xref: /openbmc/linux/drivers/gpu/drm/i915/display/intel_hdmi.c (revision c64d01b3ceba873aa8e8605598cec4a6bc6d1601)
1 /*
2  * Copyright 2006 Dave Airlie <airlied@linux.ie>
3  * Copyright © 2006-2009 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *	Eric Anholt <eric@anholt.net>
26  *	Jesse Barnes <jesse.barnes@intel.com>
27  */
28 
29 #include <linux/delay.h>
30 #include <linux/hdmi.h>
31 #include <linux/i2c.h>
32 #include <linux/slab.h>
33 
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_edid.h>
37 #include <drm/drm_hdcp.h>
38 #include <drm/drm_scdc_helper.h>
39 #include <drm/intel_lpe_audio.h>
40 
41 #include "i915_debugfs.h"
42 #include "i915_drv.h"
43 #include "intel_atomic.h"
44 #include "intel_connector.h"
45 #include "intel_ddi.h"
46 #include "intel_de.h"
47 #include "intel_display_types.h"
48 #include "intel_dp.h"
49 #include "intel_gmbus.h"
50 #include "intel_hdcp.h"
51 #include "intel_hdmi.h"
52 #include "intel_lspcon.h"
53 #include "intel_panel.h"
54 #include "intel_snps_phy.h"
55 
56 static struct drm_i915_private *intel_hdmi_to_i915(struct intel_hdmi *intel_hdmi)
57 {
58 	return to_i915(hdmi_to_dig_port(intel_hdmi)->base.base.dev);
59 }
60 
61 static void
62 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
63 {
64 	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(intel_hdmi);
65 	u32 enabled_bits;
66 
67 	enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
68 
69 	drm_WARN(&dev_priv->drm,
70 		 intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits,
71 		 "HDMI port enabled, expecting disabled\n");
72 }
73 
74 static void
75 assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv,
76 				     enum transcoder cpu_transcoder)
77 {
78 	drm_WARN(&dev_priv->drm,
79 		 intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) &
80 		 TRANS_DDI_FUNC_ENABLE,
81 		 "HDMI transcoder function enabled, expecting disabled\n");
82 }
83 
84 static u32 g4x_infoframe_index(unsigned int type)
85 {
86 	switch (type) {
87 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
88 		return VIDEO_DIP_SELECT_GAMUT;
89 	case HDMI_INFOFRAME_TYPE_AVI:
90 		return VIDEO_DIP_SELECT_AVI;
91 	case HDMI_INFOFRAME_TYPE_SPD:
92 		return VIDEO_DIP_SELECT_SPD;
93 	case HDMI_INFOFRAME_TYPE_VENDOR:
94 		return VIDEO_DIP_SELECT_VENDOR;
95 	default:
96 		MISSING_CASE(type);
97 		return 0;
98 	}
99 }
100 
101 static u32 g4x_infoframe_enable(unsigned int type)
102 {
103 	switch (type) {
104 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
105 		return VIDEO_DIP_ENABLE_GCP;
106 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
107 		return VIDEO_DIP_ENABLE_GAMUT;
108 	case DP_SDP_VSC:
109 		return 0;
110 	case HDMI_INFOFRAME_TYPE_AVI:
111 		return VIDEO_DIP_ENABLE_AVI;
112 	case HDMI_INFOFRAME_TYPE_SPD:
113 		return VIDEO_DIP_ENABLE_SPD;
114 	case HDMI_INFOFRAME_TYPE_VENDOR:
115 		return VIDEO_DIP_ENABLE_VENDOR;
116 	case HDMI_INFOFRAME_TYPE_DRM:
117 		return 0;
118 	default:
119 		MISSING_CASE(type);
120 		return 0;
121 	}
122 }
123 
124 static u32 hsw_infoframe_enable(unsigned int type)
125 {
126 	switch (type) {
127 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
128 		return VIDEO_DIP_ENABLE_GCP_HSW;
129 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
130 		return VIDEO_DIP_ENABLE_GMP_HSW;
131 	case DP_SDP_VSC:
132 		return VIDEO_DIP_ENABLE_VSC_HSW;
133 	case DP_SDP_PPS:
134 		return VDIP_ENABLE_PPS;
135 	case HDMI_INFOFRAME_TYPE_AVI:
136 		return VIDEO_DIP_ENABLE_AVI_HSW;
137 	case HDMI_INFOFRAME_TYPE_SPD:
138 		return VIDEO_DIP_ENABLE_SPD_HSW;
139 	case HDMI_INFOFRAME_TYPE_VENDOR:
140 		return VIDEO_DIP_ENABLE_VS_HSW;
141 	case HDMI_INFOFRAME_TYPE_DRM:
142 		return VIDEO_DIP_ENABLE_DRM_GLK;
143 	default:
144 		MISSING_CASE(type);
145 		return 0;
146 	}
147 }
148 
149 static i915_reg_t
150 hsw_dip_data_reg(struct drm_i915_private *dev_priv,
151 		 enum transcoder cpu_transcoder,
152 		 unsigned int type,
153 		 int i)
154 {
155 	switch (type) {
156 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
157 		return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i);
158 	case DP_SDP_VSC:
159 		return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i);
160 	case DP_SDP_PPS:
161 		return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i);
162 	case HDMI_INFOFRAME_TYPE_AVI:
163 		return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
164 	case HDMI_INFOFRAME_TYPE_SPD:
165 		return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
166 	case HDMI_INFOFRAME_TYPE_VENDOR:
167 		return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
168 	case HDMI_INFOFRAME_TYPE_DRM:
169 		return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i);
170 	default:
171 		MISSING_CASE(type);
172 		return INVALID_MMIO_REG;
173 	}
174 }
175 
176 static int hsw_dip_data_size(struct drm_i915_private *dev_priv,
177 			     unsigned int type)
178 {
179 	switch (type) {
180 	case DP_SDP_VSC:
181 		return VIDEO_DIP_VSC_DATA_SIZE;
182 	case DP_SDP_PPS:
183 		return VIDEO_DIP_PPS_DATA_SIZE;
184 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
185 		if (DISPLAY_VER(dev_priv) >= 11)
186 			return VIDEO_DIP_GMP_DATA_SIZE;
187 		else
188 			return VIDEO_DIP_DATA_SIZE;
189 	default:
190 		return VIDEO_DIP_DATA_SIZE;
191 	}
192 }
193 
194 static void g4x_write_infoframe(struct intel_encoder *encoder,
195 				const struct intel_crtc_state *crtc_state,
196 				unsigned int type,
197 				const void *frame, ssize_t len)
198 {
199 	const u32 *data = frame;
200 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
201 	u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
202 	int i;
203 
204 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
205 		 "Writing DIP with CTL reg disabled\n");
206 
207 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
208 	val |= g4x_infoframe_index(type);
209 
210 	val &= ~g4x_infoframe_enable(type);
211 
212 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
213 
214 	for (i = 0; i < len; i += 4) {
215 		intel_de_write(dev_priv, VIDEO_DIP_DATA, *data);
216 		data++;
217 	}
218 	/* Write every possible data byte to force correct ECC calculation. */
219 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
220 		intel_de_write(dev_priv, VIDEO_DIP_DATA, 0);
221 
222 	val |= g4x_infoframe_enable(type);
223 	val &= ~VIDEO_DIP_FREQ_MASK;
224 	val |= VIDEO_DIP_FREQ_VSYNC;
225 
226 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
227 	intel_de_posting_read(dev_priv, VIDEO_DIP_CTL);
228 }
229 
230 static void g4x_read_infoframe(struct intel_encoder *encoder,
231 			       const struct intel_crtc_state *crtc_state,
232 			       unsigned int type,
233 			       void *frame, ssize_t len)
234 {
235 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
236 	u32 val, *data = frame;
237 	int i;
238 
239 	val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
240 
241 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
242 	val |= g4x_infoframe_index(type);
243 
244 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
245 
246 	for (i = 0; i < len; i += 4)
247 		*data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA);
248 }
249 
250 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
251 				  const struct intel_crtc_state *pipe_config)
252 {
253 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
254 	u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
255 
256 	if ((val & VIDEO_DIP_ENABLE) == 0)
257 		return 0;
258 
259 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
260 		return 0;
261 
262 	return val & (VIDEO_DIP_ENABLE_AVI |
263 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
264 }
265 
266 static void ibx_write_infoframe(struct intel_encoder *encoder,
267 				const struct intel_crtc_state *crtc_state,
268 				unsigned int type,
269 				const void *frame, ssize_t len)
270 {
271 	const u32 *data = frame;
272 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
273 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
274 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
275 	u32 val = intel_de_read(dev_priv, reg);
276 	int i;
277 
278 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
279 		 "Writing DIP with CTL reg disabled\n");
280 
281 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
282 	val |= g4x_infoframe_index(type);
283 
284 	val &= ~g4x_infoframe_enable(type);
285 
286 	intel_de_write(dev_priv, reg, val);
287 
288 	for (i = 0; i < len; i += 4) {
289 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
290 			       *data);
291 		data++;
292 	}
293 	/* Write every possible data byte to force correct ECC calculation. */
294 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
295 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
296 
297 	val |= g4x_infoframe_enable(type);
298 	val &= ~VIDEO_DIP_FREQ_MASK;
299 	val |= VIDEO_DIP_FREQ_VSYNC;
300 
301 	intel_de_write(dev_priv, reg, val);
302 	intel_de_posting_read(dev_priv, reg);
303 }
304 
305 static void ibx_read_infoframe(struct intel_encoder *encoder,
306 			       const struct intel_crtc_state *crtc_state,
307 			       unsigned int type,
308 			       void *frame, ssize_t len)
309 {
310 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
311 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
312 	u32 val, *data = frame;
313 	int i;
314 
315 	val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
316 
317 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
318 	val |= g4x_infoframe_index(type);
319 
320 	intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
321 
322 	for (i = 0; i < len; i += 4)
323 		*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
324 }
325 
326 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
327 				  const struct intel_crtc_state *pipe_config)
328 {
329 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
330 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
331 	i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
332 	u32 val = intel_de_read(dev_priv, reg);
333 
334 	if ((val & VIDEO_DIP_ENABLE) == 0)
335 		return 0;
336 
337 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
338 		return 0;
339 
340 	return val & (VIDEO_DIP_ENABLE_AVI |
341 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
342 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
343 }
344 
345 static void cpt_write_infoframe(struct intel_encoder *encoder,
346 				const struct intel_crtc_state *crtc_state,
347 				unsigned int type,
348 				const void *frame, ssize_t len)
349 {
350 	const u32 *data = frame;
351 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
352 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
353 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
354 	u32 val = intel_de_read(dev_priv, reg);
355 	int i;
356 
357 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
358 		 "Writing DIP with CTL reg disabled\n");
359 
360 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
361 	val |= g4x_infoframe_index(type);
362 
363 	/* The DIP control register spec says that we need to update the AVI
364 	 * infoframe without clearing its enable bit */
365 	if (type != HDMI_INFOFRAME_TYPE_AVI)
366 		val &= ~g4x_infoframe_enable(type);
367 
368 	intel_de_write(dev_priv, reg, val);
369 
370 	for (i = 0; i < len; i += 4) {
371 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
372 			       *data);
373 		data++;
374 	}
375 	/* Write every possible data byte to force correct ECC calculation. */
376 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
377 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
378 
379 	val |= g4x_infoframe_enable(type);
380 	val &= ~VIDEO_DIP_FREQ_MASK;
381 	val |= VIDEO_DIP_FREQ_VSYNC;
382 
383 	intel_de_write(dev_priv, reg, val);
384 	intel_de_posting_read(dev_priv, reg);
385 }
386 
387 static void cpt_read_infoframe(struct intel_encoder *encoder,
388 			       const struct intel_crtc_state *crtc_state,
389 			       unsigned int type,
390 			       void *frame, ssize_t len)
391 {
392 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
393 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
394 	u32 val, *data = frame;
395 	int i;
396 
397 	val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
398 
399 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
400 	val |= g4x_infoframe_index(type);
401 
402 	intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
403 
404 	for (i = 0; i < len; i += 4)
405 		*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
406 }
407 
408 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
409 				  const struct intel_crtc_state *pipe_config)
410 {
411 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
412 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
413 	u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe));
414 
415 	if ((val & VIDEO_DIP_ENABLE) == 0)
416 		return 0;
417 
418 	return val & (VIDEO_DIP_ENABLE_AVI |
419 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
420 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
421 }
422 
423 static void vlv_write_infoframe(struct intel_encoder *encoder,
424 				const struct intel_crtc_state *crtc_state,
425 				unsigned int type,
426 				const void *frame, ssize_t len)
427 {
428 	const u32 *data = frame;
429 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
430 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
431 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
432 	u32 val = intel_de_read(dev_priv, reg);
433 	int i;
434 
435 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
436 		 "Writing DIP with CTL reg disabled\n");
437 
438 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
439 	val |= g4x_infoframe_index(type);
440 
441 	val &= ~g4x_infoframe_enable(type);
442 
443 	intel_de_write(dev_priv, reg, val);
444 
445 	for (i = 0; i < len; i += 4) {
446 		intel_de_write(dev_priv,
447 			       VLV_TVIDEO_DIP_DATA(crtc->pipe), *data);
448 		data++;
449 	}
450 	/* Write every possible data byte to force correct ECC calculation. */
451 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
452 		intel_de_write(dev_priv,
453 			       VLV_TVIDEO_DIP_DATA(crtc->pipe), 0);
454 
455 	val |= g4x_infoframe_enable(type);
456 	val &= ~VIDEO_DIP_FREQ_MASK;
457 	val |= VIDEO_DIP_FREQ_VSYNC;
458 
459 	intel_de_write(dev_priv, reg, val);
460 	intel_de_posting_read(dev_priv, reg);
461 }
462 
463 static void vlv_read_infoframe(struct intel_encoder *encoder,
464 			       const struct intel_crtc_state *crtc_state,
465 			       unsigned int type,
466 			       void *frame, ssize_t len)
467 {
468 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
469 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
470 	u32 val, *data = frame;
471 	int i;
472 
473 	val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe));
474 
475 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
476 	val |= g4x_infoframe_index(type);
477 
478 	intel_de_write(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe), val);
479 
480 	for (i = 0; i < len; i += 4)
481 		*data++ = intel_de_read(dev_priv,
482 				        VLV_TVIDEO_DIP_DATA(crtc->pipe));
483 }
484 
485 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
486 				  const struct intel_crtc_state *pipe_config)
487 {
488 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
489 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
490 	u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe));
491 
492 	if ((val & VIDEO_DIP_ENABLE) == 0)
493 		return 0;
494 
495 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
496 		return 0;
497 
498 	return val & (VIDEO_DIP_ENABLE_AVI |
499 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
500 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
501 }
502 
503 void hsw_write_infoframe(struct intel_encoder *encoder,
504 			 const struct intel_crtc_state *crtc_state,
505 			 unsigned int type,
506 			 const void *frame, ssize_t len)
507 {
508 	const u32 *data = frame;
509 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
510 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
511 	i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
512 	int data_size;
513 	int i;
514 	u32 val = intel_de_read(dev_priv, ctl_reg);
515 
516 	data_size = hsw_dip_data_size(dev_priv, type);
517 
518 	drm_WARN_ON(&dev_priv->drm, len > data_size);
519 
520 	val &= ~hsw_infoframe_enable(type);
521 	intel_de_write(dev_priv, ctl_reg, val);
522 
523 	for (i = 0; i < len; i += 4) {
524 		intel_de_write(dev_priv,
525 			       hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
526 			       *data);
527 		data++;
528 	}
529 	/* Write every possible data byte to force correct ECC calculation. */
530 	for (; i < data_size; i += 4)
531 		intel_de_write(dev_priv,
532 			       hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
533 			       0);
534 
535 	/* Wa_14013475917 */
536 	if (DISPLAY_VER(dev_priv) == 13 && crtc_state->has_psr &&
537 	    type == DP_SDP_VSC)
538 		return;
539 
540 	val |= hsw_infoframe_enable(type);
541 	intel_de_write(dev_priv, ctl_reg, val);
542 	intel_de_posting_read(dev_priv, ctl_reg);
543 }
544 
545 void hsw_read_infoframe(struct intel_encoder *encoder,
546 			const struct intel_crtc_state *crtc_state,
547 			unsigned int type, void *frame, ssize_t len)
548 {
549 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
550 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
551 	u32 *data = frame;
552 	int i;
553 
554 	for (i = 0; i < len; i += 4)
555 		*data++ = intel_de_read(dev_priv,
556 				        hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2));
557 }
558 
559 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
560 				  const struct intel_crtc_state *pipe_config)
561 {
562 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
563 	u32 val = intel_de_read(dev_priv,
564 				HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
565 	u32 mask;
566 
567 	mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
568 		VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
569 		VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
570 
571 	if (DISPLAY_VER(dev_priv) >= 10)
572 		mask |= VIDEO_DIP_ENABLE_DRM_GLK;
573 
574 	return val & mask;
575 }
576 
577 static const u8 infoframe_type_to_idx[] = {
578 	HDMI_PACKET_TYPE_GENERAL_CONTROL,
579 	HDMI_PACKET_TYPE_GAMUT_METADATA,
580 	DP_SDP_VSC,
581 	HDMI_INFOFRAME_TYPE_AVI,
582 	HDMI_INFOFRAME_TYPE_SPD,
583 	HDMI_INFOFRAME_TYPE_VENDOR,
584 	HDMI_INFOFRAME_TYPE_DRM,
585 };
586 
587 u32 intel_hdmi_infoframe_enable(unsigned int type)
588 {
589 	int i;
590 
591 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
592 		if (infoframe_type_to_idx[i] == type)
593 			return BIT(i);
594 	}
595 
596 	return 0;
597 }
598 
599 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
600 				  const struct intel_crtc_state *crtc_state)
601 {
602 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
603 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
604 	u32 val, ret = 0;
605 	int i;
606 
607 	val = dig_port->infoframes_enabled(encoder, crtc_state);
608 
609 	/* map from hardware bits to dip idx */
610 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
611 		unsigned int type = infoframe_type_to_idx[i];
612 
613 		if (HAS_DDI(dev_priv)) {
614 			if (val & hsw_infoframe_enable(type))
615 				ret |= BIT(i);
616 		} else {
617 			if (val & g4x_infoframe_enable(type))
618 				ret |= BIT(i);
619 		}
620 	}
621 
622 	return ret;
623 }
624 
625 /*
626  * The data we write to the DIP data buffer registers is 1 byte bigger than the
627  * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
628  * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
629  * used for both technologies.
630  *
631  * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
632  * DW1:       DB3       | DB2 | DB1 | DB0
633  * DW2:       DB7       | DB6 | DB5 | DB4
634  * DW3: ...
635  *
636  * (HB is Header Byte, DB is Data Byte)
637  *
638  * The hdmi pack() functions don't know about that hardware specific hole so we
639  * trick them by giving an offset into the buffer and moving back the header
640  * bytes by one.
641  */
642 static void intel_write_infoframe(struct intel_encoder *encoder,
643 				  const struct intel_crtc_state *crtc_state,
644 				  enum hdmi_infoframe_type type,
645 				  const union hdmi_infoframe *frame)
646 {
647 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
648 	u8 buffer[VIDEO_DIP_DATA_SIZE];
649 	ssize_t len;
650 
651 	if ((crtc_state->infoframes.enable &
652 	     intel_hdmi_infoframe_enable(type)) == 0)
653 		return;
654 
655 	if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
656 		return;
657 
658 	/* see comment above for the reason for this offset */
659 	len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
660 	if (drm_WARN_ON(encoder->base.dev, len < 0))
661 		return;
662 
663 	/* Insert the 'hole' (see big comment above) at position 3 */
664 	memmove(&buffer[0], &buffer[1], 3);
665 	buffer[3] = 0;
666 	len++;
667 
668 	dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
669 }
670 
671 void intel_read_infoframe(struct intel_encoder *encoder,
672 			  const struct intel_crtc_state *crtc_state,
673 			  enum hdmi_infoframe_type type,
674 			  union hdmi_infoframe *frame)
675 {
676 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
677 	u8 buffer[VIDEO_DIP_DATA_SIZE];
678 	int ret;
679 
680 	if ((crtc_state->infoframes.enable &
681 	     intel_hdmi_infoframe_enable(type)) == 0)
682 		return;
683 
684 	dig_port->read_infoframe(encoder, crtc_state,
685 				       type, buffer, sizeof(buffer));
686 
687 	/* Fill the 'hole' (see big comment above) at position 3 */
688 	memmove(&buffer[1], &buffer[0], 3);
689 
690 	/* see comment above for the reason for this offset */
691 	ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
692 	if (ret) {
693 		drm_dbg_kms(encoder->base.dev,
694 			    "Failed to unpack infoframe type 0x%02x\n", type);
695 		return;
696 	}
697 
698 	if (frame->any.type != type)
699 		drm_dbg_kms(encoder->base.dev,
700 			    "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
701 			    frame->any.type, type);
702 }
703 
704 static bool
705 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
706 				 struct intel_crtc_state *crtc_state,
707 				 struct drm_connector_state *conn_state)
708 {
709 	struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
710 	const struct drm_display_mode *adjusted_mode =
711 		&crtc_state->hw.adjusted_mode;
712 	struct drm_connector *connector = conn_state->connector;
713 	int ret;
714 
715 	if (!crtc_state->has_infoframe)
716 		return true;
717 
718 	crtc_state->infoframes.enable |=
719 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
720 
721 	ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
722 						       adjusted_mode);
723 	if (ret)
724 		return false;
725 
726 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
727 		frame->colorspace = HDMI_COLORSPACE_YUV420;
728 	else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
729 		frame->colorspace = HDMI_COLORSPACE_YUV444;
730 	else
731 		frame->colorspace = HDMI_COLORSPACE_RGB;
732 
733 	drm_hdmi_avi_infoframe_colorspace(frame, conn_state);
734 
735 	/* nonsense combination */
736 	drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
737 		    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
738 
739 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
740 		drm_hdmi_avi_infoframe_quant_range(frame, connector,
741 						   adjusted_mode,
742 						   crtc_state->limited_color_range ?
743 						   HDMI_QUANTIZATION_RANGE_LIMITED :
744 						   HDMI_QUANTIZATION_RANGE_FULL);
745 	} else {
746 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
747 		frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
748 	}
749 
750 	drm_hdmi_avi_infoframe_content_type(frame, conn_state);
751 
752 	/* TODO: handle pixel repetition for YCBCR420 outputs */
753 
754 	ret = hdmi_avi_infoframe_check(frame);
755 	if (drm_WARN_ON(encoder->base.dev, ret))
756 		return false;
757 
758 	return true;
759 }
760 
761 static bool
762 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
763 				 struct intel_crtc_state *crtc_state,
764 				 struct drm_connector_state *conn_state)
765 {
766 	struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
767 	int ret;
768 
769 	if (!crtc_state->has_infoframe)
770 		return true;
771 
772 	crtc_state->infoframes.enable |=
773 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
774 
775 	ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
776 	if (drm_WARN_ON(encoder->base.dev, ret))
777 		return false;
778 
779 	frame->sdi = HDMI_SPD_SDI_PC;
780 
781 	ret = hdmi_spd_infoframe_check(frame);
782 	if (drm_WARN_ON(encoder->base.dev, ret))
783 		return false;
784 
785 	return true;
786 }
787 
788 static bool
789 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
790 				  struct intel_crtc_state *crtc_state,
791 				  struct drm_connector_state *conn_state)
792 {
793 	struct hdmi_vendor_infoframe *frame =
794 		&crtc_state->infoframes.hdmi.vendor.hdmi;
795 	const struct drm_display_info *info =
796 		&conn_state->connector->display_info;
797 	int ret;
798 
799 	if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
800 		return true;
801 
802 	crtc_state->infoframes.enable |=
803 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
804 
805 	ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
806 							  conn_state->connector,
807 							  &crtc_state->hw.adjusted_mode);
808 	if (drm_WARN_ON(encoder->base.dev, ret))
809 		return false;
810 
811 	ret = hdmi_vendor_infoframe_check(frame);
812 	if (drm_WARN_ON(encoder->base.dev, ret))
813 		return false;
814 
815 	return true;
816 }
817 
818 static bool
819 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
820 				 struct intel_crtc_state *crtc_state,
821 				 struct drm_connector_state *conn_state)
822 {
823 	struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
824 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
825 	int ret;
826 
827 	if (DISPLAY_VER(dev_priv) < 10)
828 		return true;
829 
830 	if (!crtc_state->has_infoframe)
831 		return true;
832 
833 	if (!conn_state->hdr_output_metadata)
834 		return true;
835 
836 	crtc_state->infoframes.enable |=
837 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
838 
839 	ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
840 	if (ret < 0) {
841 		drm_dbg_kms(&dev_priv->drm,
842 			    "couldn't set HDR metadata in infoframe\n");
843 		return false;
844 	}
845 
846 	ret = hdmi_drm_infoframe_check(frame);
847 	if (drm_WARN_ON(&dev_priv->drm, ret))
848 		return false;
849 
850 	return true;
851 }
852 
853 static void g4x_set_infoframes(struct intel_encoder *encoder,
854 			       bool enable,
855 			       const struct intel_crtc_state *crtc_state,
856 			       const struct drm_connector_state *conn_state)
857 {
858 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
859 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
860 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
861 	i915_reg_t reg = VIDEO_DIP_CTL;
862 	u32 val = intel_de_read(dev_priv, reg);
863 	u32 port = VIDEO_DIP_PORT(encoder->port);
864 
865 	assert_hdmi_port_disabled(intel_hdmi);
866 
867 	/* If the registers were not initialized yet, they might be zeroes,
868 	 * which means we're selecting the AVI DIP and we're setting its
869 	 * frequency to once. This seems to really confuse the HW and make
870 	 * things stop working (the register spec says the AVI always needs to
871 	 * be sent every VSync). So here we avoid writing to the register more
872 	 * than we need and also explicitly select the AVI DIP and explicitly
873 	 * set its frequency to every VSync. Avoiding to write it twice seems to
874 	 * be enough to solve the problem, but being defensive shouldn't hurt us
875 	 * either. */
876 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
877 
878 	if (!enable) {
879 		if (!(val & VIDEO_DIP_ENABLE))
880 			return;
881 		if (port != (val & VIDEO_DIP_PORT_MASK)) {
882 			drm_dbg_kms(&dev_priv->drm,
883 				    "video DIP still enabled on port %c\n",
884 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
885 			return;
886 		}
887 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
888 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
889 		intel_de_write(dev_priv, reg, val);
890 		intel_de_posting_read(dev_priv, reg);
891 		return;
892 	}
893 
894 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
895 		if (val & VIDEO_DIP_ENABLE) {
896 			drm_dbg_kms(&dev_priv->drm,
897 				    "video DIP already enabled on port %c\n",
898 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
899 			return;
900 		}
901 		val &= ~VIDEO_DIP_PORT_MASK;
902 		val |= port;
903 	}
904 
905 	val |= VIDEO_DIP_ENABLE;
906 	val &= ~(VIDEO_DIP_ENABLE_AVI |
907 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
908 
909 	intel_de_write(dev_priv, reg, val);
910 	intel_de_posting_read(dev_priv, reg);
911 
912 	intel_write_infoframe(encoder, crtc_state,
913 			      HDMI_INFOFRAME_TYPE_AVI,
914 			      &crtc_state->infoframes.avi);
915 	intel_write_infoframe(encoder, crtc_state,
916 			      HDMI_INFOFRAME_TYPE_SPD,
917 			      &crtc_state->infoframes.spd);
918 	intel_write_infoframe(encoder, crtc_state,
919 			      HDMI_INFOFRAME_TYPE_VENDOR,
920 			      &crtc_state->infoframes.hdmi);
921 }
922 
923 /*
924  * Determine if default_phase=1 can be indicated in the GCP infoframe.
925  *
926  * From HDMI specification 1.4a:
927  * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
928  * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
929  * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
930  * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
931  *   phase of 0
932  */
933 static bool gcp_default_phase_possible(int pipe_bpp,
934 				       const struct drm_display_mode *mode)
935 {
936 	unsigned int pixels_per_group;
937 
938 	switch (pipe_bpp) {
939 	case 30:
940 		/* 4 pixels in 5 clocks */
941 		pixels_per_group = 4;
942 		break;
943 	case 36:
944 		/* 2 pixels in 3 clocks */
945 		pixels_per_group = 2;
946 		break;
947 	case 48:
948 		/* 1 pixel in 2 clocks */
949 		pixels_per_group = 1;
950 		break;
951 	default:
952 		/* phase information not relevant for 8bpc */
953 		return false;
954 	}
955 
956 	return mode->crtc_hdisplay % pixels_per_group == 0 &&
957 		mode->crtc_htotal % pixels_per_group == 0 &&
958 		mode->crtc_hblank_start % pixels_per_group == 0 &&
959 		mode->crtc_hblank_end % pixels_per_group == 0 &&
960 		mode->crtc_hsync_start % pixels_per_group == 0 &&
961 		mode->crtc_hsync_end % pixels_per_group == 0 &&
962 		((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
963 		 mode->crtc_htotal/2 % pixels_per_group == 0);
964 }
965 
966 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
967 					 const struct intel_crtc_state *crtc_state,
968 					 const struct drm_connector_state *conn_state)
969 {
970 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
971 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
972 	i915_reg_t reg;
973 
974 	if ((crtc_state->infoframes.enable &
975 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
976 		return false;
977 
978 	if (HAS_DDI(dev_priv))
979 		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
980 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
981 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
982 	else if (HAS_PCH_SPLIT(dev_priv))
983 		reg = TVIDEO_DIP_GCP(crtc->pipe);
984 	else
985 		return false;
986 
987 	intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp);
988 
989 	return true;
990 }
991 
992 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
993 				   struct intel_crtc_state *crtc_state)
994 {
995 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
996 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
997 	i915_reg_t reg;
998 
999 	if ((crtc_state->infoframes.enable &
1000 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
1001 		return;
1002 
1003 	if (HAS_DDI(dev_priv))
1004 		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
1005 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1006 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1007 	else if (HAS_PCH_SPLIT(dev_priv))
1008 		reg = TVIDEO_DIP_GCP(crtc->pipe);
1009 	else
1010 		return;
1011 
1012 	crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg);
1013 }
1014 
1015 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1016 					     struct intel_crtc_state *crtc_state,
1017 					     struct drm_connector_state *conn_state)
1018 {
1019 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1020 
1021 	if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1022 		return;
1023 
1024 	crtc_state->infoframes.enable |=
1025 		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1026 
1027 	/* Indicate color indication for deep color mode */
1028 	if (crtc_state->pipe_bpp > 24)
1029 		crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1030 
1031 	/* Enable default_phase whenever the display mode is suitably aligned */
1032 	if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1033 				       &crtc_state->hw.adjusted_mode))
1034 		crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1035 }
1036 
1037 static void ibx_set_infoframes(struct intel_encoder *encoder,
1038 			       bool enable,
1039 			       const struct intel_crtc_state *crtc_state,
1040 			       const struct drm_connector_state *conn_state)
1041 {
1042 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1043 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1044 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1045 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1046 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1047 	u32 val = intel_de_read(dev_priv, reg);
1048 	u32 port = VIDEO_DIP_PORT(encoder->port);
1049 
1050 	assert_hdmi_port_disabled(intel_hdmi);
1051 
1052 	/* See the big comment in g4x_set_infoframes() */
1053 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1054 
1055 	if (!enable) {
1056 		if (!(val & VIDEO_DIP_ENABLE))
1057 			return;
1058 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1059 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1060 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1061 		intel_de_write(dev_priv, reg, val);
1062 		intel_de_posting_read(dev_priv, reg);
1063 		return;
1064 	}
1065 
1066 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1067 		drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1068 			 "DIP already enabled on port %c\n",
1069 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1070 		val &= ~VIDEO_DIP_PORT_MASK;
1071 		val |= port;
1072 	}
1073 
1074 	val |= VIDEO_DIP_ENABLE;
1075 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1076 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1077 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1078 
1079 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1080 		val |= VIDEO_DIP_ENABLE_GCP;
1081 
1082 	intel_de_write(dev_priv, reg, val);
1083 	intel_de_posting_read(dev_priv, reg);
1084 
1085 	intel_write_infoframe(encoder, crtc_state,
1086 			      HDMI_INFOFRAME_TYPE_AVI,
1087 			      &crtc_state->infoframes.avi);
1088 	intel_write_infoframe(encoder, crtc_state,
1089 			      HDMI_INFOFRAME_TYPE_SPD,
1090 			      &crtc_state->infoframes.spd);
1091 	intel_write_infoframe(encoder, crtc_state,
1092 			      HDMI_INFOFRAME_TYPE_VENDOR,
1093 			      &crtc_state->infoframes.hdmi);
1094 }
1095 
1096 static void cpt_set_infoframes(struct intel_encoder *encoder,
1097 			       bool enable,
1098 			       const struct intel_crtc_state *crtc_state,
1099 			       const struct drm_connector_state *conn_state)
1100 {
1101 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1102 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1103 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1104 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1105 	u32 val = intel_de_read(dev_priv, reg);
1106 
1107 	assert_hdmi_port_disabled(intel_hdmi);
1108 
1109 	/* See the big comment in g4x_set_infoframes() */
1110 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1111 
1112 	if (!enable) {
1113 		if (!(val & VIDEO_DIP_ENABLE))
1114 			return;
1115 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1116 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1117 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1118 		intel_de_write(dev_priv, reg, val);
1119 		intel_de_posting_read(dev_priv, reg);
1120 		return;
1121 	}
1122 
1123 	/* Set both together, unset both together: see the spec. */
1124 	val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1125 	val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1126 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1127 
1128 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1129 		val |= VIDEO_DIP_ENABLE_GCP;
1130 
1131 	intel_de_write(dev_priv, reg, val);
1132 	intel_de_posting_read(dev_priv, reg);
1133 
1134 	intel_write_infoframe(encoder, crtc_state,
1135 			      HDMI_INFOFRAME_TYPE_AVI,
1136 			      &crtc_state->infoframes.avi);
1137 	intel_write_infoframe(encoder, crtc_state,
1138 			      HDMI_INFOFRAME_TYPE_SPD,
1139 			      &crtc_state->infoframes.spd);
1140 	intel_write_infoframe(encoder, crtc_state,
1141 			      HDMI_INFOFRAME_TYPE_VENDOR,
1142 			      &crtc_state->infoframes.hdmi);
1143 }
1144 
1145 static void vlv_set_infoframes(struct intel_encoder *encoder,
1146 			       bool enable,
1147 			       const struct intel_crtc_state *crtc_state,
1148 			       const struct drm_connector_state *conn_state)
1149 {
1150 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1151 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1152 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1153 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
1154 	u32 val = intel_de_read(dev_priv, reg);
1155 	u32 port = VIDEO_DIP_PORT(encoder->port);
1156 
1157 	assert_hdmi_port_disabled(intel_hdmi);
1158 
1159 	/* See the big comment in g4x_set_infoframes() */
1160 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1161 
1162 	if (!enable) {
1163 		if (!(val & VIDEO_DIP_ENABLE))
1164 			return;
1165 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1166 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1167 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1168 		intel_de_write(dev_priv, reg, val);
1169 		intel_de_posting_read(dev_priv, reg);
1170 		return;
1171 	}
1172 
1173 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1174 		drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1175 			 "DIP already enabled on port %c\n",
1176 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1177 		val &= ~VIDEO_DIP_PORT_MASK;
1178 		val |= port;
1179 	}
1180 
1181 	val |= VIDEO_DIP_ENABLE;
1182 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1183 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1184 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1185 
1186 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1187 		val |= VIDEO_DIP_ENABLE_GCP;
1188 
1189 	intel_de_write(dev_priv, reg, val);
1190 	intel_de_posting_read(dev_priv, reg);
1191 
1192 	intel_write_infoframe(encoder, crtc_state,
1193 			      HDMI_INFOFRAME_TYPE_AVI,
1194 			      &crtc_state->infoframes.avi);
1195 	intel_write_infoframe(encoder, crtc_state,
1196 			      HDMI_INFOFRAME_TYPE_SPD,
1197 			      &crtc_state->infoframes.spd);
1198 	intel_write_infoframe(encoder, crtc_state,
1199 			      HDMI_INFOFRAME_TYPE_VENDOR,
1200 			      &crtc_state->infoframes.hdmi);
1201 }
1202 
1203 static void hsw_set_infoframes(struct intel_encoder *encoder,
1204 			       bool enable,
1205 			       const struct intel_crtc_state *crtc_state,
1206 			       const struct drm_connector_state *conn_state)
1207 {
1208 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1209 	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
1210 	u32 val = intel_de_read(dev_priv, reg);
1211 
1212 	assert_hdmi_transcoder_func_disabled(dev_priv,
1213 					     crtc_state->cpu_transcoder);
1214 
1215 	val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1216 		 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1217 		 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1218 		 VIDEO_DIP_ENABLE_DRM_GLK);
1219 
1220 	if (!enable) {
1221 		intel_de_write(dev_priv, reg, val);
1222 		intel_de_posting_read(dev_priv, reg);
1223 		return;
1224 	}
1225 
1226 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1227 		val |= VIDEO_DIP_ENABLE_GCP_HSW;
1228 
1229 	intel_de_write(dev_priv, reg, val);
1230 	intel_de_posting_read(dev_priv, reg);
1231 
1232 	intel_write_infoframe(encoder, crtc_state,
1233 			      HDMI_INFOFRAME_TYPE_AVI,
1234 			      &crtc_state->infoframes.avi);
1235 	intel_write_infoframe(encoder, crtc_state,
1236 			      HDMI_INFOFRAME_TYPE_SPD,
1237 			      &crtc_state->infoframes.spd);
1238 	intel_write_infoframe(encoder, crtc_state,
1239 			      HDMI_INFOFRAME_TYPE_VENDOR,
1240 			      &crtc_state->infoframes.hdmi);
1241 	intel_write_infoframe(encoder, crtc_state,
1242 			      HDMI_INFOFRAME_TYPE_DRM,
1243 			      &crtc_state->infoframes.drm);
1244 }
1245 
1246 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1247 {
1248 	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1249 	struct i2c_adapter *adapter;
1250 
1251 	if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1252 		return;
1253 
1254 	adapter = intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
1255 
1256 	drm_dbg_kms(&dev_priv->drm, "%s DP dual mode adaptor TMDS output\n",
1257 		    enable ? "Enabling" : "Disabling");
1258 
1259 	drm_dp_dual_mode_set_tmds_output(&dev_priv->drm, hdmi->dp_dual_mode.type, adapter, enable);
1260 }
1261 
1262 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1263 				unsigned int offset, void *buffer, size_t size)
1264 {
1265 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1266 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1267 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1268 							      hdmi->ddc_bus);
1269 	int ret;
1270 	u8 start = offset & 0xff;
1271 	struct i2c_msg msgs[] = {
1272 		{
1273 			.addr = DRM_HDCP_DDC_ADDR,
1274 			.flags = 0,
1275 			.len = 1,
1276 			.buf = &start,
1277 		},
1278 		{
1279 			.addr = DRM_HDCP_DDC_ADDR,
1280 			.flags = I2C_M_RD,
1281 			.len = size,
1282 			.buf = buffer
1283 		}
1284 	};
1285 	ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs));
1286 	if (ret == ARRAY_SIZE(msgs))
1287 		return 0;
1288 	return ret >= 0 ? -EIO : ret;
1289 }
1290 
1291 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1292 				 unsigned int offset, void *buffer, size_t size)
1293 {
1294 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1295 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1296 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1297 							      hdmi->ddc_bus);
1298 	int ret;
1299 	u8 *write_buf;
1300 	struct i2c_msg msg;
1301 
1302 	write_buf = kzalloc(size + 1, GFP_KERNEL);
1303 	if (!write_buf)
1304 		return -ENOMEM;
1305 
1306 	write_buf[0] = offset & 0xff;
1307 	memcpy(&write_buf[1], buffer, size);
1308 
1309 	msg.addr = DRM_HDCP_DDC_ADDR;
1310 	msg.flags = 0,
1311 	msg.len = size + 1,
1312 	msg.buf = write_buf;
1313 
1314 	ret = i2c_transfer(adapter, &msg, 1);
1315 	if (ret == 1)
1316 		ret = 0;
1317 	else if (ret >= 0)
1318 		ret = -EIO;
1319 
1320 	kfree(write_buf);
1321 	return ret;
1322 }
1323 
1324 static
1325 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1326 				  u8 *an)
1327 {
1328 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1329 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1330 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1331 							      hdmi->ddc_bus);
1332 	int ret;
1333 
1334 	ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1335 				    DRM_HDCP_AN_LEN);
1336 	if (ret) {
1337 		drm_dbg_kms(&i915->drm, "Write An over DDC failed (%d)\n",
1338 			    ret);
1339 		return ret;
1340 	}
1341 
1342 	ret = intel_gmbus_output_aksv(adapter);
1343 	if (ret < 0) {
1344 		drm_dbg_kms(&i915->drm, "Failed to output aksv (%d)\n", ret);
1345 		return ret;
1346 	}
1347 	return 0;
1348 }
1349 
1350 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1351 				     u8 *bksv)
1352 {
1353 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1354 
1355 	int ret;
1356 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1357 				   DRM_HDCP_KSV_LEN);
1358 	if (ret)
1359 		drm_dbg_kms(&i915->drm, "Read Bksv over DDC failed (%d)\n",
1360 			    ret);
1361 	return ret;
1362 }
1363 
1364 static
1365 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1366 				 u8 *bstatus)
1367 {
1368 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1369 
1370 	int ret;
1371 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1372 				   bstatus, DRM_HDCP_BSTATUS_LEN);
1373 	if (ret)
1374 		drm_dbg_kms(&i915->drm, "Read bstatus over DDC failed (%d)\n",
1375 			    ret);
1376 	return ret;
1377 }
1378 
1379 static
1380 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1381 				     bool *repeater_present)
1382 {
1383 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1384 	int ret;
1385 	u8 val;
1386 
1387 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1388 	if (ret) {
1389 		drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1390 			    ret);
1391 		return ret;
1392 	}
1393 	*repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1394 	return 0;
1395 }
1396 
1397 static
1398 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1399 				  u8 *ri_prime)
1400 {
1401 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1402 
1403 	int ret;
1404 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1405 				   ri_prime, DRM_HDCP_RI_LEN);
1406 	if (ret)
1407 		drm_dbg_kms(&i915->drm, "Read Ri' over DDC failed (%d)\n",
1408 			    ret);
1409 	return ret;
1410 }
1411 
1412 static
1413 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1414 				   bool *ksv_ready)
1415 {
1416 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1417 	int ret;
1418 	u8 val;
1419 
1420 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1421 	if (ret) {
1422 		drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1423 			    ret);
1424 		return ret;
1425 	}
1426 	*ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1427 	return 0;
1428 }
1429 
1430 static
1431 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1432 				  int num_downstream, u8 *ksv_fifo)
1433 {
1434 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1435 	int ret;
1436 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1437 				   ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1438 	if (ret) {
1439 		drm_dbg_kms(&i915->drm,
1440 			    "Read ksv fifo over DDC failed (%d)\n", ret);
1441 		return ret;
1442 	}
1443 	return 0;
1444 }
1445 
1446 static
1447 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1448 				      int i, u32 *part)
1449 {
1450 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1451 	int ret;
1452 
1453 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1454 		return -EINVAL;
1455 
1456 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1457 				   part, DRM_HDCP_V_PRIME_PART_LEN);
1458 	if (ret)
1459 		drm_dbg_kms(&i915->drm, "Read V'[%d] over DDC failed (%d)\n",
1460 			    i, ret);
1461 	return ret;
1462 }
1463 
1464 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1465 					   enum transcoder cpu_transcoder)
1466 {
1467 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1468 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1469 	struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc);
1470 	u32 scanline;
1471 	int ret;
1472 
1473 	for (;;) {
1474 		scanline = intel_de_read(dev_priv, PIPEDSL(crtc->pipe));
1475 		if (scanline > 100 && scanline < 200)
1476 			break;
1477 		usleep_range(25, 50);
1478 	}
1479 
1480 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1481 					 false, TRANS_DDI_HDCP_SIGNALLING);
1482 	if (ret) {
1483 		drm_err(&dev_priv->drm,
1484 			"Disable HDCP signalling failed (%d)\n", ret);
1485 		return ret;
1486 	}
1487 
1488 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1489 					 true, TRANS_DDI_HDCP_SIGNALLING);
1490 	if (ret) {
1491 		drm_err(&dev_priv->drm,
1492 			"Enable HDCP signalling failed (%d)\n", ret);
1493 		return ret;
1494 	}
1495 
1496 	return 0;
1497 }
1498 
1499 static
1500 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1501 				      enum transcoder cpu_transcoder,
1502 				      bool enable)
1503 {
1504 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1505 	struct intel_connector *connector = hdmi->attached_connector;
1506 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1507 	int ret;
1508 
1509 	if (!enable)
1510 		usleep_range(6, 60); /* Bspec says >= 6us */
1511 
1512 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1513 					 cpu_transcoder, enable,
1514 					 TRANS_DDI_HDCP_SIGNALLING);
1515 	if (ret) {
1516 		drm_err(&dev_priv->drm, "%s HDCP signalling failed (%d)\n",
1517 			enable ? "Enable" : "Disable", ret);
1518 		return ret;
1519 	}
1520 
1521 	/*
1522 	 * WA: To fix incorrect positioning of the window of
1523 	 * opportunity and enc_en signalling in KABYLAKE.
1524 	 */
1525 	if (IS_KABYLAKE(dev_priv) && enable)
1526 		return kbl_repositioning_enc_en_signal(connector,
1527 						       cpu_transcoder);
1528 
1529 	return 0;
1530 }
1531 
1532 static
1533 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1534 				     struct intel_connector *connector)
1535 {
1536 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1537 	enum port port = dig_port->base.port;
1538 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1539 	int ret;
1540 	union {
1541 		u32 reg;
1542 		u8 shim[DRM_HDCP_RI_LEN];
1543 	} ri;
1544 
1545 	ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1546 	if (ret)
1547 		return false;
1548 
1549 	intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1550 
1551 	/* Wait for Ri prime match */
1552 	if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1553 		      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1554 		     (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1555 		drm_dbg_kms(&i915->drm, "Ri' mismatch detected (%x)\n",
1556 			intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
1557 							port)));
1558 		return false;
1559 	}
1560 	return true;
1561 }
1562 
1563 static
1564 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1565 				struct intel_connector *connector)
1566 {
1567 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1568 	int retry;
1569 
1570 	for (retry = 0; retry < 3; retry++)
1571 		if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1572 			return true;
1573 
1574 	drm_err(&i915->drm, "Link check failed\n");
1575 	return false;
1576 }
1577 
1578 struct hdcp2_hdmi_msg_timeout {
1579 	u8 msg_id;
1580 	u16 timeout;
1581 };
1582 
1583 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1584 	{ HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1585 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1586 	{ HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1587 	{ HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1588 	{ HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1589 };
1590 
1591 static
1592 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1593 				    u8 *rx_status)
1594 {
1595 	return intel_hdmi_hdcp_read(dig_port,
1596 				    HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1597 				    rx_status,
1598 				    HDCP_2_2_HDMI_RXSTATUS_LEN);
1599 }
1600 
1601 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1602 {
1603 	int i;
1604 
1605 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1606 		if (is_paired)
1607 			return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1608 		else
1609 			return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1610 	}
1611 
1612 	for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1613 		if (hdcp2_msg_timeout[i].msg_id == msg_id)
1614 			return hdcp2_msg_timeout[i].timeout;
1615 	}
1616 
1617 	return -EINVAL;
1618 }
1619 
1620 static int
1621 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1622 			      u8 msg_id, bool *msg_ready,
1623 			      ssize_t *msg_sz)
1624 {
1625 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1626 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1627 	int ret;
1628 
1629 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1630 	if (ret < 0) {
1631 		drm_dbg_kms(&i915->drm, "rx_status read failed. Err %d\n",
1632 			    ret);
1633 		return ret;
1634 	}
1635 
1636 	*msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1637 		  rx_status[0]);
1638 
1639 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1640 		*msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1641 			     *msg_sz);
1642 	else
1643 		*msg_ready = *msg_sz;
1644 
1645 	return 0;
1646 }
1647 
1648 static ssize_t
1649 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1650 			      u8 msg_id, bool paired)
1651 {
1652 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1653 	bool msg_ready = false;
1654 	int timeout, ret;
1655 	ssize_t msg_sz = 0;
1656 
1657 	timeout = get_hdcp2_msg_timeout(msg_id, paired);
1658 	if (timeout < 0)
1659 		return timeout;
1660 
1661 	ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1662 							     msg_id, &msg_ready,
1663 							     &msg_sz),
1664 			 !ret && msg_ready && msg_sz, timeout * 1000,
1665 			 1000, 5 * 1000);
1666 	if (ret)
1667 		drm_dbg_kms(&i915->drm, "msg_id: %d, ret: %d, timeout: %d\n",
1668 			    msg_id, ret, timeout);
1669 
1670 	return ret ? ret : msg_sz;
1671 }
1672 
1673 static
1674 int intel_hdmi_hdcp2_write_msg(struct intel_digital_port *dig_port,
1675 			       void *buf, size_t size)
1676 {
1677 	unsigned int offset;
1678 
1679 	offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1680 	return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1681 }
1682 
1683 static
1684 int intel_hdmi_hdcp2_read_msg(struct intel_digital_port *dig_port,
1685 			      u8 msg_id, void *buf, size_t size)
1686 {
1687 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1688 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1689 	struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1690 	unsigned int offset;
1691 	ssize_t ret;
1692 
1693 	ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1694 					    hdcp->is_paired);
1695 	if (ret < 0)
1696 		return ret;
1697 
1698 	/*
1699 	 * Available msg size should be equal to or lesser than the
1700 	 * available buffer.
1701 	 */
1702 	if (ret > size) {
1703 		drm_dbg_kms(&i915->drm,
1704 			    "msg_sz(%zd) is more than exp size(%zu)\n",
1705 			    ret, size);
1706 		return -EINVAL;
1707 	}
1708 
1709 	offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1710 	ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1711 	if (ret)
1712 		drm_dbg_kms(&i915->drm, "Failed to read msg_id: %d(%zd)\n",
1713 			    msg_id, ret);
1714 
1715 	return ret;
1716 }
1717 
1718 static
1719 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1720 				struct intel_connector *connector)
1721 {
1722 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1723 	int ret;
1724 
1725 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1726 	if (ret)
1727 		return ret;
1728 
1729 	/*
1730 	 * Re-auth request and Link Integrity Failures are represented by
1731 	 * same bit. i.e reauth_req.
1732 	 */
1733 	if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1734 		ret = HDCP_REAUTH_REQUEST;
1735 	else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1736 		ret = HDCP_TOPOLOGY_CHANGE;
1737 
1738 	return ret;
1739 }
1740 
1741 static
1742 int intel_hdmi_hdcp2_capable(struct intel_digital_port *dig_port,
1743 			     bool *capable)
1744 {
1745 	u8 hdcp2_version;
1746 	int ret;
1747 
1748 	*capable = false;
1749 	ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1750 				   &hdcp2_version, sizeof(hdcp2_version));
1751 	if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1752 		*capable = true;
1753 
1754 	return ret;
1755 }
1756 
1757 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1758 	.write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1759 	.read_bksv = intel_hdmi_hdcp_read_bksv,
1760 	.read_bstatus = intel_hdmi_hdcp_read_bstatus,
1761 	.repeater_present = intel_hdmi_hdcp_repeater_present,
1762 	.read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1763 	.read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1764 	.read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1765 	.read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1766 	.toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1767 	.check_link = intel_hdmi_hdcp_check_link,
1768 	.write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1769 	.read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1770 	.check_2_2_link	= intel_hdmi_hdcp2_check_link,
1771 	.hdcp_2_2_capable = intel_hdmi_hdcp2_capable,
1772 	.protocol = HDCP_PROTOCOL_HDMI,
1773 };
1774 
1775 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1776 {
1777 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1778 	int max_tmds_clock, vbt_max_tmds_clock;
1779 
1780 	if (DISPLAY_VER(dev_priv) >= 10)
1781 		max_tmds_clock = 594000;
1782 	else if (DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv))
1783 		max_tmds_clock = 300000;
1784 	else if (DISPLAY_VER(dev_priv) >= 5)
1785 		max_tmds_clock = 225000;
1786 	else
1787 		max_tmds_clock = 165000;
1788 
1789 	vbt_max_tmds_clock = intel_bios_max_tmds_clock(encoder);
1790 	if (vbt_max_tmds_clock)
1791 		max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1792 
1793 	return max_tmds_clock;
1794 }
1795 
1796 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1797 				const struct drm_connector_state *conn_state)
1798 {
1799 	return hdmi->has_hdmi_sink &&
1800 		READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1801 }
1802 
1803 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1804 				 bool respect_downstream_limits,
1805 				 bool has_hdmi_sink)
1806 {
1807 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1808 	int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1809 
1810 	if (respect_downstream_limits) {
1811 		struct intel_connector *connector = hdmi->attached_connector;
1812 		const struct drm_display_info *info = &connector->base.display_info;
1813 
1814 		if (hdmi->dp_dual_mode.max_tmds_clock)
1815 			max_tmds_clock = min(max_tmds_clock,
1816 					     hdmi->dp_dual_mode.max_tmds_clock);
1817 
1818 		if (info->max_tmds_clock)
1819 			max_tmds_clock = min(max_tmds_clock,
1820 					     info->max_tmds_clock);
1821 		else if (!has_hdmi_sink)
1822 			max_tmds_clock = min(max_tmds_clock, 165000);
1823 	}
1824 
1825 	return max_tmds_clock;
1826 }
1827 
1828 static enum drm_mode_status
1829 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1830 		      int clock, bool respect_downstream_limits,
1831 		      bool has_hdmi_sink)
1832 {
1833 	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1834 
1835 	if (clock < 25000)
1836 		return MODE_CLOCK_LOW;
1837 	if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1838 					  has_hdmi_sink))
1839 		return MODE_CLOCK_HIGH;
1840 
1841 	/* GLK DPLL can't generate 446-480 MHz */
1842 	if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
1843 		return MODE_CLOCK_RANGE;
1844 
1845 	/* BXT/GLK DPLL can't generate 223-240 MHz */
1846 	if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1847 	    clock > 223333 && clock < 240000)
1848 		return MODE_CLOCK_RANGE;
1849 
1850 	/* CHV DPLL can't generate 216-240 MHz */
1851 	if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
1852 		return MODE_CLOCK_RANGE;
1853 
1854 	/*
1855 	 * SNPS PHYs' MPLLB table-based programming can only handle a fixed
1856 	 * set of link rates.
1857 	 *
1858 	 * FIXME: We will hopefully get an algorithmic way of programming
1859 	 * the MPLLB for HDMI in the future.
1860 	 */
1861 	if (IS_DG2(dev_priv))
1862 		return intel_snps_phy_check_hdmi_link_rate(clock);
1863 
1864 	return MODE_OK;
1865 }
1866 
1867 static int intel_hdmi_port_clock(int clock, int bpc)
1868 {
1869 	/*
1870 	 * Need to adjust the port link by:
1871 	 *  1.5x for 12bpc
1872 	 *  1.25x for 10bpc
1873 	 */
1874 	return clock * bpc / 8;
1875 }
1876 
1877 static bool intel_hdmi_bpc_possible(struct drm_connector *connector,
1878 				    int bpc, bool has_hdmi_sink, bool ycbcr420_output)
1879 {
1880 	struct drm_i915_private *i915 = to_i915(connector->dev);
1881 	const struct drm_display_info *info = &connector->display_info;
1882 	const struct drm_hdmi_info *hdmi = &info->hdmi;
1883 
1884 	switch (bpc) {
1885 	case 12:
1886 		if (HAS_GMCH(i915))
1887 			return false;
1888 
1889 		if (!has_hdmi_sink)
1890 			return false;
1891 
1892 		if (ycbcr420_output)
1893 			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36;
1894 		else
1895 			return info->edid_hdmi_dc_modes & DRM_EDID_HDMI_DC_36;
1896 	case 10:
1897 		if (DISPLAY_VER(i915) < 11)
1898 			return false;
1899 
1900 		if (!has_hdmi_sink)
1901 			return false;
1902 
1903 		if (ycbcr420_output)
1904 			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30;
1905 		else
1906 			return info->edid_hdmi_dc_modes & DRM_EDID_HDMI_DC_30;
1907 	case 8:
1908 		return true;
1909 	default:
1910 		MISSING_CASE(bpc);
1911 		return false;
1912 	}
1913 }
1914 
1915 static enum drm_mode_status
1916 intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock,
1917 			    bool has_hdmi_sink, bool ycbcr420_output)
1918 {
1919 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1920 	enum drm_mode_status status;
1921 
1922 	if (ycbcr420_output)
1923 		clock /= 2;
1924 
1925 	/* check if we can do 8bpc */
1926 	status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 8),
1927 				       true, has_hdmi_sink);
1928 
1929 	/* if we can't do 8bpc we may still be able to do 12bpc */
1930 	if (status != MODE_OK &&
1931 	    intel_hdmi_bpc_possible(connector, 12, has_hdmi_sink, ycbcr420_output))
1932 		status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 12),
1933 					       true, has_hdmi_sink);
1934 
1935 	/* if we can't do 8,12bpc we may still be able to do 10bpc */
1936 	if (status != MODE_OK &&
1937 	    intel_hdmi_bpc_possible(connector, 10, has_hdmi_sink, ycbcr420_output))
1938 		status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 10),
1939 					       true, has_hdmi_sink);
1940 
1941 	return status;
1942 }
1943 
1944 static enum drm_mode_status
1945 intel_hdmi_mode_valid(struct drm_connector *connector,
1946 		      struct drm_display_mode *mode)
1947 {
1948 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1949 	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1950 	enum drm_mode_status status;
1951 	int clock = mode->clock;
1952 	int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
1953 	bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
1954 	bool ycbcr_420_only;
1955 
1956 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
1957 		return MODE_NO_DBLESCAN;
1958 
1959 	if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
1960 		clock *= 2;
1961 
1962 	if (clock > max_dotclk)
1963 		return MODE_CLOCK_HIGH;
1964 
1965 	if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
1966 		if (!has_hdmi_sink)
1967 			return MODE_CLOCK_LOW;
1968 		clock *= 2;
1969 	}
1970 
1971 	ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode);
1972 
1973 	status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, ycbcr_420_only);
1974 	if (status != MODE_OK) {
1975 		if (ycbcr_420_only ||
1976 		    !connector->ycbcr_420_allowed ||
1977 		    !drm_mode_is_420_also(&connector->display_info, mode))
1978 			return status;
1979 
1980 		status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, true);
1981 		if (status != MODE_OK)
1982 			return status;
1983 	}
1984 
1985 	return intel_mode_valid_max_plane_size(dev_priv, mode, false);
1986 }
1987 
1988 bool intel_hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state,
1989 				    int bpc, bool has_hdmi_sink, bool ycbcr420_output)
1990 {
1991 	struct drm_atomic_state *state = crtc_state->uapi.state;
1992 	struct drm_connector_state *connector_state;
1993 	struct drm_connector *connector;
1994 	int i;
1995 
1996 	if (crtc_state->pipe_bpp < bpc * 3)
1997 		return false;
1998 
1999 	for_each_new_connector_in_state(state, connector, connector_state, i) {
2000 		if (connector_state->crtc != crtc_state->uapi.crtc)
2001 			continue;
2002 
2003 		if (!intel_hdmi_bpc_possible(connector, bpc, has_hdmi_sink, ycbcr420_output))
2004 			return false;
2005 	}
2006 
2007 	return true;
2008 }
2009 
2010 static bool hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state,
2011 				     int bpc)
2012 {
2013 	struct drm_i915_private *dev_priv =
2014 		to_i915(crtc_state->uapi.crtc->dev);
2015 	const struct drm_display_mode *adjusted_mode =
2016 		&crtc_state->hw.adjusted_mode;
2017 
2018 	/*
2019 	 * HDMI deep color affects the clocks, so it's only possible
2020 	 * when not cloning with other encoder types.
2021 	 */
2022 	if (crtc_state->output_types != BIT(INTEL_OUTPUT_HDMI))
2023 		return false;
2024 
2025 	/* Display Wa_1405510057:icl,ehl */
2026 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 &&
2027 	    bpc == 10 && DISPLAY_VER(dev_priv) == 11 &&
2028 	    (adjusted_mode->crtc_hblank_end -
2029 	     adjusted_mode->crtc_hblank_start) % 8 == 2)
2030 		return false;
2031 
2032 	return intel_hdmi_deep_color_possible(crtc_state, bpc,
2033 					      crtc_state->has_hdmi_sink,
2034 					      crtc_state->output_format ==
2035 					      INTEL_OUTPUT_FORMAT_YCBCR420);
2036 }
2037 
2038 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2039 				  struct intel_crtc_state *crtc_state,
2040 				  int clock)
2041 {
2042 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2043 	int bpc;
2044 
2045 	for (bpc = 12; bpc >= 10; bpc -= 2) {
2046 		if (hdmi_deep_color_possible(crtc_state, bpc) &&
2047 		    hdmi_port_clock_valid(intel_hdmi,
2048 					  intel_hdmi_port_clock(clock, bpc),
2049 					  true, crtc_state->has_hdmi_sink) == MODE_OK)
2050 			return bpc;
2051 	}
2052 
2053 	return 8;
2054 }
2055 
2056 static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2057 				    struct intel_crtc_state *crtc_state)
2058 {
2059 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2060 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2061 	const struct drm_display_mode *adjusted_mode =
2062 		&crtc_state->hw.adjusted_mode;
2063 	int bpc, clock = adjusted_mode->crtc_clock;
2064 
2065 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2066 		clock *= 2;
2067 
2068 	/* YCBCR420 TMDS rate requirement is half the pixel clock */
2069 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2070 		clock /= 2;
2071 
2072 	bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock);
2073 
2074 	crtc_state->port_clock = intel_hdmi_port_clock(clock, bpc);
2075 
2076 	/*
2077 	 * pipe_bpp could already be below 8bpc due to
2078 	 * FDI bandwidth constraints. We shouldn't bump it
2079 	 * back up to 8bpc in that case.
2080 	 */
2081 	if (crtc_state->pipe_bpp > bpc * 3)
2082 		crtc_state->pipe_bpp = bpc * 3;
2083 
2084 	drm_dbg_kms(&i915->drm,
2085 		    "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2086 		    bpc, crtc_state->pipe_bpp);
2087 
2088 	if (hdmi_port_clock_valid(intel_hdmi, crtc_state->port_clock,
2089 				  false, crtc_state->has_hdmi_sink) != MODE_OK) {
2090 		drm_dbg_kms(&i915->drm,
2091 			    "unsupported HDMI clock (%d kHz), rejecting mode\n",
2092 			    crtc_state->port_clock);
2093 		return -EINVAL;
2094 	}
2095 
2096 	return 0;
2097 }
2098 
2099 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2100 				    const struct drm_connector_state *conn_state)
2101 {
2102 	const struct intel_digital_connector_state *intel_conn_state =
2103 		to_intel_digital_connector_state(conn_state);
2104 	const struct drm_display_mode *adjusted_mode =
2105 		&crtc_state->hw.adjusted_mode;
2106 
2107 	/*
2108 	 * Our YCbCr output is always limited range.
2109 	 * crtc_state->limited_color_range only applies to RGB,
2110 	 * and it must never be set for YCbCr or we risk setting
2111 	 * some conflicting bits in PIPECONF which will mess up
2112 	 * the colors on the monitor.
2113 	 */
2114 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2115 		return false;
2116 
2117 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2118 		/* See CEA-861-E - 5.1 Default Encoding Parameters */
2119 		return crtc_state->has_hdmi_sink &&
2120 			drm_default_rgb_quant_range(adjusted_mode) ==
2121 			HDMI_QUANTIZATION_RANGE_LIMITED;
2122 	} else {
2123 		return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2124 	}
2125 }
2126 
2127 static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2128 				 const struct intel_crtc_state *crtc_state,
2129 				 const struct drm_connector_state *conn_state)
2130 {
2131 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2132 	const struct intel_digital_connector_state *intel_conn_state =
2133 		to_intel_digital_connector_state(conn_state);
2134 
2135 	if (!crtc_state->has_hdmi_sink)
2136 		return false;
2137 
2138 	if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2139 		return intel_hdmi->has_audio;
2140 	else
2141 		return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2142 }
2143 
2144 static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2145 					    struct intel_crtc_state *crtc_state,
2146 					    const struct drm_connector_state *conn_state)
2147 {
2148 	struct drm_connector *connector = conn_state->connector;
2149 	struct drm_i915_private *i915 = to_i915(connector->dev);
2150 	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
2151 	int ret;
2152 	bool ycbcr_420_only;
2153 
2154 	ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, adjusted_mode);
2155 	if (connector->ycbcr_420_allowed && ycbcr_420_only) {
2156 		crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2157 	} else {
2158 		if (!connector->ycbcr_420_allowed && ycbcr_420_only)
2159 			drm_dbg_kms(&i915->drm,
2160 				    "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
2161 		crtc_state->output_format = INTEL_OUTPUT_FORMAT_RGB;
2162 	}
2163 
2164 	ret = intel_hdmi_compute_clock(encoder, crtc_state);
2165 	if (ret) {
2166 		if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_YCBCR420 &&
2167 		    connector->ycbcr_420_allowed &&
2168 		    drm_mode_is_420_also(&connector->display_info, adjusted_mode)) {
2169 			crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2170 			ret = intel_hdmi_compute_clock(encoder, crtc_state);
2171 		}
2172 	}
2173 
2174 	return ret;
2175 }
2176 
2177 int intel_hdmi_compute_config(struct intel_encoder *encoder,
2178 			      struct intel_crtc_state *pipe_config,
2179 			      struct drm_connector_state *conn_state)
2180 {
2181 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2182 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2183 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2184 	struct drm_connector *connector = conn_state->connector;
2185 	struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2186 	int ret;
2187 
2188 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2189 		return -EINVAL;
2190 
2191 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2192 	pipe_config->has_hdmi_sink = intel_has_hdmi_sink(intel_hdmi,
2193 							 conn_state);
2194 
2195 	if (pipe_config->has_hdmi_sink)
2196 		pipe_config->has_infoframe = true;
2197 
2198 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2199 		pipe_config->pixel_multiplier = 2;
2200 
2201 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv))
2202 		pipe_config->has_pch_encoder = true;
2203 
2204 	pipe_config->has_audio =
2205 		intel_hdmi_has_audio(encoder, pipe_config, conn_state);
2206 
2207 	ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state);
2208 	if (ret)
2209 		return ret;
2210 
2211 	if (pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
2212 		ret = intel_panel_fitting(pipe_config, conn_state);
2213 		if (ret)
2214 			return ret;
2215 	}
2216 
2217 	pipe_config->limited_color_range =
2218 		intel_hdmi_limited_color_range(pipe_config, conn_state);
2219 
2220 	if (conn_state->picture_aspect_ratio)
2221 		adjusted_mode->picture_aspect_ratio =
2222 			conn_state->picture_aspect_ratio;
2223 
2224 	pipe_config->lane_count = 4;
2225 
2226 	if (scdc->scrambling.supported && DISPLAY_VER(dev_priv) >= 10) {
2227 		if (scdc->scrambling.low_rates)
2228 			pipe_config->hdmi_scrambling = true;
2229 
2230 		if (pipe_config->port_clock > 340000) {
2231 			pipe_config->hdmi_scrambling = true;
2232 			pipe_config->hdmi_high_tmds_clock_ratio = true;
2233 		}
2234 	}
2235 
2236 	intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2237 					 conn_state);
2238 
2239 	if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2240 		drm_dbg_kms(&dev_priv->drm, "bad AVI infoframe\n");
2241 		return -EINVAL;
2242 	}
2243 
2244 	if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2245 		drm_dbg_kms(&dev_priv->drm, "bad SPD infoframe\n");
2246 		return -EINVAL;
2247 	}
2248 
2249 	if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2250 		drm_dbg_kms(&dev_priv->drm, "bad HDMI infoframe\n");
2251 		return -EINVAL;
2252 	}
2253 
2254 	if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2255 		drm_dbg_kms(&dev_priv->drm, "bad DRM infoframe\n");
2256 		return -EINVAL;
2257 	}
2258 
2259 	return 0;
2260 }
2261 
2262 void intel_hdmi_encoder_shutdown(struct intel_encoder *encoder)
2263 {
2264 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2265 
2266 	/*
2267 	 * Give a hand to buggy BIOSen which forget to turn
2268 	 * the TMDS output buffers back on after a reboot.
2269 	 */
2270 	intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
2271 }
2272 
2273 static void
2274 intel_hdmi_unset_edid(struct drm_connector *connector)
2275 {
2276 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2277 
2278 	intel_hdmi->has_hdmi_sink = false;
2279 	intel_hdmi->has_audio = false;
2280 
2281 	intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2282 	intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2283 
2284 	kfree(to_intel_connector(connector)->detect_edid);
2285 	to_intel_connector(connector)->detect_edid = NULL;
2286 }
2287 
2288 static void
2289 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector, bool has_edid)
2290 {
2291 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2292 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2293 	enum port port = hdmi_to_dig_port(hdmi)->base.port;
2294 	struct i2c_adapter *adapter =
2295 		intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
2296 	enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(&dev_priv->drm, adapter);
2297 
2298 	/*
2299 	 * Type 1 DVI adaptors are not required to implement any
2300 	 * registers, so we can't always detect their presence.
2301 	 * Ideally we should be able to check the state of the
2302 	 * CONFIG1 pin, but no such luck on our hardware.
2303 	 *
2304 	 * The only method left to us is to check the VBT to see
2305 	 * if the port is a dual mode capable DP port. But let's
2306 	 * only do that when we sucesfully read the EDID, to avoid
2307 	 * confusing log messages about DP dual mode adaptors when
2308 	 * there's nothing connected to the port.
2309 	 */
2310 	if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2311 		/* An overridden EDID imply that we want this port for testing.
2312 		 * Make sure not to set limits for that port.
2313 		 */
2314 		if (has_edid && !connector->override_edid &&
2315 		    intel_bios_is_port_dp_dual_mode(dev_priv, port)) {
2316 			drm_dbg_kms(&dev_priv->drm,
2317 				    "Assuming DP dual mode adaptor presence based on VBT\n");
2318 			type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2319 		} else {
2320 			type = DRM_DP_DUAL_MODE_NONE;
2321 		}
2322 	}
2323 
2324 	if (type == DRM_DP_DUAL_MODE_NONE)
2325 		return;
2326 
2327 	hdmi->dp_dual_mode.type = type;
2328 	hdmi->dp_dual_mode.max_tmds_clock =
2329 		drm_dp_dual_mode_max_tmds_clock(&dev_priv->drm, type, adapter);
2330 
2331 	drm_dbg_kms(&dev_priv->drm,
2332 		    "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2333 		    drm_dp_get_dual_mode_type_name(type),
2334 		    hdmi->dp_dual_mode.max_tmds_clock);
2335 }
2336 
2337 static bool
2338 intel_hdmi_set_edid(struct drm_connector *connector)
2339 {
2340 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2341 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2342 	intel_wakeref_t wakeref;
2343 	struct edid *edid;
2344 	bool connected = false;
2345 	struct i2c_adapter *i2c;
2346 
2347 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2348 
2349 	i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2350 
2351 	edid = drm_get_edid(connector, i2c);
2352 
2353 	if (!edid && !intel_gmbus_is_forced_bit(i2c)) {
2354 		drm_dbg_kms(&dev_priv->drm,
2355 			    "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2356 		intel_gmbus_force_bit(i2c, true);
2357 		edid = drm_get_edid(connector, i2c);
2358 		intel_gmbus_force_bit(i2c, false);
2359 	}
2360 
2361 	intel_hdmi_dp_dual_mode_detect(connector, edid != NULL);
2362 
2363 	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2364 
2365 	to_intel_connector(connector)->detect_edid = edid;
2366 	if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
2367 		intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
2368 		intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
2369 
2370 		connected = true;
2371 	}
2372 
2373 	cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid);
2374 
2375 	return connected;
2376 }
2377 
2378 static enum drm_connector_status
2379 intel_hdmi_detect(struct drm_connector *connector, bool force)
2380 {
2381 	enum drm_connector_status status = connector_status_disconnected;
2382 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2383 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2384 	struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2385 	intel_wakeref_t wakeref;
2386 
2387 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
2388 		    connector->base.id, connector->name);
2389 
2390 	if (!INTEL_DISPLAY_ENABLED(dev_priv))
2391 		return connector_status_disconnected;
2392 
2393 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2394 
2395 	if (DISPLAY_VER(dev_priv) >= 11 &&
2396 	    !intel_digital_port_connected(encoder))
2397 		goto out;
2398 
2399 	intel_hdmi_unset_edid(connector);
2400 
2401 	if (intel_hdmi_set_edid(connector))
2402 		status = connector_status_connected;
2403 
2404 out:
2405 	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2406 
2407 	if (status != connector_status_connected)
2408 		cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2409 
2410 	/*
2411 	 * Make sure the refs for power wells enabled during detect are
2412 	 * dropped to avoid a new detect cycle triggered by HPD polling.
2413 	 */
2414 	intel_display_power_flush_work(dev_priv);
2415 
2416 	return status;
2417 }
2418 
2419 static void
2420 intel_hdmi_force(struct drm_connector *connector)
2421 {
2422 	struct drm_i915_private *i915 = to_i915(connector->dev);
2423 
2424 	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
2425 		    connector->base.id, connector->name);
2426 
2427 	intel_hdmi_unset_edid(connector);
2428 
2429 	if (connector->status != connector_status_connected)
2430 		return;
2431 
2432 	intel_hdmi_set_edid(connector);
2433 }
2434 
2435 static int intel_hdmi_get_modes(struct drm_connector *connector)
2436 {
2437 	struct edid *edid;
2438 
2439 	edid = to_intel_connector(connector)->detect_edid;
2440 	if (edid == NULL)
2441 		return 0;
2442 
2443 	return intel_connector_update_modes(connector, edid);
2444 }
2445 
2446 static struct i2c_adapter *
2447 intel_hdmi_get_i2c_adapter(struct drm_connector *connector)
2448 {
2449 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2450 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2451 
2452 	return intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2453 }
2454 
2455 static void intel_hdmi_create_i2c_symlink(struct drm_connector *connector)
2456 {
2457 	struct drm_i915_private *i915 = to_i915(connector->dev);
2458 	struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2459 	struct kobject *i2c_kobj = &adapter->dev.kobj;
2460 	struct kobject *connector_kobj = &connector->kdev->kobj;
2461 	int ret;
2462 
2463 	ret = sysfs_create_link(connector_kobj, i2c_kobj, i2c_kobj->name);
2464 	if (ret)
2465 		drm_err(&i915->drm, "Failed to create i2c symlink (%d)\n", ret);
2466 }
2467 
2468 static void intel_hdmi_remove_i2c_symlink(struct drm_connector *connector)
2469 {
2470 	struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2471 	struct kobject *i2c_kobj = &adapter->dev.kobj;
2472 	struct kobject *connector_kobj = &connector->kdev->kobj;
2473 
2474 	sysfs_remove_link(connector_kobj, i2c_kobj->name);
2475 }
2476 
2477 static int
2478 intel_hdmi_connector_register(struct drm_connector *connector)
2479 {
2480 	int ret;
2481 
2482 	ret = intel_connector_register(connector);
2483 	if (ret)
2484 		return ret;
2485 
2486 	intel_hdmi_create_i2c_symlink(connector);
2487 
2488 	return ret;
2489 }
2490 
2491 static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2492 {
2493 	struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2494 
2495 	cec_notifier_conn_unregister(n);
2496 
2497 	intel_hdmi_remove_i2c_symlink(connector);
2498 	intel_connector_unregister(connector);
2499 }
2500 
2501 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2502 	.detect = intel_hdmi_detect,
2503 	.force = intel_hdmi_force,
2504 	.fill_modes = drm_helper_probe_single_connector_modes,
2505 	.atomic_get_property = intel_digital_connector_atomic_get_property,
2506 	.atomic_set_property = intel_digital_connector_atomic_set_property,
2507 	.late_register = intel_hdmi_connector_register,
2508 	.early_unregister = intel_hdmi_connector_unregister,
2509 	.destroy = intel_connector_destroy,
2510 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2511 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
2512 };
2513 
2514 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2515 	.get_modes = intel_hdmi_get_modes,
2516 	.mode_valid = intel_hdmi_mode_valid,
2517 	.atomic_check = intel_digital_connector_atomic_check,
2518 };
2519 
2520 static void
2521 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2522 {
2523 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2524 
2525 	intel_attach_force_audio_property(connector);
2526 	intel_attach_broadcast_rgb_property(connector);
2527 	intel_attach_aspect_ratio_property(connector);
2528 
2529 	intel_attach_hdmi_colorspace_property(connector);
2530 	drm_connector_attach_content_type_property(connector);
2531 
2532 	if (DISPLAY_VER(dev_priv) >= 10)
2533 		drm_connector_attach_hdr_output_metadata_property(connector);
2534 
2535 	if (!HAS_GMCH(dev_priv))
2536 		drm_connector_attach_max_bpc_property(connector, 8, 12);
2537 }
2538 
2539 /*
2540  * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2541  * @encoder: intel_encoder
2542  * @connector: drm_connector
2543  * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2544  *  or reset the high tmds clock ratio for scrambling
2545  * @scrambling: bool to Indicate if the function needs to set or reset
2546  *  sink scrambling
2547  *
2548  * This function handles scrambling on HDMI 2.0 capable sinks.
2549  * If required clock rate is > 340 Mhz && scrambling is supported by sink
2550  * it enables scrambling. This should be called before enabling the HDMI
2551  * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2552  * detect a scrambled clock within 100 ms.
2553  *
2554  * Returns:
2555  * True on success, false on failure.
2556  */
2557 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2558 				       struct drm_connector *connector,
2559 				       bool high_tmds_clock_ratio,
2560 				       bool scrambling)
2561 {
2562 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2563 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2564 	struct drm_scrambling *sink_scrambling =
2565 		&connector->display_info.hdmi.scdc.scrambling;
2566 	struct i2c_adapter *adapter =
2567 		intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2568 
2569 	if (!sink_scrambling->supported)
2570 		return true;
2571 
2572 	drm_dbg_kms(&dev_priv->drm,
2573 		    "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2574 		    connector->base.id, connector->name,
2575 		    yesno(scrambling), high_tmds_clock_ratio ? 40 : 10);
2576 
2577 	/* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2578 	return drm_scdc_set_high_tmds_clock_ratio(adapter,
2579 						  high_tmds_clock_ratio) &&
2580 		drm_scdc_set_scrambling(adapter, scrambling);
2581 }
2582 
2583 static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2584 {
2585 	u8 ddc_pin;
2586 
2587 	switch (port) {
2588 	case PORT_B:
2589 		ddc_pin = GMBUS_PIN_DPB;
2590 		break;
2591 	case PORT_C:
2592 		ddc_pin = GMBUS_PIN_DPC;
2593 		break;
2594 	case PORT_D:
2595 		ddc_pin = GMBUS_PIN_DPD_CHV;
2596 		break;
2597 	default:
2598 		MISSING_CASE(port);
2599 		ddc_pin = GMBUS_PIN_DPB;
2600 		break;
2601 	}
2602 	return ddc_pin;
2603 }
2604 
2605 static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2606 {
2607 	u8 ddc_pin;
2608 
2609 	switch (port) {
2610 	case PORT_B:
2611 		ddc_pin = GMBUS_PIN_1_BXT;
2612 		break;
2613 	case PORT_C:
2614 		ddc_pin = GMBUS_PIN_2_BXT;
2615 		break;
2616 	default:
2617 		MISSING_CASE(port);
2618 		ddc_pin = GMBUS_PIN_1_BXT;
2619 		break;
2620 	}
2621 	return ddc_pin;
2622 }
2623 
2624 static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2625 			      enum port port)
2626 {
2627 	u8 ddc_pin;
2628 
2629 	switch (port) {
2630 	case PORT_B:
2631 		ddc_pin = GMBUS_PIN_1_BXT;
2632 		break;
2633 	case PORT_C:
2634 		ddc_pin = GMBUS_PIN_2_BXT;
2635 		break;
2636 	case PORT_D:
2637 		ddc_pin = GMBUS_PIN_4_CNP;
2638 		break;
2639 	case PORT_F:
2640 		ddc_pin = GMBUS_PIN_3_BXT;
2641 		break;
2642 	default:
2643 		MISSING_CASE(port);
2644 		ddc_pin = GMBUS_PIN_1_BXT;
2645 		break;
2646 	}
2647 	return ddc_pin;
2648 }
2649 
2650 static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2651 {
2652 	enum phy phy = intel_port_to_phy(dev_priv, port);
2653 
2654 	if (intel_phy_is_combo(dev_priv, phy))
2655 		return GMBUS_PIN_1_BXT + port;
2656 	else if (intel_phy_is_tc(dev_priv, phy))
2657 		return GMBUS_PIN_9_TC1_ICP + intel_port_to_tc(dev_priv, port);
2658 
2659 	drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port));
2660 	return GMBUS_PIN_2_BXT;
2661 }
2662 
2663 static u8 mcc_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2664 {
2665 	enum phy phy = intel_port_to_phy(dev_priv, port);
2666 	u8 ddc_pin;
2667 
2668 	switch (phy) {
2669 	case PHY_A:
2670 		ddc_pin = GMBUS_PIN_1_BXT;
2671 		break;
2672 	case PHY_B:
2673 		ddc_pin = GMBUS_PIN_2_BXT;
2674 		break;
2675 	case PHY_C:
2676 		ddc_pin = GMBUS_PIN_9_TC1_ICP;
2677 		break;
2678 	default:
2679 		MISSING_CASE(phy);
2680 		ddc_pin = GMBUS_PIN_1_BXT;
2681 		break;
2682 	}
2683 	return ddc_pin;
2684 }
2685 
2686 static u8 rkl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2687 {
2688 	enum phy phy = intel_port_to_phy(dev_priv, port);
2689 
2690 	WARN_ON(port == PORT_C);
2691 
2692 	/*
2693 	 * Pin mapping for RKL depends on which PCH is present.  With TGP, the
2694 	 * final two outputs use type-c pins, even though they're actually
2695 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2696 	 * all outputs.
2697 	 */
2698 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
2699 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2700 
2701 	return GMBUS_PIN_1_BXT + phy;
2702 }
2703 
2704 static u8 gen9bc_tgp_port_to_ddc_pin(struct drm_i915_private *i915, enum port port)
2705 {
2706 	enum phy phy = intel_port_to_phy(i915, port);
2707 
2708 	drm_WARN_ON(&i915->drm, port == PORT_A);
2709 
2710 	/*
2711 	 * Pin mapping for GEN9 BC depends on which PCH is present.  With TGP,
2712 	 * final two outputs use type-c pins, even though they're actually
2713 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2714 	 * all outputs.
2715 	 */
2716 	if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
2717 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2718 
2719 	return GMBUS_PIN_1_BXT + phy;
2720 }
2721 
2722 static u8 dg1_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2723 {
2724 	return intel_port_to_phy(dev_priv, port) + 1;
2725 }
2726 
2727 static u8 adls_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2728 {
2729 	enum phy phy = intel_port_to_phy(dev_priv, port);
2730 
2731 	WARN_ON(port == PORT_B || port == PORT_C);
2732 
2733 	/*
2734 	 * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2735 	 * except first combo output.
2736 	 */
2737 	if (phy == PHY_A)
2738 		return GMBUS_PIN_1_BXT;
2739 
2740 	return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2741 }
2742 
2743 static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2744 			      enum port port)
2745 {
2746 	u8 ddc_pin;
2747 
2748 	switch (port) {
2749 	case PORT_B:
2750 		ddc_pin = GMBUS_PIN_DPB;
2751 		break;
2752 	case PORT_C:
2753 		ddc_pin = GMBUS_PIN_DPC;
2754 		break;
2755 	case PORT_D:
2756 		ddc_pin = GMBUS_PIN_DPD;
2757 		break;
2758 	default:
2759 		MISSING_CASE(port);
2760 		ddc_pin = GMBUS_PIN_DPB;
2761 		break;
2762 	}
2763 	return ddc_pin;
2764 }
2765 
2766 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2767 {
2768 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2769 	enum port port = encoder->port;
2770 	u8 ddc_pin;
2771 
2772 	ddc_pin = intel_bios_alternate_ddc_pin(encoder);
2773 	if (ddc_pin) {
2774 		drm_dbg_kms(&dev_priv->drm,
2775 			    "Using DDC pin 0x%x for port %c (VBT)\n",
2776 			    ddc_pin, port_name(port));
2777 		return ddc_pin;
2778 	}
2779 
2780 	if (IS_ALDERLAKE_S(dev_priv))
2781 		ddc_pin = adls_port_to_ddc_pin(dev_priv, port);
2782 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
2783 		ddc_pin = dg1_port_to_ddc_pin(dev_priv, port);
2784 	else if (IS_ROCKETLAKE(dev_priv))
2785 		ddc_pin = rkl_port_to_ddc_pin(dev_priv, port);
2786 	else if (DISPLAY_VER(dev_priv) == 9 && HAS_PCH_TGP(dev_priv))
2787 		ddc_pin = gen9bc_tgp_port_to_ddc_pin(dev_priv, port);
2788 	else if (HAS_PCH_MCC(dev_priv))
2789 		ddc_pin = mcc_port_to_ddc_pin(dev_priv, port);
2790 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2791 		ddc_pin = icl_port_to_ddc_pin(dev_priv, port);
2792 	else if (HAS_PCH_CNP(dev_priv))
2793 		ddc_pin = cnp_port_to_ddc_pin(dev_priv, port);
2794 	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
2795 		ddc_pin = bxt_port_to_ddc_pin(dev_priv, port);
2796 	else if (IS_CHERRYVIEW(dev_priv))
2797 		ddc_pin = chv_port_to_ddc_pin(dev_priv, port);
2798 	else
2799 		ddc_pin = g4x_port_to_ddc_pin(dev_priv, port);
2800 
2801 	drm_dbg_kms(&dev_priv->drm,
2802 		    "Using DDC pin 0x%x for port %c (platform default)\n",
2803 		    ddc_pin, port_name(port));
2804 
2805 	return ddc_pin;
2806 }
2807 
2808 void intel_infoframe_init(struct intel_digital_port *dig_port)
2809 {
2810 	struct drm_i915_private *dev_priv =
2811 		to_i915(dig_port->base.base.dev);
2812 
2813 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2814 		dig_port->write_infoframe = vlv_write_infoframe;
2815 		dig_port->read_infoframe = vlv_read_infoframe;
2816 		dig_port->set_infoframes = vlv_set_infoframes;
2817 		dig_port->infoframes_enabled = vlv_infoframes_enabled;
2818 	} else if (IS_G4X(dev_priv)) {
2819 		dig_port->write_infoframe = g4x_write_infoframe;
2820 		dig_port->read_infoframe = g4x_read_infoframe;
2821 		dig_port->set_infoframes = g4x_set_infoframes;
2822 		dig_port->infoframes_enabled = g4x_infoframes_enabled;
2823 	} else if (HAS_DDI(dev_priv)) {
2824 		if (intel_bios_is_lspcon_present(dev_priv, dig_port->base.port)) {
2825 			dig_port->write_infoframe = lspcon_write_infoframe;
2826 			dig_port->read_infoframe = lspcon_read_infoframe;
2827 			dig_port->set_infoframes = lspcon_set_infoframes;
2828 			dig_port->infoframes_enabled = lspcon_infoframes_enabled;
2829 		} else {
2830 			dig_port->write_infoframe = hsw_write_infoframe;
2831 			dig_port->read_infoframe = hsw_read_infoframe;
2832 			dig_port->set_infoframes = hsw_set_infoframes;
2833 			dig_port->infoframes_enabled = hsw_infoframes_enabled;
2834 		}
2835 	} else if (HAS_PCH_IBX(dev_priv)) {
2836 		dig_port->write_infoframe = ibx_write_infoframe;
2837 		dig_port->read_infoframe = ibx_read_infoframe;
2838 		dig_port->set_infoframes = ibx_set_infoframes;
2839 		dig_port->infoframes_enabled = ibx_infoframes_enabled;
2840 	} else {
2841 		dig_port->write_infoframe = cpt_write_infoframe;
2842 		dig_port->read_infoframe = cpt_read_infoframe;
2843 		dig_port->set_infoframes = cpt_set_infoframes;
2844 		dig_port->infoframes_enabled = cpt_infoframes_enabled;
2845 	}
2846 }
2847 
2848 void intel_hdmi_init_connector(struct intel_digital_port *dig_port,
2849 			       struct intel_connector *intel_connector)
2850 {
2851 	struct drm_connector *connector = &intel_connector->base;
2852 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
2853 	struct intel_encoder *intel_encoder = &dig_port->base;
2854 	struct drm_device *dev = intel_encoder->base.dev;
2855 	struct drm_i915_private *dev_priv = to_i915(dev);
2856 	struct i2c_adapter *ddc;
2857 	enum port port = intel_encoder->port;
2858 	struct cec_connector_info conn_info;
2859 
2860 	drm_dbg_kms(&dev_priv->drm,
2861 		    "Adding HDMI connector on [ENCODER:%d:%s]\n",
2862 		    intel_encoder->base.base.id, intel_encoder->base.name);
2863 
2864 	if (DISPLAY_VER(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A))
2865 		return;
2866 
2867 	if (drm_WARN(dev, dig_port->max_lanes < 4,
2868 		     "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
2869 		     dig_port->max_lanes, intel_encoder->base.base.id,
2870 		     intel_encoder->base.name))
2871 		return;
2872 
2873 	intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(intel_encoder);
2874 	ddc = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2875 
2876 	drm_connector_init_with_ddc(dev, connector,
2877 				    &intel_hdmi_connector_funcs,
2878 				    DRM_MODE_CONNECTOR_HDMIA,
2879 				    ddc);
2880 	drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
2881 
2882 	connector->interlace_allowed = 1;
2883 	connector->doublescan_allowed = 0;
2884 	connector->stereo_allowed = 1;
2885 
2886 	if (DISPLAY_VER(dev_priv) >= 10)
2887 		connector->ycbcr_420_allowed = true;
2888 
2889 	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
2890 
2891 	if (HAS_DDI(dev_priv))
2892 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2893 	else
2894 		intel_connector->get_hw_state = intel_connector_get_hw_state;
2895 
2896 	intel_hdmi_add_properties(intel_hdmi, connector);
2897 
2898 	intel_connector_attach_encoder(intel_connector, intel_encoder);
2899 	intel_hdmi->attached_connector = intel_connector;
2900 
2901 	if (is_hdcp_supported(dev_priv, port)) {
2902 		int ret = intel_hdcp_init(intel_connector, dig_port,
2903 					  &intel_hdmi_hdcp_shim);
2904 		if (ret)
2905 			drm_dbg_kms(&dev_priv->drm,
2906 				    "HDCP init failed, skipping.\n");
2907 	}
2908 
2909 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2910 	 * 0xd.  Failure to do so will result in spurious interrupts being
2911 	 * generated on the port when a cable is not attached.
2912 	 */
2913 	if (IS_G45(dev_priv)) {
2914 		u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
2915 		intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
2916 		               (temp & ~0xf) | 0xd);
2917 	}
2918 
2919 	cec_fill_conn_info_from_drm(&conn_info, connector);
2920 
2921 	intel_hdmi->cec_notifier =
2922 		cec_notifier_conn_register(dev->dev, port_identifier(port),
2923 					   &conn_info);
2924 	if (!intel_hdmi->cec_notifier)
2925 		drm_dbg_kms(&dev_priv->drm, "CEC notifier get failed\n");
2926 }
2927 
2928 /*
2929  * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
2930  * @vactive: Vactive of a display mode
2931  *
2932  * @return: appropriate dsc slice height for a given mode.
2933  */
2934 int intel_hdmi_dsc_get_slice_height(int vactive)
2935 {
2936 	int slice_height;
2937 
2938 	/*
2939 	 * Slice Height determination : HDMI2.1 Section 7.7.5.2
2940 	 * Select smallest slice height >=96, that results in a valid PPS and
2941 	 * requires minimum padding lines required for final slice.
2942 	 *
2943 	 * Assumption : Vactive is even.
2944 	 */
2945 	for (slice_height = 96; slice_height <= vactive; slice_height += 2)
2946 		if (vactive % slice_height == 0)
2947 			return slice_height;
2948 
2949 	return 0;
2950 }
2951 
2952 /*
2953  * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
2954  * and dsc decoder capabilities
2955  *
2956  * @crtc_state: intel crtc_state
2957  * @src_max_slices: maximum slices supported by the DSC encoder
2958  * @src_max_slice_width: maximum slice width supported by DSC encoder
2959  * @hdmi_max_slices: maximum slices supported by sink DSC decoder
2960  * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
2961  *
2962  * @return: num of dsc slices that can be supported by the dsc encoder
2963  * and decoder.
2964  */
2965 int
2966 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
2967 			      int src_max_slices, int src_max_slice_width,
2968 			      int hdmi_max_slices, int hdmi_throughput)
2969 {
2970 /* Pixel rates in KPixels/sec */
2971 #define HDMI_DSC_PEAK_PIXEL_RATE		2720000
2972 /*
2973  * Rates at which the source and sink are required to process pixels in each
2974  * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
2975  */
2976 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0		340000
2977 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1		400000
2978 
2979 /* Spec limits the slice width to 2720 pixels */
2980 #define MAX_HDMI_SLICE_WIDTH			2720
2981 	int kslice_adjust;
2982 	int adjusted_clk_khz;
2983 	int min_slices;
2984 	int target_slices;
2985 	int max_throughput; /* max clock freq. in khz per slice */
2986 	int max_slice_width;
2987 	int slice_width;
2988 	int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
2989 
2990 	if (!hdmi_throughput)
2991 		return 0;
2992 
2993 	/*
2994 	 * Slice Width determination : HDMI2.1 Section 7.7.5.1
2995 	 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
2996 	 * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
2997 	 * dividing adjusted clock value by 10.
2998 	 */
2999 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3000 	    crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
3001 		kslice_adjust = 10;
3002 	else
3003 		kslice_adjust = 5;
3004 
3005 	/*
3006 	 * As per spec, the rate at which the source and the sink process
3007 	 * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
3008 	 * This depends upon the pixel clock rate and output formats
3009 	 * (kslice adjust).
3010 	 * If pixel clock * kslice adjust >= 2720MHz slices can be processed
3011 	 * at max 340MHz, otherwise they can be processed at max 400MHz.
3012 	 */
3013 
3014 	adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
3015 
3016 	if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
3017 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
3018 	else
3019 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
3020 
3021 	/*
3022 	 * Taking into account the sink's capability for maximum
3023 	 * clock per slice (in MHz) as read from HF-VSDB.
3024 	 */
3025 	max_throughput = min(max_throughput, hdmi_throughput * 1000);
3026 
3027 	min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
3028 	max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
3029 
3030 	/*
3031 	 * Keep on increasing the num of slices/line, starting from min_slices
3032 	 * per line till we get such a number, for which the slice_width is
3033 	 * just less than max_slice_width. The slices/line selected should be
3034 	 * less than or equal to the max horizontal slices that the combination
3035 	 * of PCON encoder and HDMI decoder can support.
3036 	 */
3037 	slice_width = max_slice_width;
3038 
3039 	do {
3040 		if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3041 			target_slices = 1;
3042 		else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3043 			target_slices = 2;
3044 		else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3045 			target_slices = 4;
3046 		else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3047 			target_slices = 8;
3048 		else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3049 			target_slices = 12;
3050 		else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3051 			target_slices = 16;
3052 		else
3053 			return 0;
3054 
3055 		slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3056 		if (slice_width >= max_slice_width)
3057 			min_slices = target_slices + 1;
3058 	} while (slice_width >= max_slice_width);
3059 
3060 	return target_slices;
3061 }
3062 
3063 /*
3064  * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3065  * source and sink capabilities.
3066  *
3067  * @src_fraction_bpp: fractional bpp supported by the source
3068  * @slice_width: dsc slice width supported by the source and sink
3069  * @num_slices: num of slices supported by the source and sink
3070  * @output_format: video output format
3071  * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3072  * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3073  *
3074  * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3075  */
3076 int
3077 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3078 		       int output_format, bool hdmi_all_bpp,
3079 		       int hdmi_max_chunk_bytes)
3080 {
3081 	int max_dsc_bpp, min_dsc_bpp;
3082 	int target_bytes;
3083 	bool bpp_found = false;
3084 	int bpp_decrement_x16;
3085 	int bpp_target;
3086 	int bpp_target_x16;
3087 
3088 	/*
3089 	 * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3090 	 * Start with the max bpp and keep on decrementing with
3091 	 * fractional bpp, if supported by PCON DSC encoder
3092 	 *
3093 	 * for each bpp we check if no of bytes can be supported by HDMI sink
3094 	 */
3095 
3096 	/* Assuming: bpc as 8*/
3097 	if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3098 		min_dsc_bpp = 6;
3099 		max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3100 	} else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3101 		   output_format == INTEL_OUTPUT_FORMAT_RGB) {
3102 		min_dsc_bpp = 8;
3103 		max_dsc_bpp = 3 * 8; /* 3*bpc */
3104 	} else {
3105 		/* Assuming 4:2:2 encoding */
3106 		min_dsc_bpp = 7;
3107 		max_dsc_bpp = 2 * 8; /* 2*bpc */
3108 	}
3109 
3110 	/*
3111 	 * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3112 	 * Section 7.7.34 : Source shall not enable compressed Video
3113 	 * Transport with bpp_target settings above 12 bpp unless
3114 	 * DSC_all_bpp is set to 1.
3115 	 */
3116 	if (!hdmi_all_bpp)
3117 		max_dsc_bpp = min(max_dsc_bpp, 12);
3118 
3119 	/*
3120 	 * The Sink has a limit of compressed data in bytes for a scanline,
3121 	 * as described in max_chunk_bytes field in HFVSDB block of edid.
3122 	 * The no. of bytes depend on the target bits per pixel that the
3123 	 * source configures. So we start with the max_bpp and calculate
3124 	 * the target_chunk_bytes. We keep on decrementing the target_bpp,
3125 	 * till we get the target_chunk_bytes just less than what the sink's
3126 	 * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3127 	 *
3128 	 * The decrement is according to the fractional support from PCON DSC
3129 	 * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3130 	 *
3131 	 * bpp_target_x16 = bpp_target * 16
3132 	 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3133 	 * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3134 	 */
3135 
3136 	bpp_target = max_dsc_bpp;
3137 
3138 	/* src does not support fractional bpp implies decrement by 16 for bppx16 */
3139 	if (!src_fractional_bpp)
3140 		src_fractional_bpp = 1;
3141 	bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3142 	bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3143 
3144 	while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3145 		int bpp;
3146 
3147 		bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3148 		target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3149 		if (target_bytes <= hdmi_max_chunk_bytes) {
3150 			bpp_found = true;
3151 			break;
3152 		}
3153 		bpp_target_x16 -= bpp_decrement_x16;
3154 	}
3155 	if (bpp_found)
3156 		return bpp_target_x16;
3157 
3158 	return 0;
3159 }
3160