xref: /openbmc/linux/drivers/gpu/drm/i915/display/intel_hdmi.c (revision f8a11425075ff11b4b5784f077cb84f3d2dfb3f0)
1 /*
2  * Copyright 2006 Dave Airlie <airlied@linux.ie>
3  * Copyright © 2006-2009 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *	Eric Anholt <eric@anholt.net>
26  *	Jesse Barnes <jesse.barnes@intel.com>
27  */
28 
29 #include <linux/delay.h>
30 #include <linux/hdmi.h>
31 #include <linux/i2c.h>
32 #include <linux/slab.h>
33 
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_edid.h>
37 #include <drm/drm_hdcp.h>
38 #include <drm/drm_scdc_helper.h>
39 #include <drm/intel_lpe_audio.h>
40 
41 #include "i915_debugfs.h"
42 #include "i915_drv.h"
43 #include "intel_atomic.h"
44 #include "intel_connector.h"
45 #include "intel_ddi.h"
46 #include "intel_display_types.h"
47 #include "intel_dp.h"
48 #include "intel_gmbus.h"
49 #include "intel_hdcp.h"
50 #include "intel_hdmi.h"
51 #include "intel_lspcon.h"
52 #include "intel_panel.h"
53 
54 static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
55 {
56 	return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
57 }
58 
59 static void
60 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
61 {
62 	struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
63 	struct drm_i915_private *dev_priv = to_i915(dev);
64 	u32 enabled_bits;
65 
66 	enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
67 
68 	drm_WARN(dev,
69 		 intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits,
70 		 "HDMI port enabled, expecting disabled\n");
71 }
72 
73 static void
74 assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv,
75 				     enum transcoder cpu_transcoder)
76 {
77 	drm_WARN(&dev_priv->drm,
78 		 intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) &
79 		 TRANS_DDI_FUNC_ENABLE,
80 		 "HDMI transcoder function enabled, expecting disabled\n");
81 }
82 
83 static u32 g4x_infoframe_index(unsigned int type)
84 {
85 	switch (type) {
86 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
87 		return VIDEO_DIP_SELECT_GAMUT;
88 	case HDMI_INFOFRAME_TYPE_AVI:
89 		return VIDEO_DIP_SELECT_AVI;
90 	case HDMI_INFOFRAME_TYPE_SPD:
91 		return VIDEO_DIP_SELECT_SPD;
92 	case HDMI_INFOFRAME_TYPE_VENDOR:
93 		return VIDEO_DIP_SELECT_VENDOR;
94 	default:
95 		MISSING_CASE(type);
96 		return 0;
97 	}
98 }
99 
100 static u32 g4x_infoframe_enable(unsigned int type)
101 {
102 	switch (type) {
103 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
104 		return VIDEO_DIP_ENABLE_GCP;
105 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
106 		return VIDEO_DIP_ENABLE_GAMUT;
107 	case DP_SDP_VSC:
108 		return 0;
109 	case HDMI_INFOFRAME_TYPE_AVI:
110 		return VIDEO_DIP_ENABLE_AVI;
111 	case HDMI_INFOFRAME_TYPE_SPD:
112 		return VIDEO_DIP_ENABLE_SPD;
113 	case HDMI_INFOFRAME_TYPE_VENDOR:
114 		return VIDEO_DIP_ENABLE_VENDOR;
115 	case HDMI_INFOFRAME_TYPE_DRM:
116 		return 0;
117 	default:
118 		MISSING_CASE(type);
119 		return 0;
120 	}
121 }
122 
123 static u32 hsw_infoframe_enable(unsigned int type)
124 {
125 	switch (type) {
126 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
127 		return VIDEO_DIP_ENABLE_GCP_HSW;
128 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
129 		return VIDEO_DIP_ENABLE_GMP_HSW;
130 	case DP_SDP_VSC:
131 		return VIDEO_DIP_ENABLE_VSC_HSW;
132 	case DP_SDP_PPS:
133 		return VDIP_ENABLE_PPS;
134 	case HDMI_INFOFRAME_TYPE_AVI:
135 		return VIDEO_DIP_ENABLE_AVI_HSW;
136 	case HDMI_INFOFRAME_TYPE_SPD:
137 		return VIDEO_DIP_ENABLE_SPD_HSW;
138 	case HDMI_INFOFRAME_TYPE_VENDOR:
139 		return VIDEO_DIP_ENABLE_VS_HSW;
140 	case HDMI_INFOFRAME_TYPE_DRM:
141 		return VIDEO_DIP_ENABLE_DRM_GLK;
142 	default:
143 		MISSING_CASE(type);
144 		return 0;
145 	}
146 }
147 
148 static i915_reg_t
149 hsw_dip_data_reg(struct drm_i915_private *dev_priv,
150 		 enum transcoder cpu_transcoder,
151 		 unsigned int type,
152 		 int i)
153 {
154 	switch (type) {
155 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
156 		return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i);
157 	case DP_SDP_VSC:
158 		return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i);
159 	case DP_SDP_PPS:
160 		return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i);
161 	case HDMI_INFOFRAME_TYPE_AVI:
162 		return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
163 	case HDMI_INFOFRAME_TYPE_SPD:
164 		return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
165 	case HDMI_INFOFRAME_TYPE_VENDOR:
166 		return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
167 	case HDMI_INFOFRAME_TYPE_DRM:
168 		return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i);
169 	default:
170 		MISSING_CASE(type);
171 		return INVALID_MMIO_REG;
172 	}
173 }
174 
175 static int hsw_dip_data_size(struct drm_i915_private *dev_priv,
176 			     unsigned int type)
177 {
178 	switch (type) {
179 	case DP_SDP_VSC:
180 		return VIDEO_DIP_VSC_DATA_SIZE;
181 	case DP_SDP_PPS:
182 		return VIDEO_DIP_PPS_DATA_SIZE;
183 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
184 		if (DISPLAY_VER(dev_priv) >= 11)
185 			return VIDEO_DIP_GMP_DATA_SIZE;
186 		else
187 			return VIDEO_DIP_DATA_SIZE;
188 	default:
189 		return VIDEO_DIP_DATA_SIZE;
190 	}
191 }
192 
193 static void g4x_write_infoframe(struct intel_encoder *encoder,
194 				const struct intel_crtc_state *crtc_state,
195 				unsigned int type,
196 				const void *frame, ssize_t len)
197 {
198 	const u32 *data = frame;
199 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
200 	u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
201 	int i;
202 
203 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
204 		 "Writing DIP with CTL reg disabled\n");
205 
206 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
207 	val |= g4x_infoframe_index(type);
208 
209 	val &= ~g4x_infoframe_enable(type);
210 
211 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
212 
213 	for (i = 0; i < len; i += 4) {
214 		intel_de_write(dev_priv, VIDEO_DIP_DATA, *data);
215 		data++;
216 	}
217 	/* Write every possible data byte to force correct ECC calculation. */
218 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
219 		intel_de_write(dev_priv, VIDEO_DIP_DATA, 0);
220 
221 	val |= g4x_infoframe_enable(type);
222 	val &= ~VIDEO_DIP_FREQ_MASK;
223 	val |= VIDEO_DIP_FREQ_VSYNC;
224 
225 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
226 	intel_de_posting_read(dev_priv, VIDEO_DIP_CTL);
227 }
228 
229 static void g4x_read_infoframe(struct intel_encoder *encoder,
230 			       const struct intel_crtc_state *crtc_state,
231 			       unsigned int type,
232 			       void *frame, ssize_t len)
233 {
234 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
235 	u32 val, *data = frame;
236 	int i;
237 
238 	val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
239 
240 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
241 	val |= g4x_infoframe_index(type);
242 
243 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
244 
245 	for (i = 0; i < len; i += 4)
246 		*data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA);
247 }
248 
249 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
250 				  const struct intel_crtc_state *pipe_config)
251 {
252 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
253 	u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
254 
255 	if ((val & VIDEO_DIP_ENABLE) == 0)
256 		return 0;
257 
258 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
259 		return 0;
260 
261 	return val & (VIDEO_DIP_ENABLE_AVI |
262 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
263 }
264 
265 static void ibx_write_infoframe(struct intel_encoder *encoder,
266 				const struct intel_crtc_state *crtc_state,
267 				unsigned int type,
268 				const void *frame, ssize_t len)
269 {
270 	const u32 *data = frame;
271 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
272 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
273 	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
274 	u32 val = intel_de_read(dev_priv, reg);
275 	int i;
276 
277 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
278 		 "Writing DIP with CTL reg disabled\n");
279 
280 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
281 	val |= g4x_infoframe_index(type);
282 
283 	val &= ~g4x_infoframe_enable(type);
284 
285 	intel_de_write(dev_priv, reg, val);
286 
287 	for (i = 0; i < len; i += 4) {
288 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe),
289 			       *data);
290 		data++;
291 	}
292 	/* Write every possible data byte to force correct ECC calculation. */
293 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
294 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
295 
296 	val |= g4x_infoframe_enable(type);
297 	val &= ~VIDEO_DIP_FREQ_MASK;
298 	val |= VIDEO_DIP_FREQ_VSYNC;
299 
300 	intel_de_write(dev_priv, reg, val);
301 	intel_de_posting_read(dev_priv, reg);
302 }
303 
304 static void ibx_read_infoframe(struct intel_encoder *encoder,
305 			       const struct intel_crtc_state *crtc_state,
306 			       unsigned int type,
307 			       void *frame, ssize_t len)
308 {
309 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
310 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
311 	u32 val, *data = frame;
312 	int i;
313 
314 	val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
315 
316 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
317 	val |= g4x_infoframe_index(type);
318 
319 	intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
320 
321 	for (i = 0; i < len; i += 4)
322 		*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
323 }
324 
325 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
326 				  const struct intel_crtc_state *pipe_config)
327 {
328 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
329 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
330 	i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
331 	u32 val = intel_de_read(dev_priv, reg);
332 
333 	if ((val & VIDEO_DIP_ENABLE) == 0)
334 		return 0;
335 
336 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
337 		return 0;
338 
339 	return val & (VIDEO_DIP_ENABLE_AVI |
340 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
341 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
342 }
343 
344 static void cpt_write_infoframe(struct intel_encoder *encoder,
345 				const struct intel_crtc_state *crtc_state,
346 				unsigned int type,
347 				const void *frame, ssize_t len)
348 {
349 	const u32 *data = frame;
350 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
351 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
352 	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
353 	u32 val = intel_de_read(dev_priv, reg);
354 	int i;
355 
356 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
357 		 "Writing DIP with CTL reg disabled\n");
358 
359 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
360 	val |= g4x_infoframe_index(type);
361 
362 	/* The DIP control register spec says that we need to update the AVI
363 	 * infoframe without clearing its enable bit */
364 	if (type != HDMI_INFOFRAME_TYPE_AVI)
365 		val &= ~g4x_infoframe_enable(type);
366 
367 	intel_de_write(dev_priv, reg, val);
368 
369 	for (i = 0; i < len; i += 4) {
370 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe),
371 			       *data);
372 		data++;
373 	}
374 	/* Write every possible data byte to force correct ECC calculation. */
375 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
376 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
377 
378 	val |= g4x_infoframe_enable(type);
379 	val &= ~VIDEO_DIP_FREQ_MASK;
380 	val |= VIDEO_DIP_FREQ_VSYNC;
381 
382 	intel_de_write(dev_priv, reg, val);
383 	intel_de_posting_read(dev_priv, reg);
384 }
385 
386 static void cpt_read_infoframe(struct intel_encoder *encoder,
387 			       const struct intel_crtc_state *crtc_state,
388 			       unsigned int type,
389 			       void *frame, ssize_t len)
390 {
391 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
392 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
393 	u32 val, *data = frame;
394 	int i;
395 
396 	val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
397 
398 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
399 	val |= g4x_infoframe_index(type);
400 
401 	intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
402 
403 	for (i = 0; i < len; i += 4)
404 		*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
405 }
406 
407 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
408 				  const struct intel_crtc_state *pipe_config)
409 {
410 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
411 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
412 	u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe));
413 
414 	if ((val & VIDEO_DIP_ENABLE) == 0)
415 		return 0;
416 
417 	return val & (VIDEO_DIP_ENABLE_AVI |
418 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
419 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
420 }
421 
422 static void vlv_write_infoframe(struct intel_encoder *encoder,
423 				const struct intel_crtc_state *crtc_state,
424 				unsigned int type,
425 				const void *frame, ssize_t len)
426 {
427 	const u32 *data = frame;
428 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
429 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
430 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
431 	u32 val = intel_de_read(dev_priv, reg);
432 	int i;
433 
434 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
435 		 "Writing DIP with CTL reg disabled\n");
436 
437 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
438 	val |= g4x_infoframe_index(type);
439 
440 	val &= ~g4x_infoframe_enable(type);
441 
442 	intel_de_write(dev_priv, reg, val);
443 
444 	for (i = 0; i < len; i += 4) {
445 		intel_de_write(dev_priv,
446 			       VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
447 		data++;
448 	}
449 	/* Write every possible data byte to force correct ECC calculation. */
450 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
451 		intel_de_write(dev_priv,
452 			       VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
453 
454 	val |= g4x_infoframe_enable(type);
455 	val &= ~VIDEO_DIP_FREQ_MASK;
456 	val |= VIDEO_DIP_FREQ_VSYNC;
457 
458 	intel_de_write(dev_priv, reg, val);
459 	intel_de_posting_read(dev_priv, reg);
460 }
461 
462 static void vlv_read_infoframe(struct intel_encoder *encoder,
463 			       const struct intel_crtc_state *crtc_state,
464 			       unsigned int type,
465 			       void *frame, ssize_t len)
466 {
467 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
468 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
469 	u32 val, *data = frame;
470 	int i;
471 
472 	val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe));
473 
474 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
475 	val |= g4x_infoframe_index(type);
476 
477 	intel_de_write(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe), val);
478 
479 	for (i = 0; i < len; i += 4)
480 		*data++ = intel_de_read(dev_priv,
481 				        VLV_TVIDEO_DIP_DATA(crtc->pipe));
482 }
483 
484 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
485 				  const struct intel_crtc_state *pipe_config)
486 {
487 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
488 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
489 	u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe));
490 
491 	if ((val & VIDEO_DIP_ENABLE) == 0)
492 		return 0;
493 
494 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
495 		return 0;
496 
497 	return val & (VIDEO_DIP_ENABLE_AVI |
498 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
499 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
500 }
501 
502 void hsw_write_infoframe(struct intel_encoder *encoder,
503 			 const struct intel_crtc_state *crtc_state,
504 			 unsigned int type,
505 			 const void *frame, ssize_t len)
506 {
507 	const u32 *data = frame;
508 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
509 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
510 	i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
511 	int data_size;
512 	int i;
513 	u32 val = intel_de_read(dev_priv, ctl_reg);
514 
515 	data_size = hsw_dip_data_size(dev_priv, type);
516 
517 	drm_WARN_ON(&dev_priv->drm, len > data_size);
518 
519 	val &= ~hsw_infoframe_enable(type);
520 	intel_de_write(dev_priv, ctl_reg, val);
521 
522 	for (i = 0; i < len; i += 4) {
523 		intel_de_write(dev_priv,
524 			       hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
525 			       *data);
526 		data++;
527 	}
528 	/* Write every possible data byte to force correct ECC calculation. */
529 	for (; i < data_size; i += 4)
530 		intel_de_write(dev_priv,
531 			       hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
532 			       0);
533 
534 	val |= hsw_infoframe_enable(type);
535 	intel_de_write(dev_priv, ctl_reg, val);
536 	intel_de_posting_read(dev_priv, ctl_reg);
537 }
538 
539 void hsw_read_infoframe(struct intel_encoder *encoder,
540 			const struct intel_crtc_state *crtc_state,
541 			unsigned int type, void *frame, ssize_t len)
542 {
543 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
544 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
545 	u32 val, *data = frame;
546 	int i;
547 
548 	val = intel_de_read(dev_priv, HSW_TVIDEO_DIP_CTL(cpu_transcoder));
549 
550 	for (i = 0; i < len; i += 4)
551 		*data++ = intel_de_read(dev_priv,
552 				        hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2));
553 }
554 
555 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
556 				  const struct intel_crtc_state *pipe_config)
557 {
558 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
559 	u32 val = intel_de_read(dev_priv,
560 				HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
561 	u32 mask;
562 
563 	mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
564 		VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
565 		VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
566 
567 	if (DISPLAY_VER(dev_priv) >= 10)
568 		mask |= VIDEO_DIP_ENABLE_DRM_GLK;
569 
570 	return val & mask;
571 }
572 
573 static const u8 infoframe_type_to_idx[] = {
574 	HDMI_PACKET_TYPE_GENERAL_CONTROL,
575 	HDMI_PACKET_TYPE_GAMUT_METADATA,
576 	DP_SDP_VSC,
577 	HDMI_INFOFRAME_TYPE_AVI,
578 	HDMI_INFOFRAME_TYPE_SPD,
579 	HDMI_INFOFRAME_TYPE_VENDOR,
580 	HDMI_INFOFRAME_TYPE_DRM,
581 };
582 
583 u32 intel_hdmi_infoframe_enable(unsigned int type)
584 {
585 	int i;
586 
587 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
588 		if (infoframe_type_to_idx[i] == type)
589 			return BIT(i);
590 	}
591 
592 	return 0;
593 }
594 
595 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
596 				  const struct intel_crtc_state *crtc_state)
597 {
598 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
599 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
600 	u32 val, ret = 0;
601 	int i;
602 
603 	val = dig_port->infoframes_enabled(encoder, crtc_state);
604 
605 	/* map from hardware bits to dip idx */
606 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
607 		unsigned int type = infoframe_type_to_idx[i];
608 
609 		if (HAS_DDI(dev_priv)) {
610 			if (val & hsw_infoframe_enable(type))
611 				ret |= BIT(i);
612 		} else {
613 			if (val & g4x_infoframe_enable(type))
614 				ret |= BIT(i);
615 		}
616 	}
617 
618 	return ret;
619 }
620 
621 /*
622  * The data we write to the DIP data buffer registers is 1 byte bigger than the
623  * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
624  * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
625  * used for both technologies.
626  *
627  * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
628  * DW1:       DB3       | DB2 | DB1 | DB0
629  * DW2:       DB7       | DB6 | DB5 | DB4
630  * DW3: ...
631  *
632  * (HB is Header Byte, DB is Data Byte)
633  *
634  * The hdmi pack() functions don't know about that hardware specific hole so we
635  * trick them by giving an offset into the buffer and moving back the header
636  * bytes by one.
637  */
638 static void intel_write_infoframe(struct intel_encoder *encoder,
639 				  const struct intel_crtc_state *crtc_state,
640 				  enum hdmi_infoframe_type type,
641 				  const union hdmi_infoframe *frame)
642 {
643 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
644 	u8 buffer[VIDEO_DIP_DATA_SIZE];
645 	ssize_t len;
646 
647 	if ((crtc_state->infoframes.enable &
648 	     intel_hdmi_infoframe_enable(type)) == 0)
649 		return;
650 
651 	if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
652 		return;
653 
654 	/* see comment above for the reason for this offset */
655 	len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
656 	if (drm_WARN_ON(encoder->base.dev, len < 0))
657 		return;
658 
659 	/* Insert the 'hole' (see big comment above) at position 3 */
660 	memmove(&buffer[0], &buffer[1], 3);
661 	buffer[3] = 0;
662 	len++;
663 
664 	dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
665 }
666 
667 void intel_read_infoframe(struct intel_encoder *encoder,
668 			  const struct intel_crtc_state *crtc_state,
669 			  enum hdmi_infoframe_type type,
670 			  union hdmi_infoframe *frame)
671 {
672 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
673 	u8 buffer[VIDEO_DIP_DATA_SIZE];
674 	int ret;
675 
676 	if ((crtc_state->infoframes.enable &
677 	     intel_hdmi_infoframe_enable(type)) == 0)
678 		return;
679 
680 	dig_port->read_infoframe(encoder, crtc_state,
681 				       type, buffer, sizeof(buffer));
682 
683 	/* Fill the 'hole' (see big comment above) at position 3 */
684 	memmove(&buffer[1], &buffer[0], 3);
685 
686 	/* see comment above for the reason for this offset */
687 	ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
688 	if (ret) {
689 		drm_dbg_kms(encoder->base.dev,
690 			    "Failed to unpack infoframe type 0x%02x\n", type);
691 		return;
692 	}
693 
694 	if (frame->any.type != type)
695 		drm_dbg_kms(encoder->base.dev,
696 			    "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
697 			    frame->any.type, type);
698 }
699 
700 static bool
701 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
702 				 struct intel_crtc_state *crtc_state,
703 				 struct drm_connector_state *conn_state)
704 {
705 	struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
706 	const struct drm_display_mode *adjusted_mode =
707 		&crtc_state->hw.adjusted_mode;
708 	struct drm_connector *connector = conn_state->connector;
709 	int ret;
710 
711 	if (!crtc_state->has_infoframe)
712 		return true;
713 
714 	crtc_state->infoframes.enable |=
715 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
716 
717 	ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
718 						       adjusted_mode);
719 	if (ret)
720 		return false;
721 
722 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
723 		frame->colorspace = HDMI_COLORSPACE_YUV420;
724 	else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
725 		frame->colorspace = HDMI_COLORSPACE_YUV444;
726 	else
727 		frame->colorspace = HDMI_COLORSPACE_RGB;
728 
729 	drm_hdmi_avi_infoframe_colorspace(frame, conn_state);
730 
731 	/* nonsense combination */
732 	drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
733 		    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
734 
735 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
736 		drm_hdmi_avi_infoframe_quant_range(frame, connector,
737 						   adjusted_mode,
738 						   crtc_state->limited_color_range ?
739 						   HDMI_QUANTIZATION_RANGE_LIMITED :
740 						   HDMI_QUANTIZATION_RANGE_FULL);
741 	} else {
742 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
743 		frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
744 	}
745 
746 	drm_hdmi_avi_infoframe_content_type(frame, conn_state);
747 
748 	/* TODO: handle pixel repetition for YCBCR420 outputs */
749 
750 	ret = hdmi_avi_infoframe_check(frame);
751 	if (drm_WARN_ON(encoder->base.dev, ret))
752 		return false;
753 
754 	return true;
755 }
756 
757 static bool
758 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
759 				 struct intel_crtc_state *crtc_state,
760 				 struct drm_connector_state *conn_state)
761 {
762 	struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
763 	int ret;
764 
765 	if (!crtc_state->has_infoframe)
766 		return true;
767 
768 	crtc_state->infoframes.enable |=
769 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
770 
771 	ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
772 	if (drm_WARN_ON(encoder->base.dev, ret))
773 		return false;
774 
775 	frame->sdi = HDMI_SPD_SDI_PC;
776 
777 	ret = hdmi_spd_infoframe_check(frame);
778 	if (drm_WARN_ON(encoder->base.dev, ret))
779 		return false;
780 
781 	return true;
782 }
783 
784 static bool
785 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
786 				  struct intel_crtc_state *crtc_state,
787 				  struct drm_connector_state *conn_state)
788 {
789 	struct hdmi_vendor_infoframe *frame =
790 		&crtc_state->infoframes.hdmi.vendor.hdmi;
791 	const struct drm_display_info *info =
792 		&conn_state->connector->display_info;
793 	int ret;
794 
795 	if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
796 		return true;
797 
798 	crtc_state->infoframes.enable |=
799 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
800 
801 	ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
802 							  conn_state->connector,
803 							  &crtc_state->hw.adjusted_mode);
804 	if (drm_WARN_ON(encoder->base.dev, ret))
805 		return false;
806 
807 	ret = hdmi_vendor_infoframe_check(frame);
808 	if (drm_WARN_ON(encoder->base.dev, ret))
809 		return false;
810 
811 	return true;
812 }
813 
814 static bool
815 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
816 				 struct intel_crtc_state *crtc_state,
817 				 struct drm_connector_state *conn_state)
818 {
819 	struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
820 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
821 	int ret;
822 
823 	if (DISPLAY_VER(dev_priv) < 10)
824 		return true;
825 
826 	if (!crtc_state->has_infoframe)
827 		return true;
828 
829 	if (!conn_state->hdr_output_metadata)
830 		return true;
831 
832 	crtc_state->infoframes.enable |=
833 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
834 
835 	ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
836 	if (ret < 0) {
837 		drm_dbg_kms(&dev_priv->drm,
838 			    "couldn't set HDR metadata in infoframe\n");
839 		return false;
840 	}
841 
842 	ret = hdmi_drm_infoframe_check(frame);
843 	if (drm_WARN_ON(&dev_priv->drm, ret))
844 		return false;
845 
846 	return true;
847 }
848 
849 static void g4x_set_infoframes(struct intel_encoder *encoder,
850 			       bool enable,
851 			       const struct intel_crtc_state *crtc_state,
852 			       const struct drm_connector_state *conn_state)
853 {
854 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
855 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
856 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
857 	i915_reg_t reg = VIDEO_DIP_CTL;
858 	u32 val = intel_de_read(dev_priv, reg);
859 	u32 port = VIDEO_DIP_PORT(encoder->port);
860 
861 	assert_hdmi_port_disabled(intel_hdmi);
862 
863 	/* If the registers were not initialized yet, they might be zeroes,
864 	 * which means we're selecting the AVI DIP and we're setting its
865 	 * frequency to once. This seems to really confuse the HW and make
866 	 * things stop working (the register spec says the AVI always needs to
867 	 * be sent every VSync). So here we avoid writing to the register more
868 	 * than we need and also explicitly select the AVI DIP and explicitly
869 	 * set its frequency to every VSync. Avoiding to write it twice seems to
870 	 * be enough to solve the problem, but being defensive shouldn't hurt us
871 	 * either. */
872 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
873 
874 	if (!enable) {
875 		if (!(val & VIDEO_DIP_ENABLE))
876 			return;
877 		if (port != (val & VIDEO_DIP_PORT_MASK)) {
878 			drm_dbg_kms(&dev_priv->drm,
879 				    "video DIP still enabled on port %c\n",
880 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
881 			return;
882 		}
883 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
884 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
885 		intel_de_write(dev_priv, reg, val);
886 		intel_de_posting_read(dev_priv, reg);
887 		return;
888 	}
889 
890 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
891 		if (val & VIDEO_DIP_ENABLE) {
892 			drm_dbg_kms(&dev_priv->drm,
893 				    "video DIP already enabled on port %c\n",
894 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
895 			return;
896 		}
897 		val &= ~VIDEO_DIP_PORT_MASK;
898 		val |= port;
899 	}
900 
901 	val |= VIDEO_DIP_ENABLE;
902 	val &= ~(VIDEO_DIP_ENABLE_AVI |
903 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
904 
905 	intel_de_write(dev_priv, reg, val);
906 	intel_de_posting_read(dev_priv, reg);
907 
908 	intel_write_infoframe(encoder, crtc_state,
909 			      HDMI_INFOFRAME_TYPE_AVI,
910 			      &crtc_state->infoframes.avi);
911 	intel_write_infoframe(encoder, crtc_state,
912 			      HDMI_INFOFRAME_TYPE_SPD,
913 			      &crtc_state->infoframes.spd);
914 	intel_write_infoframe(encoder, crtc_state,
915 			      HDMI_INFOFRAME_TYPE_VENDOR,
916 			      &crtc_state->infoframes.hdmi);
917 }
918 
919 /*
920  * Determine if default_phase=1 can be indicated in the GCP infoframe.
921  *
922  * From HDMI specification 1.4a:
923  * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
924  * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
925  * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
926  * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
927  *   phase of 0
928  */
929 static bool gcp_default_phase_possible(int pipe_bpp,
930 				       const struct drm_display_mode *mode)
931 {
932 	unsigned int pixels_per_group;
933 
934 	switch (pipe_bpp) {
935 	case 30:
936 		/* 4 pixels in 5 clocks */
937 		pixels_per_group = 4;
938 		break;
939 	case 36:
940 		/* 2 pixels in 3 clocks */
941 		pixels_per_group = 2;
942 		break;
943 	case 48:
944 		/* 1 pixel in 2 clocks */
945 		pixels_per_group = 1;
946 		break;
947 	default:
948 		/* phase information not relevant for 8bpc */
949 		return false;
950 	}
951 
952 	return mode->crtc_hdisplay % pixels_per_group == 0 &&
953 		mode->crtc_htotal % pixels_per_group == 0 &&
954 		mode->crtc_hblank_start % pixels_per_group == 0 &&
955 		mode->crtc_hblank_end % pixels_per_group == 0 &&
956 		mode->crtc_hsync_start % pixels_per_group == 0 &&
957 		mode->crtc_hsync_end % pixels_per_group == 0 &&
958 		((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
959 		 mode->crtc_htotal/2 % pixels_per_group == 0);
960 }
961 
962 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
963 					 const struct intel_crtc_state *crtc_state,
964 					 const struct drm_connector_state *conn_state)
965 {
966 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
967 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
968 	i915_reg_t reg;
969 
970 	if ((crtc_state->infoframes.enable &
971 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
972 		return false;
973 
974 	if (HAS_DDI(dev_priv))
975 		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
976 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
977 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
978 	else if (HAS_PCH_SPLIT(dev_priv))
979 		reg = TVIDEO_DIP_GCP(crtc->pipe);
980 	else
981 		return false;
982 
983 	intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp);
984 
985 	return true;
986 }
987 
988 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
989 				   struct intel_crtc_state *crtc_state)
990 {
991 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
992 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
993 	i915_reg_t reg;
994 
995 	if ((crtc_state->infoframes.enable &
996 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
997 		return;
998 
999 	if (HAS_DDI(dev_priv))
1000 		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
1001 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1002 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1003 	else if (HAS_PCH_SPLIT(dev_priv))
1004 		reg = TVIDEO_DIP_GCP(crtc->pipe);
1005 	else
1006 		return;
1007 
1008 	crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg);
1009 }
1010 
1011 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1012 					     struct intel_crtc_state *crtc_state,
1013 					     struct drm_connector_state *conn_state)
1014 {
1015 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1016 
1017 	if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1018 		return;
1019 
1020 	crtc_state->infoframes.enable |=
1021 		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1022 
1023 	/* Indicate color indication for deep color mode */
1024 	if (crtc_state->pipe_bpp > 24)
1025 		crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1026 
1027 	/* Enable default_phase whenever the display mode is suitably aligned */
1028 	if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1029 				       &crtc_state->hw.adjusted_mode))
1030 		crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1031 }
1032 
1033 static void ibx_set_infoframes(struct intel_encoder *encoder,
1034 			       bool enable,
1035 			       const struct intel_crtc_state *crtc_state,
1036 			       const struct drm_connector_state *conn_state)
1037 {
1038 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1039 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
1040 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1041 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1042 	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
1043 	u32 val = intel_de_read(dev_priv, reg);
1044 	u32 port = VIDEO_DIP_PORT(encoder->port);
1045 
1046 	assert_hdmi_port_disabled(intel_hdmi);
1047 
1048 	/* See the big comment in g4x_set_infoframes() */
1049 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1050 
1051 	if (!enable) {
1052 		if (!(val & VIDEO_DIP_ENABLE))
1053 			return;
1054 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1055 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1056 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1057 		intel_de_write(dev_priv, reg, val);
1058 		intel_de_posting_read(dev_priv, reg);
1059 		return;
1060 	}
1061 
1062 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1063 		drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1064 			 "DIP already enabled on port %c\n",
1065 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1066 		val &= ~VIDEO_DIP_PORT_MASK;
1067 		val |= port;
1068 	}
1069 
1070 	val |= VIDEO_DIP_ENABLE;
1071 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1072 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1073 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1074 
1075 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1076 		val |= VIDEO_DIP_ENABLE_GCP;
1077 
1078 	intel_de_write(dev_priv, reg, val);
1079 	intel_de_posting_read(dev_priv, reg);
1080 
1081 	intel_write_infoframe(encoder, crtc_state,
1082 			      HDMI_INFOFRAME_TYPE_AVI,
1083 			      &crtc_state->infoframes.avi);
1084 	intel_write_infoframe(encoder, crtc_state,
1085 			      HDMI_INFOFRAME_TYPE_SPD,
1086 			      &crtc_state->infoframes.spd);
1087 	intel_write_infoframe(encoder, crtc_state,
1088 			      HDMI_INFOFRAME_TYPE_VENDOR,
1089 			      &crtc_state->infoframes.hdmi);
1090 }
1091 
1092 static void cpt_set_infoframes(struct intel_encoder *encoder,
1093 			       bool enable,
1094 			       const struct intel_crtc_state *crtc_state,
1095 			       const struct drm_connector_state *conn_state)
1096 {
1097 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1098 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
1099 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1100 	i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
1101 	u32 val = intel_de_read(dev_priv, reg);
1102 
1103 	assert_hdmi_port_disabled(intel_hdmi);
1104 
1105 	/* See the big comment in g4x_set_infoframes() */
1106 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1107 
1108 	if (!enable) {
1109 		if (!(val & VIDEO_DIP_ENABLE))
1110 			return;
1111 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1112 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1113 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1114 		intel_de_write(dev_priv, reg, val);
1115 		intel_de_posting_read(dev_priv, reg);
1116 		return;
1117 	}
1118 
1119 	/* Set both together, unset both together: see the spec. */
1120 	val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1121 	val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1122 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1123 
1124 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1125 		val |= VIDEO_DIP_ENABLE_GCP;
1126 
1127 	intel_de_write(dev_priv, reg, val);
1128 	intel_de_posting_read(dev_priv, reg);
1129 
1130 	intel_write_infoframe(encoder, crtc_state,
1131 			      HDMI_INFOFRAME_TYPE_AVI,
1132 			      &crtc_state->infoframes.avi);
1133 	intel_write_infoframe(encoder, crtc_state,
1134 			      HDMI_INFOFRAME_TYPE_SPD,
1135 			      &crtc_state->infoframes.spd);
1136 	intel_write_infoframe(encoder, crtc_state,
1137 			      HDMI_INFOFRAME_TYPE_VENDOR,
1138 			      &crtc_state->infoframes.hdmi);
1139 }
1140 
1141 static void vlv_set_infoframes(struct intel_encoder *encoder,
1142 			       bool enable,
1143 			       const struct intel_crtc_state *crtc_state,
1144 			       const struct drm_connector_state *conn_state)
1145 {
1146 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1147 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
1148 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1149 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
1150 	u32 val = intel_de_read(dev_priv, reg);
1151 	u32 port = VIDEO_DIP_PORT(encoder->port);
1152 
1153 	assert_hdmi_port_disabled(intel_hdmi);
1154 
1155 	/* See the big comment in g4x_set_infoframes() */
1156 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1157 
1158 	if (!enable) {
1159 		if (!(val & VIDEO_DIP_ENABLE))
1160 			return;
1161 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1162 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1163 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1164 		intel_de_write(dev_priv, reg, val);
1165 		intel_de_posting_read(dev_priv, reg);
1166 		return;
1167 	}
1168 
1169 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1170 		drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1171 			 "DIP already enabled on port %c\n",
1172 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1173 		val &= ~VIDEO_DIP_PORT_MASK;
1174 		val |= port;
1175 	}
1176 
1177 	val |= VIDEO_DIP_ENABLE;
1178 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1179 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1180 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1181 
1182 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1183 		val |= VIDEO_DIP_ENABLE_GCP;
1184 
1185 	intel_de_write(dev_priv, reg, val);
1186 	intel_de_posting_read(dev_priv, reg);
1187 
1188 	intel_write_infoframe(encoder, crtc_state,
1189 			      HDMI_INFOFRAME_TYPE_AVI,
1190 			      &crtc_state->infoframes.avi);
1191 	intel_write_infoframe(encoder, crtc_state,
1192 			      HDMI_INFOFRAME_TYPE_SPD,
1193 			      &crtc_state->infoframes.spd);
1194 	intel_write_infoframe(encoder, crtc_state,
1195 			      HDMI_INFOFRAME_TYPE_VENDOR,
1196 			      &crtc_state->infoframes.hdmi);
1197 }
1198 
1199 static void hsw_set_infoframes(struct intel_encoder *encoder,
1200 			       bool enable,
1201 			       const struct intel_crtc_state *crtc_state,
1202 			       const struct drm_connector_state *conn_state)
1203 {
1204 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1205 	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
1206 	u32 val = intel_de_read(dev_priv, reg);
1207 
1208 	assert_hdmi_transcoder_func_disabled(dev_priv,
1209 					     crtc_state->cpu_transcoder);
1210 
1211 	val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1212 		 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1213 		 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1214 		 VIDEO_DIP_ENABLE_DRM_GLK);
1215 
1216 	if (!enable) {
1217 		intel_de_write(dev_priv, reg, val);
1218 		intel_de_posting_read(dev_priv, reg);
1219 		return;
1220 	}
1221 
1222 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1223 		val |= VIDEO_DIP_ENABLE_GCP_HSW;
1224 
1225 	intel_de_write(dev_priv, reg, val);
1226 	intel_de_posting_read(dev_priv, reg);
1227 
1228 	intel_write_infoframe(encoder, crtc_state,
1229 			      HDMI_INFOFRAME_TYPE_AVI,
1230 			      &crtc_state->infoframes.avi);
1231 	intel_write_infoframe(encoder, crtc_state,
1232 			      HDMI_INFOFRAME_TYPE_SPD,
1233 			      &crtc_state->infoframes.spd);
1234 	intel_write_infoframe(encoder, crtc_state,
1235 			      HDMI_INFOFRAME_TYPE_VENDOR,
1236 			      &crtc_state->infoframes.hdmi);
1237 	intel_write_infoframe(encoder, crtc_state,
1238 			      HDMI_INFOFRAME_TYPE_DRM,
1239 			      &crtc_state->infoframes.drm);
1240 }
1241 
1242 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1243 {
1244 	struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi));
1245 	struct i2c_adapter *adapter =
1246 		intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
1247 
1248 	if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1249 		return;
1250 
1251 	drm_dbg_kms(&dev_priv->drm, "%s DP dual mode adaptor TMDS output\n",
1252 		    enable ? "Enabling" : "Disabling");
1253 
1254 	drm_dp_dual_mode_set_tmds_output(hdmi->dp_dual_mode.type,
1255 					 adapter, enable);
1256 }
1257 
1258 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1259 				unsigned int offset, void *buffer, size_t size)
1260 {
1261 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1262 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1263 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1264 							      hdmi->ddc_bus);
1265 	int ret;
1266 	u8 start = offset & 0xff;
1267 	struct i2c_msg msgs[] = {
1268 		{
1269 			.addr = DRM_HDCP_DDC_ADDR,
1270 			.flags = 0,
1271 			.len = 1,
1272 			.buf = &start,
1273 		},
1274 		{
1275 			.addr = DRM_HDCP_DDC_ADDR,
1276 			.flags = I2C_M_RD,
1277 			.len = size,
1278 			.buf = buffer
1279 		}
1280 	};
1281 	ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs));
1282 	if (ret == ARRAY_SIZE(msgs))
1283 		return 0;
1284 	return ret >= 0 ? -EIO : ret;
1285 }
1286 
1287 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1288 				 unsigned int offset, void *buffer, size_t size)
1289 {
1290 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1291 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1292 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1293 							      hdmi->ddc_bus);
1294 	int ret;
1295 	u8 *write_buf;
1296 	struct i2c_msg msg;
1297 
1298 	write_buf = kzalloc(size + 1, GFP_KERNEL);
1299 	if (!write_buf)
1300 		return -ENOMEM;
1301 
1302 	write_buf[0] = offset & 0xff;
1303 	memcpy(&write_buf[1], buffer, size);
1304 
1305 	msg.addr = DRM_HDCP_DDC_ADDR;
1306 	msg.flags = 0,
1307 	msg.len = size + 1,
1308 	msg.buf = write_buf;
1309 
1310 	ret = i2c_transfer(adapter, &msg, 1);
1311 	if (ret == 1)
1312 		ret = 0;
1313 	else if (ret >= 0)
1314 		ret = -EIO;
1315 
1316 	kfree(write_buf);
1317 	return ret;
1318 }
1319 
1320 static
1321 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1322 				  u8 *an)
1323 {
1324 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1325 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1326 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1327 							      hdmi->ddc_bus);
1328 	int ret;
1329 
1330 	ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1331 				    DRM_HDCP_AN_LEN);
1332 	if (ret) {
1333 		drm_dbg_kms(&i915->drm, "Write An over DDC failed (%d)\n",
1334 			    ret);
1335 		return ret;
1336 	}
1337 
1338 	ret = intel_gmbus_output_aksv(adapter);
1339 	if (ret < 0) {
1340 		drm_dbg_kms(&i915->drm, "Failed to output aksv (%d)\n", ret);
1341 		return ret;
1342 	}
1343 	return 0;
1344 }
1345 
1346 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1347 				     u8 *bksv)
1348 {
1349 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1350 
1351 	int ret;
1352 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1353 				   DRM_HDCP_KSV_LEN);
1354 	if (ret)
1355 		drm_dbg_kms(&i915->drm, "Read Bksv over DDC failed (%d)\n",
1356 			    ret);
1357 	return ret;
1358 }
1359 
1360 static
1361 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1362 				 u8 *bstatus)
1363 {
1364 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1365 
1366 	int ret;
1367 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1368 				   bstatus, DRM_HDCP_BSTATUS_LEN);
1369 	if (ret)
1370 		drm_dbg_kms(&i915->drm, "Read bstatus over DDC failed (%d)\n",
1371 			    ret);
1372 	return ret;
1373 }
1374 
1375 static
1376 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1377 				     bool *repeater_present)
1378 {
1379 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1380 	int ret;
1381 	u8 val;
1382 
1383 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1384 	if (ret) {
1385 		drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1386 			    ret);
1387 		return ret;
1388 	}
1389 	*repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1390 	return 0;
1391 }
1392 
1393 static
1394 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1395 				  u8 *ri_prime)
1396 {
1397 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1398 
1399 	int ret;
1400 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1401 				   ri_prime, DRM_HDCP_RI_LEN);
1402 	if (ret)
1403 		drm_dbg_kms(&i915->drm, "Read Ri' over DDC failed (%d)\n",
1404 			    ret);
1405 	return ret;
1406 }
1407 
1408 static
1409 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1410 				   bool *ksv_ready)
1411 {
1412 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1413 	int ret;
1414 	u8 val;
1415 
1416 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1417 	if (ret) {
1418 		drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1419 			    ret);
1420 		return ret;
1421 	}
1422 	*ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1423 	return 0;
1424 }
1425 
1426 static
1427 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1428 				  int num_downstream, u8 *ksv_fifo)
1429 {
1430 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1431 	int ret;
1432 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1433 				   ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1434 	if (ret) {
1435 		drm_dbg_kms(&i915->drm,
1436 			    "Read ksv fifo over DDC failed (%d)\n", ret);
1437 		return ret;
1438 	}
1439 	return 0;
1440 }
1441 
1442 static
1443 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1444 				      int i, u32 *part)
1445 {
1446 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1447 	int ret;
1448 
1449 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1450 		return -EINVAL;
1451 
1452 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1453 				   part, DRM_HDCP_V_PRIME_PART_LEN);
1454 	if (ret)
1455 		drm_dbg_kms(&i915->drm, "Read V'[%d] over DDC failed (%d)\n",
1456 			    i, ret);
1457 	return ret;
1458 }
1459 
1460 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1461 					   enum transcoder cpu_transcoder)
1462 {
1463 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1464 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1465 	struct drm_crtc *crtc = connector->base.state->crtc;
1466 	struct intel_crtc *intel_crtc = container_of(crtc,
1467 						     struct intel_crtc, base);
1468 	u32 scanline;
1469 	int ret;
1470 
1471 	for (;;) {
1472 		scanline = intel_de_read(dev_priv, PIPEDSL(intel_crtc->pipe));
1473 		if (scanline > 100 && scanline < 200)
1474 			break;
1475 		usleep_range(25, 50);
1476 	}
1477 
1478 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1479 					 false, TRANS_DDI_HDCP_SIGNALLING);
1480 	if (ret) {
1481 		drm_err(&dev_priv->drm,
1482 			"Disable HDCP signalling failed (%d)\n", ret);
1483 		return ret;
1484 	}
1485 
1486 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1487 					 true, TRANS_DDI_HDCP_SIGNALLING);
1488 	if (ret) {
1489 		drm_err(&dev_priv->drm,
1490 			"Enable HDCP signalling failed (%d)\n", ret);
1491 		return ret;
1492 	}
1493 
1494 	return 0;
1495 }
1496 
1497 static
1498 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1499 				      enum transcoder cpu_transcoder,
1500 				      bool enable)
1501 {
1502 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1503 	struct intel_connector *connector = hdmi->attached_connector;
1504 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1505 	int ret;
1506 
1507 	if (!enable)
1508 		usleep_range(6, 60); /* Bspec says >= 6us */
1509 
1510 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1511 					 cpu_transcoder, enable,
1512 					 TRANS_DDI_HDCP_SIGNALLING);
1513 	if (ret) {
1514 		drm_err(&dev_priv->drm, "%s HDCP signalling failed (%d)\n",
1515 			enable ? "Enable" : "Disable", ret);
1516 		return ret;
1517 	}
1518 
1519 	/*
1520 	 * WA: To fix incorrect positioning of the window of
1521 	 * opportunity and enc_en signalling in KABYLAKE.
1522 	 */
1523 	if (IS_KABYLAKE(dev_priv) && enable)
1524 		return kbl_repositioning_enc_en_signal(connector,
1525 						       cpu_transcoder);
1526 
1527 	return 0;
1528 }
1529 
1530 static
1531 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1532 				     struct intel_connector *connector)
1533 {
1534 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1535 	enum port port = dig_port->base.port;
1536 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1537 	int ret;
1538 	union {
1539 		u32 reg;
1540 		u8 shim[DRM_HDCP_RI_LEN];
1541 	} ri;
1542 
1543 	ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1544 	if (ret)
1545 		return false;
1546 
1547 	intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1548 
1549 	/* Wait for Ri prime match */
1550 	if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1551 		      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1552 		     (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1553 		drm_dbg_kms(&i915->drm, "Ri' mismatch detected (%x)\n",
1554 			intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
1555 							port)));
1556 		return false;
1557 	}
1558 	return true;
1559 }
1560 
1561 static
1562 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1563 				struct intel_connector *connector)
1564 {
1565 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1566 	int retry;
1567 
1568 	for (retry = 0; retry < 3; retry++)
1569 		if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1570 			return true;
1571 
1572 	drm_err(&i915->drm, "Link check failed\n");
1573 	return false;
1574 }
1575 
1576 struct hdcp2_hdmi_msg_timeout {
1577 	u8 msg_id;
1578 	u16 timeout;
1579 };
1580 
1581 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1582 	{ HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1583 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1584 	{ HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1585 	{ HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1586 	{ HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1587 };
1588 
1589 static
1590 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1591 				    u8 *rx_status)
1592 {
1593 	return intel_hdmi_hdcp_read(dig_port,
1594 				    HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1595 				    rx_status,
1596 				    HDCP_2_2_HDMI_RXSTATUS_LEN);
1597 }
1598 
1599 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1600 {
1601 	int i;
1602 
1603 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1604 		if (is_paired)
1605 			return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1606 		else
1607 			return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1608 	}
1609 
1610 	for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1611 		if (hdcp2_msg_timeout[i].msg_id == msg_id)
1612 			return hdcp2_msg_timeout[i].timeout;
1613 	}
1614 
1615 	return -EINVAL;
1616 }
1617 
1618 static int
1619 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1620 			      u8 msg_id, bool *msg_ready,
1621 			      ssize_t *msg_sz)
1622 {
1623 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1624 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1625 	int ret;
1626 
1627 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1628 	if (ret < 0) {
1629 		drm_dbg_kms(&i915->drm, "rx_status read failed. Err %d\n",
1630 			    ret);
1631 		return ret;
1632 	}
1633 
1634 	*msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1635 		  rx_status[0]);
1636 
1637 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1638 		*msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1639 			     *msg_sz);
1640 	else
1641 		*msg_ready = *msg_sz;
1642 
1643 	return 0;
1644 }
1645 
1646 static ssize_t
1647 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1648 			      u8 msg_id, bool paired)
1649 {
1650 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1651 	bool msg_ready = false;
1652 	int timeout, ret;
1653 	ssize_t msg_sz = 0;
1654 
1655 	timeout = get_hdcp2_msg_timeout(msg_id, paired);
1656 	if (timeout < 0)
1657 		return timeout;
1658 
1659 	ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1660 							     msg_id, &msg_ready,
1661 							     &msg_sz),
1662 			 !ret && msg_ready && msg_sz, timeout * 1000,
1663 			 1000, 5 * 1000);
1664 	if (ret)
1665 		drm_dbg_kms(&i915->drm, "msg_id: %d, ret: %d, timeout: %d\n",
1666 			    msg_id, ret, timeout);
1667 
1668 	return ret ? ret : msg_sz;
1669 }
1670 
1671 static
1672 int intel_hdmi_hdcp2_write_msg(struct intel_digital_port *dig_port,
1673 			       void *buf, size_t size)
1674 {
1675 	unsigned int offset;
1676 
1677 	offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1678 	return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1679 }
1680 
1681 static
1682 int intel_hdmi_hdcp2_read_msg(struct intel_digital_port *dig_port,
1683 			      u8 msg_id, void *buf, size_t size)
1684 {
1685 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1686 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1687 	struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1688 	unsigned int offset;
1689 	ssize_t ret;
1690 
1691 	ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1692 					    hdcp->is_paired);
1693 	if (ret < 0)
1694 		return ret;
1695 
1696 	/*
1697 	 * Available msg size should be equal to or lesser than the
1698 	 * available buffer.
1699 	 */
1700 	if (ret > size) {
1701 		drm_dbg_kms(&i915->drm,
1702 			    "msg_sz(%zd) is more than exp size(%zu)\n",
1703 			    ret, size);
1704 		return -1;
1705 	}
1706 
1707 	offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1708 	ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1709 	if (ret)
1710 		drm_dbg_kms(&i915->drm, "Failed to read msg_id: %d(%zd)\n",
1711 			    msg_id, ret);
1712 
1713 	return ret;
1714 }
1715 
1716 static
1717 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1718 				struct intel_connector *connector)
1719 {
1720 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1721 	int ret;
1722 
1723 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1724 	if (ret)
1725 		return ret;
1726 
1727 	/*
1728 	 * Re-auth request and Link Integrity Failures are represented by
1729 	 * same bit. i.e reauth_req.
1730 	 */
1731 	if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1732 		ret = HDCP_REAUTH_REQUEST;
1733 	else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1734 		ret = HDCP_TOPOLOGY_CHANGE;
1735 
1736 	return ret;
1737 }
1738 
1739 static
1740 int intel_hdmi_hdcp2_capable(struct intel_digital_port *dig_port,
1741 			     bool *capable)
1742 {
1743 	u8 hdcp2_version;
1744 	int ret;
1745 
1746 	*capable = false;
1747 	ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1748 				   &hdcp2_version, sizeof(hdcp2_version));
1749 	if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1750 		*capable = true;
1751 
1752 	return ret;
1753 }
1754 
1755 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1756 	.write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1757 	.read_bksv = intel_hdmi_hdcp_read_bksv,
1758 	.read_bstatus = intel_hdmi_hdcp_read_bstatus,
1759 	.repeater_present = intel_hdmi_hdcp_repeater_present,
1760 	.read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1761 	.read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1762 	.read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1763 	.read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1764 	.toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1765 	.check_link = intel_hdmi_hdcp_check_link,
1766 	.write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1767 	.read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1768 	.check_2_2_link	= intel_hdmi_hdcp2_check_link,
1769 	.hdcp_2_2_capable = intel_hdmi_hdcp2_capable,
1770 	.protocol = HDCP_PROTOCOL_HDMI,
1771 };
1772 
1773 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1774 {
1775 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1776 	int max_tmds_clock, vbt_max_tmds_clock;
1777 
1778 	if (DISPLAY_VER(dev_priv) >= 10)
1779 		max_tmds_clock = 594000;
1780 	else if (DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv))
1781 		max_tmds_clock = 300000;
1782 	else if (DISPLAY_VER(dev_priv) >= 5)
1783 		max_tmds_clock = 225000;
1784 	else
1785 		max_tmds_clock = 165000;
1786 
1787 	vbt_max_tmds_clock = intel_bios_max_tmds_clock(encoder);
1788 	if (vbt_max_tmds_clock)
1789 		max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1790 
1791 	return max_tmds_clock;
1792 }
1793 
1794 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1795 				const struct drm_connector_state *conn_state)
1796 {
1797 	return hdmi->has_hdmi_sink &&
1798 		READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1799 }
1800 
1801 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1802 				 bool respect_downstream_limits,
1803 				 bool has_hdmi_sink)
1804 {
1805 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1806 	int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1807 
1808 	if (respect_downstream_limits) {
1809 		struct intel_connector *connector = hdmi->attached_connector;
1810 		const struct drm_display_info *info = &connector->base.display_info;
1811 
1812 		if (hdmi->dp_dual_mode.max_tmds_clock)
1813 			max_tmds_clock = min(max_tmds_clock,
1814 					     hdmi->dp_dual_mode.max_tmds_clock);
1815 
1816 		if (info->max_tmds_clock)
1817 			max_tmds_clock = min(max_tmds_clock,
1818 					     info->max_tmds_clock);
1819 		else if (!has_hdmi_sink)
1820 			max_tmds_clock = min(max_tmds_clock, 165000);
1821 	}
1822 
1823 	return max_tmds_clock;
1824 }
1825 
1826 static enum drm_mode_status
1827 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1828 		      int clock, bool respect_downstream_limits,
1829 		      bool has_hdmi_sink)
1830 {
1831 	struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi));
1832 
1833 	if (clock < 25000)
1834 		return MODE_CLOCK_LOW;
1835 	if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1836 					  has_hdmi_sink))
1837 		return MODE_CLOCK_HIGH;
1838 
1839 	/* GLK DPLL can't generate 446-480 MHz */
1840 	if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
1841 		return MODE_CLOCK_RANGE;
1842 
1843 	/* BXT/GLK DPLL can't generate 223-240 MHz */
1844 	if (IS_GEN9_LP(dev_priv) && clock > 223333 && clock < 240000)
1845 		return MODE_CLOCK_RANGE;
1846 
1847 	/* CHV DPLL can't generate 216-240 MHz */
1848 	if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
1849 		return MODE_CLOCK_RANGE;
1850 
1851 	return MODE_OK;
1852 }
1853 
1854 static int intel_hdmi_port_clock(int clock, int bpc)
1855 {
1856 	/*
1857 	 * Need to adjust the port link by:
1858 	 *  1.5x for 12bpc
1859 	 *  1.25x for 10bpc
1860 	 */
1861 	return clock * bpc / 8;
1862 }
1863 
1864 static enum drm_mode_status
1865 intel_hdmi_mode_valid(struct drm_connector *connector,
1866 		      struct drm_display_mode *mode)
1867 {
1868 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1869 	struct drm_device *dev = intel_hdmi_to_dev(hdmi);
1870 	struct drm_i915_private *dev_priv = to_i915(dev);
1871 	enum drm_mode_status status;
1872 	int clock = mode->clock;
1873 	int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
1874 	bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
1875 
1876 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
1877 		return MODE_NO_DBLESCAN;
1878 
1879 	if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
1880 		clock *= 2;
1881 
1882 	if (clock > max_dotclk)
1883 		return MODE_CLOCK_HIGH;
1884 
1885 	if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
1886 		if (!has_hdmi_sink)
1887 			return MODE_CLOCK_LOW;
1888 		clock *= 2;
1889 	}
1890 
1891 	if (drm_mode_is_420_only(&connector->display_info, mode))
1892 		clock /= 2;
1893 
1894 	/* check if we can do 8bpc */
1895 	status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 8),
1896 				       true, has_hdmi_sink);
1897 
1898 	if (has_hdmi_sink) {
1899 		/* if we can't do 8bpc we may still be able to do 12bpc */
1900 		if (status != MODE_OK && !HAS_GMCH(dev_priv))
1901 			status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 12),
1902 						       true, has_hdmi_sink);
1903 
1904 		/* if we can't do 8,12bpc we may still be able to do 10bpc */
1905 		if (status != MODE_OK && DISPLAY_VER(dev_priv) >= 11)
1906 			status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 10),
1907 						       true, has_hdmi_sink);
1908 	}
1909 	if (status != MODE_OK)
1910 		return status;
1911 
1912 	return intel_mode_valid_max_plane_size(dev_priv, mode, false);
1913 }
1914 
1915 bool intel_hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state,
1916 				    int bpc, bool has_hdmi_sink, bool ycbcr420_output)
1917 {
1918 	struct drm_atomic_state *state = crtc_state->uapi.state;
1919 	struct drm_connector_state *connector_state;
1920 	struct drm_connector *connector;
1921 	int i;
1922 
1923 	if (crtc_state->pipe_bpp < bpc * 3)
1924 		return false;
1925 
1926 	if (!has_hdmi_sink)
1927 		return false;
1928 
1929 	for_each_new_connector_in_state(state, connector, connector_state, i) {
1930 		const struct drm_display_info *info = &connector->display_info;
1931 
1932 		if (connector_state->crtc != crtc_state->uapi.crtc)
1933 			continue;
1934 
1935 		if (ycbcr420_output) {
1936 			const struct drm_hdmi_info *hdmi = &info->hdmi;
1937 
1938 			if (bpc == 12 && !(hdmi->y420_dc_modes &
1939 					   DRM_EDID_YCBCR420_DC_36))
1940 				return false;
1941 			else if (bpc == 10 && !(hdmi->y420_dc_modes &
1942 						DRM_EDID_YCBCR420_DC_30))
1943 				return false;
1944 		} else {
1945 			if (bpc == 12 && !(info->edid_hdmi_dc_modes &
1946 					   DRM_EDID_HDMI_DC_36))
1947 				return false;
1948 			else if (bpc == 10 && !(info->edid_hdmi_dc_modes &
1949 						DRM_EDID_HDMI_DC_30))
1950 				return false;
1951 		}
1952 	}
1953 
1954 	return true;
1955 }
1956 
1957 static bool hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state,
1958 				     int bpc)
1959 {
1960 	struct drm_i915_private *dev_priv =
1961 		to_i915(crtc_state->uapi.crtc->dev);
1962 	const struct drm_display_mode *adjusted_mode =
1963 		&crtc_state->hw.adjusted_mode;
1964 
1965 	if (HAS_GMCH(dev_priv))
1966 		return false;
1967 
1968 	if (bpc == 10 && DISPLAY_VER(dev_priv) < 11)
1969 		return false;
1970 
1971 	/*
1972 	 * HDMI deep color affects the clocks, so it's only possible
1973 	 * when not cloning with other encoder types.
1974 	 */
1975 	if (crtc_state->output_types != BIT(INTEL_OUTPUT_HDMI))
1976 		return false;
1977 
1978 	/* Display Wa_1405510057:icl,ehl */
1979 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 &&
1980 	    bpc == 10 && IS_DISPLAY_VER(dev_priv, 11) &&
1981 	    (adjusted_mode->crtc_hblank_end -
1982 	     adjusted_mode->crtc_hblank_start) % 8 == 2)
1983 		return false;
1984 
1985 	return intel_hdmi_deep_color_possible(crtc_state, bpc,
1986 					      crtc_state->has_hdmi_sink,
1987 					      crtc_state->output_format ==
1988 					      INTEL_OUTPUT_FORMAT_YCBCR420);
1989 }
1990 
1991 static int
1992 intel_hdmi_ycbcr420_config(struct intel_crtc_state *crtc_state,
1993 			   const struct drm_connector_state *conn_state)
1994 {
1995 	struct drm_connector *connector = conn_state->connector;
1996 	struct drm_i915_private *i915 = to_i915(connector->dev);
1997 	const struct drm_display_mode *adjusted_mode =
1998 		&crtc_state->hw.adjusted_mode;
1999 
2000 	if (!drm_mode_is_420_only(&connector->display_info, adjusted_mode))
2001 		return 0;
2002 
2003 	if (!connector->ycbcr_420_allowed) {
2004 		drm_err(&i915->drm,
2005 			"Platform doesn't support YCBCR420 output\n");
2006 		return -EINVAL;
2007 	}
2008 
2009 	crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2010 
2011 	return intel_pch_panel_fitting(crtc_state, conn_state);
2012 }
2013 
2014 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2015 				  struct intel_crtc_state *crtc_state,
2016 				  int clock)
2017 {
2018 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2019 	int bpc;
2020 
2021 	for (bpc = 12; bpc >= 10; bpc -= 2) {
2022 		if (hdmi_deep_color_possible(crtc_state, bpc) &&
2023 		    hdmi_port_clock_valid(intel_hdmi,
2024 					  intel_hdmi_port_clock(clock, bpc),
2025 					  true, crtc_state->has_hdmi_sink) == MODE_OK)
2026 			return bpc;
2027 	}
2028 
2029 	return 8;
2030 }
2031 
2032 static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2033 				    struct intel_crtc_state *crtc_state)
2034 {
2035 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2036 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2037 	const struct drm_display_mode *adjusted_mode =
2038 		&crtc_state->hw.adjusted_mode;
2039 	int bpc, clock = adjusted_mode->crtc_clock;
2040 
2041 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2042 		clock *= 2;
2043 
2044 	/* YCBCR420 TMDS rate requirement is half the pixel clock */
2045 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2046 		clock /= 2;
2047 
2048 	bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock);
2049 
2050 	crtc_state->port_clock = intel_hdmi_port_clock(clock, bpc);
2051 
2052 	/*
2053 	 * pipe_bpp could already be below 8bpc due to
2054 	 * FDI bandwidth constraints. We shouldn't bump it
2055 	 * back up to 8bpc in that case.
2056 	 */
2057 	if (crtc_state->pipe_bpp > bpc * 3)
2058 		crtc_state->pipe_bpp = bpc * 3;
2059 
2060 	drm_dbg_kms(&i915->drm,
2061 		    "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2062 		    bpc, crtc_state->pipe_bpp);
2063 
2064 	if (hdmi_port_clock_valid(intel_hdmi, crtc_state->port_clock,
2065 				  false, crtc_state->has_hdmi_sink) != MODE_OK) {
2066 		drm_dbg_kms(&i915->drm,
2067 			    "unsupported HDMI clock (%d kHz), rejecting mode\n",
2068 			    crtc_state->port_clock);
2069 		return -EINVAL;
2070 	}
2071 
2072 	return 0;
2073 }
2074 
2075 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2076 				    const struct drm_connector_state *conn_state)
2077 {
2078 	const struct intel_digital_connector_state *intel_conn_state =
2079 		to_intel_digital_connector_state(conn_state);
2080 	const struct drm_display_mode *adjusted_mode =
2081 		&crtc_state->hw.adjusted_mode;
2082 
2083 	/*
2084 	 * Our YCbCr output is always limited range.
2085 	 * crtc_state->limited_color_range only applies to RGB,
2086 	 * and it must never be set for YCbCr or we risk setting
2087 	 * some conflicting bits in PIPECONF which will mess up
2088 	 * the colors on the monitor.
2089 	 */
2090 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2091 		return false;
2092 
2093 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2094 		/* See CEA-861-E - 5.1 Default Encoding Parameters */
2095 		return crtc_state->has_hdmi_sink &&
2096 			drm_default_rgb_quant_range(adjusted_mode) ==
2097 			HDMI_QUANTIZATION_RANGE_LIMITED;
2098 	} else {
2099 		return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2100 	}
2101 }
2102 
2103 static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2104 				 const struct intel_crtc_state *crtc_state,
2105 				 const struct drm_connector_state *conn_state)
2106 {
2107 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2108 	const struct intel_digital_connector_state *intel_conn_state =
2109 		to_intel_digital_connector_state(conn_state);
2110 
2111 	if (!crtc_state->has_hdmi_sink)
2112 		return false;
2113 
2114 	if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2115 		return intel_hdmi->has_audio;
2116 	else
2117 		return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2118 }
2119 
2120 int intel_hdmi_compute_config(struct intel_encoder *encoder,
2121 			      struct intel_crtc_state *pipe_config,
2122 			      struct drm_connector_state *conn_state)
2123 {
2124 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2125 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2126 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2127 	struct drm_connector *connector = conn_state->connector;
2128 	struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2129 	int ret;
2130 
2131 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2132 		return -EINVAL;
2133 
2134 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2135 	pipe_config->has_hdmi_sink = intel_has_hdmi_sink(intel_hdmi,
2136 							 conn_state);
2137 
2138 	if (pipe_config->has_hdmi_sink)
2139 		pipe_config->has_infoframe = true;
2140 
2141 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2142 		pipe_config->pixel_multiplier = 2;
2143 
2144 	ret = intel_hdmi_ycbcr420_config(pipe_config, conn_state);
2145 	if (ret)
2146 		return ret;
2147 
2148 	pipe_config->limited_color_range =
2149 		intel_hdmi_limited_color_range(pipe_config, conn_state);
2150 
2151 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv))
2152 		pipe_config->has_pch_encoder = true;
2153 
2154 	pipe_config->has_audio =
2155 		intel_hdmi_has_audio(encoder, pipe_config, conn_state);
2156 
2157 	ret = intel_hdmi_compute_clock(encoder, pipe_config);
2158 	if (ret)
2159 		return ret;
2160 
2161 	if (conn_state->picture_aspect_ratio)
2162 		adjusted_mode->picture_aspect_ratio =
2163 			conn_state->picture_aspect_ratio;
2164 
2165 	pipe_config->lane_count = 4;
2166 
2167 	if (scdc->scrambling.supported && DISPLAY_VER(dev_priv) >= 10) {
2168 		if (scdc->scrambling.low_rates)
2169 			pipe_config->hdmi_scrambling = true;
2170 
2171 		if (pipe_config->port_clock > 340000) {
2172 			pipe_config->hdmi_scrambling = true;
2173 			pipe_config->hdmi_high_tmds_clock_ratio = true;
2174 		}
2175 	}
2176 
2177 	intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2178 					 conn_state);
2179 
2180 	if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2181 		drm_dbg_kms(&dev_priv->drm, "bad AVI infoframe\n");
2182 		return -EINVAL;
2183 	}
2184 
2185 	if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2186 		drm_dbg_kms(&dev_priv->drm, "bad SPD infoframe\n");
2187 		return -EINVAL;
2188 	}
2189 
2190 	if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2191 		drm_dbg_kms(&dev_priv->drm, "bad HDMI infoframe\n");
2192 		return -EINVAL;
2193 	}
2194 
2195 	if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2196 		drm_dbg_kms(&dev_priv->drm, "bad DRM infoframe\n");
2197 		return -EINVAL;
2198 	}
2199 
2200 	return 0;
2201 }
2202 
2203 static void
2204 intel_hdmi_unset_edid(struct drm_connector *connector)
2205 {
2206 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2207 
2208 	intel_hdmi->has_hdmi_sink = false;
2209 	intel_hdmi->has_audio = false;
2210 
2211 	intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2212 	intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2213 
2214 	kfree(to_intel_connector(connector)->detect_edid);
2215 	to_intel_connector(connector)->detect_edid = NULL;
2216 }
2217 
2218 static void
2219 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector, bool has_edid)
2220 {
2221 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2222 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2223 	enum port port = hdmi_to_dig_port(hdmi)->base.port;
2224 	struct i2c_adapter *adapter =
2225 		intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
2226 	enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(adapter);
2227 
2228 	/*
2229 	 * Type 1 DVI adaptors are not required to implement any
2230 	 * registers, so we can't always detect their presence.
2231 	 * Ideally we should be able to check the state of the
2232 	 * CONFIG1 pin, but no such luck on our hardware.
2233 	 *
2234 	 * The only method left to us is to check the VBT to see
2235 	 * if the port is a dual mode capable DP port. But let's
2236 	 * only do that when we sucesfully read the EDID, to avoid
2237 	 * confusing log messages about DP dual mode adaptors when
2238 	 * there's nothing connected to the port.
2239 	 */
2240 	if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2241 		/* An overridden EDID imply that we want this port for testing.
2242 		 * Make sure not to set limits for that port.
2243 		 */
2244 		if (has_edid && !connector->override_edid &&
2245 		    intel_bios_is_port_dp_dual_mode(dev_priv, port)) {
2246 			drm_dbg_kms(&dev_priv->drm,
2247 				    "Assuming DP dual mode adaptor presence based on VBT\n");
2248 			type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2249 		} else {
2250 			type = DRM_DP_DUAL_MODE_NONE;
2251 		}
2252 	}
2253 
2254 	if (type == DRM_DP_DUAL_MODE_NONE)
2255 		return;
2256 
2257 	hdmi->dp_dual_mode.type = type;
2258 	hdmi->dp_dual_mode.max_tmds_clock =
2259 		drm_dp_dual_mode_max_tmds_clock(type, adapter);
2260 
2261 	drm_dbg_kms(&dev_priv->drm,
2262 		    "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2263 		    drm_dp_get_dual_mode_type_name(type),
2264 		    hdmi->dp_dual_mode.max_tmds_clock);
2265 }
2266 
2267 static bool
2268 intel_hdmi_set_edid(struct drm_connector *connector)
2269 {
2270 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2271 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2272 	intel_wakeref_t wakeref;
2273 	struct edid *edid;
2274 	bool connected = false;
2275 	struct i2c_adapter *i2c;
2276 
2277 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2278 
2279 	i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2280 
2281 	edid = drm_get_edid(connector, i2c);
2282 
2283 	if (!edid && !intel_gmbus_is_forced_bit(i2c)) {
2284 		drm_dbg_kms(&dev_priv->drm,
2285 			    "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2286 		intel_gmbus_force_bit(i2c, true);
2287 		edid = drm_get_edid(connector, i2c);
2288 		intel_gmbus_force_bit(i2c, false);
2289 	}
2290 
2291 	intel_hdmi_dp_dual_mode_detect(connector, edid != NULL);
2292 
2293 	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2294 
2295 	to_intel_connector(connector)->detect_edid = edid;
2296 	if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
2297 		intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
2298 		intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
2299 
2300 		connected = true;
2301 	}
2302 
2303 	cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid);
2304 
2305 	return connected;
2306 }
2307 
2308 static enum drm_connector_status
2309 intel_hdmi_detect(struct drm_connector *connector, bool force)
2310 {
2311 	enum drm_connector_status status = connector_status_disconnected;
2312 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2313 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2314 	struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2315 	intel_wakeref_t wakeref;
2316 
2317 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
2318 		    connector->base.id, connector->name);
2319 
2320 	if (!INTEL_DISPLAY_ENABLED(dev_priv))
2321 		return connector_status_disconnected;
2322 
2323 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2324 
2325 	if (DISPLAY_VER(dev_priv) >= 11 &&
2326 	    !intel_digital_port_connected(encoder))
2327 		goto out;
2328 
2329 	intel_hdmi_unset_edid(connector);
2330 
2331 	if (intel_hdmi_set_edid(connector))
2332 		status = connector_status_connected;
2333 
2334 out:
2335 	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2336 
2337 	if (status != connector_status_connected)
2338 		cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2339 
2340 	/*
2341 	 * Make sure the refs for power wells enabled during detect are
2342 	 * dropped to avoid a new detect cycle triggered by HPD polling.
2343 	 */
2344 	intel_display_power_flush_work(dev_priv);
2345 
2346 	return status;
2347 }
2348 
2349 static void
2350 intel_hdmi_force(struct drm_connector *connector)
2351 {
2352 	struct drm_i915_private *i915 = to_i915(connector->dev);
2353 
2354 	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
2355 		    connector->base.id, connector->name);
2356 
2357 	intel_hdmi_unset_edid(connector);
2358 
2359 	if (connector->status != connector_status_connected)
2360 		return;
2361 
2362 	intel_hdmi_set_edid(connector);
2363 }
2364 
2365 static int intel_hdmi_get_modes(struct drm_connector *connector)
2366 {
2367 	struct edid *edid;
2368 
2369 	edid = to_intel_connector(connector)->detect_edid;
2370 	if (edid == NULL)
2371 		return 0;
2372 
2373 	return intel_connector_update_modes(connector, edid);
2374 }
2375 
2376 static struct i2c_adapter *
2377 intel_hdmi_get_i2c_adapter(struct drm_connector *connector)
2378 {
2379 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2380 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2381 
2382 	return intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2383 }
2384 
2385 static void intel_hdmi_create_i2c_symlink(struct drm_connector *connector)
2386 {
2387 	struct drm_i915_private *i915 = to_i915(connector->dev);
2388 	struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2389 	struct kobject *i2c_kobj = &adapter->dev.kobj;
2390 	struct kobject *connector_kobj = &connector->kdev->kobj;
2391 	int ret;
2392 
2393 	ret = sysfs_create_link(connector_kobj, i2c_kobj, i2c_kobj->name);
2394 	if (ret)
2395 		drm_err(&i915->drm, "Failed to create i2c symlink (%d)\n", ret);
2396 }
2397 
2398 static void intel_hdmi_remove_i2c_symlink(struct drm_connector *connector)
2399 {
2400 	struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2401 	struct kobject *i2c_kobj = &adapter->dev.kobj;
2402 	struct kobject *connector_kobj = &connector->kdev->kobj;
2403 
2404 	sysfs_remove_link(connector_kobj, i2c_kobj->name);
2405 }
2406 
2407 static int
2408 intel_hdmi_connector_register(struct drm_connector *connector)
2409 {
2410 	int ret;
2411 
2412 	ret = intel_connector_register(connector);
2413 	if (ret)
2414 		return ret;
2415 
2416 	intel_hdmi_create_i2c_symlink(connector);
2417 
2418 	return ret;
2419 }
2420 
2421 static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2422 {
2423 	struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2424 
2425 	cec_notifier_conn_unregister(n);
2426 
2427 	intel_hdmi_remove_i2c_symlink(connector);
2428 	intel_connector_unregister(connector);
2429 }
2430 
2431 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2432 	.detect = intel_hdmi_detect,
2433 	.force = intel_hdmi_force,
2434 	.fill_modes = drm_helper_probe_single_connector_modes,
2435 	.atomic_get_property = intel_digital_connector_atomic_get_property,
2436 	.atomic_set_property = intel_digital_connector_atomic_set_property,
2437 	.late_register = intel_hdmi_connector_register,
2438 	.early_unregister = intel_hdmi_connector_unregister,
2439 	.destroy = intel_connector_destroy,
2440 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2441 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
2442 };
2443 
2444 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2445 	.get_modes = intel_hdmi_get_modes,
2446 	.mode_valid = intel_hdmi_mode_valid,
2447 	.atomic_check = intel_digital_connector_atomic_check,
2448 };
2449 
2450 static void
2451 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2452 {
2453 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2454 
2455 	intel_attach_force_audio_property(connector);
2456 	intel_attach_broadcast_rgb_property(connector);
2457 	intel_attach_aspect_ratio_property(connector);
2458 
2459 	intel_attach_hdmi_colorspace_property(connector);
2460 	drm_connector_attach_content_type_property(connector);
2461 
2462 	if (DISPLAY_VER(dev_priv) >= 10)
2463 		drm_object_attach_property(&connector->base,
2464 			connector->dev->mode_config.hdr_output_metadata_property, 0);
2465 
2466 	if (!HAS_GMCH(dev_priv))
2467 		drm_connector_attach_max_bpc_property(connector, 8, 12);
2468 }
2469 
2470 /*
2471  * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2472  * @encoder: intel_encoder
2473  * @connector: drm_connector
2474  * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2475  *  or reset the high tmds clock ratio for scrambling
2476  * @scrambling: bool to Indicate if the function needs to set or reset
2477  *  sink scrambling
2478  *
2479  * This function handles scrambling on HDMI 2.0 capable sinks.
2480  * If required clock rate is > 340 Mhz && scrambling is supported by sink
2481  * it enables scrambling. This should be called before enabling the HDMI
2482  * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2483  * detect a scrambled clock within 100 ms.
2484  *
2485  * Returns:
2486  * True on success, false on failure.
2487  */
2488 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2489 				       struct drm_connector *connector,
2490 				       bool high_tmds_clock_ratio,
2491 				       bool scrambling)
2492 {
2493 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2494 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2495 	struct drm_scrambling *sink_scrambling =
2496 		&connector->display_info.hdmi.scdc.scrambling;
2497 	struct i2c_adapter *adapter =
2498 		intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2499 
2500 	if (!sink_scrambling->supported)
2501 		return true;
2502 
2503 	drm_dbg_kms(&dev_priv->drm,
2504 		    "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2505 		    connector->base.id, connector->name,
2506 		    yesno(scrambling), high_tmds_clock_ratio ? 40 : 10);
2507 
2508 	/* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2509 	return drm_scdc_set_high_tmds_clock_ratio(adapter,
2510 						  high_tmds_clock_ratio) &&
2511 		drm_scdc_set_scrambling(adapter, scrambling);
2512 }
2513 
2514 static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2515 {
2516 	u8 ddc_pin;
2517 
2518 	switch (port) {
2519 	case PORT_B:
2520 		ddc_pin = GMBUS_PIN_DPB;
2521 		break;
2522 	case PORT_C:
2523 		ddc_pin = GMBUS_PIN_DPC;
2524 		break;
2525 	case PORT_D:
2526 		ddc_pin = GMBUS_PIN_DPD_CHV;
2527 		break;
2528 	default:
2529 		MISSING_CASE(port);
2530 		ddc_pin = GMBUS_PIN_DPB;
2531 		break;
2532 	}
2533 	return ddc_pin;
2534 }
2535 
2536 static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2537 {
2538 	u8 ddc_pin;
2539 
2540 	switch (port) {
2541 	case PORT_B:
2542 		ddc_pin = GMBUS_PIN_1_BXT;
2543 		break;
2544 	case PORT_C:
2545 		ddc_pin = GMBUS_PIN_2_BXT;
2546 		break;
2547 	default:
2548 		MISSING_CASE(port);
2549 		ddc_pin = GMBUS_PIN_1_BXT;
2550 		break;
2551 	}
2552 	return ddc_pin;
2553 }
2554 
2555 static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2556 			      enum port port)
2557 {
2558 	u8 ddc_pin;
2559 
2560 	switch (port) {
2561 	case PORT_B:
2562 		ddc_pin = GMBUS_PIN_1_BXT;
2563 		break;
2564 	case PORT_C:
2565 		ddc_pin = GMBUS_PIN_2_BXT;
2566 		break;
2567 	case PORT_D:
2568 		ddc_pin = GMBUS_PIN_4_CNP;
2569 		break;
2570 	case PORT_F:
2571 		ddc_pin = GMBUS_PIN_3_BXT;
2572 		break;
2573 	default:
2574 		MISSING_CASE(port);
2575 		ddc_pin = GMBUS_PIN_1_BXT;
2576 		break;
2577 	}
2578 	return ddc_pin;
2579 }
2580 
2581 static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2582 {
2583 	enum phy phy = intel_port_to_phy(dev_priv, port);
2584 
2585 	if (intel_phy_is_combo(dev_priv, phy))
2586 		return GMBUS_PIN_1_BXT + port;
2587 	else if (intel_phy_is_tc(dev_priv, phy))
2588 		return GMBUS_PIN_9_TC1_ICP + intel_port_to_tc(dev_priv, port);
2589 
2590 	drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port));
2591 	return GMBUS_PIN_2_BXT;
2592 }
2593 
2594 static u8 mcc_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2595 {
2596 	enum phy phy = intel_port_to_phy(dev_priv, port);
2597 	u8 ddc_pin;
2598 
2599 	switch (phy) {
2600 	case PHY_A:
2601 		ddc_pin = GMBUS_PIN_1_BXT;
2602 		break;
2603 	case PHY_B:
2604 		ddc_pin = GMBUS_PIN_2_BXT;
2605 		break;
2606 	case PHY_C:
2607 		ddc_pin = GMBUS_PIN_9_TC1_ICP;
2608 		break;
2609 	default:
2610 		MISSING_CASE(phy);
2611 		ddc_pin = GMBUS_PIN_1_BXT;
2612 		break;
2613 	}
2614 	return ddc_pin;
2615 }
2616 
2617 static u8 rkl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2618 {
2619 	enum phy phy = intel_port_to_phy(dev_priv, port);
2620 
2621 	WARN_ON(port == PORT_C);
2622 
2623 	/*
2624 	 * Pin mapping for RKL depends on which PCH is present.  With TGP, the
2625 	 * final two outputs use type-c pins, even though they're actually
2626 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2627 	 * all outputs.
2628 	 */
2629 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
2630 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2631 
2632 	return GMBUS_PIN_1_BXT + phy;
2633 }
2634 
2635 static u8 gen9bc_tgp_port_to_ddc_pin(struct drm_i915_private *i915, enum port port)
2636 {
2637 	enum phy phy = intel_port_to_phy(i915, port);
2638 
2639 	drm_WARN_ON(&i915->drm, port == PORT_A);
2640 
2641 	/*
2642 	 * Pin mapping for GEN9 BC depends on which PCH is present.  With TGP,
2643 	 * final two outputs use type-c pins, even though they're actually
2644 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2645 	 * all outputs.
2646 	 */
2647 	if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
2648 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2649 
2650 	return GMBUS_PIN_1_BXT + phy;
2651 }
2652 
2653 static u8 dg1_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2654 {
2655 	return intel_port_to_phy(dev_priv, port) + 1;
2656 }
2657 
2658 static u8 adls_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2659 {
2660 	enum phy phy = intel_port_to_phy(dev_priv, port);
2661 
2662 	WARN_ON(port == PORT_B || port == PORT_C);
2663 
2664 	/*
2665 	 * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2666 	 * except first combo output.
2667 	 */
2668 	if (phy == PHY_A)
2669 		return GMBUS_PIN_1_BXT;
2670 
2671 	return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2672 }
2673 
2674 static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2675 			      enum port port)
2676 {
2677 	u8 ddc_pin;
2678 
2679 	switch (port) {
2680 	case PORT_B:
2681 		ddc_pin = GMBUS_PIN_DPB;
2682 		break;
2683 	case PORT_C:
2684 		ddc_pin = GMBUS_PIN_DPC;
2685 		break;
2686 	case PORT_D:
2687 		ddc_pin = GMBUS_PIN_DPD;
2688 		break;
2689 	default:
2690 		MISSING_CASE(port);
2691 		ddc_pin = GMBUS_PIN_DPB;
2692 		break;
2693 	}
2694 	return ddc_pin;
2695 }
2696 
2697 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2698 {
2699 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2700 	enum port port = encoder->port;
2701 	u8 ddc_pin;
2702 
2703 	ddc_pin = intel_bios_alternate_ddc_pin(encoder);
2704 	if (ddc_pin) {
2705 		drm_dbg_kms(&dev_priv->drm,
2706 			    "Using DDC pin 0x%x for port %c (VBT)\n",
2707 			    ddc_pin, port_name(port));
2708 		return ddc_pin;
2709 	}
2710 
2711 	if (HAS_PCH_ADP(dev_priv))
2712 		ddc_pin = adls_port_to_ddc_pin(dev_priv, port);
2713 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
2714 		ddc_pin = dg1_port_to_ddc_pin(dev_priv, port);
2715 	else if (IS_ROCKETLAKE(dev_priv))
2716 		ddc_pin = rkl_port_to_ddc_pin(dev_priv, port);
2717 	else if (IS_GEN9_BC(dev_priv) && HAS_PCH_TGP(dev_priv))
2718 		ddc_pin = gen9bc_tgp_port_to_ddc_pin(dev_priv, port);
2719 	else if (HAS_PCH_MCC(dev_priv))
2720 		ddc_pin = mcc_port_to_ddc_pin(dev_priv, port);
2721 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2722 		ddc_pin = icl_port_to_ddc_pin(dev_priv, port);
2723 	else if (HAS_PCH_CNP(dev_priv))
2724 		ddc_pin = cnp_port_to_ddc_pin(dev_priv, port);
2725 	else if (IS_GEN9_LP(dev_priv))
2726 		ddc_pin = bxt_port_to_ddc_pin(dev_priv, port);
2727 	else if (IS_CHERRYVIEW(dev_priv))
2728 		ddc_pin = chv_port_to_ddc_pin(dev_priv, port);
2729 	else
2730 		ddc_pin = g4x_port_to_ddc_pin(dev_priv, port);
2731 
2732 	drm_dbg_kms(&dev_priv->drm,
2733 		    "Using DDC pin 0x%x for port %c (platform default)\n",
2734 		    ddc_pin, port_name(port));
2735 
2736 	return ddc_pin;
2737 }
2738 
2739 void intel_infoframe_init(struct intel_digital_port *dig_port)
2740 {
2741 	struct drm_i915_private *dev_priv =
2742 		to_i915(dig_port->base.base.dev);
2743 
2744 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2745 		dig_port->write_infoframe = vlv_write_infoframe;
2746 		dig_port->read_infoframe = vlv_read_infoframe;
2747 		dig_port->set_infoframes = vlv_set_infoframes;
2748 		dig_port->infoframes_enabled = vlv_infoframes_enabled;
2749 	} else if (IS_G4X(dev_priv)) {
2750 		dig_port->write_infoframe = g4x_write_infoframe;
2751 		dig_port->read_infoframe = g4x_read_infoframe;
2752 		dig_port->set_infoframes = g4x_set_infoframes;
2753 		dig_port->infoframes_enabled = g4x_infoframes_enabled;
2754 	} else if (HAS_DDI(dev_priv)) {
2755 		if (intel_bios_is_lspcon_present(dev_priv, dig_port->base.port)) {
2756 			dig_port->write_infoframe = lspcon_write_infoframe;
2757 			dig_port->read_infoframe = lspcon_read_infoframe;
2758 			dig_port->set_infoframes = lspcon_set_infoframes;
2759 			dig_port->infoframes_enabled = lspcon_infoframes_enabled;
2760 		} else {
2761 			dig_port->write_infoframe = hsw_write_infoframe;
2762 			dig_port->read_infoframe = hsw_read_infoframe;
2763 			dig_port->set_infoframes = hsw_set_infoframes;
2764 			dig_port->infoframes_enabled = hsw_infoframes_enabled;
2765 		}
2766 	} else if (HAS_PCH_IBX(dev_priv)) {
2767 		dig_port->write_infoframe = ibx_write_infoframe;
2768 		dig_port->read_infoframe = ibx_read_infoframe;
2769 		dig_port->set_infoframes = ibx_set_infoframes;
2770 		dig_port->infoframes_enabled = ibx_infoframes_enabled;
2771 	} else {
2772 		dig_port->write_infoframe = cpt_write_infoframe;
2773 		dig_port->read_infoframe = cpt_read_infoframe;
2774 		dig_port->set_infoframes = cpt_set_infoframes;
2775 		dig_port->infoframes_enabled = cpt_infoframes_enabled;
2776 	}
2777 }
2778 
2779 void intel_hdmi_init_connector(struct intel_digital_port *dig_port,
2780 			       struct intel_connector *intel_connector)
2781 {
2782 	struct drm_connector *connector = &intel_connector->base;
2783 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
2784 	struct intel_encoder *intel_encoder = &dig_port->base;
2785 	struct drm_device *dev = intel_encoder->base.dev;
2786 	struct drm_i915_private *dev_priv = to_i915(dev);
2787 	struct i2c_adapter *ddc;
2788 	enum port port = intel_encoder->port;
2789 	struct cec_connector_info conn_info;
2790 
2791 	drm_dbg_kms(&dev_priv->drm,
2792 		    "Adding HDMI connector on [ENCODER:%d:%s]\n",
2793 		    intel_encoder->base.base.id, intel_encoder->base.name);
2794 
2795 	if (DISPLAY_VER(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A))
2796 		return;
2797 
2798 	if (drm_WARN(dev, dig_port->max_lanes < 4,
2799 		     "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
2800 		     dig_port->max_lanes, intel_encoder->base.base.id,
2801 		     intel_encoder->base.name))
2802 		return;
2803 
2804 	intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(intel_encoder);
2805 	ddc = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2806 
2807 	drm_connector_init_with_ddc(dev, connector,
2808 				    &intel_hdmi_connector_funcs,
2809 				    DRM_MODE_CONNECTOR_HDMIA,
2810 				    ddc);
2811 	drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
2812 
2813 	connector->interlace_allowed = 1;
2814 	connector->doublescan_allowed = 0;
2815 	connector->stereo_allowed = 1;
2816 
2817 	if (DISPLAY_VER(dev_priv) >= 10)
2818 		connector->ycbcr_420_allowed = true;
2819 
2820 	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
2821 
2822 	if (HAS_DDI(dev_priv))
2823 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2824 	else
2825 		intel_connector->get_hw_state = intel_connector_get_hw_state;
2826 
2827 	intel_hdmi_add_properties(intel_hdmi, connector);
2828 
2829 	intel_connector_attach_encoder(intel_connector, intel_encoder);
2830 	intel_hdmi->attached_connector = intel_connector;
2831 
2832 	if (is_hdcp_supported(dev_priv, port)) {
2833 		int ret = intel_hdcp_init(intel_connector, dig_port,
2834 					  &intel_hdmi_hdcp_shim);
2835 		if (ret)
2836 			drm_dbg_kms(&dev_priv->drm,
2837 				    "HDCP init failed, skipping.\n");
2838 	}
2839 
2840 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2841 	 * 0xd.  Failure to do so will result in spurious interrupts being
2842 	 * generated on the port when a cable is not attached.
2843 	 */
2844 	if (IS_G45(dev_priv)) {
2845 		u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
2846 		intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
2847 		               (temp & ~0xf) | 0xd);
2848 	}
2849 
2850 	cec_fill_conn_info_from_drm(&conn_info, connector);
2851 
2852 	intel_hdmi->cec_notifier =
2853 		cec_notifier_conn_register(dev->dev, port_identifier(port),
2854 					   &conn_info);
2855 	if (!intel_hdmi->cec_notifier)
2856 		drm_dbg_kms(&dev_priv->drm, "CEC notifier get failed\n");
2857 }
2858 
2859 /*
2860  * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
2861  * @vactive: Vactive of a display mode
2862  *
2863  * @return: appropriate dsc slice height for a given mode.
2864  */
2865 int intel_hdmi_dsc_get_slice_height(int vactive)
2866 {
2867 	int slice_height;
2868 
2869 	/*
2870 	 * Slice Height determination : HDMI2.1 Section 7.7.5.2
2871 	 * Select smallest slice height >=96, that results in a valid PPS and
2872 	 * requires minimum padding lines required for final slice.
2873 	 *
2874 	 * Assumption : Vactive is even.
2875 	 */
2876 	for (slice_height = 96; slice_height <= vactive; slice_height += 2)
2877 		if (vactive % slice_height == 0)
2878 			return slice_height;
2879 
2880 	return 0;
2881 }
2882 
2883 /*
2884  * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
2885  * and dsc decoder capabilities
2886  *
2887  * @crtc_state: intel crtc_state
2888  * @src_max_slices: maximum slices supported by the DSC encoder
2889  * @src_max_slice_width: maximum slice width supported by DSC encoder
2890  * @hdmi_max_slices: maximum slices supported by sink DSC decoder
2891  * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
2892  *
2893  * @return: num of dsc slices that can be supported by the dsc encoder
2894  * and decoder.
2895  */
2896 int
2897 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
2898 			      int src_max_slices, int src_max_slice_width,
2899 			      int hdmi_max_slices, int hdmi_throughput)
2900 {
2901 /* Pixel rates in KPixels/sec */
2902 #define HDMI_DSC_PEAK_PIXEL_RATE		2720000
2903 /*
2904  * Rates at which the source and sink are required to process pixels in each
2905  * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
2906  */
2907 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0		340000
2908 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1		400000
2909 
2910 /* Spec limits the slice width to 2720 pixels */
2911 #define MAX_HDMI_SLICE_WIDTH			2720
2912 	int kslice_adjust;
2913 	int adjusted_clk_khz;
2914 	int min_slices;
2915 	int target_slices;
2916 	int max_throughput; /* max clock freq. in khz per slice */
2917 	int max_slice_width;
2918 	int slice_width;
2919 	int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
2920 
2921 	if (!hdmi_throughput)
2922 		return 0;
2923 
2924 	/*
2925 	 * Slice Width determination : HDMI2.1 Section 7.7.5.1
2926 	 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
2927 	 * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
2928 	 * dividing adjusted clock value by 10.
2929 	 */
2930 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
2931 	    crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2932 		kslice_adjust = 10;
2933 	else
2934 		kslice_adjust = 5;
2935 
2936 	/*
2937 	 * As per spec, the rate at which the source and the sink process
2938 	 * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
2939 	 * This depends upon the pixel clock rate and output formats
2940 	 * (kslice adjust).
2941 	 * If pixel clock * kslice adjust >= 2720MHz slices can be processed
2942 	 * at max 340MHz, otherwise they can be processed at max 400MHz.
2943 	 */
2944 
2945 	adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
2946 
2947 	if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
2948 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
2949 	else
2950 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
2951 
2952 	/*
2953 	 * Taking into account the sink's capability for maximum
2954 	 * clock per slice (in MHz) as read from HF-VSDB.
2955 	 */
2956 	max_throughput = min(max_throughput, hdmi_throughput * 1000);
2957 
2958 	min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
2959 	max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
2960 
2961 	/*
2962 	 * Keep on increasing the num of slices/line, starting from min_slices
2963 	 * per line till we get such a number, for which the slice_width is
2964 	 * just less than max_slice_width. The slices/line selected should be
2965 	 * less than or equal to the max horizontal slices that the combination
2966 	 * of PCON encoder and HDMI decoder can support.
2967 	 */
2968 	slice_width = max_slice_width;
2969 
2970 	do {
2971 		if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
2972 			target_slices = 1;
2973 		else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
2974 			target_slices = 2;
2975 		else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
2976 			target_slices = 4;
2977 		else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
2978 			target_slices = 8;
2979 		else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
2980 			target_slices = 12;
2981 		else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
2982 			target_slices = 16;
2983 		else
2984 			return 0;
2985 
2986 		slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
2987 		if (slice_width >= max_slice_width)
2988 			min_slices = target_slices + 1;
2989 	} while (slice_width >= max_slice_width);
2990 
2991 	return target_slices;
2992 }
2993 
2994 /*
2995  * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
2996  * source and sink capabilities.
2997  *
2998  * @src_fraction_bpp: fractional bpp supported by the source
2999  * @slice_width: dsc slice width supported by the source and sink
3000  * @num_slices: num of slices supported by the source and sink
3001  * @output_format: video output format
3002  * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3003  * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3004  *
3005  * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3006  */
3007 int
3008 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3009 		       int output_format, bool hdmi_all_bpp,
3010 		       int hdmi_max_chunk_bytes)
3011 {
3012 	int max_dsc_bpp, min_dsc_bpp;
3013 	int target_bytes;
3014 	bool bpp_found = false;
3015 	int bpp_decrement_x16;
3016 	int bpp_target;
3017 	int bpp_target_x16;
3018 
3019 	/*
3020 	 * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3021 	 * Start with the max bpp and keep on decrementing with
3022 	 * fractional bpp, if supported by PCON DSC encoder
3023 	 *
3024 	 * for each bpp we check if no of bytes can be supported by HDMI sink
3025 	 */
3026 
3027 	/* Assuming: bpc as 8*/
3028 	if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3029 		min_dsc_bpp = 6;
3030 		max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3031 	} else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3032 		   output_format == INTEL_OUTPUT_FORMAT_RGB) {
3033 		min_dsc_bpp = 8;
3034 		max_dsc_bpp = 3 * 8; /* 3*bpc */
3035 	} else {
3036 		/* Assuming 4:2:2 encoding */
3037 		min_dsc_bpp = 7;
3038 		max_dsc_bpp = 2 * 8; /* 2*bpc */
3039 	}
3040 
3041 	/*
3042 	 * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3043 	 * Section 7.7.34 : Source shall not enable compressed Video
3044 	 * Transport with bpp_target settings above 12 bpp unless
3045 	 * DSC_all_bpp is set to 1.
3046 	 */
3047 	if (!hdmi_all_bpp)
3048 		max_dsc_bpp = min(max_dsc_bpp, 12);
3049 
3050 	/*
3051 	 * The Sink has a limit of compressed data in bytes for a scanline,
3052 	 * as described in max_chunk_bytes field in HFVSDB block of edid.
3053 	 * The no. of bytes depend on the target bits per pixel that the
3054 	 * source configures. So we start with the max_bpp and calculate
3055 	 * the target_chunk_bytes. We keep on decrementing the target_bpp,
3056 	 * till we get the target_chunk_bytes just less than what the sink's
3057 	 * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3058 	 *
3059 	 * The decrement is according to the fractional support from PCON DSC
3060 	 * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3061 	 *
3062 	 * bpp_target_x16 = bpp_target * 16
3063 	 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3064 	 * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3065 	 */
3066 
3067 	bpp_target = max_dsc_bpp;
3068 
3069 	/* src does not support fractional bpp implies decrement by 16 for bppx16 */
3070 	if (!src_fractional_bpp)
3071 		src_fractional_bpp = 1;
3072 	bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3073 	bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3074 
3075 	while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3076 		int bpp;
3077 
3078 		bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3079 		target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3080 		if (target_bytes <= hdmi_max_chunk_bytes) {
3081 			bpp_found = true;
3082 			break;
3083 		}
3084 		bpp_target_x16 -= bpp_decrement_x16;
3085 	}
3086 	if (bpp_found)
3087 		return bpp_target_x16;
3088 
3089 	return 0;
3090 }
3091