1 /* 2 * Copyright © 2014 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24 #include <drm/drm_atomic_helper.h> 25 #include <drm/drm_damage_helper.h> 26 27 #include "display/intel_dp.h" 28 29 #include "i915_drv.h" 30 #include "intel_atomic.h" 31 #include "intel_crtc.h" 32 #include "intel_de.h" 33 #include "intel_display_types.h" 34 #include "intel_dp_aux.h" 35 #include "intel_hdmi.h" 36 #include "intel_psr.h" 37 #include "intel_snps_phy.h" 38 #include "skl_universal_plane.h" 39 40 /** 41 * DOC: Panel Self Refresh (PSR/SRD) 42 * 43 * Since Haswell Display controller supports Panel Self-Refresh on display 44 * panels witch have a remote frame buffer (RFB) implemented according to PSR 45 * spec in eDP1.3. PSR feature allows the display to go to lower standby states 46 * when system is idle but display is on as it eliminates display refresh 47 * request to DDR memory completely as long as the frame buffer for that 48 * display is unchanged. 49 * 50 * Panel Self Refresh must be supported by both Hardware (source) and 51 * Panel (sink). 52 * 53 * PSR saves power by caching the framebuffer in the panel RFB, which allows us 54 * to power down the link and memory controller. For DSI panels the same idea 55 * is called "manual mode". 56 * 57 * The implementation uses the hardware-based PSR support which automatically 58 * enters/exits self-refresh mode. The hardware takes care of sending the 59 * required DP aux message and could even retrain the link (that part isn't 60 * enabled yet though). The hardware also keeps track of any frontbuffer 61 * changes to know when to exit self-refresh mode again. Unfortunately that 62 * part doesn't work too well, hence why the i915 PSR support uses the 63 * software frontbuffer tracking to make sure it doesn't miss a screen 64 * update. For this integration intel_psr_invalidate() and intel_psr_flush() 65 * get called by the frontbuffer tracking code. Note that because of locking 66 * issues the self-refresh re-enable code is done from a work queue, which 67 * must be correctly synchronized/cancelled when shutting down the pipe." 68 * 69 * DC3CO (DC3 clock off) 70 * 71 * On top of PSR2, GEN12 adds a intermediate power savings state that turns 72 * clock off automatically during PSR2 idle state. 73 * The smaller overhead of DC3co entry/exit vs. the overhead of PSR2 deep sleep 74 * entry/exit allows the HW to enter a low-power state even when page flipping 75 * periodically (for instance a 30fps video playback scenario). 76 * 77 * Every time a flips occurs PSR2 will get out of deep sleep state(if it was), 78 * so DC3CO is enabled and tgl_dc3co_disable_work is schedule to run after 6 79 * frames, if no other flip occurs and the function above is executed, DC3CO is 80 * disabled and PSR2 is configured to enter deep sleep, resetting again in case 81 * of another flip. 82 * Front buffer modifications do not trigger DC3CO activation on purpose as it 83 * would bring a lot of complexity and most of the moderns systems will only 84 * use page flips. 85 */ 86 87 static bool psr_global_enabled(struct intel_dp *intel_dp) 88 { 89 struct intel_connector *connector = intel_dp->attached_connector; 90 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 91 92 switch (intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK) { 93 case I915_PSR_DEBUG_DEFAULT: 94 if (i915->params.enable_psr == -1) 95 return connector->panel.vbt.psr.enable; 96 return i915->params.enable_psr; 97 case I915_PSR_DEBUG_DISABLE: 98 return false; 99 default: 100 return true; 101 } 102 } 103 104 static bool psr2_global_enabled(struct intel_dp *intel_dp) 105 { 106 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 107 108 switch (intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK) { 109 case I915_PSR_DEBUG_DISABLE: 110 case I915_PSR_DEBUG_FORCE_PSR1: 111 return false; 112 default: 113 if (i915->params.enable_psr == 1) 114 return false; 115 return true; 116 } 117 } 118 119 static void psr_irq_control(struct intel_dp *intel_dp) 120 { 121 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 122 enum transcoder trans_shift; 123 i915_reg_t imr_reg; 124 u32 mask, val; 125 126 /* 127 * gen12+ has registers relative to transcoder and one per transcoder 128 * using the same bit definition: handle it as TRANSCODER_EDP to force 129 * 0 shift in bit definition 130 */ 131 if (DISPLAY_VER(dev_priv) >= 12) { 132 trans_shift = 0; 133 imr_reg = TRANS_PSR_IMR(intel_dp->psr.transcoder); 134 } else { 135 trans_shift = intel_dp->psr.transcoder; 136 imr_reg = EDP_PSR_IMR; 137 } 138 139 mask = EDP_PSR_ERROR(trans_shift); 140 if (intel_dp->psr.debug & I915_PSR_DEBUG_IRQ) 141 mask |= EDP_PSR_POST_EXIT(trans_shift) | 142 EDP_PSR_PRE_ENTRY(trans_shift); 143 144 /* Warning: it is masking/setting reserved bits too */ 145 val = intel_de_read(dev_priv, imr_reg); 146 val &= ~EDP_PSR_TRANS_MASK(trans_shift); 147 val |= ~mask; 148 intel_de_write(dev_priv, imr_reg, val); 149 } 150 151 static void psr_event_print(struct drm_i915_private *i915, 152 u32 val, bool psr2_enabled) 153 { 154 drm_dbg_kms(&i915->drm, "PSR exit events: 0x%x\n", val); 155 if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE) 156 drm_dbg_kms(&i915->drm, "\tPSR2 watchdog timer expired\n"); 157 if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled) 158 drm_dbg_kms(&i915->drm, "\tPSR2 disabled\n"); 159 if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN) 160 drm_dbg_kms(&i915->drm, "\tSU dirty FIFO underrun\n"); 161 if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN) 162 drm_dbg_kms(&i915->drm, "\tSU CRC FIFO underrun\n"); 163 if (val & PSR_EVENT_GRAPHICS_RESET) 164 drm_dbg_kms(&i915->drm, "\tGraphics reset\n"); 165 if (val & PSR_EVENT_PCH_INTERRUPT) 166 drm_dbg_kms(&i915->drm, "\tPCH interrupt\n"); 167 if (val & PSR_EVENT_MEMORY_UP) 168 drm_dbg_kms(&i915->drm, "\tMemory up\n"); 169 if (val & PSR_EVENT_FRONT_BUFFER_MODIFY) 170 drm_dbg_kms(&i915->drm, "\tFront buffer modification\n"); 171 if (val & PSR_EVENT_WD_TIMER_EXPIRE) 172 drm_dbg_kms(&i915->drm, "\tPSR watchdog timer expired\n"); 173 if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE) 174 drm_dbg_kms(&i915->drm, "\tPIPE registers updated\n"); 175 if (val & PSR_EVENT_REGISTER_UPDATE) 176 drm_dbg_kms(&i915->drm, "\tRegister updated\n"); 177 if (val & PSR_EVENT_HDCP_ENABLE) 178 drm_dbg_kms(&i915->drm, "\tHDCP enabled\n"); 179 if (val & PSR_EVENT_KVMR_SESSION_ENABLE) 180 drm_dbg_kms(&i915->drm, "\tKVMR session enabled\n"); 181 if (val & PSR_EVENT_VBI_ENABLE) 182 drm_dbg_kms(&i915->drm, "\tVBI enabled\n"); 183 if (val & PSR_EVENT_LPSP_MODE_EXIT) 184 drm_dbg_kms(&i915->drm, "\tLPSP mode exited\n"); 185 if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled) 186 drm_dbg_kms(&i915->drm, "\tPSR disabled\n"); 187 } 188 189 void intel_psr_irq_handler(struct intel_dp *intel_dp, u32 psr_iir) 190 { 191 enum transcoder cpu_transcoder = intel_dp->psr.transcoder; 192 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 193 ktime_t time_ns = ktime_get(); 194 enum transcoder trans_shift; 195 i915_reg_t imr_reg; 196 197 if (DISPLAY_VER(dev_priv) >= 12) { 198 trans_shift = 0; 199 imr_reg = TRANS_PSR_IMR(intel_dp->psr.transcoder); 200 } else { 201 trans_shift = intel_dp->psr.transcoder; 202 imr_reg = EDP_PSR_IMR; 203 } 204 205 if (psr_iir & EDP_PSR_PRE_ENTRY(trans_shift)) { 206 intel_dp->psr.last_entry_attempt = time_ns; 207 drm_dbg_kms(&dev_priv->drm, 208 "[transcoder %s] PSR entry attempt in 2 vblanks\n", 209 transcoder_name(cpu_transcoder)); 210 } 211 212 if (psr_iir & EDP_PSR_POST_EXIT(trans_shift)) { 213 intel_dp->psr.last_exit = time_ns; 214 drm_dbg_kms(&dev_priv->drm, 215 "[transcoder %s] PSR exit completed\n", 216 transcoder_name(cpu_transcoder)); 217 218 if (DISPLAY_VER(dev_priv) >= 9) { 219 u32 val = intel_de_read(dev_priv, 220 PSR_EVENT(cpu_transcoder)); 221 bool psr2_enabled = intel_dp->psr.psr2_enabled; 222 223 intel_de_write(dev_priv, PSR_EVENT(cpu_transcoder), 224 val); 225 psr_event_print(dev_priv, val, psr2_enabled); 226 } 227 } 228 229 if (psr_iir & EDP_PSR_ERROR(trans_shift)) { 230 u32 val; 231 232 drm_warn(&dev_priv->drm, "[transcoder %s] PSR aux error\n", 233 transcoder_name(cpu_transcoder)); 234 235 intel_dp->psr.irq_aux_error = true; 236 237 /* 238 * If this interruption is not masked it will keep 239 * interrupting so fast that it prevents the scheduled 240 * work to run. 241 * Also after a PSR error, we don't want to arm PSR 242 * again so we don't care about unmask the interruption 243 * or unset irq_aux_error. 244 */ 245 val = intel_de_read(dev_priv, imr_reg); 246 val |= EDP_PSR_ERROR(trans_shift); 247 intel_de_write(dev_priv, imr_reg, val); 248 249 schedule_work(&intel_dp->psr.work); 250 } 251 } 252 253 static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp) 254 { 255 u8 alpm_caps = 0; 256 257 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP, 258 &alpm_caps) != 1) 259 return false; 260 return alpm_caps & DP_ALPM_CAP; 261 } 262 263 static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp) 264 { 265 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 266 u8 val = 8; /* assume the worst if we can't read the value */ 267 268 if (drm_dp_dpcd_readb(&intel_dp->aux, 269 DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1) 270 val &= DP_MAX_RESYNC_FRAME_COUNT_MASK; 271 else 272 drm_dbg_kms(&i915->drm, 273 "Unable to get sink synchronization latency, assuming 8 frames\n"); 274 return val; 275 } 276 277 static void intel_dp_get_su_granularity(struct intel_dp *intel_dp) 278 { 279 struct drm_i915_private *i915 = dp_to_i915(intel_dp); 280 ssize_t r; 281 u16 w; 282 u8 y; 283 284 /* If sink don't have specific granularity requirements set legacy ones */ 285 if (!(intel_dp->psr_dpcd[1] & DP_PSR2_SU_GRANULARITY_REQUIRED)) { 286 /* As PSR2 HW sends full lines, we do not care about x granularity */ 287 w = 4; 288 y = 4; 289 goto exit; 290 } 291 292 r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_X_GRANULARITY, &w, 2); 293 if (r != 2) 294 drm_dbg_kms(&i915->drm, 295 "Unable to read DP_PSR2_SU_X_GRANULARITY\n"); 296 /* 297 * Spec says that if the value read is 0 the default granularity should 298 * be used instead. 299 */ 300 if (r != 2 || w == 0) 301 w = 4; 302 303 r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_Y_GRANULARITY, &y, 1); 304 if (r != 1) { 305 drm_dbg_kms(&i915->drm, 306 "Unable to read DP_PSR2_SU_Y_GRANULARITY\n"); 307 y = 4; 308 } 309 if (y == 0) 310 y = 1; 311 312 exit: 313 intel_dp->psr.su_w_granularity = w; 314 intel_dp->psr.su_y_granularity = y; 315 } 316 317 void intel_psr_init_dpcd(struct intel_dp *intel_dp) 318 { 319 struct drm_i915_private *dev_priv = 320 to_i915(dp_to_dig_port(intel_dp)->base.base.dev); 321 322 drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd, 323 sizeof(intel_dp->psr_dpcd)); 324 325 if (!intel_dp->psr_dpcd[0]) 326 return; 327 drm_dbg_kms(&dev_priv->drm, "eDP panel supports PSR version %x\n", 328 intel_dp->psr_dpcd[0]); 329 330 if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_PSR)) { 331 drm_dbg_kms(&dev_priv->drm, 332 "PSR support not currently available for this panel\n"); 333 return; 334 } 335 336 if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) { 337 drm_dbg_kms(&dev_priv->drm, 338 "Panel lacks power state control, PSR cannot be enabled\n"); 339 return; 340 } 341 342 intel_dp->psr.sink_support = true; 343 intel_dp->psr.sink_sync_latency = 344 intel_dp_get_sink_sync_latency(intel_dp); 345 346 if (DISPLAY_VER(dev_priv) >= 9 && 347 (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) { 348 bool y_req = intel_dp->psr_dpcd[1] & 349 DP_PSR2_SU_Y_COORDINATE_REQUIRED; 350 bool alpm = intel_dp_get_alpm_status(intel_dp); 351 352 /* 353 * All panels that supports PSR version 03h (PSR2 + 354 * Y-coordinate) can handle Y-coordinates in VSC but we are 355 * only sure that it is going to be used when required by the 356 * panel. This way panel is capable to do selective update 357 * without a aux frame sync. 358 * 359 * To support PSR version 02h and PSR version 03h without 360 * Y-coordinate requirement panels we would need to enable 361 * GTC first. 362 */ 363 intel_dp->psr.sink_psr2_support = y_req && alpm; 364 drm_dbg_kms(&dev_priv->drm, "PSR2 %ssupported\n", 365 intel_dp->psr.sink_psr2_support ? "" : "not "); 366 367 if (intel_dp->psr.sink_psr2_support) { 368 intel_dp->psr.colorimetry_support = 369 intel_dp_get_colorimetry_status(intel_dp); 370 intel_dp_get_su_granularity(intel_dp); 371 } 372 } 373 } 374 375 static void intel_psr_enable_sink(struct intel_dp *intel_dp) 376 { 377 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 378 u8 dpcd_val = DP_PSR_ENABLE; 379 380 /* Enable ALPM at sink for psr2 */ 381 if (intel_dp->psr.psr2_enabled) { 382 drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, 383 DP_ALPM_ENABLE | 384 DP_ALPM_LOCK_ERROR_IRQ_HPD_ENABLE); 385 386 dpcd_val |= DP_PSR_ENABLE_PSR2 | DP_PSR_IRQ_HPD_WITH_CRC_ERRORS; 387 } else { 388 if (intel_dp->psr.link_standby) 389 dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE; 390 391 if (DISPLAY_VER(dev_priv) >= 8) 392 dpcd_val |= DP_PSR_CRC_VERIFICATION; 393 } 394 395 if (intel_dp->psr.req_psr2_sdp_prior_scanline) 396 dpcd_val |= DP_PSR_SU_REGION_SCANLINE_CAPTURE; 397 398 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val); 399 400 drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0); 401 } 402 403 static u32 intel_psr1_get_tp_time(struct intel_dp *intel_dp) 404 { 405 struct intel_connector *connector = intel_dp->attached_connector; 406 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 407 u32 val = 0; 408 409 if (DISPLAY_VER(dev_priv) >= 11) 410 val |= EDP_PSR_TP4_TIME_0US; 411 412 if (dev_priv->params.psr_safest_params) { 413 val |= EDP_PSR_TP1_TIME_2500us; 414 val |= EDP_PSR_TP2_TP3_TIME_2500us; 415 goto check_tp3_sel; 416 } 417 418 if (connector->panel.vbt.psr.tp1_wakeup_time_us == 0) 419 val |= EDP_PSR_TP1_TIME_0us; 420 else if (connector->panel.vbt.psr.tp1_wakeup_time_us <= 100) 421 val |= EDP_PSR_TP1_TIME_100us; 422 else if (connector->panel.vbt.psr.tp1_wakeup_time_us <= 500) 423 val |= EDP_PSR_TP1_TIME_500us; 424 else 425 val |= EDP_PSR_TP1_TIME_2500us; 426 427 if (connector->panel.vbt.psr.tp2_tp3_wakeup_time_us == 0) 428 val |= EDP_PSR_TP2_TP3_TIME_0us; 429 else if (connector->panel.vbt.psr.tp2_tp3_wakeup_time_us <= 100) 430 val |= EDP_PSR_TP2_TP3_TIME_100us; 431 else if (connector->panel.vbt.psr.tp2_tp3_wakeup_time_us <= 500) 432 val |= EDP_PSR_TP2_TP3_TIME_500us; 433 else 434 val |= EDP_PSR_TP2_TP3_TIME_2500us; 435 436 check_tp3_sel: 437 if (intel_dp_source_supports_tps3(dev_priv) && 438 drm_dp_tps3_supported(intel_dp->dpcd)) 439 val |= EDP_PSR_TP1_TP3_SEL; 440 else 441 val |= EDP_PSR_TP1_TP2_SEL; 442 443 return val; 444 } 445 446 static u8 psr_compute_idle_frames(struct intel_dp *intel_dp) 447 { 448 struct intel_connector *connector = intel_dp->attached_connector; 449 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 450 int idle_frames; 451 452 /* Let's use 6 as the minimum to cover all known cases including the 453 * off-by-one issue that HW has in some cases. 454 */ 455 idle_frames = max(6, connector->panel.vbt.psr.idle_frames); 456 idle_frames = max(idle_frames, intel_dp->psr.sink_sync_latency + 1); 457 458 if (drm_WARN_ON(&dev_priv->drm, idle_frames > 0xf)) 459 idle_frames = 0xf; 460 461 return idle_frames; 462 } 463 464 static void hsw_activate_psr1(struct intel_dp *intel_dp) 465 { 466 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 467 u32 max_sleep_time = 0x1f; 468 u32 val = EDP_PSR_ENABLE; 469 470 val |= psr_compute_idle_frames(intel_dp) << EDP_PSR_IDLE_FRAME_SHIFT; 471 472 val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT; 473 if (IS_HASWELL(dev_priv)) 474 val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES; 475 476 if (intel_dp->psr.link_standby) 477 val |= EDP_PSR_LINK_STANDBY; 478 479 val |= intel_psr1_get_tp_time(intel_dp); 480 481 if (DISPLAY_VER(dev_priv) >= 8) 482 val |= EDP_PSR_CRC_ENABLE; 483 484 val |= (intel_de_read(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder)) & 485 EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK); 486 intel_de_write(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder), val); 487 } 488 489 static u32 intel_psr2_get_tp_time(struct intel_dp *intel_dp) 490 { 491 struct intel_connector *connector = intel_dp->attached_connector; 492 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 493 u32 val = 0; 494 495 if (dev_priv->params.psr_safest_params) 496 return EDP_PSR2_TP2_TIME_2500us; 497 498 if (connector->panel.vbt.psr.psr2_tp2_tp3_wakeup_time_us >= 0 && 499 connector->panel.vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 50) 500 val |= EDP_PSR2_TP2_TIME_50us; 501 else if (connector->panel.vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 100) 502 val |= EDP_PSR2_TP2_TIME_100us; 503 else if (connector->panel.vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 500) 504 val |= EDP_PSR2_TP2_TIME_500us; 505 else 506 val |= EDP_PSR2_TP2_TIME_2500us; 507 508 return val; 509 } 510 511 static void hsw_activate_psr2(struct intel_dp *intel_dp) 512 { 513 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 514 u32 val = EDP_PSR2_ENABLE; 515 516 val |= psr_compute_idle_frames(intel_dp) << EDP_PSR2_IDLE_FRAME_SHIFT; 517 518 if (!IS_ALDERLAKE_P(dev_priv)) 519 val |= EDP_SU_TRACK_ENABLE; 520 521 if (DISPLAY_VER(dev_priv) >= 10 && DISPLAY_VER(dev_priv) <= 12) 522 val |= EDP_Y_COORDINATE_ENABLE; 523 524 val |= EDP_PSR2_FRAME_BEFORE_SU(max_t(u8, intel_dp->psr.sink_sync_latency + 1, 2)); 525 val |= intel_psr2_get_tp_time(intel_dp); 526 527 /* Wa_22012278275:adl-p */ 528 if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_E0)) { 529 static const u8 map[] = { 530 2, /* 5 lines */ 531 1, /* 6 lines */ 532 0, /* 7 lines */ 533 3, /* 8 lines */ 534 6, /* 9 lines */ 535 5, /* 10 lines */ 536 4, /* 11 lines */ 537 7, /* 12 lines */ 538 }; 539 /* 540 * Still using the default IO_BUFFER_WAKE and FAST_WAKE, see 541 * comments bellow for more information 542 */ 543 u32 tmp, lines = 7; 544 545 val |= TGL_EDP_PSR2_BLOCK_COUNT_NUM_2; 546 547 tmp = map[lines - TGL_EDP_PSR2_IO_BUFFER_WAKE_MIN_LINES]; 548 tmp = tmp << TGL_EDP_PSR2_IO_BUFFER_WAKE_SHIFT; 549 val |= tmp; 550 551 tmp = map[lines - TGL_EDP_PSR2_FAST_WAKE_MIN_LINES]; 552 tmp = tmp << TGL_EDP_PSR2_FAST_WAKE_MIN_SHIFT; 553 val |= tmp; 554 } else if (DISPLAY_VER(dev_priv) >= 12) { 555 /* 556 * TODO: 7 lines of IO_BUFFER_WAKE and FAST_WAKE are default 557 * values from BSpec. In order to setting an optimal power 558 * consumption, lower than 4k resolution mode needs to decrease 559 * IO_BUFFER_WAKE and FAST_WAKE. And higher than 4K resolution 560 * mode needs to increase IO_BUFFER_WAKE and FAST_WAKE. 561 */ 562 val |= TGL_EDP_PSR2_BLOCK_COUNT_NUM_2; 563 val |= TGL_EDP_PSR2_IO_BUFFER_WAKE(7); 564 val |= TGL_EDP_PSR2_FAST_WAKE(7); 565 } else if (DISPLAY_VER(dev_priv) >= 9) { 566 val |= EDP_PSR2_IO_BUFFER_WAKE(7); 567 val |= EDP_PSR2_FAST_WAKE(7); 568 } 569 570 if (intel_dp->psr.req_psr2_sdp_prior_scanline) 571 val |= EDP_PSR2_SU_SDP_SCANLINE; 572 573 if (intel_dp->psr.psr2_sel_fetch_enabled) { 574 u32 tmp; 575 576 /* Wa_1408330847 */ 577 if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) 578 intel_de_rmw(dev_priv, CHICKEN_PAR1_1, 579 DIS_RAM_BYPASS_PSR2_MAN_TRACK, 580 DIS_RAM_BYPASS_PSR2_MAN_TRACK); 581 582 tmp = intel_de_read(dev_priv, PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder)); 583 drm_WARN_ON(&dev_priv->drm, !(tmp & PSR2_MAN_TRK_CTL_ENABLE)); 584 } else if (HAS_PSR2_SEL_FETCH(dev_priv)) { 585 intel_de_write(dev_priv, 586 PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder), 0); 587 } 588 589 /* 590 * PSR2 HW is incorrectly using EDP_PSR_TP1_TP3_SEL and BSpec is 591 * recommending keep this bit unset while PSR2 is enabled. 592 */ 593 intel_de_write(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder), 0); 594 595 intel_de_write(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder), val); 596 } 597 598 static bool 599 transcoder_has_psr2(struct drm_i915_private *dev_priv, enum transcoder trans) 600 { 601 if (IS_ALDERLAKE_P(dev_priv)) 602 return trans == TRANSCODER_A || trans == TRANSCODER_B; 603 else if (DISPLAY_VER(dev_priv) >= 12) 604 return trans == TRANSCODER_A; 605 else 606 return trans == TRANSCODER_EDP; 607 } 608 609 static u32 intel_get_frame_time_us(const struct intel_crtc_state *cstate) 610 { 611 if (!cstate || !cstate->hw.active) 612 return 0; 613 614 return DIV_ROUND_UP(1000 * 1000, 615 drm_mode_vrefresh(&cstate->hw.adjusted_mode)); 616 } 617 618 static void psr2_program_idle_frames(struct intel_dp *intel_dp, 619 u32 idle_frames) 620 { 621 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 622 u32 val; 623 624 idle_frames <<= EDP_PSR2_IDLE_FRAME_SHIFT; 625 val = intel_de_read(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder)); 626 val &= ~EDP_PSR2_IDLE_FRAME_MASK; 627 val |= idle_frames; 628 intel_de_write(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder), val); 629 } 630 631 static void tgl_psr2_enable_dc3co(struct intel_dp *intel_dp) 632 { 633 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 634 635 psr2_program_idle_frames(intel_dp, 0); 636 intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_DC3CO); 637 } 638 639 static void tgl_psr2_disable_dc3co(struct intel_dp *intel_dp) 640 { 641 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 642 643 intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6); 644 psr2_program_idle_frames(intel_dp, psr_compute_idle_frames(intel_dp)); 645 } 646 647 static void tgl_dc3co_disable_work(struct work_struct *work) 648 { 649 struct intel_dp *intel_dp = 650 container_of(work, typeof(*intel_dp), psr.dc3co_work.work); 651 652 mutex_lock(&intel_dp->psr.lock); 653 /* If delayed work is pending, it is not idle */ 654 if (delayed_work_pending(&intel_dp->psr.dc3co_work)) 655 goto unlock; 656 657 tgl_psr2_disable_dc3co(intel_dp); 658 unlock: 659 mutex_unlock(&intel_dp->psr.lock); 660 } 661 662 static void tgl_disallow_dc3co_on_psr2_exit(struct intel_dp *intel_dp) 663 { 664 if (!intel_dp->psr.dc3co_exitline) 665 return; 666 667 cancel_delayed_work(&intel_dp->psr.dc3co_work); 668 /* Before PSR2 exit disallow dc3co*/ 669 tgl_psr2_disable_dc3co(intel_dp); 670 } 671 672 static bool 673 dc3co_is_pipe_port_compatible(struct intel_dp *intel_dp, 674 struct intel_crtc_state *crtc_state) 675 { 676 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 677 enum pipe pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe; 678 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 679 enum port port = dig_port->base.port; 680 681 if (IS_ALDERLAKE_P(dev_priv)) 682 return pipe <= PIPE_B && port <= PORT_B; 683 else 684 return pipe == PIPE_A && port == PORT_A; 685 } 686 687 static void 688 tgl_dc3co_exitline_compute_config(struct intel_dp *intel_dp, 689 struct intel_crtc_state *crtc_state) 690 { 691 const u32 crtc_vdisplay = crtc_state->uapi.adjusted_mode.crtc_vdisplay; 692 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 693 u32 exit_scanlines; 694 695 /* 696 * FIXME: Due to the changed sequence of activating/deactivating DC3CO, 697 * disable DC3CO until the changed dc3co activating/deactivating sequence 698 * is applied. B.Specs:49196 699 */ 700 return; 701 702 /* 703 * DMC's DC3CO exit mechanism has an issue with Selective Fecth 704 * TODO: when the issue is addressed, this restriction should be removed. 705 */ 706 if (crtc_state->enable_psr2_sel_fetch) 707 return; 708 709 if (!(dev_priv->display.dmc.allowed_dc_mask & DC_STATE_EN_DC3CO)) 710 return; 711 712 if (!dc3co_is_pipe_port_compatible(intel_dp, crtc_state)) 713 return; 714 715 /* Wa_16011303918:adl-p */ 716 if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) 717 return; 718 719 /* 720 * DC3CO Exit time 200us B.Spec 49196 721 * PSR2 transcoder Early Exit scanlines = ROUNDUP(200 / line time) + 1 722 */ 723 exit_scanlines = 724 intel_usecs_to_scanlines(&crtc_state->uapi.adjusted_mode, 200) + 1; 725 726 if (drm_WARN_ON(&dev_priv->drm, exit_scanlines > crtc_vdisplay)) 727 return; 728 729 crtc_state->dc3co_exitline = crtc_vdisplay - exit_scanlines; 730 } 731 732 static bool intel_psr2_sel_fetch_config_valid(struct intel_dp *intel_dp, 733 struct intel_crtc_state *crtc_state) 734 { 735 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 736 737 if (!dev_priv->params.enable_psr2_sel_fetch && 738 intel_dp->psr.debug != I915_PSR_DEBUG_ENABLE_SEL_FETCH) { 739 drm_dbg_kms(&dev_priv->drm, 740 "PSR2 sel fetch not enabled, disabled by parameter\n"); 741 return false; 742 } 743 744 if (crtc_state->uapi.async_flip) { 745 drm_dbg_kms(&dev_priv->drm, 746 "PSR2 sel fetch not enabled, async flip enabled\n"); 747 return false; 748 } 749 750 /* Wa_14010254185 Wa_14010103792 */ 751 if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0)) { 752 drm_dbg_kms(&dev_priv->drm, 753 "PSR2 sel fetch not enabled, missing the implementation of WAs\n"); 754 return false; 755 } 756 757 return crtc_state->enable_psr2_sel_fetch = true; 758 } 759 760 static bool psr2_granularity_check(struct intel_dp *intel_dp, 761 struct intel_crtc_state *crtc_state) 762 { 763 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 764 const int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay; 765 const int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay; 766 u16 y_granularity = 0; 767 768 /* PSR2 HW only send full lines so we only need to validate the width */ 769 if (crtc_hdisplay % intel_dp->psr.su_w_granularity) 770 return false; 771 772 if (crtc_vdisplay % intel_dp->psr.su_y_granularity) 773 return false; 774 775 /* HW tracking is only aligned to 4 lines */ 776 if (!crtc_state->enable_psr2_sel_fetch) 777 return intel_dp->psr.su_y_granularity == 4; 778 779 /* 780 * adl_p has 1 line granularity. For other platforms with SW tracking we 781 * can adjust the y coordinates to match sink requirement if multiple of 782 * 4. 783 */ 784 if (IS_ALDERLAKE_P(dev_priv)) 785 y_granularity = intel_dp->psr.su_y_granularity; 786 else if (intel_dp->psr.su_y_granularity <= 2) 787 y_granularity = 4; 788 else if ((intel_dp->psr.su_y_granularity % 4) == 0) 789 y_granularity = intel_dp->psr.su_y_granularity; 790 791 if (y_granularity == 0 || crtc_vdisplay % y_granularity) 792 return false; 793 794 crtc_state->su_y_granularity = y_granularity; 795 return true; 796 } 797 798 static bool _compute_psr2_sdp_prior_scanline_indication(struct intel_dp *intel_dp, 799 struct intel_crtc_state *crtc_state) 800 { 801 const struct drm_display_mode *adjusted_mode = &crtc_state->uapi.adjusted_mode; 802 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 803 u32 hblank_total, hblank_ns, req_ns; 804 805 hblank_total = adjusted_mode->crtc_hblank_end - adjusted_mode->crtc_hblank_start; 806 hblank_ns = div_u64(1000000ULL * hblank_total, adjusted_mode->crtc_clock); 807 808 /* From spec: ((60 / number of lanes) + 11) * 1000 / symbol clock frequency MHz */ 809 req_ns = ((60 / crtc_state->lane_count) + 11) * 1000 / (crtc_state->port_clock / 1000); 810 811 if ((hblank_ns - req_ns) > 100) 812 return true; 813 814 /* Not supported <13 / Wa_22012279113:adl-p */ 815 if (DISPLAY_VER(dev_priv) <= 13 || intel_dp->edp_dpcd[0] < DP_EDP_14b) 816 return false; 817 818 crtc_state->req_psr2_sdp_prior_scanline = true; 819 return true; 820 } 821 822 static bool intel_psr2_config_valid(struct intel_dp *intel_dp, 823 struct intel_crtc_state *crtc_state) 824 { 825 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 826 int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay; 827 int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay; 828 int psr_max_h = 0, psr_max_v = 0, max_bpp = 0; 829 830 if (!intel_dp->psr.sink_psr2_support) 831 return false; 832 833 /* JSL and EHL only supports eDP 1.3 */ 834 if (IS_JSL_EHL(dev_priv)) { 835 drm_dbg_kms(&dev_priv->drm, "PSR2 not supported by phy\n"); 836 return false; 837 } 838 839 /* Wa_16011181250 */ 840 if (IS_ROCKETLAKE(dev_priv) || IS_ALDERLAKE_S(dev_priv) || 841 IS_DG2(dev_priv)) { 842 drm_dbg_kms(&dev_priv->drm, "PSR2 is defeatured for this platform\n"); 843 return false; 844 } 845 846 if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) { 847 drm_dbg_kms(&dev_priv->drm, "PSR2 not completely functional in this stepping\n"); 848 return false; 849 } 850 851 if (!transcoder_has_psr2(dev_priv, crtc_state->cpu_transcoder)) { 852 drm_dbg_kms(&dev_priv->drm, 853 "PSR2 not supported in transcoder %s\n", 854 transcoder_name(crtc_state->cpu_transcoder)); 855 return false; 856 } 857 858 if (!psr2_global_enabled(intel_dp)) { 859 drm_dbg_kms(&dev_priv->drm, "PSR2 disabled by flag\n"); 860 return false; 861 } 862 863 /* 864 * DSC and PSR2 cannot be enabled simultaneously. If a requested 865 * resolution requires DSC to be enabled, priority is given to DSC 866 * over PSR2. 867 */ 868 if (crtc_state->dsc.compression_enable) { 869 drm_dbg_kms(&dev_priv->drm, 870 "PSR2 cannot be enabled since DSC is enabled\n"); 871 return false; 872 } 873 874 if (crtc_state->crc_enabled) { 875 drm_dbg_kms(&dev_priv->drm, 876 "PSR2 not enabled because it would inhibit pipe CRC calculation\n"); 877 return false; 878 } 879 880 if (DISPLAY_VER(dev_priv) >= 12) { 881 psr_max_h = 5120; 882 psr_max_v = 3200; 883 max_bpp = 30; 884 } else if (DISPLAY_VER(dev_priv) >= 10) { 885 psr_max_h = 4096; 886 psr_max_v = 2304; 887 max_bpp = 24; 888 } else if (DISPLAY_VER(dev_priv) == 9) { 889 psr_max_h = 3640; 890 psr_max_v = 2304; 891 max_bpp = 24; 892 } 893 894 if (crtc_state->pipe_bpp > max_bpp) { 895 drm_dbg_kms(&dev_priv->drm, 896 "PSR2 not enabled, pipe bpp %d > max supported %d\n", 897 crtc_state->pipe_bpp, max_bpp); 898 return false; 899 } 900 901 /* Wa_16011303918:adl-p */ 902 if (crtc_state->vrr.enable && 903 IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) { 904 drm_dbg_kms(&dev_priv->drm, 905 "PSR2 not enabled, not compatible with HW stepping + VRR\n"); 906 return false; 907 } 908 909 if (!_compute_psr2_sdp_prior_scanline_indication(intel_dp, crtc_state)) { 910 drm_dbg_kms(&dev_priv->drm, 911 "PSR2 not enabled, PSR2 SDP indication do not fit in hblank\n"); 912 return false; 913 } 914 915 if (HAS_PSR2_SEL_FETCH(dev_priv)) { 916 if (!intel_psr2_sel_fetch_config_valid(intel_dp, crtc_state) && 917 !HAS_PSR_HW_TRACKING(dev_priv)) { 918 drm_dbg_kms(&dev_priv->drm, 919 "PSR2 not enabled, selective fetch not valid and no HW tracking available\n"); 920 return false; 921 } 922 } 923 924 /* Wa_2209313811 */ 925 if (!crtc_state->enable_psr2_sel_fetch && 926 IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0)) { 927 drm_dbg_kms(&dev_priv->drm, "PSR2 HW tracking is not supported this Display stepping\n"); 928 goto unsupported; 929 } 930 931 if (!psr2_granularity_check(intel_dp, crtc_state)) { 932 drm_dbg_kms(&dev_priv->drm, "PSR2 not enabled, SU granularity not compatible\n"); 933 goto unsupported; 934 } 935 936 if (!crtc_state->enable_psr2_sel_fetch && 937 (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v)) { 938 drm_dbg_kms(&dev_priv->drm, 939 "PSR2 not enabled, resolution %dx%d > max supported %dx%d\n", 940 crtc_hdisplay, crtc_vdisplay, 941 psr_max_h, psr_max_v); 942 goto unsupported; 943 } 944 945 tgl_dc3co_exitline_compute_config(intel_dp, crtc_state); 946 return true; 947 948 unsupported: 949 crtc_state->enable_psr2_sel_fetch = false; 950 return false; 951 } 952 953 void intel_psr_compute_config(struct intel_dp *intel_dp, 954 struct intel_crtc_state *crtc_state, 955 struct drm_connector_state *conn_state) 956 { 957 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 958 const struct drm_display_mode *adjusted_mode = 959 &crtc_state->hw.adjusted_mode; 960 int psr_setup_time; 961 962 /* 963 * Current PSR panels don't work reliably with VRR enabled 964 * So if VRR is enabled, do not enable PSR. 965 */ 966 if (crtc_state->vrr.enable) 967 return; 968 969 if (!CAN_PSR(intel_dp)) 970 return; 971 972 if (!psr_global_enabled(intel_dp)) { 973 drm_dbg_kms(&dev_priv->drm, "PSR disabled by flag\n"); 974 return; 975 } 976 977 if (intel_dp->psr.sink_not_reliable) { 978 drm_dbg_kms(&dev_priv->drm, 979 "PSR sink implementation is not reliable\n"); 980 return; 981 } 982 983 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) { 984 drm_dbg_kms(&dev_priv->drm, 985 "PSR condition failed: Interlaced mode enabled\n"); 986 return; 987 } 988 989 psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd); 990 if (psr_setup_time < 0) { 991 drm_dbg_kms(&dev_priv->drm, 992 "PSR condition failed: Invalid PSR setup time (0x%02x)\n", 993 intel_dp->psr_dpcd[1]); 994 return; 995 } 996 997 if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) > 998 adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) { 999 drm_dbg_kms(&dev_priv->drm, 1000 "PSR condition failed: PSR setup time (%d us) too long\n", 1001 psr_setup_time); 1002 return; 1003 } 1004 1005 crtc_state->has_psr = true; 1006 crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state); 1007 1008 crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC); 1009 intel_dp_compute_psr_vsc_sdp(intel_dp, crtc_state, conn_state, 1010 &crtc_state->psr_vsc); 1011 } 1012 1013 void intel_psr_get_config(struct intel_encoder *encoder, 1014 struct intel_crtc_state *pipe_config) 1015 { 1016 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev); 1017 struct intel_digital_port *dig_port = enc_to_dig_port(encoder); 1018 struct intel_dp *intel_dp; 1019 u32 val; 1020 1021 if (!dig_port) 1022 return; 1023 1024 intel_dp = &dig_port->dp; 1025 if (!CAN_PSR(intel_dp)) 1026 return; 1027 1028 mutex_lock(&intel_dp->psr.lock); 1029 if (!intel_dp->psr.enabled) 1030 goto unlock; 1031 1032 /* 1033 * Not possible to read EDP_PSR/PSR2_CTL registers as it is 1034 * enabled/disabled because of frontbuffer tracking and others. 1035 */ 1036 pipe_config->has_psr = true; 1037 pipe_config->has_psr2 = intel_dp->psr.psr2_enabled; 1038 pipe_config->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC); 1039 1040 if (!intel_dp->psr.psr2_enabled) 1041 goto unlock; 1042 1043 if (HAS_PSR2_SEL_FETCH(dev_priv)) { 1044 val = intel_de_read(dev_priv, PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder)); 1045 if (val & PSR2_MAN_TRK_CTL_ENABLE) 1046 pipe_config->enable_psr2_sel_fetch = true; 1047 } 1048 1049 if (DISPLAY_VER(dev_priv) >= 12) { 1050 val = intel_de_read(dev_priv, EXITLINE(intel_dp->psr.transcoder)); 1051 val &= EXITLINE_MASK; 1052 pipe_config->dc3co_exitline = val; 1053 } 1054 unlock: 1055 mutex_unlock(&intel_dp->psr.lock); 1056 } 1057 1058 static void intel_psr_activate(struct intel_dp *intel_dp) 1059 { 1060 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1061 enum transcoder transcoder = intel_dp->psr.transcoder; 1062 1063 if (transcoder_has_psr2(dev_priv, transcoder)) 1064 drm_WARN_ON(&dev_priv->drm, 1065 intel_de_read(dev_priv, EDP_PSR2_CTL(transcoder)) & EDP_PSR2_ENABLE); 1066 1067 drm_WARN_ON(&dev_priv->drm, 1068 intel_de_read(dev_priv, EDP_PSR_CTL(transcoder)) & EDP_PSR_ENABLE); 1069 drm_WARN_ON(&dev_priv->drm, intel_dp->psr.active); 1070 lockdep_assert_held(&intel_dp->psr.lock); 1071 1072 /* psr1 and psr2 are mutually exclusive.*/ 1073 if (intel_dp->psr.psr2_enabled) 1074 hsw_activate_psr2(intel_dp); 1075 else 1076 hsw_activate_psr1(intel_dp); 1077 1078 intel_dp->psr.active = true; 1079 } 1080 1081 static u32 wa_16013835468_bit_get(struct intel_dp *intel_dp) 1082 { 1083 switch (intel_dp->psr.pipe) { 1084 case PIPE_A: 1085 return LATENCY_REPORTING_REMOVED_PIPE_A; 1086 case PIPE_B: 1087 return LATENCY_REPORTING_REMOVED_PIPE_B; 1088 case PIPE_C: 1089 return LATENCY_REPORTING_REMOVED_PIPE_C; 1090 default: 1091 MISSING_CASE(intel_dp->psr.pipe); 1092 return 0; 1093 } 1094 } 1095 1096 static void intel_psr_enable_source(struct intel_dp *intel_dp, 1097 const struct intel_crtc_state *crtc_state) 1098 { 1099 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1100 enum transcoder cpu_transcoder = intel_dp->psr.transcoder; 1101 u32 mask; 1102 1103 /* 1104 * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also 1105 * mask LPSP to avoid dependency on other drivers that might block 1106 * runtime_pm besides preventing other hw tracking issues now we 1107 * can rely on frontbuffer tracking. 1108 */ 1109 mask = EDP_PSR_DEBUG_MASK_MEMUP | 1110 EDP_PSR_DEBUG_MASK_HPD | 1111 EDP_PSR_DEBUG_MASK_LPSP | 1112 EDP_PSR_DEBUG_MASK_MAX_SLEEP; 1113 1114 if (DISPLAY_VER(dev_priv) < 11) 1115 mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE; 1116 1117 intel_de_write(dev_priv, EDP_PSR_DEBUG(intel_dp->psr.transcoder), 1118 mask); 1119 1120 psr_irq_control(intel_dp); 1121 1122 if (intel_dp->psr.dc3co_exitline) { 1123 u32 val; 1124 1125 /* 1126 * TODO: if future platforms supports DC3CO in more than one 1127 * transcoder, EXITLINE will need to be unset when disabling PSR 1128 */ 1129 val = intel_de_read(dev_priv, EXITLINE(cpu_transcoder)); 1130 val &= ~EXITLINE_MASK; 1131 val |= intel_dp->psr.dc3co_exitline << EXITLINE_SHIFT; 1132 val |= EXITLINE_ENABLE; 1133 intel_de_write(dev_priv, EXITLINE(cpu_transcoder), val); 1134 } 1135 1136 if (HAS_PSR_HW_TRACKING(dev_priv) && HAS_PSR2_SEL_FETCH(dev_priv)) 1137 intel_de_rmw(dev_priv, CHICKEN_PAR1_1, IGNORE_PSR2_HW_TRACKING, 1138 intel_dp->psr.psr2_sel_fetch_enabled ? 1139 IGNORE_PSR2_HW_TRACKING : 0); 1140 1141 if (intel_dp->psr.psr2_enabled) { 1142 if (DISPLAY_VER(dev_priv) == 9) 1143 intel_de_rmw(dev_priv, CHICKEN_TRANS(cpu_transcoder), 0, 1144 PSR2_VSC_ENABLE_PROG_HEADER | 1145 PSR2_ADD_VERTICAL_LINE_COUNT); 1146 1147 /* 1148 * Wa_16014451276:adlp 1149 * All supported adlp panels have 1-based X granularity, this may 1150 * cause issues if non-supported panels are used. 1151 */ 1152 if (IS_ALDERLAKE_P(dev_priv)) 1153 intel_de_rmw(dev_priv, CHICKEN_TRANS(cpu_transcoder), 0, 1154 ADLP_1_BASED_X_GRANULARITY); 1155 1156 /* Wa_16011168373:adl-p */ 1157 if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) 1158 intel_de_rmw(dev_priv, 1159 TRANS_SET_CONTEXT_LATENCY(intel_dp->psr.transcoder), 1160 TRANS_SET_CONTEXT_LATENCY_MASK, 1161 TRANS_SET_CONTEXT_LATENCY_VALUE(1)); 1162 1163 /* Wa_16012604467:adlp */ 1164 if (IS_ALDERLAKE_P(dev_priv)) 1165 intel_de_rmw(dev_priv, CLKGATE_DIS_MISC, 0, 1166 CLKGATE_DIS_MISC_DMASC_GATING_DIS); 1167 1168 /* Wa_16013835468:tgl[b0+], dg1 */ 1169 if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_B0, STEP_FOREVER) || 1170 IS_DG1(dev_priv)) { 1171 u16 vtotal, vblank; 1172 1173 vtotal = crtc_state->uapi.adjusted_mode.crtc_vtotal - 1174 crtc_state->uapi.adjusted_mode.crtc_vdisplay; 1175 vblank = crtc_state->uapi.adjusted_mode.crtc_vblank_end - 1176 crtc_state->uapi.adjusted_mode.crtc_vblank_start; 1177 if (vblank > vtotal) 1178 intel_de_rmw(dev_priv, GEN8_CHICKEN_DCPR_1, 0, 1179 wa_16013835468_bit_get(intel_dp)); 1180 } 1181 } 1182 } 1183 1184 static bool psr_interrupt_error_check(struct intel_dp *intel_dp) 1185 { 1186 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1187 u32 val; 1188 1189 /* 1190 * If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR 1191 * will still keep the error set even after the reset done in the 1192 * irq_preinstall and irq_uninstall hooks. 1193 * And enabling in this situation cause the screen to freeze in the 1194 * first time that PSR HW tries to activate so lets keep PSR disabled 1195 * to avoid any rendering problems. 1196 */ 1197 if (DISPLAY_VER(dev_priv) >= 12) { 1198 val = intel_de_read(dev_priv, 1199 TRANS_PSR_IIR(intel_dp->psr.transcoder)); 1200 val &= EDP_PSR_ERROR(0); 1201 } else { 1202 val = intel_de_read(dev_priv, EDP_PSR_IIR); 1203 val &= EDP_PSR_ERROR(intel_dp->psr.transcoder); 1204 } 1205 if (val) { 1206 intel_dp->psr.sink_not_reliable = true; 1207 drm_dbg_kms(&dev_priv->drm, 1208 "PSR interruption error set, not enabling PSR\n"); 1209 return false; 1210 } 1211 1212 return true; 1213 } 1214 1215 static void intel_psr_enable_locked(struct intel_dp *intel_dp, 1216 const struct intel_crtc_state *crtc_state) 1217 { 1218 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 1219 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1220 enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port); 1221 struct intel_encoder *encoder = &dig_port->base; 1222 u32 val; 1223 1224 drm_WARN_ON(&dev_priv->drm, intel_dp->psr.enabled); 1225 1226 intel_dp->psr.psr2_enabled = crtc_state->has_psr2; 1227 intel_dp->psr.busy_frontbuffer_bits = 0; 1228 intel_dp->psr.pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe; 1229 intel_dp->psr.transcoder = crtc_state->cpu_transcoder; 1230 /* DC5/DC6 requires at least 6 idle frames */ 1231 val = usecs_to_jiffies(intel_get_frame_time_us(crtc_state) * 6); 1232 intel_dp->psr.dc3co_exit_delay = val; 1233 intel_dp->psr.dc3co_exitline = crtc_state->dc3co_exitline; 1234 intel_dp->psr.psr2_sel_fetch_enabled = crtc_state->enable_psr2_sel_fetch; 1235 intel_dp->psr.psr2_sel_fetch_cff_enabled = false; 1236 intel_dp->psr.req_psr2_sdp_prior_scanline = 1237 crtc_state->req_psr2_sdp_prior_scanline; 1238 1239 if (!psr_interrupt_error_check(intel_dp)) 1240 return; 1241 1242 drm_dbg_kms(&dev_priv->drm, "Enabling PSR%s\n", 1243 intel_dp->psr.psr2_enabled ? "2" : "1"); 1244 intel_write_dp_vsc_sdp(encoder, crtc_state, &crtc_state->psr_vsc); 1245 intel_snps_phy_update_psr_power_state(dev_priv, phy, true); 1246 intel_psr_enable_sink(intel_dp); 1247 intel_psr_enable_source(intel_dp, crtc_state); 1248 intel_dp->psr.enabled = true; 1249 intel_dp->psr.paused = false; 1250 1251 intel_psr_activate(intel_dp); 1252 } 1253 1254 static void intel_psr_exit(struct intel_dp *intel_dp) 1255 { 1256 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1257 u32 val; 1258 1259 if (!intel_dp->psr.active) { 1260 if (transcoder_has_psr2(dev_priv, intel_dp->psr.transcoder)) { 1261 val = intel_de_read(dev_priv, 1262 EDP_PSR2_CTL(intel_dp->psr.transcoder)); 1263 drm_WARN_ON(&dev_priv->drm, val & EDP_PSR2_ENABLE); 1264 } 1265 1266 val = intel_de_read(dev_priv, 1267 EDP_PSR_CTL(intel_dp->psr.transcoder)); 1268 drm_WARN_ON(&dev_priv->drm, val & EDP_PSR_ENABLE); 1269 1270 return; 1271 } 1272 1273 if (intel_dp->psr.psr2_enabled) { 1274 tgl_disallow_dc3co_on_psr2_exit(intel_dp); 1275 val = intel_de_read(dev_priv, 1276 EDP_PSR2_CTL(intel_dp->psr.transcoder)); 1277 drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR2_ENABLE)); 1278 val &= ~EDP_PSR2_ENABLE; 1279 intel_de_write(dev_priv, 1280 EDP_PSR2_CTL(intel_dp->psr.transcoder), val); 1281 } else { 1282 val = intel_de_read(dev_priv, 1283 EDP_PSR_CTL(intel_dp->psr.transcoder)); 1284 drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR_ENABLE)); 1285 val &= ~EDP_PSR_ENABLE; 1286 intel_de_write(dev_priv, 1287 EDP_PSR_CTL(intel_dp->psr.transcoder), val); 1288 } 1289 intel_dp->psr.active = false; 1290 } 1291 1292 static void intel_psr_wait_exit_locked(struct intel_dp *intel_dp) 1293 { 1294 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1295 i915_reg_t psr_status; 1296 u32 psr_status_mask; 1297 1298 if (intel_dp->psr.psr2_enabled) { 1299 psr_status = EDP_PSR2_STATUS(intel_dp->psr.transcoder); 1300 psr_status_mask = EDP_PSR2_STATUS_STATE_MASK; 1301 } else { 1302 psr_status = EDP_PSR_STATUS(intel_dp->psr.transcoder); 1303 psr_status_mask = EDP_PSR_STATUS_STATE_MASK; 1304 } 1305 1306 /* Wait till PSR is idle */ 1307 if (intel_de_wait_for_clear(dev_priv, psr_status, 1308 psr_status_mask, 2000)) 1309 drm_err(&dev_priv->drm, "Timed out waiting PSR idle state\n"); 1310 } 1311 1312 static void intel_psr_disable_locked(struct intel_dp *intel_dp) 1313 { 1314 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1315 enum phy phy = intel_port_to_phy(dev_priv, 1316 dp_to_dig_port(intel_dp)->base.port); 1317 1318 lockdep_assert_held(&intel_dp->psr.lock); 1319 1320 if (!intel_dp->psr.enabled) 1321 return; 1322 1323 drm_dbg_kms(&dev_priv->drm, "Disabling PSR%s\n", 1324 intel_dp->psr.psr2_enabled ? "2" : "1"); 1325 1326 intel_psr_exit(intel_dp); 1327 intel_psr_wait_exit_locked(intel_dp); 1328 1329 /* Wa_1408330847 */ 1330 if (intel_dp->psr.psr2_sel_fetch_enabled && 1331 IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) 1332 intel_de_rmw(dev_priv, CHICKEN_PAR1_1, 1333 DIS_RAM_BYPASS_PSR2_MAN_TRACK, 0); 1334 1335 if (intel_dp->psr.psr2_enabled) { 1336 /* Wa_16011168373:adl-p */ 1337 if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) 1338 intel_de_rmw(dev_priv, 1339 TRANS_SET_CONTEXT_LATENCY(intel_dp->psr.transcoder), 1340 TRANS_SET_CONTEXT_LATENCY_MASK, 0); 1341 1342 /* Wa_16012604467:adlp */ 1343 if (IS_ALDERLAKE_P(dev_priv)) 1344 intel_de_rmw(dev_priv, CLKGATE_DIS_MISC, 1345 CLKGATE_DIS_MISC_DMASC_GATING_DIS, 0); 1346 1347 /* Wa_16013835468:tgl[b0+], dg1 */ 1348 if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_B0, STEP_FOREVER) || 1349 IS_DG1(dev_priv)) 1350 intel_de_rmw(dev_priv, GEN8_CHICKEN_DCPR_1, 1351 wa_16013835468_bit_get(intel_dp), 0); 1352 } 1353 1354 intel_snps_phy_update_psr_power_state(dev_priv, phy, false); 1355 1356 /* Disable PSR on Sink */ 1357 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0); 1358 1359 if (intel_dp->psr.psr2_enabled) 1360 drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, 0); 1361 1362 intel_dp->psr.enabled = false; 1363 intel_dp->psr.psr2_enabled = false; 1364 intel_dp->psr.psr2_sel_fetch_enabled = false; 1365 intel_dp->psr.psr2_sel_fetch_cff_enabled = false; 1366 } 1367 1368 /** 1369 * intel_psr_disable - Disable PSR 1370 * @intel_dp: Intel DP 1371 * @old_crtc_state: old CRTC state 1372 * 1373 * This function needs to be called before disabling pipe. 1374 */ 1375 void intel_psr_disable(struct intel_dp *intel_dp, 1376 const struct intel_crtc_state *old_crtc_state) 1377 { 1378 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1379 1380 if (!old_crtc_state->has_psr) 1381 return; 1382 1383 if (drm_WARN_ON(&dev_priv->drm, !CAN_PSR(intel_dp))) 1384 return; 1385 1386 mutex_lock(&intel_dp->psr.lock); 1387 1388 intel_psr_disable_locked(intel_dp); 1389 1390 mutex_unlock(&intel_dp->psr.lock); 1391 cancel_work_sync(&intel_dp->psr.work); 1392 cancel_delayed_work_sync(&intel_dp->psr.dc3co_work); 1393 } 1394 1395 /** 1396 * intel_psr_pause - Pause PSR 1397 * @intel_dp: Intel DP 1398 * 1399 * This function need to be called after enabling psr. 1400 */ 1401 void intel_psr_pause(struct intel_dp *intel_dp) 1402 { 1403 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1404 struct intel_psr *psr = &intel_dp->psr; 1405 1406 if (!CAN_PSR(intel_dp)) 1407 return; 1408 1409 mutex_lock(&psr->lock); 1410 1411 if (!psr->enabled) { 1412 mutex_unlock(&psr->lock); 1413 return; 1414 } 1415 1416 /* If we ever hit this, we will need to add refcount to pause/resume */ 1417 drm_WARN_ON(&dev_priv->drm, psr->paused); 1418 1419 intel_psr_exit(intel_dp); 1420 intel_psr_wait_exit_locked(intel_dp); 1421 psr->paused = true; 1422 1423 mutex_unlock(&psr->lock); 1424 1425 cancel_work_sync(&psr->work); 1426 cancel_delayed_work_sync(&psr->dc3co_work); 1427 } 1428 1429 /** 1430 * intel_psr_resume - Resume PSR 1431 * @intel_dp: Intel DP 1432 * 1433 * This function need to be called after pausing psr. 1434 */ 1435 void intel_psr_resume(struct intel_dp *intel_dp) 1436 { 1437 struct intel_psr *psr = &intel_dp->psr; 1438 1439 if (!CAN_PSR(intel_dp)) 1440 return; 1441 1442 mutex_lock(&psr->lock); 1443 1444 if (!psr->paused) 1445 goto unlock; 1446 1447 psr->paused = false; 1448 intel_psr_activate(intel_dp); 1449 1450 unlock: 1451 mutex_unlock(&psr->lock); 1452 } 1453 1454 static u32 man_trk_ctl_enable_bit_get(struct drm_i915_private *dev_priv) 1455 { 1456 return IS_ALDERLAKE_P(dev_priv) ? 0 : PSR2_MAN_TRK_CTL_ENABLE; 1457 } 1458 1459 static u32 man_trk_ctl_single_full_frame_bit_get(struct drm_i915_private *dev_priv) 1460 { 1461 return IS_ALDERLAKE_P(dev_priv) ? 1462 ADLP_PSR2_MAN_TRK_CTL_SF_SINGLE_FULL_FRAME : 1463 PSR2_MAN_TRK_CTL_SF_SINGLE_FULL_FRAME; 1464 } 1465 1466 static u32 man_trk_ctl_partial_frame_bit_get(struct drm_i915_private *dev_priv) 1467 { 1468 return IS_ALDERLAKE_P(dev_priv) ? 1469 ADLP_PSR2_MAN_TRK_CTL_SF_PARTIAL_FRAME_UPDATE : 1470 PSR2_MAN_TRK_CTL_SF_PARTIAL_FRAME_UPDATE; 1471 } 1472 1473 static u32 man_trk_ctl_continuos_full_frame(struct drm_i915_private *dev_priv) 1474 { 1475 return IS_ALDERLAKE_P(dev_priv) ? 1476 ADLP_PSR2_MAN_TRK_CTL_SF_CONTINUOS_FULL_FRAME : 1477 PSR2_MAN_TRK_CTL_SF_CONTINUOS_FULL_FRAME; 1478 } 1479 1480 static void psr_force_hw_tracking_exit(struct intel_dp *intel_dp) 1481 { 1482 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1483 1484 if (intel_dp->psr.psr2_sel_fetch_enabled) 1485 intel_de_write(dev_priv, 1486 PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder), 1487 man_trk_ctl_enable_bit_get(dev_priv) | 1488 man_trk_ctl_partial_frame_bit_get(dev_priv) | 1489 man_trk_ctl_single_full_frame_bit_get(dev_priv)); 1490 1491 /* 1492 * Display WA #0884: skl+ 1493 * This documented WA for bxt can be safely applied 1494 * broadly so we can force HW tracking to exit PSR 1495 * instead of disabling and re-enabling. 1496 * Workaround tells us to write 0 to CUR_SURFLIVE_A, 1497 * but it makes more sense write to the current active 1498 * pipe. 1499 * 1500 * This workaround do not exist for platforms with display 10 or newer 1501 * but testing proved that it works for up display 13, for newer 1502 * than that testing will be needed. 1503 */ 1504 intel_de_write(dev_priv, CURSURFLIVE(intel_dp->psr.pipe), 0); 1505 } 1506 1507 void intel_psr2_disable_plane_sel_fetch(struct intel_plane *plane, 1508 const struct intel_crtc_state *crtc_state) 1509 { 1510 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 1511 enum pipe pipe = plane->pipe; 1512 1513 if (!crtc_state->enable_psr2_sel_fetch) 1514 return; 1515 1516 intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_CTL(pipe, plane->id), 0); 1517 } 1518 1519 void intel_psr2_program_plane_sel_fetch(struct intel_plane *plane, 1520 const struct intel_crtc_state *crtc_state, 1521 const struct intel_plane_state *plane_state, 1522 int color_plane) 1523 { 1524 struct drm_i915_private *dev_priv = to_i915(plane->base.dev); 1525 enum pipe pipe = plane->pipe; 1526 const struct drm_rect *clip; 1527 u32 val; 1528 int x, y; 1529 1530 if (!crtc_state->enable_psr2_sel_fetch) 1531 return; 1532 1533 if (plane->id == PLANE_CURSOR) { 1534 intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_CTL(pipe, plane->id), 1535 plane_state->ctl); 1536 return; 1537 } 1538 1539 clip = &plane_state->psr2_sel_fetch_area; 1540 1541 val = (clip->y1 + plane_state->uapi.dst.y1) << 16; 1542 val |= plane_state->uapi.dst.x1; 1543 intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_POS(pipe, plane->id), val); 1544 1545 x = plane_state->view.color_plane[color_plane].x; 1546 1547 /* 1548 * From Bspec: UV surface Start Y Position = half of Y plane Y 1549 * start position. 1550 */ 1551 if (!color_plane) 1552 y = plane_state->view.color_plane[color_plane].y + clip->y1; 1553 else 1554 y = plane_state->view.color_plane[color_plane].y + clip->y1 / 2; 1555 1556 val = y << 16 | x; 1557 1558 intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_OFFSET(pipe, plane->id), 1559 val); 1560 1561 /* Sizes are 0 based */ 1562 val = (drm_rect_height(clip) - 1) << 16; 1563 val |= (drm_rect_width(&plane_state->uapi.src) >> 16) - 1; 1564 intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_SIZE(pipe, plane->id), val); 1565 1566 intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_CTL(pipe, plane->id), 1567 PLANE_SEL_FETCH_CTL_ENABLE); 1568 } 1569 1570 void intel_psr2_program_trans_man_trk_ctl(const struct intel_crtc_state *crtc_state) 1571 { 1572 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1573 struct intel_encoder *encoder; 1574 1575 if (!crtc_state->enable_psr2_sel_fetch) 1576 return; 1577 1578 for_each_intel_encoder_mask_with_psr(&dev_priv->drm, encoder, 1579 crtc_state->uapi.encoder_mask) { 1580 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 1581 1582 lockdep_assert_held(&intel_dp->psr.lock); 1583 if (intel_dp->psr.psr2_sel_fetch_cff_enabled) 1584 return; 1585 break; 1586 } 1587 1588 intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(crtc_state->cpu_transcoder), 1589 crtc_state->psr2_man_track_ctl); 1590 } 1591 1592 static void psr2_man_trk_ctl_calc(struct intel_crtc_state *crtc_state, 1593 struct drm_rect *clip, bool full_update) 1594 { 1595 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc); 1596 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev); 1597 u32 val = man_trk_ctl_enable_bit_get(dev_priv); 1598 1599 /* SF partial frame enable has to be set even on full update */ 1600 val |= man_trk_ctl_partial_frame_bit_get(dev_priv); 1601 1602 if (full_update) { 1603 /* 1604 * Not applying Wa_14014971508:adlp as we do not support the 1605 * feature that requires this workaround. 1606 */ 1607 val |= man_trk_ctl_single_full_frame_bit_get(dev_priv); 1608 goto exit; 1609 } 1610 1611 if (clip->y1 == -1) 1612 goto exit; 1613 1614 if (IS_ALDERLAKE_P(dev_priv)) { 1615 val |= ADLP_PSR2_MAN_TRK_CTL_SU_REGION_START_ADDR(clip->y1); 1616 val |= ADLP_PSR2_MAN_TRK_CTL_SU_REGION_END_ADDR(clip->y2 - 1); 1617 } else { 1618 drm_WARN_ON(crtc_state->uapi.crtc->dev, clip->y1 % 4 || clip->y2 % 4); 1619 1620 val |= PSR2_MAN_TRK_CTL_SU_REGION_START_ADDR(clip->y1 / 4 + 1); 1621 val |= PSR2_MAN_TRK_CTL_SU_REGION_END_ADDR(clip->y2 / 4 + 1); 1622 } 1623 exit: 1624 crtc_state->psr2_man_track_ctl = val; 1625 } 1626 1627 static void clip_area_update(struct drm_rect *overlap_damage_area, 1628 struct drm_rect *damage_area, 1629 struct drm_rect *pipe_src) 1630 { 1631 if (!drm_rect_intersect(damage_area, pipe_src)) 1632 return; 1633 1634 if (overlap_damage_area->y1 == -1) { 1635 overlap_damage_area->y1 = damage_area->y1; 1636 overlap_damage_area->y2 = damage_area->y2; 1637 return; 1638 } 1639 1640 if (damage_area->y1 < overlap_damage_area->y1) 1641 overlap_damage_area->y1 = damage_area->y1; 1642 1643 if (damage_area->y2 > overlap_damage_area->y2) 1644 overlap_damage_area->y2 = damage_area->y2; 1645 } 1646 1647 static void intel_psr2_sel_fetch_pipe_alignment(const struct intel_crtc_state *crtc_state, 1648 struct drm_rect *pipe_clip) 1649 { 1650 struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev); 1651 const u16 y_alignment = crtc_state->su_y_granularity; 1652 1653 pipe_clip->y1 -= pipe_clip->y1 % y_alignment; 1654 if (pipe_clip->y2 % y_alignment) 1655 pipe_clip->y2 = ((pipe_clip->y2 / y_alignment) + 1) * y_alignment; 1656 1657 if (IS_ALDERLAKE_P(dev_priv) && crtc_state->dsc.compression_enable) 1658 drm_warn(&dev_priv->drm, "Missing PSR2 sel fetch alignment with DSC\n"); 1659 } 1660 1661 /* 1662 * TODO: Not clear how to handle planes with negative position, 1663 * also planes are not updated if they have a negative X 1664 * position so for now doing a full update in this cases 1665 * 1666 * Plane scaling and rotation is not supported by selective fetch and both 1667 * properties can change without a modeset, so need to be check at every 1668 * atomic commit. 1669 */ 1670 static bool psr2_sel_fetch_plane_state_supported(const struct intel_plane_state *plane_state) 1671 { 1672 if (plane_state->uapi.dst.y1 < 0 || 1673 plane_state->uapi.dst.x1 < 0 || 1674 plane_state->scaler_id >= 0 || 1675 plane_state->uapi.rotation != DRM_MODE_ROTATE_0) 1676 return false; 1677 1678 return true; 1679 } 1680 1681 /* 1682 * Check for pipe properties that is not supported by selective fetch. 1683 * 1684 * TODO: pipe scaling causes a modeset but skl_update_scaler_crtc() is executed 1685 * after intel_psr_compute_config(), so for now keeping PSR2 selective fetch 1686 * enabled and going to the full update path. 1687 */ 1688 static bool psr2_sel_fetch_pipe_state_supported(const struct intel_crtc_state *crtc_state) 1689 { 1690 if (crtc_state->scaler_state.scaler_id >= 0) 1691 return false; 1692 1693 return true; 1694 } 1695 1696 int intel_psr2_sel_fetch_update(struct intel_atomic_state *state, 1697 struct intel_crtc *crtc) 1698 { 1699 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 1700 struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc); 1701 struct drm_rect pipe_clip = { .x1 = 0, .y1 = -1, .x2 = INT_MAX, .y2 = -1 }; 1702 struct intel_plane_state *new_plane_state, *old_plane_state; 1703 struct intel_plane *plane; 1704 bool full_update = false; 1705 int i, ret; 1706 1707 if (!crtc_state->enable_psr2_sel_fetch) 1708 return 0; 1709 1710 if (!psr2_sel_fetch_pipe_state_supported(crtc_state)) { 1711 full_update = true; 1712 goto skip_sel_fetch_set_loop; 1713 } 1714 1715 /* 1716 * Calculate minimal selective fetch area of each plane and calculate 1717 * the pipe damaged area. 1718 * In the next loop the plane selective fetch area will actually be set 1719 * using whole pipe damaged area. 1720 */ 1721 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 1722 new_plane_state, i) { 1723 struct drm_rect src, damaged_area = { .x1 = 0, .y1 = -1, 1724 .x2 = INT_MAX }; 1725 1726 if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc) 1727 continue; 1728 1729 if (!new_plane_state->uapi.visible && 1730 !old_plane_state->uapi.visible) 1731 continue; 1732 1733 if (!psr2_sel_fetch_plane_state_supported(new_plane_state)) { 1734 full_update = true; 1735 break; 1736 } 1737 1738 /* 1739 * If visibility or plane moved, mark the whole plane area as 1740 * damaged as it needs to be complete redraw in the new and old 1741 * position. 1742 */ 1743 if (new_plane_state->uapi.visible != old_plane_state->uapi.visible || 1744 !drm_rect_equals(&new_plane_state->uapi.dst, 1745 &old_plane_state->uapi.dst)) { 1746 if (old_plane_state->uapi.visible) { 1747 damaged_area.y1 = old_plane_state->uapi.dst.y1; 1748 damaged_area.y2 = old_plane_state->uapi.dst.y2; 1749 clip_area_update(&pipe_clip, &damaged_area, 1750 &crtc_state->pipe_src); 1751 } 1752 1753 if (new_plane_state->uapi.visible) { 1754 damaged_area.y1 = new_plane_state->uapi.dst.y1; 1755 damaged_area.y2 = new_plane_state->uapi.dst.y2; 1756 clip_area_update(&pipe_clip, &damaged_area, 1757 &crtc_state->pipe_src); 1758 } 1759 continue; 1760 } else if (new_plane_state->uapi.alpha != old_plane_state->uapi.alpha) { 1761 /* If alpha changed mark the whole plane area as damaged */ 1762 damaged_area.y1 = new_plane_state->uapi.dst.y1; 1763 damaged_area.y2 = new_plane_state->uapi.dst.y2; 1764 clip_area_update(&pipe_clip, &damaged_area, 1765 &crtc_state->pipe_src); 1766 continue; 1767 } 1768 1769 src = drm_plane_state_src(&new_plane_state->uapi); 1770 drm_rect_fp_to_int(&src, &src); 1771 1772 if (!drm_atomic_helper_damage_merged(&old_plane_state->uapi, 1773 &new_plane_state->uapi, &damaged_area)) 1774 continue; 1775 1776 damaged_area.y1 += new_plane_state->uapi.dst.y1 - src.y1; 1777 damaged_area.y2 += new_plane_state->uapi.dst.y1 - src.y1; 1778 damaged_area.x1 += new_plane_state->uapi.dst.x1 - src.x1; 1779 damaged_area.x2 += new_plane_state->uapi.dst.x1 - src.x1; 1780 1781 clip_area_update(&pipe_clip, &damaged_area, &crtc_state->pipe_src); 1782 } 1783 1784 /* 1785 * TODO: For now we are just using full update in case 1786 * selective fetch area calculation fails. To optimize this we 1787 * should identify cases where this happens and fix the area 1788 * calculation for those. 1789 */ 1790 if (pipe_clip.y1 == -1) { 1791 drm_info_once(&dev_priv->drm, 1792 "Selective fetch area calculation failed in pipe %c\n", 1793 pipe_name(crtc->pipe)); 1794 full_update = true; 1795 } 1796 1797 if (full_update) 1798 goto skip_sel_fetch_set_loop; 1799 1800 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base); 1801 if (ret) 1802 return ret; 1803 1804 intel_psr2_sel_fetch_pipe_alignment(crtc_state, &pipe_clip); 1805 1806 /* 1807 * Now that we have the pipe damaged area check if it intersect with 1808 * every plane, if it does set the plane selective fetch area. 1809 */ 1810 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state, 1811 new_plane_state, i) { 1812 struct drm_rect *sel_fetch_area, inter; 1813 struct intel_plane *linked = new_plane_state->planar_linked_plane; 1814 1815 if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc || 1816 !new_plane_state->uapi.visible) 1817 continue; 1818 1819 inter = pipe_clip; 1820 if (!drm_rect_intersect(&inter, &new_plane_state->uapi.dst)) 1821 continue; 1822 1823 if (!psr2_sel_fetch_plane_state_supported(new_plane_state)) { 1824 full_update = true; 1825 break; 1826 } 1827 1828 sel_fetch_area = &new_plane_state->psr2_sel_fetch_area; 1829 sel_fetch_area->y1 = inter.y1 - new_plane_state->uapi.dst.y1; 1830 sel_fetch_area->y2 = inter.y2 - new_plane_state->uapi.dst.y1; 1831 crtc_state->update_planes |= BIT(plane->id); 1832 1833 /* 1834 * Sel_fetch_area is calculated for UV plane. Use 1835 * same area for Y plane as well. 1836 */ 1837 if (linked) { 1838 struct intel_plane_state *linked_new_plane_state; 1839 struct drm_rect *linked_sel_fetch_area; 1840 1841 linked_new_plane_state = intel_atomic_get_plane_state(state, linked); 1842 if (IS_ERR(linked_new_plane_state)) 1843 return PTR_ERR(linked_new_plane_state); 1844 1845 linked_sel_fetch_area = &linked_new_plane_state->psr2_sel_fetch_area; 1846 linked_sel_fetch_area->y1 = sel_fetch_area->y1; 1847 linked_sel_fetch_area->y2 = sel_fetch_area->y2; 1848 crtc_state->update_planes |= BIT(linked->id); 1849 } 1850 } 1851 1852 skip_sel_fetch_set_loop: 1853 psr2_man_trk_ctl_calc(crtc_state, &pipe_clip, full_update); 1854 return 0; 1855 } 1856 1857 void intel_psr_pre_plane_update(struct intel_atomic_state *state, 1858 struct intel_crtc *crtc) 1859 { 1860 struct drm_i915_private *i915 = to_i915(state->base.dev); 1861 const struct intel_crtc_state *old_crtc_state = 1862 intel_atomic_get_old_crtc_state(state, crtc); 1863 const struct intel_crtc_state *new_crtc_state = 1864 intel_atomic_get_new_crtc_state(state, crtc); 1865 struct intel_encoder *encoder; 1866 1867 if (!HAS_PSR(i915)) 1868 return; 1869 1870 for_each_intel_encoder_mask_with_psr(state->base.dev, encoder, 1871 old_crtc_state->uapi.encoder_mask) { 1872 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 1873 struct intel_psr *psr = &intel_dp->psr; 1874 bool needs_to_disable = false; 1875 1876 mutex_lock(&psr->lock); 1877 1878 /* 1879 * Reasons to disable: 1880 * - PSR disabled in new state 1881 * - All planes will go inactive 1882 * - Changing between PSR versions 1883 */ 1884 needs_to_disable |= intel_crtc_needs_modeset(new_crtc_state); 1885 needs_to_disable |= !new_crtc_state->has_psr; 1886 needs_to_disable |= !new_crtc_state->active_planes; 1887 needs_to_disable |= new_crtc_state->has_psr2 != psr->psr2_enabled; 1888 1889 if (psr->enabled && needs_to_disable) 1890 intel_psr_disable_locked(intel_dp); 1891 1892 mutex_unlock(&psr->lock); 1893 } 1894 } 1895 1896 static void _intel_psr_post_plane_update(const struct intel_atomic_state *state, 1897 const struct intel_crtc_state *crtc_state) 1898 { 1899 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 1900 struct intel_encoder *encoder; 1901 1902 if (!crtc_state->has_psr) 1903 return; 1904 1905 for_each_intel_encoder_mask_with_psr(state->base.dev, encoder, 1906 crtc_state->uapi.encoder_mask) { 1907 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 1908 struct intel_psr *psr = &intel_dp->psr; 1909 1910 mutex_lock(&psr->lock); 1911 1912 if (psr->sink_not_reliable) 1913 goto exit; 1914 1915 drm_WARN_ON(&dev_priv->drm, psr->enabled && !crtc_state->active_planes); 1916 1917 /* Only enable if there is active planes */ 1918 if (!psr->enabled && crtc_state->active_planes) 1919 intel_psr_enable_locked(intel_dp, crtc_state); 1920 1921 /* Force a PSR exit when enabling CRC to avoid CRC timeouts */ 1922 if (crtc_state->crc_enabled && psr->enabled) 1923 psr_force_hw_tracking_exit(intel_dp); 1924 1925 exit: 1926 mutex_unlock(&psr->lock); 1927 } 1928 } 1929 1930 void intel_psr_post_plane_update(const struct intel_atomic_state *state) 1931 { 1932 struct drm_i915_private *dev_priv = to_i915(state->base.dev); 1933 struct intel_crtc_state *crtc_state; 1934 struct intel_crtc *crtc; 1935 int i; 1936 1937 if (!HAS_PSR(dev_priv)) 1938 return; 1939 1940 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) 1941 _intel_psr_post_plane_update(state, crtc_state); 1942 } 1943 1944 static int _psr2_ready_for_pipe_update_locked(struct intel_dp *intel_dp) 1945 { 1946 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1947 1948 /* 1949 * Any state lower than EDP_PSR2_STATUS_STATE_DEEP_SLEEP is enough. 1950 * As all higher states has bit 4 of PSR2 state set we can just wait for 1951 * EDP_PSR2_STATUS_STATE_DEEP_SLEEP to be cleared. 1952 */ 1953 return intel_de_wait_for_clear(dev_priv, 1954 EDP_PSR2_STATUS(intel_dp->psr.transcoder), 1955 EDP_PSR2_STATUS_STATE_DEEP_SLEEP, 50); 1956 } 1957 1958 static int _psr1_ready_for_pipe_update_locked(struct intel_dp *intel_dp) 1959 { 1960 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 1961 1962 /* 1963 * From bspec: Panel Self Refresh (BDW+) 1964 * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of 1965 * exit training time + 1.5 ms of aux channel handshake. 50 ms is 1966 * defensive enough to cover everything. 1967 */ 1968 return intel_de_wait_for_clear(dev_priv, 1969 EDP_PSR_STATUS(intel_dp->psr.transcoder), 1970 EDP_PSR_STATUS_STATE_MASK, 50); 1971 } 1972 1973 /** 1974 * intel_psr_wait_for_idle_locked - wait for PSR be ready for a pipe update 1975 * @new_crtc_state: new CRTC state 1976 * 1977 * This function is expected to be called from pipe_update_start() where it is 1978 * not expected to race with PSR enable or disable. 1979 */ 1980 void intel_psr_wait_for_idle_locked(const struct intel_crtc_state *new_crtc_state) 1981 { 1982 struct drm_i915_private *dev_priv = to_i915(new_crtc_state->uapi.crtc->dev); 1983 struct intel_encoder *encoder; 1984 1985 if (!new_crtc_state->has_psr) 1986 return; 1987 1988 for_each_intel_encoder_mask_with_psr(&dev_priv->drm, encoder, 1989 new_crtc_state->uapi.encoder_mask) { 1990 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 1991 int ret; 1992 1993 lockdep_assert_held(&intel_dp->psr.lock); 1994 1995 if (!intel_dp->psr.enabled) 1996 continue; 1997 1998 if (intel_dp->psr.psr2_enabled) 1999 ret = _psr2_ready_for_pipe_update_locked(intel_dp); 2000 else 2001 ret = _psr1_ready_for_pipe_update_locked(intel_dp); 2002 2003 if (ret) 2004 drm_err(&dev_priv->drm, "PSR wait timed out, atomic update may fail\n"); 2005 } 2006 } 2007 2008 static bool __psr_wait_for_idle_locked(struct intel_dp *intel_dp) 2009 { 2010 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2011 i915_reg_t reg; 2012 u32 mask; 2013 int err; 2014 2015 if (!intel_dp->psr.enabled) 2016 return false; 2017 2018 if (intel_dp->psr.psr2_enabled) { 2019 reg = EDP_PSR2_STATUS(intel_dp->psr.transcoder); 2020 mask = EDP_PSR2_STATUS_STATE_MASK; 2021 } else { 2022 reg = EDP_PSR_STATUS(intel_dp->psr.transcoder); 2023 mask = EDP_PSR_STATUS_STATE_MASK; 2024 } 2025 2026 mutex_unlock(&intel_dp->psr.lock); 2027 2028 err = intel_de_wait_for_clear(dev_priv, reg, mask, 50); 2029 if (err) 2030 drm_err(&dev_priv->drm, 2031 "Timed out waiting for PSR Idle for re-enable\n"); 2032 2033 /* After the unlocked wait, verify that PSR is still wanted! */ 2034 mutex_lock(&intel_dp->psr.lock); 2035 return err == 0 && intel_dp->psr.enabled; 2036 } 2037 2038 static int intel_psr_fastset_force(struct drm_i915_private *dev_priv) 2039 { 2040 struct drm_connector_list_iter conn_iter; 2041 struct drm_device *dev = &dev_priv->drm; 2042 struct drm_modeset_acquire_ctx ctx; 2043 struct drm_atomic_state *state; 2044 struct drm_connector *conn; 2045 int err = 0; 2046 2047 state = drm_atomic_state_alloc(dev); 2048 if (!state) 2049 return -ENOMEM; 2050 2051 drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE); 2052 state->acquire_ctx = &ctx; 2053 2054 retry: 2055 2056 drm_connector_list_iter_begin(dev, &conn_iter); 2057 drm_for_each_connector_iter(conn, &conn_iter) { 2058 struct drm_connector_state *conn_state; 2059 struct drm_crtc_state *crtc_state; 2060 2061 if (conn->connector_type != DRM_MODE_CONNECTOR_eDP) 2062 continue; 2063 2064 conn_state = drm_atomic_get_connector_state(state, conn); 2065 if (IS_ERR(conn_state)) { 2066 err = PTR_ERR(conn_state); 2067 break; 2068 } 2069 2070 if (!conn_state->crtc) 2071 continue; 2072 2073 crtc_state = drm_atomic_get_crtc_state(state, conn_state->crtc); 2074 if (IS_ERR(crtc_state)) { 2075 err = PTR_ERR(crtc_state); 2076 break; 2077 } 2078 2079 /* Mark mode as changed to trigger a pipe->update() */ 2080 crtc_state->mode_changed = true; 2081 } 2082 drm_connector_list_iter_end(&conn_iter); 2083 2084 if (err == 0) 2085 err = drm_atomic_commit(state); 2086 2087 if (err == -EDEADLK) { 2088 drm_atomic_state_clear(state); 2089 err = drm_modeset_backoff(&ctx); 2090 if (!err) 2091 goto retry; 2092 } 2093 2094 drm_modeset_drop_locks(&ctx); 2095 drm_modeset_acquire_fini(&ctx); 2096 drm_atomic_state_put(state); 2097 2098 return err; 2099 } 2100 2101 int intel_psr_debug_set(struct intel_dp *intel_dp, u64 val) 2102 { 2103 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2104 const u32 mode = val & I915_PSR_DEBUG_MODE_MASK; 2105 u32 old_mode; 2106 int ret; 2107 2108 if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) || 2109 mode > I915_PSR_DEBUG_ENABLE_SEL_FETCH) { 2110 drm_dbg_kms(&dev_priv->drm, "Invalid debug mask %llx\n", val); 2111 return -EINVAL; 2112 } 2113 2114 ret = mutex_lock_interruptible(&intel_dp->psr.lock); 2115 if (ret) 2116 return ret; 2117 2118 old_mode = intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK; 2119 intel_dp->psr.debug = val; 2120 2121 /* 2122 * Do it right away if it's already enabled, otherwise it will be done 2123 * when enabling the source. 2124 */ 2125 if (intel_dp->psr.enabled) 2126 psr_irq_control(intel_dp); 2127 2128 mutex_unlock(&intel_dp->psr.lock); 2129 2130 if (old_mode != mode) 2131 ret = intel_psr_fastset_force(dev_priv); 2132 2133 return ret; 2134 } 2135 2136 static void intel_psr_handle_irq(struct intel_dp *intel_dp) 2137 { 2138 struct intel_psr *psr = &intel_dp->psr; 2139 2140 intel_psr_disable_locked(intel_dp); 2141 psr->sink_not_reliable = true; 2142 /* let's make sure that sink is awaken */ 2143 drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0); 2144 } 2145 2146 static void intel_psr_work(struct work_struct *work) 2147 { 2148 struct intel_dp *intel_dp = 2149 container_of(work, typeof(*intel_dp), psr.work); 2150 2151 mutex_lock(&intel_dp->psr.lock); 2152 2153 if (!intel_dp->psr.enabled) 2154 goto unlock; 2155 2156 if (READ_ONCE(intel_dp->psr.irq_aux_error)) 2157 intel_psr_handle_irq(intel_dp); 2158 2159 /* 2160 * We have to make sure PSR is ready for re-enable 2161 * otherwise it keeps disabled until next full enable/disable cycle. 2162 * PSR might take some time to get fully disabled 2163 * and be ready for re-enable. 2164 */ 2165 if (!__psr_wait_for_idle_locked(intel_dp)) 2166 goto unlock; 2167 2168 /* 2169 * The delayed work can race with an invalidate hence we need to 2170 * recheck. Since psr_flush first clears this and then reschedules we 2171 * won't ever miss a flush when bailing out here. 2172 */ 2173 if (intel_dp->psr.busy_frontbuffer_bits || intel_dp->psr.active) 2174 goto unlock; 2175 2176 intel_psr_activate(intel_dp); 2177 unlock: 2178 mutex_unlock(&intel_dp->psr.lock); 2179 } 2180 2181 static void _psr_invalidate_handle(struct intel_dp *intel_dp) 2182 { 2183 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2184 2185 if (intel_dp->psr.psr2_sel_fetch_enabled) { 2186 u32 val; 2187 2188 if (intel_dp->psr.psr2_sel_fetch_cff_enabled) 2189 return; 2190 2191 val = man_trk_ctl_enable_bit_get(dev_priv) | 2192 man_trk_ctl_partial_frame_bit_get(dev_priv) | 2193 man_trk_ctl_continuos_full_frame(dev_priv); 2194 intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder), val); 2195 intel_de_write(dev_priv, CURSURFLIVE(intel_dp->psr.pipe), 0); 2196 intel_dp->psr.psr2_sel_fetch_cff_enabled = true; 2197 } else { 2198 intel_psr_exit(intel_dp); 2199 } 2200 } 2201 2202 /** 2203 * intel_psr_invalidate - Invalidate PSR 2204 * @dev_priv: i915 device 2205 * @frontbuffer_bits: frontbuffer plane tracking bits 2206 * @origin: which operation caused the invalidate 2207 * 2208 * Since the hardware frontbuffer tracking has gaps we need to integrate 2209 * with the software frontbuffer tracking. This function gets called every 2210 * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be 2211 * disabled if the frontbuffer mask contains a buffer relevant to PSR. 2212 * 2213 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits." 2214 */ 2215 void intel_psr_invalidate(struct drm_i915_private *dev_priv, 2216 unsigned frontbuffer_bits, enum fb_op_origin origin) 2217 { 2218 struct intel_encoder *encoder; 2219 2220 if (origin == ORIGIN_FLIP) 2221 return; 2222 2223 for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) { 2224 unsigned int pipe_frontbuffer_bits = frontbuffer_bits; 2225 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2226 2227 mutex_lock(&intel_dp->psr.lock); 2228 if (!intel_dp->psr.enabled) { 2229 mutex_unlock(&intel_dp->psr.lock); 2230 continue; 2231 } 2232 2233 pipe_frontbuffer_bits &= 2234 INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe); 2235 intel_dp->psr.busy_frontbuffer_bits |= pipe_frontbuffer_bits; 2236 2237 if (pipe_frontbuffer_bits) 2238 _psr_invalidate_handle(intel_dp); 2239 2240 mutex_unlock(&intel_dp->psr.lock); 2241 } 2242 } 2243 /* 2244 * When we will be completely rely on PSR2 S/W tracking in future, 2245 * intel_psr_flush() will invalidate and flush the PSR for ORIGIN_FLIP 2246 * event also therefore tgl_dc3co_flush_locked() require to be changed 2247 * accordingly in future. 2248 */ 2249 static void 2250 tgl_dc3co_flush_locked(struct intel_dp *intel_dp, unsigned int frontbuffer_bits, 2251 enum fb_op_origin origin) 2252 { 2253 if (!intel_dp->psr.dc3co_exitline || !intel_dp->psr.psr2_enabled || 2254 !intel_dp->psr.active) 2255 return; 2256 2257 /* 2258 * At every frontbuffer flush flip event modified delay of delayed work, 2259 * when delayed work schedules that means display has been idle. 2260 */ 2261 if (!(frontbuffer_bits & 2262 INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe))) 2263 return; 2264 2265 tgl_psr2_enable_dc3co(intel_dp); 2266 mod_delayed_work(system_wq, &intel_dp->psr.dc3co_work, 2267 intel_dp->psr.dc3co_exit_delay); 2268 } 2269 2270 static void _psr_flush_handle(struct intel_dp *intel_dp) 2271 { 2272 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2273 2274 if (intel_dp->psr.psr2_sel_fetch_enabled) { 2275 if (intel_dp->psr.psr2_sel_fetch_cff_enabled) { 2276 /* can we turn CFF off? */ 2277 if (intel_dp->psr.busy_frontbuffer_bits == 0) { 2278 u32 val = man_trk_ctl_enable_bit_get(dev_priv) | 2279 man_trk_ctl_partial_frame_bit_get(dev_priv) | 2280 man_trk_ctl_single_full_frame_bit_get(dev_priv); 2281 2282 /* 2283 * turn continuous full frame off and do a single 2284 * full frame 2285 */ 2286 intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder), 2287 val); 2288 intel_de_write(dev_priv, CURSURFLIVE(intel_dp->psr.pipe), 0); 2289 intel_dp->psr.psr2_sel_fetch_cff_enabled = false; 2290 } 2291 } else { 2292 /* 2293 * continuous full frame is disabled, only a single full 2294 * frame is required 2295 */ 2296 psr_force_hw_tracking_exit(intel_dp); 2297 } 2298 } else { 2299 psr_force_hw_tracking_exit(intel_dp); 2300 2301 if (!intel_dp->psr.active && !intel_dp->psr.busy_frontbuffer_bits) 2302 schedule_work(&intel_dp->psr.work); 2303 } 2304 } 2305 2306 /** 2307 * intel_psr_flush - Flush PSR 2308 * @dev_priv: i915 device 2309 * @frontbuffer_bits: frontbuffer plane tracking bits 2310 * @origin: which operation caused the flush 2311 * 2312 * Since the hardware frontbuffer tracking has gaps we need to integrate 2313 * with the software frontbuffer tracking. This function gets called every 2314 * time frontbuffer rendering has completed and flushed out to memory. PSR 2315 * can be enabled again if no other frontbuffer relevant to PSR is dirty. 2316 * 2317 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits. 2318 */ 2319 void intel_psr_flush(struct drm_i915_private *dev_priv, 2320 unsigned frontbuffer_bits, enum fb_op_origin origin) 2321 { 2322 struct intel_encoder *encoder; 2323 2324 for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) { 2325 unsigned int pipe_frontbuffer_bits = frontbuffer_bits; 2326 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2327 2328 mutex_lock(&intel_dp->psr.lock); 2329 if (!intel_dp->psr.enabled) { 2330 mutex_unlock(&intel_dp->psr.lock); 2331 continue; 2332 } 2333 2334 pipe_frontbuffer_bits &= 2335 INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe); 2336 intel_dp->psr.busy_frontbuffer_bits &= ~pipe_frontbuffer_bits; 2337 2338 /* 2339 * If the PSR is paused by an explicit intel_psr_paused() call, 2340 * we have to ensure that the PSR is not activated until 2341 * intel_psr_resume() is called. 2342 */ 2343 if (intel_dp->psr.paused) 2344 goto unlock; 2345 2346 if (origin == ORIGIN_FLIP || 2347 (origin == ORIGIN_CURSOR_UPDATE && 2348 !intel_dp->psr.psr2_sel_fetch_enabled)) { 2349 tgl_dc3co_flush_locked(intel_dp, frontbuffer_bits, origin); 2350 goto unlock; 2351 } 2352 2353 if (pipe_frontbuffer_bits == 0) 2354 goto unlock; 2355 2356 /* By definition flush = invalidate + flush */ 2357 _psr_flush_handle(intel_dp); 2358 unlock: 2359 mutex_unlock(&intel_dp->psr.lock); 2360 } 2361 } 2362 2363 /** 2364 * intel_psr_init - Init basic PSR work and mutex. 2365 * @intel_dp: Intel DP 2366 * 2367 * This function is called after the initializing connector. 2368 * (the initializing of connector treats the handling of connector capabilities) 2369 * And it initializes basic PSR stuff for each DP Encoder. 2370 */ 2371 void intel_psr_init(struct intel_dp *intel_dp) 2372 { 2373 struct intel_connector *connector = intel_dp->attached_connector; 2374 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp); 2375 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2376 2377 if (!HAS_PSR(dev_priv)) 2378 return; 2379 2380 /* 2381 * HSW spec explicitly says PSR is tied to port A. 2382 * BDW+ platforms have a instance of PSR registers per transcoder but 2383 * BDW, GEN9 and GEN11 are not validated by HW team in other transcoder 2384 * than eDP one. 2385 * For now it only supports one instance of PSR for BDW, GEN9 and GEN11. 2386 * So lets keep it hardcoded to PORT_A for BDW, GEN9 and GEN11. 2387 * But GEN12 supports a instance of PSR registers per transcoder. 2388 */ 2389 if (DISPLAY_VER(dev_priv) < 12 && dig_port->base.port != PORT_A) { 2390 drm_dbg_kms(&dev_priv->drm, 2391 "PSR condition failed: Port not supported\n"); 2392 return; 2393 } 2394 2395 intel_dp->psr.source_support = true; 2396 2397 /* Set link_standby x link_off defaults */ 2398 if (DISPLAY_VER(dev_priv) < 12) 2399 /* For new platforms up to TGL let's respect VBT back again */ 2400 intel_dp->psr.link_standby = connector->panel.vbt.psr.full_link; 2401 2402 INIT_WORK(&intel_dp->psr.work, intel_psr_work); 2403 INIT_DELAYED_WORK(&intel_dp->psr.dc3co_work, tgl_dc3co_disable_work); 2404 mutex_init(&intel_dp->psr.lock); 2405 } 2406 2407 static int psr_get_status_and_error_status(struct intel_dp *intel_dp, 2408 u8 *status, u8 *error_status) 2409 { 2410 struct drm_dp_aux *aux = &intel_dp->aux; 2411 int ret; 2412 2413 ret = drm_dp_dpcd_readb(aux, DP_PSR_STATUS, status); 2414 if (ret != 1) 2415 return ret; 2416 2417 ret = drm_dp_dpcd_readb(aux, DP_PSR_ERROR_STATUS, error_status); 2418 if (ret != 1) 2419 return ret; 2420 2421 *status = *status & DP_PSR_SINK_STATE_MASK; 2422 2423 return 0; 2424 } 2425 2426 static void psr_alpm_check(struct intel_dp *intel_dp) 2427 { 2428 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2429 struct drm_dp_aux *aux = &intel_dp->aux; 2430 struct intel_psr *psr = &intel_dp->psr; 2431 u8 val; 2432 int r; 2433 2434 if (!psr->psr2_enabled) 2435 return; 2436 2437 r = drm_dp_dpcd_readb(aux, DP_RECEIVER_ALPM_STATUS, &val); 2438 if (r != 1) { 2439 drm_err(&dev_priv->drm, "Error reading ALPM status\n"); 2440 return; 2441 } 2442 2443 if (val & DP_ALPM_LOCK_TIMEOUT_ERROR) { 2444 intel_psr_disable_locked(intel_dp); 2445 psr->sink_not_reliable = true; 2446 drm_dbg_kms(&dev_priv->drm, 2447 "ALPM lock timeout error, disabling PSR\n"); 2448 2449 /* Clearing error */ 2450 drm_dp_dpcd_writeb(aux, DP_RECEIVER_ALPM_STATUS, val); 2451 } 2452 } 2453 2454 static void psr_capability_changed_check(struct intel_dp *intel_dp) 2455 { 2456 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2457 struct intel_psr *psr = &intel_dp->psr; 2458 u8 val; 2459 int r; 2460 2461 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ESI, &val); 2462 if (r != 1) { 2463 drm_err(&dev_priv->drm, "Error reading DP_PSR_ESI\n"); 2464 return; 2465 } 2466 2467 if (val & DP_PSR_CAPS_CHANGE) { 2468 intel_psr_disable_locked(intel_dp); 2469 psr->sink_not_reliable = true; 2470 drm_dbg_kms(&dev_priv->drm, 2471 "Sink PSR capability changed, disabling PSR\n"); 2472 2473 /* Clearing it */ 2474 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ESI, val); 2475 } 2476 } 2477 2478 void intel_psr_short_pulse(struct intel_dp *intel_dp) 2479 { 2480 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp); 2481 struct intel_psr *psr = &intel_dp->psr; 2482 u8 status, error_status; 2483 const u8 errors = DP_PSR_RFB_STORAGE_ERROR | 2484 DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR | 2485 DP_PSR_LINK_CRC_ERROR; 2486 2487 if (!CAN_PSR(intel_dp)) 2488 return; 2489 2490 mutex_lock(&psr->lock); 2491 2492 if (!psr->enabled) 2493 goto exit; 2494 2495 if (psr_get_status_and_error_status(intel_dp, &status, &error_status)) { 2496 drm_err(&dev_priv->drm, 2497 "Error reading PSR status or error status\n"); 2498 goto exit; 2499 } 2500 2501 if (status == DP_PSR_SINK_INTERNAL_ERROR || (error_status & errors)) { 2502 intel_psr_disable_locked(intel_dp); 2503 psr->sink_not_reliable = true; 2504 } 2505 2506 if (status == DP_PSR_SINK_INTERNAL_ERROR && !error_status) 2507 drm_dbg_kms(&dev_priv->drm, 2508 "PSR sink internal error, disabling PSR\n"); 2509 if (error_status & DP_PSR_RFB_STORAGE_ERROR) 2510 drm_dbg_kms(&dev_priv->drm, 2511 "PSR RFB storage error, disabling PSR\n"); 2512 if (error_status & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR) 2513 drm_dbg_kms(&dev_priv->drm, 2514 "PSR VSC SDP uncorrectable error, disabling PSR\n"); 2515 if (error_status & DP_PSR_LINK_CRC_ERROR) 2516 drm_dbg_kms(&dev_priv->drm, 2517 "PSR Link CRC error, disabling PSR\n"); 2518 2519 if (error_status & ~errors) 2520 drm_err(&dev_priv->drm, 2521 "PSR_ERROR_STATUS unhandled errors %x\n", 2522 error_status & ~errors); 2523 /* clear status register */ 2524 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, error_status); 2525 2526 psr_alpm_check(intel_dp); 2527 psr_capability_changed_check(intel_dp); 2528 2529 exit: 2530 mutex_unlock(&psr->lock); 2531 } 2532 2533 bool intel_psr_enabled(struct intel_dp *intel_dp) 2534 { 2535 bool ret; 2536 2537 if (!CAN_PSR(intel_dp)) 2538 return false; 2539 2540 mutex_lock(&intel_dp->psr.lock); 2541 ret = intel_dp->psr.enabled; 2542 mutex_unlock(&intel_dp->psr.lock); 2543 2544 return ret; 2545 } 2546 2547 /** 2548 * intel_psr_lock - grab PSR lock 2549 * @crtc_state: the crtc state 2550 * 2551 * This is initially meant to be used by around CRTC update, when 2552 * vblank sensitive registers are updated and we need grab the lock 2553 * before it to avoid vblank evasion. 2554 */ 2555 void intel_psr_lock(const struct intel_crtc_state *crtc_state) 2556 { 2557 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 2558 struct intel_encoder *encoder; 2559 2560 if (!crtc_state->has_psr) 2561 return; 2562 2563 for_each_intel_encoder_mask_with_psr(&i915->drm, encoder, 2564 crtc_state->uapi.encoder_mask) { 2565 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2566 2567 mutex_lock(&intel_dp->psr.lock); 2568 break; 2569 } 2570 } 2571 2572 /** 2573 * intel_psr_unlock - release PSR lock 2574 * @crtc_state: the crtc state 2575 * 2576 * Release the PSR lock that was held during pipe update. 2577 */ 2578 void intel_psr_unlock(const struct intel_crtc_state *crtc_state) 2579 { 2580 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev); 2581 struct intel_encoder *encoder; 2582 2583 if (!crtc_state->has_psr) 2584 return; 2585 2586 for_each_intel_encoder_mask_with_psr(&i915->drm, encoder, 2587 crtc_state->uapi.encoder_mask) { 2588 struct intel_dp *intel_dp = enc_to_intel_dp(encoder); 2589 2590 mutex_unlock(&intel_dp->psr.lock); 2591 break; 2592 } 2593 } 2594