 		 * or unset irq_aux_error.
228 		 */
229 		val = intel_de_read(dev_priv, imr_reg);
230 		val |= EDP_PSR_ERROR(trans_shift);
231 		intel_de_write(dev_priv, imr_reg, val);
232 
233 		schedule_work(&dev_priv->psr.work);
234 	}
235 }
236 
237 static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
238 {
239 	u8 alpm_caps = 0;
240 
241 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
242 			      &alpm_caps) != 1)
243 		return false;
244 	return alpm_caps & DP_ALPM_CAP;
245 }
246 
247 static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
248 {
249 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
250 	u8 val = 8; /* assume the worst if we can't read the value */
251 
252 	if (drm_dp_dpcd_readb(&intel_dp->aux,
253 			      DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
254 		val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
255 	else
256 		drm_dbg_kms(&i915->drm,
257 			    "Unable to get sink synchronization latency, assuming 8 frames\n");
258 	return val;
259 }
260 
261 static u16 intel_dp_get_su_x_granulartiy(struct intel_dp *intel_dp)
262 {
263 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
264 	u16 val;
265 	ssize_t r;
266 
267 	/*
268 	 * Returning the default X granularity if granularity not required or
269 	 * if DPCD read fails
270 	 */
271 	if (!(intel_dp->psr_dpcd[1] & DP_PSR2_SU_GRANULARITY_REQUIRED))
272 		return 4;
273 
274 	r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_X_GRANULARITY, &val, 2);
275 	if (r != 2)
276 		drm_dbg_kms(&i915->drm,
277 			    "Unable to read DP_PSR2_SU_X_GRANULARITY\n");
278 
279 	/*
280 	 * Spec says that if the value read is 0 the default granularity should
281 	 * be used instead.
282 	 */
283 	if (r != 2 || val == 0)
284 		val = 4;
285 
286 	return val;
287 }
288 
289 void intel_psr_init_dpcd(struct intel_dp *intel_dp)
290 {
291 	struct drm_i915_private *dev_priv =
292 		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
293 
294 	if (dev_priv->psr.dp) {
295 		drm_warn(&dev_priv->drm,
296 			 "More than one eDP panel found, PSR support should be extended\n");
297 		return;
298 	}
299 
300 	drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
301 			 sizeof(intel_dp->psr_dpcd));
302 
303 	if (!intel_dp->psr_dpcd[0])
304 		return;
305 	drm_dbg_kms(&dev_priv->drm, "eDP panel supports PSR version %x\n",
306 		    intel_dp->psr_dpcd[0]);
307 
308 	if (drm_dp_has_quirk(&intel_dp->desc, 0, DP_DPCD_QUIRK_NO_PSR)) {
309 		drm_dbg_kms(&dev_priv->drm,
310 			    "PSR support not currently available for this panel\n");
311 		return;
312 	}
313 
314 	if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
315 		drm_dbg_kms(&dev_priv->drm,
316 			    "Panel lacks power state control, PSR cannot be enabled\n");
317 		return;
318 	}
319 
320 	dev_priv->psr.sink_support = true;
321 	dev_priv->psr.sink_sync_latency =
322 		intel_dp_get_sink_sync_latency(intel_dp);
323 
324 	dev_priv->psr.dp = intel_dp;
325 
326 	if (INTEL_GEN(dev_priv) >= 9 &&
327 	    (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) {
328 		bool y_req = intel_dp->psr_dpcd[1] &
329 			     DP_PSR2_SU_Y_COORDINATE_REQUIRED;
330 		bool alpm = intel_dp_get_alpm_status(intel_dp);
331 
332 		/*
333 		 * All panels that supports PSR version 03h (PSR2 +
334 		 * Y-coordinate) can handle Y-coordinates in VSC but we are
335 		 * only sure that it is going to be used when required by the
336 		 * panel. This way panel is capable to do selective update
337 		 * without a aux frame sync.
338 		 *
339 		 * To support PSR version 02h and PSR version 03h without
340 		 * Y-coordinate requirement panels we would need to enable
341 		 * GTC first.
342 		 */
343 		dev_priv->psr.sink_psr2_support = y_req && alpm;
344 		drm_dbg_kms(&dev_priv->drm, "PSR2 %ssupported\n",
345 			    dev_priv->psr.sink_psr2_support ? "" : "not ");
346 
347 		if (dev_priv->psr.sink_psr2_support) {
348 			dev_priv->psr.colorimetry_support =
349 				intel_dp_get_colorimetry_status(intel_dp);
350 			dev_priv->psr.su_x_granularity =
351 				intel_dp_get_su_x_granulartiy(intel_dp);
352 		}
353 	}
354 }
355 
356 static void hsw_psr_setup_aux(struct intel_dp *intel_dp)
357 {
358 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
359 	u32 aux_clock_divider, aux_ctl;
360 	int i;
361 	static const u8 aux_msg[] = {
362 		[0] = DP_AUX_NATIVE_WRITE << 4,
363 		[1] = DP_SET_POWER >> 8,
364 		[2] = DP_SET_POWER & 0xff,
365 		[3] = 1 - 1,
366 		[4] = DP_SET_POWER_D0,
367 	};
368 	u32 psr_aux_mask = EDP_PSR_AUX_CTL_TIME_OUT_MASK |
369 			   EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK |
370 			   EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK |
371 			   EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK;
372 
373 	BUILD_BUG_ON(sizeof(aux_msg) > 20);
374 	for (i = 0; i < sizeof(aux_msg); i += 4)
375 		intel_de_write(dev_priv,
376 			       EDP_PSR_AUX_DATA(dev_priv->psr.transcoder, i >> 2),
377 			       intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
378 
379 	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
380 
381 	/* Start with bits set for DDI_AUX_CTL register */
382 	aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, sizeof(aux_msg),
383 					     aux_clock_divider);
384 
385 	/* Select only valid bits for SRD_AUX_CTL */
386 	aux_ctl &= psr_aux_mask;
387 	intel_de_write(dev_priv, EDP_PSR_AUX_CTL(dev_priv->psr.transcoder),
388 		       aux_ctl);
389 }
390 
391 static void intel_psr_enable_sink(struct intel_dp *intel_dp)
392 {
393 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
394 	u8 dpcd_val = DP_PSR_ENABLE;
395 
396 	/* Enable ALPM at sink for psr2 */
397 	if (dev_priv->psr.psr2_enabled) {
398 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG,
399 				   DP_ALPM_ENABLE |
400 				   DP_ALPM_LOCK_ERROR_IRQ_HPD_ENABLE);
401 
402 		dpcd_val |= DP_PSR_ENABLE_PSR2 | DP_PSR_IRQ_HPD_WITH_CRC_ERRORS;
403 	} else {
404 		if (dev_priv->psr.link_standby)
405 			dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE;
406 
407 		if (INTEL_GEN(dev_priv) >= 8)
408 			dpcd_val |= DP_PSR_CRC_VERIFICATION;
409 	}
410 
411 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val);
412 
413 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
414 }
415 
416 static u32 intel_psr1_get_tp_time(struct intel_dp *intel_dp)
417 {
418 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
419 	u32 val = 0;
420 
421 	if (INTEL_GEN(dev_priv) >= 11)
422 		val |= EDP_PSR_TP4_TIME_0US;
423 
424 	if (dev_priv->params.psr_safest_params) {
425 		val |= EDP_PSR_TP1_TIME_2500us;
426 		val |= EDP_PSR_TP2_TP3_TIME_2500us;
427 		goto check_tp3_sel;
428 	}
429 
430 	if (dev_priv->vbt.psr.tp1_wakeup_time_us == 0)
431 		val |= EDP_PSR_TP1_TIME_0us;
432 	else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 100)
433 		val |= EDP_PSR_TP1_TIME_100us;
434 	else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 500)
435 		val |= EDP_PSR_TP1_TIME_500us;
436 	else
437 		val |= EDP_PSR_TP1_TIME_2500us;
438 
439 	if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us == 0)
440 		val |= EDP_PSR_TP2_TP3_TIME_0us;
441 	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
442 		val |= EDP_PSR_TP2_TP3_TIME_100us;
443 	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
444 		val |= EDP_PSR_TP2_TP3_TIME_500us;
445 	else
446 		val |= EDP_PSR_TP2_TP3_TIME_2500us;
447 
448 check_tp3_sel:
449 	if (intel_dp_source_supports_hbr2(intel_dp) &&
450 	    drm_dp_tps3_supported(intel_dp->dpcd))
451 		val |= EDP_PSR_TP1_TP3_SEL;
452 	else
453 		val |= EDP_PSR_TP1_TP2_SEL;
454 
455 	return val;
456 }
457 
458 static u8 psr_compute_idle_frames(struct intel_dp *intel_dp)
459 {
460 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
461 	int idle_frames;
462 
463 	/* Let's use 6 as the minimum to cover all known cases including the
464 	 * off-by-one issue that HW has in some cases.
465 	 */
466 	idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
467 	idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
468 
469 	if (drm_WARN_ON(&dev_priv->drm, idle_frames > 0xf))
470 		idle_frames = 0xf;
471 
472 	return idle_frames;
473 }
474 
475 static void hsw_activate_psr1(struct intel_dp *intel_dp)
476 {
477 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
478 	u32 max_sleep_time = 0x1f;
479 	u32 val = EDP_PSR_ENABLE;
480 
481 	val |= psr_compute_idle_frames(intel_dp) << EDP_PSR_IDLE_FRAME_SHIFT;
482 
483 	val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
484 	if (IS_HASWELL(dev_priv))
485 		val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
486 
487 	if (dev_priv->psr.link_standby)
488 		val |= EDP_PSR_LINK_STANDBY;
489 
490 	val |= intel_psr1_get_tp_time(intel_dp);
491 
492 	if (INTEL_GEN(dev_priv) >= 8)
493 		val |= EDP_PSR_CRC_ENABLE;
494 
495 	val |= (intel_de_read(dev_priv, EDP_PSR_CTL(dev_priv->psr.transcoder)) &
496 		EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK);
497 	intel_de_write(dev_priv, EDP_PSR_CTL(dev_priv->psr.transcoder), val);
498 }
499 
500 static u32 intel_psr2_get_tp_time(struct intel_dp *intel_dp)
501 {
502 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
503 	u32 val = 0;
504 
505 	if (dev_priv->params.psr_safest_params)
506 		return EDP_PSR2_TP2_TIME_2500us;
507 
508 	if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us >= 0 &&
509 	    dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 50)
510 		val |= EDP_PSR2_TP2_TIME_50us;
511 	else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 100)
512 		val |= EDP_PSR2_TP2_TIME_100us;
513 	else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 500)
514 		val |= EDP_PSR2_TP2_TIME_500us;
515 	else
516 		val |= EDP_PSR2_TP2_TIME_2500us;
517 
518 	return val;
519 }
520 
521 static void hsw_activate_psr2(struct intel_dp *intel_dp)
522 {
523 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
524 	u32 val;
525 
526 	val = psr_compute_idle_frames(intel_dp) << EDP_PSR2_IDLE_FRAME_SHIFT;
527 
528 	val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE;
529 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
530 		val |= EDP_Y_COORDINATE_ENABLE;
531 
532 	val |= EDP_PSR2_FRAME_BEFORE_SU(dev_priv->psr.sink_sync_latency + 1);
533 	val |= intel_psr2_get_tp_time(intel_dp);
534 
535 	if (INTEL_GEN(dev_priv) >= 12) {
536 		/*
537 		 * TODO: 7 lines of IO_BUFFER_WAKE and FAST_WAKE are default
538 		 * values from BSpec. In order to setting an optimal power
539 		 * consumption, lower than 4k resoluition mode needs to decrese
540 		 * IO_BUFFER_WAKE and FAST_WAKE. And higher than 4K resolution
541 		 * mode needs to increase IO_BUFFER_WAKE and FAST_WAKE.
542 		 */
543 		val |= TGL_EDP_PSR2_BLOCK_COUNT_NUM_2;
544 		val |= TGL_EDP_PSR2_IO_BUFFER_WAKE(7);
545 		val |= TGL_EDP_PSR2_FAST_WAKE(7);
546 	} else if (INTEL_GEN(dev_priv) >= 9) {
547 		val |= EDP_PSR2_IO_BUFFER_WAKE(7);
548 		val |= EDP_PSR2_FAST_WAKE(7);
549 	}
550 
551 	if (dev_priv->psr.psr2_sel_fetch_enabled) {
552 		/* WA 1408330847 */
553 		if (IS_TGL_DISP_REVID(dev_priv, TGL_REVID_A0, TGL_REVID_A0) ||
554 		    IS_RKL_REVID(dev_priv, RKL_REVID_A0, RKL_REVID_A0))
555 			intel_de_rmw(dev_priv, CHICKEN_PAR1_1,
556 				     DIS_RAM_BYPASS_PSR2_MAN_TRACK,
557 				     DIS_RAM_BYPASS_PSR2_MAN_TRACK);
558 
559 		intel_de_write(dev_priv,
560 			       PSR2_MAN_TRK_CTL(dev_priv->psr.transcoder),
561 			       PSR2_MAN_TRK_CTL_ENABLE);
562 	} else if (HAS_PSR2_SEL_FETCH(dev_priv)) {
563 		intel_de_write(dev_priv,
564 			       PSR2_MAN_TRK_CTL(dev_priv->psr.transcoder), 0);
565 	}
566 
567 	/*
568 	 * PSR2 HW is incorrectly using EDP_PSR_TP1_TP3_SEL and BSpec is
569 	 * recommending keep this bit unset while PSR2 is enabled.
570 	 */
571 	intel_de_write(dev_priv, EDP_PSR_CTL(dev_priv->psr.transcoder), 0);
572 
573 	intel_de_write(dev_priv, EDP_PSR2_CTL(dev_priv->psr.transcoder), val);
574 }
575 
576 static bool
577 transcoder_has_psr2(struct drm_i915_private *dev_priv, enum transcoder trans)
578 {
579 	if (INTEL_GEN(dev_priv) < 9)
580 		return false;
581 	else if (INTEL_GEN(dev_priv) >= 12)
582 		return trans == TRANSCODER_A;
583 	else
584 		return trans == TRANSCODER_EDP;
585 }
586 
587 static u32 intel_get_frame_time_us(const struct intel_crtc_state *cstate)
588 {
589 	if (!cstate || !cstate->hw.active)
590 		return 0;
591 
592 	return DIV_ROUND_UP(1000 * 1000,
593 			    drm_mode_vrefresh(&cstate->hw.adjusted_mode));
594 }
595 
596 static void psr2_program_idle_frames(struct drm_i915_private *dev_priv,
597 				     u32 idle_frames)
598 {
599 	u32 val;
600 
601 	idle_frames <<=  EDP_PSR2_IDLE_FRAME_SHIFT;
602 	val = intel_de_read(dev_priv, EDP_PSR2_CTL(dev_priv->psr.transcoder));
603 	val &= ~EDP_PSR2_IDLE_FRAME_MASK;
604 	val |= idle_frames;
605 	intel_de_write(dev_priv, EDP_PSR2_CTL(dev_priv->psr.transcoder), val);
606 }
607 
608 static void tgl_psr2_enable_dc3co(struct drm_i915_private *dev_priv)
609 {
610 	psr2_program_idle_frames(dev_priv, 0);
611 	intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_DC3CO);
612 }
613 
614 static void tgl_psr2_disable_dc3co(struct drm_i915_private *dev_priv)
615 {
616 	struct intel_dp *intel_dp = dev_priv->psr.dp;
617 
618 	intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
619 	psr2_program_idle_frames(dev_priv, psr_compute_idle_frames(intel_dp));
620 }
621 
622 static void tgl_dc3co_disable_work(struct work_struct *work)
623 {
624 	struct drm_i915_private *dev_priv =
625 		container_of(work, typeof(*dev_priv), psr.dc3co_work.work);
626 
627 	mutex_lock(&dev_priv->psr.lock);
628 	/* If delayed work is pending, it is not idle */
629 	if (delayed_work_pending(&dev_priv->psr.dc3co_work))
630 		goto unlock;
631 
632 	tgl_psr2_disable_dc3co(dev_priv);
633 unlock:
634 	mutex_unlock(&dev_priv->psr.lock);
635 }
636 
637 static void tgl_disallow_dc3co_on_psr2_exit(struct drm_i915_private *dev_priv)
638 {
639 	if (!dev_priv->psr.dc3co_enabled)
640 		return;
641 
642 	cancel_delayed_work(&dev_priv->psr.dc3co_work);
643 	/* Before PSR2 exit disallow dc3co*/
644 	tgl_psr2_disable_dc3co(dev_priv);
645 }
646 
647 static void
648 tgl_dc3co_exitline_compute_config(struct intel_dp *intel_dp,
649 				  struct intel_crtc_state *crtc_state)
650 {
651 	const u32 crtc_vdisplay = crtc_state->uapi.adjusted_mode.crtc_vdisplay;
652 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
653 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
654 	u32 exit_scanlines;
655 
656 	if (!(dev_priv->csr.allowed_dc_mask & DC_STATE_EN_DC3CO))
657 		return;
658 
659 	/* B.Specs:49196 DC3CO only works with pipeA and DDIA.*/
660 	if (to_intel_crtc(crtc_state->uapi.crtc)->pipe != PIPE_A ||
661 	    dig_port->base.port != PORT_A)
662 		return;
663 
664 	/*
665 	 * DC3CO Exit time 200us B.Spec 49196
666 	 * PSR2 transcoder Early Exit scanlines = ROUNDUP(200 / line time) + 1
667 	 */
668 	exit_scanlines =
669 		intel_usecs_to_scanlines(&crtc_state->uapi.adjusted_mode, 200) + 1;
670 
671 	if (drm_WARN_ON(&dev_priv->drm, exit_scanlines > crtc_vdisplay))
672 		return;
673 
674 	crtc_state->dc3co_exitline = crtc_vdisplay - exit_scanlines;
675 }
676 
677 static bool intel_psr2_sel_fetch_config_valid(struct intel_dp *intel_dp,
678 					      struct intel_crtc_state *crtc_state)
679 {
680 	struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state);
681 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
682 	struct intel_plane_state *plane_state;
683 	struct intel_plane *plane;
684 	int i;
685 
686 	if (!dev_priv->params.enable_psr2_sel_fetch) {
687 		drm_dbg_kms(&dev_priv->drm,
688 			    "PSR2 sel fetch not enabled, disabled by parameter\n");
689 		return false;
690 	}
691 
692 	if (crtc_state->uapi.async_flip) {
693 		drm_dbg_kms(&dev_priv->drm,
694 			    "PSR2 sel fetch not enabled, async flip enabled\n");
695 		return false;
696 	}
697 
698 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
699 		if (plane_state->uapi.rotation != DRM_MODE_ROTATE_0) {
700 			drm_dbg_kms(&dev_priv->drm,
701 				    "PSR2 sel fetch not enabled, plane rotated\n");
702 			return false;
703 		}
704 	}
705 
706 	return crtc_state->enable_psr2_sel_fetch = true;
707 }
708 
709 static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
710 				    struct intel_crtc_state *crtc_state)
711 {
712 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
713 	int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay;
714 	int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay;
715 	int psr_max_h = 0, psr_max_v = 0, max_bpp = 0;
716 
717 	if (!dev_priv->psr.sink_psr2_support)
718 		return false;
719 
720 	if (!transcoder_has_psr2(dev_priv, crtc_state->cpu_transcoder)) {
721 		drm_dbg_kms(&dev_priv->drm,
722 			    "PSR2 not supported in transcoder %s\n",
723 			    transcoder_name(crtc_state->cpu_transcoder));
724 		return false;
725 	}
726 
727 	if (!psr2_global_enabled(dev_priv)) {
728 		drm_dbg_kms(&dev_priv->drm, "PSR2 disabled by flag\n");
729 		return false;
730 	}
731 
732 	/*
733 	 * DSC and PSR2 cannot be enabled simultaneously. If a requested
734 	 * resolution requires DSC to be enabled, priority is given to DSC
735 	 * over PSR2.
736 	 */
737 	if (crtc_state->dsc.compression_enable) {
738 		drm_dbg_kms(&dev_priv->drm,
739 			    "PSR2 cannot be enabled since DSC is enabled\n");
740 		return false;
741 	}
742 
743 	if (crtc_state->crc_enabled) {
744 		drm_dbg_kms(&dev_priv->drm,
745 			    "PSR2 not enabled because it would inhibit pipe CRC calculation\n");
746 		return false;
747 	}
748 
749 	if (INTEL_GEN(dev_priv) >= 12) {
750 		psr_max_h = 5120;
751 		psr_max_v = 3200;
752 		max_bpp = 30;
753 	} else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
754 		psr_max_h = 4096;
755 		psr_max_v = 2304;
756 		max_bpp = 24;
757 	} else if (IS_GEN(dev_priv, 9)) {
758 		psr_max_h = 3640;
759 		psr_max_v = 2304;
760 		max_bpp = 24;
761 	}
762 
763 	if (crtc_state->pipe_bpp > max_bpp) {
764 		drm_dbg_kms(&dev_priv->drm,
765 			    "PSR2 not enabled, pipe bpp %d > max supported %d\n",
766 			    crtc_state->pipe_bpp, max_bpp);
767 		return false;
768 	}
769 
770 	/*
771 	 * HW sends SU blocks of size four scan lines, which means the starting
772 	 * X coordinate and Y granularity requirements will always be met. We
773 	 * only need to validate the SU block width is a multiple of
774 	 * x granularity.
775 	 */
776 	if (crtc_hdisplay % dev_priv->psr.su_x_granularity) {
777 		drm_dbg_kms(&dev_priv->drm,
778 			    "PSR2 not enabled, hdisplay(%d) not multiple of %d\n",
779 			    crtc_hdisplay, dev_priv->psr.su_x_granularity);
780 		return false;
781 	}
782 
783 	if (HAS_PSR2_SEL_FETCH(dev_priv)) {
784 		if (!intel_psr2_sel_fetch_config_valid(intel_dp, crtc_state) &&
785 		    !HAS_PSR_HW_TRACKING(dev_priv)) {
786 			drm_dbg_kms(&dev_priv->drm,
787 				    "PSR2 not enabled, selective fetch not valid and no HW tracking available\n");
788 			return false;
789 		}
790 	}
791 
792 	if (!crtc_state->enable_psr2_sel_fetch &&
793 	    (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v)) {
794 		drm_dbg_kms(&dev_priv->drm,
795 			    "PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
796 			    crtc_hdisplay, crtc_vdisplay,
797 			    psr_max_h, psr_max_v);
798 		return false;
799 	}
800 
801 	tgl_dc3co_exitline_compute_config(intel_dp, crtc_state);
802 	return true;
803 }
804 
805 void intel_psr_compute_config(struct intel_dp *intel_dp,
806 			      struct intel_crtc_state *crtc_state)
807 {
808 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
809 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
810 	const struct drm_display_mode *adjusted_mode =
811 		&crtc_state->hw.adjusted_mode;
812 	int psr_setup_time;
813 
814 	if (!CAN_PSR(dev_priv))
815 		return;
816 
817 	if (intel_dp != dev_priv->psr.dp)
818 		return;
819 
820 	if (!psr_global_enabled(dev_priv)) {
821 		drm_dbg_kms(&dev_priv->drm, "PSR disabled by flag\n");
822 		return;
823 	}
824 
825 	/*
826 	 * HSW spec explicitly says PSR is tied to port A.
827 	 * BDW+ platforms have a instance of PSR registers per transcoder but
828 	 * for now it only supports one instance of PSR, so lets keep it
829 	 * hardcoded to PORT_A
830 	 */
831 	if (dig_port->base.port != PORT_A) {
832 		drm_dbg_kms(&dev_priv->drm,
833 			    "PSR condition failed: Port not supported\n");
834 		return;
835 	}
836 
837 	if (dev_priv->psr.sink_not_reliable) {
838 		drm_dbg_kms(&dev_priv->drm,
839 			    "PSR sink implementation is not reliable\n");
840 		return;
841 	}
842 
843 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
844 		drm_dbg_kms(&dev_priv->drm,
845 			    "PSR condition failed: Interlaced mode enabled\n");
846 		return;
847 	}
848 
849 	psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
850 	if (psr_setup_time < 0) {
851 		drm_dbg_kms(&dev_priv->drm,
852 			    "PSR condition failed: Invalid PSR setup time (0x%02x)\n",
853 			    intel_dp->psr_dpcd[1]);
854 		return;
855 	}
856 
857 	if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
858 	    adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
859 		drm_dbg_kms(&dev_priv->drm,
860 			    "PSR condition failed: PSR setup time (%d us) too long\n",
861 			    psr_setup_time);
862 		return;
863 	}
864 
865 	crtc_state->has_psr = true;
866 	crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state);
867 	crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
868 }
869 
870 static void intel_psr_activate(struct intel_dp *intel_dp)
871 {
872 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
873 
874 	if (transcoder_has_psr2(dev_priv, dev_priv->psr.transcoder))
875 		drm_WARN_ON(&dev_priv->drm,
876 			    intel_de_read(dev_priv, EDP_PSR2_CTL(dev_priv->psr.transcoder)) & EDP_PSR2_ENABLE);
877 
878 	drm_WARN_ON(&dev_priv->drm,
879 		    intel_de_read(dev_priv, EDP_PSR_CTL(dev_priv->psr.transcoder)) & EDP_PSR_ENABLE);
880 	drm_WARN_ON(&dev_priv->drm, dev_priv->psr.active);
881 	lockdep_assert_held(&dev_priv->psr.lock);
882 
883 	/* psr1 and psr2 are mutually exclusive.*/
884 	if (dev_priv->psr.psr2_enabled)
885 		hsw_activate_psr2(intel_dp);
886 	else
887 		hsw_activate_psr1(intel_dp);
888 
889 	dev_priv->psr.active = true;
890 }
891 
892 static void intel_psr_enable_source(struct intel_dp *intel_dp,
893 				    const struct intel_crtc_state *crtc_state)
894 {
895 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
896 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
897 	u32 mask;
898 
899 	/* Only HSW and BDW have PSR AUX registers that need to be setup. SKL+
900 	 * use hardcoded values PSR AUX transactions
901 	 */
902 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
903 		hsw_psr_setup_aux(intel_dp);
904 
905 	if (dev_priv->psr.psr2_enabled && (IS_GEN(dev_priv, 9) &&
906 					   !IS_GEMINILAKE(dev_priv))) {
907 		i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder);
908 		u32 chicken = intel_de_read(dev_priv, reg);
909 
910 		chicken |= PSR2_VSC_ENABLE_PROG_HEADER |
911 			   PSR2_ADD_VERTICAL_LINE_COUNT;
912 		intel_de_write(dev_priv, reg, chicken);
913 	}
914 
915 	/*
916 	 * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also
917 	 * mask LPSP to avoid dependency on other drivers that might block
918 	 * runtime_pm besides preventing  other hw tracking issues now we
919 	 * can rely on frontbuffer tracking.
920 	 */
921 	mask = EDP_PSR_DEBUG_MASK_MEMUP |
922 	       EDP_PSR_DEBUG_MASK_HPD |
923 	       EDP_PSR_DEBUG_MASK_LPSP |
924 	       EDP_PSR_DEBUG_MASK_MAX_SLEEP;
925 
926 	if (INTEL_GEN(dev_priv) < 11)
927 		mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE;
928 
929 	intel_de_write(dev_priv, EDP_PSR_DEBUG(dev_priv->psr.transcoder),
930 		       mask);
931 
932 	psr_irq_control(dev_priv);
933 
934 	if (crtc_state->dc3co_exitline) {
935 		u32 val;
936 
937 		/*
938 		 * TODO: if future platforms supports DC3CO in more than one
939 		 * transcoder, EXITLINE will need to be unset when disabling PSR
940 		 */
941 		val = intel_de_read(dev_priv, EXITLINE(cpu_transcoder));
942 		val &= ~EXITLINE_MASK;
943 		val |= crtc_state->dc3co_exitline << EXITLINE_SHIFT;
944 		val |= EXITLINE_ENABLE;
945 		intel_de_write(dev_priv, EXITLINE(cpu_transcoder), val);
946 	}
947 
948 	if (HAS_PSR_HW_TRACKING(dev_priv) && HAS_PSR2_SEL_FETCH(dev_priv))
949 		intel_de_rmw(dev_priv, CHICKEN_PAR1_1, IGNORE_PSR2_HW_TRACKING,
950 			     dev_priv->psr.psr2_sel_fetch_enabled ?
951 			     IGNORE_PSR2_HW_TRACKING : 0);
952 }
953 
954 static void intel_psr_enable_locked(struct drm_i915_private *dev_priv,
955 				    const struct intel_crtc_state *crtc_state,
956 				    const struct drm_connector_state *conn_state)
957 {
958 	struct intel_dp *intel_dp = dev_priv->psr.dp;
959 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
960 	struct intel_encoder *encoder = &dig_port->base;
961 	u32 val;
962 
963 	drm_WARN_ON(&dev_priv->drm, dev_priv->psr.enabled);
964 
965 	dev_priv->psr.psr2_enabled = crtc_state->has_psr2;
966 	dev_priv->psr.busy_frontbuffer_bits = 0;
967 	dev_priv->psr.pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe;
968 	dev_priv->psr.dc3co_enabled = !!crtc_state->dc3co_exitline;
969 	dev_priv->psr.transcoder = crtc_state->cpu_transcoder;
970 	/* DC5/DC6 requires at least 6 idle frames */
971 	val = usecs_to_jiffies(intel_get_frame_time_us(crtc_state) * 6);
972 	dev_priv->psr.dc3co_exit_delay = val;
973 	dev_priv->psr.psr2_sel_fetch_enabled = crtc_state->enable_psr2_sel_fetch;
974 
975 	/*
976 	 * If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR
977 	 * will still keep the error set even after the reset done in the
978 	 * irq_preinstall and irq_uninstall hooks.
979 	 * And enabling in this situation cause the screen to freeze in the
980 	 * first time that PSR HW tries to activate so lets keep PSR disabled
981 	 * to avoid any rendering problems.
982 	 */
983 	if (INTEL_GEN(dev_priv) >= 12) {
984 		val = intel_de_read(dev_priv,
985 				    TRANS_PSR_IIR(dev_priv->psr.transcoder));
986 		val &= EDP_PSR_ERROR(0);
987 	} else {
988 		val = intel_de_read(dev_priv, EDP_PSR_IIR);
989 		val &= EDP_PSR_ERROR(dev_priv->psr.transcoder);
990 	}
991 	if (val) {
992 		dev_priv->psr.sink_not_reliable = true;
993 		drm_dbg_kms(&dev_priv->drm,
994 			    "PSR interruption error set, not enabling PSR\n");
995 		return;
996 	}
997 
998 	drm_dbg_kms(&dev_priv->drm, "Enabling PSR%s\n",
999 		    dev_priv->psr.psr2_enabled ? "2" : "1");
1000 	intel_dp_compute_psr_vsc_sdp(intel_dp, crtc_state, conn_state,
1001 				     &dev_priv->psr.vsc);
1002 	intel_write_dp_vsc_sdp(encoder, crtc_state, &dev_priv->psr.vsc);
1003 	intel_psr_enable_sink(intel_dp);
1004 	intel_psr_enable_source(intel_dp, crtc_state);
1005 	dev_priv->psr.enabled = true;
1006 
1007 	intel_psr_activate(intel_dp);
1008 }
1009 
1010 /**
1011  * intel_psr_enable - Enable PSR
1012  * @intel_dp: Intel DP
1013  * @crtc_state: new CRTC state
1014  * @conn_state: new CONNECTOR state
1015  *
1016  * This function can only be called after the pipe is fully trained and enabled.
1017  */
1018 void intel_psr_enable(struct intel_dp *intel_dp,
1019 		      const struct intel_crtc_state *crtc_state,
1020 		      const struct drm_connector_state *conn_state)
1021 {
1022 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1023 
1024 	if (!CAN_PSR(dev_priv) || dev_priv->psr.dp != intel_dp)
1025 		return;
1026 
1027 	if (!crtc_state->has_psr)
1028 		return;
1029 
1030 	drm_WARN_ON(&dev_priv->drm, dev_priv->drrs.dp);
1031 
1032 	mutex_lock(&dev_priv->psr.lock);
1033 	intel_psr_enable_locked(dev_priv, crtc_state, conn_state);
1034 	mutex_unlock(&dev_priv->psr.lock);
1035 }
1036 
1037 static void intel_psr_exit(struct drm_i915_private *dev_priv)
1038 {
1039 	u32 val;
1040 
1041 	if (!dev_priv->psr.active) {
1042 		if (transcoder_has_psr2(dev_priv, dev_priv->psr.transcoder)) {
1043 			val = intel_de_read(dev_priv,
1044 					    EDP_PSR2_CTL(dev_priv->psr.transcoder));
1045 			drm_WARN_ON(&dev_priv->drm, val & EDP_PSR2_ENABLE);
1046 		}
1047 
1048 		val = intel_de_read(dev_priv,
1049 				    EDP_PSR_CTL(dev_priv->psr.transcoder));
1050 		drm_WARN_ON(&dev_priv->drm, val & EDP_PSR_ENABLE);
1051 
1052 		return;
1053 	}
1054 
1055 	if (dev_priv->psr.psr2_enabled) {
1056 		tgl_disallow_dc3co_on_psr2_exit(dev_priv);
1057 		val = intel_de_read(dev_priv,
1058 				    EDP_PSR2_CTL(dev_priv->psr.transcoder));
1059 		drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR2_ENABLE));
1060 		val &= ~EDP_PSR2_ENABLE;
1061 		intel_de_write(dev_priv,
1062 			       EDP_PSR2_CTL(dev_priv->psr.transcoder), val);
1063 	} else {
1064 		val = intel_de_read(dev_priv,
1065 				    EDP_PSR_CTL(dev_priv->psr.transcoder));
1066 		drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR_ENABLE));
1067 		val &= ~EDP_PSR_ENABLE;
1068 		intel_de_write(dev_priv,
1069 			       EDP_PSR_CTL(dev_priv->psr.transcoder), val);
1070 	}
1071 	dev_priv->psr.active = false;
1072 }
1073 
1074 static void intel_psr_disable_locked(struct intel_dp *intel_dp)
1075 {
1076 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1077 	i915_reg_t psr_status;
1078 	u32 psr_status_mask;
1079 
1080 	lockdep_assert_held(&dev_priv->psr.lock);
1081 
1082 	if (!dev_priv->psr.enabled)
1083 		return;
1084 
1085 	drm_dbg_kms(&dev_priv->drm, "Disabling PSR%s\n",
1086 		    dev_priv->psr.psr2_enabled ? "2" : "1");
1087 
1088 	intel_psr_exit(dev_priv);
1089 
1090 	if (dev_priv->psr.psr2_enabled) {
1091 		psr_status = EDP_PSR2_STATUS(dev_priv->psr.transcoder);
1092 		psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
1093 	} else {
1094 		psr_status = EDP_PSR_STATUS(dev_priv->psr.transcoder);
1095 		psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
1096 	}
1097 
1098 	/* Wait till PSR is idle */
1099 	if (intel_de_wait_for_clear(dev_priv, psr_status,
1100 				    psr_status_mask, 2000))
1101 		drm_err(&dev_priv->drm, "Timed out waiting PSR idle state\n");
1102 
1103 	/* WA 1408330847 */
1104 	if (dev_priv->psr.psr2_sel_fetch_enabled &&
1105 	    (IS_TGL_DISP_REVID(dev_priv, TGL_REVID_A0, TGL_REVID_A0) ||
1106 	     IS_RKL_REVID(dev_priv, RKL_REVID_A0, RKL_REVID_A0)))
1107 		intel_de_rmw(dev_priv, CHICKEN_PAR1_1,
1108 			     DIS_RAM_BYPASS_PSR2_MAN_TRACK, 0);
1109 
1110 	/* Disable PSR on Sink */
1111 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
1112 
1113 	if (dev_priv->psr.psr2_enabled)
1114 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, 0);
1115 
1116 	dev_priv->psr.enabled = false;
1117 }
1118 
1119 /**
1120  * intel_psr_disable - Disable PSR
1121  * @intel_dp: Intel DP
1122  * @old_crtc_state: old CRTC state
1123  *
1124  * This function needs to be called before disabling pipe.
1125  */
1126 void intel_psr_disable(struct intel_dp *intel_dp,
1127 		       const struct intel_crtc_state *old_crtc_state)
1128 {
1129 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1130 
1131 	if (!old_crtc_state->has_psr)
1132 		return;
1133 
1134 	if (drm_WARN_ON(&dev_priv->drm, !CAN_PSR(dev_priv)))
1135 		return;
1136 
1137 	mutex_lock(&dev_priv->psr.lock);
1138 
1139 	intel_psr_disable_locked(intel_dp);
1140 
1141 	mutex_unlock(&dev_priv->psr.lock);
1142 	cancel_work_sync(&dev_priv->psr.work);
1143 	cancel_delayed_work_sync(&dev_priv->psr.dc3co_work);
1144 }
1145 
1146 static void psr_force_hw_tracking_exit(struct drm_i915_private *dev_priv)
1147 {
1148 	if (IS_TIGERLAKE(dev_priv))
1149 		/*
1150 		 * Writes to CURSURFLIVE in TGL are causing IOMMU errors and
1151 		 * visual glitches that are often reproduced when executing
1152 		 * CPU intensive workloads while a eDP 4K panel is attached.
1153 		 *
1154 		 * Manually exiting PSR causes the frontbuffer to be updated
1155 		 * without glitches and the IOMMU errors are also gone but
1156 		 * this comes at the cost of less time with PSR active.
1157 		 *
1158 		 * So using this workaround until this issue is root caused
1159 		 * and a better fix is found.
1160 		 */
1161 		intel_psr_exit(dev_priv);
1162 	else if (INTEL_GEN(dev_priv) >= 9)
1163 		/*
1164 		 * Display WA #0884: skl+
1165 		 * This documented WA for bxt can be safely applied
1166 		 * broadly so we can force HW tracking to exit PSR
1167 		 * instead of disabling and re-enabling.
1168 		 * Workaround tells us to write 0 to CUR_SURFLIVE_A,
1169 		 * but it makes more sense write to the current active
1170 		 * pipe.
1171 		 */
1172 		intel_de_write(dev_priv, CURSURFLIVE(dev_priv->psr.pipe), 0);
1173 	else
1174 		/*
1175 		 * A write to CURSURFLIVE do not cause HW tracking to exit PSR
1176 		 * on older gens so doing the manual exit instead.
1177 		 */
1178 		intel_psr_exit(dev_priv);
1179 }
1180 
1181 void intel_psr2_program_plane_sel_fetch(struct intel_plane *plane,
1182 					const struct intel_crtc_state *crtc_state,
1183 					const struct intel_plane_state *plane_state,
1184 					int color_plane)
1185 {
1186 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1187 	enum pipe pipe = plane->pipe;
1188 	const struct drm_rect *clip;
1189 	u32 val, offset;
1190 	int ret, x, y;
1191 
1192 	if (!crtc_state->enable_psr2_sel_fetch)
1193 		return;
1194 
1195 	val = plane_state ? plane_state->ctl : 0;
1196 	val &= plane->id == PLANE_CURSOR ? val : PLANE_SEL_FETCH_CTL_ENABLE;
1197 	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_CTL(pipe, plane->id), val);
1198 	if (!val || plane->id == PLANE_CURSOR)
1199 		return;
1200 
1201 	clip = &plane_state->psr2_sel_fetch_area;
1202 
1203 	val = (clip->y1 + plane_state->uapi.dst.y1) << 16;
1204 	val |= plane_state->uapi.dst.x1;
1205 	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_POS(pipe, plane->id), val);
1206 
1207 	/* TODO: consider auxiliary surfaces */
1208 	x = plane_state->uapi.src.x1 >> 16;
1209 	y = (plane_state->uapi.src.y1 >> 16) + clip->y1;
1210 	ret = skl_calc_main_surface_offset(plane_state, &x, &y, &offset);
1211 	if (ret)
1212 		drm_warn_once(&dev_priv->drm, "skl_calc_main_surface_offset() returned %i\n",
1213 			      ret);
1214 	val = y << 16 | x;
1215 	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_OFFSET(pipe, plane->id),
1216 			  val);
1217 
1218 	/* Sizes are 0 based */
1219 	val = (drm_rect_height(clip) - 1) << 16;
1220 	val |= (drm_rect_width(&plane_state->uapi.src) >> 16) - 1;
1221 	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_SIZE(pipe, plane->id), val);
1222 }
1223 
1224 void intel_psr2_program_trans_man_trk_ctl(const struct intel_crtc_state *crtc_state)
1225 {
1226 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1227 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1228 	struct i915_psr *psr = &dev_priv->psr;
1229 
1230 	if (!HAS_PSR2_SEL_FETCH(dev_priv) ||
1231 	    !crtc_state->enable_psr2_sel_fetch)
1232 		return;
1233 
1234 	intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(psr->transcoder),
1235 		       crtc_state->psr2_man_track_ctl);
1236 }
1237 
1238 static void psr2_man_trk_ctl_calc(struct intel_crtc_state *crtc_state,
1239 				  struct drm_rect *clip, bool full_update)
1240 {
1241 	u32 val = PSR2_MAN_TRK_CTL_ENABLE;
1242 
1243 	if (full_update) {
1244 		val |= PSR2_MAN_TRK_CTL_SF_SINGLE_FULL_FRAME;
1245 		goto exit;
1246 	}
1247 
1248 	if (clip->y1 == -1)
1249 		goto exit;
1250 
1251 	drm_WARN_ON(crtc_state->uapi.crtc->dev, clip->y1 % 4 || clip->y2 % 4);
1252 
1253 	val |= PSR2_MAN_TRK_CTL_SF_PARTIAL_FRAME_UPDATE;
1254 	val |= PSR2_MAN_TRK_CTL_SU_REGION_START_ADDR(clip->y1 / 4 + 1);
1255 	val |= PSR2_MAN_TRK_CTL_SU_REGION_END_ADDR(clip->y2 / 4 + 1);
1256 exit:
1257 	crtc_state->psr2_man_track_ctl = val;
1258 }
1259 
1260 static void clip_area_update(struct drm_rect *overlap_damage_area,
1261 			     struct drm_rect *damage_area)
1262 {
1263 	if (overlap_damage_area->y1 == -1) {
1264 		overlap_damage_area->y1 = damage_area->y1;
1265 		overlap_damage_area->y2 = damage_area->y2;
1266 		return;
1267 	}
1268 
1269 	if (damage_area->y1 < overlap_damage_area->y1)
1270 		overlap_damage_area->y1 = damage_area->y1;
1271 
1272 	if (damage_area->y2 > overlap_damage_area->y2)
1273 		overlap_damage_area->y2 = damage_area->y2;
1274 }
1275 
1276 int intel_psr2_sel_fetch_update(struct intel_atomic_state *state,
1277 				struct intel_crtc *crtc)
1278 {
1279 	struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
1280 	struct drm_rect pipe_clip = { .x1 = 0, .y1 = -1, .x2 = INT_MAX, .y2 = -1 };
1281 	struct intel_plane_state *new_plane_state, *old_plane_state;
1282 	struct intel_plane *plane;
1283 	bool full_update = false;
1284 	int i, ret;
1285 
1286 	if (!crtc_state->enable_psr2_sel_fetch)
1287 		return 0;
1288 
1289 	ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
1290 	if (ret)
1291 		return ret;
1292 
1293 	/*
1294 	 * Calculate minimal selective fetch area of each plane and calculate
1295 	 * the pipe damaged area.
1296 	 * In the next loop the plane selective fetch area will actually be set
1297 	 * using whole pipe damaged area.
1298 	 */
1299 	for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
1300 					     new_plane_state, i) {
1301 		struct drm_rect src, damaged_area = { .y1 = -1 };
1302 		struct drm_mode_rect *damaged_clips;
1303 		u32 num_clips, j;
1304 
1305 		if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc)
1306 			continue;
1307 
1308 		if (!new_plane_state->uapi.visible &&
1309 		    !old_plane_state->uapi.visible)
1310 			continue;
1311 
1312 		/*
1313 		 * TODO: Not clear how to handle planes with negative position,
1314 		 * also planes are not updated if they have a negative X
1315 		 * position so for now doing a full update in this cases
1316 		 */
1317 		if (new_plane_state->uapi.dst.y1 < 0 ||
1318 		    new_plane_state->uapi.dst.x1 < 0) {
1319 			full_update = true;
1320 			break;
1321 		}
1322 
1323 		num_clips = drm_plane_get_damage_clips_count(&new_plane_state->uapi);
1324 
1325 		/*
1326 		 * If visibility or plane moved, mark the whole plane area as
1327 		 * damaged as it needs to be complete redraw in the new and old
1328 		 * position.
1329 		 */
1330 		if (new_plane_state->uapi.visible != old_plane_state->uapi.visible ||
1331 		    !drm_rect_equals(&new_plane_state->uapi.dst,
1332 				     &old_plane_state->uapi.dst)) {
1333 			if (old_plane_state->uapi.visible) {
1334 				damaged_area.y1 = old_plane_state->uapi.dst.y1;
1335 				damaged_area.y2 = old_plane_state->uapi.dst.y2;
1336 				clip_area_update(&pipe_clip, &damaged_area);
1337 			}
1338 
1339 			if (new_plane_state->uapi.visible) {
1340 				damaged_area.y1 = new_plane_state->uapi.dst.y1;
1341 				damaged_area.y2 = new_plane_state->uapi.dst.y2;
1342 				clip_area_update(&pipe_clip, &damaged_area);
1343 			}
1344 			continue;
1345 		} else if (new_plane_state->uapi.alpha != old_plane_state->uapi.alpha ||
1346 			   (!num_clips &&
1347 			    new_plane_state->uapi.fb != old_plane_state->uapi.fb)) {
1348 			/*
1349 			 * If the plane don't have damaged areas but the
1350 			 * framebuffer changed or alpha changed, mark the whole
1351 			 * plane area as damaged.
1352 			 */
1353 			damaged_area.y1 = new_plane_state->uapi.dst.y1;
1354 			damaged_area.y2 = new_plane_state->uapi.dst.y2;
1355 			clip_area_update(&pipe_clip, &damaged_area);
1356 			continue;
1357 		}
1358 
1359 		drm_rect_fp_to_int(&src, &new_plane_state->uapi.src);
1360 		damaged_clips = drm_plane_get_damage_clips(&new_plane_state->uapi);
1361 
1362 		for (j = 0; j < num_clips; j++) {
1363 			struct drm_rect clip;
1364 
1365 			clip.x1 = damaged_clips[j].x1;
1366 			clip.y1 = damaged_clips[j].y1;
1367 			clip.x2 = damaged_clips[j].x2;
1368 			clip.y2 = damaged_clips[j].y2;
1369 			if (drm_rect_intersect(&clip, &src))
1370 				clip_area_update(&damaged_area, &clip);
1371 		}
1372 
1373 		if (damaged_area.y1 == -1)
1374 			continue;
1375 
1376 		damaged_area.y1 += new_plane_state->uapi.dst.y1 - src.y1;
1377 		damaged_area.y2 += new_plane_state->uapi.dst.y1 - src.y1;
1378 		clip_area_update(&pipe_clip, &damaged_area);
1379 	}
1380 
1381 	if (full_update)
1382 		goto skip_sel_fetch_set_loop;
1383 
1384 	/* It must be aligned to 4 lines */
1385 	pipe_clip.y1 -= pipe_clip.y1 % 4;
1386 	if (pipe_clip.y2 % 4)
1387 		pipe_clip.y2 = ((pipe_clip.y2 / 4) + 1) * 4;
1388 
1389 	/*
1390 	 * Now that we have the pipe damaged area check if it intersect with
1391 	 * every plane, if it does set the plane selective fetch area.
1392 	 */
1393 	for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
1394 					     new_plane_state, i) {
1395 		struct drm_rect *sel_fetch_area, inter;
1396 
1397 		if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc ||
1398 		    !new_plane_state->uapi.visible)
1399 			continue;
1400 
1401 		inter = pipe_clip;
1402 		if (!drm_rect_intersect(&inter, &new_plane_state->uapi.dst))
1403 			continue;
1404 
1405 		sel_fetch_area = &new_plane_state->psr2_sel_fetch_area;
1406 		sel_fetch_area->y1 = inter.y1 - new_plane_state->uapi.dst.y1;
1407 		sel_fetch_area->y2 = inter.y2 - new_plane_state->uapi.dst.y1;
1408 	}
1409 
1410 skip_sel_fetch_set_loop:
1411 	psr2_man_trk_ctl_calc(crtc_state, &pipe_clip, full_update);
1412 	return 0;
1413 }
1414 
1415 /**
1416  * intel_psr_update - Update PSR state
1417  * @intel_dp: Intel DP
1418  * @crtc_state: new CRTC state
1419  * @conn_state: new CONNECTOR state
1420  *
1421  * This functions will update PSR states, disabling, enabling or switching PSR
1422  * version when executing fastsets. For full modeset, intel_psr_disable() and
1423  * intel_psr_enable() should be called instead.
1424  */
1425 void intel_psr_update(struct intel_dp *intel_dp,
1426 		      const struct intel_crtc_state *crtc_state,
1427 		      const struct drm_connector_state *conn_state)
1428 {
1429 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1430 	struct i915_psr *psr = &dev_priv->psr;
1431 	bool enable, psr2_enable;
1432 
1433 	if (!CAN_PSR(dev_priv) || READ_ONCE(psr->dp) != intel_dp)
1434 		return;
1435 
1436 	mutex_lock(&dev_priv->psr.lock);
1437 
1438 	enable = crtc_state->has_psr;
1439 	psr2_enable = crtc_state->has_psr2;
1440 
1441 	if (enable == psr->enabled && psr2_enable == psr->psr2_enabled) {
1442 		/* Force a PSR exit when enabling CRC to avoid CRC timeouts */
1443 		if (crtc_state->crc_enabled && psr->enabled)
1444 			psr_force_hw_tracking_exit(dev_priv);
1445 		else if (INTEL_GEN(dev_priv) < 9 && psr->enabled) {
1446 			/*
1447 			 * Activate PSR again after a force exit when enabling
1448 			 * CRC in older gens
1449 			 */
1450 			if (!dev_priv->psr.active &&
1451 			    !dev_priv->psr.busy_frontbuffer_bits)
1452 				schedule_work(&dev_priv->psr.work);
1453 		}
1454 
1455 		goto unlock;
1456 	}
1457 
1458 	if (psr->enabled)
1459 		intel_psr_disable_locked(intel_dp);
1460 
1461 	if (enable)
1462 		intel_psr_enable_locked(dev_priv, crtc_state, conn_state);
1463 
1464 unlock:
1465 	mutex_unlock(&dev_priv->psr.lock);
1466 }
1467 
1468 /**
1469  * intel_psr_wait_for_idle - wait for PSR1 to idle
1470  * @new_crtc_state: new CRTC state
1471  * @out_value: PSR status in case of failure
1472  *
1473  * This function is expected to be called from pipe_update_start() where it is
1474  * not expected to race with PSR enable or disable.
1475  *
1476  * Returns: 0 on success or -ETIMEOUT if PSR status does not idle.
1477  */
1478 int intel_psr_wait_for_idle(const struct intel_crtc_state *new_crtc_state,
1479 			    u32 *out_value)
1480 {
1481 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1482 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1483 
1484 	if (!dev_priv->psr.enabled || !new_crtc_state->has_psr)
1485 		return 0;
1486 
1487 	/* FIXME: Update this for PSR2 if we need to wait for idle */
1488 	if (READ_ONCE(dev_priv->psr.psr2_enabled))
1489 		return 0;
1490 
1491 	/*
1492 	 * From bspec: Panel Self Refresh (BDW+)
1493 	 * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of
1494 	 * exit training time + 1.5 ms of aux channel handshake. 50 ms is
1495 	 * defensive enough to cover everything.
1496 	 */
1497 
1498 	return __intel_wait_for_register(&dev_priv->uncore,
1499 					 EDP_PSR_STATUS(dev_priv->psr.transcoder),
1500 					 EDP_PSR_STATUS_STATE_MASK,
1501 					 EDP_PSR_STATUS_STATE_IDLE, 2, 50,
1502 					 out_value);
1503 }
1504 
1505 static bool __psr_wait_for_idle_locked(struct drm_i915_private *dev_priv)
1506 {
1507 	i915_reg_t reg;
1508 	u32 mask;
1509 	int err;
1510 
1511 	if (!dev_priv->psr.enabled)
1512 		return false;
1513 
1514 	if (dev_priv->psr.psr2_enabled) {
1515 		reg = EDP_PSR2_STATUS(dev_priv->psr.transcoder);
1516 		mask = EDP_PSR2_STATUS_STATE_MASK;
1517 	} else {
1518 		reg = EDP_PSR_STATUS(dev_priv->psr.transcoder);
1519 		mask = EDP_PSR_STATUS_STATE_MASK;
1520 	}
1521 
1522 	mutex_unlock(&dev_priv->psr.lock);
1523 
1524 	err = intel_de_wait_for_clear(dev_priv, reg, mask, 50);
1525 	if (err)
1526 		drm_err(&dev_priv->drm,
1527 			"Timed out waiting for PSR Idle for re-enable\n");
1528 
1529 	/* After the unlocked wait, verify that PSR is still wanted! */
1530 	mutex_lock(&dev_priv->psr.lock);
1531 	return err == 0 && dev_priv->psr.enabled;
1532 }
1533 
1534 static int intel_psr_fastset_force(struct drm_i915_private *dev_priv)
1535 {
1536 	struct drm_connector_list_iter conn_iter;
1537 	struct drm_device *dev = &dev_priv->drm;
1538 	struct drm_modeset_acquire_ctx ctx;
1539 	struct drm_atomic_state *state;
1540 	struct drm_connector *conn;
1541 	int err = 0;
1542 
1543 	state = drm_atomic_state_alloc(dev);
1544 	if (!state)
1545 		return -ENOMEM;
1546 
1547 	drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
1548 	state->acquire_ctx = &ctx;
1549 
1550 retry:
1551 
1552 	drm_connector_list_iter_begin(dev, &conn_iter);
1553 	drm_for_each_connector_iter(conn, &conn_iter) {
1554 		struct drm_connector_state *conn_state;
1555 		struct drm_crtc_state *crtc_state;
1556 
1557 		if (conn->connector_type != DRM_MODE_CONNECTOR_eDP)
1558 			continue;
1559 
1560 		conn_state = drm_atomic_get_connector_state(state, conn);
1561 		if (IS_ERR(conn_state)) {
1562 			err = PTR_ERR(conn_state);
1563 			break;
1564 		}
1565 
1566 		if (!conn_state->crtc)
1567 			continue;
1568 
1569 		crtc_state = drm_atomic_get_crtc_state(state, conn_state->crtc);
1570 		if (IS_ERR(crtc_state)) {
1571 			err = PTR_ERR(crtc_state);
1572 			break;
1573 		}
1574 
1575 		/* Mark mode as changed to trigger a pipe->update() */
1576 		crtc_state->mode_changed = true;
1577 	}
1578 	drm_connector_list_iter_end(&conn_iter);
1579 
1580 	if (err == 0)
1581 		err = drm_atomic_commit(state);
1582 
1583 	if (err == -EDEADLK) {
1584 		drm_atomic_state_clear(state);
1585 		err = drm_modeset_backoff(&ctx);
1586 		if (!err)
1587 			goto retry;
1588 	}
1589 
1590 	drm_modeset_drop_locks(&ctx);
1591 	drm_modeset_acquire_fini(&ctx);
1592 	drm_atomic_state_put(state);
1593 
1594 	return err;
1595 }
1596 
1597 int intel_psr_debug_set(struct drm_i915_private *dev_priv, u64 val)
1598 {
1599 	const u32 mode = val & I915_PSR_DEBUG_MODE_MASK;
1600 	u32 old_mode;
1601 	int ret;
1602 
1603 	if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) ||
1604 	    mode > I915_PSR_DEBUG_FORCE_PSR1) {
1605 		drm_dbg_kms(&dev_priv->drm, "Invalid debug mask %llx\n", val);
1606 		return -EINVAL;
1607 	}
1608 
1609 	ret = mutex_lock_interruptible(&dev_priv->psr.lock);
1610 	if (ret)
1611 		return ret;
1612 
1613 	old_mode = dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK;
1614 	dev_priv->psr.debug = val;
1615 
1616 	/*
1617 	 * Do it right away if it's already enabled, otherwise it will be done
1618 	 * when enabling the source.
1619 	 */
1620 	if (dev_priv->psr.enabled)
1621 		psr_irq_control(dev_priv);
1622 
1623 	mutex_unlock(&dev_priv->psr.lock);
1624 
1625 	if (old_mode != mode)
1626 		ret = intel_psr_fastset_force(dev_priv);
1627 
1628 	return ret;
1629 }
1630 
1631 static void intel_psr_handle_irq(struct drm_i915_private *dev_priv)
1632 {
1633 	struct i915_psr *psr = &dev_priv->psr;
1634 
1635 	intel_psr_disable_locked(psr->dp);
1636 	psr->sink_not_reliable = true;
1637 	/* let's make sure that sink is awaken */
1638 	drm_dp_dpcd_writeb(&psr->dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
1639 }
1640 
1641 static void intel_psr_work(struct work_struct *work)
1642 {
1643 	struct drm_i915_private *dev_priv =
1644 		container_of(work, typeof(*dev_priv), psr.work);
1645 
1646 	mutex_lock(&dev_priv->psr.lock);
1647 
1648 	if (!dev_priv->psr.enabled)
1649 		goto unlock;
1650 
1651 	if (READ_ONCE(dev_priv->psr.irq_aux_error))
1652 		intel_psr_handle_irq(dev_priv);
1653 
1654 	/*
1655 	 * We have to make sure PSR is ready for re-enable
1656 	 * otherwise it keeps disabled until next full enable/disable cycle.
1657 	 * PSR might take some time to get fully disabled
1658 	 * and be ready for re-enable.
1659 	 */
1660 	if (!__psr_wait_for_idle_locked(dev_priv))
1661 		goto unlock;
1662 
1663 	/*
1664 	 * The delayed work can race with an invalidate hence we need to
1665 	 * recheck. Since psr_flush first clears this and then reschedules we
1666 	 * won't ever miss a flush when bailing out here.
1667 	 */
1668 	if (dev_priv->psr.busy_frontbuffer_bits || dev_priv->psr.active)
1669 		goto unlock;
1670 
1671 	intel_psr_activate(dev_priv->psr.dp);
1672 unlock:
1673 	mutex_unlock(&dev_priv->psr.lock);
1674 }
1675 
1676 /**
1677  * intel_psr_invalidate - Invalidade PSR
1678  * @dev_priv: i915 device
1679  * @frontbuffer_bits: frontbuffer plane tracking bits
1680  * @origin: which operation caused the invalidate
1681  *
1682  * Since the hardware frontbuffer tracking has gaps we need to integrate
1683  * with the software frontbuffer tracking. This function gets called every
1684  * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
1685  * disabled if the frontbuffer mask contains a buffer relevant to PSR.
1686  *
1687  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
1688  */
1689 void intel_psr_invalidate(struct drm_i915_private *dev_priv,
1690 			  unsigned frontbuffer_bits, enum fb_op_origin origin)
1691 {
1692 	if (!CAN_PSR(dev_priv))
1693 		return;
1694 
1695 	if (origin == ORIGIN_FLIP)
1696 		return;
1697 
1698 	mutex_lock(&dev_priv->psr.lock);
1699 	if (!dev_priv->psr.enabled) {
1700 		mutex_unlock(&dev_priv->psr.lock);
1701 		return;
1702 	}
1703 
1704 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
1705 	dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
1706 
1707 	if (frontbuffer_bits)
1708 		intel_psr_exit(dev_priv);
1709 
1710 	mutex_unlock(&dev_priv->psr.lock);
1711 }
1712 
1713 /*
1714  * When we will be completely rely on PSR2 S/W tracking in future,
1715  * intel_psr_flush() will invalidate and flush the PSR for ORIGIN_FLIP
1716  * event also therefore tgl_dc3co_flush() require to be changed
1717  * accordingly in future.
1718  */
1719 static void
1720 tgl_dc3co_flush(struct drm_i915_private *dev_priv,
1721 		unsigned int frontbuffer_bits, enum fb_op_origin origin)
1722 {
1723 	mutex_lock(&dev_priv->psr.lock);
1724 
1725 	if (!dev_priv->psr.dc3co_enabled)
1726 		goto unlock;
1727 
1728 	if (!dev_priv->psr.psr2_enabled || !dev_priv->psr.active)
1729 		goto unlock;
1730 
1731 	/*
1732 	 * At every frontbuffer flush flip event modified delay of delayed work,
1733 	 * when delayed work schedules that means display has been idle.
1734 	 */
1735 	if (!(frontbuffer_bits &
1736 	    INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe)))
1737 		goto unlock;
1738 
1739 	tgl_psr2_enable_dc3co(dev_priv);
1740 	mod_delayed_work(system_wq, &dev_priv->psr.dc3co_work,
1741 			 dev_priv->psr.dc3co_exit_delay);
1742 
1743 unlock:
1744 	mutex_unlock(&dev_priv->psr.lock);
1745 }
1746 
1747 /**
1748  * intel_psr_flush - Flush PSR
1749  * @dev_priv: i915 device
1750  * @frontbuffer_bits: frontbuffer plane tracking bits
1751  * @origin: which operation caused the flush
1752  *
1753  * Since the hardware frontbuffer tracking has gaps we need to integrate
1754  * with the software frontbuffer tracking. This function gets called every
1755  * time frontbuffer rendering has completed and flushed out to memory. PSR
1756  * can be enabled again if no other frontbuffer relevant to PSR is dirty.
1757  *
1758  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
1759  */
1760 void intel_psr_flush(struct drm_i915_private *dev_priv,
1761 		     unsigned frontbuffer_bits, enum fb_op_origin origin)
1762 {
1763 	if (!CAN_PSR(dev_priv))
1764 		return;
1765 
1766 	if (origin == ORIGIN_FLIP) {
1767 		tgl_dc3co_flush(dev_priv, frontbuffer_bits, origin);
1768 		return;
1769 	}
1770 
1771 	mutex_lock(&dev_priv->psr.lock);
1772 	if (!dev_priv->psr.enabled) {
1773 		mutex_unlock(&dev_priv->psr.lock);
1774 		return;
1775 	}
1776 
1777 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
1778 	dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
1779 
1780 	/* By definition flush = invalidate + flush */
1781 	if (frontbuffer_bits)
1782 		psr_force_hw_tracking_exit(dev_priv);
1783 
1784 	if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
1785 		schedule_work(&dev_priv->psr.work);
1786 	mutex_unlock(&dev_priv->psr.lock);
1787 }
1788 
1789 /**
1790  * intel_psr_init - Init basic PSR work and mutex.
1791  * @dev_priv: i915 device private
1792  *
1793  * This function is  called only once at driver load to initialize basic
1794  * PSR stuff.
1795  */
1796 void intel_psr_init(struct drm_i915_private *dev_priv)
1797 {
1798 	if (!HAS_PSR(dev_priv))
1799 		return;
1800 
1801 	if (!dev_priv->psr.sink_support)
1802 		return;
1803 
1804 	if (IS_HASWELL(dev_priv))
1805 		/*
1806 		 * HSW don't have PSR registers on the same space as transcoder
1807 		 * so set this to a value that when subtract to the register
1808 		 * in transcoder space results in the right offset for HSW
1809 		 */
1810 		dev_priv->hsw_psr_mmio_adjust = _SRD_CTL_EDP - _HSW_EDP_PSR_BASE;
1811 
1812 	if (dev_priv->params.enable_psr == -1)
1813 		if (INTEL_GEN(dev_priv) < 9 || !dev_priv->vbt.psr.enable)
1814 			dev_priv->params.enable_psr = 0;
1815 
1816 	/* Set link_standby x link_off defaults */
1817 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1818 		/* HSW and BDW require workarounds that we don't implement. */
1819 		dev_priv->psr.link_standby = false;
1820 	else if (INTEL_GEN(dev_priv) < 12)
1821 		/* For new platforms up to TGL let's respect VBT back again */
1822 		dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
1823 
1824 	INIT_WORK(&dev_priv->psr.work, intel_psr_work);
1825 	INIT_DELAYED_WORK(&dev_priv->psr.dc3co_work, tgl_dc3co_disable_work);
1826 	mutex_init(&dev_priv->psr.lock);
1827 }
1828 
1829 static int psr_get_status_and_error_status(struct intel_dp *intel_dp,
1830 					   u8 *status, u8 *error_status)
1831 {
1832 	struct drm_dp_aux *aux = &intel_dp->aux;
1833 	int ret;
1834 
1835 	ret = drm_dp_dpcd_readb(aux, DP_PSR_STATUS, status);
1836 	if (ret != 1)
1837 		return ret;
1838 
1839 	ret = drm_dp_dpcd_readb(aux, DP_PSR_ERROR_STATUS, error_status);
1840 	if (ret != 1)
1841 		return ret;
1842 
1843 	*status = *status & DP_PSR_SINK_STATE_MASK;
1844 
1845 	return 0;
1846 }
1847 
1848 static void psr_alpm_check(struct intel_dp *intel_dp)
1849 {
1850 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1851 	struct drm_dp_aux *aux = &intel_dp->aux;
1852 	struct i915_psr *psr = &dev_priv->psr;
1853 	u8 val;
1854 	int r;
1855 
1856 	if (!psr->psr2_enabled)
1857 		return;
1858 
1859 	r = drm_dp_dpcd_readb(aux, DP_RECEIVER_ALPM_STATUS, &val);
1860 	if (r != 1) {
1861 		drm_err(&dev_priv->drm, "Error reading ALPM status\n");
1862 		return;
1863 	}
1864 
1865 	if (val & DP_ALPM_LOCK_TIMEOUT_ERROR) {
1866 		intel_psr_disable_locked(intel_dp);
1867 		psr->sink_not_reliable = true;
1868 		drm_dbg_kms(&dev_priv->drm,
1869 			    "ALPM lock timeout error, disabling PSR\n");
1870 
1871 		/* Clearing error */
1872 		drm_dp_dpcd_writeb(aux, DP_RECEIVER_ALPM_STATUS, val);
1873 	}
1874 }
1875 
1876 static void psr_capability_changed_check(struct intel_dp *intel_dp)
1877 {
1878 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1879 	struct i915_psr *psr = &dev_priv->psr;
1880 	u8 val;
1881 	int r;
1882 
1883 	r = drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ESI, &val);
1884 	if (r != 1) {
1885 		drm_err(&dev_priv->drm, "Error reading DP_PSR_ESI\n");
1886 		return;
1887 	}
1888 
1889 	if (val & DP_PSR_CAPS_CHANGE) {
1890 		intel_psr_disable_locked(intel_dp);
1891 		psr->sink_not_reliable = true;
1892 		drm_dbg_kms(&dev_priv->drm,
1893 			    "Sink PSR capability changed, disabling PSR\n");
1894 
1895 		/* Clearing it */
1896 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ESI, val);
1897 	}
1898 }
1899 
1900 void intel_psr_short_pulse(struct intel_dp *intel_dp)
1901 {
1902 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1903 	struct i915_psr *psr = &dev_priv->psr;
1904 	u8 status, error_status;
1905 	const u8 errors = DP_PSR_RFB_STORAGE_ERROR |
1906 			  DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR |
1907 			  DP_PSR_LINK_CRC_ERROR;
1908 
1909 	if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
1910 		return;
1911 
1912 	mutex_lock(&psr->lock);
1913 
1914 	if (!psr->enabled || psr->dp != intel_dp)
1915 		goto exit;
1916 
1917 	if (psr_get_status_and_error_status(intel_dp, &status, &error_status)) {
1918 		drm_err(&dev_priv->drm,
1919 			"Error reading PSR status or error status\n");
1920 		goto exit;
1921 	}
1922 
1923 	if (status == DP_PSR_SINK_INTERNAL_ERROR || (error_status & errors)) {
1924 		intel_psr_disable_locked(intel_dp);
1925 		psr->sink_not_reliable = true;
1926 	}
1927 
1928 	if (status == DP_PSR_SINK_INTERNAL_ERROR && !error_status)
1929 		drm_dbg_kms(&dev_priv->drm,
1930 			    "PSR sink internal error, disabling PSR\n");
1931 	if (error_status & DP_PSR_RFB_STORAGE_ERROR)
1932 		drm_dbg_kms(&dev_priv->drm,
1933 			    "PSR RFB storage error, disabling PSR\n");
1934 	if (error_status & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR)
1935 		drm_dbg_kms(&dev_priv->drm,
1936 			    "PSR VSC SDP uncorrectable error, disabling PSR\n");
1937 	if (error_status & DP_PSR_LINK_CRC_ERROR)
1938 		drm_dbg_kms(&dev_priv->drm,
1939 			    "PSR Link CRC error, disabling PSR\n");
1940 
1941 	if (error_status & ~errors)
1942 		drm_err(&dev_priv->drm,
1943 			"PSR_ERROR_STATUS unhandled errors %x\n",
1944 			error_status & ~errors);
1945 	/* clear status register */
1946 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, error_status);
1947 
1948 	psr_alpm_check(intel_dp);
1949 	psr_capability_changed_check(intel_dp);
1950 
1951 exit:
1952 	mutex_unlock(&psr->lock);
1953 }
1954 
1955 bool intel_psr_enabled(struct intel_dp *intel_dp)
1956 {
1957 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1958 	bool ret;
1959 
1960 	if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
1961 		return false;
1962 
1963 	mutex_lock(&dev_priv->psr.lock);
1964 	ret = (dev_priv->psr.dp == intel_dp && dev_priv->psr.enabled);
1965 	mutex_unlock(&dev_priv->psr.lock);
1966 
1967 	return ret;
1968 }
1969