1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <drm/drm_atomic_helper.h>
25 
26 #include "display/intel_dp.h"
27 
28 #include "i915_drv.h"
29 #include "intel_atomic.h"
30 #include "intel_display_types.h"
31 #include "intel_dp_aux.h"
32 #include "intel_hdmi.h"
33 #include "intel_psr.h"
34 #include "intel_sprite.h"
35 
36 /**
37  * DOC: Panel Self Refresh (PSR/SRD)
38  *
39  * Since Haswell Display controller supports Panel Self-Refresh on display
40  * panels witch have a remote frame buffer (RFB) implemented according to PSR
41  * spec in eDP1.3. PSR feature allows the display to go to lower standby states
42  * when system is idle but display is on as it eliminates display refresh
43  * request to DDR memory completely as long as the frame buffer for that
44  * display is unchanged.
45  *
46  * Panel Self Refresh must be supported by both Hardware (source) and
47  * Panel (sink).
48  *
49  * PSR saves power by caching the framebuffer in the panel RFB, which allows us
50  * to power down the link and memory controller. For DSI panels the same idea
51  * is called "manual mode".
52  *
53  * The implementation uses the hardware-based PSR support which automatically
54  * enters/exits self-refresh mode. The hardware takes care of sending the
55  * required DP aux message and could even retrain the link (that part isn't
56  * enabled yet though). The hardware also keeps track of any frontbuffer
57  * changes to know when to exit self-refresh mode again. Unfortunately that
58  * part doesn't work too well, hence why the i915 PSR support uses the
59  * software frontbuffer tracking to make sure it doesn't miss a screen
60  * update. For this integration intel_psr_invalidate() and intel_psr_flush()
61  * get called by the frontbuffer tracking code. Note that because of locking
62  * issues the self-refresh re-enable code is done from a work queue, which
63  * must be correctly synchronized/cancelled when shutting down the pipe."
64  *
65  * DC3CO (DC3 clock off)
66  *
67  * On top of PSR2, GEN12 adds a intermediate power savings state that turns
68  * clock off automatically during PSR2 idle state.
69  * The smaller overhead of DC3co entry/exit vs. the overhead of PSR2 deep sleep
70  * entry/exit allows the HW to enter a low-power state even when page flipping
71  * periodically (for instance a 30fps video playback scenario).
72  *
73  * Every time a flips occurs PSR2 will get out of deep sleep state(if it was),
74  * so DC3CO is enabled and tgl_dc3co_disable_work is schedule to run after 6
75  * frames, if no other flip occurs and the function above is executed, DC3CO is
76  * disabled and PSR2 is configured to enter deep sleep, resetting again in case
77  * of another flip.
78  * Front buffer modifications do not trigger DC3CO activation on purpose as it
79  * would bring a lot of complexity and most of the moderns systems will only
80  * use page flips.
81  */
82 
83 static bool psr_global_enabled(struct drm_i915_private *i915)
84 {
85 	switch (i915->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
86 	case I915_PSR_DEBUG_DEFAULT:
87 		return i915->params.enable_psr;
88 	case I915_PSR_DEBUG_DISABLE:
89 		return false;
90 	default:
91 		return true;
92 	}
93 }
94 
95 static bool psr2_global_enabled(struct drm_i915_private *dev_priv)
96 {
97 	switch (dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
98 	case I915_PSR_DEBUG_DISABLE:
99 	case I915_PSR_DEBUG_FORCE_PSR1:
100 		return false;
101 	default:
102 		return true;
103 	}
104 }
105 
106 static void psr_irq_control(struct drm_i915_private *dev_priv)
107 {
108 	enum transcoder trans_shift;
109 	u32 mask, val;
110 	i915_reg_t imr_reg;
111 
112 	/*
113 	 * gen12+ has registers relative to transcoder and one per transcoder
114 	 * using the same bit definition: handle it as TRANSCODER_EDP to force
115 	 * 0 shift in bit definition
116 	 */
117 	if (INTEL_GEN(dev_priv) >= 12) {
118 		trans_shift = 0;
119 		imr_reg = TRANS_PSR_IMR(dev_priv->psr.transcoder);
120 	} else {
121 		trans_shift = dev_priv->psr.transcoder;
122 		imr_reg = EDP_PSR_IMR;
123 	}
124 
125 	mask = EDP_PSR_ERROR(trans_shift);
126 	if (dev_priv->psr.debug & I915_PSR_DEBUG_IRQ)
127 		mask |= EDP_PSR_POST_EXIT(trans_shift) |
128 			EDP_PSR_PRE_ENTRY(trans_shift);
129 
130 	/* Warning: it is masking/setting reserved bits too */
131 	val = intel_de_read(dev_priv, imr_reg);
132 	val &= ~EDP_PSR_TRANS_MASK(trans_shift);
133 	val |= ~mask;
134 	intel_de_write(dev_priv, imr_reg, val);
135 }
136 
137 static void psr_event_print(struct drm_i915_private *i915,
138 			    u32 val, bool psr2_enabled)
139 {
140 	drm_dbg_kms(&i915->drm, "PSR exit events: 0x%x\n", val);
141 	if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE)
142 		drm_dbg_kms(&i915->drm, "\tPSR2 watchdog timer expired\n");
143 	if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled)
144 		drm_dbg_kms(&i915->drm, "\tPSR2 disabled\n");
145 	if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN)
146 		drm_dbg_kms(&i915->drm, "\tSU dirty FIFO underrun\n");
147 	if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN)
148 		drm_dbg_kms(&i915->drm, "\tSU CRC FIFO underrun\n");
149 	if (val & PSR_EVENT_GRAPHICS_RESET)
150 		drm_dbg_kms(&i915->drm, "\tGraphics reset\n");
151 	if (val & PSR_EVENT_PCH_INTERRUPT)
152 		drm_dbg_kms(&i915->drm, "\tPCH interrupt\n");
153 	if (val & PSR_EVENT_MEMORY_UP)
154 		drm_dbg_kms(&i915->drm, "\tMemory up\n");
155 	if (val & PSR_EVENT_FRONT_BUFFER_MODIFY)
156 		drm_dbg_kms(&i915->drm, "\tFront buffer modification\n");
157 	if (val & PSR_EVENT_WD_TIMER_EXPIRE)
158 		drm_dbg_kms(&i915->drm, "\tPSR watchdog timer expired\n");
159 	if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE)
160 		drm_dbg_kms(&i915->drm, "\tPIPE registers updated\n");
161 	if (val & PSR_EVENT_REGISTER_UPDATE)
162 		drm_dbg_kms(&i915->drm, "\tRegister updated\n");
163 	if (val & PSR_EVENT_HDCP_ENABLE)
164 		drm_dbg_kms(&i915->drm, "\tHDCP enabled\n");
165 	if (val & PSR_EVENT_KVMR_SESSION_ENABLE)
166 		drm_dbg_kms(&i915->drm, "\tKVMR session enabled\n");
167 	if (val & PSR_EVENT_VBI_ENABLE)
168 		drm_dbg_kms(&i915->drm, "\tVBI enabled\n");
169 	if (val & PSR_EVENT_LPSP_MODE_EXIT)
170 		drm_dbg_kms(&i915->drm, "\tLPSP mode exited\n");
171 	if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled)
172 		drm_dbg_kms(&i915->drm, "\tPSR disabled\n");
173 }
174 
175 void intel_psr_irq_handler(struct drm_i915_private *dev_priv, u32 psr_iir)
176 {
177 	enum transcoder cpu_transcoder = dev_priv->psr.transcoder;
178 	enum transcoder trans_shift;
179 	i915_reg_t imr_reg;
180 	ktime_t time_ns =  ktime_get();
181 
182 	if (INTEL_GEN(dev_priv) >= 12) {
183 		trans_shift = 0;
184 		imr_reg = TRANS_PSR_IMR(dev_priv->psr.transcoder);
185 	} else {
186 		trans_shift = dev_priv->psr.transcoder;
187 		imr_reg = EDP_PSR_IMR;
188 	}
189 
190 	if (psr_iir & EDP_PSR_PRE_ENTRY(trans_shift)) {
191 		dev_priv->psr.last_entry_attempt = time_ns;
192 		drm_dbg_kms(&dev_priv->drm,
193 			    "[transcoder %s] PSR entry attempt in 2 vblanks\n",
194 			    transcoder_name(cpu_transcoder));
195 	}
196 
197 	if (psr_iir & EDP_PSR_POST_EXIT(trans_shift)) {
198 		dev_priv->psr.last_exit = time_ns;
199 		drm_dbg_kms(&dev_priv->drm,
200 			    "[transcoder %s] PSR exit completed\n",
201 			    transcoder_name(cpu_transcoder));
202 
203 		if (INTEL_GEN(dev_priv) >= 9) {
204 			u32 val = intel_de_read(dev_priv,
205 						PSR_EVENT(cpu_transcoder));
206 			bool psr2_enabled = dev_priv->psr.psr2_enabled;
207 
208 			intel_de_write(dev_priv, PSR_EVENT(cpu_transcoder),
209 				       val);
210 			psr_event_print(dev_priv, val, psr2_enabled);
211 		}
212 	}
213 
214 	if (psr_iir & EDP_PSR_ERROR(trans_shift)) {
215 		u32 val;
216 
217 		drm_warn(&dev_priv->drm, "[transcoder %s] PSR aux error\n",
218 			 transcoder_name(cpu_transcoder));
219 
220 		dev_priv->psr.irq_aux_error = true;
221 
222 		/*
223 		 * If this interruption is not masked it will keep
224 		 * interrupting so fast that it prevents the scheduled
225 		 * work to run.
226 		 * Also after a PSR error, we don't want to arm PSR
227 		 * again so we don't care about unmask the interruption
228 		 * or unset irq_aux_error.
229 		 */
230 		val = intel_de_read(dev_priv, imr_reg);
231 		val |= EDP_PSR_ERROR(trans_shift);
232 		intel_de_write(dev_priv, imr_reg, val);
233 
234 		schedule_work(&dev_priv->psr.work);
235 	}
236 }
237 
238 static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
239 {
240 	u8 alpm_caps = 0;
241 
242 	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
243 			      &alpm_caps) != 1)
244 		return false;
245 	return alpm_caps & DP_ALPM_CAP;
246 }
247 
248 static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
249 {
250 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
251 	u8 val = 8; /* assume the worst if we can't read the value */
252 
253 	if (drm_dp_dpcd_readb(&intel_dp->aux,
254 			      DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
255 		val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
256 	else
257 		drm_dbg_kms(&i915->drm,
258 			    "Unable to get sink synchronization latency, assuming 8 frames\n");
259 	return val;
260 }
261 
262 static u16 intel_dp_get_su_x_granulartiy(struct intel_dp *intel_dp)
263 {
264 	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
265 	u16 val;
266 	ssize_t r;
267 
268 	/*
269 	 * Returning the default X granularity if granularity not required or
270 	 * if DPCD read fails
271 	 */
272 	if (!(intel_dp->psr_dpcd[1] & DP_PSR2_SU_GRANULARITY_REQUIRED))
273 		return 4;
274 
275 	r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_X_GRANULARITY, &val, 2);
276 	if (r != 2)
277 		drm_dbg_kms(&i915->drm,
278 			    "Unable to read DP_PSR2_SU_X_GRANULARITY\n");
279 
280 	/*
281 	 * Spec says that if the value read is 0 the default granularity should
282 	 * be used instead.
283 	 */
284 	if (r != 2 || val == 0)
285 		val = 4;
286 
287 	return val;
288 }
289 
290 void intel_psr_init_dpcd(struct intel_dp *intel_dp)
291 {
292 	struct drm_i915_private *dev_priv =
293 		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
294 
295 	if (dev_priv->psr.dp) {
296 		drm_warn(&dev_priv->drm,
297 			 "More than one eDP panel found, PSR support should be extended\n");
298 		return;
299 	}
300 
301 	drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
302 			 sizeof(intel_dp->psr_dpcd));
303 
304 	if (!intel_dp->psr_dpcd[0])
305 		return;
306 	drm_dbg_kms(&dev_priv->drm, "eDP panel supports PSR version %x\n",
307 		    intel_dp->psr_dpcd[0]);
308 
309 	if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_PSR)) {
310 		drm_dbg_kms(&dev_priv->drm,
311 			    "PSR support not currently available for this panel\n");
312 		return;
313 	}
314 
315 	if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
316 		drm_dbg_kms(&dev_priv->drm,
317 			    "Panel lacks power state control, PSR cannot be enabled\n");
318 		return;
319 	}
320 
321 	dev_priv->psr.sink_support = true;
322 	dev_priv->psr.sink_sync_latency =
323 		intel_dp_get_sink_sync_latency(intel_dp);
324 
325 	dev_priv->psr.dp = intel_dp;
326 
327 	if (INTEL_GEN(dev_priv) >= 9 &&
328 	    (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) {
329 		bool y_req = intel_dp->psr_dpcd[1] &
330 			     DP_PSR2_SU_Y_COORDINATE_REQUIRED;
331 		bool alpm = intel_dp_get_alpm_status(intel_dp);
332 
333 		/*
334 		 * All panels that supports PSR version 03h (PSR2 +
335 		 * Y-coordinate) can handle Y-coordinates in VSC but we are
336 		 * only sure that it is going to be used when required by the
337 		 * panel. This way panel is capable to do selective update
338 		 * without a aux frame sync.
339 		 *
340 		 * To support PSR version 02h and PSR version 03h without
341 		 * Y-coordinate requirement panels we would need to enable
342 		 * GTC first.
343 		 */
344 		dev_priv->psr.sink_psr2_support = y_req && alpm;
345 		drm_dbg_kms(&dev_priv->drm, "PSR2 %ssupported\n",
346 			    dev_priv->psr.sink_psr2_support ? "" : "not ");
347 
348 		if (dev_priv->psr.sink_psr2_support) {
349 			dev_priv->psr.colorimetry_support =
350 				intel_dp_get_colorimetry_status(intel_dp);
351 			dev_priv->psr.su_x_granularity =
352 				intel_dp_get_su_x_granulartiy(intel_dp);
353 		}
354 	}
355 }
356 
357 static void hsw_psr_setup_aux(struct intel_dp *intel_dp)
358 {
359 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
360 	u32 aux_clock_divider, aux_ctl;
361 	int i;
362 	static const u8 aux_msg[] = {
363 		[0] = DP_AUX_NATIVE_WRITE << 4,
364 		[1] = DP_SET_POWER >> 8,
365 		[2] = DP_SET_POWER & 0xff,
366 		[3] = 1 - 1,
367 		[4] = DP_SET_POWER_D0,
368 	};
369 	u32 psr_aux_mask = EDP_PSR_AUX_CTL_TIME_OUT_MASK |
370 			   EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK |
371 			   EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK |
372 			   EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK;
373 
374 	BUILD_BUG_ON(sizeof(aux_msg) > 20);
375 	for (i = 0; i < sizeof(aux_msg); i += 4)
376 		intel_de_write(dev_priv,
377 			       EDP_PSR_AUX_DATA(dev_priv->psr.transcoder, i >> 2),
378 			       intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
379 
380 	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
381 
382 	/* Start with bits set for DDI_AUX_CTL register */
383 	aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, sizeof(aux_msg),
384 					     aux_clock_divider);
385 
386 	/* Select only valid bits for SRD_AUX_CTL */
387 	aux_ctl &= psr_aux_mask;
388 	intel_de_write(dev_priv, EDP_PSR_AUX_CTL(dev_priv->psr.transcoder),
389 		       aux_ctl);
390 }
391 
392 static void intel_psr_enable_sink(struct intel_dp *intel_dp)
393 {
394 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
395 	u8 dpcd_val = DP_PSR_ENABLE;
396 
397 	/* Enable ALPM at sink for psr2 */
398 	if (dev_priv->psr.psr2_enabled) {
399 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG,
400 				   DP_ALPM_ENABLE |
401 				   DP_ALPM_LOCK_ERROR_IRQ_HPD_ENABLE);
402 
403 		dpcd_val |= DP_PSR_ENABLE_PSR2 | DP_PSR_IRQ_HPD_WITH_CRC_ERRORS;
404 	} else {
405 		if (dev_priv->psr.link_standby)
406 			dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE;
407 
408 		if (INTEL_GEN(dev_priv) >= 8)
409 			dpcd_val |= DP_PSR_CRC_VERIFICATION;
410 	}
411 
412 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val);
413 
414 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
415 }
416 
417 static u32 intel_psr1_get_tp_time(struct intel_dp *intel_dp)
418 {
419 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
420 	u32 val = 0;
421 
422 	if (INTEL_GEN(dev_priv) >= 11)
423 		val |= EDP_PSR_TP4_TIME_0US;
424 
425 	if (dev_priv->params.psr_safest_params) {
426 		val |= EDP_PSR_TP1_TIME_2500us;
427 		val |= EDP_PSR_TP2_TP3_TIME_2500us;
428 		goto check_tp3_sel;
429 	}
430 
431 	if (dev_priv->vbt.psr.tp1_wakeup_time_us == 0)
432 		val |= EDP_PSR_TP1_TIME_0us;
433 	else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 100)
434 		val |= EDP_PSR_TP1_TIME_100us;
435 	else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 500)
436 		val |= EDP_PSR_TP1_TIME_500us;
437 	else
438 		val |= EDP_PSR_TP1_TIME_2500us;
439 
440 	if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us == 0)
441 		val |= EDP_PSR_TP2_TP3_TIME_0us;
442 	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
443 		val |= EDP_PSR_TP2_TP3_TIME_100us;
444 	else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
445 		val |= EDP_PSR_TP2_TP3_TIME_500us;
446 	else
447 		val |= EDP_PSR_TP2_TP3_TIME_2500us;
448 
449 check_tp3_sel:
450 	if (intel_dp_source_supports_hbr2(intel_dp) &&
451 	    drm_dp_tps3_supported(intel_dp->dpcd))
452 		val |= EDP_PSR_TP1_TP3_SEL;
453 	else
454 		val |= EDP_PSR_TP1_TP2_SEL;
455 
456 	return val;
457 }
458 
459 static u8 psr_compute_idle_frames(struct intel_dp *intel_dp)
460 {
461 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
462 	int idle_frames;
463 
464 	/* Let's use 6 as the minimum to cover all known cases including the
465 	 * off-by-one issue that HW has in some cases.
466 	 */
467 	idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
468 	idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
469 
470 	if (drm_WARN_ON(&dev_priv->drm, idle_frames > 0xf))
471 		idle_frames = 0xf;
472 
473 	return idle_frames;
474 }
475 
476 static void hsw_activate_psr1(struct intel_dp *intel_dp)
477 {
478 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
479 	u32 max_sleep_time = 0x1f;
480 	u32 val = EDP_PSR_ENABLE;
481 
482 	val |= psr_compute_idle_frames(intel_dp) << EDP_PSR_IDLE_FRAME_SHIFT;
483 
484 	val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
485 	if (IS_HASWELL(dev_priv))
486 		val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
487 
488 	if (dev_priv->psr.link_standby)
489 		val |= EDP_PSR_LINK_STANDBY;
490 
491 	val |= intel_psr1_get_tp_time(intel_dp);
492 
493 	if (INTEL_GEN(dev_priv) >= 8)
494 		val |= EDP_PSR_CRC_ENABLE;
495 
496 	val |= (intel_de_read(dev_priv, EDP_PSR_CTL(dev_priv->psr.transcoder)) &
497 		EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK);
498 	intel_de_write(dev_priv, EDP_PSR_CTL(dev_priv->psr.transcoder), val);
499 }
500 
501 static u32 intel_psr2_get_tp_time(struct intel_dp *intel_dp)
502 {
503 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
504 	u32 val = 0;
505 
506 	if (dev_priv->params.psr_safest_params)
507 		return EDP_PSR2_TP2_TIME_2500us;
508 
509 	if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us >= 0 &&
510 	    dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 50)
511 		val |= EDP_PSR2_TP2_TIME_50us;
512 	else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 100)
513 		val |= EDP_PSR2_TP2_TIME_100us;
514 	else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 500)
515 		val |= EDP_PSR2_TP2_TIME_500us;
516 	else
517 		val |= EDP_PSR2_TP2_TIME_2500us;
518 
519 	return val;
520 }
521 
522 static void hsw_activate_psr2(struct intel_dp *intel_dp)
523 {
524 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
525 	u32 val;
526 
527 	val = psr_compute_idle_frames(intel_dp) << EDP_PSR2_IDLE_FRAME_SHIFT;
528 
529 	val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE;
530 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
531 		val |= EDP_Y_COORDINATE_ENABLE;
532 
533 	val |= EDP_PSR2_FRAME_BEFORE_SU(dev_priv->psr.sink_sync_latency + 1);
534 	val |= intel_psr2_get_tp_time(intel_dp);
535 
536 	if (INTEL_GEN(dev_priv) >= 12) {
537 		/*
538 		 * TODO: 7 lines of IO_BUFFER_WAKE and FAST_WAKE are default
539 		 * values from BSpec. In order to setting an optimal power
540 		 * consumption, lower than 4k resoluition mode needs to decrese
541 		 * IO_BUFFER_WAKE and FAST_WAKE. And higher than 4K resolution
542 		 * mode needs to increase IO_BUFFER_WAKE and FAST_WAKE.
543 		 */
544 		val |= TGL_EDP_PSR2_BLOCK_COUNT_NUM_2;
545 		val |= TGL_EDP_PSR2_IO_BUFFER_WAKE(7);
546 		val |= TGL_EDP_PSR2_FAST_WAKE(7);
547 	} else if (INTEL_GEN(dev_priv) >= 9) {
548 		val |= EDP_PSR2_IO_BUFFER_WAKE(7);
549 		val |= EDP_PSR2_FAST_WAKE(7);
550 	}
551 
552 	if (dev_priv->psr.psr2_sel_fetch_enabled) {
553 		/* WA 1408330847 */
554 		if (IS_TGL_DISP_REVID(dev_priv, TGL_REVID_A0, TGL_REVID_A0) ||
555 		    IS_RKL_REVID(dev_priv, RKL_REVID_A0, RKL_REVID_A0))
556 			intel_de_rmw(dev_priv, CHICKEN_PAR1_1,
557 				     DIS_RAM_BYPASS_PSR2_MAN_TRACK,
558 				     DIS_RAM_BYPASS_PSR2_MAN_TRACK);
559 
560 		intel_de_write(dev_priv,
561 			       PSR2_MAN_TRK_CTL(dev_priv->psr.transcoder),
562 			       PSR2_MAN_TRK_CTL_ENABLE);
563 	} else if (HAS_PSR2_SEL_FETCH(dev_priv)) {
564 		intel_de_write(dev_priv,
565 			       PSR2_MAN_TRK_CTL(dev_priv->psr.transcoder), 0);
566 	}
567 
568 	/*
569 	 * PSR2 HW is incorrectly using EDP_PSR_TP1_TP3_SEL and BSpec is
570 	 * recommending keep this bit unset while PSR2 is enabled.
571 	 */
572 	intel_de_write(dev_priv, EDP_PSR_CTL(dev_priv->psr.transcoder), 0);
573 
574 	intel_de_write(dev_priv, EDP_PSR2_CTL(dev_priv->psr.transcoder), val);
575 }
576 
577 static bool
578 transcoder_has_psr2(struct drm_i915_private *dev_priv, enum transcoder trans)
579 {
580 	if (INTEL_GEN(dev_priv) < 9)
581 		return false;
582 	else if (INTEL_GEN(dev_priv) >= 12)
583 		return trans == TRANSCODER_A;
584 	else
585 		return trans == TRANSCODER_EDP;
586 }
587 
588 static u32 intel_get_frame_time_us(const struct intel_crtc_state *cstate)
589 {
590 	if (!cstate || !cstate->hw.active)
591 		return 0;
592 
593 	return DIV_ROUND_UP(1000 * 1000,
594 			    drm_mode_vrefresh(&cstate->hw.adjusted_mode));
595 }
596 
597 static void psr2_program_idle_frames(struct drm_i915_private *dev_priv,
598 				     u32 idle_frames)
599 {
600 	u32 val;
601 
602 	idle_frames <<=  EDP_PSR2_IDLE_FRAME_SHIFT;
603 	val = intel_de_read(dev_priv, EDP_PSR2_CTL(dev_priv->psr.transcoder));
604 	val &= ~EDP_PSR2_IDLE_FRAME_MASK;
605 	val |= idle_frames;
606 	intel_de_write(dev_priv, EDP_PSR2_CTL(dev_priv->psr.transcoder), val);
607 }
608 
609 static void tgl_psr2_enable_dc3co(struct drm_i915_private *dev_priv)
610 {
611 	psr2_program_idle_frames(dev_priv, 0);
612 	intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_DC3CO);
613 }
614 
615 static void tgl_psr2_disable_dc3co(struct drm_i915_private *dev_priv)
616 {
617 	struct intel_dp *intel_dp = dev_priv->psr.dp;
618 
619 	intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
620 	psr2_program_idle_frames(dev_priv, psr_compute_idle_frames(intel_dp));
621 }
622 
623 static void tgl_dc3co_disable_work(struct work_struct *work)
624 {
625 	struct drm_i915_private *dev_priv =
626 		container_of(work, typeof(*dev_priv), psr.dc3co_work.work);
627 
628 	mutex_lock(&dev_priv->psr.lock);
629 	/* If delayed work is pending, it is not idle */
630 	if (delayed_work_pending(&dev_priv->psr.dc3co_work))
631 		goto unlock;
632 
633 	tgl_psr2_disable_dc3co(dev_priv);
634 unlock:
635 	mutex_unlock(&dev_priv->psr.lock);
636 }
637 
638 static void tgl_disallow_dc3co_on_psr2_exit(struct drm_i915_private *dev_priv)
639 {
640 	if (!dev_priv->psr.dc3co_enabled)
641 		return;
642 
643 	cancel_delayed_work(&dev_priv->psr.dc3co_work);
644 	/* Before PSR2 exit disallow dc3co*/
645 	tgl_psr2_disable_dc3co(dev_priv);
646 }
647 
648 static void
649 tgl_dc3co_exitline_compute_config(struct intel_dp *intel_dp,
650 				  struct intel_crtc_state *crtc_state)
651 {
652 	const u32 crtc_vdisplay = crtc_state->uapi.adjusted_mode.crtc_vdisplay;
653 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
654 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
655 	u32 exit_scanlines;
656 
657 	if (!(dev_priv->csr.allowed_dc_mask & DC_STATE_EN_DC3CO))
658 		return;
659 
660 	/* B.Specs:49196 DC3CO only works with pipeA and DDIA.*/
661 	if (to_intel_crtc(crtc_state->uapi.crtc)->pipe != PIPE_A ||
662 	    dig_port->base.port != PORT_A)
663 		return;
664 
665 	/*
666 	 * DC3CO Exit time 200us B.Spec 49196
667 	 * PSR2 transcoder Early Exit scanlines = ROUNDUP(200 / line time) + 1
668 	 */
669 	exit_scanlines =
670 		intel_usecs_to_scanlines(&crtc_state->uapi.adjusted_mode, 200) + 1;
671 
672 	if (drm_WARN_ON(&dev_priv->drm, exit_scanlines > crtc_vdisplay))
673 		return;
674 
675 	crtc_state->dc3co_exitline = crtc_vdisplay - exit_scanlines;
676 }
677 
678 static bool intel_psr2_sel_fetch_config_valid(struct intel_dp *intel_dp,
679 					      struct intel_crtc_state *crtc_state)
680 {
681 	struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state);
682 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
683 	struct intel_plane_state *plane_state;
684 	struct intel_plane *plane;
685 	int i;
686 
687 	if (!dev_priv->params.enable_psr2_sel_fetch) {
688 		drm_dbg_kms(&dev_priv->drm,
689 			    "PSR2 sel fetch not enabled, disabled by parameter\n");
690 		return false;
691 	}
692 
693 	if (crtc_state->uapi.async_flip) {
694 		drm_dbg_kms(&dev_priv->drm,
695 			    "PSR2 sel fetch not enabled, async flip enabled\n");
696 		return false;
697 	}
698 
699 	for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
700 		if (plane_state->uapi.rotation != DRM_MODE_ROTATE_0) {
701 			drm_dbg_kms(&dev_priv->drm,
702 				    "PSR2 sel fetch not enabled, plane rotated\n");
703 			return false;
704 		}
705 	}
706 
707 	return crtc_state->enable_psr2_sel_fetch = true;
708 }
709 
710 static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
711 				    struct intel_crtc_state *crtc_state)
712 {
713 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
714 	int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay;
715 	int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay;
716 	int psr_max_h = 0, psr_max_v = 0, max_bpp = 0;
717 
718 	if (!dev_priv->psr.sink_psr2_support)
719 		return false;
720 
721 	if (!transcoder_has_psr2(dev_priv, crtc_state->cpu_transcoder)) {
722 		drm_dbg_kms(&dev_priv->drm,
723 			    "PSR2 not supported in transcoder %s\n",
724 			    transcoder_name(crtc_state->cpu_transcoder));
725 		return false;
726 	}
727 
728 	if (!psr2_global_enabled(dev_priv)) {
729 		drm_dbg_kms(&dev_priv->drm, "PSR2 disabled by flag\n");
730 		return false;
731 	}
732 
733 	/*
734 	 * DSC and PSR2 cannot be enabled simultaneously. If a requested
735 	 * resolution requires DSC to be enabled, priority is given to DSC
736 	 * over PSR2.
737 	 */
738 	if (crtc_state->dsc.compression_enable) {
739 		drm_dbg_kms(&dev_priv->drm,
740 			    "PSR2 cannot be enabled since DSC is enabled\n");
741 		return false;
742 	}
743 
744 	if (crtc_state->crc_enabled) {
745 		drm_dbg_kms(&dev_priv->drm,
746 			    "PSR2 not enabled because it would inhibit pipe CRC calculation\n");
747 		return false;
748 	}
749 
750 	if (INTEL_GEN(dev_priv) >= 12) {
751 		psr_max_h = 5120;
752 		psr_max_v = 3200;
753 		max_bpp = 30;
754 	} else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
755 		psr_max_h = 4096;
756 		psr_max_v = 2304;
757 		max_bpp = 24;
758 	} else if (IS_GEN(dev_priv, 9)) {
759 		psr_max_h = 3640;
760 		psr_max_v = 2304;
761 		max_bpp = 24;
762 	}
763 
764 	if (crtc_state->pipe_bpp > max_bpp) {
765 		drm_dbg_kms(&dev_priv->drm,
766 			    "PSR2 not enabled, pipe bpp %d > max supported %d\n",
767 			    crtc_state->pipe_bpp, max_bpp);
768 		return false;
769 	}
770 
771 	/*
772 	 * HW sends SU blocks of size four scan lines, which means the starting
773 	 * X coordinate and Y granularity requirements will always be met. We
774 	 * only need to validate the SU block width is a multiple of
775 	 * x granularity.
776 	 */
777 	if (crtc_hdisplay % dev_priv->psr.su_x_granularity) {
778 		drm_dbg_kms(&dev_priv->drm,
779 			    "PSR2 not enabled, hdisplay(%d) not multiple of %d\n",
780 			    crtc_hdisplay, dev_priv->psr.su_x_granularity);
781 		return false;
782 	}
783 
784 	if (HAS_PSR2_SEL_FETCH(dev_priv)) {
785 		if (!intel_psr2_sel_fetch_config_valid(intel_dp, crtc_state) &&
786 		    !HAS_PSR_HW_TRACKING(dev_priv)) {
787 			drm_dbg_kms(&dev_priv->drm,
788 				    "PSR2 not enabled, selective fetch not valid and no HW tracking available\n");
789 			return false;
790 		}
791 	}
792 
793 	if (!crtc_state->enable_psr2_sel_fetch &&
794 	    (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v)) {
795 		drm_dbg_kms(&dev_priv->drm,
796 			    "PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
797 			    crtc_hdisplay, crtc_vdisplay,
798 			    psr_max_h, psr_max_v);
799 		return false;
800 	}
801 
802 	tgl_dc3co_exitline_compute_config(intel_dp, crtc_state);
803 	return true;
804 }
805 
806 void intel_psr_compute_config(struct intel_dp *intel_dp,
807 			      struct intel_crtc_state *crtc_state)
808 {
809 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
810 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
811 	const struct drm_display_mode *adjusted_mode =
812 		&crtc_state->hw.adjusted_mode;
813 	int psr_setup_time;
814 
815 	/*
816 	 * Current PSR panels dont work reliably with VRR enabled
817 	 * So if VRR is enabled, do not enable PSR.
818 	 */
819 	if (crtc_state->vrr.enable)
820 		return;
821 
822 	if (!CAN_PSR(dev_priv))
823 		return;
824 
825 	if (intel_dp != dev_priv->psr.dp)
826 		return;
827 
828 	if (!psr_global_enabled(dev_priv)) {
829 		drm_dbg_kms(&dev_priv->drm, "PSR disabled by flag\n");
830 		return;
831 	}
832 
833 	/*
834 	 * HSW spec explicitly says PSR is tied to port A.
835 	 * BDW+ platforms have a instance of PSR registers per transcoder but
836 	 * for now it only supports one instance of PSR, so lets keep it
837 	 * hardcoded to PORT_A
838 	 */
839 	if (dig_port->base.port != PORT_A) {
840 		drm_dbg_kms(&dev_priv->drm,
841 			    "PSR condition failed: Port not supported\n");
842 		return;
843 	}
844 
845 	if (dev_priv->psr.sink_not_reliable) {
846 		drm_dbg_kms(&dev_priv->drm,
847 			    "PSR sink implementation is not reliable\n");
848 		return;
849 	}
850 
851 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
852 		drm_dbg_kms(&dev_priv->drm,
853 			    "PSR condition failed: Interlaced mode enabled\n");
854 		return;
855 	}
856 
857 	psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
858 	if (psr_setup_time < 0) {
859 		drm_dbg_kms(&dev_priv->drm,
860 			    "PSR condition failed: Invalid PSR setup time (0x%02x)\n",
861 			    intel_dp->psr_dpcd[1]);
862 		return;
863 	}
864 
865 	if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
866 	    adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
867 		drm_dbg_kms(&dev_priv->drm,
868 			    "PSR condition failed: PSR setup time (%d us) too long\n",
869 			    psr_setup_time);
870 		return;
871 	}
872 
873 	crtc_state->has_psr = true;
874 	crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state);
875 	crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
876 }
877 
878 static void intel_psr_activate(struct intel_dp *intel_dp)
879 {
880 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
881 
882 	if (transcoder_has_psr2(dev_priv, dev_priv->psr.transcoder))
883 		drm_WARN_ON(&dev_priv->drm,
884 			    intel_de_read(dev_priv, EDP_PSR2_CTL(dev_priv->psr.transcoder)) & EDP_PSR2_ENABLE);
885 
886 	drm_WARN_ON(&dev_priv->drm,
887 		    intel_de_read(dev_priv, EDP_PSR_CTL(dev_priv->psr.transcoder)) & EDP_PSR_ENABLE);
888 	drm_WARN_ON(&dev_priv->drm, dev_priv->psr.active);
889 	lockdep_assert_held(&dev_priv->psr.lock);
890 
891 	/* psr1 and psr2 are mutually exclusive.*/
892 	if (dev_priv->psr.psr2_enabled)
893 		hsw_activate_psr2(intel_dp);
894 	else
895 		hsw_activate_psr1(intel_dp);
896 
897 	dev_priv->psr.active = true;
898 }
899 
900 static void intel_psr_enable_source(struct intel_dp *intel_dp,
901 				    const struct intel_crtc_state *crtc_state)
902 {
903 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
904 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
905 	u32 mask;
906 
907 	/* Only HSW and BDW have PSR AUX registers that need to be setup. SKL+
908 	 * use hardcoded values PSR AUX transactions
909 	 */
910 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
911 		hsw_psr_setup_aux(intel_dp);
912 
913 	if (dev_priv->psr.psr2_enabled && (IS_GEN(dev_priv, 9) &&
914 					   !IS_GEMINILAKE(dev_priv))) {
915 		i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder);
916 		u32 chicken = intel_de_read(dev_priv, reg);
917 
918 		chicken |= PSR2_VSC_ENABLE_PROG_HEADER |
919 			   PSR2_ADD_VERTICAL_LINE_COUNT;
920 		intel_de_write(dev_priv, reg, chicken);
921 	}
922 
923 	/*
924 	 * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also
925 	 * mask LPSP to avoid dependency on other drivers that might block
926 	 * runtime_pm besides preventing  other hw tracking issues now we
927 	 * can rely on frontbuffer tracking.
928 	 */
929 	mask = EDP_PSR_DEBUG_MASK_MEMUP |
930 	       EDP_PSR_DEBUG_MASK_HPD |
931 	       EDP_PSR_DEBUG_MASK_LPSP |
932 	       EDP_PSR_DEBUG_MASK_MAX_SLEEP;
933 
934 	if (INTEL_GEN(dev_priv) < 11)
935 		mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE;
936 
937 	intel_de_write(dev_priv, EDP_PSR_DEBUG(dev_priv->psr.transcoder),
938 		       mask);
939 
940 	psr_irq_control(dev_priv);
941 
942 	if (crtc_state->dc3co_exitline) {
943 		u32 val;
944 
945 		/*
946 		 * TODO: if future platforms supports DC3CO in more than one
947 		 * transcoder, EXITLINE will need to be unset when disabling PSR
948 		 */
949 		val = intel_de_read(dev_priv, EXITLINE(cpu_transcoder));
950 		val &= ~EXITLINE_MASK;
951 		val |= crtc_state->dc3co_exitline << EXITLINE_SHIFT;
952 		val |= EXITLINE_ENABLE;
953 		intel_de_write(dev_priv, EXITLINE(cpu_transcoder), val);
954 	}
955 
956 	if (HAS_PSR_HW_TRACKING(dev_priv) && HAS_PSR2_SEL_FETCH(dev_priv))
957 		intel_de_rmw(dev_priv, CHICKEN_PAR1_1, IGNORE_PSR2_HW_TRACKING,
958 			     dev_priv->psr.psr2_sel_fetch_enabled ?
959 			     IGNORE_PSR2_HW_TRACKING : 0);
960 }
961 
962 static void intel_psr_enable_locked(struct drm_i915_private *dev_priv,
963 				    const struct intel_crtc_state *crtc_state,
964 				    const struct drm_connector_state *conn_state)
965 {
966 	struct intel_dp *intel_dp = dev_priv->psr.dp;
967 	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
968 	struct intel_encoder *encoder = &dig_port->base;
969 	u32 val;
970 
971 	drm_WARN_ON(&dev_priv->drm, dev_priv->psr.enabled);
972 
973 	dev_priv->psr.psr2_enabled = crtc_state->has_psr2;
974 	dev_priv->psr.busy_frontbuffer_bits = 0;
975 	dev_priv->psr.pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe;
976 	dev_priv->psr.dc3co_enabled = !!crtc_state->dc3co_exitline;
977 	dev_priv->psr.transcoder = crtc_state->cpu_transcoder;
978 	/* DC5/DC6 requires at least 6 idle frames */
979 	val = usecs_to_jiffies(intel_get_frame_time_us(crtc_state) * 6);
980 	dev_priv->psr.dc3co_exit_delay = val;
981 	dev_priv->psr.psr2_sel_fetch_enabled = crtc_state->enable_psr2_sel_fetch;
982 
983 	/*
984 	 * If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR
985 	 * will still keep the error set even after the reset done in the
986 	 * irq_preinstall and irq_uninstall hooks.
987 	 * And enabling in this situation cause the screen to freeze in the
988 	 * first time that PSR HW tries to activate so lets keep PSR disabled
989 	 * to avoid any rendering problems.
990 	 */
991 	if (INTEL_GEN(dev_priv) >= 12) {
992 		val = intel_de_read(dev_priv,
993 				    TRANS_PSR_IIR(dev_priv->psr.transcoder));
994 		val &= EDP_PSR_ERROR(0);
995 	} else {
996 		val = intel_de_read(dev_priv, EDP_PSR_IIR);
997 		val &= EDP_PSR_ERROR(dev_priv->psr.transcoder);
998 	}
999 	if (val) {
1000 		dev_priv->psr.sink_not_reliable = true;
1001 		drm_dbg_kms(&dev_priv->drm,
1002 			    "PSR interruption error set, not enabling PSR\n");
1003 		return;
1004 	}
1005 
1006 	drm_dbg_kms(&dev_priv->drm, "Enabling PSR%s\n",
1007 		    dev_priv->psr.psr2_enabled ? "2" : "1");
1008 	intel_dp_compute_psr_vsc_sdp(intel_dp, crtc_state, conn_state,
1009 				     &dev_priv->psr.vsc);
1010 	intel_write_dp_vsc_sdp(encoder, crtc_state, &dev_priv->psr.vsc);
1011 	intel_psr_enable_sink(intel_dp);
1012 	intel_psr_enable_source(intel_dp, crtc_state);
1013 	dev_priv->psr.enabled = true;
1014 
1015 	intel_psr_activate(intel_dp);
1016 }
1017 
1018 /**
1019  * intel_psr_enable - Enable PSR
1020  * @intel_dp: Intel DP
1021  * @crtc_state: new CRTC state
1022  * @conn_state: new CONNECTOR state
1023  *
1024  * This function can only be called after the pipe is fully trained and enabled.
1025  */
1026 void intel_psr_enable(struct intel_dp *intel_dp,
1027 		      const struct intel_crtc_state *crtc_state,
1028 		      const struct drm_connector_state *conn_state)
1029 {
1030 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1031 
1032 	if (!CAN_PSR(dev_priv) || dev_priv->psr.dp != intel_dp)
1033 		return;
1034 
1035 	if (!crtc_state->has_psr)
1036 		return;
1037 
1038 	drm_WARN_ON(&dev_priv->drm, dev_priv->drrs.dp);
1039 
1040 	mutex_lock(&dev_priv->psr.lock);
1041 	intel_psr_enable_locked(dev_priv, crtc_state, conn_state);
1042 	mutex_unlock(&dev_priv->psr.lock);
1043 }
1044 
1045 static void intel_psr_exit(struct drm_i915_private *dev_priv)
1046 {
1047 	u32 val;
1048 
1049 	if (!dev_priv->psr.active) {
1050 		if (transcoder_has_psr2(dev_priv, dev_priv->psr.transcoder)) {
1051 			val = intel_de_read(dev_priv,
1052 					    EDP_PSR2_CTL(dev_priv->psr.transcoder));
1053 			drm_WARN_ON(&dev_priv->drm, val & EDP_PSR2_ENABLE);
1054 		}
1055 
1056 		val = intel_de_read(dev_priv,
1057 				    EDP_PSR_CTL(dev_priv->psr.transcoder));
1058 		drm_WARN_ON(&dev_priv->drm, val & EDP_PSR_ENABLE);
1059 
1060 		return;
1061 	}
1062 
1063 	if (dev_priv->psr.psr2_enabled) {
1064 		tgl_disallow_dc3co_on_psr2_exit(dev_priv);
1065 		val = intel_de_read(dev_priv,
1066 				    EDP_PSR2_CTL(dev_priv->psr.transcoder));
1067 		drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR2_ENABLE));
1068 		val &= ~EDP_PSR2_ENABLE;
1069 		intel_de_write(dev_priv,
1070 			       EDP_PSR2_CTL(dev_priv->psr.transcoder), val);
1071 	} else {
1072 		val = intel_de_read(dev_priv,
1073 				    EDP_PSR_CTL(dev_priv->psr.transcoder));
1074 		drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR_ENABLE));
1075 		val &= ~EDP_PSR_ENABLE;
1076 		intel_de_write(dev_priv,
1077 			       EDP_PSR_CTL(dev_priv->psr.transcoder), val);
1078 	}
1079 	dev_priv->psr.active = false;
1080 }
1081 
1082 static void intel_psr_disable_locked(struct intel_dp *intel_dp)
1083 {
1084 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1085 	i915_reg_t psr_status;
1086 	u32 psr_status_mask;
1087 
1088 	lockdep_assert_held(&dev_priv->psr.lock);
1089 
1090 	if (!dev_priv->psr.enabled)
1091 		return;
1092 
1093 	drm_dbg_kms(&dev_priv->drm, "Disabling PSR%s\n",
1094 		    dev_priv->psr.psr2_enabled ? "2" : "1");
1095 
1096 	intel_psr_exit(dev_priv);
1097 
1098 	if (dev_priv->psr.psr2_enabled) {
1099 		psr_status = EDP_PSR2_STATUS(dev_priv->psr.transcoder);
1100 		psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
1101 	} else {
1102 		psr_status = EDP_PSR_STATUS(dev_priv->psr.transcoder);
1103 		psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
1104 	}
1105 
1106 	/* Wait till PSR is idle */
1107 	if (intel_de_wait_for_clear(dev_priv, psr_status,
1108 				    psr_status_mask, 2000))
1109 		drm_err(&dev_priv->drm, "Timed out waiting PSR idle state\n");
1110 
1111 	/* WA 1408330847 */
1112 	if (dev_priv->psr.psr2_sel_fetch_enabled &&
1113 	    (IS_TGL_DISP_REVID(dev_priv, TGL_REVID_A0, TGL_REVID_A0) ||
1114 	     IS_RKL_REVID(dev_priv, RKL_REVID_A0, RKL_REVID_A0)))
1115 		intel_de_rmw(dev_priv, CHICKEN_PAR1_1,
1116 			     DIS_RAM_BYPASS_PSR2_MAN_TRACK, 0);
1117 
1118 	/* Disable PSR on Sink */
1119 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
1120 
1121 	if (dev_priv->psr.psr2_enabled)
1122 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, 0);
1123 
1124 	dev_priv->psr.enabled = false;
1125 }
1126 
1127 /**
1128  * intel_psr_disable - Disable PSR
1129  * @intel_dp: Intel DP
1130  * @old_crtc_state: old CRTC state
1131  *
1132  * This function needs to be called before disabling pipe.
1133  */
1134 void intel_psr_disable(struct intel_dp *intel_dp,
1135 		       const struct intel_crtc_state *old_crtc_state)
1136 {
1137 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1138 
1139 	if (!old_crtc_state->has_psr)
1140 		return;
1141 
1142 	if (drm_WARN_ON(&dev_priv->drm, !CAN_PSR(dev_priv)))
1143 		return;
1144 
1145 	mutex_lock(&dev_priv->psr.lock);
1146 
1147 	intel_psr_disable_locked(intel_dp);
1148 
1149 	mutex_unlock(&dev_priv->psr.lock);
1150 	cancel_work_sync(&dev_priv->psr.work);
1151 	cancel_delayed_work_sync(&dev_priv->psr.dc3co_work);
1152 }
1153 
1154 static void psr_force_hw_tracking_exit(struct drm_i915_private *dev_priv)
1155 {
1156 	if (IS_TIGERLAKE(dev_priv))
1157 		/*
1158 		 * Writes to CURSURFLIVE in TGL are causing IOMMU errors and
1159 		 * visual glitches that are often reproduced when executing
1160 		 * CPU intensive workloads while a eDP 4K panel is attached.
1161 		 *
1162 		 * Manually exiting PSR causes the frontbuffer to be updated
1163 		 * without glitches and the IOMMU errors are also gone but
1164 		 * this comes at the cost of less time with PSR active.
1165 		 *
1166 		 * So using this workaround until this issue is root caused
1167 		 * and a better fix is found.
1168 		 */
1169 		intel_psr_exit(dev_priv);
1170 	else if (INTEL_GEN(dev_priv) >= 9)
1171 		/*
1172 		 * Display WA #0884: skl+
1173 		 * This documented WA for bxt can be safely applied
1174 		 * broadly so we can force HW tracking to exit PSR
1175 		 * instead of disabling and re-enabling.
1176 		 * Workaround tells us to write 0 to CUR_SURFLIVE_A,
1177 		 * but it makes more sense write to the current active
1178 		 * pipe.
1179 		 */
1180 		intel_de_write(dev_priv, CURSURFLIVE(dev_priv->psr.pipe), 0);
1181 	else
1182 		/*
1183 		 * A write to CURSURFLIVE do not cause HW tracking to exit PSR
1184 		 * on older gens so doing the manual exit instead.
1185 		 */
1186 		intel_psr_exit(dev_priv);
1187 }
1188 
1189 void intel_psr2_program_plane_sel_fetch(struct intel_plane *plane,
1190 					const struct intel_crtc_state *crtc_state,
1191 					const struct intel_plane_state *plane_state,
1192 					int color_plane)
1193 {
1194 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1195 	enum pipe pipe = plane->pipe;
1196 	const struct drm_rect *clip;
1197 	u32 val, offset;
1198 	int ret, x, y;
1199 
1200 	if (!crtc_state->enable_psr2_sel_fetch)
1201 		return;
1202 
1203 	val = plane_state ? plane_state->ctl : 0;
1204 	val &= plane->id == PLANE_CURSOR ? val : PLANE_SEL_FETCH_CTL_ENABLE;
1205 	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_CTL(pipe, plane->id), val);
1206 	if (!val || plane->id == PLANE_CURSOR)
1207 		return;
1208 
1209 	clip = &plane_state->psr2_sel_fetch_area;
1210 
1211 	val = (clip->y1 + plane_state->uapi.dst.y1) << 16;
1212 	val |= plane_state->uapi.dst.x1;
1213 	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_POS(pipe, plane->id), val);
1214 
1215 	/* TODO: consider auxiliary surfaces */
1216 	x = plane_state->uapi.src.x1 >> 16;
1217 	y = (plane_state->uapi.src.y1 >> 16) + clip->y1;
1218 	ret = skl_calc_main_surface_offset(plane_state, &x, &y, &offset);
1219 	if (ret)
1220 		drm_warn_once(&dev_priv->drm, "skl_calc_main_surface_offset() returned %i\n",
1221 			      ret);
1222 	val = y << 16 | x;
1223 	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_OFFSET(pipe, plane->id),
1224 			  val);
1225 
1226 	/* Sizes are 0 based */
1227 	val = (drm_rect_height(clip) - 1) << 16;
1228 	val |= (drm_rect_width(&plane_state->uapi.src) >> 16) - 1;
1229 	intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_SIZE(pipe, plane->id), val);
1230 }
1231 
1232 void intel_psr2_program_trans_man_trk_ctl(const struct intel_crtc_state *crtc_state)
1233 {
1234 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1235 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1236 	struct i915_psr *psr = &dev_priv->psr;
1237 
1238 	if (!HAS_PSR2_SEL_FETCH(dev_priv) ||
1239 	    !crtc_state->enable_psr2_sel_fetch)
1240 		return;
1241 
1242 	intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(psr->transcoder),
1243 		       crtc_state->psr2_man_track_ctl);
1244 }
1245 
1246 static void psr2_man_trk_ctl_calc(struct intel_crtc_state *crtc_state,
1247 				  struct drm_rect *clip, bool full_update)
1248 {
1249 	u32 val = PSR2_MAN_TRK_CTL_ENABLE;
1250 
1251 	if (full_update) {
1252 		val |= PSR2_MAN_TRK_CTL_SF_SINGLE_FULL_FRAME;
1253 		goto exit;
1254 	}
1255 
1256 	if (clip->y1 == -1)
1257 		goto exit;
1258 
1259 	drm_WARN_ON(crtc_state->uapi.crtc->dev, clip->y1 % 4 || clip->y2 % 4);
1260 
1261 	val |= PSR2_MAN_TRK_CTL_SF_PARTIAL_FRAME_UPDATE;
1262 	val |= PSR2_MAN_TRK_CTL_SU_REGION_START_ADDR(clip->y1 / 4 + 1);
1263 	val |= PSR2_MAN_TRK_CTL_SU_REGION_END_ADDR(clip->y2 / 4 + 1);
1264 exit:
1265 	crtc_state->psr2_man_track_ctl = val;
1266 }
1267 
1268 static void clip_area_update(struct drm_rect *overlap_damage_area,
1269 			     struct drm_rect *damage_area)
1270 {
1271 	if (overlap_damage_area->y1 == -1) {
1272 		overlap_damage_area->y1 = damage_area->y1;
1273 		overlap_damage_area->y2 = damage_area->y2;
1274 		return;
1275 	}
1276 
1277 	if (damage_area->y1 < overlap_damage_area->y1)
1278 		overlap_damage_area->y1 = damage_area->y1;
1279 
1280 	if (damage_area->y2 > overlap_damage_area->y2)
1281 		overlap_damage_area->y2 = damage_area->y2;
1282 }
1283 
1284 int intel_psr2_sel_fetch_update(struct intel_atomic_state *state,
1285 				struct intel_crtc *crtc)
1286 {
1287 	struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
1288 	struct drm_rect pipe_clip = { .x1 = 0, .y1 = -1, .x2 = INT_MAX, .y2 = -1 };
1289 	struct intel_plane_state *new_plane_state, *old_plane_state;
1290 	struct intel_plane *plane;
1291 	bool full_update = false;
1292 	int i, ret;
1293 
1294 	if (!crtc_state->enable_psr2_sel_fetch)
1295 		return 0;
1296 
1297 	ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
1298 	if (ret)
1299 		return ret;
1300 
1301 	/*
1302 	 * Calculate minimal selective fetch area of each plane and calculate
1303 	 * the pipe damaged area.
1304 	 * In the next loop the plane selective fetch area will actually be set
1305 	 * using whole pipe damaged area.
1306 	 */
1307 	for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
1308 					     new_plane_state, i) {
1309 		struct drm_rect src, damaged_area = { .y1 = -1 };
1310 		struct drm_mode_rect *damaged_clips;
1311 		u32 num_clips, j;
1312 
1313 		if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc)
1314 			continue;
1315 
1316 		if (!new_plane_state->uapi.visible &&
1317 		    !old_plane_state->uapi.visible)
1318 			continue;
1319 
1320 		/*
1321 		 * TODO: Not clear how to handle planes with negative position,
1322 		 * also planes are not updated if they have a negative X
1323 		 * position so for now doing a full update in this cases
1324 		 */
1325 		if (new_plane_state->uapi.dst.y1 < 0 ||
1326 		    new_plane_state->uapi.dst.x1 < 0) {
1327 			full_update = true;
1328 			break;
1329 		}
1330 
1331 		num_clips = drm_plane_get_damage_clips_count(&new_plane_state->uapi);
1332 
1333 		/*
1334 		 * If visibility or plane moved, mark the whole plane area as
1335 		 * damaged as it needs to be complete redraw in the new and old
1336 		 * position.
1337 		 */
1338 		if (new_plane_state->uapi.visible != old_plane_state->uapi.visible ||
1339 		    !drm_rect_equals(&new_plane_state->uapi.dst,
1340 				     &old_plane_state->uapi.dst)) {
1341 			if (old_plane_state->uapi.visible) {
1342 				damaged_area.y1 = old_plane_state->uapi.dst.y1;
1343 				damaged_area.y2 = old_plane_state->uapi.dst.y2;
1344 				clip_area_update(&pipe_clip, &damaged_area);
1345 			}
1346 
1347 			if (new_plane_state->uapi.visible) {
1348 				damaged_area.y1 = new_plane_state->uapi.dst.y1;
1349 				damaged_area.y2 = new_plane_state->uapi.dst.y2;
1350 				clip_area_update(&pipe_clip, &damaged_area);
1351 			}
1352 			continue;
1353 		} else if (new_plane_state->uapi.alpha != old_plane_state->uapi.alpha ||
1354 			   (!num_clips &&
1355 			    new_plane_state->uapi.fb != old_plane_state->uapi.fb)) {
1356 			/*
1357 			 * If the plane don't have damaged areas but the
1358 			 * framebuffer changed or alpha changed, mark the whole
1359 			 * plane area as damaged.
1360 			 */
1361 			damaged_area.y1 = new_plane_state->uapi.dst.y1;
1362 			damaged_area.y2 = new_plane_state->uapi.dst.y2;
1363 			clip_area_update(&pipe_clip, &damaged_area);
1364 			continue;
1365 		}
1366 
1367 		drm_rect_fp_to_int(&src, &new_plane_state->uapi.src);
1368 		damaged_clips = drm_plane_get_damage_clips(&new_plane_state->uapi);
1369 
1370 		for (j = 0; j < num_clips; j++) {
1371 			struct drm_rect clip;
1372 
1373 			clip.x1 = damaged_clips[j].x1;
1374 			clip.y1 = damaged_clips[j].y1;
1375 			clip.x2 = damaged_clips[j].x2;
1376 			clip.y2 = damaged_clips[j].y2;
1377 			if (drm_rect_intersect(&clip, &src))
1378 				clip_area_update(&damaged_area, &clip);
1379 		}
1380 
1381 		if (damaged_area.y1 == -1)
1382 			continue;
1383 
1384 		damaged_area.y1 += new_plane_state->uapi.dst.y1 - src.y1;
1385 		damaged_area.y2 += new_plane_state->uapi.dst.y1 - src.y1;
1386 		clip_area_update(&pipe_clip, &damaged_area);
1387 	}
1388 
1389 	if (full_update)
1390 		goto skip_sel_fetch_set_loop;
1391 
1392 	/* It must be aligned to 4 lines */
1393 	pipe_clip.y1 -= pipe_clip.y1 % 4;
1394 	if (pipe_clip.y2 % 4)
1395 		pipe_clip.y2 = ((pipe_clip.y2 / 4) + 1) * 4;
1396 
1397 	/*
1398 	 * Now that we have the pipe damaged area check if it intersect with
1399 	 * every plane, if it does set the plane selective fetch area.
1400 	 */
1401 	for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
1402 					     new_plane_state, i) {
1403 		struct drm_rect *sel_fetch_area, inter;
1404 
1405 		if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc ||
1406 		    !new_plane_state->uapi.visible)
1407 			continue;
1408 
1409 		inter = pipe_clip;
1410 		if (!drm_rect_intersect(&inter, &new_plane_state->uapi.dst))
1411 			continue;
1412 
1413 		sel_fetch_area = &new_plane_state->psr2_sel_fetch_area;
1414 		sel_fetch_area->y1 = inter.y1 - new_plane_state->uapi.dst.y1;
1415 		sel_fetch_area->y2 = inter.y2 - new_plane_state->uapi.dst.y1;
1416 	}
1417 
1418 skip_sel_fetch_set_loop:
1419 	psr2_man_trk_ctl_calc(crtc_state, &pipe_clip, full_update);
1420 	return 0;
1421 }
1422 
1423 /**
1424  * intel_psr_update - Update PSR state
1425  * @intel_dp: Intel DP
1426  * @crtc_state: new CRTC state
1427  * @conn_state: new CONNECTOR state
1428  *
1429  * This functions will update PSR states, disabling, enabling or switching PSR
1430  * version when executing fastsets. For full modeset, intel_psr_disable() and
1431  * intel_psr_enable() should be called instead.
1432  */
1433 void intel_psr_update(struct intel_dp *intel_dp,
1434 		      const struct intel_crtc_state *crtc_state,
1435 		      const struct drm_connector_state *conn_state)
1436 {
1437 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1438 	struct i915_psr *psr = &dev_priv->psr;
1439 	bool enable, psr2_enable;
1440 
1441 	if (!CAN_PSR(dev_priv) || READ_ONCE(psr->dp) != intel_dp)
1442 		return;
1443 
1444 	mutex_lock(&dev_priv->psr.lock);
1445 
1446 	enable = crtc_state->has_psr;
1447 	psr2_enable = crtc_state->has_psr2;
1448 
1449 	if (enable == psr->enabled && psr2_enable == psr->psr2_enabled) {
1450 		/* Force a PSR exit when enabling CRC to avoid CRC timeouts */
1451 		if (crtc_state->crc_enabled && psr->enabled)
1452 			psr_force_hw_tracking_exit(dev_priv);
1453 		else if (INTEL_GEN(dev_priv) < 9 && psr->enabled) {
1454 			/*
1455 			 * Activate PSR again after a force exit when enabling
1456 			 * CRC in older gens
1457 			 */
1458 			if (!dev_priv->psr.active &&
1459 			    !dev_priv->psr.busy_frontbuffer_bits)
1460 				schedule_work(&dev_priv->psr.work);
1461 		}
1462 
1463 		goto unlock;
1464 	}
1465 
1466 	if (psr->enabled)
1467 		intel_psr_disable_locked(intel_dp);
1468 
1469 	if (enable)
1470 		intel_psr_enable_locked(dev_priv, crtc_state, conn_state);
1471 
1472 unlock:
1473 	mutex_unlock(&dev_priv->psr.lock);
1474 }
1475 
1476 /**
1477  * intel_psr_wait_for_idle - wait for PSR1 to idle
1478  * @new_crtc_state: new CRTC state
1479  * @out_value: PSR status in case of failure
1480  *
1481  * This function is expected to be called from pipe_update_start() where it is
1482  * not expected to race with PSR enable or disable.
1483  *
1484  * Returns: 0 on success or -ETIMEOUT if PSR status does not idle.
1485  */
1486 int intel_psr_wait_for_idle(const struct intel_crtc_state *new_crtc_state,
1487 			    u32 *out_value)
1488 {
1489 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1490 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1491 
1492 	if (!dev_priv->psr.enabled || !new_crtc_state->has_psr)
1493 		return 0;
1494 
1495 	/* FIXME: Update this for PSR2 if we need to wait for idle */
1496 	if (READ_ONCE(dev_priv->psr.psr2_enabled))
1497 		return 0;
1498 
1499 	/*
1500 	 * From bspec: Panel Self Refresh (BDW+)
1501 	 * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of
1502 	 * exit training time + 1.5 ms of aux channel handshake. 50 ms is
1503 	 * defensive enough to cover everything.
1504 	 */
1505 
1506 	return __intel_wait_for_register(&dev_priv->uncore,
1507 					 EDP_PSR_STATUS(dev_priv->psr.transcoder),
1508 					 EDP_PSR_STATUS_STATE_MASK,
1509 					 EDP_PSR_STATUS_STATE_IDLE, 2, 50,
1510 					 out_value);
1511 }
1512 
1513 static bool __psr_wait_for_idle_locked(struct drm_i915_private *dev_priv)
1514 {
1515 	i915_reg_t reg;
1516 	u32 mask;
1517 	int err;
1518 
1519 	if (!dev_priv->psr.enabled)
1520 		return false;
1521 
1522 	if (dev_priv->psr.psr2_enabled) {
1523 		reg = EDP_PSR2_STATUS(dev_priv->psr.transcoder);
1524 		mask = EDP_PSR2_STATUS_STATE_MASK;
1525 	} else {
1526 		reg = EDP_PSR_STATUS(dev_priv->psr.transcoder);
1527 		mask = EDP_PSR_STATUS_STATE_MASK;
1528 	}
1529 
1530 	mutex_unlock(&dev_priv->psr.lock);
1531 
1532 	err = intel_de_wait_for_clear(dev_priv, reg, mask, 50);
1533 	if (err)
1534 		drm_err(&dev_priv->drm,
1535 			"Timed out waiting for PSR Idle for re-enable\n");
1536 
1537 	/* After the unlocked wait, verify that PSR is still wanted! */
1538 	mutex_lock(&dev_priv->psr.lock);
1539 	return err == 0 && dev_priv->psr.enabled;
1540 }
1541 
1542 static int intel_psr_fastset_force(struct drm_i915_private *dev_priv)
1543 {
1544 	struct drm_connector_list_iter conn_iter;
1545 	struct drm_device *dev = &dev_priv->drm;
1546 	struct drm_modeset_acquire_ctx ctx;
1547 	struct drm_atomic_state *state;
1548 	struct drm_connector *conn;
1549 	int err = 0;
1550 
1551 	state = drm_atomic_state_alloc(dev);
1552 	if (!state)
1553 		return -ENOMEM;
1554 
1555 	drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
1556 	state->acquire_ctx = &ctx;
1557 
1558 retry:
1559 
1560 	drm_connector_list_iter_begin(dev, &conn_iter);
1561 	drm_for_each_connector_iter(conn, &conn_iter) {
1562 		struct drm_connector_state *conn_state;
1563 		struct drm_crtc_state *crtc_state;
1564 
1565 		if (conn->connector_type != DRM_MODE_CONNECTOR_eDP)
1566 			continue;
1567 
1568 		conn_state = drm_atomic_get_connector_state(state, conn);
1569 		if (IS_ERR(conn_state)) {
1570 			err = PTR_ERR(conn_state);
1571 			break;
1572 		}
1573 
1574 		if (!conn_state->crtc)
1575 			continue;
1576 
1577 		crtc_state = drm_atomic_get_crtc_state(state, conn_state->crtc);
1578 		if (IS_ERR(crtc_state)) {
1579 			err = PTR_ERR(crtc_state);
1580 			break;
1581 		}
1582 
1583 		/* Mark mode as changed to trigger a pipe->update() */
1584 		crtc_state->mode_changed = true;
1585 	}
1586 	drm_connector_list_iter_end(&conn_iter);
1587 
1588 	if (err == 0)
1589 		err = drm_atomic_commit(state);
1590 
1591 	if (err == -EDEADLK) {
1592 		drm_atomic_state_clear(state);
1593 		err = drm_modeset_backoff(&ctx);
1594 		if (!err)
1595 			goto retry;
1596 	}
1597 
1598 	drm_modeset_drop_locks(&ctx);
1599 	drm_modeset_acquire_fini(&ctx);
1600 	drm_atomic_state_put(state);
1601 
1602 	return err;
1603 }
1604 
1605 int intel_psr_debug_set(struct drm_i915_private *dev_priv, u64 val)
1606 {
1607 	const u32 mode = val & I915_PSR_DEBUG_MODE_MASK;
1608 	u32 old_mode;
1609 	int ret;
1610 
1611 	if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) ||
1612 	    mode > I915_PSR_DEBUG_FORCE_PSR1) {
1613 		drm_dbg_kms(&dev_priv->drm, "Invalid debug mask %llx\n", val);
1614 		return -EINVAL;
1615 	}
1616 
1617 	ret = mutex_lock_interruptible(&dev_priv->psr.lock);
1618 	if (ret)
1619 		return ret;
1620 
1621 	old_mode = dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK;
1622 	dev_priv->psr.debug = val;
1623 
1624 	/*
1625 	 * Do it right away if it's already enabled, otherwise it will be done
1626 	 * when enabling the source.
1627 	 */
1628 	if (dev_priv->psr.enabled)
1629 		psr_irq_control(dev_priv);
1630 
1631 	mutex_unlock(&dev_priv->psr.lock);
1632 
1633 	if (old_mode != mode)
1634 		ret = intel_psr_fastset_force(dev_priv);
1635 
1636 	return ret;
1637 }
1638 
1639 static void intel_psr_handle_irq(struct drm_i915_private *dev_priv)
1640 {
1641 	struct i915_psr *psr = &dev_priv->psr;
1642 
1643 	intel_psr_disable_locked(psr->dp);
1644 	psr->sink_not_reliable = true;
1645 	/* let's make sure that sink is awaken */
1646 	drm_dp_dpcd_writeb(&psr->dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
1647 }
1648 
1649 static void intel_psr_work(struct work_struct *work)
1650 {
1651 	struct drm_i915_private *dev_priv =
1652 		container_of(work, typeof(*dev_priv), psr.work);
1653 
1654 	mutex_lock(&dev_priv->psr.lock);
1655 
1656 	if (!dev_priv->psr.enabled)
1657 		goto unlock;
1658 
1659 	if (READ_ONCE(dev_priv->psr.irq_aux_error))
1660 		intel_psr_handle_irq(dev_priv);
1661 
1662 	/*
1663 	 * We have to make sure PSR is ready for re-enable
1664 	 * otherwise it keeps disabled until next full enable/disable cycle.
1665 	 * PSR might take some time to get fully disabled
1666 	 * and be ready for re-enable.
1667 	 */
1668 	if (!__psr_wait_for_idle_locked(dev_priv))
1669 		goto unlock;
1670 
1671 	/*
1672 	 * The delayed work can race with an invalidate hence we need to
1673 	 * recheck. Since psr_flush first clears this and then reschedules we
1674 	 * won't ever miss a flush when bailing out here.
1675 	 */
1676 	if (dev_priv->psr.busy_frontbuffer_bits || dev_priv->psr.active)
1677 		goto unlock;
1678 
1679 	intel_psr_activate(dev_priv->psr.dp);
1680 unlock:
1681 	mutex_unlock(&dev_priv->psr.lock);
1682 }
1683 
1684 /**
1685  * intel_psr_invalidate - Invalidade PSR
1686  * @dev_priv: i915 device
1687  * @frontbuffer_bits: frontbuffer plane tracking bits
1688  * @origin: which operation caused the invalidate
1689  *
1690  * Since the hardware frontbuffer tracking has gaps we need to integrate
1691  * with the software frontbuffer tracking. This function gets called every
1692  * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
1693  * disabled if the frontbuffer mask contains a buffer relevant to PSR.
1694  *
1695  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
1696  */
1697 void intel_psr_invalidate(struct drm_i915_private *dev_priv,
1698 			  unsigned frontbuffer_bits, enum fb_op_origin origin)
1699 {
1700 	if (!CAN_PSR(dev_priv))
1701 		return;
1702 
1703 	if (origin == ORIGIN_FLIP)
1704 		return;
1705 
1706 	mutex_lock(&dev_priv->psr.lock);
1707 	if (!dev_priv->psr.enabled) {
1708 		mutex_unlock(&dev_priv->psr.lock);
1709 		return;
1710 	}
1711 
1712 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
1713 	dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
1714 
1715 	if (frontbuffer_bits)
1716 		intel_psr_exit(dev_priv);
1717 
1718 	mutex_unlock(&dev_priv->psr.lock);
1719 }
1720 
1721 /*
1722  * When we will be completely rely on PSR2 S/W tracking in future,
1723  * intel_psr_flush() will invalidate and flush the PSR for ORIGIN_FLIP
1724  * event also therefore tgl_dc3co_flush() require to be changed
1725  * accordingly in future.
1726  */
1727 static void
1728 tgl_dc3co_flush(struct drm_i915_private *dev_priv,
1729 		unsigned int frontbuffer_bits, enum fb_op_origin origin)
1730 {
1731 	mutex_lock(&dev_priv->psr.lock);
1732 
1733 	if (!dev_priv->psr.dc3co_enabled)
1734 		goto unlock;
1735 
1736 	if (!dev_priv->psr.psr2_enabled || !dev_priv->psr.active)
1737 		goto unlock;
1738 
1739 	/*
1740 	 * At every frontbuffer flush flip event modified delay of delayed work,
1741 	 * when delayed work schedules that means display has been idle.
1742 	 */
1743 	if (!(frontbuffer_bits &
1744 	    INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe)))
1745 		goto unlock;
1746 
1747 	tgl_psr2_enable_dc3co(dev_priv);
1748 	mod_delayed_work(system_wq, &dev_priv->psr.dc3co_work,
1749 			 dev_priv->psr.dc3co_exit_delay);
1750 
1751 unlock:
1752 	mutex_unlock(&dev_priv->psr.lock);
1753 }
1754 
1755 /**
1756  * intel_psr_flush - Flush PSR
1757  * @dev_priv: i915 device
1758  * @frontbuffer_bits: frontbuffer plane tracking bits
1759  * @origin: which operation caused the flush
1760  *
1761  * Since the hardware frontbuffer tracking has gaps we need to integrate
1762  * with the software frontbuffer tracking. This function gets called every
1763  * time frontbuffer rendering has completed and flushed out to memory. PSR
1764  * can be enabled again if no other frontbuffer relevant to PSR is dirty.
1765  *
1766  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
1767  */
1768 void intel_psr_flush(struct drm_i915_private *dev_priv,
1769 		     unsigned frontbuffer_bits, enum fb_op_origin origin)
1770 {
1771 	if (!CAN_PSR(dev_priv))
1772 		return;
1773 
1774 	if (origin == ORIGIN_FLIP) {
1775 		tgl_dc3co_flush(dev_priv, frontbuffer_bits, origin);
1776 		return;
1777 	}
1778 
1779 	mutex_lock(&dev_priv->psr.lock);
1780 	if (!dev_priv->psr.enabled) {
1781 		mutex_unlock(&dev_priv->psr.lock);
1782 		return;
1783 	}
1784 
1785 	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
1786 	dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
1787 
1788 	/* By definition flush = invalidate + flush */
1789 	if (frontbuffer_bits)
1790 		psr_force_hw_tracking_exit(dev_priv);
1791 
1792 	if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
1793 		schedule_work(&dev_priv->psr.work);
1794 	mutex_unlock(&dev_priv->psr.lock);
1795 }
1796 
1797 /**
1798  * intel_psr_init - Init basic PSR work and mutex.
1799  * @dev_priv: i915 device private
1800  *
1801  * This function is  called only once at driver load to initialize basic
1802  * PSR stuff.
1803  */
1804 void intel_psr_init(struct drm_i915_private *dev_priv)
1805 {
1806 	if (!HAS_PSR(dev_priv))
1807 		return;
1808 
1809 	if (!dev_priv->psr.sink_support)
1810 		return;
1811 
1812 	if (IS_HASWELL(dev_priv))
1813 		/*
1814 		 * HSW don't have PSR registers on the same space as transcoder
1815 		 * so set this to a value that when subtract to the register
1816 		 * in transcoder space results in the right offset for HSW
1817 		 */
1818 		dev_priv->hsw_psr_mmio_adjust = _SRD_CTL_EDP - _HSW_EDP_PSR_BASE;
1819 
1820 	if (dev_priv->params.enable_psr == -1)
1821 		if (INTEL_GEN(dev_priv) < 9 || !dev_priv->vbt.psr.enable)
1822 			dev_priv->params.enable_psr = 0;
1823 
1824 	/* Set link_standby x link_off defaults */
1825 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1826 		/* HSW and BDW require workarounds that we don't implement. */
1827 		dev_priv->psr.link_standby = false;
1828 	else if (INTEL_GEN(dev_priv) < 12)
1829 		/* For new platforms up to TGL let's respect VBT back again */
1830 		dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
1831 
1832 	INIT_WORK(&dev_priv->psr.work, intel_psr_work);
1833 	INIT_DELAYED_WORK(&dev_priv->psr.dc3co_work, tgl_dc3co_disable_work);
1834 	mutex_init(&dev_priv->psr.lock);
1835 }
1836 
1837 static int psr_get_status_and_error_status(struct intel_dp *intel_dp,
1838 					   u8 *status, u8 *error_status)
1839 {
1840 	struct drm_dp_aux *aux = &intel_dp->aux;
1841 	int ret;
1842 
1843 	ret = drm_dp_dpcd_readb(aux, DP_PSR_STATUS, status);
1844 	if (ret != 1)
1845 		return ret;
1846 
1847 	ret = drm_dp_dpcd_readb(aux, DP_PSR_ERROR_STATUS, error_status);
1848 	if (ret != 1)
1849 		return ret;
1850 
1851 	*status = *status & DP_PSR_SINK_STATE_MASK;
1852 
1853 	return 0;
1854 }
1855 
1856 static void psr_alpm_check(struct intel_dp *intel_dp)
1857 {
1858 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1859 	struct drm_dp_aux *aux = &intel_dp->aux;
1860 	struct i915_psr *psr = &dev_priv->psr;
1861 	u8 val;
1862 	int r;
1863 
1864 	if (!psr->psr2_enabled)
1865 		return;
1866 
1867 	r = drm_dp_dpcd_readb(aux, DP_RECEIVER_ALPM_STATUS, &val);
1868 	if (r != 1) {
1869 		drm_err(&dev_priv->drm, "Error reading ALPM status\n");
1870 		return;
1871 	}
1872 
1873 	if (val & DP_ALPM_LOCK_TIMEOUT_ERROR) {
1874 		intel_psr_disable_locked(intel_dp);
1875 		psr->sink_not_reliable = true;
1876 		drm_dbg_kms(&dev_priv->drm,
1877 			    "ALPM lock timeout error, disabling PSR\n");
1878 
1879 		/* Clearing error */
1880 		drm_dp_dpcd_writeb(aux, DP_RECEIVER_ALPM_STATUS, val);
1881 	}
1882 }
1883 
1884 static void psr_capability_changed_check(struct intel_dp *intel_dp)
1885 {
1886 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1887 	struct i915_psr *psr = &dev_priv->psr;
1888 	u8 val;
1889 	int r;
1890 
1891 	r = drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ESI, &val);
1892 	if (r != 1) {
1893 		drm_err(&dev_priv->drm, "Error reading DP_PSR_ESI\n");
1894 		return;
1895 	}
1896 
1897 	if (val & DP_PSR_CAPS_CHANGE) {
1898 		intel_psr_disable_locked(intel_dp);
1899 		psr->sink_not_reliable = true;
1900 		drm_dbg_kms(&dev_priv->drm,
1901 			    "Sink PSR capability changed, disabling PSR\n");
1902 
1903 		/* Clearing it */
1904 		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ESI, val);
1905 	}
1906 }
1907 
1908 void intel_psr_short_pulse(struct intel_dp *intel_dp)
1909 {
1910 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1911 	struct i915_psr *psr = &dev_priv->psr;
1912 	u8 status, error_status;
1913 	const u8 errors = DP_PSR_RFB_STORAGE_ERROR |
1914 			  DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR |
1915 			  DP_PSR_LINK_CRC_ERROR;
1916 
1917 	if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
1918 		return;
1919 
1920 	mutex_lock(&psr->lock);
1921 
1922 	if (!psr->enabled || psr->dp != intel_dp)
1923 		goto exit;
1924 
1925 	if (psr_get_status_and_error_status(intel_dp, &status, &error_status)) {
1926 		drm_err(&dev_priv->drm,
1927 			"Error reading PSR status or error status\n");
1928 		goto exit;
1929 	}
1930 
1931 	if (status == DP_PSR_SINK_INTERNAL_ERROR || (error_status & errors)) {
1932 		intel_psr_disable_locked(intel_dp);
1933 		psr->sink_not_reliable = true;
1934 	}
1935 
1936 	if (status == DP_PSR_SINK_INTERNAL_ERROR && !error_status)
1937 		drm_dbg_kms(&dev_priv->drm,
1938 			    "PSR sink internal error, disabling PSR\n");
1939 	if (error_status & DP_PSR_RFB_STORAGE_ERROR)
1940 		drm_dbg_kms(&dev_priv->drm,
1941 			    "PSR RFB storage error, disabling PSR\n");
1942 	if (error_status & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR)
1943 		drm_dbg_kms(&dev_priv->drm,
1944 			    "PSR VSC SDP uncorrectable error, disabling PSR\n");
1945 	if (error_status & DP_PSR_LINK_CRC_ERROR)
1946 		drm_dbg_kms(&dev_priv->drm,
1947 			    "PSR Link CRC error, disabling PSR\n");
1948 
1949 	if (error_status & ~errors)
1950 		drm_err(&dev_priv->drm,
1951 			"PSR_ERROR_STATUS unhandled errors %x\n",
1952 			error_status & ~errors);
1953 	/* clear status register */
1954 	drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, error_status);
1955 
1956 	psr_alpm_check(intel_dp);
1957 	psr_capability_changed_check(intel_dp);
1958 
1959 exit:
1960 	mutex_unlock(&psr->lock);
1961 }
1962 
1963 bool intel_psr_enabled(struct intel_dp *intel_dp)
1964 {
1965 	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1966 	bool ret;
1967 
1968 	if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
1969 		return false;
1970 
1971 	mutex_lock(&dev_priv->psr.lock);
1972 	ret = (dev_priv->psr.dp == intel_dp && dev_priv->psr.enabled);
1973 	mutex_unlock(&dev_priv->psr.lock);
1974 
1975 	return ret;
1976 }
1977