xref: /openbmc/linux/drivers/gpu/drm/i915/display/intel_psr.c (revision 6dddc1eb9632b0eb6098d1dc849e8acb2408c1b6)
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <drm/drm_atomic_helper.h>
25 #include <drm/drm_damage_helper.h>
26 
27 #include "display/intel_dp.h"
28 
29 #include "i915_drv.h"
30 #include "intel_atomic.h"
31 #include "intel_crtc.h"
32 #include "intel_de.h"
33 #include "intel_display_types.h"
34 #include "intel_dp_aux.h"
35 #include "intel_hdmi.h"
36 #include "intel_psr.h"
37 #include "intel_snps_phy.h"
38 #include "skl_universal_plane.h"
39 
40 /**
41  * DOC: Panel Self Refresh (PSR/SRD)
42  *
43  * Since Haswell Display controller supports Panel Self-Refresh on display
44  * panels witch have a remote frame buffer (RFB) implemented according to PSR
45  * spec in eDP1.3. PSR feature allows the display to go to lower standby states
46  * when system is idle but display is on as it eliminates display refresh
47  * request to DDR memory completely as long as the frame buffer for that
48  * display is unchanged.
49  *
50  * Panel Self Refresh must be supported by both Hardware (source) and
51  * Panel (sink).
52  *
53  * PSR saves power by caching the framebuffer in the panel RFB, which allows us
54  * to power down the link and memory controller. For DSI panels the same idea
55  * is called "manual mode".
56  *
57  * The implementation uses the hardware-based PSR support which automatically
58  * enters/exits self-refresh mode. The hardware takes care of sending the
59  * required DP aux message and could even retrain the link (that part isn't
60  * enabled yet though). The hardware also keeps track of any frontbuffer
61  * changes to know when to exit self-refresh mode again. Unfortunately that
62  * part doesn't work too well, hence why the i915 PSR support uses the
63  * software frontbuffer tracking to make sure it doesn't miss a screen
64  * update. For this integration intel_psr_invalidate() and intel_psr_flush()
65  * get called by the frontbuffer tracking code. Note that because of locking
66  * issues the self-refresh re-enable code is done from a work queue, which
67  * must be correctly synchronized/cancelled when shutting down the pipe."
68  *
69  * DC3CO (DC3 clock off)
70  *
71  * On top of PSR2, GEN12 adds a intermediate power savings state that turns
72  * clock off automatically during PSR2 idle state.
73  * The smaller overhead of DC3co entry/exit vs. the overhead of PSR2 deep sleep
74  * entry/exit allows the HW to enter a low-power state even when page flipping
75  * periodically (for instance a 30fps video playback scenario).
76  *
77  * Every time a flips occurs PSR2 will get out of deep sleep state(if it was),
78  * so DC3CO is enabled and tgl_dc3co_disable_work is schedule to run after 6
79  * frames, if no other flip occurs and the function above is executed, DC3CO is
80  * disabled and PSR2 is configured to enter deep sleep, resetting again in case
81  * of another flip.
82  * Front buffer modifications do not trigger DC3CO activation on purpose as it
83  * would bring a lot of complexity and most of the moderns systems will only
84  * use page flips.
85  */
86 
87 static bool psr_global_enabled(struct intel_dp *intel_dp)
88 {
89 	struct intel_connector *connector = intel_dp->attached_connector;
90 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
91 
92 	switch (intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
93 	case I915_PSR_DEBUG_DEFAULT:
94 		if (i915->params.enable_psr == -1)
95 			return connector->panel.vbt.psr.enable;
96 		return i915->params.enable_psr;
97 	case I915_PSR_DEBUG_DISABLE:
98 		return false;
99 	default:
100 		return true;
101 	}
102 }
103 
104 static bool psr2_global_enabled(struct intel_dp *intel_dp)
105 {
106 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
107 
108 	switch (intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
109 	case I915_PSR_DEBUG_DISABLE:
110 	case I915_PSR_DEBUG_FORCE_PSR1:
111 		return false;
112 	default:
113 		if (i915->params.enable_psr == 1)
114 			return false;
115 		return true;
116 	}
117 }
118 
119 static void psr_irq_control(struct intel_dp *intel_dp)
120 {
121 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
122 	enum transcoder trans_shift;
123 	i915_reg_t imr_reg;
124 	u32 mask, val;
125 
126 	/*
127 	 * gen12+ has registers relative to transcoder and one per transcoder
128 	 * using the same bit definition: handle it as TRANSCODER_EDP to force
129 	 * 0 shift in bit definition
130 	 */
131 	if (DISPLAY_VER(dev_priv) >= 12) {
132 		trans_shift = 0;
133 		imr_reg = TRANS_PSR_IMR(intel_dp->psr.transcoder);
134 	} else {
135 		trans_shift = intel_dp->psr.transcoder;
136 		imr_reg = EDP_PSR_IMR;
137 	}
138 
139 	mask = EDP_PSR_ERROR(trans_shift);
140 	if (intel_dp->psr.debug & I915_PSR_DEBUG_IRQ)
141 		mask |= EDP_PSR_POST_EXIT(trans_shift) |
142 			EDP_PSR_PRE_ENTRY(trans_shift);
143 
144 	/* Warning: it is masking/setting reserved bits too */
145 	val = intel_de_read(dev_priv, imr_reg);
146 	val &= ~EDP_PSR_TRANS_MASK(trans_shift);
147 	val |= ~mask;
148 	intel_de_write(dev_priv, imr_reg, val);
149 }
150 
151 static void psr_event_print(struct drm_i915_private *i915,
152 			    u32 val, bool psr2_enabled)
153 {
154 	drm_dbg_kms(&i915->drm, "PSR exit events: 0x%x\n", val);
155 	if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE)
156 		drm_dbg_kms(&i915->drm, "\tPSR2 watchdog timer expired\n");
157 	if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled)
158 		drm_dbg_kms(&i915->drm, "\tPSR2 disabled\n");
159 	if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN)
160 		drm_dbg_kms(&i915->drm, "\tSU dirty FIFO underrun\n");
161 	if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN)
162 		drm_dbg_kms(&i915->drm, "\tSU CRC FIFO underrun\n");
163 	if (val & PSR_EVENT_GRAPHICS_RESET)
164 		drm_dbg_kms(&i915->drm, "\tGraphics reset\n");
165 	if (val & PSR_EVENT_PCH_INTERRUPT)
166 		drm_dbg_kms(&i915->drm, "\tPCH interrupt\n");
167 	if (val & PSR_EVENT_MEMORY_UP)
168 		drm_dbg_kms(&i915->drm, "\tMemory up\n");
169 	if (val & PSR_EVENT_FRONT_BUFFER_MODIFY)
170 		drm_dbg_kms(&i915->drm, "\tFront buffer modification\n");
171 	if (val & PSR_EVENT_WD_TIMER_EXPIRE)
172 		drm_dbg_kms(&i915->drm, "\tPSR watchdog timer expired\n");
173 	if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE)
174 		drm_dbg_kms(&i915->drm, "\tPIPE registers updated\n");
175 	if (val & PSR_EVENT_REGISTER_UPDATE)
176 		drm_dbg_kms(&i915->drm, "\tRegister updated\n");
177 	if (val & PSR_EVENT_HDCP_ENABLE)
178 		drm_dbg_kms(&i915->drm, "\tHDCP enabled\n");
179 	if (val & PSR_EVENT_KVMR_SESSION_ENABLE)
180 		drm_dbg_kms(&i915->drm, "\tKVMR session enabled\n");
181 	if (val & PSR_EVENT_VBI_ENABLE)
182 		drm_dbg_kms(&i915->drm, "\tVBI enabled\n");
183 	if (val & PSR_EVENT_LPSP_MODE_EXIT)
184 		drm_dbg_kms(&i915->drm, "\tLPSP mode exited\n");
185 	if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled)
186 		drm_dbg_kms(&i915->drm, "\tPSR disabled\n");
187 }
188 
189 void intel_psr_irq_handler(struct intel_dp *intel_dp, u32 psr_iir)
190 {
191 	enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
192 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
193 	ktime_t time_ns =  ktime_get();
194 	enum transcoder trans_shift;
195 	i915_reg_t imr_reg;
196 
197 	if (DISPLAY_VER(dev_priv) >= 12) {
198 		trans_shift = 0;
199 		imr_reg = TRANS_PSR_IMR(intel_dp->psr.transcoder);
200 	} else {
201 		trans_shift = intel_dp->psr.transcoder;
202 		imr_reg = EDP_PSR_IMR;
203 	}
204 
205 	if (psr_iir & EDP_PSR_PRE_ENTRY(trans_shift)) {
206 		intel_dp->psr.last_entry_attempt = time_ns;
207 		drm_dbg_kms(&dev_priv->drm,
208 			    "[transcoder %s] PSR entry attempt in 2 vblanks\n",
209 			    transcoder_name(cpu_transcoder));
210 	}
211 
212 	if (psr_iir & EDP_PSR_POST_EXIT(trans_shift)) {
213 		intel_dp->psr.last_exit = time_ns;
214 		drm_dbg_kms(&dev_priv->drm,
215 			    "[transcoder %s] PSR exit completed\n",
216 			    transcoder_name(cpu_transcoder));
217 
218 		if (DISPLAY_VER(dev_priv) >= 9) {
219 			u32 val = intel_de_read(dev_priv,
220 						PSR_EVENT(cpu_transcoder));
221 			bool psr2_enabled = intel_dp->psr.psr2_enabled;
222 
223 			intel_de_write(dev_priv, PSR_EVENT(cpu_transcoder),
224 				       val);
225 			psr_event_print(dev_priv, val, psr2_enabled);
226 		}
227 	}
228 
229 	if (psr_iir & EDP_PSR_ERROR(trans_shift)) {
230 		u32 val;
231 
232 		drm_warn(&dev_priv->drm, "[transcoder %s] PSR aux error\n",
233 			 transcoder_name(cpu_transcoder));
234 
235 		intel_dp->psr.irq_aux_error = true;
236 
237 		/*
238 		 * If this interruption is not masked it will keep
239 		 * interrupting so fast that it prevents the scheduled
240 		 * work to run.
241 		 * Also after a PSR error, we don't want to arm PSR
242 		 * again so we don't care about unmask the interruption
243 		 * or unset irq_aux_error.
244 		 */
245 		val = intel_de_read(dev_priv, imr_reg);
246 		val |= EDP_PSR_ERROR(trans_shift);
247 		intel_de_write(dev_priv, imr_reg, val);
248 
249 		schedule_work(&intel_dp->psr.work);
250 	}
251 }
252 
253 static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
254 {
255 	u8 alpm_caps = 0;
256 
257 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
258 			      &alpm_caps) != 1)
259 		return false;
260 	return alpm_caps & DP_ALPM_CAP;
261 }
262 
263 static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
264 {
265 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
266 	u8 val = 8; /* assume the worst if we can't read the value */
267 
268 	if (drm_dp_dpcd_readb(&intel_dp->aux,
269 			      DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
270 		val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
271 	else
272 		drm_dbg_kms(&i915->drm,
273 			    "Unable to get sink synchronization latency, assuming 8 frames\n");
274 	return val;
275 }
276 
277 static void intel_dp_get_su_granularity(struct intel_dp *intel_dp)
278 {
279 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
280 	ssize_t r;
281 	u16 w;
282 	u8 y;
283 
284 	/* If sink don't have specific granularity requirements set legacy ones */
285 	if (!(intel_dp->psr_dpcd[1] & DP_PSR2_SU_GRANULARITY_REQUIRED)) {
286 		/* As PSR2 HW sends full lines, we do not care about x granularity */
287 		w = 4;
288 		y = 4;
289 		goto exit;
290 	}
291 
292 	r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_X_GRANULARITY, &w, 2);
293 	if (r != 2)
294 		drm_dbg_kms(&i915->drm,
295 			    "Unable to read DP_PSR2_SU_X_GRANULARITY\n");
296 	/*
297 	 * Spec says that if the value read is 0 the default granularity should
298 	 * be used instead.
299 	 */
300 	if (r != 2 || w == 0)
301 		w = 4;
302 
303 	r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_Y_GRANULARITY, &y, 1);
304 	if (r != 1) {
305 		drm_dbg_kms(&i915->drm,
306 			    "Unable to read DP_PSR2_SU_Y_GRANULARITY\n");
307 		y = 4;
308 	}
309 	if (y == 0)
310 		y = 1;
311 
312 exit:
313 	intel_dp->psr.su_w_granularity = w;
314 	intel_dp->psr.su_y_granularity = y;
315 }
316 
317 void intel_psr_init_dpcd(struct intel_dp *intel_dp)
318 {
319 	struct drm_i915_private *dev_priv =
320 		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
321 
322 	drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
323 			 sizeof(intel_dp->psr_dpcd));
324 
325 	if (!intel_dp->psr_dpcd[0])
326 		return;
327 	drm_dbg_kms(&dev_priv->drm, "eDP panel supports PSR version %x\n",
328 		    intel_dp->psr_dpcd[0]);
329 
330 	if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_PSR)) {
331 		drm_dbg_kms(&dev_priv->drm,
332 			    "PSR support not currently available for this panel\n");
333 		return;
334 	}
335 
336 	if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
337 		drm_dbg_kms(&dev_priv->drm,
338 			    "Panel lacks power state control, PSR cannot be enabled\n");
339 		return;
340 	}
341 
342 	intel_dp->psr.sink_support = true;
343 	intel_dp->psr.sink_sync_latency =
344 		intel_dp_get_sink_sync_latency(intel_dp);
345 
346 	if (DISPLAY_VER(dev_priv) >= 9 &&
347 	    (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) {
348 		bool y_req = intel_dp->psr_dpcd[1] &
349 			     DP_PSR2_SU_Y_COORDINATE_REQUIRED;
350 		bool alpm = intel_dp_get_alpm_status(intel_dp);
351 
352 		/*
353 		 * All panels that supports PSR version 03h (PSR2 +
354 		 * Y-coordinate) can handle Y-coordinates in VSC but we are
355 		 * only sure that it is going to be used when required by the
356 		 * panel. This way panel is capable to do selective update
357 		 * without a aux frame sync.
358 		 *
359 		 * To support PSR version 02h and PSR version 03h without
360 		 * Y-coordinate requirement panels we would need to enable
361 		 * GTC first.
362 		 */
363 		intel_dp->psr.sink_psr2_support = y_req && alpm;
364 		drm_dbg_kms(&dev_priv->drm, "PSR2 %ssupported\n",
365 			    intel_dp->psr.sink_psr2_support ? "" : "not ");
366 
367 		if (intel_dp->psr.sink_psr2_support) {
368 			intel_dp->psr.colorimetry_support =
369 				intel_dp_get_colorimetry_status(intel_dp);
370 			intel_dp_get_su_granularity(intel_dp);
371 		}
372 	}
373 }
374 
375 static void intel_psr_enable_sink(struct intel_dp *intel_dp)
376 {
377 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
378 	u8 dpcd_val = DP_PSR_ENABLE;
379 
380 	/* Enable ALPM at sink for psr2 */
381 	if (intel_dp->psr.psr2_enabled) {
382 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG,
383 				   DP_ALPM_ENABLE |
384 				   DP_ALPM_LOCK_ERROR_IRQ_HPD_ENABLE);
385 
386 		dpcd_val |= DP_PSR_ENABLE_PSR2 | DP_PSR_IRQ_HPD_WITH_CRC_ERRORS;
387 	} else {
388 		if (intel_dp->psr.link_standby)
389 			dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE;
390 
391 		if (DISPLAY_VER(dev_priv) >= 8)
392 			dpcd_val |= DP_PSR_CRC_VERIFICATION;
393 	}
394 
395 	if (intel_dp->psr.req_psr2_sdp_prior_scanline)
396 		dpcd_val |= DP_PSR_SU_REGION_SCANLINE_CAPTURE;
397 
398 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val);
399 
400 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
401 }
402 
403 static u32 intel_psr1_get_tp_time(struct intel_dp *intel_dp)
404 {
405 	struct intel_connector *connector = intel_dp->attached_connector;
406 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
407 	u32 val = 0;
408 
409 	if (DISPLAY_VER(dev_priv) >= 11)
410 		val |= EDP_PSR_TP4_TIME_0US;
411 
412 	if (dev_priv->params.psr_safest_params) {
413 		val |= EDP_PSR_TP1_TIME_2500us;
414 		val |= EDP_PSR_TP2_TP3_TIME_2500us;
415 		goto check_tp3_sel;
416 	}
417 
418 	if (connector->panel.vbt.psr.tp1_wakeup_time_us == 0)
419 		val |= EDP_PSR_TP1_TIME_0us;
420 	else if (connector->panel.vbt.psr.tp1_wakeup_time_us <= 100)
421 		val |= EDP_PSR_TP1_TIME_100us;
422 	else if (connector->panel.vbt.psr.tp1_wakeup_time_us <= 500)
423 		val |= EDP_PSR_TP1_TIME_500us;
424 	else
425 		val |= EDP_PSR_TP1_TIME_2500us;
426 
427 	if (connector->panel.vbt.psr.tp2_tp3_wakeup_time_us == 0)
428 		val |= EDP_PSR_TP2_TP3_TIME_0us;
429 	else if (connector->panel.vbt.psr.tp2_tp3_wakeup_time_us <= 100)
430 		val |= EDP_PSR_TP2_TP3_TIME_100us;
431 	else if (connector->panel.vbt.psr.tp2_tp3_wakeup_time_us <= 500)
432 		val |= EDP_PSR_TP2_TP3_TIME_500us;
433 	else
434 		val |= EDP_PSR_TP2_TP3_TIME_2500us;
435 
436 check_tp3_sel:
437 	if (intel_dp_source_supports_tps3(dev_priv) &&
438 	    drm_dp_tps3_supported(intel_dp->dpcd))
439 		val |= EDP_PSR_TP1_TP3_SEL;
440 	else
441 		val |= EDP_PSR_TP1_TP2_SEL;
442 
443 	return val;
444 }
445 
446 static u8 psr_compute_idle_frames(struct intel_dp *intel_dp)
447 {
448 	struct intel_connector *connector = intel_dp->attached_connector;
449 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
450 	int idle_frames;
451 
452 	/* Let's use 6 as the minimum to cover all known cases including the
453 	 * off-by-one issue that HW has in some cases.
454 	 */
455 	idle_frames = max(6, connector->panel.vbt.psr.idle_frames);
456 	idle_frames = max(idle_frames, intel_dp->psr.sink_sync_latency + 1);
457 
458 	if (drm_WARN_ON(&dev_priv->drm, idle_frames > 0xf))
459 		idle_frames = 0xf;
460 
461 	return idle_frames;
462 }
463 
464 static void hsw_activate_psr1(struct intel_dp *intel_dp)
465 {
466 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
467 	u32 max_sleep_time = 0x1f;
468 	u32 val = EDP_PSR_ENABLE;
469 
470 	val |= psr_compute_idle_frames(intel_dp) << EDP_PSR_IDLE_FRAME_SHIFT;
471 
472 	val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
473 	if (IS_HASWELL(dev_priv))
474 		val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
475 
476 	if (intel_dp->psr.link_standby)
477 		val |= EDP_PSR_LINK_STANDBY;
478 
479 	val |= intel_psr1_get_tp_time(intel_dp);
480 
481 	if (DISPLAY_VER(dev_priv) >= 8)
482 		val |= EDP_PSR_CRC_ENABLE;
483 
484 	val |= (intel_de_read(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder)) &
485 		EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK);
486 	intel_de_write(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder), val);
487 }
488 
489 static u32 intel_psr2_get_tp_time(struct intel_dp *intel_dp)
490 {
491 	struct intel_connector *connector = intel_dp->attached_connector;
492 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
493 	u32 val = 0;
494 
495 	if (dev_priv->params.psr_safest_params)
496 		return EDP_PSR2_TP2_TIME_2500us;
497 
498 	if (connector->panel.vbt.psr.psr2_tp2_tp3_wakeup_time_us >= 0 &&
499 	    connector->panel.vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 50)
500 		val |= EDP_PSR2_TP2_TIME_50us;
501 	else if (connector->panel.vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 100)
502 		val |= EDP_PSR2_TP2_TIME_100us;
503 	else if (connector->panel.vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 500)
504 		val |= EDP_PSR2_TP2_TIME_500us;
505 	else
506 		val |= EDP_PSR2_TP2_TIME_2500us;
507 
508 	return val;
509 }
510 
511 static void hsw_activate_psr2(struct intel_dp *intel_dp)
512 {
513 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
514 	u32 val = EDP_PSR2_ENABLE;
515 
516 	val |= psr_compute_idle_frames(intel_dp) << EDP_PSR2_IDLE_FRAME_SHIFT;
517 
518 	if (!IS_ALDERLAKE_P(dev_priv))
519 		val |= EDP_SU_TRACK_ENABLE;
520 
521 	if (DISPLAY_VER(dev_priv) >= 10 && DISPLAY_VER(dev_priv) <= 12)
522 		val |= EDP_Y_COORDINATE_ENABLE;
523 
524 	val |= EDP_PSR2_FRAME_BEFORE_SU(max_t(u8, intel_dp->psr.sink_sync_latency + 1, 2));
525 	val |= intel_psr2_get_tp_time(intel_dp);
526 
527 	/* Wa_22012278275:adl-p */
528 	if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_E0)) {
529 		static const u8 map[] = {
530 			2, /* 5 lines */
531 			1, /* 6 lines */
532 			0, /* 7 lines */
533 			3, /* 8 lines */
534 			6, /* 9 lines */
535 			5, /* 10 lines */
536 			4, /* 11 lines */
537 			7, /* 12 lines */
538 		};
539 		/*
540 		 * Still using the default IO_BUFFER_WAKE and FAST_WAKE, see
541 		 * comments bellow for more information
542 		 */
543 		u32 tmp, lines = 7;
544 
545 		val |= TGL_EDP_PSR2_BLOCK_COUNT_NUM_2;
546 
547 		tmp = map[lines - TGL_EDP_PSR2_IO_BUFFER_WAKE_MIN_LINES];
548 		tmp = tmp << TGL_EDP_PSR2_IO_BUFFER_WAKE_SHIFT;
549 		val |= tmp;
550 
551 		tmp = map[lines - TGL_EDP_PSR2_FAST_WAKE_MIN_LINES];
552 		tmp = tmp << TGL_EDP_PSR2_FAST_WAKE_MIN_SHIFT;
553 		val |= tmp;
554 	} else if (DISPLAY_VER(dev_priv) >= 12) {
555 		/*
556 		 * TODO: 7 lines of IO_BUFFER_WAKE and FAST_WAKE are default
557 		 * values from BSpec. In order to setting an optimal power
558 		 * consumption, lower than 4k resolution mode needs to decrease
559 		 * IO_BUFFER_WAKE and FAST_WAKE. And higher than 4K resolution
560 		 * mode needs to increase IO_BUFFER_WAKE and FAST_WAKE.
561 		 */
562 		val |= TGL_EDP_PSR2_BLOCK_COUNT_NUM_2;
563 		val |= TGL_EDP_PSR2_IO_BUFFER_WAKE(7);
564 		val |= TGL_EDP_PSR2_FAST_WAKE(7);
565 	} else if (DISPLAY_VER(dev_priv) >= 9) {
566 		val |= EDP_PSR2_IO_BUFFER_WAKE(7);
567 		val |= EDP_PSR2_FAST_WAKE(7);
568 	}
569 
570 	if (intel_dp->psr.req_psr2_sdp_prior_scanline)
571 		val |= EDP_PSR2_SU_SDP_SCANLINE;
572 
573 	if (intel_dp->psr.psr2_sel_fetch_enabled) {
574 		u32 tmp;
575 
576 		/* Wa_1408330847 */
577 		if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
578 			intel_de_rmw(dev_priv, CHICKEN_PAR1_1,
579 				     DIS_RAM_BYPASS_PSR2_MAN_TRACK,
580 				     DIS_RAM_BYPASS_PSR2_MAN_TRACK);
581 
582 		tmp = intel_de_read(dev_priv, PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder));
583 		drm_WARN_ON(&dev_priv->drm, !(tmp & PSR2_MAN_TRK_CTL_ENABLE));
584 	} else if (HAS_PSR2_SEL_FETCH(dev_priv)) {
585 		intel_de_write(dev_priv,
586 			       PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder), 0);
587 	}
588 
589 	/*
590 	 * PSR2 HW is incorrectly using EDP_PSR_TP1_TP3_SEL and BSpec is
591 	 * recommending keep this bit unset while PSR2 is enabled.
592 	 */
593 	intel_de_write(dev_priv, EDP_PSR_CTL(intel_dp->psr.transcoder), 0);
594 
595 	intel_de_write(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder), val);
596 }
597 
598 static bool
599 transcoder_has_psr2(struct drm_i915_private *dev_priv, enum transcoder trans)
600 {
601 	if (IS_ALDERLAKE_P(dev_priv))
602 		return trans == TRANSCODER_A || trans == TRANSCODER_B;
603 	else if (DISPLAY_VER(dev_priv) >= 12)
604 		return trans == TRANSCODER_A;
605 	else
606 		return trans == TRANSCODER_EDP;
607 }
608 
609 static u32 intel_get_frame_time_us(const struct intel_crtc_state *cstate)
610 {
611 	if (!cstate || !cstate->hw.active)
612 		return 0;
613 
614 	return DIV_ROUND_UP(1000 * 1000,
615 			    drm_mode_vrefresh(&cstate->hw.adjusted_mode));
616 }
617 
618 static void psr2_program_idle_frames(struct intel_dp *intel_dp,
619 				     u32 idle_frames)
620 {
621 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
622 	u32 val;
623 
624 	idle_frames <<=  EDP_PSR2_IDLE_FRAME_SHIFT;
625 	val = intel_de_read(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder));
626 	val &= ~EDP_PSR2_IDLE_FRAME_MASK;
627 	val |= idle_frames;
628 	intel_de_write(dev_priv, EDP_PSR2_CTL(intel_dp->psr.transcoder), val);
629 }
630 
631 static void tgl_psr2_enable_dc3co(struct intel_dp *intel_dp)
632 {
633 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
634 
635 	psr2_program_idle_frames(intel_dp, 0);
636 	intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_DC3CO);
637 }
638 
639 static void tgl_psr2_disable_dc3co(struct intel_dp *intel_dp)
640 {
641 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
642 
643 	intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
644 	psr2_program_idle_frames(intel_dp, psr_compute_idle_frames(intel_dp));
645 }
646 
647 static void tgl_dc3co_disable_work(struct work_struct *work)
648 {
649 	struct intel_dp *intel_dp =
650 		container_of(work, typeof(*intel_dp), psr.dc3co_work.work);
651 
652 	mutex_lock(&intel_dp->psr.lock);
653 	/* If delayed work is pending, it is not idle */
654 	if (delayed_work_pending(&intel_dp->psr.dc3co_work))
655 		goto unlock;
656 
657 	tgl_psr2_disable_dc3co(intel_dp);
658 unlock:
659 	mutex_unlock(&intel_dp->psr.lock);
660 }
661 
662 static void tgl_disallow_dc3co_on_psr2_exit(struct intel_dp *intel_dp)
663 {
664 	if (!intel_dp->psr.dc3co_exitline)
665 		return;
666 
667 	cancel_delayed_work(&intel_dp->psr.dc3co_work);
668 	/* Before PSR2 exit disallow dc3co*/
669 	tgl_psr2_disable_dc3co(intel_dp);
670 }
671 
672 static bool
673 dc3co_is_pipe_port_compatible(struct intel_dp *intel_dp,
674 			      struct intel_crtc_state *crtc_state)
675 {
676 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
677 	enum pipe pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe;
678 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
679 	enum port port = dig_port->base.port;
680 
681 	if (IS_ALDERLAKE_P(dev_priv))
682 		return pipe <= PIPE_B && port <= PORT_B;
683 	else
684 		return pipe == PIPE_A && port == PORT_A;
685 }
686 
687 static void
688 tgl_dc3co_exitline_compute_config(struct intel_dp *intel_dp,
689 				  struct intel_crtc_state *crtc_state)
690 {
691 	const u32 crtc_vdisplay = crtc_state->uapi.adjusted_mode.crtc_vdisplay;
692 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
693 	u32 exit_scanlines;
694 
695 	/*
696 	 * FIXME: Due to the changed sequence of activating/deactivating DC3CO,
697 	 * disable DC3CO until the changed dc3co activating/deactivating sequence
698 	 * is applied. B.Specs:49196
699 	 */
700 	return;
701 
702 	/*
703 	 * DMC's DC3CO exit mechanism has an issue with Selective Fecth
704 	 * TODO: when the issue is addressed, this restriction should be removed.
705 	 */
706 	if (crtc_state->enable_psr2_sel_fetch)
707 		return;
708 
709 	if (!(dev_priv->display.dmc.allowed_dc_mask & DC_STATE_EN_DC3CO))
710 		return;
711 
712 	if (!dc3co_is_pipe_port_compatible(intel_dp, crtc_state))
713 		return;
714 
715 	/* Wa_16011303918:adl-p */
716 	if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
717 		return;
718 
719 	/*
720 	 * DC3CO Exit time 200us B.Spec 49196
721 	 * PSR2 transcoder Early Exit scanlines = ROUNDUP(200 / line time) + 1
722 	 */
723 	exit_scanlines =
724 		intel_usecs_to_scanlines(&crtc_state->uapi.adjusted_mode, 200) + 1;
725 
726 	if (drm_WARN_ON(&dev_priv->drm, exit_scanlines > crtc_vdisplay))
727 		return;
728 
729 	crtc_state->dc3co_exitline = crtc_vdisplay - exit_scanlines;
730 }
731 
732 static bool intel_psr2_sel_fetch_config_valid(struct intel_dp *intel_dp,
733 					      struct intel_crtc_state *crtc_state)
734 {
735 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
736 
737 	if (!dev_priv->params.enable_psr2_sel_fetch &&
738 	    intel_dp->psr.debug != I915_PSR_DEBUG_ENABLE_SEL_FETCH) {
739 		drm_dbg_kms(&dev_priv->drm,
740 			    "PSR2 sel fetch not enabled, disabled by parameter\n");
741 		return false;
742 	}
743 
744 	if (crtc_state->uapi.async_flip) {
745 		drm_dbg_kms(&dev_priv->drm,
746 			    "PSR2 sel fetch not enabled, async flip enabled\n");
747 		return false;
748 	}
749 
750 	/* Wa_14010254185 Wa_14010103792 */
751 	if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0)) {
752 		drm_dbg_kms(&dev_priv->drm,
753 			    "PSR2 sel fetch not enabled, missing the implementation of WAs\n");
754 		return false;
755 	}
756 
757 	return crtc_state->enable_psr2_sel_fetch = true;
758 }
759 
760 static bool psr2_granularity_check(struct intel_dp *intel_dp,
761 				   struct intel_crtc_state *crtc_state)
762 {
763 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
764 	const int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay;
765 	const int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay;
766 	u16 y_granularity = 0;
767 
768 	/* PSR2 HW only send full lines so we only need to validate the width */
769 	if (crtc_hdisplay % intel_dp->psr.su_w_granularity)
770 		return false;
771 
772 	if (crtc_vdisplay % intel_dp->psr.su_y_granularity)
773 		return false;
774 
775 	/* HW tracking is only aligned to 4 lines */
776 	if (!crtc_state->enable_psr2_sel_fetch)
777 		return intel_dp->psr.su_y_granularity == 4;
778 
779 	/*
780 	 * adl_p has 1 line granularity. For other platforms with SW tracking we
781 	 * can adjust the y coordinates to match sink requirement if multiple of
782 	 * 4.
783 	 */
784 	if (IS_ALDERLAKE_P(dev_priv))
785 		y_granularity = intel_dp->psr.su_y_granularity;
786 	else if (intel_dp->psr.su_y_granularity <= 2)
787 		y_granularity = 4;
788 	else if ((intel_dp->psr.su_y_granularity % 4) == 0)
789 		y_granularity = intel_dp->psr.su_y_granularity;
790 
791 	if (y_granularity == 0 || crtc_vdisplay % y_granularity)
792 		return false;
793 
794 	crtc_state->su_y_granularity = y_granularity;
795 	return true;
796 }
797 
798 static bool _compute_psr2_sdp_prior_scanline_indication(struct intel_dp *intel_dp,
799 							struct intel_crtc_state *crtc_state)
800 {
801 	const struct drm_display_mode *adjusted_mode = &crtc_state->uapi.adjusted_mode;
802 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
803 	u32 hblank_total, hblank_ns, req_ns;
804 
805 	hblank_total = adjusted_mode->crtc_hblank_end - adjusted_mode->crtc_hblank_start;
806 	hblank_ns = div_u64(1000000ULL * hblank_total, adjusted_mode->crtc_clock);
807 
808 	/* From spec: ((60 / number of lanes) + 11) * 1000 / symbol clock frequency MHz */
809 	req_ns = ((60 / crtc_state->lane_count) + 11) * 1000 / (crtc_state->port_clock / 1000);
810 
811 	if ((hblank_ns - req_ns) > 100)
812 		return true;
813 
814 	/* Not supported <13 / Wa_22012279113:adl-p */
815 	if (DISPLAY_VER(dev_priv) <= 13 || intel_dp->edp_dpcd[0] < DP_EDP_14b)
816 		return false;
817 
818 	crtc_state->req_psr2_sdp_prior_scanline = true;
819 	return true;
820 }
821 
822 static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
823 				    struct intel_crtc_state *crtc_state)
824 {
825 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
826 	int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay;
827 	int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay;
828 	int psr_max_h = 0, psr_max_v = 0, max_bpp = 0;
829 
830 	if (!intel_dp->psr.sink_psr2_support)
831 		return false;
832 
833 	/* JSL and EHL only supports eDP 1.3 */
834 	if (IS_JSL_EHL(dev_priv)) {
835 		drm_dbg_kms(&dev_priv->drm, "PSR2 not supported by phy\n");
836 		return false;
837 	}
838 
839 	/* Wa_16011181250 */
840 	if (IS_ROCKETLAKE(dev_priv) || IS_ALDERLAKE_S(dev_priv) ||
841 	    IS_DG2(dev_priv)) {
842 		drm_dbg_kms(&dev_priv->drm, "PSR2 is defeatured for this platform\n");
843 		return false;
844 	}
845 
846 	if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) {
847 		drm_dbg_kms(&dev_priv->drm, "PSR2 not completely functional in this stepping\n");
848 		return false;
849 	}
850 
851 	if (!transcoder_has_psr2(dev_priv, crtc_state->cpu_transcoder)) {
852 		drm_dbg_kms(&dev_priv->drm,
853 			    "PSR2 not supported in transcoder %s\n",
854 			    transcoder_name(crtc_state->cpu_transcoder));
855 		return false;
856 	}
857 
858 	if (!psr2_global_enabled(intel_dp)) {
859 		drm_dbg_kms(&dev_priv->drm, "PSR2 disabled by flag\n");
860 		return false;
861 	}
862 
863 	/*
864 	 * DSC and PSR2 cannot be enabled simultaneously. If a requested
865 	 * resolution requires DSC to be enabled, priority is given to DSC
866 	 * over PSR2.
867 	 */
868 	if (crtc_state->dsc.compression_enable) {
869 		drm_dbg_kms(&dev_priv->drm,
870 			    "PSR2 cannot be enabled since DSC is enabled\n");
871 		return false;
872 	}
873 
874 	if (crtc_state->crc_enabled) {
875 		drm_dbg_kms(&dev_priv->drm,
876 			    "PSR2 not enabled because it would inhibit pipe CRC calculation\n");
877 		return false;
878 	}
879 
880 	if (DISPLAY_VER(dev_priv) >= 12) {
881 		psr_max_h = 5120;
882 		psr_max_v = 3200;
883 		max_bpp = 30;
884 	} else if (DISPLAY_VER(dev_priv) >= 10) {
885 		psr_max_h = 4096;
886 		psr_max_v = 2304;
887 		max_bpp = 24;
888 	} else if (DISPLAY_VER(dev_priv) == 9) {
889 		psr_max_h = 3640;
890 		psr_max_v = 2304;
891 		max_bpp = 24;
892 	}
893 
894 	if (crtc_state->pipe_bpp > max_bpp) {
895 		drm_dbg_kms(&dev_priv->drm,
896 			    "PSR2 not enabled, pipe bpp %d > max supported %d\n",
897 			    crtc_state->pipe_bpp, max_bpp);
898 		return false;
899 	}
900 
901 	/* Wa_16011303918:adl-p */
902 	if (crtc_state->vrr.enable &&
903 	    IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)) {
904 		drm_dbg_kms(&dev_priv->drm,
905 			    "PSR2 not enabled, not compatible with HW stepping + VRR\n");
906 		return false;
907 	}
908 
909 	if (!_compute_psr2_sdp_prior_scanline_indication(intel_dp, crtc_state)) {
910 		drm_dbg_kms(&dev_priv->drm,
911 			    "PSR2 not enabled, PSR2 SDP indication do not fit in hblank\n");
912 		return false;
913 	}
914 
915 	if (HAS_PSR2_SEL_FETCH(dev_priv)) {
916 		if (!intel_psr2_sel_fetch_config_valid(intel_dp, crtc_state) &&
917 		    !HAS_PSR_HW_TRACKING(dev_priv)) {
918 			drm_dbg_kms(&dev_priv->drm,
919 				    "PSR2 not enabled, selective fetch not valid and no HW tracking available\n");
920 			return false;
921 		}
922 	}
923 
924 	/* Wa_2209313811 */
925 	if (!crtc_state->enable_psr2_sel_fetch &&
926 	    IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_C0)) {
927 		drm_dbg_kms(&dev_priv->drm, "PSR2 HW tracking is not supported this Display stepping\n");
928 		goto unsupported;
929 	}
930 
931 	if (!psr2_granularity_check(intel_dp, crtc_state)) {
932 		drm_dbg_kms(&dev_priv->drm, "PSR2 not enabled, SU granularity not compatible\n");
933 		goto unsupported;
934 	}
935 
936 	if (!crtc_state->enable_psr2_sel_fetch &&
937 	    (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v)) {
938 		drm_dbg_kms(&dev_priv->drm,
939 			    "PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
940 			    crtc_hdisplay, crtc_vdisplay,
941 			    psr_max_h, psr_max_v);
942 		goto unsupported;
943 	}
944 
945 	tgl_dc3co_exitline_compute_config(intel_dp, crtc_state);
946 	return true;
947 
948 unsupported:
949 	crtc_state->enable_psr2_sel_fetch = false;
950 	return false;
951 }
952 
953 void intel_psr_compute_config(struct intel_dp *intel_dp,
954 			      struct intel_crtc_state *crtc_state,
955 			      struct drm_connector_state *conn_state)
956 {
957 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
958 	const struct drm_display_mode *adjusted_mode =
959 		&crtc_state->hw.adjusted_mode;
960 	int psr_setup_time;
961 
962 	/*
963 	 * Current PSR panels don't work reliably with VRR enabled
964 	 * So if VRR is enabled, do not enable PSR.
965 	 */
966 	if (crtc_state->vrr.enable)
967 		return;
968 
969 	if (!CAN_PSR(intel_dp))
970 		return;
971 
972 	if (!psr_global_enabled(intel_dp)) {
973 		drm_dbg_kms(&dev_priv->drm, "PSR disabled by flag\n");
974 		return;
975 	}
976 
977 	if (intel_dp->psr.sink_not_reliable) {
978 		drm_dbg_kms(&dev_priv->drm,
979 			    "PSR sink implementation is not reliable\n");
980 		return;
981 	}
982 
983 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
984 		drm_dbg_kms(&dev_priv->drm,
985 			    "PSR condition failed: Interlaced mode enabled\n");
986 		return;
987 	}
988 
989 	psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
990 	if (psr_setup_time < 0) {
991 		drm_dbg_kms(&dev_priv->drm,
992 			    "PSR condition failed: Invalid PSR setup time (0x%02x)\n",
993 			    intel_dp->psr_dpcd[1]);
994 		return;
995 	}
996 
997 	if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
998 	    adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
999 		drm_dbg_kms(&dev_priv->drm,
1000 			    "PSR condition failed: PSR setup time (%d us) too long\n",
1001 			    psr_setup_time);
1002 		return;
1003 	}
1004 
1005 	crtc_state->has_psr = true;
1006 	crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state);
1007 
1008 	crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
1009 	intel_dp_compute_psr_vsc_sdp(intel_dp, crtc_state, conn_state,
1010 				     &crtc_state->psr_vsc);
1011 }
1012 
1013 void intel_psr_get_config(struct intel_encoder *encoder,
1014 			  struct intel_crtc_state *pipe_config)
1015 {
1016 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1017 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1018 	struct intel_dp *intel_dp;
1019 	u32 val;
1020 
1021 	if (!dig_port)
1022 		return;
1023 
1024 	intel_dp = &dig_port->dp;
1025 	if (!CAN_PSR(intel_dp))
1026 		return;
1027 
1028 	mutex_lock(&intel_dp->psr.lock);
1029 	if (!intel_dp->psr.enabled)
1030 		goto unlock;
1031 
1032 	/*
1033 	 * Not possible to read EDP_PSR/PSR2_CTL registers as it is
1034 	 * enabled/disabled because of frontbuffer tracking and others.
1035 	 */
1036 	pipe_config->has_psr = true;
1037 	pipe_config->has_psr2 = intel_dp->psr.psr2_enabled;
1038 	pipe_config->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
1039 
1040 	if (!intel_dp->psr.psr2_enabled)
1041 		goto unlock;
1042 
1043 	if (HAS_PSR2_SEL_FETCH(dev_priv)) {
1044 		val = intel_de_read(dev_priv, PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder));
1045 		if (val & PSR2_MAN_TRK_CTL_ENABLE)
1046 			pipe_config->enable_psr2_sel_fetch = true;
1047 	}
1048 
1049 	if (DISPLAY_VER(dev_priv) >= 12) {
1050 		val = intel_de_read(dev_priv, EXITLINE(intel_dp->psr.transcoder));
1051 		val &= EXITLINE_MASK;
1052 		pipe_config->dc3co_exitline = val;
1053 	}
1054 unlock:
1055 	mutex_unlock(&intel_dp->psr.lock);
1056 }
1057 
1058 static void intel_psr_activate(struct intel_dp *intel_dp)
1059 {
1060 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1061 	enum transcoder transcoder = intel_dp->psr.transcoder;
1062 
1063 	if (transcoder_has_psr2(dev_priv, transcoder))
1064 		drm_WARN_ON(&dev_priv->drm,
1065 			    intel_de_read(dev_priv, EDP_PSR2_CTL(transcoder)) & EDP_PSR2_ENABLE);
1066 
1067 	drm_WARN_ON(&dev_priv->drm,
1068 		    intel_de_read(dev_priv, EDP_PSR_CTL(transcoder)) & EDP_PSR_ENABLE);
1069 	drm_WARN_ON(&dev_priv->drm, intel_dp->psr.active);
1070 	lockdep_assert_held(&intel_dp->psr.lock);
1071 
1072 	/* psr1 and psr2 are mutually exclusive.*/
1073 	if (intel_dp->psr.psr2_enabled)
1074 		hsw_activate_psr2(intel_dp);
1075 	else
1076 		hsw_activate_psr1(intel_dp);
1077 
1078 	intel_dp->psr.active = true;
1079 }
1080 
1081 static u32 wa_16013835468_bit_get(struct intel_dp *intel_dp)
1082 {
1083 	switch (intel_dp->psr.pipe) {
1084 	case PIPE_A:
1085 		return LATENCY_REPORTING_REMOVED_PIPE_A;
1086 	case PIPE_B:
1087 		return LATENCY_REPORTING_REMOVED_PIPE_B;
1088 	case PIPE_C:
1089 		return LATENCY_REPORTING_REMOVED_PIPE_C;
1090 	default:
1091 		MISSING_CASE(intel_dp->psr.pipe);
1092 		return 0;
1093 	}
1094 }
1095 
1096 static void intel_psr_enable_source(struct intel_dp *intel_dp,
1097 				    const struct intel_crtc_state *crtc_state)
1098 {
1099 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1100 	enum transcoder cpu_transcoder = intel_dp->psr.transcoder;
1101 	u32 mask;
1102 
1103 	/*
1104 	 * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also
1105 	 * mask LPSP to avoid dependency on other drivers that might block
1106 	 * runtime_pm besides preventing  other hw tracking issues now we
1107 	 * can rely on frontbuffer tracking.
1108 	 */
1109 	mask = EDP_PSR_DEBUG_MASK_MEMUP |
1110 	       EDP_PSR_DEBUG_MASK_HPD |
1111 	       EDP_PSR_DEBUG_MASK_LPSP |
1112 	       EDP_PSR_DEBUG_MASK_MAX_SLEEP;
1113 
1114 	if (DISPLAY_VER(dev_priv) < 11)
1115 		mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE;
1116 
1117 	intel_de_write(dev_priv, EDP_PSR_DEBUG(intel_dp->psr.transcoder),
1118 		       mask);
1119 
1120 	psr_irq_control(intel_dp);
1121 
1122 	if (intel_dp->psr.dc3co_exitline) {
1123 		u32 val;
1124 
1125 		/*
1126 		 * TODO: if future platforms supports DC3CO in more than one
1127 		 * transcoder, EXITLINE will need to be unset when disabling PSR
1128 		 */
1129 		val = intel_de_read(dev_priv, EXITLINE(cpu_transcoder));
1130 		val &= ~EXITLINE_MASK;
1131 		val |= intel_dp->psr.dc3co_exitline << EXITLINE_SHIFT;
1132 		val |= EXITLINE_ENABLE;
1133 		intel_de_write(dev_priv, EXITLINE(cpu_transcoder), val);
1134 	}
1135 
1136 	if (HAS_PSR_HW_TRACKING(dev_priv) && HAS_PSR2_SEL_FETCH(dev_priv))
1137 		intel_de_rmw(dev_priv, CHICKEN_PAR1_1, IGNORE_PSR2_HW_TRACKING,
1138 			     intel_dp->psr.psr2_sel_fetch_enabled ?
1139 			     IGNORE_PSR2_HW_TRACKING : 0);
1140 
1141 	if (intel_dp->psr.psr2_enabled) {
1142 		if (DISPLAY_VER(dev_priv) == 9)
1143 			intel_de_rmw(dev_priv, CHICKEN_TRANS(cpu_transcoder), 0,
1144 				     PSR2_VSC_ENABLE_PROG_HEADER |
1145 				     PSR2_ADD_VERTICAL_LINE_COUNT);
1146 
1147 		/*
1148 		 * Wa_16014451276:adlp
1149 		 * All supported adlp panels have 1-based X granularity, this may
1150 		 * cause issues if non-supported panels are used.
1151 		 */
1152 		if (IS_ALDERLAKE_P(dev_priv))
1153 			intel_de_rmw(dev_priv, CHICKEN_TRANS(cpu_transcoder), 0,
1154 				     ADLP_1_BASED_X_GRANULARITY);
1155 
1156 		/* Wa_16011168373:adl-p */
1157 		if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
1158 			intel_de_rmw(dev_priv,
1159 				     TRANS_SET_CONTEXT_LATENCY(intel_dp->psr.transcoder),
1160 				     TRANS_SET_CONTEXT_LATENCY_MASK,
1161 				     TRANS_SET_CONTEXT_LATENCY_VALUE(1));
1162 
1163 		/* Wa_16012604467:adlp */
1164 		if (IS_ALDERLAKE_P(dev_priv))
1165 			intel_de_rmw(dev_priv, CLKGATE_DIS_MISC, 0,
1166 				     CLKGATE_DIS_MISC_DMASC_GATING_DIS);
1167 
1168 		/* Wa_16013835468:tgl[b0+], dg1 */
1169 		if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_B0, STEP_FOREVER) ||
1170 		    IS_DG1(dev_priv)) {
1171 			u16 vtotal, vblank;
1172 
1173 			vtotal = crtc_state->uapi.adjusted_mode.crtc_vtotal -
1174 				 crtc_state->uapi.adjusted_mode.crtc_vdisplay;
1175 			vblank = crtc_state->uapi.adjusted_mode.crtc_vblank_end -
1176 				 crtc_state->uapi.adjusted_mode.crtc_vblank_start;
1177 			if (vblank > vtotal)
1178 				intel_de_rmw(dev_priv, GEN8_CHICKEN_DCPR_1, 0,
1179 					     wa_16013835468_bit_get(intel_dp));
1180 		}
1181 	}
1182 }
1183 
1184 static bool psr_interrupt_error_check(struct intel_dp *intel_dp)
1185 {
1186 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1187 	u32 val;
1188 
1189 	/*
1190 	 * If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR
1191 	 * will still keep the error set even after the reset done in the
1192 	 * irq_preinstall and irq_uninstall hooks.
1193 	 * And enabling in this situation cause the screen to freeze in the
1194 	 * first time that PSR HW tries to activate so lets keep PSR disabled
1195 	 * to avoid any rendering problems.
1196 	 */
1197 	if (DISPLAY_VER(dev_priv) >= 12) {
1198 		val = intel_de_read(dev_priv,
1199 				    TRANS_PSR_IIR(intel_dp->psr.transcoder));
1200 		val &= EDP_PSR_ERROR(0);
1201 	} else {
1202 		val = intel_de_read(dev_priv, EDP_PSR_IIR);
1203 		val &= EDP_PSR_ERROR(intel_dp->psr.transcoder);
1204 	}
1205 	if (val) {
1206 		intel_dp->psr.sink_not_reliable = true;
1207 		drm_dbg_kms(&dev_priv->drm,
1208 			    "PSR interruption error set, not enabling PSR\n");
1209 		return false;
1210 	}
1211 
1212 	return true;
1213 }
1214 
1215 static void intel_psr_enable_locked(struct intel_dp *intel_dp,
1216 				    const struct intel_crtc_state *crtc_state)
1217 {
1218 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1219 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1220 	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
1221 	struct intel_encoder *encoder = &dig_port->base;
1222 	u32 val;
1223 
1224 	drm_WARN_ON(&dev_priv->drm, intel_dp->psr.enabled);
1225 
1226 	intel_dp->psr.psr2_enabled = crtc_state->has_psr2;
1227 	intel_dp->psr.busy_frontbuffer_bits = 0;
1228 	intel_dp->psr.pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe;
1229 	intel_dp->psr.transcoder = crtc_state->cpu_transcoder;
1230 	/* DC5/DC6 requires at least 6 idle frames */
1231 	val = usecs_to_jiffies(intel_get_frame_time_us(crtc_state) * 6);
1232 	intel_dp->psr.dc3co_exit_delay = val;
1233 	intel_dp->psr.dc3co_exitline = crtc_state->dc3co_exitline;
1234 	intel_dp->psr.psr2_sel_fetch_enabled = crtc_state->enable_psr2_sel_fetch;
1235 	intel_dp->psr.psr2_sel_fetch_cff_enabled = false;
1236 	intel_dp->psr.req_psr2_sdp_prior_scanline =
1237 		crtc_state->req_psr2_sdp_prior_scanline;
1238 
1239 	if (!psr_interrupt_error_check(intel_dp))
1240 		return;
1241 
1242 	drm_dbg_kms(&dev_priv->drm, "Enabling PSR%s\n",
1243 		    intel_dp->psr.psr2_enabled ? "2" : "1");
1244 	intel_write_dp_vsc_sdp(encoder, crtc_state, &crtc_state->psr_vsc);
1245 	intel_snps_phy_update_psr_power_state(dev_priv, phy, true);
1246 	intel_psr_enable_sink(intel_dp);
1247 	intel_psr_enable_source(intel_dp, crtc_state);
1248 	intel_dp->psr.enabled = true;
1249 	intel_dp->psr.paused = false;
1250 
1251 	intel_psr_activate(intel_dp);
1252 }
1253 
1254 static void intel_psr_exit(struct intel_dp *intel_dp)
1255 {
1256 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1257 	u32 val;
1258 
1259 	if (!intel_dp->psr.active) {
1260 		if (transcoder_has_psr2(dev_priv, intel_dp->psr.transcoder)) {
1261 			val = intel_de_read(dev_priv,
1262 					    EDP_PSR2_CTL(intel_dp->psr.transcoder));
1263 			drm_WARN_ON(&dev_priv->drm, val & EDP_PSR2_ENABLE);
1264 		}
1265 
1266 		val = intel_de_read(dev_priv,
1267 				    EDP_PSR_CTL(intel_dp->psr.transcoder));
1268 		drm_WARN_ON(&dev_priv->drm, val & EDP_PSR_ENABLE);
1269 
1270 		return;
1271 	}
1272 
1273 	if (intel_dp->psr.psr2_enabled) {
1274 		tgl_disallow_dc3co_on_psr2_exit(intel_dp);
1275 		val = intel_de_read(dev_priv,
1276 				    EDP_PSR2_CTL(intel_dp->psr.transcoder));
1277 		drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR2_ENABLE));
1278 		val &= ~EDP_PSR2_ENABLE;
1279 		intel_de_write(dev_priv,
1280 			       EDP_PSR2_CTL(intel_dp->psr.transcoder), val);
1281 	} else {
1282 		val = intel_de_read(dev_priv,
1283 				    EDP_PSR_CTL(intel_dp->psr.transcoder));
1284 		drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR_ENABLE));
1285 		val &= ~EDP_PSR_ENABLE;
1286 		intel_de_write(dev_priv,
1287 			       EDP_PSR_CTL(intel_dp->psr.transcoder), val);
1288 	}
1289 	intel_dp->psr.active = false;
1290 }
1291 
1292 static void intel_psr_wait_exit_locked(struct intel_dp *intel_dp)
1293 {
1294 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1295 	i915_reg_t psr_status;
1296 	u32 psr_status_mask;
1297 
1298 	if (intel_dp->psr.psr2_enabled) {
1299 		psr_status = EDP_PSR2_STATUS(intel_dp->psr.transcoder);
1300 		psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
1301 	} else {
1302 		psr_status = EDP_PSR_STATUS(intel_dp->psr.transcoder);
1303 		psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
1304 	}
1305 
1306 	/* Wait till PSR is idle */
1307 	if (intel_de_wait_for_clear(dev_priv, psr_status,
1308 				    psr_status_mask, 2000))
1309 		drm_err(&dev_priv->drm, "Timed out waiting PSR idle state\n");
1310 }
1311 
1312 static void intel_psr_disable_locked(struct intel_dp *intel_dp)
1313 {
1314 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1315 	enum phy phy = intel_port_to_phy(dev_priv,
1316 					 dp_to_dig_port(intel_dp)->base.port);
1317 
1318 	lockdep_assert_held(&intel_dp->psr.lock);
1319 
1320 	if (!intel_dp->psr.enabled)
1321 		return;
1322 
1323 	drm_dbg_kms(&dev_priv->drm, "Disabling PSR%s\n",
1324 		    intel_dp->psr.psr2_enabled ? "2" : "1");
1325 
1326 	intel_psr_exit(intel_dp);
1327 	intel_psr_wait_exit_locked(intel_dp);
1328 
1329 	/* Wa_1408330847 */
1330 	if (intel_dp->psr.psr2_sel_fetch_enabled &&
1331 	    IS_TGL_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
1332 		intel_de_rmw(dev_priv, CHICKEN_PAR1_1,
1333 			     DIS_RAM_BYPASS_PSR2_MAN_TRACK, 0);
1334 
1335 	if (intel_dp->psr.psr2_enabled) {
1336 		/* Wa_16011168373:adl-p */
1337 		if (IS_ADLP_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0))
1338 			intel_de_rmw(dev_priv,
1339 				     TRANS_SET_CONTEXT_LATENCY(intel_dp->psr.transcoder),
1340 				     TRANS_SET_CONTEXT_LATENCY_MASK, 0);
1341 
1342 		/* Wa_16012604467:adlp */
1343 		if (IS_ALDERLAKE_P(dev_priv))
1344 			intel_de_rmw(dev_priv, CLKGATE_DIS_MISC,
1345 				     CLKGATE_DIS_MISC_DMASC_GATING_DIS, 0);
1346 
1347 		/* Wa_16013835468:tgl[b0+], dg1 */
1348 		if (IS_TGL_DISPLAY_STEP(dev_priv, STEP_B0, STEP_FOREVER) ||
1349 		    IS_DG1(dev_priv))
1350 			intel_de_rmw(dev_priv, GEN8_CHICKEN_DCPR_1,
1351 				     wa_16013835468_bit_get(intel_dp), 0);
1352 	}
1353 
1354 	intel_snps_phy_update_psr_power_state(dev_priv, phy, false);
1355 
1356 	/* Disable PSR on Sink */
1357 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
1358 
1359 	if (intel_dp->psr.psr2_enabled)
1360 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, 0);
1361 
1362 	intel_dp->psr.enabled = false;
1363 	intel_dp->psr.psr2_enabled = false;
1364 	intel_dp->psr.psr2_sel_fetch_enabled = false;
1365 	intel_dp->psr.psr2_sel_fetch_cff_enabled = false;
1366 }
1367 
1368 /**
1369  * intel_psr_disable - Disable PSR
1370  * @intel_dp: Intel DP
1371  * @old_crtc_state: old CRTC state
1372  *
1373  * This function needs to be called before disabling pipe.
1374  */
1375 void intel_psr_disable(struct intel_dp *intel_dp,
1376 		       const struct intel_crtc_state *old_crtc_state)
1377 {
1378 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1379 
1380 	if (!old_crtc_state->has_psr)
1381 		return;
1382 
1383 	if (drm_WARN_ON(&dev_priv->drm, !CAN_PSR(intel_dp)))
1384 		return;
1385 
1386 	mutex_lock(&intel_dp->psr.lock);
1387 
1388 	intel_psr_disable_locked(intel_dp);
1389 
1390 	mutex_unlock(&intel_dp->psr.lock);
1391 	cancel_work_sync(&intel_dp->psr.work);
1392 	cancel_delayed_work_sync(&intel_dp->psr.dc3co_work);
1393 }
1394 
1395 /**
1396  * intel_psr_pause - Pause PSR
1397  * @intel_dp: Intel DP
1398  *
1399  * This function need to be called after enabling psr.
1400  */
1401 void intel_psr_pause(struct intel_dp *intel_dp)
1402 {
1403 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1404 	struct intel_psr *psr = &intel_dp->psr;
1405 
1406 	if (!CAN_PSR(intel_dp))
1407 		return;
1408 
1409 	mutex_lock(&psr->lock);
1410 
1411 	if (!psr->enabled) {
1412 		mutex_unlock(&psr->lock);
1413 		return;
1414 	}
1415 
1416 	/* If we ever hit this, we will need to add refcount to pause/resume */
1417 	drm_WARN_ON(&dev_priv->drm, psr->paused);
1418 
1419 	intel_psr_exit(intel_dp);
1420 	intel_psr_wait_exit_locked(intel_dp);
1421 	psr->paused = true;
1422 
1423 	mutex_unlock(&psr->lock);
1424 
1425 	cancel_work_sync(&psr->work);
1426 	cancel_delayed_work_sync(&psr->dc3co_work);
1427 }
1428 
1429 /**
1430  * intel_psr_resume - Resume PSR
1431  * @intel_dp: Intel DP
1432  *
1433  * This function need to be called after pausing psr.
1434  */
1435 void intel_psr_resume(struct intel_dp *intel_dp)
1436 {
1437 	struct intel_psr *psr = &intel_dp->psr;
1438 
1439 	if (!CAN_PSR(intel_dp))
1440 		return;
1441 
1442 	mutex_lock(&psr->lock);
1443 
1444 	if (!psr->paused)
1445 		goto unlock;
1446 
1447 	psr->paused = false;
1448 	intel_psr_activate(intel_dp);
1449 
1450 unlock:
1451 	mutex_unlock(&psr->lock);
1452 }
1453 
1454 static u32 man_trk_ctl_enable_bit_get(struct drm_i915_private *dev_priv)
1455 {
1456 	return IS_ALDERLAKE_P(dev_priv) ? 0 : PSR2_MAN_TRK_CTL_ENABLE;
1457 }
1458 
1459 static u32 man_trk_ctl_single_full_frame_bit_get(struct drm_i915_private *dev_priv)
1460 {
1461 	return IS_ALDERLAKE_P(dev_priv) ?
1462 	       ADLP_PSR2_MAN_TRK_CTL_SF_SINGLE_FULL_FRAME :
1463 	       PSR2_MAN_TRK_CTL_SF_SINGLE_FULL_FRAME;
1464 }
1465 
1466 static u32 man_trk_ctl_partial_frame_bit_get(struct drm_i915_private *dev_priv)
1467 {
1468 	return IS_ALDERLAKE_P(dev_priv) ?
1469 	       ADLP_PSR2_MAN_TRK_CTL_SF_PARTIAL_FRAME_UPDATE :
1470 	       PSR2_MAN_TRK_CTL_SF_PARTIAL_FRAME_UPDATE;
1471 }
1472 
1473 static u32 man_trk_ctl_continuos_full_frame(struct drm_i915_private *dev_priv)
1474 {
1475 	return IS_ALDERLAKE_P(dev_priv) ?
1476 	       ADLP_PSR2_MAN_TRK_CTL_SF_CONTINUOS_FULL_FRAME :
1477 	       PSR2_MAN_TRK_CTL_SF_CONTINUOS_FULL_FRAME;
1478 }
1479 
1480 static void psr_force_hw_tracking_exit(struct intel_dp *intel_dp)
1481 {
1482 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1483 
1484 	if (intel_dp->psr.psr2_sel_fetch_enabled)
1485 		intel_de_write(dev_priv,
1486 			       PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder),
1487 			       man_trk_ctl_enable_bit_get(dev_priv) |
1488 			       man_trk_ctl_partial_frame_bit_get(dev_priv) |
1489 			       man_trk_ctl_single_full_frame_bit_get(dev_priv));
1490 
1491 	/*
1492 	 * Display WA #0884: skl+
1493 	 * This documented WA for bxt can be safely applied
1494 	 * broadly so we can force HW tracking to exit PSR
1495 	 * instead of disabling and re-enabling.
1496 	 * Workaround tells us to write 0 to CUR_SURFLIVE_A,
1497 	 * but it makes more sense write to the current active
1498 	 * pipe.
1499 	 *
1500 	 * This workaround do not exist for platforms with display 10 or newer
1501 	 * but testing proved that it works for up display 13, for newer
1502 	 * than that testing will be needed.
1503 	 */
1504 	intel_de_write(dev_priv, CURSURFLIVE(intel_dp->psr.pipe), 0);
1505 }
1506 
1507 void intel_psr2_disable_plane_sel_fetch(struct intel_plane *plane,
1508 					const struct intel_crtc_state *crtc_state)
1509 {
1510 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1511 	enum pipe pipe = plane->pipe;
1512 
1513 	if (!crtc_state->enable_psr2_sel_fetch)
1514 		return;
1515 
1516 	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_CTL(pipe, plane->id), 0);
1517 }
1518 
1519 void intel_psr2_program_plane_sel_fetch(struct intel_plane *plane,
1520 					const struct intel_crtc_state *crtc_state,
1521 					const struct intel_plane_state *plane_state,
1522 					int color_plane)
1523 {
1524 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1525 	enum pipe pipe = plane->pipe;
1526 	const struct drm_rect *clip;
1527 	u32 val;
1528 	int x, y;
1529 
1530 	if (!crtc_state->enable_psr2_sel_fetch)
1531 		return;
1532 
1533 	if (plane->id == PLANE_CURSOR) {
1534 		intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_CTL(pipe, plane->id),
1535 				  plane_state->ctl);
1536 		return;
1537 	}
1538 
1539 	clip = &plane_state->psr2_sel_fetch_area;
1540 
1541 	val = (clip->y1 + plane_state->uapi.dst.y1) << 16;
1542 	val |= plane_state->uapi.dst.x1;
1543 	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_POS(pipe, plane->id), val);
1544 
1545 	x = plane_state->view.color_plane[color_plane].x;
1546 
1547 	/*
1548 	 * From Bspec: UV surface Start Y Position = half of Y plane Y
1549 	 * start position.
1550 	 */
1551 	if (!color_plane)
1552 		y = plane_state->view.color_plane[color_plane].y + clip->y1;
1553 	else
1554 		y = plane_state->view.color_plane[color_plane].y + clip->y1 / 2;
1555 
1556 	val = y << 16 | x;
1557 
1558 	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_OFFSET(pipe, plane->id),
1559 			  val);
1560 
1561 	/* Sizes are 0 based */
1562 	val = (drm_rect_height(clip) - 1) << 16;
1563 	val |= (drm_rect_width(&plane_state->uapi.src) >> 16) - 1;
1564 	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_SIZE(pipe, plane->id), val);
1565 
1566 	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_CTL(pipe, plane->id),
1567 			  PLANE_SEL_FETCH_CTL_ENABLE);
1568 }
1569 
1570 void intel_psr2_program_trans_man_trk_ctl(const struct intel_crtc_state *crtc_state)
1571 {
1572 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1573 	struct intel_encoder *encoder;
1574 
1575 	if (!crtc_state->enable_psr2_sel_fetch)
1576 		return;
1577 
1578 	for_each_intel_encoder_mask_with_psr(&dev_priv->drm, encoder,
1579 					     crtc_state->uapi.encoder_mask) {
1580 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1581 
1582 		lockdep_assert_held(&intel_dp->psr.lock);
1583 		if (intel_dp->psr.psr2_sel_fetch_cff_enabled)
1584 			return;
1585 		break;
1586 	}
1587 
1588 	intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(crtc_state->cpu_transcoder),
1589 		       crtc_state->psr2_man_track_ctl);
1590 }
1591 
1592 static void psr2_man_trk_ctl_calc(struct intel_crtc_state *crtc_state,
1593 				  struct drm_rect *clip, bool full_update)
1594 {
1595 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1596 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1597 	u32 val = man_trk_ctl_enable_bit_get(dev_priv);
1598 
1599 	/* SF partial frame enable has to be set even on full update */
1600 	val |= man_trk_ctl_partial_frame_bit_get(dev_priv);
1601 
1602 	if (full_update) {
1603 		/*
1604 		 * Not applying Wa_14014971508:adlp as we do not support the
1605 		 * feature that requires this workaround.
1606 		 */
1607 		val |= man_trk_ctl_single_full_frame_bit_get(dev_priv);
1608 		goto exit;
1609 	}
1610 
1611 	if (clip->y1 == -1)
1612 		goto exit;
1613 
1614 	if (IS_ALDERLAKE_P(dev_priv)) {
1615 		val |= ADLP_PSR2_MAN_TRK_CTL_SU_REGION_START_ADDR(clip->y1);
1616 		val |= ADLP_PSR2_MAN_TRK_CTL_SU_REGION_END_ADDR(clip->y2 - 1);
1617 	} else {
1618 		drm_WARN_ON(crtc_state->uapi.crtc->dev, clip->y1 % 4 || clip->y2 % 4);
1619 
1620 		val |= PSR2_MAN_TRK_CTL_SU_REGION_START_ADDR(clip->y1 / 4 + 1);
1621 		val |= PSR2_MAN_TRK_CTL_SU_REGION_END_ADDR(clip->y2 / 4 + 1);
1622 	}
1623 exit:
1624 	crtc_state->psr2_man_track_ctl = val;
1625 }
1626 
1627 static void clip_area_update(struct drm_rect *overlap_damage_area,
1628 			     struct drm_rect *damage_area,
1629 			     struct drm_rect *pipe_src)
1630 {
1631 	if (!drm_rect_intersect(damage_area, pipe_src))
1632 		return;
1633 
1634 	if (overlap_damage_area->y1 == -1) {
1635 		overlap_damage_area->y1 = damage_area->y1;
1636 		overlap_damage_area->y2 = damage_area->y2;
1637 		return;
1638 	}
1639 
1640 	if (damage_area->y1 < overlap_damage_area->y1)
1641 		overlap_damage_area->y1 = damage_area->y1;
1642 
1643 	if (damage_area->y2 > overlap_damage_area->y2)
1644 		overlap_damage_area->y2 = damage_area->y2;
1645 }
1646 
1647 static void intel_psr2_sel_fetch_pipe_alignment(const struct intel_crtc_state *crtc_state,
1648 						struct drm_rect *pipe_clip)
1649 {
1650 	struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
1651 	const u16 y_alignment = crtc_state->su_y_granularity;
1652 
1653 	pipe_clip->y1 -= pipe_clip->y1 % y_alignment;
1654 	if (pipe_clip->y2 % y_alignment)
1655 		pipe_clip->y2 = ((pipe_clip->y2 / y_alignment) + 1) * y_alignment;
1656 
1657 	if (IS_ALDERLAKE_P(dev_priv) && crtc_state->dsc.compression_enable)
1658 		drm_warn(&dev_priv->drm, "Missing PSR2 sel fetch alignment with DSC\n");
1659 }
1660 
1661 /*
1662  * TODO: Not clear how to handle planes with negative position,
1663  * also planes are not updated if they have a negative X
1664  * position so for now doing a full update in this cases
1665  *
1666  * Plane scaling and rotation is not supported by selective fetch and both
1667  * properties can change without a modeset, so need to be check at every
1668  * atomic commit.
1669  */
1670 static bool psr2_sel_fetch_plane_state_supported(const struct intel_plane_state *plane_state)
1671 {
1672 	if (plane_state->uapi.dst.y1 < 0 ||
1673 	    plane_state->uapi.dst.x1 < 0 ||
1674 	    plane_state->scaler_id >= 0 ||
1675 	    plane_state->uapi.rotation != DRM_MODE_ROTATE_0)
1676 		return false;
1677 
1678 	return true;
1679 }
1680 
1681 /*
1682  * Check for pipe properties that is not supported by selective fetch.
1683  *
1684  * TODO: pipe scaling causes a modeset but skl_update_scaler_crtc() is executed
1685  * after intel_psr_compute_config(), so for now keeping PSR2 selective fetch
1686  * enabled and going to the full update path.
1687  */
1688 static bool psr2_sel_fetch_pipe_state_supported(const struct intel_crtc_state *crtc_state)
1689 {
1690 	if (crtc_state->scaler_state.scaler_id >= 0)
1691 		return false;
1692 
1693 	return true;
1694 }
1695 
1696 int intel_psr2_sel_fetch_update(struct intel_atomic_state *state,
1697 				struct intel_crtc *crtc)
1698 {
1699 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1700 	struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
1701 	struct drm_rect pipe_clip = { .x1 = 0, .y1 = -1, .x2 = INT_MAX, .y2 = -1 };
1702 	struct intel_plane_state *new_plane_state, *old_plane_state;
1703 	struct intel_plane *plane;
1704 	bool full_update = false;
1705 	int i, ret;
1706 
1707 	if (!crtc_state->enable_psr2_sel_fetch)
1708 		return 0;
1709 
1710 	if (!psr2_sel_fetch_pipe_state_supported(crtc_state)) {
1711 		full_update = true;
1712 		goto skip_sel_fetch_set_loop;
1713 	}
1714 
1715 	/*
1716 	 * Calculate minimal selective fetch area of each plane and calculate
1717 	 * the pipe damaged area.
1718 	 * In the next loop the plane selective fetch area will actually be set
1719 	 * using whole pipe damaged area.
1720 	 */
1721 	for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
1722 					     new_plane_state, i) {
1723 		struct drm_rect src, damaged_area = { .x1 = 0, .y1 = -1,
1724 						      .x2 = INT_MAX };
1725 
1726 		if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc)
1727 			continue;
1728 
1729 		if (!new_plane_state->uapi.visible &&
1730 		    !old_plane_state->uapi.visible)
1731 			continue;
1732 
1733 		if (!psr2_sel_fetch_plane_state_supported(new_plane_state)) {
1734 			full_update = true;
1735 			break;
1736 		}
1737 
1738 		/*
1739 		 * If visibility or plane moved, mark the whole plane area as
1740 		 * damaged as it needs to be complete redraw in the new and old
1741 		 * position.
1742 		 */
1743 		if (new_plane_state->uapi.visible != old_plane_state->uapi.visible ||
1744 		    !drm_rect_equals(&new_plane_state->uapi.dst,
1745 				     &old_plane_state->uapi.dst)) {
1746 			if (old_plane_state->uapi.visible) {
1747 				damaged_area.y1 = old_plane_state->uapi.dst.y1;
1748 				damaged_area.y2 = old_plane_state->uapi.dst.y2;
1749 				clip_area_update(&pipe_clip, &damaged_area,
1750 						 &crtc_state->pipe_src);
1751 			}
1752 
1753 			if (new_plane_state->uapi.visible) {
1754 				damaged_area.y1 = new_plane_state->uapi.dst.y1;
1755 				damaged_area.y2 = new_plane_state->uapi.dst.y2;
1756 				clip_area_update(&pipe_clip, &damaged_area,
1757 						 &crtc_state->pipe_src);
1758 			}
1759 			continue;
1760 		} else if (new_plane_state->uapi.alpha != old_plane_state->uapi.alpha) {
1761 			/* If alpha changed mark the whole plane area as damaged */
1762 			damaged_area.y1 = new_plane_state->uapi.dst.y1;
1763 			damaged_area.y2 = new_plane_state->uapi.dst.y2;
1764 			clip_area_update(&pipe_clip, &damaged_area,
1765 					 &crtc_state->pipe_src);
1766 			continue;
1767 		}
1768 
1769 		src = drm_plane_state_src(&new_plane_state->uapi);
1770 		drm_rect_fp_to_int(&src, &src);
1771 
1772 		if (!drm_atomic_helper_damage_merged(&old_plane_state->uapi,
1773 						     &new_plane_state->uapi, &damaged_area))
1774 			continue;
1775 
1776 		damaged_area.y1 += new_plane_state->uapi.dst.y1 - src.y1;
1777 		damaged_area.y2 += new_plane_state->uapi.dst.y1 - src.y1;
1778 		damaged_area.x1 += new_plane_state->uapi.dst.x1 - src.x1;
1779 		damaged_area.x2 += new_plane_state->uapi.dst.x1 - src.x1;
1780 
1781 		clip_area_update(&pipe_clip, &damaged_area, &crtc_state->pipe_src);
1782 	}
1783 
1784 	/*
1785 	 * TODO: For now we are just using full update in case
1786 	 * selective fetch area calculation fails. To optimize this we
1787 	 * should identify cases where this happens and fix the area
1788 	 * calculation for those.
1789 	 */
1790 	if (pipe_clip.y1 == -1) {
1791 		drm_info_once(&dev_priv->drm,
1792 			      "Selective fetch area calculation failed in pipe %c\n",
1793 			      pipe_name(crtc->pipe));
1794 		full_update = true;
1795 	}
1796 
1797 	if (full_update)
1798 		goto skip_sel_fetch_set_loop;
1799 
1800 	ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
1801 	if (ret)
1802 		return ret;
1803 
1804 	intel_psr2_sel_fetch_pipe_alignment(crtc_state, &pipe_clip);
1805 
1806 	/*
1807 	 * Now that we have the pipe damaged area check if it intersect with
1808 	 * every plane, if it does set the plane selective fetch area.
1809 	 */
1810 	for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
1811 					     new_plane_state, i) {
1812 		struct drm_rect *sel_fetch_area, inter;
1813 		struct intel_plane *linked = new_plane_state->planar_linked_plane;
1814 
1815 		if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc ||
1816 		    !new_plane_state->uapi.visible)
1817 			continue;
1818 
1819 		inter = pipe_clip;
1820 		if (!drm_rect_intersect(&inter, &new_plane_state->uapi.dst))
1821 			continue;
1822 
1823 		if (!psr2_sel_fetch_plane_state_supported(new_plane_state)) {
1824 			full_update = true;
1825 			break;
1826 		}
1827 
1828 		sel_fetch_area = &new_plane_state->psr2_sel_fetch_area;
1829 		sel_fetch_area->y1 = inter.y1 - new_plane_state->uapi.dst.y1;
1830 		sel_fetch_area->y2 = inter.y2 - new_plane_state->uapi.dst.y1;
1831 		crtc_state->update_planes |= BIT(plane->id);
1832 
1833 		/*
1834 		 * Sel_fetch_area is calculated for UV plane. Use
1835 		 * same area for Y plane as well.
1836 		 */
1837 		if (linked) {
1838 			struct intel_plane_state *linked_new_plane_state;
1839 			struct drm_rect *linked_sel_fetch_area;
1840 
1841 			linked_new_plane_state = intel_atomic_get_plane_state(state, linked);
1842 			if (IS_ERR(linked_new_plane_state))
1843 				return PTR_ERR(linked_new_plane_state);
1844 
1845 			linked_sel_fetch_area = &linked_new_plane_state->psr2_sel_fetch_area;
1846 			linked_sel_fetch_area->y1 = sel_fetch_area->y1;
1847 			linked_sel_fetch_area->y2 = sel_fetch_area->y2;
1848 			crtc_state->update_planes |= BIT(linked->id);
1849 		}
1850 	}
1851 
1852 skip_sel_fetch_set_loop:
1853 	psr2_man_trk_ctl_calc(crtc_state, &pipe_clip, full_update);
1854 	return 0;
1855 }
1856 
1857 void intel_psr_pre_plane_update(struct intel_atomic_state *state,
1858 				struct intel_crtc *crtc)
1859 {
1860 	struct drm_i915_private *i915 = to_i915(state->base.dev);
1861 	const struct intel_crtc_state *old_crtc_state =
1862 		intel_atomic_get_old_crtc_state(state, crtc);
1863 	const struct intel_crtc_state *new_crtc_state =
1864 		intel_atomic_get_new_crtc_state(state, crtc);
1865 	struct intel_encoder *encoder;
1866 
1867 	if (!HAS_PSR(i915))
1868 		return;
1869 
1870 	for_each_intel_encoder_mask_with_psr(state->base.dev, encoder,
1871 					     old_crtc_state->uapi.encoder_mask) {
1872 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1873 		struct intel_psr *psr = &intel_dp->psr;
1874 		bool needs_to_disable = false;
1875 
1876 		mutex_lock(&psr->lock);
1877 
1878 		/*
1879 		 * Reasons to disable:
1880 		 * - PSR disabled in new state
1881 		 * - All planes will go inactive
1882 		 * - Changing between PSR versions
1883 		 */
1884 		needs_to_disable |= intel_crtc_needs_modeset(new_crtc_state);
1885 		needs_to_disable |= !new_crtc_state->has_psr;
1886 		needs_to_disable |= !new_crtc_state->active_planes;
1887 		needs_to_disable |= new_crtc_state->has_psr2 != psr->psr2_enabled;
1888 
1889 		if (psr->enabled && needs_to_disable)
1890 			intel_psr_disable_locked(intel_dp);
1891 
1892 		mutex_unlock(&psr->lock);
1893 	}
1894 }
1895 
1896 static void _intel_psr_post_plane_update(const struct intel_atomic_state *state,
1897 					 const struct intel_crtc_state *crtc_state)
1898 {
1899 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1900 	struct intel_encoder *encoder;
1901 
1902 	if (!crtc_state->has_psr)
1903 		return;
1904 
1905 	for_each_intel_encoder_mask_with_psr(state->base.dev, encoder,
1906 					     crtc_state->uapi.encoder_mask) {
1907 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1908 		struct intel_psr *psr = &intel_dp->psr;
1909 
1910 		mutex_lock(&psr->lock);
1911 
1912 		if (psr->sink_not_reliable)
1913 			goto exit;
1914 
1915 		drm_WARN_ON(&dev_priv->drm, psr->enabled && !crtc_state->active_planes);
1916 
1917 		/* Only enable if there is active planes */
1918 		if (!psr->enabled && crtc_state->active_planes)
1919 			intel_psr_enable_locked(intel_dp, crtc_state);
1920 
1921 		/* Force a PSR exit when enabling CRC to avoid CRC timeouts */
1922 		if (crtc_state->crc_enabled && psr->enabled)
1923 			psr_force_hw_tracking_exit(intel_dp);
1924 
1925 exit:
1926 		mutex_unlock(&psr->lock);
1927 	}
1928 }
1929 
1930 void intel_psr_post_plane_update(const struct intel_atomic_state *state)
1931 {
1932 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
1933 	struct intel_crtc_state *crtc_state;
1934 	struct intel_crtc *crtc;
1935 	int i;
1936 
1937 	if (!HAS_PSR(dev_priv))
1938 		return;
1939 
1940 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
1941 		_intel_psr_post_plane_update(state, crtc_state);
1942 }
1943 
1944 static int _psr2_ready_for_pipe_update_locked(struct intel_dp *intel_dp)
1945 {
1946 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1947 
1948 	/*
1949 	 * Any state lower than EDP_PSR2_STATUS_STATE_DEEP_SLEEP is enough.
1950 	 * As all higher states has bit 4 of PSR2 state set we can just wait for
1951 	 * EDP_PSR2_STATUS_STATE_DEEP_SLEEP to be cleared.
1952 	 */
1953 	return intel_de_wait_for_clear(dev_priv,
1954 				       EDP_PSR2_STATUS(intel_dp->psr.transcoder),
1955 				       EDP_PSR2_STATUS_STATE_DEEP_SLEEP, 50);
1956 }
1957 
1958 static int _psr1_ready_for_pipe_update_locked(struct intel_dp *intel_dp)
1959 {
1960 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1961 
1962 	/*
1963 	 * From bspec: Panel Self Refresh (BDW+)
1964 	 * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of
1965 	 * exit training time + 1.5 ms of aux channel handshake. 50 ms is
1966 	 * defensive enough to cover everything.
1967 	 */
1968 	return intel_de_wait_for_clear(dev_priv,
1969 				       EDP_PSR_STATUS(intel_dp->psr.transcoder),
1970 				       EDP_PSR_STATUS_STATE_MASK, 50);
1971 }
1972 
1973 /**
1974  * intel_psr_wait_for_idle_locked - wait for PSR be ready for a pipe update
1975  * @new_crtc_state: new CRTC state
1976  *
1977  * This function is expected to be called from pipe_update_start() where it is
1978  * not expected to race with PSR enable or disable.
1979  */
1980 void intel_psr_wait_for_idle_locked(const struct intel_crtc_state *new_crtc_state)
1981 {
1982 	struct drm_i915_private *dev_priv = to_i915(new_crtc_state->uapi.crtc->dev);
1983 	struct intel_encoder *encoder;
1984 
1985 	if (!new_crtc_state->has_psr)
1986 		return;
1987 
1988 	for_each_intel_encoder_mask_with_psr(&dev_priv->drm, encoder,
1989 					     new_crtc_state->uapi.encoder_mask) {
1990 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1991 		int ret;
1992 
1993 		lockdep_assert_held(&intel_dp->psr.lock);
1994 
1995 		if (!intel_dp->psr.enabled)
1996 			continue;
1997 
1998 		if (intel_dp->psr.psr2_enabled)
1999 			ret = _psr2_ready_for_pipe_update_locked(intel_dp);
2000 		else
2001 			ret = _psr1_ready_for_pipe_update_locked(intel_dp);
2002 
2003 		if (ret)
2004 			drm_err(&dev_priv->drm, "PSR wait timed out, atomic update may fail\n");
2005 	}
2006 }
2007 
2008 static bool __psr_wait_for_idle_locked(struct intel_dp *intel_dp)
2009 {
2010 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2011 	i915_reg_t reg;
2012 	u32 mask;
2013 	int err;
2014 
2015 	if (!intel_dp->psr.enabled)
2016 		return false;
2017 
2018 	if (intel_dp->psr.psr2_enabled) {
2019 		reg = EDP_PSR2_STATUS(intel_dp->psr.transcoder);
2020 		mask = EDP_PSR2_STATUS_STATE_MASK;
2021 	} else {
2022 		reg = EDP_PSR_STATUS(intel_dp->psr.transcoder);
2023 		mask = EDP_PSR_STATUS_STATE_MASK;
2024 	}
2025 
2026 	mutex_unlock(&intel_dp->psr.lock);
2027 
2028 	err = intel_de_wait_for_clear(dev_priv, reg, mask, 50);
2029 	if (err)
2030 		drm_err(&dev_priv->drm,
2031 			"Timed out waiting for PSR Idle for re-enable\n");
2032 
2033 	/* After the unlocked wait, verify that PSR is still wanted! */
2034 	mutex_lock(&intel_dp->psr.lock);
2035 	return err == 0 && intel_dp->psr.enabled;
2036 }
2037 
2038 static int intel_psr_fastset_force(struct drm_i915_private *dev_priv)
2039 {
2040 	struct drm_connector_list_iter conn_iter;
2041 	struct drm_device *dev = &dev_priv->drm;
2042 	struct drm_modeset_acquire_ctx ctx;
2043 	struct drm_atomic_state *state;
2044 	struct drm_connector *conn;
2045 	int err = 0;
2046 
2047 	state = drm_atomic_state_alloc(dev);
2048 	if (!state)
2049 		return -ENOMEM;
2050 
2051 	drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
2052 	state->acquire_ctx = &ctx;
2053 
2054 retry:
2055 
2056 	drm_connector_list_iter_begin(dev, &conn_iter);
2057 	drm_for_each_connector_iter(conn, &conn_iter) {
2058 		struct drm_connector_state *conn_state;
2059 		struct drm_crtc_state *crtc_state;
2060 
2061 		if (conn->connector_type != DRM_MODE_CONNECTOR_eDP)
2062 			continue;
2063 
2064 		conn_state = drm_atomic_get_connector_state(state, conn);
2065 		if (IS_ERR(conn_state)) {
2066 			err = PTR_ERR(conn_state);
2067 			break;
2068 		}
2069 
2070 		if (!conn_state->crtc)
2071 			continue;
2072 
2073 		crtc_state = drm_atomic_get_crtc_state(state, conn_state->crtc);
2074 		if (IS_ERR(crtc_state)) {
2075 			err = PTR_ERR(crtc_state);
2076 			break;
2077 		}
2078 
2079 		/* Mark mode as changed to trigger a pipe->update() */
2080 		crtc_state->mode_changed = true;
2081 	}
2082 	drm_connector_list_iter_end(&conn_iter);
2083 
2084 	if (err == 0)
2085 		err = drm_atomic_commit(state);
2086 
2087 	if (err == -EDEADLK) {
2088 		drm_atomic_state_clear(state);
2089 		err = drm_modeset_backoff(&ctx);
2090 		if (!err)
2091 			goto retry;
2092 	}
2093 
2094 	drm_modeset_drop_locks(&ctx);
2095 	drm_modeset_acquire_fini(&ctx);
2096 	drm_atomic_state_put(state);
2097 
2098 	return err;
2099 }
2100 
2101 int intel_psr_debug_set(struct intel_dp *intel_dp, u64 val)
2102 {
2103 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2104 	const u32 mode = val & I915_PSR_DEBUG_MODE_MASK;
2105 	u32 old_mode;
2106 	int ret;
2107 
2108 	if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) ||
2109 	    mode > I915_PSR_DEBUG_ENABLE_SEL_FETCH) {
2110 		drm_dbg_kms(&dev_priv->drm, "Invalid debug mask %llx\n", val);
2111 		return -EINVAL;
2112 	}
2113 
2114 	ret = mutex_lock_interruptible(&intel_dp->psr.lock);
2115 	if (ret)
2116 		return ret;
2117 
2118 	old_mode = intel_dp->psr.debug & I915_PSR_DEBUG_MODE_MASK;
2119 	intel_dp->psr.debug = val;
2120 
2121 	/*
2122 	 * Do it right away if it's already enabled, otherwise it will be done
2123 	 * when enabling the source.
2124 	 */
2125 	if (intel_dp->psr.enabled)
2126 		psr_irq_control(intel_dp);
2127 
2128 	mutex_unlock(&intel_dp->psr.lock);
2129 
2130 	if (old_mode != mode)
2131 		ret = intel_psr_fastset_force(dev_priv);
2132 
2133 	return ret;
2134 }
2135 
2136 static void intel_psr_handle_irq(struct intel_dp *intel_dp)
2137 {
2138 	struct intel_psr *psr = &intel_dp->psr;
2139 
2140 	intel_psr_disable_locked(intel_dp);
2141 	psr->sink_not_reliable = true;
2142 	/* let's make sure that sink is awaken */
2143 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
2144 }
2145 
2146 static void intel_psr_work(struct work_struct *work)
2147 {
2148 	struct intel_dp *intel_dp =
2149 		container_of(work, typeof(*intel_dp), psr.work);
2150 
2151 	mutex_lock(&intel_dp->psr.lock);
2152 
2153 	if (!intel_dp->psr.enabled)
2154 		goto unlock;
2155 
2156 	if (READ_ONCE(intel_dp->psr.irq_aux_error))
2157 		intel_psr_handle_irq(intel_dp);
2158 
2159 	/*
2160 	 * We have to make sure PSR is ready for re-enable
2161 	 * otherwise it keeps disabled until next full enable/disable cycle.
2162 	 * PSR might take some time to get fully disabled
2163 	 * and be ready for re-enable.
2164 	 */
2165 	if (!__psr_wait_for_idle_locked(intel_dp))
2166 		goto unlock;
2167 
2168 	/*
2169 	 * The delayed work can race with an invalidate hence we need to
2170 	 * recheck. Since psr_flush first clears this and then reschedules we
2171 	 * won't ever miss a flush when bailing out here.
2172 	 */
2173 	if (intel_dp->psr.busy_frontbuffer_bits || intel_dp->psr.active)
2174 		goto unlock;
2175 
2176 	intel_psr_activate(intel_dp);
2177 unlock:
2178 	mutex_unlock(&intel_dp->psr.lock);
2179 }
2180 
2181 static void _psr_invalidate_handle(struct intel_dp *intel_dp)
2182 {
2183 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2184 
2185 	if (intel_dp->psr.psr2_sel_fetch_enabled) {
2186 		u32 val;
2187 
2188 		if (intel_dp->psr.psr2_sel_fetch_cff_enabled)
2189 			return;
2190 
2191 		val = man_trk_ctl_enable_bit_get(dev_priv) |
2192 		      man_trk_ctl_partial_frame_bit_get(dev_priv) |
2193 		      man_trk_ctl_continuos_full_frame(dev_priv);
2194 		intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder), val);
2195 		intel_de_write(dev_priv, CURSURFLIVE(intel_dp->psr.pipe), 0);
2196 		intel_dp->psr.psr2_sel_fetch_cff_enabled = true;
2197 	} else {
2198 		intel_psr_exit(intel_dp);
2199 	}
2200 }
2201 
2202 /**
2203  * intel_psr_invalidate - Invalidate PSR
2204  * @dev_priv: i915 device
2205  * @frontbuffer_bits: frontbuffer plane tracking bits
2206  * @origin: which operation caused the invalidate
2207  *
2208  * Since the hardware frontbuffer tracking has gaps we need to integrate
2209  * with the software frontbuffer tracking. This function gets called every
2210  * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
2211  * disabled if the frontbuffer mask contains a buffer relevant to PSR.
2212  *
2213  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
2214  */
2215 void intel_psr_invalidate(struct drm_i915_private *dev_priv,
2216 			  unsigned frontbuffer_bits, enum fb_op_origin origin)
2217 {
2218 	struct intel_encoder *encoder;
2219 
2220 	if (origin == ORIGIN_FLIP)
2221 		return;
2222 
2223 	for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
2224 		unsigned int pipe_frontbuffer_bits = frontbuffer_bits;
2225 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2226 
2227 		mutex_lock(&intel_dp->psr.lock);
2228 		if (!intel_dp->psr.enabled) {
2229 			mutex_unlock(&intel_dp->psr.lock);
2230 			continue;
2231 		}
2232 
2233 		pipe_frontbuffer_bits &=
2234 			INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe);
2235 		intel_dp->psr.busy_frontbuffer_bits |= pipe_frontbuffer_bits;
2236 
2237 		if (pipe_frontbuffer_bits)
2238 			_psr_invalidate_handle(intel_dp);
2239 
2240 		mutex_unlock(&intel_dp->psr.lock);
2241 	}
2242 }
2243 /*
2244  * When we will be completely rely on PSR2 S/W tracking in future,
2245  * intel_psr_flush() will invalidate and flush the PSR for ORIGIN_FLIP
2246  * event also therefore tgl_dc3co_flush_locked() require to be changed
2247  * accordingly in future.
2248  */
2249 static void
2250 tgl_dc3co_flush_locked(struct intel_dp *intel_dp, unsigned int frontbuffer_bits,
2251 		       enum fb_op_origin origin)
2252 {
2253 	if (!intel_dp->psr.dc3co_exitline || !intel_dp->psr.psr2_enabled ||
2254 	    !intel_dp->psr.active)
2255 		return;
2256 
2257 	/*
2258 	 * At every frontbuffer flush flip event modified delay of delayed work,
2259 	 * when delayed work schedules that means display has been idle.
2260 	 */
2261 	if (!(frontbuffer_bits &
2262 	    INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe)))
2263 		return;
2264 
2265 	tgl_psr2_enable_dc3co(intel_dp);
2266 	mod_delayed_work(system_wq, &intel_dp->psr.dc3co_work,
2267 			 intel_dp->psr.dc3co_exit_delay);
2268 }
2269 
2270 static void _psr_flush_handle(struct intel_dp *intel_dp)
2271 {
2272 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2273 
2274 	if (intel_dp->psr.psr2_sel_fetch_enabled) {
2275 		if (intel_dp->psr.psr2_sel_fetch_cff_enabled) {
2276 			/* can we turn CFF off? */
2277 			if (intel_dp->psr.busy_frontbuffer_bits == 0) {
2278 				u32 val = man_trk_ctl_enable_bit_get(dev_priv) |
2279 					  man_trk_ctl_partial_frame_bit_get(dev_priv) |
2280 					  man_trk_ctl_single_full_frame_bit_get(dev_priv);
2281 
2282 				/*
2283 				 * turn continuous full frame off and do a single
2284 				 * full frame
2285 				 */
2286 				intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(intel_dp->psr.transcoder),
2287 					       val);
2288 				intel_de_write(dev_priv, CURSURFLIVE(intel_dp->psr.pipe), 0);
2289 				intel_dp->psr.psr2_sel_fetch_cff_enabled = false;
2290 			}
2291 		} else {
2292 			/*
2293 			 * continuous full frame is disabled, only a single full
2294 			 * frame is required
2295 			 */
2296 			psr_force_hw_tracking_exit(intel_dp);
2297 		}
2298 	} else {
2299 		psr_force_hw_tracking_exit(intel_dp);
2300 
2301 		if (!intel_dp->psr.active && !intel_dp->psr.busy_frontbuffer_bits)
2302 			schedule_work(&intel_dp->psr.work);
2303 	}
2304 }
2305 
2306 /**
2307  * intel_psr_flush - Flush PSR
2308  * @dev_priv: i915 device
2309  * @frontbuffer_bits: frontbuffer plane tracking bits
2310  * @origin: which operation caused the flush
2311  *
2312  * Since the hardware frontbuffer tracking has gaps we need to integrate
2313  * with the software frontbuffer tracking. This function gets called every
2314  * time frontbuffer rendering has completed and flushed out to memory. PSR
2315  * can be enabled again if no other frontbuffer relevant to PSR is dirty.
2316  *
2317  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
2318  */
2319 void intel_psr_flush(struct drm_i915_private *dev_priv,
2320 		     unsigned frontbuffer_bits, enum fb_op_origin origin)
2321 {
2322 	struct intel_encoder *encoder;
2323 
2324 	for_each_intel_encoder_with_psr(&dev_priv->drm, encoder) {
2325 		unsigned int pipe_frontbuffer_bits = frontbuffer_bits;
2326 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2327 
2328 		mutex_lock(&intel_dp->psr.lock);
2329 		if (!intel_dp->psr.enabled) {
2330 			mutex_unlock(&intel_dp->psr.lock);
2331 			continue;
2332 		}
2333 
2334 		pipe_frontbuffer_bits &=
2335 			INTEL_FRONTBUFFER_ALL_MASK(intel_dp->psr.pipe);
2336 		intel_dp->psr.busy_frontbuffer_bits &= ~pipe_frontbuffer_bits;
2337 
2338 		/*
2339 		 * If the PSR is paused by an explicit intel_psr_paused() call,
2340 		 * we have to ensure that the PSR is not activated until
2341 		 * intel_psr_resume() is called.
2342 		 */
2343 		if (intel_dp->psr.paused)
2344 			goto unlock;
2345 
2346 		if (origin == ORIGIN_FLIP ||
2347 		    (origin == ORIGIN_CURSOR_UPDATE &&
2348 		     !intel_dp->psr.psr2_sel_fetch_enabled)) {
2349 			tgl_dc3co_flush_locked(intel_dp, frontbuffer_bits, origin);
2350 			goto unlock;
2351 		}
2352 
2353 		if (pipe_frontbuffer_bits == 0)
2354 			goto unlock;
2355 
2356 		/* By definition flush = invalidate + flush */
2357 		_psr_flush_handle(intel_dp);
2358 unlock:
2359 		mutex_unlock(&intel_dp->psr.lock);
2360 	}
2361 }
2362 
2363 /**
2364  * intel_psr_init - Init basic PSR work and mutex.
2365  * @intel_dp: Intel DP
2366  *
2367  * This function is called after the initializing connector.
2368  * (the initializing of connector treats the handling of connector capabilities)
2369  * And it initializes basic PSR stuff for each DP Encoder.
2370  */
2371 void intel_psr_init(struct intel_dp *intel_dp)
2372 {
2373 	struct intel_connector *connector = intel_dp->attached_connector;
2374 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2375 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2376 
2377 	if (!HAS_PSR(dev_priv))
2378 		return;
2379 
2380 	/*
2381 	 * HSW spec explicitly says PSR is tied to port A.
2382 	 * BDW+ platforms have a instance of PSR registers per transcoder but
2383 	 * BDW, GEN9 and GEN11 are not validated by HW team in other transcoder
2384 	 * than eDP one.
2385 	 * For now it only supports one instance of PSR for BDW, GEN9 and GEN11.
2386 	 * So lets keep it hardcoded to PORT_A for BDW, GEN9 and GEN11.
2387 	 * But GEN12 supports a instance of PSR registers per transcoder.
2388 	 */
2389 	if (DISPLAY_VER(dev_priv) < 12 && dig_port->base.port != PORT_A) {
2390 		drm_dbg_kms(&dev_priv->drm,
2391 			    "PSR condition failed: Port not supported\n");
2392 		return;
2393 	}
2394 
2395 	intel_dp->psr.source_support = true;
2396 
2397 	/* Set link_standby x link_off defaults */
2398 	if (DISPLAY_VER(dev_priv) < 12)
2399 		/* For new platforms up to TGL let's respect VBT back again */
2400 		intel_dp->psr.link_standby = connector->panel.vbt.psr.full_link;
2401 
2402 	INIT_WORK(&intel_dp->psr.work, intel_psr_work);
2403 	INIT_DELAYED_WORK(&intel_dp->psr.dc3co_work, tgl_dc3co_disable_work);
2404 	mutex_init(&intel_dp->psr.lock);
2405 }
2406 
2407 static int psr_get_status_and_error_status(struct intel_dp *intel_dp,
2408 					   u8 *status, u8 *error_status)
2409 {
2410 	struct drm_dp_aux *aux = &intel_dp->aux;
2411 	int ret;
2412 
2413 	ret = drm_dp_dpcd_readb(aux, DP_PSR_STATUS, status);
2414 	if (ret != 1)
2415 		return ret;
2416 
2417 	ret = drm_dp_dpcd_readb(aux, DP_PSR_ERROR_STATUS, error_status);
2418 	if (ret != 1)
2419 		return ret;
2420 
2421 	*status = *status & DP_PSR_SINK_STATE_MASK;
2422 
2423 	return 0;
2424 }
2425 
2426 static void psr_alpm_check(struct intel_dp *intel_dp)
2427 {
2428 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2429 	struct drm_dp_aux *aux = &intel_dp->aux;
2430 	struct intel_psr *psr = &intel_dp->psr;
2431 	u8 val;
2432 	int r;
2433 
2434 	if (!psr->psr2_enabled)
2435 		return;
2436 
2437 	r = drm_dp_dpcd_readb(aux, DP_RECEIVER_ALPM_STATUS, &val);
2438 	if (r != 1) {
2439 		drm_err(&dev_priv->drm, "Error reading ALPM status\n");
2440 		return;
2441 	}
2442 
2443 	if (val & DP_ALPM_LOCK_TIMEOUT_ERROR) {
2444 		intel_psr_disable_locked(intel_dp);
2445 		psr->sink_not_reliable = true;
2446 		drm_dbg_kms(&dev_priv->drm,
2447 			    "ALPM lock timeout error, disabling PSR\n");
2448 
2449 		/* Clearing error */
2450 		drm_dp_dpcd_writeb(aux, DP_RECEIVER_ALPM_STATUS, val);
2451 	}
2452 }
2453 
2454 static void psr_capability_changed_check(struct intel_dp *intel_dp)
2455 {
2456 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2457 	struct intel_psr *psr = &intel_dp->psr;
2458 	u8 val;
2459 	int r;
2460 
2461 	r = drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ESI, &val);
2462 	if (r != 1) {
2463 		drm_err(&dev_priv->drm, "Error reading DP_PSR_ESI\n");
2464 		return;
2465 	}
2466 
2467 	if (val & DP_PSR_CAPS_CHANGE) {
2468 		intel_psr_disable_locked(intel_dp);
2469 		psr->sink_not_reliable = true;
2470 		drm_dbg_kms(&dev_priv->drm,
2471 			    "Sink PSR capability changed, disabling PSR\n");
2472 
2473 		/* Clearing it */
2474 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ESI, val);
2475 	}
2476 }
2477 
2478 void intel_psr_short_pulse(struct intel_dp *intel_dp)
2479 {
2480 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2481 	struct intel_psr *psr = &intel_dp->psr;
2482 	u8 status, error_status;
2483 	const u8 errors = DP_PSR_RFB_STORAGE_ERROR |
2484 			  DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR |
2485 			  DP_PSR_LINK_CRC_ERROR;
2486 
2487 	if (!CAN_PSR(intel_dp))
2488 		return;
2489 
2490 	mutex_lock(&psr->lock);
2491 
2492 	if (!psr->enabled)
2493 		goto exit;
2494 
2495 	if (psr_get_status_and_error_status(intel_dp, &status, &error_status)) {
2496 		drm_err(&dev_priv->drm,
2497 			"Error reading PSR status or error status\n");
2498 		goto exit;
2499 	}
2500 
2501 	if (status == DP_PSR_SINK_INTERNAL_ERROR || (error_status & errors)) {
2502 		intel_psr_disable_locked(intel_dp);
2503 		psr->sink_not_reliable = true;
2504 	}
2505 
2506 	if (status == DP_PSR_SINK_INTERNAL_ERROR && !error_status)
2507 		drm_dbg_kms(&dev_priv->drm,
2508 			    "PSR sink internal error, disabling PSR\n");
2509 	if (error_status & DP_PSR_RFB_STORAGE_ERROR)
2510 		drm_dbg_kms(&dev_priv->drm,
2511 			    "PSR RFB storage error, disabling PSR\n");
2512 	if (error_status & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR)
2513 		drm_dbg_kms(&dev_priv->drm,
2514 			    "PSR VSC SDP uncorrectable error, disabling PSR\n");
2515 	if (error_status & DP_PSR_LINK_CRC_ERROR)
2516 		drm_dbg_kms(&dev_priv->drm,
2517 			    "PSR Link CRC error, disabling PSR\n");
2518 
2519 	if (error_status & ~errors)
2520 		drm_err(&dev_priv->drm,
2521 			"PSR_ERROR_STATUS unhandled errors %x\n",
2522 			error_status & ~errors);
2523 	/* clear status register */
2524 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, error_status);
2525 
2526 	psr_alpm_check(intel_dp);
2527 	psr_capability_changed_check(intel_dp);
2528 
2529 exit:
2530 	mutex_unlock(&psr->lock);
2531 }
2532 
2533 bool intel_psr_enabled(struct intel_dp *intel_dp)
2534 {
2535 	bool ret;
2536 
2537 	if (!CAN_PSR(intel_dp))
2538 		return false;
2539 
2540 	mutex_lock(&intel_dp->psr.lock);
2541 	ret = intel_dp->psr.enabled;
2542 	mutex_unlock(&intel_dp->psr.lock);
2543 
2544 	return ret;
2545 }
2546 
2547 /**
2548  * intel_psr_lock - grab PSR lock
2549  * @crtc_state: the crtc state
2550  *
2551  * This is initially meant to be used by around CRTC update, when
2552  * vblank sensitive registers are updated and we need grab the lock
2553  * before it to avoid vblank evasion.
2554  */
2555 void intel_psr_lock(const struct intel_crtc_state *crtc_state)
2556 {
2557 	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
2558 	struct intel_encoder *encoder;
2559 
2560 	if (!crtc_state->has_psr)
2561 		return;
2562 
2563 	for_each_intel_encoder_mask_with_psr(&i915->drm, encoder,
2564 					     crtc_state->uapi.encoder_mask) {
2565 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2566 
2567 		mutex_lock(&intel_dp->psr.lock);
2568 		break;
2569 	}
2570 }
2571 
2572 /**
2573  * intel_psr_unlock - release PSR lock
2574  * @crtc_state: the crtc state
2575  *
2576  * Release the PSR lock that was held during pipe update.
2577  */
2578 void intel_psr_unlock(const struct intel_crtc_state *crtc_state)
2579 {
2580 	struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
2581 	struct intel_encoder *encoder;
2582 
2583 	if (!crtc_state->has_psr)
2584 		return;
2585 
2586 	for_each_intel_encoder_mask_with_psr(&i915->drm, encoder,
2587 					     crtc_state->uapi.encoder_mask) {
2588 		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2589 
2590 		mutex_unlock(&intel_dp->psr.lock);
2591 		break;
2592 	}
2593 }
2594