1 /*
2  * Copyright 2006 Dave Airlie <airlied@linux.ie>
3  * Copyright © 2006-2009 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *	Eric Anholt <eric@anholt.net>
26  *	Jesse Barnes <jesse.barnes@intel.com>
27  */
28 
29 #include <linux/delay.h>
30 #include <linux/hdmi.h>
31 #include <linux/i2c.h>
32 #include <linux/slab.h>
33 
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_edid.h>
37 #include <drm/drm_hdcp.h>
38 #include <drm/drm_scdc_helper.h>
39 #include <drm/intel_lpe_audio.h>
40 
41 #include "i915_debugfs.h"
42 #include "i915_drv.h"
43 #include "intel_atomic.h"
44 #include "intel_connector.h"
45 #include "intel_ddi.h"
46 #include "intel_de.h"
47 #include "intel_display_types.h"
48 #include "intel_dp.h"
49 #include "intel_gmbus.h"
50 #include "intel_hdcp.h"
51 #include "intel_hdmi.h"
52 #include "intel_lspcon.h"
53 #include "intel_panel.h"
54 #include "intel_snps_phy.h"
55 
56 static struct drm_i915_private *intel_hdmi_to_i915(struct intel_hdmi *intel_hdmi)
57 {
58 	return to_i915(hdmi_to_dig_port(intel_hdmi)->base.base.dev);
59 }
60 
61 static void
62 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
63 {
64 	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(intel_hdmi);
65 	u32 enabled_bits;
66 
67 	enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
68 
69 	drm_WARN(&dev_priv->drm,
70 		 intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits,
71 		 "HDMI port enabled, expecting disabled\n");
72 }
73 
74 static void
75 assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv,
76 				     enum transcoder cpu_transcoder)
77 {
78 	drm_WARN(&dev_priv->drm,
79 		 intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) &
80 		 TRANS_DDI_FUNC_ENABLE,
81 		 "HDMI transcoder function enabled, expecting disabled\n");
82 }
83 
84 static u32 g4x_infoframe_index(unsigned int type)
85 {
86 	switch (type) {
87 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
88 		return VIDEO_DIP_SELECT_GAMUT;
89 	case HDMI_INFOFRAME_TYPE_AVI:
90 		return VIDEO_DIP_SELECT_AVI;
91 	case HDMI_INFOFRAME_TYPE_SPD:
92 		return VIDEO_DIP_SELECT_SPD;
93 	case HDMI_INFOFRAME_TYPE_VENDOR:
94 		return VIDEO_DIP_SELECT_VENDOR;
95 	default:
96 		MISSING_CASE(type);
97 		return 0;
98 	}
99 }
100 
101 static u32 g4x_infoframe_enable(unsigned int type)
102 {
103 	switch (type) {
104 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
105 		return VIDEO_DIP_ENABLE_GCP;
106 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
107 		return VIDEO_DIP_ENABLE_GAMUT;
108 	case DP_SDP_VSC:
109 		return 0;
110 	case HDMI_INFOFRAME_TYPE_AVI:
111 		return VIDEO_DIP_ENABLE_AVI;
112 	case HDMI_INFOFRAME_TYPE_SPD:
113 		return VIDEO_DIP_ENABLE_SPD;
114 	case HDMI_INFOFRAME_TYPE_VENDOR:
115 		return VIDEO_DIP_ENABLE_VENDOR;
116 	case HDMI_INFOFRAME_TYPE_DRM:
117 		return 0;
118 	default:
119 		MISSING_CASE(type);
120 		return 0;
121 	}
122 }
123 
124 static u32 hsw_infoframe_enable(unsigned int type)
125 {
126 	switch (type) {
127 	case HDMI_PACKET_TYPE_GENERAL_CONTROL:
128 		return VIDEO_DIP_ENABLE_GCP_HSW;
129 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
130 		return VIDEO_DIP_ENABLE_GMP_HSW;
131 	case DP_SDP_VSC:
132 		return VIDEO_DIP_ENABLE_VSC_HSW;
133 	case DP_SDP_PPS:
134 		return VDIP_ENABLE_PPS;
135 	case HDMI_INFOFRAME_TYPE_AVI:
136 		return VIDEO_DIP_ENABLE_AVI_HSW;
137 	case HDMI_INFOFRAME_TYPE_SPD:
138 		return VIDEO_DIP_ENABLE_SPD_HSW;
139 	case HDMI_INFOFRAME_TYPE_VENDOR:
140 		return VIDEO_DIP_ENABLE_VS_HSW;
141 	case HDMI_INFOFRAME_TYPE_DRM:
142 		return VIDEO_DIP_ENABLE_DRM_GLK;
143 	default:
144 		MISSING_CASE(type);
145 		return 0;
146 	}
147 }
148 
149 static i915_reg_t
150 hsw_dip_data_reg(struct drm_i915_private *dev_priv,
151 		 enum transcoder cpu_transcoder,
152 		 unsigned int type,
153 		 int i)
154 {
155 	switch (type) {
156 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
157 		return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i);
158 	case DP_SDP_VSC:
159 		return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i);
160 	case DP_SDP_PPS:
161 		return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i);
162 	case HDMI_INFOFRAME_TYPE_AVI:
163 		return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
164 	case HDMI_INFOFRAME_TYPE_SPD:
165 		return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
166 	case HDMI_INFOFRAME_TYPE_VENDOR:
167 		return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
168 	case HDMI_INFOFRAME_TYPE_DRM:
169 		return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i);
170 	default:
171 		MISSING_CASE(type);
172 		return INVALID_MMIO_REG;
173 	}
174 }
175 
176 static int hsw_dip_data_size(struct drm_i915_private *dev_priv,
177 			     unsigned int type)
178 {
179 	switch (type) {
180 	case DP_SDP_VSC:
181 		return VIDEO_DIP_VSC_DATA_SIZE;
182 	case DP_SDP_PPS:
183 		return VIDEO_DIP_PPS_DATA_SIZE;
184 	case HDMI_PACKET_TYPE_GAMUT_METADATA:
185 		if (DISPLAY_VER(dev_priv) >= 11)
186 			return VIDEO_DIP_GMP_DATA_SIZE;
187 		else
188 			return VIDEO_DIP_DATA_SIZE;
189 	default:
190 		return VIDEO_DIP_DATA_SIZE;
191 	}
192 }
193 
194 static void g4x_write_infoframe(struct intel_encoder *encoder,
195 				const struct intel_crtc_state *crtc_state,
196 				unsigned int type,
197 				const void *frame, ssize_t len)
198 {
199 	const u32 *data = frame;
200 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
201 	u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
202 	int i;
203 
204 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
205 		 "Writing DIP with CTL reg disabled\n");
206 
207 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
208 	val |= g4x_infoframe_index(type);
209 
210 	val &= ~g4x_infoframe_enable(type);
211 
212 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
213 
214 	for (i = 0; i < len; i += 4) {
215 		intel_de_write(dev_priv, VIDEO_DIP_DATA, *data);
216 		data++;
217 	}
218 	/* Write every possible data byte to force correct ECC calculation. */
219 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
220 		intel_de_write(dev_priv, VIDEO_DIP_DATA, 0);
221 
222 	val |= g4x_infoframe_enable(type);
223 	val &= ~VIDEO_DIP_FREQ_MASK;
224 	val |= VIDEO_DIP_FREQ_VSYNC;
225 
226 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
227 	intel_de_posting_read(dev_priv, VIDEO_DIP_CTL);
228 }
229 
230 static void g4x_read_infoframe(struct intel_encoder *encoder,
231 			       const struct intel_crtc_state *crtc_state,
232 			       unsigned int type,
233 			       void *frame, ssize_t len)
234 {
235 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
236 	u32 val, *data = frame;
237 	int i;
238 
239 	val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
240 
241 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
242 	val |= g4x_infoframe_index(type);
243 
244 	intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
245 
246 	for (i = 0; i < len; i += 4)
247 		*data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA);
248 }
249 
250 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
251 				  const struct intel_crtc_state *pipe_config)
252 {
253 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
254 	u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
255 
256 	if ((val & VIDEO_DIP_ENABLE) == 0)
257 		return 0;
258 
259 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
260 		return 0;
261 
262 	return val & (VIDEO_DIP_ENABLE_AVI |
263 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
264 }
265 
266 static void ibx_write_infoframe(struct intel_encoder *encoder,
267 				const struct intel_crtc_state *crtc_state,
268 				unsigned int type,
269 				const void *frame, ssize_t len)
270 {
271 	const u32 *data = frame;
272 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
273 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
274 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
275 	u32 val = intel_de_read(dev_priv, reg);
276 	int i;
277 
278 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
279 		 "Writing DIP with CTL reg disabled\n");
280 
281 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
282 	val |= g4x_infoframe_index(type);
283 
284 	val &= ~g4x_infoframe_enable(type);
285 
286 	intel_de_write(dev_priv, reg, val);
287 
288 	for (i = 0; i < len; i += 4) {
289 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
290 			       *data);
291 		data++;
292 	}
293 	/* Write every possible data byte to force correct ECC calculation. */
294 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
295 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
296 
297 	val |= g4x_infoframe_enable(type);
298 	val &= ~VIDEO_DIP_FREQ_MASK;
299 	val |= VIDEO_DIP_FREQ_VSYNC;
300 
301 	intel_de_write(dev_priv, reg, val);
302 	intel_de_posting_read(dev_priv, reg);
303 }
304 
305 static void ibx_read_infoframe(struct intel_encoder *encoder,
306 			       const struct intel_crtc_state *crtc_state,
307 			       unsigned int type,
308 			       void *frame, ssize_t len)
309 {
310 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
311 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
312 	u32 val, *data = frame;
313 	int i;
314 
315 	val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
316 
317 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
318 	val |= g4x_infoframe_index(type);
319 
320 	intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
321 
322 	for (i = 0; i < len; i += 4)
323 		*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
324 }
325 
326 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
327 				  const struct intel_crtc_state *pipe_config)
328 {
329 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
330 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
331 	i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
332 	u32 val = intel_de_read(dev_priv, reg);
333 
334 	if ((val & VIDEO_DIP_ENABLE) == 0)
335 		return 0;
336 
337 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
338 		return 0;
339 
340 	return val & (VIDEO_DIP_ENABLE_AVI |
341 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
342 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
343 }
344 
345 static void cpt_write_infoframe(struct intel_encoder *encoder,
346 				const struct intel_crtc_state *crtc_state,
347 				unsigned int type,
348 				const void *frame, ssize_t len)
349 {
350 	const u32 *data = frame;
351 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
352 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
353 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
354 	u32 val = intel_de_read(dev_priv, reg);
355 	int i;
356 
357 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
358 		 "Writing DIP with CTL reg disabled\n");
359 
360 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
361 	val |= g4x_infoframe_index(type);
362 
363 	/* The DIP control register spec says that we need to update the AVI
364 	 * infoframe without clearing its enable bit */
365 	if (type != HDMI_INFOFRAME_TYPE_AVI)
366 		val &= ~g4x_infoframe_enable(type);
367 
368 	intel_de_write(dev_priv, reg, val);
369 
370 	for (i = 0; i < len; i += 4) {
371 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
372 			       *data);
373 		data++;
374 	}
375 	/* Write every possible data byte to force correct ECC calculation. */
376 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
377 		intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
378 
379 	val |= g4x_infoframe_enable(type);
380 	val &= ~VIDEO_DIP_FREQ_MASK;
381 	val |= VIDEO_DIP_FREQ_VSYNC;
382 
383 	intel_de_write(dev_priv, reg, val);
384 	intel_de_posting_read(dev_priv, reg);
385 }
386 
387 static void cpt_read_infoframe(struct intel_encoder *encoder,
388 			       const struct intel_crtc_state *crtc_state,
389 			       unsigned int type,
390 			       void *frame, ssize_t len)
391 {
392 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
393 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
394 	u32 val, *data = frame;
395 	int i;
396 
397 	val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
398 
399 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
400 	val |= g4x_infoframe_index(type);
401 
402 	intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
403 
404 	for (i = 0; i < len; i += 4)
405 		*data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
406 }
407 
408 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
409 				  const struct intel_crtc_state *pipe_config)
410 {
411 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
412 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
413 	u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe));
414 
415 	if ((val & VIDEO_DIP_ENABLE) == 0)
416 		return 0;
417 
418 	return val & (VIDEO_DIP_ENABLE_AVI |
419 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
420 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
421 }
422 
423 static void vlv_write_infoframe(struct intel_encoder *encoder,
424 				const struct intel_crtc_state *crtc_state,
425 				unsigned int type,
426 				const void *frame, ssize_t len)
427 {
428 	const u32 *data = frame;
429 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
430 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
431 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
432 	u32 val = intel_de_read(dev_priv, reg);
433 	int i;
434 
435 	drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
436 		 "Writing DIP with CTL reg disabled\n");
437 
438 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
439 	val |= g4x_infoframe_index(type);
440 
441 	val &= ~g4x_infoframe_enable(type);
442 
443 	intel_de_write(dev_priv, reg, val);
444 
445 	for (i = 0; i < len; i += 4) {
446 		intel_de_write(dev_priv,
447 			       VLV_TVIDEO_DIP_DATA(crtc->pipe), *data);
448 		data++;
449 	}
450 	/* Write every possible data byte to force correct ECC calculation. */
451 	for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
452 		intel_de_write(dev_priv,
453 			       VLV_TVIDEO_DIP_DATA(crtc->pipe), 0);
454 
455 	val |= g4x_infoframe_enable(type);
456 	val &= ~VIDEO_DIP_FREQ_MASK;
457 	val |= VIDEO_DIP_FREQ_VSYNC;
458 
459 	intel_de_write(dev_priv, reg, val);
460 	intel_de_posting_read(dev_priv, reg);
461 }
462 
463 static void vlv_read_infoframe(struct intel_encoder *encoder,
464 			       const struct intel_crtc_state *crtc_state,
465 			       unsigned int type,
466 			       void *frame, ssize_t len)
467 {
468 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
469 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
470 	u32 val, *data = frame;
471 	int i;
472 
473 	val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe));
474 
475 	val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
476 	val |= g4x_infoframe_index(type);
477 
478 	intel_de_write(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe), val);
479 
480 	for (i = 0; i < len; i += 4)
481 		*data++ = intel_de_read(dev_priv,
482 				        VLV_TVIDEO_DIP_DATA(crtc->pipe));
483 }
484 
485 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
486 				  const struct intel_crtc_state *pipe_config)
487 {
488 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
489 	enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
490 	u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe));
491 
492 	if ((val & VIDEO_DIP_ENABLE) == 0)
493 		return 0;
494 
495 	if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
496 		return 0;
497 
498 	return val & (VIDEO_DIP_ENABLE_AVI |
499 		      VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
500 		      VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
501 }
502 
503 void hsw_write_infoframe(struct intel_encoder *encoder,
504 			 const struct intel_crtc_state *crtc_state,
505 			 unsigned int type,
506 			 const void *frame, ssize_t len)
507 {
508 	const u32 *data = frame;
509 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
510 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
511 	i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
512 	int data_size;
513 	int i;
514 	u32 val = intel_de_read(dev_priv, ctl_reg);
515 
516 	data_size = hsw_dip_data_size(dev_priv, type);
517 
518 	drm_WARN_ON(&dev_priv->drm, len > data_size);
519 
520 	val &= ~hsw_infoframe_enable(type);
521 	intel_de_write(dev_priv, ctl_reg, val);
522 
523 	for (i = 0; i < len; i += 4) {
524 		intel_de_write(dev_priv,
525 			       hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
526 			       *data);
527 		data++;
528 	}
529 	/* Write every possible data byte to force correct ECC calculation. */
530 	for (; i < data_size; i += 4)
531 		intel_de_write(dev_priv,
532 			       hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
533 			       0);
534 
535 	/* Wa_14013475917 */
536 	if (DISPLAY_VER(dev_priv) == 13 && crtc_state->has_psr &&
537 	    type == DP_SDP_VSC)
538 		return;
539 
540 	val |= hsw_infoframe_enable(type);
541 	intel_de_write(dev_priv, ctl_reg, val);
542 	intel_de_posting_read(dev_priv, ctl_reg);
543 }
544 
545 void hsw_read_infoframe(struct intel_encoder *encoder,
546 			const struct intel_crtc_state *crtc_state,
547 			unsigned int type, void *frame, ssize_t len)
548 {
549 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
550 	enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
551 	u32 *data = frame;
552 	int i;
553 
554 	for (i = 0; i < len; i += 4)
555 		*data++ = intel_de_read(dev_priv,
556 				        hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2));
557 }
558 
559 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
560 				  const struct intel_crtc_state *pipe_config)
561 {
562 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
563 	u32 val = intel_de_read(dev_priv,
564 				HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
565 	u32 mask;
566 
567 	mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
568 		VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
569 		VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
570 
571 	if (DISPLAY_VER(dev_priv) >= 10)
572 		mask |= VIDEO_DIP_ENABLE_DRM_GLK;
573 
574 	return val & mask;
575 }
576 
577 static const u8 infoframe_type_to_idx[] = {
578 	HDMI_PACKET_TYPE_GENERAL_CONTROL,
579 	HDMI_PACKET_TYPE_GAMUT_METADATA,
580 	DP_SDP_VSC,
581 	HDMI_INFOFRAME_TYPE_AVI,
582 	HDMI_INFOFRAME_TYPE_SPD,
583 	HDMI_INFOFRAME_TYPE_VENDOR,
584 	HDMI_INFOFRAME_TYPE_DRM,
585 };
586 
587 u32 intel_hdmi_infoframe_enable(unsigned int type)
588 {
589 	int i;
590 
591 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
592 		if (infoframe_type_to_idx[i] == type)
593 			return BIT(i);
594 	}
595 
596 	return 0;
597 }
598 
599 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
600 				  const struct intel_crtc_state *crtc_state)
601 {
602 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
603 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
604 	u32 val, ret = 0;
605 	int i;
606 
607 	val = dig_port->infoframes_enabled(encoder, crtc_state);
608 
609 	/* map from hardware bits to dip idx */
610 	for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
611 		unsigned int type = infoframe_type_to_idx[i];
612 
613 		if (HAS_DDI(dev_priv)) {
614 			if (val & hsw_infoframe_enable(type))
615 				ret |= BIT(i);
616 		} else {
617 			if (val & g4x_infoframe_enable(type))
618 				ret |= BIT(i);
619 		}
620 	}
621 
622 	return ret;
623 }
624 
625 /*
626  * The data we write to the DIP data buffer registers is 1 byte bigger than the
627  * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
628  * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
629  * used for both technologies.
630  *
631  * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
632  * DW1:       DB3       | DB2 | DB1 | DB0
633  * DW2:       DB7       | DB6 | DB5 | DB4
634  * DW3: ...
635  *
636  * (HB is Header Byte, DB is Data Byte)
637  *
638  * The hdmi pack() functions don't know about that hardware specific hole so we
639  * trick them by giving an offset into the buffer and moving back the header
640  * bytes by one.
641  */
642 static void intel_write_infoframe(struct intel_encoder *encoder,
643 				  const struct intel_crtc_state *crtc_state,
644 				  enum hdmi_infoframe_type type,
645 				  const union hdmi_infoframe *frame)
646 {
647 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
648 	u8 buffer[VIDEO_DIP_DATA_SIZE];
649 	ssize_t len;
650 
651 	if ((crtc_state->infoframes.enable &
652 	     intel_hdmi_infoframe_enable(type)) == 0)
653 		return;
654 
655 	if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
656 		return;
657 
658 	/* see comment above for the reason for this offset */
659 	len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
660 	if (drm_WARN_ON(encoder->base.dev, len < 0))
661 		return;
662 
663 	/* Insert the 'hole' (see big comment above) at position 3 */
664 	memmove(&buffer[0], &buffer[1], 3);
665 	buffer[3] = 0;
666 	len++;
667 
668 	dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
669 }
670 
671 void intel_read_infoframe(struct intel_encoder *encoder,
672 			  const struct intel_crtc_state *crtc_state,
673 			  enum hdmi_infoframe_type type,
674 			  union hdmi_infoframe *frame)
675 {
676 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
677 	u8 buffer[VIDEO_DIP_DATA_SIZE];
678 	int ret;
679 
680 	if ((crtc_state->infoframes.enable &
681 	     intel_hdmi_infoframe_enable(type)) == 0)
682 		return;
683 
684 	dig_port->read_infoframe(encoder, crtc_state,
685 				       type, buffer, sizeof(buffer));
686 
687 	/* Fill the 'hole' (see big comment above) at position 3 */
688 	memmove(&buffer[1], &buffer[0], 3);
689 
690 	/* see comment above for the reason for this offset */
691 	ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
692 	if (ret) {
693 		drm_dbg_kms(encoder->base.dev,
694 			    "Failed to unpack infoframe type 0x%02x\n", type);
695 		return;
696 	}
697 
698 	if (frame->any.type != type)
699 		drm_dbg_kms(encoder->base.dev,
700 			    "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
701 			    frame->any.type, type);
702 }
703 
704 static bool
705 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
706 				 struct intel_crtc_state *crtc_state,
707 				 struct drm_connector_state *conn_state)
708 {
709 	struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
710 	const struct drm_display_mode *adjusted_mode =
711 		&crtc_state->hw.adjusted_mode;
712 	struct drm_connector *connector = conn_state->connector;
713 	int ret;
714 
715 	if (!crtc_state->has_infoframe)
716 		return true;
717 
718 	crtc_state->infoframes.enable |=
719 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
720 
721 	ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
722 						       adjusted_mode);
723 	if (ret)
724 		return false;
725 
726 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
727 		frame->colorspace = HDMI_COLORSPACE_YUV420;
728 	else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
729 		frame->colorspace = HDMI_COLORSPACE_YUV444;
730 	else
731 		frame->colorspace = HDMI_COLORSPACE_RGB;
732 
733 	drm_hdmi_avi_infoframe_colorspace(frame, conn_state);
734 
735 	/* nonsense combination */
736 	drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
737 		    crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
738 
739 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
740 		drm_hdmi_avi_infoframe_quant_range(frame, connector,
741 						   adjusted_mode,
742 						   crtc_state->limited_color_range ?
743 						   HDMI_QUANTIZATION_RANGE_LIMITED :
744 						   HDMI_QUANTIZATION_RANGE_FULL);
745 	} else {
746 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
747 		frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
748 	}
749 
750 	drm_hdmi_avi_infoframe_content_type(frame, conn_state);
751 
752 	/* TODO: handle pixel repetition for YCBCR420 outputs */
753 
754 	ret = hdmi_avi_infoframe_check(frame);
755 	if (drm_WARN_ON(encoder->base.dev, ret))
756 		return false;
757 
758 	return true;
759 }
760 
761 static bool
762 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
763 				 struct intel_crtc_state *crtc_state,
764 				 struct drm_connector_state *conn_state)
765 {
766 	struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
767 	int ret;
768 
769 	if (!crtc_state->has_infoframe)
770 		return true;
771 
772 	crtc_state->infoframes.enable |=
773 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
774 
775 	ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
776 	if (drm_WARN_ON(encoder->base.dev, ret))
777 		return false;
778 
779 	frame->sdi = HDMI_SPD_SDI_PC;
780 
781 	ret = hdmi_spd_infoframe_check(frame);
782 	if (drm_WARN_ON(encoder->base.dev, ret))
783 		return false;
784 
785 	return true;
786 }
787 
788 static bool
789 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
790 				  struct intel_crtc_state *crtc_state,
791 				  struct drm_connector_state *conn_state)
792 {
793 	struct hdmi_vendor_infoframe *frame =
794 		&crtc_state->infoframes.hdmi.vendor.hdmi;
795 	const struct drm_display_info *info =
796 		&conn_state->connector->display_info;
797 	int ret;
798 
799 	if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
800 		return true;
801 
802 	crtc_state->infoframes.enable |=
803 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
804 
805 	ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
806 							  conn_state->connector,
807 							  &crtc_state->hw.adjusted_mode);
808 	if (drm_WARN_ON(encoder->base.dev, ret))
809 		return false;
810 
811 	ret = hdmi_vendor_infoframe_check(frame);
812 	if (drm_WARN_ON(encoder->base.dev, ret))
813 		return false;
814 
815 	return true;
816 }
817 
818 static bool
819 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
820 				 struct intel_crtc_state *crtc_state,
821 				 struct drm_connector_state *conn_state)
822 {
823 	struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
824 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
825 	int ret;
826 
827 	if (DISPLAY_VER(dev_priv) < 10)
828 		return true;
829 
830 	if (!crtc_state->has_infoframe)
831 		return true;
832 
833 	if (!conn_state->hdr_output_metadata)
834 		return true;
835 
836 	crtc_state->infoframes.enable |=
837 		intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
838 
839 	ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
840 	if (ret < 0) {
841 		drm_dbg_kms(&dev_priv->drm,
842 			    "couldn't set HDR metadata in infoframe\n");
843 		return false;
844 	}
845 
846 	ret = hdmi_drm_infoframe_check(frame);
847 	if (drm_WARN_ON(&dev_priv->drm, ret))
848 		return false;
849 
850 	return true;
851 }
852 
853 static void g4x_set_infoframes(struct intel_encoder *encoder,
854 			       bool enable,
855 			       const struct intel_crtc_state *crtc_state,
856 			       const struct drm_connector_state *conn_state)
857 {
858 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
859 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
860 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
861 	i915_reg_t reg = VIDEO_DIP_CTL;
862 	u32 val = intel_de_read(dev_priv, reg);
863 	u32 port = VIDEO_DIP_PORT(encoder->port);
864 
865 	assert_hdmi_port_disabled(intel_hdmi);
866 
867 	/* If the registers were not initialized yet, they might be zeroes,
868 	 * which means we're selecting the AVI DIP and we're setting its
869 	 * frequency to once. This seems to really confuse the HW and make
870 	 * things stop working (the register spec says the AVI always needs to
871 	 * be sent every VSync). So here we avoid writing to the register more
872 	 * than we need and also explicitly select the AVI DIP and explicitly
873 	 * set its frequency to every VSync. Avoiding to write it twice seems to
874 	 * be enough to solve the problem, but being defensive shouldn't hurt us
875 	 * either. */
876 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
877 
878 	if (!enable) {
879 		if (!(val & VIDEO_DIP_ENABLE))
880 			return;
881 		if (port != (val & VIDEO_DIP_PORT_MASK)) {
882 			drm_dbg_kms(&dev_priv->drm,
883 				    "video DIP still enabled on port %c\n",
884 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
885 			return;
886 		}
887 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
888 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
889 		intel_de_write(dev_priv, reg, val);
890 		intel_de_posting_read(dev_priv, reg);
891 		return;
892 	}
893 
894 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
895 		if (val & VIDEO_DIP_ENABLE) {
896 			drm_dbg_kms(&dev_priv->drm,
897 				    "video DIP already enabled on port %c\n",
898 				    (val & VIDEO_DIP_PORT_MASK) >> 29);
899 			return;
900 		}
901 		val &= ~VIDEO_DIP_PORT_MASK;
902 		val |= port;
903 	}
904 
905 	val |= VIDEO_DIP_ENABLE;
906 	val &= ~(VIDEO_DIP_ENABLE_AVI |
907 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
908 
909 	intel_de_write(dev_priv, reg, val);
910 	intel_de_posting_read(dev_priv, reg);
911 
912 	intel_write_infoframe(encoder, crtc_state,
913 			      HDMI_INFOFRAME_TYPE_AVI,
914 			      &crtc_state->infoframes.avi);
915 	intel_write_infoframe(encoder, crtc_state,
916 			      HDMI_INFOFRAME_TYPE_SPD,
917 			      &crtc_state->infoframes.spd);
918 	intel_write_infoframe(encoder, crtc_state,
919 			      HDMI_INFOFRAME_TYPE_VENDOR,
920 			      &crtc_state->infoframes.hdmi);
921 }
922 
923 /*
924  * Determine if default_phase=1 can be indicated in the GCP infoframe.
925  *
926  * From HDMI specification 1.4a:
927  * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
928  * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
929  * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
930  * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
931  *   phase of 0
932  */
933 static bool gcp_default_phase_possible(int pipe_bpp,
934 				       const struct drm_display_mode *mode)
935 {
936 	unsigned int pixels_per_group;
937 
938 	switch (pipe_bpp) {
939 	case 30:
940 		/* 4 pixels in 5 clocks */
941 		pixels_per_group = 4;
942 		break;
943 	case 36:
944 		/* 2 pixels in 3 clocks */
945 		pixels_per_group = 2;
946 		break;
947 	case 48:
948 		/* 1 pixel in 2 clocks */
949 		pixels_per_group = 1;
950 		break;
951 	default:
952 		/* phase information not relevant for 8bpc */
953 		return false;
954 	}
955 
956 	return mode->crtc_hdisplay % pixels_per_group == 0 &&
957 		mode->crtc_htotal % pixels_per_group == 0 &&
958 		mode->crtc_hblank_start % pixels_per_group == 0 &&
959 		mode->crtc_hblank_end % pixels_per_group == 0 &&
960 		mode->crtc_hsync_start % pixels_per_group == 0 &&
961 		mode->crtc_hsync_end % pixels_per_group == 0 &&
962 		((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
963 		 mode->crtc_htotal/2 % pixels_per_group == 0);
964 }
965 
966 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
967 					 const struct intel_crtc_state *crtc_state,
968 					 const struct drm_connector_state *conn_state)
969 {
970 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
971 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
972 	i915_reg_t reg;
973 
974 	if ((crtc_state->infoframes.enable &
975 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
976 		return false;
977 
978 	if (HAS_DDI(dev_priv))
979 		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
980 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
981 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
982 	else if (HAS_PCH_SPLIT(dev_priv))
983 		reg = TVIDEO_DIP_GCP(crtc->pipe);
984 	else
985 		return false;
986 
987 	intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp);
988 
989 	return true;
990 }
991 
992 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
993 				   struct intel_crtc_state *crtc_state)
994 {
995 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
996 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
997 	i915_reg_t reg;
998 
999 	if ((crtc_state->infoframes.enable &
1000 	     intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
1001 		return;
1002 
1003 	if (HAS_DDI(dev_priv))
1004 		reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
1005 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1006 		reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1007 	else if (HAS_PCH_SPLIT(dev_priv))
1008 		reg = TVIDEO_DIP_GCP(crtc->pipe);
1009 	else
1010 		return;
1011 
1012 	crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg);
1013 }
1014 
1015 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1016 					     struct intel_crtc_state *crtc_state,
1017 					     struct drm_connector_state *conn_state)
1018 {
1019 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1020 
1021 	if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1022 		return;
1023 
1024 	crtc_state->infoframes.enable |=
1025 		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1026 
1027 	/* Indicate color indication for deep color mode */
1028 	if (crtc_state->pipe_bpp > 24)
1029 		crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1030 
1031 	/* Enable default_phase whenever the display mode is suitably aligned */
1032 	if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1033 				       &crtc_state->hw.adjusted_mode))
1034 		crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1035 }
1036 
1037 static void ibx_set_infoframes(struct intel_encoder *encoder,
1038 			       bool enable,
1039 			       const struct intel_crtc_state *crtc_state,
1040 			       const struct drm_connector_state *conn_state)
1041 {
1042 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1043 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1044 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1045 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1046 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1047 	u32 val = intel_de_read(dev_priv, reg);
1048 	u32 port = VIDEO_DIP_PORT(encoder->port);
1049 
1050 	assert_hdmi_port_disabled(intel_hdmi);
1051 
1052 	/* See the big comment in g4x_set_infoframes() */
1053 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1054 
1055 	if (!enable) {
1056 		if (!(val & VIDEO_DIP_ENABLE))
1057 			return;
1058 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1059 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1060 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1061 		intel_de_write(dev_priv, reg, val);
1062 		intel_de_posting_read(dev_priv, reg);
1063 		return;
1064 	}
1065 
1066 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1067 		drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1068 			 "DIP already enabled on port %c\n",
1069 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1070 		val &= ~VIDEO_DIP_PORT_MASK;
1071 		val |= port;
1072 	}
1073 
1074 	val |= VIDEO_DIP_ENABLE;
1075 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1076 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1077 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1078 
1079 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1080 		val |= VIDEO_DIP_ENABLE_GCP;
1081 
1082 	intel_de_write(dev_priv, reg, val);
1083 	intel_de_posting_read(dev_priv, reg);
1084 
1085 	intel_write_infoframe(encoder, crtc_state,
1086 			      HDMI_INFOFRAME_TYPE_AVI,
1087 			      &crtc_state->infoframes.avi);
1088 	intel_write_infoframe(encoder, crtc_state,
1089 			      HDMI_INFOFRAME_TYPE_SPD,
1090 			      &crtc_state->infoframes.spd);
1091 	intel_write_infoframe(encoder, crtc_state,
1092 			      HDMI_INFOFRAME_TYPE_VENDOR,
1093 			      &crtc_state->infoframes.hdmi);
1094 }
1095 
1096 static void cpt_set_infoframes(struct intel_encoder *encoder,
1097 			       bool enable,
1098 			       const struct intel_crtc_state *crtc_state,
1099 			       const struct drm_connector_state *conn_state)
1100 {
1101 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1102 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1103 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1104 	i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1105 	u32 val = intel_de_read(dev_priv, reg);
1106 
1107 	assert_hdmi_port_disabled(intel_hdmi);
1108 
1109 	/* See the big comment in g4x_set_infoframes() */
1110 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1111 
1112 	if (!enable) {
1113 		if (!(val & VIDEO_DIP_ENABLE))
1114 			return;
1115 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1116 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1117 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1118 		intel_de_write(dev_priv, reg, val);
1119 		intel_de_posting_read(dev_priv, reg);
1120 		return;
1121 	}
1122 
1123 	/* Set both together, unset both together: see the spec. */
1124 	val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1125 	val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1126 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1127 
1128 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1129 		val |= VIDEO_DIP_ENABLE_GCP;
1130 
1131 	intel_de_write(dev_priv, reg, val);
1132 	intel_de_posting_read(dev_priv, reg);
1133 
1134 	intel_write_infoframe(encoder, crtc_state,
1135 			      HDMI_INFOFRAME_TYPE_AVI,
1136 			      &crtc_state->infoframes.avi);
1137 	intel_write_infoframe(encoder, crtc_state,
1138 			      HDMI_INFOFRAME_TYPE_SPD,
1139 			      &crtc_state->infoframes.spd);
1140 	intel_write_infoframe(encoder, crtc_state,
1141 			      HDMI_INFOFRAME_TYPE_VENDOR,
1142 			      &crtc_state->infoframes.hdmi);
1143 }
1144 
1145 static void vlv_set_infoframes(struct intel_encoder *encoder,
1146 			       bool enable,
1147 			       const struct intel_crtc_state *crtc_state,
1148 			       const struct drm_connector_state *conn_state)
1149 {
1150 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1151 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1152 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1153 	i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
1154 	u32 val = intel_de_read(dev_priv, reg);
1155 	u32 port = VIDEO_DIP_PORT(encoder->port);
1156 
1157 	assert_hdmi_port_disabled(intel_hdmi);
1158 
1159 	/* See the big comment in g4x_set_infoframes() */
1160 	val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1161 
1162 	if (!enable) {
1163 		if (!(val & VIDEO_DIP_ENABLE))
1164 			return;
1165 		val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1166 			 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1167 			 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1168 		intel_de_write(dev_priv, reg, val);
1169 		intel_de_posting_read(dev_priv, reg);
1170 		return;
1171 	}
1172 
1173 	if (port != (val & VIDEO_DIP_PORT_MASK)) {
1174 		drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1175 			 "DIP already enabled on port %c\n",
1176 			 (val & VIDEO_DIP_PORT_MASK) >> 29);
1177 		val &= ~VIDEO_DIP_PORT_MASK;
1178 		val |= port;
1179 	}
1180 
1181 	val |= VIDEO_DIP_ENABLE;
1182 	val &= ~(VIDEO_DIP_ENABLE_AVI |
1183 		 VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1184 		 VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1185 
1186 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1187 		val |= VIDEO_DIP_ENABLE_GCP;
1188 
1189 	intel_de_write(dev_priv, reg, val);
1190 	intel_de_posting_read(dev_priv, reg);
1191 
1192 	intel_write_infoframe(encoder, crtc_state,
1193 			      HDMI_INFOFRAME_TYPE_AVI,
1194 			      &crtc_state->infoframes.avi);
1195 	intel_write_infoframe(encoder, crtc_state,
1196 			      HDMI_INFOFRAME_TYPE_SPD,
1197 			      &crtc_state->infoframes.spd);
1198 	intel_write_infoframe(encoder, crtc_state,
1199 			      HDMI_INFOFRAME_TYPE_VENDOR,
1200 			      &crtc_state->infoframes.hdmi);
1201 }
1202 
1203 static void hsw_set_infoframes(struct intel_encoder *encoder,
1204 			       bool enable,
1205 			       const struct intel_crtc_state *crtc_state,
1206 			       const struct drm_connector_state *conn_state)
1207 {
1208 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1209 	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
1210 	u32 val = intel_de_read(dev_priv, reg);
1211 
1212 	assert_hdmi_transcoder_func_disabled(dev_priv,
1213 					     crtc_state->cpu_transcoder);
1214 
1215 	val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1216 		 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1217 		 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1218 		 VIDEO_DIP_ENABLE_DRM_GLK);
1219 
1220 	if (!enable) {
1221 		intel_de_write(dev_priv, reg, val);
1222 		intel_de_posting_read(dev_priv, reg);
1223 		return;
1224 	}
1225 
1226 	if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1227 		val |= VIDEO_DIP_ENABLE_GCP_HSW;
1228 
1229 	intel_de_write(dev_priv, reg, val);
1230 	intel_de_posting_read(dev_priv, reg);
1231 
1232 	intel_write_infoframe(encoder, crtc_state,
1233 			      HDMI_INFOFRAME_TYPE_AVI,
1234 			      &crtc_state->infoframes.avi);
1235 	intel_write_infoframe(encoder, crtc_state,
1236 			      HDMI_INFOFRAME_TYPE_SPD,
1237 			      &crtc_state->infoframes.spd);
1238 	intel_write_infoframe(encoder, crtc_state,
1239 			      HDMI_INFOFRAME_TYPE_VENDOR,
1240 			      &crtc_state->infoframes.hdmi);
1241 	intel_write_infoframe(encoder, crtc_state,
1242 			      HDMI_INFOFRAME_TYPE_DRM,
1243 			      &crtc_state->infoframes.drm);
1244 }
1245 
1246 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1247 {
1248 	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1249 	struct i2c_adapter *adapter =
1250 		intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
1251 
1252 	if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1253 		return;
1254 
1255 	drm_dbg_kms(&dev_priv->drm, "%s DP dual mode adaptor TMDS output\n",
1256 		    enable ? "Enabling" : "Disabling");
1257 
1258 	drm_dp_dual_mode_set_tmds_output(&dev_priv->drm, hdmi->dp_dual_mode.type, adapter, enable);
1259 }
1260 
1261 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1262 				unsigned int offset, void *buffer, size_t size)
1263 {
1264 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1265 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1266 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1267 							      hdmi->ddc_bus);
1268 	int ret;
1269 	u8 start = offset & 0xff;
1270 	struct i2c_msg msgs[] = {
1271 		{
1272 			.addr = DRM_HDCP_DDC_ADDR,
1273 			.flags = 0,
1274 			.len = 1,
1275 			.buf = &start,
1276 		},
1277 		{
1278 			.addr = DRM_HDCP_DDC_ADDR,
1279 			.flags = I2C_M_RD,
1280 			.len = size,
1281 			.buf = buffer
1282 		}
1283 	};
1284 	ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs));
1285 	if (ret == ARRAY_SIZE(msgs))
1286 		return 0;
1287 	return ret >= 0 ? -EIO : ret;
1288 }
1289 
1290 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1291 				 unsigned int offset, void *buffer, size_t size)
1292 {
1293 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1294 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1295 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1296 							      hdmi->ddc_bus);
1297 	int ret;
1298 	u8 *write_buf;
1299 	struct i2c_msg msg;
1300 
1301 	write_buf = kzalloc(size + 1, GFP_KERNEL);
1302 	if (!write_buf)
1303 		return -ENOMEM;
1304 
1305 	write_buf[0] = offset & 0xff;
1306 	memcpy(&write_buf[1], buffer, size);
1307 
1308 	msg.addr = DRM_HDCP_DDC_ADDR;
1309 	msg.flags = 0,
1310 	msg.len = size + 1,
1311 	msg.buf = write_buf;
1312 
1313 	ret = i2c_transfer(adapter, &msg, 1);
1314 	if (ret == 1)
1315 		ret = 0;
1316 	else if (ret >= 0)
1317 		ret = -EIO;
1318 
1319 	kfree(write_buf);
1320 	return ret;
1321 }
1322 
1323 static
1324 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1325 				  u8 *an)
1326 {
1327 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1328 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1329 	struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1330 							      hdmi->ddc_bus);
1331 	int ret;
1332 
1333 	ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1334 				    DRM_HDCP_AN_LEN);
1335 	if (ret) {
1336 		drm_dbg_kms(&i915->drm, "Write An over DDC failed (%d)\n",
1337 			    ret);
1338 		return ret;
1339 	}
1340 
1341 	ret = intel_gmbus_output_aksv(adapter);
1342 	if (ret < 0) {
1343 		drm_dbg_kms(&i915->drm, "Failed to output aksv (%d)\n", ret);
1344 		return ret;
1345 	}
1346 	return 0;
1347 }
1348 
1349 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1350 				     u8 *bksv)
1351 {
1352 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1353 
1354 	int ret;
1355 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1356 				   DRM_HDCP_KSV_LEN);
1357 	if (ret)
1358 		drm_dbg_kms(&i915->drm, "Read Bksv over DDC failed (%d)\n",
1359 			    ret);
1360 	return ret;
1361 }
1362 
1363 static
1364 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1365 				 u8 *bstatus)
1366 {
1367 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1368 
1369 	int ret;
1370 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1371 				   bstatus, DRM_HDCP_BSTATUS_LEN);
1372 	if (ret)
1373 		drm_dbg_kms(&i915->drm, "Read bstatus over DDC failed (%d)\n",
1374 			    ret);
1375 	return ret;
1376 }
1377 
1378 static
1379 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1380 				     bool *repeater_present)
1381 {
1382 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1383 	int ret;
1384 	u8 val;
1385 
1386 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1387 	if (ret) {
1388 		drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1389 			    ret);
1390 		return ret;
1391 	}
1392 	*repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1393 	return 0;
1394 }
1395 
1396 static
1397 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1398 				  u8 *ri_prime)
1399 {
1400 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1401 
1402 	int ret;
1403 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1404 				   ri_prime, DRM_HDCP_RI_LEN);
1405 	if (ret)
1406 		drm_dbg_kms(&i915->drm, "Read Ri' over DDC failed (%d)\n",
1407 			    ret);
1408 	return ret;
1409 }
1410 
1411 static
1412 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1413 				   bool *ksv_ready)
1414 {
1415 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1416 	int ret;
1417 	u8 val;
1418 
1419 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1420 	if (ret) {
1421 		drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1422 			    ret);
1423 		return ret;
1424 	}
1425 	*ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1426 	return 0;
1427 }
1428 
1429 static
1430 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1431 				  int num_downstream, u8 *ksv_fifo)
1432 {
1433 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1434 	int ret;
1435 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1436 				   ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1437 	if (ret) {
1438 		drm_dbg_kms(&i915->drm,
1439 			    "Read ksv fifo over DDC failed (%d)\n", ret);
1440 		return ret;
1441 	}
1442 	return 0;
1443 }
1444 
1445 static
1446 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1447 				      int i, u32 *part)
1448 {
1449 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1450 	int ret;
1451 
1452 	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1453 		return -EINVAL;
1454 
1455 	ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1456 				   part, DRM_HDCP_V_PRIME_PART_LEN);
1457 	if (ret)
1458 		drm_dbg_kms(&i915->drm, "Read V'[%d] over DDC failed (%d)\n",
1459 			    i, ret);
1460 	return ret;
1461 }
1462 
1463 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1464 					   enum transcoder cpu_transcoder)
1465 {
1466 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1467 	struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1468 	struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc);
1469 	u32 scanline;
1470 	int ret;
1471 
1472 	for (;;) {
1473 		scanline = intel_de_read(dev_priv, PIPEDSL(crtc->pipe));
1474 		if (scanline > 100 && scanline < 200)
1475 			break;
1476 		usleep_range(25, 50);
1477 	}
1478 
1479 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1480 					 false, TRANS_DDI_HDCP_SIGNALLING);
1481 	if (ret) {
1482 		drm_err(&dev_priv->drm,
1483 			"Disable HDCP signalling failed (%d)\n", ret);
1484 		return ret;
1485 	}
1486 
1487 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1488 					 true, TRANS_DDI_HDCP_SIGNALLING);
1489 	if (ret) {
1490 		drm_err(&dev_priv->drm,
1491 			"Enable HDCP signalling failed (%d)\n", ret);
1492 		return ret;
1493 	}
1494 
1495 	return 0;
1496 }
1497 
1498 static
1499 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1500 				      enum transcoder cpu_transcoder,
1501 				      bool enable)
1502 {
1503 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1504 	struct intel_connector *connector = hdmi->attached_connector;
1505 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1506 	int ret;
1507 
1508 	if (!enable)
1509 		usleep_range(6, 60); /* Bspec says >= 6us */
1510 
1511 	ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1512 					 cpu_transcoder, enable,
1513 					 TRANS_DDI_HDCP_SIGNALLING);
1514 	if (ret) {
1515 		drm_err(&dev_priv->drm, "%s HDCP signalling failed (%d)\n",
1516 			enable ? "Enable" : "Disable", ret);
1517 		return ret;
1518 	}
1519 
1520 	/*
1521 	 * WA: To fix incorrect positioning of the window of
1522 	 * opportunity and enc_en signalling in KABYLAKE.
1523 	 */
1524 	if (IS_KABYLAKE(dev_priv) && enable)
1525 		return kbl_repositioning_enc_en_signal(connector,
1526 						       cpu_transcoder);
1527 
1528 	return 0;
1529 }
1530 
1531 static
1532 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1533 				     struct intel_connector *connector)
1534 {
1535 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1536 	enum port port = dig_port->base.port;
1537 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1538 	int ret;
1539 	union {
1540 		u32 reg;
1541 		u8 shim[DRM_HDCP_RI_LEN];
1542 	} ri;
1543 
1544 	ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1545 	if (ret)
1546 		return false;
1547 
1548 	intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1549 
1550 	/* Wait for Ri prime match */
1551 	if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1552 		      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1553 		     (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1554 		drm_dbg_kms(&i915->drm, "Ri' mismatch detected (%x)\n",
1555 			intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
1556 							port)));
1557 		return false;
1558 	}
1559 	return true;
1560 }
1561 
1562 static
1563 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1564 				struct intel_connector *connector)
1565 {
1566 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1567 	int retry;
1568 
1569 	for (retry = 0; retry < 3; retry++)
1570 		if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1571 			return true;
1572 
1573 	drm_err(&i915->drm, "Link check failed\n");
1574 	return false;
1575 }
1576 
1577 struct hdcp2_hdmi_msg_timeout {
1578 	u8 msg_id;
1579 	u16 timeout;
1580 };
1581 
1582 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1583 	{ HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1584 	{ HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1585 	{ HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1586 	{ HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1587 	{ HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1588 };
1589 
1590 static
1591 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1592 				    u8 *rx_status)
1593 {
1594 	return intel_hdmi_hdcp_read(dig_port,
1595 				    HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1596 				    rx_status,
1597 				    HDCP_2_2_HDMI_RXSTATUS_LEN);
1598 }
1599 
1600 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1601 {
1602 	int i;
1603 
1604 	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1605 		if (is_paired)
1606 			return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1607 		else
1608 			return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1609 	}
1610 
1611 	for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1612 		if (hdcp2_msg_timeout[i].msg_id == msg_id)
1613 			return hdcp2_msg_timeout[i].timeout;
1614 	}
1615 
1616 	return -EINVAL;
1617 }
1618 
1619 static int
1620 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1621 			      u8 msg_id, bool *msg_ready,
1622 			      ssize_t *msg_sz)
1623 {
1624 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1625 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1626 	int ret;
1627 
1628 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1629 	if (ret < 0) {
1630 		drm_dbg_kms(&i915->drm, "rx_status read failed. Err %d\n",
1631 			    ret);
1632 		return ret;
1633 	}
1634 
1635 	*msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1636 		  rx_status[0]);
1637 
1638 	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1639 		*msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1640 			     *msg_sz);
1641 	else
1642 		*msg_ready = *msg_sz;
1643 
1644 	return 0;
1645 }
1646 
1647 static ssize_t
1648 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1649 			      u8 msg_id, bool paired)
1650 {
1651 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1652 	bool msg_ready = false;
1653 	int timeout, ret;
1654 	ssize_t msg_sz = 0;
1655 
1656 	timeout = get_hdcp2_msg_timeout(msg_id, paired);
1657 	if (timeout < 0)
1658 		return timeout;
1659 
1660 	ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1661 							     msg_id, &msg_ready,
1662 							     &msg_sz),
1663 			 !ret && msg_ready && msg_sz, timeout * 1000,
1664 			 1000, 5 * 1000);
1665 	if (ret)
1666 		drm_dbg_kms(&i915->drm, "msg_id: %d, ret: %d, timeout: %d\n",
1667 			    msg_id, ret, timeout);
1668 
1669 	return ret ? ret : msg_sz;
1670 }
1671 
1672 static
1673 int intel_hdmi_hdcp2_write_msg(struct intel_digital_port *dig_port,
1674 			       void *buf, size_t size)
1675 {
1676 	unsigned int offset;
1677 
1678 	offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1679 	return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1680 }
1681 
1682 static
1683 int intel_hdmi_hdcp2_read_msg(struct intel_digital_port *dig_port,
1684 			      u8 msg_id, void *buf, size_t size)
1685 {
1686 	struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1687 	struct intel_hdmi *hdmi = &dig_port->hdmi;
1688 	struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1689 	unsigned int offset;
1690 	ssize_t ret;
1691 
1692 	ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1693 					    hdcp->is_paired);
1694 	if (ret < 0)
1695 		return ret;
1696 
1697 	/*
1698 	 * Available msg size should be equal to or lesser than the
1699 	 * available buffer.
1700 	 */
1701 	if (ret > size) {
1702 		drm_dbg_kms(&i915->drm,
1703 			    "msg_sz(%zd) is more than exp size(%zu)\n",
1704 			    ret, size);
1705 		return -EINVAL;
1706 	}
1707 
1708 	offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1709 	ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1710 	if (ret)
1711 		drm_dbg_kms(&i915->drm, "Failed to read msg_id: %d(%zd)\n",
1712 			    msg_id, ret);
1713 
1714 	return ret;
1715 }
1716 
1717 static
1718 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1719 				struct intel_connector *connector)
1720 {
1721 	u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1722 	int ret;
1723 
1724 	ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1725 	if (ret)
1726 		return ret;
1727 
1728 	/*
1729 	 * Re-auth request and Link Integrity Failures are represented by
1730 	 * same bit. i.e reauth_req.
1731 	 */
1732 	if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1733 		ret = HDCP_REAUTH_REQUEST;
1734 	else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1735 		ret = HDCP_TOPOLOGY_CHANGE;
1736 
1737 	return ret;
1738 }
1739 
1740 static
1741 int intel_hdmi_hdcp2_capable(struct intel_digital_port *dig_port,
1742 			     bool *capable)
1743 {
1744 	u8 hdcp2_version;
1745 	int ret;
1746 
1747 	*capable = false;
1748 	ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1749 				   &hdcp2_version, sizeof(hdcp2_version));
1750 	if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1751 		*capable = true;
1752 
1753 	return ret;
1754 }
1755 
1756 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1757 	.write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1758 	.read_bksv = intel_hdmi_hdcp_read_bksv,
1759 	.read_bstatus = intel_hdmi_hdcp_read_bstatus,
1760 	.repeater_present = intel_hdmi_hdcp_repeater_present,
1761 	.read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1762 	.read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1763 	.read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1764 	.read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1765 	.toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1766 	.check_link = intel_hdmi_hdcp_check_link,
1767 	.write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1768 	.read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1769 	.check_2_2_link	= intel_hdmi_hdcp2_check_link,
1770 	.hdcp_2_2_capable = intel_hdmi_hdcp2_capable,
1771 	.protocol = HDCP_PROTOCOL_HDMI,
1772 };
1773 
1774 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1775 {
1776 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1777 	int max_tmds_clock, vbt_max_tmds_clock;
1778 
1779 	if (DISPLAY_VER(dev_priv) >= 10)
1780 		max_tmds_clock = 594000;
1781 	else if (DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv))
1782 		max_tmds_clock = 300000;
1783 	else if (DISPLAY_VER(dev_priv) >= 5)
1784 		max_tmds_clock = 225000;
1785 	else
1786 		max_tmds_clock = 165000;
1787 
1788 	vbt_max_tmds_clock = intel_bios_max_tmds_clock(encoder);
1789 	if (vbt_max_tmds_clock)
1790 		max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1791 
1792 	return max_tmds_clock;
1793 }
1794 
1795 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1796 				const struct drm_connector_state *conn_state)
1797 {
1798 	return hdmi->has_hdmi_sink &&
1799 		READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1800 }
1801 
1802 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1803 				 bool respect_downstream_limits,
1804 				 bool has_hdmi_sink)
1805 {
1806 	struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1807 	int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1808 
1809 	if (respect_downstream_limits) {
1810 		struct intel_connector *connector = hdmi->attached_connector;
1811 		const struct drm_display_info *info = &connector->base.display_info;
1812 
1813 		if (hdmi->dp_dual_mode.max_tmds_clock)
1814 			max_tmds_clock = min(max_tmds_clock,
1815 					     hdmi->dp_dual_mode.max_tmds_clock);
1816 
1817 		if (info->max_tmds_clock)
1818 			max_tmds_clock = min(max_tmds_clock,
1819 					     info->max_tmds_clock);
1820 		else if (!has_hdmi_sink)
1821 			max_tmds_clock = min(max_tmds_clock, 165000);
1822 	}
1823 
1824 	return max_tmds_clock;
1825 }
1826 
1827 static enum drm_mode_status
1828 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1829 		      int clock, bool respect_downstream_limits,
1830 		      bool has_hdmi_sink)
1831 {
1832 	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1833 
1834 	if (clock < 25000)
1835 		return MODE_CLOCK_LOW;
1836 	if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1837 					  has_hdmi_sink))
1838 		return MODE_CLOCK_HIGH;
1839 
1840 	/* GLK DPLL can't generate 446-480 MHz */
1841 	if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
1842 		return MODE_CLOCK_RANGE;
1843 
1844 	/* BXT/GLK DPLL can't generate 223-240 MHz */
1845 	if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1846 	    clock > 223333 && clock < 240000)
1847 		return MODE_CLOCK_RANGE;
1848 
1849 	/* CHV DPLL can't generate 216-240 MHz */
1850 	if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
1851 		return MODE_CLOCK_RANGE;
1852 
1853 	/*
1854 	 * SNPS PHYs' MPLLB table-based programming can only handle a fixed
1855 	 * set of link rates.
1856 	 *
1857 	 * FIXME: We will hopefully get an algorithmic way of programming
1858 	 * the MPLLB for HDMI in the future.
1859 	 */
1860 	if (IS_DG2(dev_priv))
1861 		return intel_snps_phy_check_hdmi_link_rate(clock);
1862 
1863 	return MODE_OK;
1864 }
1865 
1866 static int intel_hdmi_port_clock(int clock, int bpc)
1867 {
1868 	/*
1869 	 * Need to adjust the port link by:
1870 	 *  1.5x for 12bpc
1871 	 *  1.25x for 10bpc
1872 	 */
1873 	return clock * bpc / 8;
1874 }
1875 
1876 static bool intel_hdmi_bpc_possible(struct drm_connector *connector,
1877 				    int bpc, bool has_hdmi_sink, bool ycbcr420_output)
1878 {
1879 	struct drm_i915_private *i915 = to_i915(connector->dev);
1880 	const struct drm_display_info *info = &connector->display_info;
1881 	const struct drm_hdmi_info *hdmi = &info->hdmi;
1882 
1883 	switch (bpc) {
1884 	case 12:
1885 		if (HAS_GMCH(i915))
1886 			return false;
1887 
1888 		if (!has_hdmi_sink)
1889 			return false;
1890 
1891 		if (ycbcr420_output)
1892 			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36;
1893 		else
1894 			return info->edid_hdmi_dc_modes & DRM_EDID_HDMI_DC_36;
1895 	case 10:
1896 		if (DISPLAY_VER(i915) < 11)
1897 			return false;
1898 
1899 		if (!has_hdmi_sink)
1900 			return false;
1901 
1902 		if (ycbcr420_output)
1903 			return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30;
1904 		else
1905 			return info->edid_hdmi_dc_modes & DRM_EDID_HDMI_DC_30;
1906 	case 8:
1907 		return true;
1908 	default:
1909 		MISSING_CASE(bpc);
1910 		return false;
1911 	}
1912 }
1913 
1914 static enum drm_mode_status
1915 intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock,
1916 			    bool has_hdmi_sink, bool ycbcr420_output)
1917 {
1918 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1919 	enum drm_mode_status status;
1920 
1921 	if (ycbcr420_output)
1922 		clock /= 2;
1923 
1924 	/* check if we can do 8bpc */
1925 	status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 8),
1926 				       true, has_hdmi_sink);
1927 
1928 	/* if we can't do 8bpc we may still be able to do 12bpc */
1929 	if (status != MODE_OK &&
1930 	    intel_hdmi_bpc_possible(connector, 12, has_hdmi_sink, ycbcr420_output))
1931 		status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 12),
1932 					       true, has_hdmi_sink);
1933 
1934 	/* if we can't do 8,12bpc we may still be able to do 10bpc */
1935 	if (status != MODE_OK &&
1936 	    intel_hdmi_bpc_possible(connector, 10, has_hdmi_sink, ycbcr420_output))
1937 		status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 10),
1938 					       true, has_hdmi_sink);
1939 
1940 	return status;
1941 }
1942 
1943 static enum drm_mode_status
1944 intel_hdmi_mode_valid(struct drm_connector *connector,
1945 		      struct drm_display_mode *mode)
1946 {
1947 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1948 	struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1949 	enum drm_mode_status status;
1950 	int clock = mode->clock;
1951 	int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
1952 	bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
1953 	bool ycbcr_420_only;
1954 
1955 	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
1956 		return MODE_NO_DBLESCAN;
1957 
1958 	if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
1959 		clock *= 2;
1960 
1961 	if (clock > max_dotclk)
1962 		return MODE_CLOCK_HIGH;
1963 
1964 	if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
1965 		if (!has_hdmi_sink)
1966 			return MODE_CLOCK_LOW;
1967 		clock *= 2;
1968 	}
1969 
1970 	ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode);
1971 
1972 	status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, ycbcr_420_only);
1973 	if (status != MODE_OK) {
1974 		if (ycbcr_420_only ||
1975 		    !connector->ycbcr_420_allowed ||
1976 		    !drm_mode_is_420_also(&connector->display_info, mode))
1977 			return status;
1978 
1979 		status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, true);
1980 		if (status != MODE_OK)
1981 			return status;
1982 	}
1983 
1984 	return intel_mode_valid_max_plane_size(dev_priv, mode, false);
1985 }
1986 
1987 bool intel_hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state,
1988 				    int bpc, bool has_hdmi_sink, bool ycbcr420_output)
1989 {
1990 	struct drm_atomic_state *state = crtc_state->uapi.state;
1991 	struct drm_connector_state *connector_state;
1992 	struct drm_connector *connector;
1993 	int i;
1994 
1995 	if (crtc_state->pipe_bpp < bpc * 3)
1996 		return false;
1997 
1998 	for_each_new_connector_in_state(state, connector, connector_state, i) {
1999 		if (connector_state->crtc != crtc_state->uapi.crtc)
2000 			continue;
2001 
2002 		if (!intel_hdmi_bpc_possible(connector, bpc, has_hdmi_sink, ycbcr420_output))
2003 			return false;
2004 	}
2005 
2006 	return true;
2007 }
2008 
2009 static bool hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state,
2010 				     int bpc)
2011 {
2012 	struct drm_i915_private *dev_priv =
2013 		to_i915(crtc_state->uapi.crtc->dev);
2014 	const struct drm_display_mode *adjusted_mode =
2015 		&crtc_state->hw.adjusted_mode;
2016 
2017 	/*
2018 	 * HDMI deep color affects the clocks, so it's only possible
2019 	 * when not cloning with other encoder types.
2020 	 */
2021 	if (crtc_state->output_types != BIT(INTEL_OUTPUT_HDMI))
2022 		return false;
2023 
2024 	/* Display Wa_1405510057:icl,ehl */
2025 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 &&
2026 	    bpc == 10 && DISPLAY_VER(dev_priv) == 11 &&
2027 	    (adjusted_mode->crtc_hblank_end -
2028 	     adjusted_mode->crtc_hblank_start) % 8 == 2)
2029 		return false;
2030 
2031 	return intel_hdmi_deep_color_possible(crtc_state, bpc,
2032 					      crtc_state->has_hdmi_sink,
2033 					      crtc_state->output_format ==
2034 					      INTEL_OUTPUT_FORMAT_YCBCR420);
2035 }
2036 
2037 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2038 				  struct intel_crtc_state *crtc_state,
2039 				  int clock)
2040 {
2041 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2042 	int bpc;
2043 
2044 	for (bpc = 12; bpc >= 10; bpc -= 2) {
2045 		if (hdmi_deep_color_possible(crtc_state, bpc) &&
2046 		    hdmi_port_clock_valid(intel_hdmi,
2047 					  intel_hdmi_port_clock(clock, bpc),
2048 					  true, crtc_state->has_hdmi_sink) == MODE_OK)
2049 			return bpc;
2050 	}
2051 
2052 	return 8;
2053 }
2054 
2055 static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2056 				    struct intel_crtc_state *crtc_state)
2057 {
2058 	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2059 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2060 	const struct drm_display_mode *adjusted_mode =
2061 		&crtc_state->hw.adjusted_mode;
2062 	int bpc, clock = adjusted_mode->crtc_clock;
2063 
2064 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2065 		clock *= 2;
2066 
2067 	/* YCBCR420 TMDS rate requirement is half the pixel clock */
2068 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2069 		clock /= 2;
2070 
2071 	bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock);
2072 
2073 	crtc_state->port_clock = intel_hdmi_port_clock(clock, bpc);
2074 
2075 	/*
2076 	 * pipe_bpp could already be below 8bpc due to
2077 	 * FDI bandwidth constraints. We shouldn't bump it
2078 	 * back up to 8bpc in that case.
2079 	 */
2080 	if (crtc_state->pipe_bpp > bpc * 3)
2081 		crtc_state->pipe_bpp = bpc * 3;
2082 
2083 	drm_dbg_kms(&i915->drm,
2084 		    "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2085 		    bpc, crtc_state->pipe_bpp);
2086 
2087 	if (hdmi_port_clock_valid(intel_hdmi, crtc_state->port_clock,
2088 				  false, crtc_state->has_hdmi_sink) != MODE_OK) {
2089 		drm_dbg_kms(&i915->drm,
2090 			    "unsupported HDMI clock (%d kHz), rejecting mode\n",
2091 			    crtc_state->port_clock);
2092 		return -EINVAL;
2093 	}
2094 
2095 	return 0;
2096 }
2097 
2098 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2099 				    const struct drm_connector_state *conn_state)
2100 {
2101 	const struct intel_digital_connector_state *intel_conn_state =
2102 		to_intel_digital_connector_state(conn_state);
2103 	const struct drm_display_mode *adjusted_mode =
2104 		&crtc_state->hw.adjusted_mode;
2105 
2106 	/*
2107 	 * Our YCbCr output is always limited range.
2108 	 * crtc_state->limited_color_range only applies to RGB,
2109 	 * and it must never be set for YCbCr or we risk setting
2110 	 * some conflicting bits in PIPECONF which will mess up
2111 	 * the colors on the monitor.
2112 	 */
2113 	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2114 		return false;
2115 
2116 	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2117 		/* See CEA-861-E - 5.1 Default Encoding Parameters */
2118 		return crtc_state->has_hdmi_sink &&
2119 			drm_default_rgb_quant_range(adjusted_mode) ==
2120 			HDMI_QUANTIZATION_RANGE_LIMITED;
2121 	} else {
2122 		return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2123 	}
2124 }
2125 
2126 static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2127 				 const struct intel_crtc_state *crtc_state,
2128 				 const struct drm_connector_state *conn_state)
2129 {
2130 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2131 	const struct intel_digital_connector_state *intel_conn_state =
2132 		to_intel_digital_connector_state(conn_state);
2133 
2134 	if (!crtc_state->has_hdmi_sink)
2135 		return false;
2136 
2137 	if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2138 		return intel_hdmi->has_audio;
2139 	else
2140 		return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2141 }
2142 
2143 static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2144 					    struct intel_crtc_state *crtc_state,
2145 					    const struct drm_connector_state *conn_state)
2146 {
2147 	struct drm_connector *connector = conn_state->connector;
2148 	struct drm_i915_private *i915 = to_i915(connector->dev);
2149 	const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
2150 	int ret;
2151 	bool ycbcr_420_only;
2152 
2153 	ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, adjusted_mode);
2154 	if (connector->ycbcr_420_allowed && ycbcr_420_only) {
2155 		crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2156 	} else {
2157 		if (!connector->ycbcr_420_allowed && ycbcr_420_only)
2158 			drm_dbg_kms(&i915->drm,
2159 				    "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
2160 		crtc_state->output_format = INTEL_OUTPUT_FORMAT_RGB;
2161 	}
2162 
2163 	ret = intel_hdmi_compute_clock(encoder, crtc_state);
2164 	if (ret) {
2165 		if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_YCBCR420 &&
2166 		    connector->ycbcr_420_allowed &&
2167 		    drm_mode_is_420_also(&connector->display_info, adjusted_mode)) {
2168 			crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2169 			ret = intel_hdmi_compute_clock(encoder, crtc_state);
2170 		}
2171 	}
2172 
2173 	return ret;
2174 }
2175 
2176 int intel_hdmi_compute_config(struct intel_encoder *encoder,
2177 			      struct intel_crtc_state *pipe_config,
2178 			      struct drm_connector_state *conn_state)
2179 {
2180 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2181 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2182 	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2183 	struct drm_connector *connector = conn_state->connector;
2184 	struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2185 	int ret;
2186 
2187 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2188 		return -EINVAL;
2189 
2190 	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2191 	pipe_config->has_hdmi_sink = intel_has_hdmi_sink(intel_hdmi,
2192 							 conn_state);
2193 
2194 	if (pipe_config->has_hdmi_sink)
2195 		pipe_config->has_infoframe = true;
2196 
2197 	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2198 		pipe_config->pixel_multiplier = 2;
2199 
2200 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv))
2201 		pipe_config->has_pch_encoder = true;
2202 
2203 	pipe_config->has_audio =
2204 		intel_hdmi_has_audio(encoder, pipe_config, conn_state);
2205 
2206 	ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state);
2207 	if (ret)
2208 		return ret;
2209 
2210 	if (pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
2211 		ret = intel_panel_fitting(pipe_config, conn_state);
2212 		if (ret)
2213 			return ret;
2214 	}
2215 
2216 	pipe_config->limited_color_range =
2217 		intel_hdmi_limited_color_range(pipe_config, conn_state);
2218 
2219 	if (conn_state->picture_aspect_ratio)
2220 		adjusted_mode->picture_aspect_ratio =
2221 			conn_state->picture_aspect_ratio;
2222 
2223 	pipe_config->lane_count = 4;
2224 
2225 	if (scdc->scrambling.supported && DISPLAY_VER(dev_priv) >= 10) {
2226 		if (scdc->scrambling.low_rates)
2227 			pipe_config->hdmi_scrambling = true;
2228 
2229 		if (pipe_config->port_clock > 340000) {
2230 			pipe_config->hdmi_scrambling = true;
2231 			pipe_config->hdmi_high_tmds_clock_ratio = true;
2232 		}
2233 	}
2234 
2235 	intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2236 					 conn_state);
2237 
2238 	if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2239 		drm_dbg_kms(&dev_priv->drm, "bad AVI infoframe\n");
2240 		return -EINVAL;
2241 	}
2242 
2243 	if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2244 		drm_dbg_kms(&dev_priv->drm, "bad SPD infoframe\n");
2245 		return -EINVAL;
2246 	}
2247 
2248 	if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2249 		drm_dbg_kms(&dev_priv->drm, "bad HDMI infoframe\n");
2250 		return -EINVAL;
2251 	}
2252 
2253 	if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2254 		drm_dbg_kms(&dev_priv->drm, "bad DRM infoframe\n");
2255 		return -EINVAL;
2256 	}
2257 
2258 	return 0;
2259 }
2260 
2261 static void
2262 intel_hdmi_unset_edid(struct drm_connector *connector)
2263 {
2264 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2265 
2266 	intel_hdmi->has_hdmi_sink = false;
2267 	intel_hdmi->has_audio = false;
2268 
2269 	intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2270 	intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2271 
2272 	kfree(to_intel_connector(connector)->detect_edid);
2273 	to_intel_connector(connector)->detect_edid = NULL;
2274 }
2275 
2276 static void
2277 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector, bool has_edid)
2278 {
2279 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2280 	struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2281 	enum port port = hdmi_to_dig_port(hdmi)->base.port;
2282 	struct i2c_adapter *adapter =
2283 		intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
2284 	enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(&dev_priv->drm, adapter);
2285 
2286 	/*
2287 	 * Type 1 DVI adaptors are not required to implement any
2288 	 * registers, so we can't always detect their presence.
2289 	 * Ideally we should be able to check the state of the
2290 	 * CONFIG1 pin, but no such luck on our hardware.
2291 	 *
2292 	 * The only method left to us is to check the VBT to see
2293 	 * if the port is a dual mode capable DP port. But let's
2294 	 * only do that when we sucesfully read the EDID, to avoid
2295 	 * confusing log messages about DP dual mode adaptors when
2296 	 * there's nothing connected to the port.
2297 	 */
2298 	if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2299 		/* An overridden EDID imply that we want this port for testing.
2300 		 * Make sure not to set limits for that port.
2301 		 */
2302 		if (has_edid && !connector->override_edid &&
2303 		    intel_bios_is_port_dp_dual_mode(dev_priv, port)) {
2304 			drm_dbg_kms(&dev_priv->drm,
2305 				    "Assuming DP dual mode adaptor presence based on VBT\n");
2306 			type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2307 		} else {
2308 			type = DRM_DP_DUAL_MODE_NONE;
2309 		}
2310 	}
2311 
2312 	if (type == DRM_DP_DUAL_MODE_NONE)
2313 		return;
2314 
2315 	hdmi->dp_dual_mode.type = type;
2316 	hdmi->dp_dual_mode.max_tmds_clock =
2317 		drm_dp_dual_mode_max_tmds_clock(&dev_priv->drm, type, adapter);
2318 
2319 	drm_dbg_kms(&dev_priv->drm,
2320 		    "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2321 		    drm_dp_get_dual_mode_type_name(type),
2322 		    hdmi->dp_dual_mode.max_tmds_clock);
2323 }
2324 
2325 static bool
2326 intel_hdmi_set_edid(struct drm_connector *connector)
2327 {
2328 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2329 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2330 	intel_wakeref_t wakeref;
2331 	struct edid *edid;
2332 	bool connected = false;
2333 	struct i2c_adapter *i2c;
2334 
2335 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2336 
2337 	i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2338 
2339 	edid = drm_get_edid(connector, i2c);
2340 
2341 	if (!edid && !intel_gmbus_is_forced_bit(i2c)) {
2342 		drm_dbg_kms(&dev_priv->drm,
2343 			    "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2344 		intel_gmbus_force_bit(i2c, true);
2345 		edid = drm_get_edid(connector, i2c);
2346 		intel_gmbus_force_bit(i2c, false);
2347 	}
2348 
2349 	intel_hdmi_dp_dual_mode_detect(connector, edid != NULL);
2350 
2351 	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2352 
2353 	to_intel_connector(connector)->detect_edid = edid;
2354 	if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
2355 		intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
2356 		intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
2357 
2358 		connected = true;
2359 	}
2360 
2361 	cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid);
2362 
2363 	return connected;
2364 }
2365 
2366 static enum drm_connector_status
2367 intel_hdmi_detect(struct drm_connector *connector, bool force)
2368 {
2369 	enum drm_connector_status status = connector_status_disconnected;
2370 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2371 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2372 	struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2373 	intel_wakeref_t wakeref;
2374 
2375 	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
2376 		    connector->base.id, connector->name);
2377 
2378 	if (!INTEL_DISPLAY_ENABLED(dev_priv))
2379 		return connector_status_disconnected;
2380 
2381 	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2382 
2383 	if (DISPLAY_VER(dev_priv) >= 11 &&
2384 	    !intel_digital_port_connected(encoder))
2385 		goto out;
2386 
2387 	intel_hdmi_unset_edid(connector);
2388 
2389 	if (intel_hdmi_set_edid(connector))
2390 		status = connector_status_connected;
2391 
2392 out:
2393 	intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2394 
2395 	if (status != connector_status_connected)
2396 		cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2397 
2398 	/*
2399 	 * Make sure the refs for power wells enabled during detect are
2400 	 * dropped to avoid a new detect cycle triggered by HPD polling.
2401 	 */
2402 	intel_display_power_flush_work(dev_priv);
2403 
2404 	return status;
2405 }
2406 
2407 static void
2408 intel_hdmi_force(struct drm_connector *connector)
2409 {
2410 	struct drm_i915_private *i915 = to_i915(connector->dev);
2411 
2412 	drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
2413 		    connector->base.id, connector->name);
2414 
2415 	intel_hdmi_unset_edid(connector);
2416 
2417 	if (connector->status != connector_status_connected)
2418 		return;
2419 
2420 	intel_hdmi_set_edid(connector);
2421 }
2422 
2423 static int intel_hdmi_get_modes(struct drm_connector *connector)
2424 {
2425 	struct edid *edid;
2426 
2427 	edid = to_intel_connector(connector)->detect_edid;
2428 	if (edid == NULL)
2429 		return 0;
2430 
2431 	return intel_connector_update_modes(connector, edid);
2432 }
2433 
2434 static struct i2c_adapter *
2435 intel_hdmi_get_i2c_adapter(struct drm_connector *connector)
2436 {
2437 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2438 	struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2439 
2440 	return intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2441 }
2442 
2443 static void intel_hdmi_create_i2c_symlink(struct drm_connector *connector)
2444 {
2445 	struct drm_i915_private *i915 = to_i915(connector->dev);
2446 	struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2447 	struct kobject *i2c_kobj = &adapter->dev.kobj;
2448 	struct kobject *connector_kobj = &connector->kdev->kobj;
2449 	int ret;
2450 
2451 	ret = sysfs_create_link(connector_kobj, i2c_kobj, i2c_kobj->name);
2452 	if (ret)
2453 		drm_err(&i915->drm, "Failed to create i2c symlink (%d)\n", ret);
2454 }
2455 
2456 static void intel_hdmi_remove_i2c_symlink(struct drm_connector *connector)
2457 {
2458 	struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2459 	struct kobject *i2c_kobj = &adapter->dev.kobj;
2460 	struct kobject *connector_kobj = &connector->kdev->kobj;
2461 
2462 	sysfs_remove_link(connector_kobj, i2c_kobj->name);
2463 }
2464 
2465 static int
2466 intel_hdmi_connector_register(struct drm_connector *connector)
2467 {
2468 	int ret;
2469 
2470 	ret = intel_connector_register(connector);
2471 	if (ret)
2472 		return ret;
2473 
2474 	intel_hdmi_create_i2c_symlink(connector);
2475 
2476 	return ret;
2477 }
2478 
2479 static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2480 {
2481 	struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2482 
2483 	cec_notifier_conn_unregister(n);
2484 
2485 	intel_hdmi_remove_i2c_symlink(connector);
2486 	intel_connector_unregister(connector);
2487 }
2488 
2489 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2490 	.detect = intel_hdmi_detect,
2491 	.force = intel_hdmi_force,
2492 	.fill_modes = drm_helper_probe_single_connector_modes,
2493 	.atomic_get_property = intel_digital_connector_atomic_get_property,
2494 	.atomic_set_property = intel_digital_connector_atomic_set_property,
2495 	.late_register = intel_hdmi_connector_register,
2496 	.early_unregister = intel_hdmi_connector_unregister,
2497 	.destroy = intel_connector_destroy,
2498 	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2499 	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
2500 };
2501 
2502 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2503 	.get_modes = intel_hdmi_get_modes,
2504 	.mode_valid = intel_hdmi_mode_valid,
2505 	.atomic_check = intel_digital_connector_atomic_check,
2506 };
2507 
2508 static void
2509 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2510 {
2511 	struct drm_i915_private *dev_priv = to_i915(connector->dev);
2512 
2513 	intel_attach_force_audio_property(connector);
2514 	intel_attach_broadcast_rgb_property(connector);
2515 	intel_attach_aspect_ratio_property(connector);
2516 
2517 	intel_attach_hdmi_colorspace_property(connector);
2518 	drm_connector_attach_content_type_property(connector);
2519 
2520 	if (DISPLAY_VER(dev_priv) >= 10)
2521 		drm_connector_attach_hdr_output_metadata_property(connector);
2522 
2523 	if (!HAS_GMCH(dev_priv))
2524 		drm_connector_attach_max_bpc_property(connector, 8, 12);
2525 }
2526 
2527 /*
2528  * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2529  * @encoder: intel_encoder
2530  * @connector: drm_connector
2531  * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2532  *  or reset the high tmds clock ratio for scrambling
2533  * @scrambling: bool to Indicate if the function needs to set or reset
2534  *  sink scrambling
2535  *
2536  * This function handles scrambling on HDMI 2.0 capable sinks.
2537  * If required clock rate is > 340 Mhz && scrambling is supported by sink
2538  * it enables scrambling. This should be called before enabling the HDMI
2539  * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2540  * detect a scrambled clock within 100 ms.
2541  *
2542  * Returns:
2543  * True on success, false on failure.
2544  */
2545 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2546 				       struct drm_connector *connector,
2547 				       bool high_tmds_clock_ratio,
2548 				       bool scrambling)
2549 {
2550 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2551 	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2552 	struct drm_scrambling *sink_scrambling =
2553 		&connector->display_info.hdmi.scdc.scrambling;
2554 	struct i2c_adapter *adapter =
2555 		intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2556 
2557 	if (!sink_scrambling->supported)
2558 		return true;
2559 
2560 	drm_dbg_kms(&dev_priv->drm,
2561 		    "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2562 		    connector->base.id, connector->name,
2563 		    yesno(scrambling), high_tmds_clock_ratio ? 40 : 10);
2564 
2565 	/* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2566 	return drm_scdc_set_high_tmds_clock_ratio(adapter,
2567 						  high_tmds_clock_ratio) &&
2568 		drm_scdc_set_scrambling(adapter, scrambling);
2569 }
2570 
2571 static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2572 {
2573 	u8 ddc_pin;
2574 
2575 	switch (port) {
2576 	case PORT_B:
2577 		ddc_pin = GMBUS_PIN_DPB;
2578 		break;
2579 	case PORT_C:
2580 		ddc_pin = GMBUS_PIN_DPC;
2581 		break;
2582 	case PORT_D:
2583 		ddc_pin = GMBUS_PIN_DPD_CHV;
2584 		break;
2585 	default:
2586 		MISSING_CASE(port);
2587 		ddc_pin = GMBUS_PIN_DPB;
2588 		break;
2589 	}
2590 	return ddc_pin;
2591 }
2592 
2593 static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2594 {
2595 	u8 ddc_pin;
2596 
2597 	switch (port) {
2598 	case PORT_B:
2599 		ddc_pin = GMBUS_PIN_1_BXT;
2600 		break;
2601 	case PORT_C:
2602 		ddc_pin = GMBUS_PIN_2_BXT;
2603 		break;
2604 	default:
2605 		MISSING_CASE(port);
2606 		ddc_pin = GMBUS_PIN_1_BXT;
2607 		break;
2608 	}
2609 	return ddc_pin;
2610 }
2611 
2612 static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2613 			      enum port port)
2614 {
2615 	u8 ddc_pin;
2616 
2617 	switch (port) {
2618 	case PORT_B:
2619 		ddc_pin = GMBUS_PIN_1_BXT;
2620 		break;
2621 	case PORT_C:
2622 		ddc_pin = GMBUS_PIN_2_BXT;
2623 		break;
2624 	case PORT_D:
2625 		ddc_pin = GMBUS_PIN_4_CNP;
2626 		break;
2627 	case PORT_F:
2628 		ddc_pin = GMBUS_PIN_3_BXT;
2629 		break;
2630 	default:
2631 		MISSING_CASE(port);
2632 		ddc_pin = GMBUS_PIN_1_BXT;
2633 		break;
2634 	}
2635 	return ddc_pin;
2636 }
2637 
2638 static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2639 {
2640 	enum phy phy = intel_port_to_phy(dev_priv, port);
2641 
2642 	if (intel_phy_is_combo(dev_priv, phy))
2643 		return GMBUS_PIN_1_BXT + port;
2644 	else if (intel_phy_is_tc(dev_priv, phy))
2645 		return GMBUS_PIN_9_TC1_ICP + intel_port_to_tc(dev_priv, port);
2646 
2647 	drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port));
2648 	return GMBUS_PIN_2_BXT;
2649 }
2650 
2651 static u8 mcc_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2652 {
2653 	enum phy phy = intel_port_to_phy(dev_priv, port);
2654 	u8 ddc_pin;
2655 
2656 	switch (phy) {
2657 	case PHY_A:
2658 		ddc_pin = GMBUS_PIN_1_BXT;
2659 		break;
2660 	case PHY_B:
2661 		ddc_pin = GMBUS_PIN_2_BXT;
2662 		break;
2663 	case PHY_C:
2664 		ddc_pin = GMBUS_PIN_9_TC1_ICP;
2665 		break;
2666 	default:
2667 		MISSING_CASE(phy);
2668 		ddc_pin = GMBUS_PIN_1_BXT;
2669 		break;
2670 	}
2671 	return ddc_pin;
2672 }
2673 
2674 static u8 rkl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2675 {
2676 	enum phy phy = intel_port_to_phy(dev_priv, port);
2677 
2678 	WARN_ON(port == PORT_C);
2679 
2680 	/*
2681 	 * Pin mapping for RKL depends on which PCH is present.  With TGP, the
2682 	 * final two outputs use type-c pins, even though they're actually
2683 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2684 	 * all outputs.
2685 	 */
2686 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
2687 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2688 
2689 	return GMBUS_PIN_1_BXT + phy;
2690 }
2691 
2692 static u8 gen9bc_tgp_port_to_ddc_pin(struct drm_i915_private *i915, enum port port)
2693 {
2694 	enum phy phy = intel_port_to_phy(i915, port);
2695 
2696 	drm_WARN_ON(&i915->drm, port == PORT_A);
2697 
2698 	/*
2699 	 * Pin mapping for GEN9 BC depends on which PCH is present.  With TGP,
2700 	 * final two outputs use type-c pins, even though they're actually
2701 	 * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2702 	 * all outputs.
2703 	 */
2704 	if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
2705 		return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2706 
2707 	return GMBUS_PIN_1_BXT + phy;
2708 }
2709 
2710 static u8 dg1_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2711 {
2712 	return intel_port_to_phy(dev_priv, port) + 1;
2713 }
2714 
2715 static u8 adls_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2716 {
2717 	enum phy phy = intel_port_to_phy(dev_priv, port);
2718 
2719 	WARN_ON(port == PORT_B || port == PORT_C);
2720 
2721 	/*
2722 	 * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2723 	 * except first combo output.
2724 	 */
2725 	if (phy == PHY_A)
2726 		return GMBUS_PIN_1_BXT;
2727 
2728 	return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2729 }
2730 
2731 static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2732 			      enum port port)
2733 {
2734 	u8 ddc_pin;
2735 
2736 	switch (port) {
2737 	case PORT_B:
2738 		ddc_pin = GMBUS_PIN_DPB;
2739 		break;
2740 	case PORT_C:
2741 		ddc_pin = GMBUS_PIN_DPC;
2742 		break;
2743 	case PORT_D:
2744 		ddc_pin = GMBUS_PIN_DPD;
2745 		break;
2746 	default:
2747 		MISSING_CASE(port);
2748 		ddc_pin = GMBUS_PIN_DPB;
2749 		break;
2750 	}
2751 	return ddc_pin;
2752 }
2753 
2754 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2755 {
2756 	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2757 	enum port port = encoder->port;
2758 	u8 ddc_pin;
2759 
2760 	ddc_pin = intel_bios_alternate_ddc_pin(encoder);
2761 	if (ddc_pin) {
2762 		drm_dbg_kms(&dev_priv->drm,
2763 			    "Using DDC pin 0x%x for port %c (VBT)\n",
2764 			    ddc_pin, port_name(port));
2765 		return ddc_pin;
2766 	}
2767 
2768 	if (IS_ALDERLAKE_S(dev_priv))
2769 		ddc_pin = adls_port_to_ddc_pin(dev_priv, port);
2770 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
2771 		ddc_pin = dg1_port_to_ddc_pin(dev_priv, port);
2772 	else if (IS_ROCKETLAKE(dev_priv))
2773 		ddc_pin = rkl_port_to_ddc_pin(dev_priv, port);
2774 	else if (DISPLAY_VER(dev_priv) == 9 && HAS_PCH_TGP(dev_priv))
2775 		ddc_pin = gen9bc_tgp_port_to_ddc_pin(dev_priv, port);
2776 	else if (HAS_PCH_MCC(dev_priv))
2777 		ddc_pin = mcc_port_to_ddc_pin(dev_priv, port);
2778 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2779 		ddc_pin = icl_port_to_ddc_pin(dev_priv, port);
2780 	else if (HAS_PCH_CNP(dev_priv))
2781 		ddc_pin = cnp_port_to_ddc_pin(dev_priv, port);
2782 	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
2783 		ddc_pin = bxt_port_to_ddc_pin(dev_priv, port);
2784 	else if (IS_CHERRYVIEW(dev_priv))
2785 		ddc_pin = chv_port_to_ddc_pin(dev_priv, port);
2786 	else
2787 		ddc_pin = g4x_port_to_ddc_pin(dev_priv, port);
2788 
2789 	drm_dbg_kms(&dev_priv->drm,
2790 		    "Using DDC pin 0x%x for port %c (platform default)\n",
2791 		    ddc_pin, port_name(port));
2792 
2793 	return ddc_pin;
2794 }
2795 
2796 void intel_infoframe_init(struct intel_digital_port *dig_port)
2797 {
2798 	struct drm_i915_private *dev_priv =
2799 		to_i915(dig_port->base.base.dev);
2800 
2801 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2802 		dig_port->write_infoframe = vlv_write_infoframe;
2803 		dig_port->read_infoframe = vlv_read_infoframe;
2804 		dig_port->set_infoframes = vlv_set_infoframes;
2805 		dig_port->infoframes_enabled = vlv_infoframes_enabled;
2806 	} else if (IS_G4X(dev_priv)) {
2807 		dig_port->write_infoframe = g4x_write_infoframe;
2808 		dig_port->read_infoframe = g4x_read_infoframe;
2809 		dig_port->set_infoframes = g4x_set_infoframes;
2810 		dig_port->infoframes_enabled = g4x_infoframes_enabled;
2811 	} else if (HAS_DDI(dev_priv)) {
2812 		if (intel_bios_is_lspcon_present(dev_priv, dig_port->base.port)) {
2813 			dig_port->write_infoframe = lspcon_write_infoframe;
2814 			dig_port->read_infoframe = lspcon_read_infoframe;
2815 			dig_port->set_infoframes = lspcon_set_infoframes;
2816 			dig_port->infoframes_enabled = lspcon_infoframes_enabled;
2817 		} else {
2818 			dig_port->write_infoframe = hsw_write_infoframe;
2819 			dig_port->read_infoframe = hsw_read_infoframe;
2820 			dig_port->set_infoframes = hsw_set_infoframes;
2821 			dig_port->infoframes_enabled = hsw_infoframes_enabled;
2822 		}
2823 	} else if (HAS_PCH_IBX(dev_priv)) {
2824 		dig_port->write_infoframe = ibx_write_infoframe;
2825 		dig_port->read_infoframe = ibx_read_infoframe;
2826 		dig_port->set_infoframes = ibx_set_infoframes;
2827 		dig_port->infoframes_enabled = ibx_infoframes_enabled;
2828 	} else {
2829 		dig_port->write_infoframe = cpt_write_infoframe;
2830 		dig_port->read_infoframe = cpt_read_infoframe;
2831 		dig_port->set_infoframes = cpt_set_infoframes;
2832 		dig_port->infoframes_enabled = cpt_infoframes_enabled;
2833 	}
2834 }
2835 
2836 void intel_hdmi_init_connector(struct intel_digital_port *dig_port,
2837 			       struct intel_connector *intel_connector)
2838 {
2839 	struct drm_connector *connector = &intel_connector->base;
2840 	struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
2841 	struct intel_encoder *intel_encoder = &dig_port->base;
2842 	struct drm_device *dev = intel_encoder->base.dev;
2843 	struct drm_i915_private *dev_priv = to_i915(dev);
2844 	struct i2c_adapter *ddc;
2845 	enum port port = intel_encoder->port;
2846 	struct cec_connector_info conn_info;
2847 
2848 	drm_dbg_kms(&dev_priv->drm,
2849 		    "Adding HDMI connector on [ENCODER:%d:%s]\n",
2850 		    intel_encoder->base.base.id, intel_encoder->base.name);
2851 
2852 	if (DISPLAY_VER(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A))
2853 		return;
2854 
2855 	if (drm_WARN(dev, dig_port->max_lanes < 4,
2856 		     "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
2857 		     dig_port->max_lanes, intel_encoder->base.base.id,
2858 		     intel_encoder->base.name))
2859 		return;
2860 
2861 	intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(intel_encoder);
2862 	ddc = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2863 
2864 	drm_connector_init_with_ddc(dev, connector,
2865 				    &intel_hdmi_connector_funcs,
2866 				    DRM_MODE_CONNECTOR_HDMIA,
2867 				    ddc);
2868 	drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
2869 
2870 	connector->interlace_allowed = 1;
2871 	connector->doublescan_allowed = 0;
2872 	connector->stereo_allowed = 1;
2873 
2874 	if (DISPLAY_VER(dev_priv) >= 10)
2875 		connector->ycbcr_420_allowed = true;
2876 
2877 	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
2878 
2879 	if (HAS_DDI(dev_priv))
2880 		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2881 	else
2882 		intel_connector->get_hw_state = intel_connector_get_hw_state;
2883 
2884 	intel_hdmi_add_properties(intel_hdmi, connector);
2885 
2886 	intel_connector_attach_encoder(intel_connector, intel_encoder);
2887 	intel_hdmi->attached_connector = intel_connector;
2888 
2889 	if (is_hdcp_supported(dev_priv, port)) {
2890 		int ret = intel_hdcp_init(intel_connector, dig_port,
2891 					  &intel_hdmi_hdcp_shim);
2892 		if (ret)
2893 			drm_dbg_kms(&dev_priv->drm,
2894 				    "HDCP init failed, skipping.\n");
2895 	}
2896 
2897 	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2898 	 * 0xd.  Failure to do so will result in spurious interrupts being
2899 	 * generated on the port when a cable is not attached.
2900 	 */
2901 	if (IS_G45(dev_priv)) {
2902 		u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
2903 		intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
2904 		               (temp & ~0xf) | 0xd);
2905 	}
2906 
2907 	cec_fill_conn_info_from_drm(&conn_info, connector);
2908 
2909 	intel_hdmi->cec_notifier =
2910 		cec_notifier_conn_register(dev->dev, port_identifier(port),
2911 					   &conn_info);
2912 	if (!intel_hdmi->cec_notifier)
2913 		drm_dbg_kms(&dev_priv->drm, "CEC notifier get failed\n");
2914 }
2915 
2916 /*
2917  * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
2918  * @vactive: Vactive of a display mode
2919  *
2920  * @return: appropriate dsc slice height for a given mode.
2921  */
2922 int intel_hdmi_dsc_get_slice_height(int vactive)
2923 {
2924 	int slice_height;
2925 
2926 	/*
2927 	 * Slice Height determination : HDMI2.1 Section 7.7.5.2
2928 	 * Select smallest slice height >=96, that results in a valid PPS and
2929 	 * requires minimum padding lines required for final slice.
2930 	 *
2931 	 * Assumption : Vactive is even.
2932 	 */
2933 	for (slice_height = 96; slice_height <= vactive; slice_height += 2)
2934 		if (vactive % slice_height == 0)
2935 			return slice_height;
2936 
2937 	return 0;
2938 }
2939 
2940 /*
2941  * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
2942  * and dsc decoder capabilities
2943  *
2944  * @crtc_state: intel crtc_state
2945  * @src_max_slices: maximum slices supported by the DSC encoder
2946  * @src_max_slice_width: maximum slice width supported by DSC encoder
2947  * @hdmi_max_slices: maximum slices supported by sink DSC decoder
2948  * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
2949  *
2950  * @return: num of dsc slices that can be supported by the dsc encoder
2951  * and decoder.
2952  */
2953 int
2954 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
2955 			      int src_max_slices, int src_max_slice_width,
2956 			      int hdmi_max_slices, int hdmi_throughput)
2957 {
2958 /* Pixel rates in KPixels/sec */
2959 #define HDMI_DSC_PEAK_PIXEL_RATE		2720000
2960 /*
2961  * Rates at which the source and sink are required to process pixels in each
2962  * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
2963  */
2964 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0		340000
2965 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1		400000
2966 
2967 /* Spec limits the slice width to 2720 pixels */
2968 #define MAX_HDMI_SLICE_WIDTH			2720
2969 	int kslice_adjust;
2970 	int adjusted_clk_khz;
2971 	int min_slices;
2972 	int target_slices;
2973 	int max_throughput; /* max clock freq. in khz per slice */
2974 	int max_slice_width;
2975 	int slice_width;
2976 	int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
2977 
2978 	if (!hdmi_throughput)
2979 		return 0;
2980 
2981 	/*
2982 	 * Slice Width determination : HDMI2.1 Section 7.7.5.1
2983 	 * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
2984 	 * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
2985 	 * dividing adjusted clock value by 10.
2986 	 */
2987 	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
2988 	    crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2989 		kslice_adjust = 10;
2990 	else
2991 		kslice_adjust = 5;
2992 
2993 	/*
2994 	 * As per spec, the rate at which the source and the sink process
2995 	 * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
2996 	 * This depends upon the pixel clock rate and output formats
2997 	 * (kslice adjust).
2998 	 * If pixel clock * kslice adjust >= 2720MHz slices can be processed
2999 	 * at max 340MHz, otherwise they can be processed at max 400MHz.
3000 	 */
3001 
3002 	adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
3003 
3004 	if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
3005 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
3006 	else
3007 		max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
3008 
3009 	/*
3010 	 * Taking into account the sink's capability for maximum
3011 	 * clock per slice (in MHz) as read from HF-VSDB.
3012 	 */
3013 	max_throughput = min(max_throughput, hdmi_throughput * 1000);
3014 
3015 	min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
3016 	max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
3017 
3018 	/*
3019 	 * Keep on increasing the num of slices/line, starting from min_slices
3020 	 * per line till we get such a number, for which the slice_width is
3021 	 * just less than max_slice_width. The slices/line selected should be
3022 	 * less than or equal to the max horizontal slices that the combination
3023 	 * of PCON encoder and HDMI decoder can support.
3024 	 */
3025 	slice_width = max_slice_width;
3026 
3027 	do {
3028 		if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3029 			target_slices = 1;
3030 		else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3031 			target_slices = 2;
3032 		else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3033 			target_slices = 4;
3034 		else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3035 			target_slices = 8;
3036 		else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3037 			target_slices = 12;
3038 		else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3039 			target_slices = 16;
3040 		else
3041 			return 0;
3042 
3043 		slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3044 		if (slice_width >= max_slice_width)
3045 			min_slices = target_slices + 1;
3046 	} while (slice_width >= max_slice_width);
3047 
3048 	return target_slices;
3049 }
3050 
3051 /*
3052  * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3053  * source and sink capabilities.
3054  *
3055  * @src_fraction_bpp: fractional bpp supported by the source
3056  * @slice_width: dsc slice width supported by the source and sink
3057  * @num_slices: num of slices supported by the source and sink
3058  * @output_format: video output format
3059  * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3060  * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3061  *
3062  * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3063  */
3064 int
3065 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3066 		       int output_format, bool hdmi_all_bpp,
3067 		       int hdmi_max_chunk_bytes)
3068 {
3069 	int max_dsc_bpp, min_dsc_bpp;
3070 	int target_bytes;
3071 	bool bpp_found = false;
3072 	int bpp_decrement_x16;
3073 	int bpp_target;
3074 	int bpp_target_x16;
3075 
3076 	/*
3077 	 * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3078 	 * Start with the max bpp and keep on decrementing with
3079 	 * fractional bpp, if supported by PCON DSC encoder
3080 	 *
3081 	 * for each bpp we check if no of bytes can be supported by HDMI sink
3082 	 */
3083 
3084 	/* Assuming: bpc as 8*/
3085 	if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3086 		min_dsc_bpp = 6;
3087 		max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3088 	} else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3089 		   output_format == INTEL_OUTPUT_FORMAT_RGB) {
3090 		min_dsc_bpp = 8;
3091 		max_dsc_bpp = 3 * 8; /* 3*bpc */
3092 	} else {
3093 		/* Assuming 4:2:2 encoding */
3094 		min_dsc_bpp = 7;
3095 		max_dsc_bpp = 2 * 8; /* 2*bpc */
3096 	}
3097 
3098 	/*
3099 	 * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3100 	 * Section 7.7.34 : Source shall not enable compressed Video
3101 	 * Transport with bpp_target settings above 12 bpp unless
3102 	 * DSC_all_bpp is set to 1.
3103 	 */
3104 	if (!hdmi_all_bpp)
3105 		max_dsc_bpp = min(max_dsc_bpp, 12);
3106 
3107 	/*
3108 	 * The Sink has a limit of compressed data in bytes for a scanline,
3109 	 * as described in max_chunk_bytes field in HFVSDB block of edid.
3110 	 * The no. of bytes depend on the target bits per pixel that the
3111 	 * source configures. So we start with the max_bpp and calculate
3112 	 * the target_chunk_bytes. We keep on decrementing the target_bpp,
3113 	 * till we get the target_chunk_bytes just less than what the sink's
3114 	 * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3115 	 *
3116 	 * The decrement is according to the fractional support from PCON DSC
3117 	 * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3118 	 *
3119 	 * bpp_target_x16 = bpp_target * 16
3120 	 * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3121 	 * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3122 	 */
3123 
3124 	bpp_target = max_dsc_bpp;
3125 
3126 	/* src does not support fractional bpp implies decrement by 16 for bppx16 */
3127 	if (!src_fractional_bpp)
3128 		src_fractional_bpp = 1;
3129 	bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3130 	bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3131 
3132 	while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3133 		int bpp;
3134 
3135 		bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3136 		target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3137 		if (target_bytes <= hdmi_max_chunk_bytes) {
3138 			bpp_found = true;
3139 			break;
3140 		}
3141 		bpp_target_x16 -= bpp_decrement_x16;
3142 	}
3143 	if (bpp_found)
3144 		return bpp_target_x16;
3145 
3146 	return 0;
3147 }
3148